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A b s t r a c t .  Hill 's p roblem is defined as the l imit ing case of the p lanar  t h r e e - b o d y  problem when 
two of the  masses are very  small. This  paper  describes analyt ic  developments  for encoun te r - type  
solutions,  in which the two small  bodies approach  each other  from an ini t ial ly large dis tance,  
in terac t  for a while, and separate .  It is first poin ted  out  tha t ,  con t r a ry  to prevalent  belief, 
Hill 's p roblem is not  a pa r t i cu la r  case of the res t r ic ted  problem, bu t  r a the r  a different p roblem 
with  the same degree of generality. T h e n  we develop series expansions  which allow an accura te  
represen ta t ion  of the asympto t i c  mot ion of the two small bodies in the approach  and  depa r tu re  
phases.  For small impact  distances,  we show tha t  the whole orbit  has an adiabat ic  invariant ,  
which is expl ici t ly  compu ted  in the form of a series. For large impact  distances,  the  mot ion can 
be app rox ima te ly  descr ibed by a p e r t u r b a t i o n  theory, originally due to Goldreich and  Tremaine  

a n d  reder ived here in the context  of Hill 's problem. 

1. I n t r o d u c t i o n  

Consider the planar problem of three bodies 3/1, M2, M3, in the case where M2 
and M3 have a much smaller mass than M1. In general, the mutual attraction of 
M2 and M3 can then be neglected, and the problem reduces in a fair approximation 
to a superposition of two independent two-body problems. However, if the distance 
between M2 and M3 becomes sufficiently small, their mutual attraction becomes of 
the same order as the differential attraction from M1 and can no longer be ignored. 
This is known as Hifl's problem (Hill, 1878). 

Hill's problem has been somewhat neglected, by comparison with its illustrious 
cousin, the restricted problem. This is surprising, because it is of comparable 
interest. First, a number of problems in celestial mechanics can be adequately 
approximated by Hill's equations. Examples are: the Sun-Earth-Moon problem, 
which was the motivation of Hill's original work; the interaction between particles in 
planetary rings, and between satellites on nearby orbits; the accretion of particles 
by a planet or proto-planet; the distribution of particles around the Earth; the 
temporary capture of a comet by a planet. Second, on the mathematical side, 
Hill's problem can be considered as the simplest non-integrable case of the N-body 
problem: the equations are even simpler than those of the restricted problem, and 

Celestial Mechanics 38 (1986) 67-100. 
�9 1986 by D. Reidel Publishing Company. 



68 M. H ~ N O N  AND J.-M. P E T I T  

contain no parameter .  Yet its solutions exhibit the inexhaustible richness which 
is characteristic of non-inteo~able systems in general (see for instance H~non 1969, 
1970). 

The present paper arose from a s tudy of the gravitational interaction of particles 
in Saturn's rings (Petit and H~non, 1985). This problem is an almost perfect case 
for Hill's equations: for instance, a particle with a radius of the order of 1 meter  
has a mass of the order of 106 g, which is smaller than Saturn's  mass by a factor 
1024; and the orbits of the particles are coplanar and circular with bet ter  than 
10 -6 accuracy. This study required some analytic developments, which apparently 
were not to be found in the literature. Since these developments might be useful 
in other applications, we present them here as a separate paper. 

it will be convenient to call M1 the planet, Ms and M3 the sate//i~es. It should 
t 

be kept in mind, however, that  the results are applicable to other situations. 
In Section 2, we present a general derivation of Hill's equations and we show 

~hat, contrary to a widespread belief, Hill's problem is not a particular case of the 
restricted problem. Specifically, the ratio of the masses of the two satellites can 
have any value; it need not be small. Also the mean orbit described by M2 and M3 
does not have to be circular; it can be elliptical, provided that the radial excursion 
remains finite in Hill's coordinates. All this does not affect the final equations, 
which have the same form in all cases. 

In the remainder of the paper, we restrict our attention to encounter-type orbits, 
in which the distance between the two s~teUites becomes infinite (in Hill's coor- 
dinates) both for t ~ - o o  and for t ---+ +oo. In Section 3, we derive expansions 
describing the asymptotic motion of the two satellites for large mutual  distance. 
This is done first in the comparatively simple case where the asymptotic motion 
corresponds to circular orbits in the physical frame of reference, and then in the 
general case. These expansions can be matched to a numerical integration over 
a finite t ime to give an accurate description of the whole orbit from t - - c o  to 
t = +co (Petit and H~non, 1985). 

Section 4 examines the case where the impact parameter  is small, i.e. the two 
satellites are almost exactly on the same orbit. The two satellites then "repel" each 
other azimuthaUy, and describe what is known as a "horseshoe motion" (Brown, 
1911; Dermott  and Murray, 1981; Yoder et al., 1983). The satellites never come in 
close vicinity; therefore their mutual  at traction remains small, and the whole orbit 
can be obtained from a perturbation theory. Using Kruskal's formalism (1962), 
we show that  the horseshoe motion has an adiabatic invariant, which we compute 
explicitly. Series describing the orbit with high accuracy are also obtained. These 
results explain completely the numerically observed properties of horseshoe orbits. ; 

At the other extreme, Section 5 examines the case where the impact parameter  is 
large. Again the mutual  at traction remains small during the whole encounter; each 
particle's orbit is only slightly deflected by the other, and a perturbat ion theory 
can again be worked out (Goldreich and Tremaine, 1979, 1980, 1982). Here we 
rederive these results in the context of Hill's problem. 

As this paper  was being prepared, we were informed of the existence of recent 
work on the same subject by Spirig and Waldvogel (1985). 
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2. Basic  eqnat ions  

2 .1 .  REDUCTION TO HILL'S EQUATIONS 

The derivation of Hill's equations usually found in the l i terature assumes a hierar- 
chy of masses for the three bodies: 

ml  >> m2 >> m3, (1) 

and proceeds in two steps: first the limit m3 ~ 0 is taken, which gives the re- 
stricted three-body problem; then the limit m2 , 0 is taken. Hill's problem is 
thus presented as a sub-case of the restricted problem. 

Here we shall consider a more general situation: the ratio of the two masses rn2 
and m3 can be arbitrary; the only condition is that  both masses should be small 
compared to ml : 

m l  >:> m2, m l  >>m3.  (2) 
Our procedure will be to fix the ratio m2/m3 and to let both rn2 and m3 tend to 
zero simultaneously. Remarkably, the equations obtained in this limit are identical 
to the classical Hill's equations. Thus, these equations have a greater generality 
than is generally thought; and Hill's problem is not a subset of the restricted 
problem. The true state of affairs is as follows: 

The restricted problem is applicable to situations where one mass is much smaller 
fhan the two others; Hifl's problem is applicable to situations where one mass is 
much larger fhan the two others. 

The two problems have thus in a sense the same degree of generality. Neither 
contains the other; but they have in common the ~hierarchical case" (1). Perhaps 
the misconception arose from the fact that  the first and most famous application 
of Hill's equations was to the Sun-Earth-Moon problem, which belongs to the 
hierarchical case, so that  the greater generality of these equations was not perceived. 

