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Abstract.  We use Morse theory to estimate the number of positive solutions of an 
elliptic problem in an open bounded set f2 C JR N. The number of solutions depends on 
the topology of f?, actually on ~t(f2), the Poincar6 polynomial of X-2. More precisely, 
we obtain the following Morse relations: 

Z t/z(u) : ~ t ( ~ )  + ~2 [ ~ ( ~ )  __ 1] + t(1 + t) ~ ( t ) ,  
uE,~C 

where ~( t )  is a polynomial with non-negative integer coefficients, ~ is the set of 
positive solutions of our problem and #(u) is the Morse index of the solution u. 

Mathematics Subject Classification." 35J20, 49F15, 58E05 

1 Introduction 

In this paper we are concerned with the following problem: 

eA+u=f (u )  i n ~ ,  
(P~) u > 0 in X? 

u = 0 on 0~2 

where c 6 IR+\{0}, f2 C IR N, N _> 3, is a smooth bounded domain and 

f : R  + ,.~ 

is a ~l ' l-function with f(O) = f'(O) = O. 
Precisely the present research continues a study of [B.C.], [B.C.P.], and [C.P.] on 

the effect of the domain shape on the number of positive solutions of some semilinear 
elliptic problems. 

During the past few years the relations between the geometry or the topology of 
f2 and the existence and multiplicity of solutions to problems like the following 
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- A u + A u = u  p- l  inY2, p E ( 2 , 2 N / ( N - 2 ) ]  
(1-1) u > 0 in s 

u = O  in s 

have been intensively investigated: we refer to [B.C.] for a detailed bibliography. 
The aims of this paper are the following: 

(i) to apply concentration and rescaling techniques to nonlinearities more general 
than u v (see [Ca] for an other result in this direction); 

(ii) to show that the Morse theory for this kind of problems gives better information 
than the Ljusternik-Schnirelman one. 

We make the following assumptions: 

(HD there exists a > 0 such that, for every t > 0, 

If(t)[ ~ a + at p 

If'(t)l ~ a + at p-1 

where a is a suitable positive constant and p E (1, N+2 N--2 j 

(H2) there exists 0 E (0, 1/2) such that 

F ( t ) < O t f ( t )  t>_O 

where 

(1-2) F(t) = f ( r )d r  for f _> 0 

(H3) for e v e r y t > 0 ,  ~ - -  > 0 .  

(Ha) f (O)=O;  f ' ( O ) = O .  

For what follows it is useful to extend f to ~ -  in the following way: 

(Hs) f ( t ) = 0  for ~ < 0 .  

Moreover notice that (H2) implies that 

(Hi) f ( t )  >_ kt I/~-1 k > O, t > 0 

It is well known that, under the above assumptions, (P~) has a positive solution. 
Using the Ljusternik Schnirelman theory we obtain the following result: 

1.1 Theorem. Suppose that f satisfies the assumptions (HI ) , . . . ,  (H4) and (2 is topo- 
logically non-trivial 1, then there exists" e* > 0 such that, for any e E (0, ~*) problem 
(P~) has at least 

cat(Y2) + 1 

distinct solutions. 

1 We say that f? is topologically non-trivial if cat g2 > 1 where cat Y? denotes the Ljusternik Schnirelman 
catego D, of Y) in itself. 
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In order to state the results we obtain via the Morse theory, some notations and 
facts about the Morse theory (see e. g. [Be], [C]) are needed. 

The solutions of (Pc) are the critical points of the energy functional 

(1-3) E=(u) = (�89 2 + �89 2 - F(u)) dx ,  

where F ( 0 ,  for f _> 0, is defined in (1-2) and, for t _< 0, is 0. 
Notice that, by virtue of (Hi), E~ is a ~2_functional on the S obolev space WJ (~?). 

If  u is an isolated critical point of  Ec and Ec(u) = c, its (polynomial) Morse index 
i t(u) is defined as follows: 

i t(u) = Z dim [Hk(Ec,  E c A \{u})]  t k , 
k 

where Hk(-,-) denotes the k-th group of  homology with coefficients in some field, 
and 

= {w wd(n) lEc(w) _< c} 

The integer number i l (~t)  is called the multiplicity of u. It is well known that if u is 
a non-degenerate critical point, then 

i t(u) = t •(u) , 

where p(u) denotes the (numerical) Morse index of  u, i.e. the dimension of the 
maximal subspace on which the bilinear form E1c~(u)[ ., -] is negative-definite. 

If  u is a non-degenerate solution, its multiplicity is 1. If  the multiplicity of u is 
n, a generic ~2-small  perturbation splits u into at least n non-degenerate solutions. 

