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Abstract. In application of the Reduction Theorem to the general problem of n (i> 3) bodies, a Mathieu 
canonical transformation is proposed whereby the new variables separate naturally into (i) a coordinate 
system on any reduced manifold of constant angular momentum, and (ii) a quadruple made of a pair of 
ignorable longitudes together with their conjugate momenta. The reduction is built from a binary tree of 
kinetic frames Explicit transformation formulas are obtained by induction from the top of the tree down to 
its root at the invariable frame; they are based on the unit quaternions which represent the finite rotations 
mapping one vector base onto another in the chain of kinetic frames. The development scheme lends itself 
to automatic processing by computer in a functional language. 

1. Introduction 

The equations of motion in the problem of n(/> 3) bodies may be reduced from order 
6n to order 6n-10 by means of the 6 integrals of the barycenter, and the 3 integrals 
of the angular momentum; the reduction may be effected by canonical transfor- 
mations. The practical problem of finding the canonical transformation to eliminate 
the total linear momentum has been solved in a definitive manner by Poincar6 
(1896, 1897). Among the linear mappings in Cartesian coordinates offered by Radau 
(1868), Poincar6 showed why only two of them prove to be expedient in the General 
Theory of Perturbations; these are known as the heliocentric reduction, and the 
reduction in barycentric chain (Wintner, 1947). For the problem of 3 bodies, Whittaker 
(1904) supplied two canonical transformations to eliminate the angular momentum 
and an ascending node, one geometric and one kinematic. The geometric one is a 
canonical extension in which the plane of the three particles is adopted as reference 
element. Bennett (1904) modified the method to apply it to the problem of n f> 3 
bodies. Credited by Whittaker himself to a most penetrating study by Radau (1868), 
the kinematic method involves the orbital plane of each mass point; Boigey (1979, 
1981) extended it to the problem of 4 bodies. All three authors, Whittaker, Bennett and 
Boigey, have derived the reducing canonical mapping from a generating function. 
That may be the reason why extension to the general case where n is > 4 appears 
cumbersome or unfeasible. This Note will show how Radau's kinematic reduction 
may be built entirely from vector constructions, and how, from that standpoint, it is 
easily made valid for any number n 1> 3 of particles. 

The basic concept is that of a chain of kinetic frames, somewhat reminiscent of 
Jacobi's chain of barycenters. The position of a planet is determined by polar co- 
ordinates in a certain flame of the chain; the attitude of a flame is determined by 
its Eulerian angles in the flame preceding it in the chain. The first link in the chain is 
the invariable flame defined by the total angular momentum. Polar coordinates 
and Eulerian angles in the chain give rise to a transformation in phase space. Its 
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canonical character is established by checking that it leaves invariant Cartan's 1-form 
in phase space. Explicit equations of such a Mathieu transformation are most readily 
obtained by multiplying unit quaternions. The point insisted on here is that the 
concept of a chain of kinetic frames, and the resulting canonical mapping is kinematic 
in essense; it is not tied to the Newtonian problem of n bodies, nor even for that 
matter to a dynamical system. Rather, it agrees with the general assumptions of the 
Reduction Theorem (see e.g. Abrahams and Marsden, 1978, pp. 298-306) applied to a 
family of n particles, assuming that the group S0(3) of rotations in R 3 is responsible 

on a symplectic manifold (R 3 x R3)" for a Poisson action whose moment  mapping 

in the sense of Souriau (1970) may be identified with the system's angular momentum. 
Applied to the problem of n bodies, Radau's generalized canonical mapping realizes 
indeed the intended reduction, without artificiality, simply by rendering ignorable the 

longitudes of two ascending nodes. 