We start  from the equations of the plane problem of three bodies in an inertial 
reference system (X,Y): 

G m 2 ( X  2 - -  X 1 )  Gm3(X3 - X1) 
R~ 2 + R33 ' 

Grn2(Y2 - Yl ) Grn3(Y3 - Yl) (3) 
4- 

R~2 R~3 ' 

and similar equations for X2, Y2, X3, ~'3. G is the gravitational constant; Xi,  Yi 
are the coordinates of body Mi; mi is its mass, and R4y is the distance between 
bodies i and j:  

(4) 

If the three distances R4i are of the same order, the problem becomes trivial 
in the limit m2 , 0, m3 ; 0 : it reduces to the superposition of two two-body 
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problems. A non-trivial problem arises, however, if the distance R23 is small. We 
assume this to be the case. In a first approximation, the two satellites can then be 
considered as describing the same orbit around the planet; we shall call it the mean 
orbi t  (the precise definition of this mean orbit is not important) .  We shall restrict 
our at tention here to the case where the mean orbit is circular; in other words, we 
consider the circular Hill 's prob lem.  (The general case is called the elliptic Hill's 
problem; see Ichtiaroglou, 1980). 

Let a0 be the radius of the mean orbit, and 

T 

m = m l  + m2  + rn3 (5)  

the total  mass of the system; the angular velocity of m2 and ms on the mean orbit 
is of the order of 

w -- ~ /Grnao  3 

We introduce dimensionless variables: 

(6)  

x :  - x ~  v :  - Y~ , = P ~  , _ , m  t ' =  ~ t .  (7 )  , - ,  , R O , m i  ~ ,  
a 0  a0  ~0 ~ t  

In these new variables, the gravitational constant,  the total  mass of the system, 
the radius of the mean orbit, and the mean angular velocity are all equal to 1. The 
equations of motion in these variables are similar to (3), with G replaced by 1, and 
the time derivative being taken now with respect to t'. Only the dimensionless 
variables (7) will be used in the following, so we drop the primes from now on for 
simplicity. 

By analogy with the restricted problem, we write 

/~ is 

m l  = 1 - / x ,  

a small number.  We introduce also 

m 2  + rn3 - ~;  (8 )  

m 3  

m 2  + m3  
= v. (9) 

We introduce a new reference system (x, y), centered on the planet M1 
with angular velocity 1: 

and rotat ing 

~ - ( x ~  - x ~ ) r  to )  + (y~  - Y~) ~ i~( t  - to) ,  

w = - ( x ~  - x ~ )  ~inCt - to) + (Y~ - Y~) r  - to) ,  
(10) 

and similar equations for x3, y3. The parameter  to is chosen in such a way that  
the two satellites are close to the positive x axis. The equations become 

~,2 = 2 # 2  + x 2  - 
R132 + R~ 3 R~3 ' 

Y2 = -2: / ;2  + Y2 - -  R~ 2 + R~ 3 R3 3 , 

(11) 
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and similar equations for x3, Y3, obtained by permuting indices 2 and 3, with 

I I 

( t2)  
In this system, the satellites M2 and M3 axe in the vicinity of the point (1,0). 

The problem is non-trivial when the distance R23 is such that  the gravitational 
force between the satellites is of the same order as the differentiM force from the 
planet. As is well known, this corresponds to a distance Ro3 of the order of/~x/3. 
Therefore we make yet another change of coordinates: 

x2 I + #I/3f2 , 

x 3 = I + ~I/3~3 , 

Y2 - -  # i / 3 r l 2 ,  (13) 
Y3 -- ~113~3, 

R23 -- gl/3/9. 

will be called Hill's coordinates of the satellite Mi. We have then 

(14) 

R12 - 1 + ~1/3 f2 -+" O(~2/3), 

Substi tuting in (11), we obtain 

Rz3 = i + ~u 1/3 ~3 + o ( ~ 2 / 3 ) .  (15) 

and 

,,,((~ - 

& - 2,)= + 3 ~  + p3 

,~ = - 2 &  + "( '73- ~2) 
p3 

'~) + o ( ,  ~/~), 

+ o(~1/3), 
(16) 

with 

,~ = 2~3 + 3 f 3  + (1 - v) (~ '2  - f 3 )  
p3 + o(gt/~), 

�9 - & 
~3 - -  - 2  + 

( 1 -  ~,)(~, - ~ )  
p3 + o(#'/~), 

(17) 

p = ~ / ( ~ ,  - ~ ) =  + (n~ - n~)~. ( i s )  

We go over to new coordinates ~*, r/*, ~ ,  r/, which describe respectively the center 
of mass and the relative position of the two satellites: 

~. _ m 2 ~ 2  + m3~3 (1 v)~'2 + v~'3, rt* 
m2 + m3 

m2rl2 + m3r/3 

m2 + m3 
= (I - u)r/2 -4- vr/3, 

= ~ - ~ ,  n = ~ - n~.  ( 1 9 )  

and r/will be called relative Hill's coordinates. The equations of motion are 
I t t  

2,)" + 3~" + o(~'/~), - .  "* / 3  = - 2 ~  + o ( ~  ~ ), (20) 
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and 

= + /3 ), q = + (21) 

with 

p = ~/-~2 + r/2. (22) 

Note that  no approximation has been made so far; all we have done is to change 
coordinates. Now we assume that  # ,  the combined relative mass of the two satel- 
lites, is small. The last terms in (20) and (21) can be neglected. The two sets of 
equations are now separated. The equations (20) for the center of mass are linear 
and easily solved; their general solution is 

~Jr ~t gt 
- D 1 cos t + D 2 sin t + D3, 

3 
~7" - - 2 D ;  sin t + 2D~ cos t 2 D~t + D~, (23) 

where---1,r~* ~2,r~* ~-3,n* D~ are constants  of integration.  
The equations (21) for the relative motion are the familiar Hill's equaffons. It 

will be frequently useful to write them ~s a system of four first-order differential 
equations~ by introducing the velocity coordinates u, v: 

~- t t ,  (7 - v ,  t ~ -  2 v + 3 ~  p3' t) - - 2 u  p3" (24) 

Hill's equations admit the integral 

r - 3 (  2 q 
2 

u2 _ v2 (25)  
P 

which will be called the Jacob/integrM by analogy with the restricted problem; in 
the hierarchical case (1) which is common to both problems, r is related to the 
classical integral C by 

C - 3 + / z 2 / 3 F .  (26) 

Hill's equations contain no parameter; perhaps this has contributed to the false 
impression that Hill's problem is a particular case compared to the restricted prob- 
lem, which contains a parameter  # . Actually, our present problem contains also 
a parameter  v , which describes the mass ratio m3/(m2 + m3) just as ~t in the 
restricted problem describes the mass ratio m2/(ml + m~). This parameter  has 
gone into hiding when we did the change of coordinates (19), and reappears when 
we go back to the coordinates of the two bodies: 