If  ~ is any topological space, we recall that the Poincar6 polynomial of ~ is 
defined as follows: 

~ ( ~ )  = ~ dim[Hk(~2~r)] t k . 

k 

The main result of  this paper is the following theorem: 

1.2 Theorem.  Suppose that f satisfies the assumptions (HI) , . . . ,  (H4).  Moreover sup- 
pose that 

(i) e E (o, c*] where e* is a suitable positive constant, 
(ii) the set ~ of  nontrivial solutions of  problem (Pc) is discrete; then 

Z it(u) =---- t ~ t ( ~ )  4- t Z [ ~ ( n )  --  1] 4- t ( l  4- t ) ~ ( t ) ,  
uE,yc 

where ~ ( t )  is a polynomial with non-negative integer coefficients. 

In the nondegenerate case, the above theorem becomes: 

1.3 Corollary.  Suppose that f satisfies the assumptions (H1), . �9 �9 (H4). Moreover sup- 
pose that 

(i) e E (o, e*] where e* is a suitable positive constant, 
(ii) the solutions of  problem (Pc) are non-degenerate; 

then 
t **(u) = t ~ t ( ~ )  + ta[~t(g2) - 1] + f(1 + t ) ~ ( t )  

uC,~S 
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where ~'( t)  is a polynomial with non-negative integer coefficients and ~ is the set 
o f  solutions of  (Pe). 

Let us remark that Theorem 1.2 implies that the problem (P~) has at least 25J~1(~) - 
1 solutions if they are counted with their multiplicity. Of course, if g2 is topologically 
trivial, then 4 ( / 2 )  = 1, and the above theorem does not give any extra information. 
When ~ is topologically rich, we obtain good information on the solutions of  (P~). 
An example of  this is given by the following corollary. 

1.4 Corol lary.  Let A and C.z, (i = 1 , . . . ,  k) be contractible open non-empty sets in 
R N, smooth and bounded; suppose that 

C i N V j = ; O ,  ( i , j = l , . . . , k ,  i e j )  

C~ c A , ( i  = 1 , . . . , k )  

and set 

 =A\Uq 
i 

Then, there exists E* > 0 such that, Ser any c E (0, c*), the pt~blem (P~) has at least 
2k + 1 solutions, iS they are counted with their multiplicity. 

Moreover, i s the solutions are non-degenerate, k of them have Morse index N, k 
of  them have index N + 1, and one (the Mountain Pass Solution) has index 1. 

1.5 Remark. Clearly, if we replace the equation in (P~) with the equation 

(1-4) - c A u  + ku = f (u )  

where k is a fixed positive constant, we obtain the same results. Now consider the 
equation 

~A u  = g(u) . 

If  we have g~(0) < 0, then this equation takes the form (1-4) if we set k = -g~(0) 
and f ( u )  = g(u) + ku. 

Notice that, in order to apply our techniques it is necessary to have k > 0 and 
hence 9~(0) < O. If  9t(0) > .~l(Z2) (where .kl(Z)) is the first eigenvalue of - -A)  we 
do not have any positive solution. If  9~(0) E [0, Al(f2)] it is not yet clear what the 
situation is. 

1.6 Remark. Using the Ljustemik Schnirelman theory, it has been proved in [BC] and 
[BCP] that the problem ( l - l )  admits at least (cat Z)) + 1 solutions if A is big enough 
(or p T 2*; 2* = 2 N / ( N  - 2)) and D is a smooth domain topologically non-trivial. 
Clearly, the methods presented in this paper work for problem (1.1) which can be 
written in the form (1-4) with k = 1 setting v = (l/e)l/(P-1)U, C = 1/A. So for problem 
(1-1), if A is big enough, we get the conclusion of Theorems 1.2 and 1.3. Moerover, 
using the estimates of [BC], if p is close to 2* and A is fixed, theorems analogous to 
1.2 and 1.3 hold for (1-1). 

1.7 Remark. Suppose that ~ is topologically trivial but is close (in a suitable sense) 
to a set Q1 which has a rich topology; in this case the number of solutions of  problem 
(P~) can be estimated by the topology of ~1. This result can be obtained using the 
arguments of  [BCP]. 
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2 The functional  analyt ic  setting 

We set 

(2-1) Je(u) : u'(,~)E< : [ (~lV,<l ~ + , h  d~ - [ f ( , ,>  dx 
,sS2 JX7 

2.1 Lemma. Suppose that J~(u) = 0 and that u r O. Then 

J'(u)[u] < o 

Proof First notice that J~(u) = 0 and u # 0 imply 

m e a s { x  �9 S2iu(x) > 0} > 0 ,  

in fact, for every u _< 0, by (Hs) and Je(u) = 0, we have that 

i (elW42 + ~2) d z  : 0 

and hence u = 0 a.e. 
Now,  

33 

= f~  (f(~)~ - f'(~)u =) dx ; 

therefore the claim follows by (H3). [] 
We now set 

(2-2) ~ = {v �9 w0ko)l IIv[I = 1} \ {v �9 w d ( o ) i v  <_ o a.e.} 

(where H" H denotes the norm of W~)(~Q)). Clearly . Y  is a smooth manifold of codi- 
mension 1. Moreover define 

(2-3) Me = { u  C V~( /2 ) lu  r 0 mad J~(v,) = O} . 