2. A Chain  of  Kinet ic  F r a m e s  

Consider a finite family of n mass points mj; let yj and Yj stand respectively for the 

position and the linear momentum of m r in an orthonormal frame F = (i,j, k). For 
each 1 ~<j ~ n, consider the angular momentum Cj = yj x Yj. Then introduce the 
sequence of partial sums 

* = Z (0 1). (1) Cj 
j +  l <~k<~n 

Depending on the context, the total angular momentum of the system will be 

designated either as the vector C or as the 'partial' sum C~. The following relation- 

ships 

C* = Cj+~ + C*+1 (0 ~<j ~< n - 1), (2) 

C*-(Cj+ 1 x C*+ 1) = 0 (0 ~<j ~< n - 1) (3) 

will be used throughout  this note without being referenced explicitly. 
On the assumption that C is not null, there exists a unique direction (or unit vector) 

n~ such that 

C ~  --- * * | with 0~ > 0. 

Hence one can define unambiguously the angle I~ such that 

(4) 

* * with 0~< *~<n. (5) k-n o = cos I o I o 

To simplify the exposition by ruling out special cases, assume that I~ mod n is 4: 0. 
Then there exists a unique direction 1~ such that 

k x n o = 1 o sin I o , (6) 
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the direction 1~ belongs to the coordinate plane (i, j) where its heading is given by an 
* such that angle v o 

* + j s in * w i t h  0 ~< v~ < 2n.  !~ = i cos v o v o (7) 

* • * * the or thonorna l  frame (n~, 1~, m~). In as t ronomy,  Finally, let m~ = n o 1 o , and call F o 

* is termed the invariable axis, and the plane generated by the base vectors 1~ and mo, n o 

the invariable plane. Thus I~ is the inclination of the invariable plane over the co- 

ordinate plane (i, j); 1~ is the ascending node of the invariable plane in the coordinate  

* is the longitude of the ascending node. The invariable frame F~ is plane (i, j), and v o 
the root  of a binary tree of kinetic frames. 

The next nodes in the tree are defined by induction over 1 ~< j ~< n - 1. The recursive 

relationship among the frames in the tree is capsuled in Figure 1. Assuming that both 

Cj and C* are not zero, one can determine directions n. and n* such that 
J J J 

Cj = | with 0j > 0, (8) 

C* = |  with 0* > 0, (9) 
J J J J 

hence angles Ij and I* satisfying the conditions 
J 

n* .n .  = c o s  I .  
j-i j j with 0 ~< Ij ~< =, (10) 

n* .n* = c o s  I*  
d-i d d 

with 0 ~< I* ~< n. (11) 
J 

On account  of (3), the directions n* nj and n* are coplanar;  the planes normal  
j - l '  ' j 

respectively to n. and n* intersect along a line which is normal  to n* hence belongs 
J J j-l' 

to the plane normal  to n* More  precisely, the vector n x n* which is not  generally j - - l "  j j 
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Fig. 1. The binary tree of kinetic frames. 
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a unit vector, points in the direction of the intersection c o m m o n  to the three normal  
planes. Thus, considering the directions L and I*~ determined by the relations 

n *  • n = 1 s i n  I j - - 1  j j j '  (12) 

n.* • n.* = 1.* s i n  I.* 
J - 1  j j j '  

(13) 

one will find that  1 i and l* lie both in the direction of n. x n* but they are of opposite 
J J J ' 

sense, with lj in the sense of n.*j X nj ,  and l.*j in the sense of n.j • n.*.j In other words, 

lj + l*j = O. Hence, if v j and O'j_1 are the angles such that  

Ij = 1"  1 COS Vj -[- m'j_1 sin Va with 0 ~< vj < 2n, (14) 

1~ = l~_ 1 c o s  0~_ 1 + m~_ 1 s in  0~_ 1 with 0 ~< 0* < 2n, (15) 
3 - 1  

there follows that  the longitudes Vj and 0*j_l are locked in phase" 

(1;j - -  0 ~ _  1 ) m ~  2n = n .  (16) 