~2 - ~*-v~ ,  r/2 = rl*-vr/,  ~3 ~*-+-(1--v)~, r/a - - r / *+ (1 -v ) r / .  (27) 
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2.2. UNPERTURBED SOLUTIONS 

W h e n  the two satell i tes are sufficiently far apar t ,  the  a t t r ac t ive  t e rms  ~/p3 and 
~]/p3 can be neglected.  T h e n  (21) has exact ly the same form as (20), and therefore 
its general  solution has the same fonn  as (23): 

= D1 cos t + D2 sin t + D3, = - 2D1 sin t + 2D2 cos t - - 
3 

2 
D 3 t  + D4,  (28) 

where D i ,  D2, D3, D4 
ing velocities: 

are constants .  We shall f requent ly  need also the  correspond-  

u = - D 1  sin t + D2 cos t, v -- - 2 D 1  cos t - 2D2 sin t 
3 

- - D 3 .  (29) 
2 

In the Jacobi  
is re la ted to the  

cons tant  (25), the t e rm 
Di by: 

2/p can be neglected,  and we find tha t  P 

3 
r - ~ D ~  - D~ - D~.  (30) 

Subs t i tu t ing  (23) and (28) into (27), we find tha t  the  mot ion  of the  two part icles  
taken individual ly has again the  same form: 

~i = Di~ cos t + Di2 sin t + Di3, 

~?i = - 2 D i x  sin t + 2Di2 cost 
3 (i = 2, 3) (31) 

- -Di3 t  + Di4, 
2 

with 

D2:i = D; - vD+, D3i - D; + (1 - v)D:i ( j  = 1, 2, 3, 4). (32) 

Equat ions  (31) represent  the  famil iar  epicyclic mot ion  in ro ta t ing  axes, corre- 
sponding  to keplerian elliptic mot ion  in fixed axes. Going back to the physical  
variables with (13), (10) and (7), we find that the semi-major  axes and eccentrici- 
ties of the  orbits  are related to the constants  Dij by 

ai -- ao(1 + Iz t /3Di3) ,  ei - #t /3 j D i ~  + Di ~ (i = 2,3).  (a3) 

3. S e r i e s  for  a p p r o a c h  a n d  d e p a r t u r e  

We consider now the full equat ions  (24). We shall develop analyt ic  approximat ions ,  
in the  form of a sympto t i c  series, for the solution in the limit t , - o o  or t , +oo,  
i.e. when the  two satell i tes are far f rom each other;  these approximat ions ,  in 
conjunct ion with numerical  in tegrat ions  over a finite t ime interval,  allow a full 
de te rmina t ion  of a solution from t = - o o  to t +oo  (see Peti t  and H6non, 1985). 
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3.1. ASYMPTOTICALLY CIRCULAR ORBITS 

We consider first the particular case where the orbits of the two satellites are 
circular when they are far from each other (either before or after the encounter). 
This case is the easiest analytically; and the case where orbits are circular before 
the encounter is of interest in many applications. A more fundamental reason is 
that the solution of this particular case is necessary as a first step in the solution 
of the general case, as will be seen in Section 3.2. From (33), we have then for the 
limiting motion of satellite i for It] ~ oo: 

where ai is the 
given by (31): 

Dil -- 0, Di2 = O, Di3 = ~ - 1 / 3  ai - ao 
ao 

( 3 4 )  

radius of the circular orbit. In Hill's coordinates, the motion is 

.q 
5i - D;3 ,  ~ - - : D i 3 t  ~- Di4.  (35) 

2 

Thus, a circular orbit appears in Hill's coordinates 
the ,7 axis. We obtain the relative motion 

as a straight line, parallel to 

3 
3 h ( t -  r), u = 0 ,  v - ~ h ,  = h,  = - 5  - (3o) 

where we have written 

Ds - h, D4 = 3 h~. (37) 
2 

h represents the radial separation of the two circular orbits in Hill's coordinates; it 
should properly be called the reduced impact parameter, but we shall abbreviate 
this into/mpa~$ parameter. 

Four cases can be distinguished, depending on the signs of t and h (Figure 1): 

1) t < 0, h > 0 : approach in first quadrant; 
2) t > 0, h < 0 : departure in second quadrant; 
3) t < 0, h < 0 : approach in third quadrant; 
4) t > 0, h > 0 : departure in fourth quadrant. 

Because of the symmetries of the problem, it is possible to treat aH four cases 
by a single formalism, which will be described below. 

We seek now the solution which has the asymptotic behaviour (36) for Itl ~ oo. 
The first idea which comes to mind is to look for an expansion in powers of t -1, of 
the form 

: h + al  t -1  + a2t - 2  + .  3 ~--1 
�9 . , ~ - - ~ h t  + b0 § bl + . . . .  (38) 

Substituting this in the equations of motion (24), however, one soon finds that the 
equations for the coefficients cannot be satisfied. Thus, the solution cannot be of 
the simple form (38). The reason for this will be understood below. 
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.? 

~/ 4 

Fig.  1. Th e  four  cases of a s y m p t o t i c  m o t i o n  for t : 4-0o. 

The  correct  approach consists in ignoring the t ime al together ,  and looking for an 
expansion in powers of r/-1 instead.  First ,  we el iminate  the t ime by subs t i tu t ing  
d t -  d~l/v in (24), which becomes 

d~ du r dv 77 
v dr/ - u, v dr/ 2v + 3~" p3'  v dr/ - 2 u  p3" (39) 

We seek an expansion of the form 

-- ao + al 7 -1 + - - -  , u -- Co + cl ~]-i + . . .  , v -- do + dz t7 -1 + - - -  . (40) 

From the required behaviour  of the solution for It] , oo, we have immedia te ly  

a0 - h, Co - 0, do _ __3 h. 
2 

The  fac tor  1/p 3 is expanded  as 

(41) 

1 ( ~2)-3/2 ( 3~2 ) 
p3 = s.-3 1 -t ~-~ = s t / -3  1 ~ ~-~ t "'" , (42)  

where 

This  expansion is valid 

=  ig Cn). 

provided that ir/l >3> I~!, or, since 

(43) 
is near ly  equal  to h : 

> Ih[ �9 (44)  

Subs t i tu t ing  (40) into (39), we compute  
sume tha t  the coefficients 
r/-(i+1) in (39a) and (39c) 

which can be solved. 

the coefficients recursively as follows: as- 
axe known up to a i -1 ,  ci, di-1 ; then the coefficients of 
and of ~/-i in (39b) give three  equat ions  for ai,  C~+l, di, 
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Expansions up to order 12 have been obtained by computer algebra, using an 
8-bit microcomputer. They were also verified by hand up to order 4. We quote 
them to order 8 only to save space: 

:: 1 8 ~_Th_ 5 s~/- 3 ) 
+ (-4:h-1 l~lOh-7)rl-4+s(-152h3 ~7 h-3 2~3 h-9) r] -5 

2338 32 h_ 5 1792 h-11) -e 
+ 3 h + 8 1  2-~ 

246205 h5 - 592h- 1 1120243 h-7 11264729 h-13) r/-7 

1969253 
+ - ig 

h 3 7568h_ 3 11648h_ 9 73216 ) - s  -9) ,  
27 ~ 7-~ 2i87 h-~5 " + O(~ 

(4s~) 