2.2 Lemma. ?de is a manifold diffeomorphic to . ~  and the diffeomorphism ~:~ " 
�9 Y ~ 2Vie is of  class ~1,1. Moreover there exist h~ > 0 and k~ > 0 such that for 
every u E Me the following relations hold true 

(2-4) Null 2 he 

(2-5) E~(u) > k~ . 

Proof. For every 5 E ,52~, let (e(v) be the positive number which realizes the max- 
imum of the function A > Ee(A~) defined on N+. (~(~) is well defined. In fact, 
maxx~m+E~(A~) is achieved since, by (HI) 0 is a local strict minimum of E~(u) and 
by (H'2), 

lira E e ( A ~ ) = - c o .  
3,-+oo 
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Moreover the uniqueness of {~(9) follows observing that, by (H3), {f(A~)~ is a 
strictly increasing function of A and 

implies 

O = ~--~Ee(A~) : A / (clV�9 + f)2) dx - / n  f(A�9 dx 

1 
/n(C[Vfj[2 + f})  dx = -~ / n  f ( lo) f ;dx  . 

Clearly ~e(~3)V C M~. Thus Me is the graph of the function Ce : ~;~ ~ Me defined 
by 

r = ~ (~)~ .  

By the implicit function theorem and Lemma 2.1, Ce and ~ are functions of class 
~1,1; (2-4) is a consequence of the definition of the function ~ and of the behaviour 
of Ee. Lastly let us consider u E M~, then using ( H i  and (2-4) we obtain 

e,(u) = /o (~elVul2 + ~u2- F(u) ) & 

= (1 /2  -- 19) [ (glV~t 2 + ~g2) dx > (1/2 - v~) s Hull 2 _>/%. [] 
,/f2 

2.3 Lemma. The following statements are equivalent: 
(i) u is a critical point of E~; 
(ii) u is a critical point of Ee constrained on Me. 

Proof (i) ::~ (ii) is immediate since E~(u) = 0 ~ u E ME. 
(ii) ~ (i) :let u0 be a critical point of E~ constrained on ME. Then there exists A C 
such that E~(Uo) - AJ~(uo) = O. 

Thus, 
Je(uo) = E'~(u0)[u0] = AJ~(uo)[uo] �9 

This equality and Lemma 2.1 imply that A = 0. Z] 

By standard arguments, we have that the Palais-Smale condition holds for both the 
free functional Ee and the functional Ee constrained on lrt'/e, i.e. we have the following 
lemma. 

2.4 Lemma. (i) I f  un c WI(oQ) is a sequence such that 

(2-6) IIvE~wn)II 0 and Ee(Un) is bounded 

then un has a converging subsequence. 
(ii) if Un E Me is a sequence such that 

(2-7) VE~(u~)- (VE~u"))VJ~(%) , 0  
~ w ~ u  ~ E I  ~(n)lt 

and Ee(u~) is bounded then un has a converging subsequence in ~I~. 



Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology 35 

3 Some estimates 

From now on, for any function u �9 W~(Ig r) (1~ r C RN), we denote with the same 
symbol its extension to I~ N obtained setting u = 0 outside of ~ .  

Moreover, for any u �9 W I ( ~ )  (!Y r _C RN), we denote with the symbols E~, 
J~, the objects corresponding to the ones we have defined by (1-3) and (2-1) for 
~, �9 w0~(s?). 

Also, for any ~ C R N, M~(~@') is the submanifold of  W01(~ ) defined as in (2-3) 
and we set 

(3-1) m(g,5~r) = inf{Ee(u), u �9 M e ( ~ ) }  . 

Notice that m(G 1~) is well defined by (2-5) of Lemma 2.2. Moreover, whenever 
!g  r c R u is bounded, the infimum is achieved since E~ satisfies (PS) on M~(!g r) 
(Lemma 2.4). 

If  e2  = Be(y) = {x �9 R N : I x -  Yl < 6} the number m(G Be(y)) does not depend 
on y; thus, for any y E NN, we set 

(3-2) re(e, 6) = re(e, Be(y)). 

Moreover, it is a trivial fact that 

(3-3) L)I < ~)2 ~ m(e, 61) > re(g, L)2) . 