With the directions 

mj = nj • lj and m* = n* • l*, (17) 

one builds the next link in the chain of kinetic frames, namely the f lame Fj = (nj, lj, mj) 

and the frame F*j = (n*,i,l* m*). 
The inductive construct ion terminates at j = n -  1 with the frames F 1 and 

F 1 .  . For  convenience later on, F*,_I may  also be designated as the frame F,," this 
convention entails the following identifications 

n = n *  1 = 1" m = m *  n n - l '  n n - l '  n n - l '  

v = 0 "  I = I* n n - 2 '  n n - 1  " 

A few remarkable  geometric  properties ought  to be ment ioned  for their kinematical  
consequences as well as their usefulness in analytical  developments.  When,  in the 

decomposi t ion of n*j in the frame F*_ 1 , namely 

n* = n *  1 cos I* - sin I*(m*_ 1 cos 0~_ 1 - - l ~ _  1 sin 0"_,), 

the base vectors are replaced by their linear combinat ions  

n*_ 1 = n* cos 1 i + mj sin 1 i, 

l'j_1 = lj cos v . - j  ,(m r cos Ij - nj sin Ij) sin v j, 

m* - l sin v + cos I - n sin cos v j - 1  - -  j j (mr  j j 11) j 

in the frame Fj ,  one obtains that  

n* = nj cos (1 i + I*) + m r sin (1 i + I*), 

�9 * t h e n ,  i n  which means that, if J j  stands for the angle between the normals  nj and nj 
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counterpart  to the phase lock (16), 

J . = I . + I * .  
J 3 J 

(18) 

As a major consequence of this geometric property, it will be shown how the inclina- 

* are unambiguously determined by the triple ( O *  i, Oi, O*) of angular tions Is and I 
momenta. Indeed, there results from (2) that 

C* .C* 
3 - 1  3 - 1  

which implies that 

- -  Cj'Cj_ + C*. C* + 2C �9 C* 
3 J J J '  

2 0 . 0 "  cos J . =  0 .  ~ 2  
J J J j - -1  

In turn, the relations 

- -  0 2  - -  (ii)~ 2 . (19) 
J J 

ns-C*j_l = ni" (C1 + C~) and n* .C.* j j -1  - n* . (Cj  + C~) 

yield the formulas (1 ~<j ~< n) 

, 2  _+_ 0 2  __ 0 , 2  O .  -F- 0 . *  COS J .  O j _  1 j j 
c o s / s =  s s J =  (20) 

O* 20*  O. ' 3 - 1  j - 1  J 

O .  ~ -+- O . C O S  J .  ~ ) ~ 2  -F- 0 ~2 0 2  
cos I* = J J J __ __ 3- 1 J 3 (21) 

s O* 20*  O* 
J - -1  j - 1  J 

�9 * Oj and O*. by which Ij and I*j are shown to be functions solely of O 1_ 1 ' ' j 

For the sake of completeness, one should mention the analogous relations 

O~_ 1 sin I j -- O* sin J1, 

* sin I* = | sin Ji, [ ~ j -  1 

which can be derived from the equalities of cross products 

(22) 

(23) 

n* x C*_ 1 : • (cj  + 

equivalent to the relationships 

x C* = n • (C i + C*) and n i j -  1 j 

- |  sin I*I* = | sin I~I~ and - 0*_ 1 sin I I j  = | sin I*I* �9 j j "  

It must be emphasized that identities of this kind, known for a long time in the New- 

tonian problem of three bodies, are valid for any n ~> 2. They are the key used by 

Boigey to interpret the canonical variables which she introduced for problems of four 

bodies in an analytical manner by conditioned canonical transformations (Boigey, 
-1977). 

3. A Mathieu  Transformation by Chained Rotations 

The purpose of this section is to build a canonical mapping from the Cartesian 

components of the positions yj and linear momenta  Yi(1 ~ j  ~< n) in the original frame 
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F to coordinates and momenta determining these quantities in the frames F* (0 ~< j ~< 
~< n - 1) and Fj(1 ~<j <~ n - 1). The construction is merely geometric, requiring, as one 
goes down the chain of kinetic frames, that the Cartan 1-form 

e ~ :  ~ Yj'dyj (24) 
l <~j~n 

be kept invariant. This requirement will make the intended mapping a Mathieu trans- 
formation. 

