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Abstract. We use Morse theory to estimate the number of positive solutions of an
elliptic problem in an open bounded set {2 C RY. The number of solutions depends on
the topology of (2, actually on &%({2), the Poincaré polynomial of {2. More precisely,
we obtain the following Morse relations:

Dt =t Z (D + P [P — 1] + 11 +1) D)
uETH

where ¢Z(t) is a polynomial with non-negative integer coefficients, .7 is the set of
positive solutions of our problem and p(u) is the Morse index of the solution w.

Mathematics Subject Classification: 35]120, 49F15, 58E05

1 Introduction

In this paper we are concerned with the following problem:

—eA+u=f(u) in 2,
(PE) u >0 in 2
u=0 on 012
where € € R*\{0}, 2 ¢ RY, N > 3, is a smooth bounded domain and
fiRF— R

is a &' function with f(0) = f'(0)=0.

Precisely the present research continues a study of [B.C.], [B.C.P.], and [C.P.] on
the effect of the domain shape on the number of positive solutions of some semilinear
elliptic problems.

During the past few years the relations between the geometry or the topology of
{2 and the existence and multiplicity of solutions to problems like the following
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(1-1) u>0 in £2

u=0 in {2

have been intensively investigated: we refer to [B.C.] for a detailed bibliography.
The aims of this paper are the following:

{ —Au+X u=uP"! in 2, pec2,2N/(N-2)]

(i) to apply concentration and rescaling techniques to nonlinearities more general
than uF (see [Ca] for an other result in this direction);

(i) to show that the Morse theory for this kind of problems gives better information
than the Ljusternik-Schnirelman one.

We make the following assumptions:
(H;) there exists ¢ > 0 such that, for every £ > 0,

lf] < a+at?
IF' )| < a+atP™!

where @ is a suitable positive constant and p € (1, §%%)
(Hy) there exists ¢ € (0,1/2) such that

Fy<dtf@) t=0

where
t
(1-2) F@)y= / f(rydr for t>0
0
d (ft)
(H3) for every t > 0, o (T) >0.
(Hy) fOy=0; f(©0=0.

For what follows it is useful to extend f to R™ in the following way:
(Hs) fO=0 for t<0.

Moreover notice that (H;) implies that

(H)) f@y >kt k>0 t>0.

It is well known that, under the above assumptions, (P.) has a positive solution.
Using the Ljusternik Schnirelman theory we obtain the following result:

1.1 Theorem. Suppose that f satisfies the assumptions (H\), ..., (Hy) and 2 is topo-
logically non-trivial®, then there exists €* > O such that, for any € € (0,&*) problem
(P.) has at least

cat(f) +1

distinct solutions.

1 We say that £2 is topologically nop-trivial if cat £2 > 1 where cat {2 denotes the Ljusternik Schnirelman
category of {2 in itself.
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In order to state the results we obtain via the Morse theory, some notations and
facts about the Morse theory (see e. g. [B;], [C]) are needed.
The solutions of (P.) are the critical points of the energy functional

(1-3) E.(w)= / (3e|Vul? + 2u? — F(w) dz
2

where F'(t), for t > 0, is defined in (1-2) and, for ¢ < 0, is 0.

Notice that, by virtue of (H,), E. is a #2-functional on the Sobolev space WOI(Q).
If w is an isolated critical point of . and E.(u) = ¢, its (polynomial) Morse index
1¢(u) is defined as follows:

d(w) =Y dim [Hy(EZ, ESn\{u})] £*,
k

where H(-,-) denotes the k-th group of homology with coefficients in some field,
and
Ef={w e Wy(D)|E.(w) < c} .

The integer number ¢ () is called the multiplicity of u. It is well known that if u is
a non-degenerate critical point, then

ir(w) = 4™

where p(u) denotes the (numerical) Morse index of wu, ie. the dimension of the
maximal subspace on which the bilinear form EZ (u)[-, ] is negative-definite.
If v is a non-degenerate solution, its multiplicity is 1. If the multiplicity of u is
n, a generic & 2-small perturbation splits u into at least n non-degenerate solutions.
If & is any topological space, we recall that the Poincaré polynomial of & is
defined as follows:

AP) =) _dimH(D)]t".
k

The main result of this paper is the following theorem:

1.2 Theorem. Suppose that f satisfies the assumptions (Hy), . .., (Hy). Moreover sup-
pose that

(i) € € (0,e*] where €* is a suitable positive constant,
(ii) the set F% of nontrivial solutions of problem (F.) is discrete; then

D iw) == 1R + PIAW) — 1+ 1 +HO(D)
uEF

where (7(t) is a polynomial with non-negative integer coefficients.