If  2~ r = I~ N, then (PS) for E~ fails, however the following result holds: 

3.1 Lemma.  m(G IR N) is achieved by a positive function radially symmetric u(r) where 
r is the radial coordinate, u(r) is decreasing in r and has the asymptotic behavior 

(3-4) 
l i m  r (N-1) /2eru(r )  = ?]1 > 0 

7" ----+ O O  

l i m  r (N-1) /2eru l (r )  = ?]2 > 0 . 
T ~ O O  

Proof If  we restrict our consideration to the subspace WI(lt~ N) of WI(~  N) consisting 
of functions radially symmetric about the origin, the embedding 

j : wl(I~ N) ) LP(RN) , p � 9  2, 

is compact [S]; so the functional E~ satisfies the (P.S.) condition on M~(lt~ N) N 
W~ (IR N) and 

inf {E~(u)lu E M ( R  N)  N w r l ( ~ N ) }  

is achieved. Then in order to prove that re(e, I~ N) is achieved, it suffices to show that, 
for any u C Me(]~N), there exists w 6 M~(RN)NW~(lt~ N) such that E~(w) <_ E~(u). 
Let us denote by u* the Schwartz symmetrized function about the origin of  u and set (o.) w = t ' u*  where t* = & ~ Ilu*ll-1. Then, using the Riesz inequality and the 

properties of  the spherical rearrangements, we obtain 
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E~(w) = (1/2)(t*) 2 .s + lu*12)dx - . s  F(t*u*)dx 

_< (1/2)(t*) 2. ~N(EIV~12-t-[~[2)dx - ~ N F ( ~  *%t)dx 

= E~(t*u) <_ max E~(tu) = E~(u) . 
t 6 N  + 

Then, the estimates (3-4) follow from a well known theorem of Gidas, Ni, Nirenberg 
[GNN]. [] 

In the following, W:omp(~ N) will denote the subspace of WI(N  N) of functions 
whose support is compact. 

For any u 6 W:omp(~ N) we shall consider 

f ~  x. [Vu(x)[2dx 

We define, for every ~ > 0 and every ~/> 1, 

(3-5) m*(e, ~, 7) -- inf(E~(u)lu ~ M~(B.ya(O)\B~(O)) ,/~(u) = O}. 

Let us point out that the number m*(c, 6, ~) does not change if we move the center 
of the balls and/3(u) to any other point x 6 R. 

It is clear that 

Now we set 

(3-6) 

3.2 L e m m a .  The relation 

(3-7) 

holds. 

m*(e, 0, 7) > re(e, R N) 

m*(e, 3') =- inf m*(s, 6, 7) 
0>0 

lim re(l,  6) = re(l,  IRN) 

Proof. Let us denote by ~P E W~(I~ N) a positive function spherically symmetric about 
the origin, such that 

E1(kO ) = re(l ,  R N) , ~ 6 M1 (]]~ N) 

and consider the function w e E W~(BQ(O)) defined by 

w~(x) = (~(x)~(x), 

where ((x) : R ~ [0, 1] is a Ca-funct ion defined by 

: R + 0 { 0 }  > [0, 1] being a decreasing C~-function such that 

{; 1 
~(t) = t _< 

t _ > l  
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Put 

where 
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%(x) = t o% (x ) ,  

Then u~ 6 ~/II(B~(O)) and Et(ue) >_ re(l,  ~) > m((1,1RN). 
Hence to prove the assertion it is sufficient to show that 

(a) ~/~g\Bd2(0) f(~)~dx = o(1/0) 
(3-8) 

.~ F(g')dx = o(1/0) 
(b) N\B~/2(0) 

(3-9) f~N (IV(~ -- w~ + Ik~ -- wQI2) dx = o(1/0) �9 

The limit (3-8)(a) follows from the fact that, if ~ is large enough, (3-4) and (H1) 
imply 

.s f(k~)~dx < j~ (a~ + aU2P+l)dx 
0 < N\Bo/2(O) i N\Bo/2(O) 

1 
<- kl ~,\Bo/2(o) (elZilx]~'; 1)/2) dx 

+k2 NNBo/2(0) elzlIxFN_I)/2j dx=o as 0 ) +oc,  

Analogously we prove that 

0 ~ N\Bo/2(O) __ JxNkBe/2(O) 

Also, using (3-4), if ~ is large enough, we obtain 

s  ( I v d '  - w~)i ~ + Ie - ~ i  ~) & 

[~3 j~N\Bo/2(O ) IrkS[ 2dx + k3 J~N\.o/2<O ) Ik~i 2dx 

3.3 Lemma. The inequality 

(3-10) m*(1, 7) > re(l, N N) 

holds for any fixed 7 > 1. 
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Proof. It is obvious that m*(1 ,7 )  _> m((1, IRN). To prove the strict inequality, we 
argue by contradiction and we suppose that the equality holds. In this case there 
exists a sequence &~ such that 

(3-11) m * ( 1 , 0 ~ , 7 )  ~ m(1,It~ N) for n ~ +oQ. 