Let rj and Oj be the polar coordinates of the j-th particle in the frame F /  

yj = rj(ij COS Oj --[-- mj s i n  Oj). (25) 

Consider then the 1-form 

6yj = (lj cos 0j + mj sin 0j) drj + r j ( -  lj sin 0j + mj cos 0j) d0j (26) 

corresponding to a virtual displacement of the j-th particle in the frame Fj while 
ignoring the rotation of Fj with respect to the initial frame F. With the displacement 
(26) written in the form 

~yj = _ _  

r ~ 

J 

yj6rj + (nj x yj)d0j, 

it is easy to obtain the inner product 

Yj- 6yj = _ 
1 

r ~ 

J 

(yj" Yj) drj + (nj- Cj) d0j. 

Recalling (8), and introducing the momentum Rj such that 

rjRj = yj-Yj, (27) 

one finally arrives at the form 

Yj-6yj = Rj drj + | d0j (1 ~<j ~< n). (28) 

There remains to evaluate the contributions made to the Caftan form co by the 
virtual rotations of the frames F.. 

J 

According to Cartan's theorem of the moving frame, the infinitesimal generators 
of the rotations of Fj. and F*I relative to the frame F'1_1 correspond to the vector 
1-forms 

de~.= n* dv. + l .dI .  
J j - - 1  j j j 

(1 ~ j  ~ n - 1), (29) 

de)* = n* dO* + 1" dI* j j - 1  j - 1  j j (1 ~ j  ~ n - 1), (30) 

whereas the rotation of the invariable frame F~ relative to the coordinate frame F is 
associated with the vector 1-form 

d~o o = k dv~ + 1~ dI~. 
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By construction of the chain of kinetic frames, 

dyj = 6yj + (dtaj + 2 dto~') X YJ 
O<~k<~j-1 

(1 ~<j ~< n -  1), 

dy n = cSy,~ + ( Z 
O < ~ k ~ j - 1  

drop) x y,, 

hence the Cartan 1-form may be decomposed into a sum 

09=09'+ 2 
l <~ j <~ n 

(Rj  dr i + |  dOj) (31) 

whose first term is the 1-form 

co'= y (dtoj-k- 2 
1 <~j<~n- 1 O<~k<~j -  1 

dto~).Cj + ( Z 
O < ~ k < ~ n - 1  

The intermediate 1-form co' is simplified 

j and k so as to obtain that 
first by interverting the summations over 

co' = dto~'C~ + E (dta~'- C~' + dta k'Ck). 
l < ~ k < ~ n - 1  

However, on account of (16), dv k = d0~(1 ~< k ~< n - 1); hence, in view of (29) and (30), 

co'= (C~-k)dv~ + ~ (C~_ 1 
1 <~k<~n - 1 

At this stage is introduced the momentum 

* 1 ) d 0 ~  " I l k -  - 1 " 

* COS * N~ = C ~ ' k =  O o I 0 , 

which is the projection of the total angular momen tum on the 

In view of (9), co' is then set in its definitive form as the expression 

co'= N o * dv~ + * dO* | , 
O E j < ~ n - 2  

which leads to the canonical type for Cartan's 1-form 

CO = ~ (Rj drj -Jr- Oj dOj) -Jr- NSd dv~ + Z | dO*.j 
l ~ j ~ n  O < ~ j ~ n - 2  

In sum, geometrie constructions in the chain of kinetic frames 

Mathieu transformation from the Cartesian components  in F 
(yj, Yj) into the 3n coordinates 

coordinate 

(32) 

axis k. 