In the nondegenerate case, the above theorem becomes:

1.3 Corollary. Suppose that f satisfies the assumptions (Hy), . .., (H4). Moreover sup-
pose that
(i) € € (0,e*] where €* is a suitable positive constant,
(ii) the solutions of problem (P;) are non-degenerate;
then
D Y =t D + PR — 1+ 1L+ HOWD)

(=8
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where (Z(1) is a polynomial with non-negative integer coefficients and F% is the set
of solutions of (P.).

Let us remark that Theorem 1.2 implies that the problem (F.) has at least 2(2)—
1 solutions if they are counted with their multiplicity. Of course, if {2 is topologically
trivial, then Z4(§2) = 1, and the above theorem does not give any extra information.
When {2 is topologically rich, we obtain good information on the solutions of (F;).
An example of this is given by the following corollary.

1.4 Corollary. Let A and C;, (i = 1,...,k) be contractible open non-empty sets in
RY, smooth and bounded; suppose that

C;inCj=2, (G,j=1,....k %))
C;CcAG=1,...,k

and set

2=A\JC;.

Then, there exists €* > O such that, for any € € (0,€%), the problem (F.) has at least
2k + 1 solutions, if they are counted with their multiplicity.

Moreover, if the solutions are non-degenerate, k of them have Morse index N, k
of them have index N + 1, and one (the Mountain Pass Solution) has index 1.

1.5 Remark. Clearly, if we replace the equation in (F.) with the equation
(1-4) —eAu+ku = f(u)

where k is a fixed positive constant, we obtain the same results. Now consider the
equation
eAu = gu) .

If we have ¢'(0) < 0, then this equation takes the form (1-4) if we set k = —g’(0)
and f(u) = g(u) + ku.

Notice that, in order to apply our techniques it is necessary to have & > 0 and
hence ¢'(0) < 0. If ¢’(0) > A(£2) (where A\;(f2) is the first eigenvalue of —A) we
do not have any positive solution. If ¢’(0) € [0, A((£2)] it is not yet clear what the
situation is.

1.6 Remark. Using the Ljusternik Schnirelman theory, it has been proved in {[BC] and
[BCP] that the problem (1-1) admits at least (cat §2) + 1 solutions if A is big enough
(or p 1 2%2* =2N/(N —2)) and 2 is a smooth domain topologically non-trivial.
Clearly, the methods presented in this paper work for problem (1.1) which can be
written in the form (1-4) with k = 1 setting v = (1/¢)'/®~ Dy, ¢ = 1 /. So for problem
(1-1), if A is big enough, we get the conclusion of Theorems 1.2 and 1.3. Moerover,
using the estimates of [BC], if p is close to 2* and A is fixed, theorems analogous to
1.2 and 1.3 hold for (1-1).

1.7 Remark. Suppose that {2 is topologically trivial but is close (in a suitable sense)
to a set {2; which has a rich topology; in this case the number of solutions of problem
(P:) can be estimated by the topology of {2,. This result can be obtained using the
arguments of [BCP].
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2 The functional analytic setting

We set

-1 Jo(w) = EL(w)[u] = / (e|Vul* +u?) dz — / fuwy dx
kel 2

2.1 Lemma. Suppose that J.(u) = 0 and that u # 0. Then
J(w)u] <0

Proof. First notice that J.(u) = 0 and u # 0 imply
meas{z € Qu(z) >0} >0,

in fact, fqr every u < 0, by (Hs) and J.;(u) = 0, we have that
/ (e|Vul* +u?) dz =0
n

and hence © =0 a.e.
Now,

Jwul = 2/ (e|Vuf +u?) dz — / (f'w? + fluy) dz
2] o)

= /Q (fluyu — f’(u)u?’) dz ;

therefore the claim follows by (Hs). ]
We now set

(2-2) S ={veWs@)| v =13\ {ve Wil < 0a.e}

(where || - || denotes the norm of W;(£2)). Clearly .%” is a smooth manifold of codi-
mension 1. Moreover define

(2-3) M. ={ueWy()u#0 and J.(u)=0} .