T 

51 u = - 2 s t / - 2  + 

(17234:5 h 6 4 9 5 5 2 )  

sh2r] -4 _ 78r] - 5  _ ll40sh4r/-6 + 9126h2r/-7 

,7 - 8  + o(,7-9), 
(45b) 

3 4h_3_2 ( 16h-5 ) 3 v = - ~ h  + 2h -1st/-1 + ~ + - l l h  + ~ sT/- 

(32h-1 + 80 h- ' ) r ] -4  + s (1215 h3--  + -~-40h-3 + -47h-9) 5 
+ 3 ~ ,7- 

( 4739  64h-~ 896h-11) -6 + g h + ~  + ~  

_ f 164135 ,_5 , 11042h_ 1 5632h_13 ) 
---~-- --~-h -~ 243 . 

+ s ~ - - - 8 - - - n ,  160 -7 , 7 -7  

+ ( 26391533'~ h -t 16120 h - 3 2 7 3 5 8 4  h-9 ~ 2 - ~  36608 h-15)7-~  r/-8 + O(t?-9). 

(45~) 

The time t itself can now be computed as an expansion in r/, by a simple inte- 
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gration of dr~dr/ 1 / v  . The result is 

( 100 16 h_ 5 r/- 1 t - r h - l ~  - 8--sh-39 in s~ -~---~- + - -  h - 1  -t ~-~-h s~ 

( 224 - 3 2 2 4 0  ) -3 ( 1 3 5 1 3 6 h - 5 4 4 8  ) + ~i h ~ ~-~ h -~ ,7 + ~ h ~ ~ ~[ h -~1 ~ - ~  

39424 h- 13) z/-5 2756 h -  1 2560 h -  7 _~ 
+ 45 243 3645 

164135ha 3956h_ 3 51520h_ 9 + 
+ - 1-~ 81 2187 

643051 4576 h_ 5 13312 h -  11 _~_ 
+ ~ h 63 243 

165449515 h5 
+ i i -~  

+ 

1638293 h_ 1 31300 
162 243 

6223360 
59049 

h -19) st/-8 + O(r/-9). 

1464326561 h -  15) st/-6 

732160 h_17 ) -7  
15309 ~} 

h -  7 _ 285824 h-  13 
2187 

(46) 

This expansion contains a logarithmic term, while the expansions (45) were 
purely polynomial. This term is essentially due to the fact that at large distances, 
the attraction between the satellites is proportional to t -2 ; this, integrated twice 
with respect to time, produces perturbations proportional to In It I. The presence 
of this logarithmic term explains why no formal solution with the form (38) can 
exist. 

Inverting (46), we obtain 

(47) 

where we have used the abbreviation 

3~h(t- O. (48) T -  

(47) shows that the asymptotic motion for It[ , oo is in fact not exactly of the 
expected form (36): a logarithmic term is superimposed on the linear motion. 
Our problem has a singular perturbation at It[ ~ co: the solution (36) of the 
unperturbed problem does not coincide with the limit of the general solution for a 
vanishing perturbation. 

More terms could be computed in (47), and this expression of r/as a function of 
time could be substituted in the equations (45); in this way one would obtain also 
~, u, v as explicit functions of t. However, these functions would be double series 
i~ T ~d ~ T, m~h mor~ ~umber~ome th~ (4S) ~nd (46). It seems therefore 
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preferable to use the implicit form of the solution given by (45) and (46). The 
logarithmic singularity is then neatly isolated in a single term in (46). In fact, 
most applications require only a knowledge of the shape of the orbit; the time is 
not needed. One can then conveniently work with the polynomial equations (45) 
alone. 

The series (45) have been derived in a formal way, and we do not know whether 
they are convergent. In fact it seems likely that  they are only asymptotic series 
(see Sec. 4). In practice this is not of much importance: the series (45), t runcated 
at some finite order, are found to agree with the exact solution with high accuracy, 
provided that  ]T/] is large enough (Petit and H6non, 1985). 

r 

3.2. GENERAL CASE 

The relative motion, in the limit Itl , co, has essentially the form (28), with D1, 
�9 . . ,  D4 arbitrary. However, in the case of asymptotic circular motion, we found 
that  the time dependence of r/ must be corrected according to (47). We shall 
assume that  the same correction applies in the general case. With an appropriate 
choice of the origin of time, the asymptotic motion can then be rewritten as 

-- h + kcos( t  - ~o), r / =  2 ~sh -2 In - sh( t  - r) - 2k sin(t - ~p). 

(49) 
It depends on four arbitrary constants h, k, ~o, , .  h will be called the impact 
parameter,  as before, k measures the radial amplitude of the relative motion; we 
shall call it reduced eccentricity.  (Note that it is "reduced" in two ways: first 
because it involves a combination of the actual eccentricities of the two satellites 
and of the orientations of their semi-major axes; and second, because it is measured 
in Hill's coordinates rather than in physical coordinates). ~o is the phase of the 
epicyclic motion. As is easily seen, the Jacobi constant (25) is related to these 
constants by 

F = 3h2 - k  2. 
4 

(50) 

We seek the solution which has the asymptotic behaviour (49) for It I , co. 
Again we will try to express this solution as a series, and we must guess at the 
appropriate form of that  series. 

Clearly, a simple expansion in powers of r/-1 will not work anymore for k # 0, 
since the solution has an oscillatory component which does not vanish in the limit. 
Instead of a single solution, consider however the set of solutions obtained by 
keeping h, k and r constant in (49), while giving to @ all possible values from 0 to 
2~r. At any given time t, the points corresponding to these solutions lie on a closed 
curve C. In the limit It[ , co, this curve is an ellipse centered in [ h , - ~ h ( t -  r)] 
and with semi-axes (k, 2k). As t changes, and as long as the asymptotic form 
(49) is valid, this ellipse glides smoothly along a straight line, without changing its 
shape: no oscillations are present. As the attraction of M2 begins to be felt, the 
curve C is progressively distorted; it seems reasonable to conjecture, however, that  
this distortion will be "smooth ' ,  in the sense that  it will not contain oscillatory 
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components.  We look therefore for an oscillation-free representation of C as a 
function of time. 

A natural  parameterizat ion of C, at a given time, is offered by the phase ~o. The 
coordinates ( and r /of  a point of C are periodic functions of p; thus, the curve at 
a given time can be represented by Fourier series for ( and r/, with ~o as variable. 
With this simple choice, however, the coefficients of the Fourier series will oscillate; 
this is already obvious for the asymptotic form (49). We remedy this by redefining 
locally the origin of the angles: we substi tute to p the new angular variable 

O--t-~o, (51) 

and we write the Fourier series with 0 as variable. Now the coefficients of the 
series do not oscillate any more in the limit (49). We conjecture that  this is true in 
general; more specifically, we conjecture that  the coefficients of the Fourier series 
can be expressed as polynomial series. 