(33) 

suffice to define a 

of the family of pairs 

* 0* 0* 0* (34) r x , r 2 , ' " , r n , O l , 0 2 , " ' , O n , v o ,  o, 1 , ' " ,  , - 2  

and their conjugate momenta  

R1, , ' " ,  Rn, O 1 ,  O 2 ,  "",  On' ' ' 1' " " '  n-2" 

These are the variables introduced for n - 2 by Radau (1868) and Whit taker  (1904) 
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in problems of three bodies. For n = 3, they correspond to the elements proposed by 
Boigey (1981) in the problem of four bodies, except for the angle 0~, and its conjugate 
momentum | and with due consideration to the fact that, in this Note unlike in 
Boigey's dissertation, the angles 02 and 03 are reckoned from diametrically opposite 
directions. 

4. Quaternions along the Chain of Kinetic Frames 

Substituting the coordinates (34) and their conjugate momenta (35) in the Hamiltonian 
characterizing a problem of n bodies is usually an akward task. But the job is alleviated 
to a considerable extent if the finite rotations linking the frames in the kinetic chain 
are represented by unit quaternions. Doing away with spherical trigonometry, one 
composes rotations by multiplying their representative quaternions. 

In order to establish the notations, let it be recalled that a quaternion is a real 
linear combination 

q = Zoqo + Z l q l  -'1- z2q2 nt- z3q3 

in a base whose elements satisfy the following relations 

= = : 

qoqi = q i q o  = qi 

q~qj = ~ e~,j, kqk, 
l~<k~<3 

2 = 1  
m q  3 

(1 ~<i ~<3), 

ei, j, k being the Levi-Civita symbol relative to the triple (1, 2, 3), thus equal to + 1 
if (i,j, k) is an even permutation of (1, 2, 3), - 1 if (i,j, k) is an odd permutation, and 
zero otherwise. The combination 

q = Zoqo - z l q l  - z 2 q 2  - z3q3 

is called the conjugate of the quaternion q. The norm of a quaternion is defined as the 
real number q such that 

2 [I q [1 e :  q q = qq = Zo + X~ + Z 2 + Z3" 

A unit quaternion is a quaternion whose norm is equal to 1. 

Consider two orthonormal frames F = (i,j, k) and F ' =  (i',j', k'), 
finite rotation such that. 

and let p be the 

p( i )  = i', p(j)  = j', o ( k )  = k'.  

The rotation p may be parametrized by the Eulerian angles of the frame F' with 
respect to the frame F. Thus, let 0 be the angle satisfying the conditions 

k-k'  - cos 0 with 0 ~< 0 ~< zr; 



ELIMINATION OF THE NODES IN PROBLEMS OF n BODIES 189 

then consider a unit vector I such that  k x k' = I sin 0. If 0 mod  n is zero, then i is an 

arbi t rary  direction in the plane (i, ]); otherwise it is uniquely determined. In any case, 

let ~b and ~ denote the angles satisfying the condit ions 

with 1 = i cos r + j sin r 

1 = i' c o s  ~ - j' s in with 

0 ~<q5 < 2n, 

0~<~ < 2 n .  

By means  of the Eulerian angles (~b, O, ~) is defined the unit quaternion q whose 

components  are 

Zo = c o s  �89 c o s  + 

271 = sin 10  c o s  ~ ( r  - O), 

10 s in ~ r  - 0) ,  272 = sin 

1 0 s in 1 273 = COS -~ ~ - ( ~  "-1- ~ ) .  

The components  are chosen so that  the axis of the finite rota t ion p has for direction 

the unit vector 

(1 - 272)1/2(271i + 272J + 273k), 

the ampl i tude  0 ~< 27 ~< n of the rotat ion being given by the relation 

j '-i = 2(27227 1 - X 3 X o ) ,  

2 2 2 2 
J"J = 272 - 273 - 271 -+" 270,  

j"k = 2(27227 3 + Z127o), 

1 270 = cos ~27. 