2.2 Lemma. M, is a manifold diffeomorphic to % and the diffeomorphism . :
F — M, is of class &' Moreover there exist he > 0 and k. > O such that for
every u € M, the following relations hold true

(2-4) lull = he

(2-5) E.(u) > k. .

Proof. For every © € ., let £.(D) be the positive number which realizes the max-
imum of the function A — E_ (A7) defined on R*. £.(¥) is well defined. In fact,
max e+ B (AT) is achieved since, by (H;) 0 is a local strict minimum of E.(u) and
by (H’3),

lim E.(A0)=—00.

A—+00
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Moreover the uniqueness of £.(¥) follows observing that, by (Hz), % fOAD)T is a
strictly increasing function of A and

0= EES(MJ) = /\/ (e|V5)* + 5% da ~/ FODYS da

implies
/(EIV@|2+T)2) de = -1—/ FAD)Dda .
e Alda

Clearly £.(0)0 € M,. Thus M, is the graph of the function v, : . — M, defined
by

Yelv) = (D) .
By the implicit function theorem and Lemma 2.1, 9. and £, are functions of class

#11; (2-4) is a consequence of the definition of the function &, and of the behaviour
of E.. Lastly let us consider u € M., then using (H;) and (2-4) we obtain

E.(u) =/ (16|Vu|2 + 1uz - F(u)) dx
o \2 2

2/ (e|Vul* +u?) d:c——ﬁ/gf(u)u dx

0

=(1/2—79)/ (elVul? +u?) dz > (1/2 = 9) e [|ul* > ke . O
7

2.3 Lemma. The following statements are equivaleni:
(i) u is a critical point of E.;
(ii}) u is a critical point of E,. constrained on M..

Proof. (i) = (ii) is immediate since El(u) =0=>u € M,.
(i1) => (i) let ug be a critical point of E, constrained on M, . Then there exists A € R
such that El(ug) — AJ.(up) =0.
Thus,
Je(ug) = EL(ug)[uol = A (uo)luo] -
This equality and Lemma 2.1 imply that A = 0. O

By standard arguments, we have that the Palais-Smale condition holds for both the
free functional E. and the functional E, constrained on M,, i.e. we have the following
lemma.

2.4 Lemma. (i) If uy, € WE({2) is a sequence such that
(2-6) IVE.(us)|| — 0 and E.(u,) is bounded

then uy, has a converging subsequence.
(ii) if uy € M, is a sequence such that

(VE (upn), VJe(uy)
HVJs(un)“Z

@27 HVEs(un) - VJs(un)H —0

and E.(uy) is bounded then u, has a converging subsequence in M..
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3 Some estimates

From now on, for any function v € VVO1 (Z) (& C RY), we denote with the same
symbol its extension to RY obtained setting u = 0 outside of &.

Moreover, for any u € WH(Z) (Z C RY), we denote with the symbols E,
J., the objects corresponding to the ones we have defined by (1-3) and (2-1) for
u € Wi().

Also, for any & C RN, M_(Z) is the submanifold of W(Z) defined as in (2-3)
and we set

(3-1) m(e, ) = inf {E-(u), u € M.(Z)} .

Notice that m(e, &) is well defined by (2-5) of Lemma 2.2. Moreover, whenever
7 c RY is bounded, the infimum is achieved since F. satisfies (PS) on M.(&)
(Lemma 2.4).

If Z = By(y)={z € RN : |z—y| < o} the number m(e, B,(y)) does not depend
on y; thus, for any y € RY, we set

(3-2) m(e, ) = Mg, By(y)) .
Moreover, it is a trivial fact that
(3-3) o1 < g2 = mlg, 01) > mle, 02) -

If & = RY, then (PS) for E, fails, however the following result holds:

3.1 Lemma. m(g, R™) is achieved by a positive function radially symmetric u(r) where
7 is the radial coordinate. u(r) is decreasing in v and has the asymptotic behavior

lim T(N_l)/ze"u(r) =m >0
(3_4) T—00
lim rN D2/ (r) =1, > 0.