We can exclude at once that {On} is bounded. In fact if it were bounded by L, we 
should have 

m*(1, OnT) >-- m(1 ,TL)  > m ( 1 , R  N) �9 

So we can assume that (3-11) holds with &~ T +oc. Then there exists a sequence of 
functions {u~} such that 

~ c Wo~(B.~(0)\B~(0)), ~ # o,  ~(u~) = o,  

1 / B  (IVu,~12 + u 2) d x - / B  F(u~)dx , m ( 1 , R  N) 
w~(O)kBo~(o) "y~(O)\BorAO) 

L.yo~(O)\Bcon(O) ('VUn'2 + U2n) dX = /B.~n(O)\Bcon(O) f(un)UndX " 

On the other hand it is known (see [L]) that any minimizing sequence in Wg(NN\Bol (0)) 
has the form 

(3-12) w~(x) + q~(x - y~) , 

where {wn(x)} C W1(I~ N) is a sequence going strongly to 0 in WI(RN), {y~} C ~ N  
is such that ly~l > +oc and ~ c WI(R N) is a positive function, spherically 
symmetric about the origin, such that El (O)  = re( l ,  NN), g, E MI(I~N). Thus, in 
particular, un has the form (3-12). 

Since any regular solution ~ of - A u  + u = f(u) in I~ N satisfies the following 
Pohozaev type inequality 

we have 

% [ 
IVOl2dx = Nm(1,R N) = b > 0 

N 

Since [[Wnltwl(~N) ) 0, it follows that 

B IV(w~(x) + ~P(x - y~))t2dx 
co n / 4  (Yn) 

Set C~ = B.yo, ~ (O)\Bon (0); clearly 

L 

b. 
?q~ ~t ,  -b O0 

]VUnl2dX= /cnn[Ben/4(yn)] ]VUn]2dX + /cn\[Bon/4(y,O] lVUn]2dx 

and 
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(3-13) 

0 < f c  IVu~12dz 
n\[BQn/4(Yn)] 

s _ IVw~(x) + ~(x  -- yn))]2dx ~ + ~  
< N\[BOn/4(yn) ] 

fCnN[B an/4(Yn) ] IVUn]2dx 
(3-14) p 

= ] IVw~(x)+~(x  yn))]2dx ~ b 
Jc  nn[BOn/4(yn) ] n--++~ 

thus Cn N [Ben/4(y)] r O and lY~I > (3/4)&~ for n big enough. 
N o w  

fC~n[B ~/4(y~)] xlVu~12 dx 

so 

fOnn[B Qn/4(Yn) ] [~7Un ]2dx 

On the other hand 

= Yn + 
fc~n[B ~/4(yn)](X -- y~)lX7u~12dx 

fCnAlBan/4(Yn) ] ] Vun  ]2dx 

fen N[BQn/4(Yn)] X]VUn 12 dx 

fCnN[BLon/4(Yn) l I Vun  12dx 

Since/3(u~) = 0, we have 

fCn k[B ~/4(y~)l xlVun]2 dx 

fCn\[Ban/4(Yn) ] I ~7un 12dx 

> o,~/2. 

< "-yO~ . 

fCnn[BQn/4(yn) ] xlVu~12dx + fCn\[B~n/4(Yn) ] xlVunl2dx = o. 

then 

(~n /2 )  " /CnN[B~n/4(Yn)l'~7Unl2dx < __ fcnn[Bon/a(Yn)]Xl~TUnl2dx 

= JCn\[B~n/4(Yn)]XlVUnl 2dx < ~aOn fC~\[B~n/e(yn)]l Vunl2dx 

and using (3-13) and (3-14), we obtain: 

(On/2) �9 (b + o(1)) < 70n" o(1) 

b/(2~/) < o(1) 
and this inequality gives 

which is a contradiction. 

3.4 Lernma. For any "7 > 1, there exists [~ =- R(7) > 0 such that 

(3-15) re(l ,  R) < m*(1, R, 7) 

[] 
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for every R > R('~). 

Proof. From Lemmas 3.2 and 3.3, we deduce that there exists /~ > 0 such that for 
every R >_/~ 

re( l ,  R) < m*(1,3') �9 

Then, (3-15) holds since, by definition, 

m*(1, R,3') _> m*(1,~/) 

for every R. [] 

3.5 Corollary.  For every r > 0 and "~ > 1, there exists g =_ g(% 0), such that the 
relation 

(3-16) re(e, ~) < m*(c, &' / )  

holds for every e E (o, g]. 

Proof. We assert that g = (Q//~)2 where/~ is the number found in Lemma 3.4. Indeed 
it is possible to define a one to one map 

T :  W~(Bo(O)) , WI(B~/,z(O)) 

by T(u) = u~(x) -- u(v/~x) for every u E Wol(BQ(O)). Then a simple calculation 
shows that 

/B /,/~(o) ('Vue'2 + u2~) dx - /B  ~/,/~(o) f(u~)uedx 

and 

(1/2) s + u2)dx - ~e/,F(o) F(ue)dx 

So 
re(e, ~)) = eN/2m(1, 0/~/~) . 

Analogously it is easy to verify that 

m*(e, & 7) = eN/2m*( 1, ~/x/~, 3') ; 

re(e, R N) = eN/2m(1, R N) . 