A quick calculation will show that 

2 2 2 2 
i ' . i  = 271 - 272 - 273 -~- 270,  

i ' . j  = 2(27127 2 + X3Xo), 

i " k  = 2(27127 3 - -  272270), 

Now, for the vector 

x = xi  + yj + zk = x T  + y'j' + z'k', 

create the quaternions  

k '- i  = 2 ( Z 3 Z  1 + Z227o)  , 

k " j  = 2(27327 2 - -  271Zo), 
2 2 2 2 

k " k  = 273 - 271 - 272 + 27o" 

(36) 

= xql  + Yq2 Jr zq3 a n d  

It is easy to verify from (36) that  

~' = 0~q. 

~'= x'ql + Y'q2 + Z'qa" 

(37) 

The basic relat ionship translates in quaternion mult ipl icat ions the action of the 

rota t ion p on the three-dimensional  vector space R 3. In the sense of (37), the unit 

quatern ion  q is said to represent the rotat ion p. There follows immediately  from (37) 

that  c~ is the unit quatern ion  representing the inverse rota t ion p -  1; also if qx and q2 
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at the top level (for j = 1) of the tree of kinetic frames, which implies that the one- 
* constitutes the i so t ropy  parameter  group of rotations about the invariable axis n o 

group responsible for the elimination of the longitude 0~ of the ascending node 1" 
1 

on any manifold of constant angular momentum (see e.g. Abraham and Marsden, 
1978, p. 392). 

With the quaternions e*a, e~, and flj (1 ~<j ~ n -  1), one can design an algorithm 
for computing the mutual distances rj, k (1 ~<j < k ~< n) in an inductive manner. If 
o-j,k designates the angle from position yj to position Yk, then 

r2j, k - -  (Yj - Yk)" (Yj -- Yk) = r2J A- rk2 __ 2r j r  k c o s  o'j, k " 

hence the problem of calculating the distances rj, k amounts  to developing the cosine 
of their angular distances. But 

cos a j, k = (l j" lk) COS 0j COS O k + (l j" mk)COS 0.a sin O k + 

+ (m/lk) sin 0jcos O k + (m/mk) sin 0jsin 0 k ( 3 8 )  

which means that the problem is solved once the quaternion has been obtained which 
represents the rotation from the frame Fj to the frame F k. The construction begins at 
j = n -  1 with the quaternion 13 _ a for the rotation from F,_  1 to F*,_a = F . In that 
case, by application of the formulas (36), one finds immediately that 

! *  .1 = - 1 n - 1  n - 1  

* - m  = 1  - m *  = 0 ,  In-1 n - 1  n - 1  n - 1  

m *  - m  = - c o s  J n - 1  n - 1  n - l '  

hence the result, well known in the problem of three bodies, 

cos %_ 1,, cos 0 _  1 cos 0 sin On_ 1 sin 0 cos J 1 (39) 

Note however that both arguments of latitude 0 1 and 0 are reckoned from the 
ascending nodes of the orbital planes for particles m 1 and m, respectively, that is, 
from directions which are diametrically at the opposite of one another; this explains 
why, in contrast with the classical formula found in Whittaker (1904) and Boigey 
(1981), both terms in the right hand member of (39) appear with a minus sign. 

In the next step of the induction are computed the quaternions 

(i) ft,_ 2 %-1 for the rotation from the frame F _  2 to the frame F _  1, 
c~* for the rotation from F to F* ( i i )  f i n - 2  n - 1  n - 2  n - l "  

A straightforward calculation yields that 

__ 1 -- I ) sin iv ( f i n -  2 0~n-1)O - -  C O S 2 ( J n _ 2  - 1  2 n-- l ' 

= 1 - I ) sin 1 sin 7 ( J , -2  , -1  ~v,-  1, 

( f l n _ 2  0~n_ l ) 2 --- 1 _4_ I 1)COSIv sin y ( J _  2 n -  2 n -  1 '  