Progf. If we restrict our consideration to the subspace W,}(]RN )y of WY{(RY) consisting
of functions radially symmetric about the origin, the embedding

2N
':Wl N 2N

is compact [S]; so the functional E. satisfies the (P.S.) condition on M (RY) N
WYRY) and

inf { E.(w)lu € MR™) N WHRM)}
is achieved. Then in order to prove that m(g, RN ) is achieved, it suffices to show that,

for any u € M (RY), there exists w € M. (RM)NW}(RY) such that E.(w) < E.(u).
Let us denote by u* the Schwartz symmetrized function about the origin of v and set

w = {*u* where t* =¢, (ﬂz_:ﬂ) |lw*||~!. Then, using the Riesz inequality and the
properties of the spherical rearrangements, we obtain
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E.(w) = (1/2)(t*) / (e|Vu*|* + [u*[*)dz — / Ft*u")dz
Y Y

< (1/2)(t*)* / (e|Vul? + [u)dz — / Ft*u)dx
BN BN
= E.(t"u) <max E.(tu) = E.(u) .
teR*
Then, the estimates (3-4) follow from a well known theorem of Gidas, Ni, Nirenberg
[GNN]. 1

In the following, W,,,(R™) will denote the subspace of W'(R™) of functions
whose support is compact.
For any u € Wclomp(]RN ) we shall consider

gy - [Vu@)Pde
[ [Vul@)Pdz

B(u)

We define, for every ¢ > 0 and every v > 1,
(3-5) m*(g, 0,7) = inf{Ec(w)|u € M(B,,(0\B,(0)) , B(u) =0} .

Let us point out that the number m*(e, g, v) does not change if we move the center
of the balls and £(u) to any other point z € R.
It is clear that
m* (g, 0,7) > m(e, RY)

Now we set

(3-6) m™(e,y) = inf m™(€, 0,7)
o>0

3.2 Lemma. The relation

3-7) lim m(l,0) =m(1,R")
O0—+00

holds.

Proof. Let us denote by ¥ € W(IRY) a positive function spherically symmetric about
the origin, such that

Ei@)=m(L,RY), ¥ e M®RY)
and consider the function w, € VVO1 (B,(0)) defined by
wo(x) = Co(@)p()
where ((z) : R — [0, 1] is a C*>°-function defined by

Cg(x) = 5 (LZJ‘) .

¢ :R*U {0} — [0,1] being a decreasing C'*°~function such that

a1 t<}
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Put
’U,Q(:I') = t@'wg(x) s

to=é (e ) el

Then u, € Mi(B,(0)) and Ey(u,) > m(l,p) > m{(1, RY).
Hence to prove the assertion it is sufficient to show that

where

@ /m o HEd = ol1/0)

(3-8) VBor2®

(b) / F@)dz = o(1/ 0)
BV\B, »(0)

(3-9) /N (VW — wp)? + ¥ — w,|*) dz = o(1/0) .
R’

The limit (3-8)(a) follows from the fact that, if p is large enough, (3-4) and (H;)
imply

0 < / FOWdz < / (a¥ + a¥PYdx
BY\B, /0 ENVA\B,/2(0)
1
<k T Ty,
B 1/mf\’\}_?é,/z(o) (eixuzyi(}\ll)ﬂ) ’

1 Pl 1
e[ () (1) w0
5V\B, 0 \ €|z D72 0

Analogously we prove that
0< / F@ydz < / (O + bPydz = o(1/0)
RN\B, (0) BN\B, 0
Also, using (3-4), if p is large enough, we obtain

f (V@ — wp)? + & — w,|*) dx

BN

< ks / |V |*dz + k3 / \W|*dz
EN\B, /»(0) BN\B, /»(0)

<t [ () d=o(}) .
< Ky TSR =ol—1.
TN\B,,,0 \ € |z[N=D/2 0

3.3 Lemma. The inequality
(3-10) m*(1,7) > m(1,RY)
holds for any fixed v > 1.
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Proof. It is obvious that m*(1,v) > m((1,RY). To prove the strict inequality, we
argue by contradiction and we suppose that the equality holds. In this case there
exists a sequence g, such that

(3-11) m*(, 0n,7) — m(1,RY) for n — +o0.

We can exclude at once that {g,} is bounded. In fact if it were bounded by L, we
should have

m*(1, 0,7) > m(1,vL) > m(L,R").