What  should the argument of these series be ? We cannot use ~ - i  itself as in 
the previous section, since y has now an oscillating component (it may even be a 
non-monotonic function of time if k is large enough). We need an "average" r/, 
describing the position of the curve C and smoothly changing with it. This can be 
obtained as follows. Consider the larger family of solutions obtained by varying k. 
At any given time, instead of a single curve we have now a family of closed curves, 
with k as parameter .  In the limit It] > co, this is a family of concentric ellipses. 
At the center of this family lies the curve corresponding to k - 0, which in fact 
degenerates into a single point. This point can be called the guiding center of the 
whole family. We call ~ ,  yc its coordinates. The motion of the guiding center is 
known from the previous section; simply substi tute (r ~r u~, vc for (, ~/, u, v in 
(45) and (46). This motion is smooth. So we shall use ~7~ as the argument of the 
polynomial series. 

It will also be convenient to use the guiding center as origin for the description of 
the curve C. 
is wri t ten as 

We arrive thus at the following representation. The general solution 

~- ~'~ + x, ~ - - ~ c + Y .  (52) 

x and y are Fourier series in ~: 

OO OO 

- co ie + b  i=io), v = + dr (53) 
3=o j=o 

The coefficients ay, bi, cy, d i are themselves polynomial series in r/~-l: 

O 0  O 0  O 0  O 0  

i = 0  i - - 0  i - - 0  i = 0  

(54) 
The 
functions of the parameters  h, k, p,  r which define the orbit. 

coefficients a i i  , . . . ,  5ii are fixed for a given orbit. So they should be definite 
Actually they will 
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be sccn to be functions of h and k only. The dependence on ~o has been absorbed 
by the change of variables (51); in other words, ~o appeaxs in the expressions of ~" 
and r /only through 0. Similarly, the dependence on T has been absorbed by the 
change of variables (52); r appears in the expressions of ~ and y only through r/r 
All coefficients vanish for k = 0. 

From the asymptotic form (49) we derive the coefficients at order 0 in r / [ l :  r 

alo = k; 

- o 

"/3"o = 0 

~lO = 

ayo = 0 

for all j; 

for all j;  

- 2 k ;  = 0 

for j # l ;  

for j # l .  

(55) 

The other coefficients will be obtained recursively. The procedure is different from 
that  of the previous section. The expressions of ~ and r/defined by (52), (53), (54) 
are substi tuted directly in the equations of motion (21), written in the form 

- 2~ - 3~ -- R~, (56) 

with 

R - 1 _ (~2  -4- , / 2 ) - 1 / 2 .  ( 5 7 )  
P 

and ~/ subscripts represent partial derivation. 
expanded around the guiding center, using (52): 

The right-hand sides in (56) axe 

R~(~, r/) - R~(~r r/c) -4- Rr tlc)xA- Rol(~c ,~lc)y- - t - . . .  (58) 

and a similar expression for R, 7. 
The derivatives R~r yr etc. 

similar to (42). 
When computing time derivatives, one must remember that  

and ~/r are functions of time. From (51) we have simply: 

are expressed as series in r/~-l, using expansions 

both arguments 0 

while the time derivative of Ye is 

dO 
dr = 1, (59) 

drtc 

dt 
= (60) 

where vc is given by (45c) with r/e substituted for r/. Finally, ~c is given by (45a). 
With these substitutions, both sides of equations (56) are completely expressed 

as double series in 0 and r/[ 1 . This provides an infinite set of equations, which can 
be solved recursively. 

For a given order i in y~-l, it is found that  the coefficients aj i ,  �9 . . ,  6ji vanish 
beyond a certain order j .  Specifically, non-zero terms exist only for the following 
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combinations: i = 0, j = 1; i = 2, j - 0; i - 2, j - 1; and i > 2, 3" < i -  1. 
Therefore the correct procedure is to compute first all terms with i - 1, then all 
terms with i 2, etc. (the terms i -- 0 are already known from (55)): at each step 
only a finite number of new coefficients have to be computed. 

The computation shows that all coefficients are thus uniquely determined. A 
curious feature, however, is that some coefficients "lag behind". The coefficients 
C~Oi, a l l ,  f l l i ,  " / l i ,  51i remain indeterminate at order i, and become determined only 
when terms of order i + 1 in the equations (56) are considered. The coefficient "70i 
lags even more: it is determined only when terms of order i + 2 are considered. 

The computations are straightforward but lengthy. Results to order 7 in tic 1 
were obtained by computer algebra. They were verified independently by each of 
us up to order 4. The expressions are cumbersome and we give them to order 4 
only: 

-- h + kcos0 sh-ll?-[ 1 + - -~h  -3 + s h - l k s i n O  t7[ 2 

( 1 7 s h  32sh_5 7 k 2 2 :  + 28 h_3k sin 0) r/~_ 3 
+ 3 27 -~sh -1 + skcosO 27 

4 4 h _  1 160h-7  14 h-3k2 4 9 h - 2 k  cos 0 
+ 9 8--i- -6- 

473 
+ s  16 

99h_ ) 5 ] 14 h_ 5k + 1 k3 sin 0 sk 2 sin 20 -4  
- -  h k  + 9 32 4 r/c + 

(61a) 

r / =  rj~ - 2k sin 0 + sh -2 k 2 t -~ s h -  1 k cos 0 17~ --2 

+ 14h-4k29 + ~-~h-3kcos0 ~ sksin0 ~?~-3 + O(~?:4) 
(61b) 

7 ) -2 u - - k s i n 0  + - 2 s  + ~ s h - l k c o s 0  ~ 

+ ~-~h-3kcos0 ~sksin0 ~c 

00 ) 
+ 2 -2- s + s ~-~ hk + h -5 k --t- 32 h -  I k 3 cos 0 

+ 49h_2ksin0 5 ] -4 O(t?~-~), 72 2 sk2 cos20 ~c + 

(61 ) 
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v = - ~ h -  2kcos0 + 2sh-l~l[  1 + _ _~sh-lksinO ~[2 

16 h_ 5 7 15 56 h_ 3 ~ -3 -b - l l s h  + s~ -b - s h - l k  2 - - s k c o s 8  - -  ks in8 r/c / 

For k 
to r/c. 

These equations, together with (51) and (46) (with 17c substi tuted for r/) define 
implicitly ~, r/, u, v as functions of the time and of the four parameters h, k, ~, r. 

9 2 2 27 

[32 80 7 . 7 h _ 3 k 2 _ b 4 9 h _ 2 k c o s O  
-+- - - h  -1 -b ~-~h- • 3 36 

+ 8 ~ k ~ h -  k 16 / 8 s~ sin 20 r/~ -4 + O(r/~-s). 