( f l n_  2 0~n_ l ) 3 = 
1 cos ~ ( J _  2 + I,, 1 ) C O S  l V  " 

- 2 n - l '  
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it is wor th  obse rv ing  that ,  in the style of XIXth  cen tury  celestial mechanics ,  such 

re la t ionships  were ob t a i n ed  by chas ing  D e l a m b r e  analogies  a r o u n d  spherical  

triangles.  Wi th  this qua te rn ion ,  it is then  easy to find the angles be tween  base vectors  

in the f rames F _  2 and  F _  1 t h r o u g h  the fo rmulas  

l "l : - c o s  v n - 1  n - 2  n - l '  

- " - - '  m In- 1 - m _  2 sin v _  1 cos J _  2, 

m ._  1 -1._ 2 = sin Yn-  1 COS I _  1, 

m _  1 - m _  2 - -  sin J n -  2 sin I _  1 - cos J _  2 cos I _  1 cos v _  2- 

Hence,  in app l i ca t ion  of the general  express ion  (38), 

cos a = cos 0 cos 0 cos 0* + n - 2 , n - 1  n - 2  n - 1  n - 2  

+ sin 0 " - -2  COS O n 1 sin 0* cos J - n - 2  n - 2  

- c o s  On_ 2 s i n  0 _ 1 s i n  0" ._2  c o s  I n _ l  + 

+ sin 0 _  2 sin 0 _  1 sin I _  1 sin J _  2 _qt._ 

+ sin O _  2 sin 0 1 cos O* cos I cos J 
- n - 2  - 1  n - 2 "  

(40) 

The  same ca lcu la t ions  are repea ted  for the  ro t a t i o n  f rom F " - -2  
in turn  the q u a t e r n i o n  p r o d u c t  

t o F *  " so one  ob ta ins  n - i '  

0{* ) 0  - -  - -  C O S  1 - -  I *  )sin 1 O* ( f i n - 2  n - 1  ~ (  J n -  2 n - 1  2 n -  2 ' 

~* ) = 
. - 1 1  

sin l ( j _  2 - I* ) sin 1 0* n - 1  2- n - 2 '  

0~* )2 ( ~ n -  2 n - 1  - -  
1 0 "  sin l ( d  2 - ~  I* 1 )  COS ~- n 2 

0~* 1) : 1 0* 1 At - I*  1)cosg n - 2  COS 7(Jn_ 2 n -  

then, f rom direct ives in (36), the d i rec t ion  cosines 

1" �9 1 = - cos 0* n - 1  n - 2  n - 2 '  

1" - m  n - 1  n - 2  sin O* cos  J n - 2  - 2 '  

m* .1 = sin 0* cos I* n - 1  n - 2  n - 2  n - l '  

m* .m = sin J sin I* - cos J cos I* n - 1  n - 2  n - 2  n - 1  n - 2  n - 1  cos  O* n - 2 "  

and,  finally, in app l ica t ion  of (38), 

cos  a = - cos  0 cos  0 cos  O* n - 2 ,  n n - 2  n n - 2  

s i n  0 _ 2 COS O n s i n  O'n_2 COS J n _ 2  -JI-- 

+ cos 0 _ 2 sin O. sin 0"._2 cos I*._~ + 

* sin J - + sin 0 _  2 sin 0 sin I 1 n - 2  

- sin 0 2 sin 0 cos 0* cos I* cos J - n - 2  n - 1  n - 2 "  (41) 
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It is now clear how one should proceed in passing from a problem of four bodies to a 
problem of five bodies. The tree of kinetic frames is one level deeper; the addition- 

al work is done by traversing the tree from the leftmost node of the additional particle 

to the subtree of the problem of four bodies. Thus to the previous results, one would 

add the evaluations of cos tr cos tr and cos tr based on the 
n - 3 , n  ~ n - 3 , n - 1  ~ n - 3 , n - 2  

quaternions: 

(i) /3_ 3 O~n- 2 for the rotation from F,,_ 3 to F _  2, 
~* ~ for the rotation from F to F and (ii) ft.-3 n - 2  - 1  n - 3  n - l '  

~* ct* for the rotation from F to F . (iii) f i n - 3  n -  2 n - 1  n -  3 n 

The final expressions increase in complexity; it serves no purpose to enter the results 
in this Note. 