So we can assume that (3-11) holds with g,, T +oco. Then there exists a sequence of
functions {u, } such that

Un € W()I(B’ygn(o)\Bgn(O)) y  Un 7& 0 ; ﬂ(un) =0 y

1
—/ ([Vun|2+u$l) da:—/ F(up)dz — m(1,RY)
2 JBryon ©\Ben © By 0\ Boy, (0)

(|Vun|* + up) dz = / Flun)undz .

‘/ngn(o)\BQn © Bryon (0\ By, (0)

On the other hand it is known (see [L]) that any minimizing sequence in WO1 (RN \B,, (0))
has the form ,

(3-12) W) + V(T — Yn) »

where {wy,,(x)} C W(RY) is a sequence going strongly to 0 in W!(RN), {y,,} ¢ RV
is such that |y,| — +oo and ¥ € WI(RY) is a positive function, spherically
symmetric about the origin, such that E,(¥) = m(1,RV), ¥ ¢ M;(RY). Thus, in
particular, u,, has the form (3-12).

Since any regular solution ¢ of —Au +u = f(u) in RN satisfies the following
Pohozaev type inequality

2N >
2dp = —— T+ F d
/]ENW“" do N—z/mN{ 77 (“O)J &

/ |V&|*de = Nm(1,RY)=b>0.
]}E‘\N

we have

Since |[wnl{y1gyy — O, it follows that
/ (V(wn(z) + ¥ (@ — y,))*de — b.
Bgn/4(yn> oo

Set Cp, = By, (0\ By, (0); clearly

/ |V |*de = / : |V, [*dz +/ IV, |*dx
Chr Cnn[BenM(yn)] Cn\[Bgn/4(yn)]

and
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0 < / |V, [*dz
Cp\lB (yn)]
(3-13) \[Bgy, /4y
< / V(@) + U@ — ya))Pdz — 0
BN\[B,,, /4(yn)] nee
/ |V, |*dz
CnNIB (yn)l
(3-14) en /4

/ |Vwn (@) +¥(x — y)[*dz — b;
CnNBy,, /4¥n)] oo

thus C, N [B,,, /4(y)] # @ and |y,| > (3/4)0y, for n big enough.
Now

2 2
fcnm[Bgn/mn)]xW“"‘ dx - fcnm[Bgnm(ynn(x = yn)|Vun|*dz
Jounis,, s [Venlde JuriB 1, utwmn [V n

SO ,

fcnm[Bgn/4(yn)]x‘vun| dzx > o /2

fcnm[Bgn/4(yn)] |Vun|2d:c B
On the other hand R

fC’n\[Bgn/4(yn)] x|vu"‘ dx

i) |Vu,|2dx < Yen
Cn\[B,,, jalwn)l ¥ U0
Since fB(uy) = 0, we have
/ ac|Vun|2dac+/ |V, |*dz =0 .
Cnm[BQn/4(?Jn)] Cn\[BQn/4(yn)]
then
(0n/2) - / |V, |2dz| < / 2|V, |[*dz
Cnﬁ[Bgn/4(yn)] Cnﬂ[B,_,n/4(yn)]
= / x|V, |2 dz| < von / |V, |*dz
Cn\[BQn/4(yn)] Cn\[Bgn/4(yn)]
and using (3-13) and (3-14), we obtain:
(0n/2) - (b+0(1)) < von - o(1)
and this inequality gives
b/(2) < o1)

which is a contradiction. O

3.4 Lemma. For any vy > 1, there exists R = R(v) > 0 such that
(3-15) m(1, R) <m*(1, R, 7)



40 V. Benci and G. Cerami

for every R > R(’y).

Proof. From Lemmas 3.2 and 3.3, we deduce that there exists R > 0 such that for
every R> R

m(1, Ry < m*(1,~) .
Then, (3-15) holds since, by definition,

m*(1, R,v) > m*(1,7)

for every R. U

3.5 Corollary. For every r > 0 and v > 1, there exists £ = &(v, o), such that the
relation

(3-16) m(e, 0) < m™(g, 0,7)

holds for every € € (0, £].

Proof. We assert that £ = (g/ R)? where R is the number found in Lemma 3.4. Indeed
it is possible to define a one to one map

T : Wy (B,(0)) — Wy (B, /z(0))

by T(u) = u.(z) = u(y/zx) for every u € WOI(BQ(O)). Then a simple calculation

shows that
/BQ/ VAL

=g N2 / (e|Vul? + u*)dz — / fwudz| ;
Bo(0) By(0)

(|Vu,3|2 + ui) dz — / flug)u.dzx
Bo/ e

and
(1/2) (1Vul* + u?)dz — / F(u.)dz
By/Ve0) Bo/+/2(0)
=g N/2 [(1/2) (e|Vul* + u?)dx —/ F(u)dz
Bo(0) Bo()
So

m(e, 0) = e™’m(1, 0/\E) .