Hence if L)/v/~ > /~, that is if e < (~)//~)2, the relation (3-16) follows from (3-15). 
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4 Proof of Theorem 1.1 

In what follows, without any loss of generality, we shall assume O E f2. Moreover, 
we denote by r > 0, a number such that the sets 

/2+ = {x  E 1RNtd(x,/2) <_ r} and /2 -  = {x E /2ld(x, OF2) >_ 2r} 

are homotopically equivalent t o / 2  and B~(0) c / 2 .  Finally we fix 

diam/2 
, i f - -  - -  f 

4.1 Lemma.  There exists c* such that 

(4-1) u E Me , Ee(u) <_ re(c, r) ~ /3(u) c g?+ 

for  every e E (0, e*]. 

Proof. First of  all we observe that by the choice of  r, 

re(e, s)) < re(c, r) 

for any c > 0. 
Thus the set of  the functions verifying the condition on the left side of (4-1) is 

non-empty. Also let us notice that our choice of  r and "7 implies that 

~r  = diam ~2. 

Now let c* be the number, depending of  course on "y and r, which satisfies the 
assertion of Corollary 3.5. 

In order to prove (4-1), let us suppose e E (0, e*] and let u* E M~ be a function 
such that E~(u*) < re(e, r). 

We argue by contradiction and we assume that x* = /3(u*) r /2+. Then s C 
B d i a m  ~ ( x * ) \ B r ( X *  ) = J~.yr(X*)\~r(X*). 

Therefore 

m*(e ' r "7 )  = i n f { f  Bw~(~,)\B~.(~. ) [le[Vul2 + ~u2- F(u)] dx: 

f .  [ lV.i 2 + . 2  _ f ( . ) q  dx 0 
~T(x*)\B~(x*) 

U C W~(B~,.(x*)kB~(x*)) ; /3(u) = x* I < E~(u*) < re(e, r ) .  

that contradicts, by our choice of  e, (3-16). [] 

For any e > 0, let us define the operator 

r :/2 ---+ w~(n)  

by 

ue(tx -- y]) VXEB2r(y)  
ICe(Y)] ( x ) =  0 Vx e /2\B2r(y) 
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where u (Ixl) is a positive function, radially symmetric about the origin, such that 
u~ E M~(B2~(0)), E~(u~) = re(c, 2r) < re(c, r). 

Note that r is continuous and that 

r  / 3 ( r  

Also we set 
M :  = {u E M~IE~(u) _< c}.  

4.2 Lemma.  Let E* > 0 be as in Lemma 4.1, then for  every c E (0, e*] 

Z (M2  <~)) c_ 0 + , r c M2(~'~); 

and 
/3or = j  

where j : ~2- > ~2 + denotes the embedding map, i.e., 

j ( x )  = x , V x  E S ? -  . 

Proof. The proof is an immediate consequence of  the relation (4-1) and the definition 
of  r [] 

4.3 Lemma.  Let c be as in Lemma 4.1, then for  every c E (0, c*] 

cat ( M :  ~(<')) >_ c a t O .  

Proof. Suppose that cat(M m(e'r)) = n; this means that n is the smallest positive integer 
such that 

Me m(<r) C A1 U A 2 U . . .  U An , 

where Ai, i = 1 , . . . ,  n, are closed and contractible in M [  z(e,r) i.e. there exist 

such that 

Now, we set 

J~x E ~ ([0, 11 x Ai ,  Mff z(e'~)) , 

J g l ( 0 ,  u) = u for every 

~ ( 1 ,  u) = wi E M ~  (~'') for every 

i = l , 2 , . . . , n  

u E A ~  

u E A i  . 

hi c ~ ([0,1] •  +) 

hi(0, x) =/3 o ~ ( 0 ,  r = ~ o r = x ,  Vx e Ki 

hi(l ,  x) =/3 o , ~ ( 1 ,  r = /3(w0 = xi C ~ * ,  Vx E Ki 

we have 

/ ( i  = r ( A 0 .  

The sets Ki are closed subsets of ~2- and 

~ -  C _ K 1 U . . . U K , ~  

Moreover hTi, i = 1 , . . . ,  n, is contractible in ~2 +, in fact if we consider the maps hi, 
i = 1 , . . . ,  n, defined by 

hi(t, x) =/3 o 3~i( t ,  r 
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Then 
cats?+ (S?- ) < n .  

Since cats?(~) = cat~+(S?-),  the lemma is proved. D 

We are now ready to give the 

Proof of Theorem 1.1 Choose c* as in Lemma 4.1 and consider c C (0,e*]. If, for 
every Q E Jr, 2r), re(e, 6) is a critical level, we are done. Otherwise, we can suppose 
that re(e, r) is not a critical level. Since the functional E~ satisfies the Palais-Smale 
condition on the set M ~  (~'~), applying a classical result of  the Ljusternik-Schnirelman 
theory, we deduce that: 

# { u  E M~:  E~(u)< m(r VE~IM(U)=0} _> cat M ~  (e'~) 

and, using (4-2), we conclude that the functional Es has at least (cat ~ )  critical points 
in M~ having energy less than rn(e, r). 