A similar induction is applicable for developing scalar products of the type Yj-Yk 

since 

Yk = (RJcos 0J,J ~ sin ~ IRk c~ 0k'k r 
./ 

ok ) 
sin Ok m k . 

/"k 

* and * A crucial conclusion of this analysis is that the longitudes v o 0 o of the ascending 
nodes 1~ and !* will be ignorable in an Hamiltonian that depends exclusively on the 1 

mutual distances rj. k or on the scalar products Yj'Yk" 

5. Elimination of the Nodes 

In the coordinates (34) and their conjugate momenta (35), the reduction of a problem 

of n bodies which admits a vector integral of angular momentum is conditioned to 

reflect nicely the mathematical structures at play while adhering closely to the kine- 
matical mechanisms at work. On the one hand, the system is invariant for the three- 

parameter group S0(3) of rotations about the origin of coordinates, and this geometric 

* of the ascending node 1~ of the property implies in particular that the longitude v 0 
invariable plane is an ignorable coordinate in the Hamiltonian. On the other hand, 

on any manifold of constant angular momentum, the system is also invariant with 
respect to the one-parameter group S 1 of rotations around the invariable axis n o, 

which symmetry means that the longitude 0~ of the node 1~' = - ! 1 is ignorable in the 

Hamiltonian. From this standpoint, there is no need for arguing, as Whittaker does 

after Jacobi, that invariant relations based on the integral of angular momentum 

authorize giving a special value to a variable before taking partial derivatives. 

Take for instance the Newtonian problem of n + 1 (n >~ 2) bodies. To emphasize 
that the method of this Note applies to any form of the problem, rather than consider- 

ing the Hamiltonian in chained barycentric coordinates as was done by Boigey (1979, 

1981), one will start here from the heliocentric reduction with the Hamiltonian 
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H ) ] 1 1 mom 1 
- t - Y j ' Y j  - -  G 

1 <~j~ m o m I r .  n j 

- - - Y  "Yk (42) 
1 <~j<k~n  rj ,  k lflO J 

From the developments carried in Section 4, there follows that this Hamiltonian 
* and 0~ nor on the momentum N~, hence that depends neither on the angles v o 

N~, | and v~ are integrals of the problem, which implies also, by reason of (32), that 
the inclination I~ is a constant. But in the system of phase variables (34) and (35), 
(0~, v~, I0* ) are the spherical coordinates of the angular momentum. In the new varia- 
bles, the canonical system based on (42) separates into a system of order 6 n - 4  made 
of the equations (1 ~ j ~< n) 

0H 0H OH 0H 
R.= 6.= 

J 0R.' : c30.' J OR .' J c~0.' 
J J J J 

and of the equations (1 ~< j ~ n - 2) 

OH QH 
0.* = 6 . *  = 

: c~| 1 c~0 .' 
J J 

to be followed by the quadratures indicated by the derivatives 

0H 0H 
q~=c~Nt,  and 0~-c~O-- ~ .  

Whether the new phase variables (34) and (35) are practical in the General Theory 
of Perturbations is an open question. At least, for planetary theories, the answer is 
likely to be in the negative: the tree of kinetic frames imposes a recursive hierarchy 
without physical correspondance in the solar system. But finding a natural system 
of coordinates for eliminating the nodes in a planetary cluster was not the purpose of 
this Note. The intention was to show how the global symmetry with respect to the 
group S0(3) triggers a chain of partial rotations from one particle in the system to the 
next one, and why this chaining of rotations affords a suitable coordinate system 

leading without artificiality to the elimination of the nodes. 
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