Analogously it is easy to verify that

m*(e, 0,7) = " *m*(1,0/Ve, ) ;
m(e, RY) = eN2m(1, RY) .

Hence if p/+/z > R, that is if ¢ < (p/R)?, the relation (3-16) follows from (3-15).
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4 Proof of Theorem 1.1

In what follows, without any loss of generality, we shall assume O € (2. Moreover,
we denote by r > 0, a number such that the sets

2t ={z e RVld(@, ) <r} and 02~ ={z e Qd,002) > 2r}

are homotopically equivalent to {2 and B,.(0) C (2. Finally we fix

_ diam {2
=— .
4.1 Lemma. There exists €* such that
4-1) ue M., E.(u)<mle,r)= [u)e 2"

for every £ € (0,e*].
Proof. First of all we observe that by the choice of 7,
m(e, £2) < m(e,r)

for any € > 0.
Thus the set of the functions verifying the condition on the left side of (4-1) is
non-empty. Also let us notice that our choice of r and -y implies that

~r = diam {2 .

Now let £* be the number, depending of course on « and r, which satisfies the
assertion of Corollary 3.5.

In order to prove (4-1), let us suppose ¢ € (0,e*] and let u* € M, be a function
such that E_.(u*) < mfe,r).

We argue by contradiction and we assume that z* = S(u*) ¢ 2*. Then 2 C
Biam Q(x*)\Br(m*) = B’yr(x*)\Br(x*)

Therefore

1 1
m*(e,r,7y) = inf / [—EIVU|2 +-u?— F(u)} dz :
Bor(@\Brz*) L2 2

/ [e|Vul* +u? — fwu] dz =0
Byr(z*)\Br(z*)
u € Wy (Byr@)\Br(z*);  Blw) = 113*} < E.(u") <mfe,r) .

that contradicts, by our choice of ¢, (3-16). O

For any € > 0, let us define the operator
e 1 27 — Wy(2)

by

[P=(] () = {0 V€ Qz\Bzr(y)
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where u.(|z|) is a positive function, radially symmetric about the origin, such that
ue € Mo (B (0), E-(ue) = m(e, 2r) < mfe, 7).
Note that ¢. is continuous and that

¢s(y) M., ﬁ(¢a(y)) =Y.

Also we set
M ={ue M, |E.(w) <c}.

4.2 Lemma. Let €* > 0 be as in Lemma 4.1, then for every € € (0,e%]
B(MIED) C 2, 927y C MIMED
and

Bode =J

where j : {27 —— 2% denotes the embedding map, i.e.,

)=z, Vxe2.

Proof. The proof is an immediate consequence of the relation (4-1) and the definition
of ¢.. O

4.3 Lemma. Let ¢ be as in Lemma 4.1, then for every € € (0,e"}

cat (M"=7) > cat 02 .

Proof. Suppose that cat(M ™) = n; this means that 7 is the smallest positive integer
such that
MM™ED CAJUAU. .. UA, ,

where A;, i =1,...,n, are closed and contractible in M), i.e. there exist
G € € (10,11 x Ay, MP©7) | i=1,2,...,n

such that
FE(0,u)=u for every wu € A;
FE(,u)=w; € M™ET forevery we A, .
Now, we set
Ki=¢'(A).
The sets K; are closed subsets of {2~ and
- CKyU...UK,

Moreover K;, i =1,...,n, is contractible in 2%, in fact if we consider the maps h;,
t=1,...,n, defined by
hz(ta Z') = B ° y(gl(t, QDE(J;))

we have
hi € & (10,1] x K;, %)
hi(0,x) = B 0 F,(0, pc(x)) = B o ¢(x) =1, Vr € K;
hi(l,z) = B o F(1, ¢ (x)) = B(w;) = x; € 2°, Ve € K;
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Then
cat+(27 )< n.