Since cat f? > 1, then the set ~ = r  is non-contractible in M~ "~(~,~). Then 
in order to prove the existence of an other critical point, it is sufficient to construct 
an energy level c > re(e, r)  such that ~ is contractible in Mff. 

Take u* E M~(u* _> 0) such that u* ~ | and define the set 

(9 = {tgu* + (1 - O)ult9 E [0, 1], u E O} 

@ is compact and contractible, moreover 0 ~ 0 (since every u in 0 is positive on a 
set of  positive measure); hence the set 

A = { t(w)w[w E O, t(w) = ~1( l~wH ) '[w'[-' } 

is well defined and 0 c_ A c_ !'t~r~. Then, setting 

c = max {E~(w), w E A} 

we have that | is contractible in M~. [] 

5 Morse theory for the functional E~ 

First of  all we recall some notation: if (X, Y) is a couple of topological spaces, we 
se t  

g~(X,  Y) = Z d im[Hk(X,  Y)]t k 
k 

where Hk(X, Y) is the k-th homology group with coefficients in some field; moreover  
we set 

~ t ( X )  = ~ ( X ,  r = ~ dimttk(X)t k 
k 

5.1 L e m m a .  Let ~* be as in Lemma 4.1 ; then for any c E (0, ~*] 

rMm(~'")~ = ~ t ( f? )  + ;~;(t) (5-1) t ~ ~ j , 

where ~.~(~) is a polynomial with non-negative coefficients. 
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Pro@ Let us denote with r and /3k the homomorphisms induced by r and /3 
respectively between the k-th homology groups, i.e. 

Hk(X?-) ~ Hk (M2 ~(~'~)) ~ ,  Hk(~?+). 

Since ~k or = Idk, Hk(g? ) is homotopic to a subspace of H k ( M ~  (~,r)) and hence 

dim (H( f2 - ) )  < dim (Hk (Mm(e'r))) ; 

so, from the fact that ~ and D -  are homotopically equivalent, it follows that 

dim (Hk(f2)) = dim (Hk((2-))  <_ dim (Hk (M2(s'~))) . 

Then, we get (5-1). [] 

5.2 Lemma.  Let e* and ~ be as in Lemma 5.1, 5 E (o, h:~/2) (k~ is defined in Lemma 
2.2) and let c E (5, +ec] be a noncritical level of E~; then 

(5-2) ~(E~, E~) : t~(M~).  

Before proving Lemma 5.2, we need to recall some results. 

5.3 Lemma.  Let ffJl be a manifoM and let 9l C ffJ[ be a closed oriented subman(foM 
of codimension d. If" W is a subset of 91 closed in 91, then 

~(~l, ~ \ w )  = td~(~l, 91\w). 

Proof. This is an immediate consequence of the Thorn isomorphism theorem (see 
e.g. [D] pag. 321, Corollary 11.14), since 9I is a strong deformation retract in . /~ .  
Moreover notice that the Thorn theorem, in this form, holds even if the dimension of 
ff)l is infinite. [] 

Now set 
Zr b)= {u E W~(g?)la < Ee(u) < b} . 

5.4 Lemma.  I f  a and b are not critical levels, then 

~/~(Eb~, E2) = ~ ( Z ~ ( a ,  b), Z~(a, b)\M~) 

Proof. Take two open neighboroods U and V of M~, 0 C V, and let X be a C ~- 
function which is 1 in U and 0 out of V. Then define 

F(u) = VE~ (u) - X(u) (VE~ (u), V J~(u)) VJ~(u) 
- l lvJdu)Na 

and let be 7/(t, u) be flow relative to the Cauchy problem 

{ d ~ ( t , u ) =  F(u) 
1 + tIF(u)ll 

~(0, u) = u 

It is easy to check that the Cauchy problem is welt posed and ~(t, u) is defined 
for every t E R and every u E W~(D). Moreover, if V is sufficiently small and 
VE(u)  r 0, then 
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d E~(~(t, u)) < O. 

Now set 
W : {u E ZE(a, b) ] Vt > 0, r/(t, u) E EE(a, b)} . 

By the Theorem 1.3.8.(i) of [Bj (cfr. also [B-G]), we get 

~tt(Z~(a, b), E~(a, b)\W) = ~t(Z~(a, b), EZI(a))  . 

Since 
~(E~, E2) = ~(~E(a, b), Ell(a)), 

and W = ZE(a, b) N ME = M b, we have that 

b a ~(EE, EE) : ~ ( ~ ,  rE(a, b)\Mc) 

Now, since a and b are not critical values, 

~t  (~E(a, b), rE(a, b)\M~) : ~t(ZE(a, b), Z~(a, b)\Mc) 

from which the conclusion follows. [~ 

Proof of Lemma 5.2. We apply Lemma 5.3 with 9)I = ZE(a, b) and 92 = ZE(a, b) NM~. 
The conclusion follows from Lemma 5.4. []  

5.5 Corollary.  Let s*, s and 6 be as in Lemma 5.2; then 

(5-3) ~ t ( E ~  (E'~), E~) = t~t(g?) + t~;(t) 

(5-4) ~o---~(wl(f2), E~) = t~t(ME) = t ,  

where ~ ( t )  is a polynomial with non-negative integer coefficients. 