(6 d) 
1 

0, we recover of course the developments (45) for ~, u, v, while 7/reduces 

4. S m a l l  i m p a c t  p a r a m e t e r  

4 .1 .  THE HORSESHOE MOTION: F I R S T - O R D E R  DESCRIPTION 

In this section, we shall consider the case where the impact parameter  h is small. 
For initially circular orbits, the satellites describe then a horseshoe motion, as 
shown by Brown (1911). A typical example is shown by Figure 2a. This pecu- 
liar motion can be explained in physical terms. Assume for the simplicity of the 
description that  m3 << m 2  and r/ > 0 (however the argument is also valid in the 
general case). Then M2 stays fixed at the origin, and M3 comes down from ~ - +co 
in the first quadrant (case 1 in Figure 1). This is the situation for Figure 2a. In 
the physical frame of reference, M3 continually loses energy because it is at t racted 
from behind by M2. Therefore its semi-major axis decreases. In Hill's coordinates: 

constantly decreases. This process is very slow because r/ is large, so that the 
attraction is small. Therefore we can assume that  the motion of M3 remains very 
nearly circular at all times. The differential velocity of M3, represented by ~ - v 
in Hill's coordinates, is then proportional to - ~ .  Thus, r/first decreases because 
is positive; it reaches a minimal value r/or when ~ crosses the value 0; and then it 
increases again as ~ becomes negative. 

This argument is easily cast into equations as follows. In the equation of motion 
(24c), the radial acceleration ~ is extremely small and can be neglected; also ~/p3 ~ 
is negligible compared to ~. This equation reduces therefore to 

3 
-- - ~ .  (62) 

p is very nearly equal to r/; therefore, eliminating ~) between (62) and (24d), we 
obtain 

2 (63) 
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Fig .  2. (a) A h o r s e s h o e  o rb i t .  I n i t i a l  va lues  a re  h = 0.5, k = 0. (b) A n  o r b i t  w i t h  t h e  s a m e  
i m p a c t  p a r a m e t e r  a n d  n o n - z e r o  i n i t i a l  eccen t r ic i ty .  I n i t i a l  va lues  are  h = 0.5, k -- 2, ~ = r -- 0. 

N o t e  t h a t  t h e  scales for  ~ a n d  r / a r e  d i f fe ren t .  

Since u = ~ and v - ~, (62) and (63) represent a simple system of two first-order 
equations. The solution of this system cannot be expressed in a closed form ~(t), 
r/(t); however, it admits a parametric representation 

1 8 16 (A + sinh 2A) (64) - - h  tanhA, r / =  3~ 2 cosh 2 A, t - t c r -  9-~ 

where the boundary condition ~ , h for t ~ - o o  has been taken into account. 
The parameter ,~ increases from -r to +oo. t c r  is an integration constant; t t c r  

corresponds to the point where the orbit 
minimal value of r/is 

crosses the r/ axis. The corresponding 

8 (65) 
3h 2" 

(64) shows also that the orbit 
ular, for t , +oo, we have ~ , - h  and y ~ +oo. Eliminating A between (64a) 
and (64b), we obtain the equation of the orbit: 

is symmetrical with respect to the y axis. In partic- 

8 
= 3 ( h  ~ _ ~s)" (66)  

From the solution (64), one can verify a posteriori that the approximations made 
are valid for h small. 
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In the more general case of initially eccentric orbits, numerical computations 
(Dermott et al., 1980; Petit, 1985) show that the orbit consists of the slow horse- 
shoe motion described above, on which is superimposed a rapid gyration of nearly 
constant amplitude. A typical example is shown by Figure 2b. 

4 . 2 .  ADIABATIC INVAI:tIANT THEORY: BASIC EQUATIONS 

We try now to refine the description of the horseshoe motion. The character of 
this motion (a rapid gyration superimposed on a slow drift), and the fact that 
at t ~ +o0 one obtains in the above approximation an impact parameter simply 
reversed in sign (and the same reduced eccentricity) suggest that there exists an 
adiabatic invariant. This was already suggested by Dermott and Murray (1981). 
We will show that this is indeed the case, and we will exhibit the adiabatic invariant 
in the form of a series. 

We shall use the method described in a classical paper by Kruskal (1962). The 
notations of that  paper will be followed, except that the independent variable s of 
Kruskal will be the time t in our case. In order for the method to be applicable, the 
system of differential equations must be such that all solutions are nearly periodic; 
more precisely, it must be of the form 

dx 
dt - F (x, e), (67) 

where x is an N-component vector (N = 4 in our case); c is a small parameter; 
and F is such that for e = 0, all solutions are periodic. For e small but not zero, a 
solution is nearly periodic in the short run; in the long run, it drifts slowly along 
the family of periodic orbits of the c - 0  case. 

Equations (24) of Hill's problem do not satisfy this condition: they contain no 
small parameter, and the approximate solution (28) contains a linear drift term 

3 --Dzt which is not small in general, so that the solutions are far from being 2 
periodic. We remark, however, that in the present Section only large values of v7 
are considered. This suggests the change of variables 

0 " , . ,  (68) 

where e is a small positive parameter. 
expansion (42), which becomes 

Since ~ is small, we can again use the 

1 E 3 sQ 
: (69) p3 ~3 

with 
3" 

E2~2)-3/: ~2~2 15 E4~ 4 
Q =  1-t ~-~ = 1 - 3  0- ~ ! g ~ - - .  (70) 

The equations of motion are now 

- -  t L ~  

e 2 s Q  
~ c 3 s r  ~ = - 2 u  (71) 17 - e v ,  i~ = 2 v  + 3 ~  ~3 , ~ :  �9 
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For e = O, they reduce to 

= ~. ~ - o. 6 = 2 ,  + 3~.  ~ - - 2 . .  (~2)  

which is linear and trivially integrable, with the general solution 

--= D 1  c o s  t + De sin t + D3, 
A 

- -  n 4 ,  

u - - D 1  s i n  t + D 2  c o s  t, 
3 

v - - 2 D 1  cost  - 2D2 sin t - :-D3. (73) 
Z 

This is periodic. The system (71) is therefore in the required form for the appli- 
cation of Kruskal 's method.  It is also in the "standardized form" (Kruskal 1962, 
Equs. (B4) and (Bh)): the right-hand members are series in c. 