Since catp((2) = cato+{§27), the lemma is proved. O
We are now ready to give the

Proof of Theorem 1.1 Choose £* as in Lemma 4.1 and consider £ € (0,&"]. If, for
every o € [r,2r), m(g, o) is a critical level, we are done. Otherwise, we can suppose
that m(e, r) is not a critical level. Since the functional F, satisfies the Palais-Smale
condition on the set M7, applying a classical result of the Ljusternik-Schnirelman
theory, we deduce that:

#{ue M. : B.w < mie,r), VE|,,, (=0} > cat MI"C"

and, using (4-2), we conclude that the functional F has at least (cat {2) critical points
in M, having energy less than m(e, 7).

Since cat £2 > 1, then the set & = ¢.({27) is non-contractible in M™&™. Then
in order to prove the existence of an other critical point, it is sofficient to construct
an energy level ¢ > m(g, r) such that & is contractible in M.

Take u* € M (u* > 0) such that u* ¢ &, and define the set

O ={vu*+(1 —Dud €0,1], u € &}

© is compact and contractible, moreover 0 ¢ © (since every u in & is positive on a
set of positive measure); hence the set

A= {t(w)wlw €0, Hw)=& (ﬂgﬂ) ”w“_l}

is well defined and & C A C M,. Then, setting
c=max {E.(w),w € A}

we have that & is contractible in M. O

5 Morse theory for the functional E.

First of all we recall some notation: if (X,Y) is a couple of topological spaces, we
set
FX,Y) =) dim[ Hy(X, Y)It*
k

where H3{X,Y) is the k-th homology group with coefficients in some field; moreover
we set

FX) = RX,¢) =Y _ dimHp(X)t"
k

5.1 Lemma. Let ¢* be as in Lemma 4.1 ; then for any € € (0,€*]
(5-1) R (M) = FD + (1),

where S&&(t) is a polynomial with non-negative coefficients.
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Proof. Let us denote with ¢, , and [, the homomorphisms induced by ¢. and 3
respectively between the k-th homology groups, i.e.

Hy(£27) Pk Hy, (M) By vty
Since By o be k, = Idi, Hr(£27) is homotopic to a subspace of Hx(M™*") and hence
dim (H(27)) < dim (Hy (M™eD))
so0, from the fact that {2 and {2~ are homotopically equivalent, it follows that
dim (H,(12)) = dim (Hy,(£27)) < dim (Hj, (M7)) .

Then, we get (5-1). ]

5.2 Lemma. Let ¢* and ¢ be as in Lemma 5.1, 8 € (0, k. /2) (k. is defined in Lemma
2.2) and let ¢ € (6, +cx] be a noncritical level of E.; then

5-2) R(EL, ED) = (M) .
Before proving Lemma 5.2, we need to recall some results,

5.3 Lemma. Ler 9 be a manifold and let Y1 C I be a closed oriented submanifold
of codimension d. If W is a subset of 9] closed in N, then

PN, M\W) = 2P, W) .

Proof. This is an immediate consequence of the Thom isomorphism theorem (see
e.g. [D] pag. 321, Corollary 11.14), since N is a strong deformation retract in .#4.
Moreover notice that the Thom theorem, in this form, holds even if the dimension of
9 is infinite. ]

Now set
Se(a,b) = {u e W} (Dla < E.(u) < b} .
5.4 Lemma. If ¢ and b are not critical levels, then

P(EL, By = P(E.(a,b), Ze(a, )\ M)

Proof. Take two open neighboroods U and V of M., U C V, and let x be a C'-

function which is 1 in U/ and 0 out of V. Then define

(VE (v), VJe(u))
VI

F(u) = VE(u) — x(w) VJe(u)

and let be 5(t, u) be flow relative to the Cauchy problem

F(u)

a4 ¢t u) = ——
{dt" T IF@)]
70, w)=u

It is easy to check that the Cauchy problem is well posed and n(f,u) is defined
for every t € R and every u € WOI(Q). Moreover, if V is sufficiently smail and
VE(u) # 0, then
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d
5 Le((tu) <0

Now set
W ={ue X.a,b) |Vt >0, nt,u) € X(a,b)} .