Proof. As we have already observed in the proof of Th. 1.1, we can assume without 
loss of generality that rn(c, r), is not a critical level of EE. Then (5-3) follows from 
(5-1) and (5-2). (5-4) follows from (5-2) and the fact that M~ is contractible, so 
dim Hk(M~) = 1 if k = 0 and dim Hk(ME) = 0 if k # O. []  

5.6 Lemma.  Let s* and ~ be as in Lemma 5.2; then 

(5-5) ~ ( W  1 (~),  E S  (E'r)) = t 2 [~(~(2) + ~,~(t) - 1] 

where ~,~ is a polynomial with non-negative integer coefficients. 

Proof. Let 6 be as in Corollary 5.5 and consider the exact sequence, 

Hk(wl ( s?), E~) ~ Hk(W~ ( n), Z2  (E'~)) --+ 

Thus, for k > 2, 

dim [Hk(Wd(Y2),Ey(~'<))] = dim IHk_,t~(E'<,--~ , E~) 1 

For k = 2, we have 
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--+ H2(W01(~), S~) ~ H2(W0](~'~), E 2  (e'r)) 02> 

02> H i ( E 2  (~'v), f ~ )  iI> H l ( W l ( ~ ) , / ~ )  --+ 

since, ia is an isomorphism, 

Ha(W~(f2), E ?  (~'~)) = 22 (//2 (wl ( f2) ,  E~))  = 0 .  

For k = 1, we have 

o~ HI(E2(~,,.), E~) ~ HI(W~)(D), E~) J',. HI(W(~([2), E ~  (~'')) O1 

HI(WI(/2) ,  m(e r E~ ' ) = 0 .  

Moreover 
Ho(W~(n), E~ (~,~)) = o .  

By the above formulas and (5-2), we conclude that 

~ ( w ~ ( n ) ,  '~(~ ~) E~ ' ) = t [~(E~(~'~)) ,  E~) - t] 

= t a [ ~ ( X ? ) + ~ ( t ) -  1] . 

K7 Lemma.  Let e be as in Lemma 5.1; suppose that 
(i) e �9 (o, e*] 

(ii) the set ~ of nontrivial solutions of problem (Ps) is discrete," 
then 

(5-6) ~ it(u) = t~t(g?) + to~;(t) + (1 + t )~( t )  
uE ~C1 

(5-7) 

where 

and 

Z i t (u )  = t2 [~ ( f~ )  4- c,~(t~) -- 1] + (1 + t ) C ~ ( t ) ,  

uG JC2 

r = {u �9 ~g'l~ < E~(u) <_ re(e, r)} 

r = {U �9 ~ ' I E ~ ( ~ )  > re(e, r )}  . 

Proof. Since Ee satisfies the Palais-Smale condition, by the Morse theory we have 
that 

it(u) = ~ ( E ~  (~''), E~) + (1 + O ~ ( t ) .  
uE~-i 

Then the (5-6) follows from (5-3). Analogously, (5-7) follows from (5-5). [] 

Now we are ready to prove Theorem 1.2. 

Proof of Theorem 1.2. Choose e* and c as in Lemma 5.7. Since Ee does not have 
any non-zero solution below the level 6, ~ = r U r then 

Z Z 
uGTZ" uC ~C1 uE ~C2 

The conclusion follows by Lemma 5.7. [] 
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Proof of  Theorem 1.3. Theorem 1.3 is an immediate consequence of  Theorem 1.2,; in 
fact, if u is a nondegenerate critical point, 

it(u) = t Mu) �9 [] 

Proof of Corollary 1.4. The assertion is a consequence of the Theorems 1.2, 1.3 and 
the fact that 

(5-6) :~t(Y2) = 1 + kt N-1 . 

The computation of  ~t(X'2) is an easy application of  algebraic topology techniques 
which we wilt show for completeness. 

Using the excision property and the fact that C l ' s  are ENR, we have: 

Hq(A,  g2) ~ Hq , OCi "~ q , OOi) ~ @ Hq(JBN, OBN) , 
�9 = i=l 

hence ~J~t(A, Y2) = kt x .  
From the exactness of  the following sequence, 

, H q ( A ) ~ H q ( A , f ? )  ~ ) 

it follows that, for q = N,  

dim [HN-1CQ)] = dim [HN(A, g?)] = k 

for q > 2 and q r N 

dim [Hq_l(f2)] = dim [Hq(A,O)] = 0 

moreover, since Y2 is connected, 

Concluding, we get (5-6). []  

dim [Ho(~)] = 1.  
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