It will be convenient to introduce another new variable 

% -- 2v + 3~. (74) 

Using this in place of v, we have the new equations 

s 
= ~, ~ = ~ ( 0  - 3 ~ ) ,  ~ = 

E 3 s,~Q ~ 2~ 2 s Q  
~ , ~ - - ~  ~ . ( 7 5 )  

For e = 0, they reduce to 

with the general solution 

^ ~ (76) r / =  0, ~ = v, v -  - u ,  

-- D1 cos t + D2 sin t + D3, 
A 

__ D 4  , 

u = - D 1  sin t + D2 cos t, 0 --= - DI cos t - D2 sin t. (77) 

4 . 3 .  M O R E  A P P R O P R I A T E  V A R I A B L E S  

The next step in Kruskal's method (p. 812 of his paper) consists in replacing the 
variables ~, ~, u, ~ by "more appropriate variables" Yl, Y2, Y3, u. These variables 
are such that  in the limiting case r - 0, the three variables yi become constants, 
characterizing the part icular  periodic solution, while u increases monotonically 
with time, and increases by exactly 2~r after one revolution (our u corresponds to 
21r times Kruskal 's u). The change of variables should be defined by Kruskal's 
equations ( B l l )  : 

y -  V ( ~ , ~ , ~ , ~ ) ,  v -  T ( ~ , ~ , ~ , ~ ) ,  

i.e. it should be t ime-independent.  
In view of the form of (77), a natural  choice would be to define the new variables 

by 

~" -- Yl + Y2 cos u, ^ ^ ( ) r/ - -  Y3, u - -  --Y2 s i n  b', v - -  - -Y2 c o s  v .  7 9  
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Yl, Y2, Y3, v thus  defined are easily seen to have the  required proper t ies .  Unfortu-  
nately, this change of variables has a s ingulari ty at u - 0 0. This  is seen when 
one computes  the t ime  derivative of v f rom the last two equat ions  (79): 

v sin tt - h cos ~, 
= . ( s 0 )  

Y2 

For c # 0, ~ and 0 do not vanish at u - ~ = 0; therefore D is infinite at tha t  
point .  This  s ingular i ty  propaga tes  in la ter  series developments ,  where  higher  and 
higher  powers of 1/y2 appear .  As a consequence,  these deve lopments  are useless in 
a sizable region a round  u - 9 0; and unfor tuna te ly  this is the region of greates t  
interest ,  because  it corresponds to orbits  with zero or small  reduced eccentr ic i~ .  
So the change of variables (79) is unacceptable .  

There  is a remedy.  We remark  tha t  for e ~ 0, equat ions  (75c) and (75d) still 
represent  essentially a ro ta t ion  in the (u,~)  plane, but  with  the ro ta t ion  center  
slightly shif ted f rom the origin. This  suggests  tha t  we should correspondingly  shift 
the origin in the change f rom car tes ian to polar  coordinates  represented  by (79c) 
and (79d). Therefore  we replace (79) by 

- Y l + Y2 cos v,, ~ - Y3, 

u - y 2  sin v + U(yl,y2,y3), ~ - - y 2  c o s y  + V(yl ,y2,y3) .  (81) 

U and V are two as yet unspecified functions,  of order  e; note tha t  they do not 
depend  on v .  We t ry  now to choose these funct ions so as to e l iminate  the singular- 
ity; it will be seen tha t  U and V are in fact uniquely de te rmined  by this condit ion.  
Subs t i tu t ing  (81) into (75), we obtain the new sys tem of differential  equat ions  for 

Yl, Y2: Y3, v:  

~)1 = 2e2sQ l? 
y~ 

0~ = [v + u + 2c2 Q] L yg cos v + g r _  V + 

-~eyl - 2ey2 cos ~, + eV, 

E3sQ ] 
y~ (yl + y2 cos v) sin v, 

1[  380 ] 1[ 1 /, -- 1 + - -  gr _ V q (yl + y2 cos v) cos ~, - "~ + U A sin v, 

(82) 
with 

e2 ] -3/2  3e2 
Q - 1 + y32 (yl + y2 cos v) 2 - 1 2y~ (yl -4- y2 cos v) 2 + - - - .  (83) 

f, will have no s ingular i ty  if the two brackets  in (82d) vanish identically for y2 - 0; 
we assume this to be the case. Then  y2 given by (82b) vanishes.  Thus ,  solutions 
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which have y2 = 0 at one point have y2 - 0 everywhere. We temporari ly  restrict 
our at tent ion to this subset of solutions, in order to determine U and V. Equations 
(82~) ~ d  (82~) redu~  to 

2e2sQ 

y~ 
3 1 

- ~ ,  ~ - - ~ y ~  + ~ v ,  ( 8 4 )  

with 

3 E2y~ 
Q - 1  2 y~ §  (85) 

The condition tha t  the brackets should vanish in (82) gives the two equations 

U - - V  2s 2 sQ e 3 sy l  Q (86) y] , v - 0 + yl . 

U and V will be functions of yl and y3 only since y2 - 0, and their derivatives are 

0 -  OU OU OV OV 

' i)yl i)y3 

U and V can now be found recursively, order by order in e: assume that  U, V, yl, 
Y3 are known to order i -  1; then from (87) we obtain U and ? to order i (we gain 
one order because yl, y3, U, V are all of order e). From (86) we compute U and V 
to order i, and from (84) we obtain ~)1 and Y3 to order i. The recursion is s tar ted 
with i -  1, and Yl - y3 - U - V - 0 .  The results are, to order 8 in e: 

51 5 140y4 y3 6 + 2757y~c7 U - - 2 s e  2y3 2 + y ~ s s  4 - 1015y~- - 1 se 6 y3 7 
2 

( 1 7 2 3 4 3 5 )  
+ - 4 2 4  + ~ y~ scS y ;  s + 0 ( c 9 ) ,  

82065 5 -7  
V -- - 5 y l  se 3 y 3  3 -~ 3 y3 sos y3  s _ 187yl E 6 y3 6 - ---~---Yl sCY3 

+ a9927y~ ~ y;~ + o ( ~ 1 .  

(88) 

We remark tha t  for the part icular  subset of solutions which we are now considering, 
(81) reduces to 

- y~ ,  ,~ - u~,  . = u ,  ~ = v .  ( 8 9 )  

At large distance, iV31 ~ oo, so that  u > 0. Therefore these solutions are the 
asymptotical ly circular orbits considered in Section 3.1. It is remarkable that  we 
find here again that  these part icular  solutions must be considered first, as a neces- 
sary preamble to the s tudy of the general solutions. 
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4.4 .  NICE VARIABLES 

The change of variables (81) is now fully defined. The next step in Kruskal's 
method (pages 813-814) consists in determining another change of variables, from 
yl, y2, y3, u to the "nice variables" zl, z2, z3, r The nice variables are such that  
the differential equations take the form 

z'i = Ehi(Zl , z2, z3),  = 0 (zl, z3) ,  (90) 

i.e. their right-hand members do not depend on the angle-like variable r any more. 
The equations (90a), considered separately, represent then the slow drift along the 
family of periodic orbits; the fast epicyclic motion has been completely eliminated 
from these equations. 