By the Theorem 1.3.8.(1) of [B;] (cfr. also [B-G]), we get
AR(Te(a,b), Tela, D\W) = R(Ze(a,b), EZ'(a)) -

Since
FUEL, B = A(Sc(a,b), ES \(a)

and W = X (a,b) N M. = M?, we have that
REL,E2) = A (Ze(a,b), Zela, HAM,) .
Now, since @ and b are not critical values,

AR (Le(a,b), Ze(a, )\ M, ) = AA(Ze(a, b), Ze(a, b))\ M)

from which the conclusion follows. O
Proof of Lemma 5.2. We apply Lemma 5.3 with 91 = Y. (a,b) and 91 = Y. (e, b)N M..
The conclusion follows from Lemma 5.4. O

5.5 Corollary. Let £*, € and 6 be as in Lemma 5.2, then

(5-3) FUEMED | B2 = tR(Q) + tZt)
(5-4) AW, B = tAM,) =t ,

where Z(t) is a polynomial with non-negative integer coefficients.

Proof. As we have already observed in the proof of Th. 1.1, we can assume without
loss of generality that m(e,r), is not a critical level of .. Then (5-3) follows from
(5-1) and (5-2). (5-4) follows from (5-2) and the fact that M. is contractible, so
dim Hp(M.)=1if k =0 and dim Hi(M,)=0if k £0. O

5.6 Lemma. Let ¢* and € be as in Lemma 5.2; then
(5-5) AW, (2, EIED) = ¢ [A(D) + &) — 1]
where Z(t) is a polynomial with non-negative integer coefficients.

Proof. Let 6 be as in Corollary 5.5 and consider the exact sequence,

— H (W (2), BS) 25 Hy(Wi(@), EP©m) -
ks Hy (B0, B2 By (W), BY) —
Thus, for k£ > 2,
dim [Hp(Wg(§2), E7©™)| = dim [Hy_ | (ET®", E9)]

For k£ =2, we have
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— Hy (W), ED) 2 (Wi (), Erem) 2,
22 H(EP©D, BS) -5 Hy(Wi(2),BS) —
since, %1 18 an isomorphism,
Hy(W,(52), ET*®™) = jp (Hy (Wa (1), E2)) =0 .
For k =1, we have
22 Hy(Be, B2 L By (W), B2 25 Hy(Wi (), Brem) 2L
H,(W5 (), EP*") =0

Moreover
Ho(Wy(£2), ET&™) =0

By the above formulas and (5-2), we conclude that

AW, (2), BT = t [FUEIET), ED) — ]

= [RD+Z(t) - 1] . n
5.7 Lemma. Let € be as in Lemma 5.1, suppose that
(i) € € (0,€7]

(ii) the set F% of nontrivial solutions of problem (P.) is discrete;
then

(5-6) > iru) = tFRD) + tZ(H) + (1 + DA (E)
ued
(5-7) > iw) =1 [T + Z(t) — 1] + L+ DHBG®)
uc&y
where

¢ ={u€.%|6 < E(u) <mie,r)}
and
& = {u € F|E(w) > mle, )} .

Proof. Since E. satisfies the Palais-Smale condition, by the Morse theory we have
that

> i(u) = REIEV,ED + 1+ HA®) .

ue€)
Then the (5-6) follows from (5-3). Analogously, (5-7) follows from (5-5). O
Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Choose £* and ¢ as in Lemma 5.7. Since F. does not have
any non-zero solution below the level §, %% = ¢ U €5, then

D= ) ddw+ > ) .
ueH u€EC| ue)

The conclusion follows by Lemma 5.7. O
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Proof of Theorem 1.3. Theorem 1.3 is an immediate consequence of Theorem 1.2,; in
fact, if u is a nondegenerate critical point,

i) =t | O

Proof of Corollary 1.4. The assertion is a consequence of the Theorems 1.2, 1.3 and
the fact that

(5-6) PN =1+ktN 1.

The computation of F7({2) is an easy application of algebraic topology techniques
which we will show for completeness.
Using the excision property and the fact that C’s are ENR, we have:

_ k — k
Hy(A, 2) = 1y | | J G, JOC: | = & Hy(C:,0C) = & Hy(By, 0By)

1

hence F(A, 2) = ktV.
From the exactness of the following sequence,

s HUA) 25 H A, 2) 2 Hy (), (4) —

it follows that, for g = N,

dim [Hy_1(2)] =dim [Hy(A, D] =k
forq>2andg# N

dim [Hy—(2)] = dim [H,(A,2)] =0
moreover, since {2 is connected,

dim [Ho({)]=1.

Concluding, we get (5-6). J
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