The nice variables are obtained as functions 

zi  - Z i ( y l  , y2, y3, v) ,  r ~(yl ,  y2, y3,1/). (91) 

These functions axe series in e; they are obtained recursively by the algorithm 
described in Kruskal's paper (page 814), to which we refer for details. The com- 
putations were done by hand up to order 4, and by computer algebra up to order 
7 .  The functions defining the change of variables (91) are rather  cumbersome and 
we reproduce them to order 6 only: 

-- ( ) 3 - 3 [ 6 9 2  ) \ - ~ -  e Y3 zl Yl + - S s y 2 c o s v  e Y3 + / sy 2 sin2v 4 -4  

207 
-4- 204sy~y2 cos u + 4 

15255 
+ -204y2 cos u 16 

11165 
+ sy~ sin 2v 

48 

- -  syl y~ cos 2u - 
s5 ) 

63sy~ c o s y +  - - s y  3 cos3v eSy~ 5 
3 

sy~y~ sin 2v + 225syl y3 sin r, 
935 

6 
- -  s y l  y3 sin 3v 

15475 sy4 sin 4v)  e6y~ 6 + O(e  7) 
384 
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7 ) -3  
z 2  - -  Y2 + - -~ sy2 cos 2u e 3 Y3 

1: ) 
1419 387 167 

+ i~ ~y~ y~ ~o~2~ ~ ~y~y~ ~ o ~  ~ ~ ~yly~ ~o~3~ 

125 ) e5 -5  301 sY 3 cos 2v  -4 sy  3 cos 4u 

195 705 49 45765 sY 3 Y2 sin 2u 2 2 + �9 ~ ~ ~o~ 2~ ~ ~o~4~ ~ ~ ~ , ~  ~i~, 

1615 2 2 �9 11165 3 �9 15475 3 �9 
o sy l  Y2 sin 3u -4 --6-4--syl Y2 sm 2u - ~ - - -  sy l  Y2 sm 4u 

3085 ~y~ ~i~ ~ - 35~y~ ~i~ 3~ - 2~y~ ~i~ 5 ~  ~ y3-~ + o ( ~  ), 
/ 

(92b) 

Z3 = Y3 ' ] - (2y2  sin u ) e +  (26sy2 sin u ) e 4 y 3  3 

+ r, -~ 831 2 cos 2 u )  e 5y3 4 ( 102syl Y2 cos ~-~ sy  2 

3051 
+ - - 1 3 1 7 s y ~ y 2 s i n u  8 s y l y ~  sin 2u - l l l s y 2  3 sin u 

499 s y 3 6  sin 3 u )  e 6 y3 5 + O(eT), 

(92c) 

r  ( ~ ~ , i . 2 v ) ~ y ~ _ ,  + (207 _ 3~ , )~  - - ~  syl cos 2u - 15sy2 cos u + 2sy2 c o s  y3 4 

+ ( 1 4 1 9  2 . 333 . 167 . 
- ~ s y l  s i n  2 v  + - ~  s y l y  s i n  v - - - ~  s y l  y~ s m  3 v  

379 2 �9 125 sy~ sm 4 u )  ~5y~-5 + ~-sy2 s m  2 u  - 

+ (705  . 49 . 45765 3 6885 2 
~-~ sm 2u + 32 sm 4u ~-~ sy 1 cos 2u A w sYl Y2 cos u 

1615 2 7285 2 - 15475 2 
sYl Y2 cos 3u -~ - ~ -  syl Y2 cos 2v -5--i-2 syl y~ cos 4v 

5095 ., 9485 3 3 ) ~y~. ~o~,~ -~ ~ ~y~ ~o~3,, - 2~y~ ~o~5,, ~y~-~ + o ( d ) .  

(92~ 
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The differential equations (90) are much simpler. To order 7, they are: 

!51~ 21 ) 
zl ----2se2z32 + 2 1 -2-z~ se4z3 " 4 -  lOeSz35 

1995 1485 4~ 6-6 
A- -1140z~ ~ z~z~ -~ z2)se, z 3 

+ (2757z~ 2853 ) 

3 495 3 \ r 6 78891 7 7 s 

3 {303 3 867 2 '~ r 5 187 7 6 s ~ - 3 z '  ~ 5z' o + ~, ~ ~' -~ -~ ~, z~ ) ~ ~ ;  -~ ,,, ~ , , ;  + 0(~ 1, 

~ = 1  7 (399 2 9 7 )  449 
se3z33 q- 4 z~2 N ~ se5 z35 8 e6 z36 

( 109365 69705 X0605z~)sCz3r+o(eS)" 
+ - i-6 z~-t ~-~ z~z~ 128 

A further simplification of these equations 
another set of variables Wl, w2, w, defined by 

(93) 
can be achieved by introducing yet 

8 s  
,~, - z~, ~ - =~, ,~ - ( 9 4 )  

Z3 

and by using w as the independent variable instead of t. Note that w is always pos- 
itive since sign(z3) - sign(y3) - sign(r/) s. Substituting into (93) and dividing 
(93a), (93b) and (93d) by (93c), we obtain 

dWl 
dw 

dw2 
dw 

w 

m F 34wl 
80 

_ 495 
+ (--1520w 2 +665WlW2 8 w~) w4 

(10454 ;:; 5095 ) w5 3 
.31_ . . ,  W l _ _  W2 + O _ W 6 ) 

_24w2w2+(1020WlW2+165w22)w 425657 w 5 0 ( w 6  i6  w2 + ), 

d(r - t) s [ 7 /133 99 ~ 3 1207wa 

+ ~ ~1 ~ i~ ~ '  ~ ~ ~) ~ + ~  

(95) 

From (93c) we deduce also 

dt 
dw 

= s 2 1o o +  (1o1 o ,  + ,78 )w3 1o72 
Zl 9 3 3 2"7 if)4 + O(ff)5) C96) 

r 
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e has disappeared from these equations; the small parameter is now the variable 
w. From (65) it can be deduced that 

w = O ( h 2 ) .  (97) 

4 . 5 .  SERIES SOLUTION 

We determine now the boundary conditions for the new variables in the limit 
t , +co. In this limit, we have [Y31 ~ co, and therefore U ~ 0, V ~ 0, as shown 
by (88). Comparing (81) with the expression (49) of the asymptotic motion, we 
find that 

Yl ~ h, Y2 ~ k, 

{ - 3 h ( t - r )  4 [3sh(t-~)J}-2ksin(t-~o) v ,,- t -  ~o. (98) Y3 --~ e 2 3 sh-2 In 2 

From (91) and (92) we have 

Zl ~ h, z2 ~ k,  

z3 "~ e - - ~  -~sh - 2  in - s h ( t  - r )  , 

From (94): 
Wl > h2:  to 2 > k 2, w 

Finally, by inverting (99c) and using (94c) we obtain 

r  (99) 

, o. ( l o o )  

8 
2 h _  18W_1 -~- _h_ 3 s In w. (101) t , - ,  I -  ~ 9 

The solution of the system of equations (95) and (96) can be written as series 
expansions in w; successive terms of these series are found recursively, starting 
with the lowest order expressions (100a), (100b), (99d) and (101). In fact the two 
equations (95a) and (95b), which describe the slow motion, can be solved separately 
since the right-hand members are functions of wl, w2, w only. The result is 

W l  - -  h 2  
8 224 

( _ 3 0 4 h 4 + 1 3 3 h 2 k  2 99 ~ w5 - 9 - ( 1  + -- 8 k 4 /  + 

W 2 - -  k 2 

17965 
j ~ 9 

8k2w3 _+_ (204h2k2 + 33k4) w5 2203532 

h 2 10555 k2) w6 + 

k2w 6 + O(wT). 

(102) 
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We substitute then (102) into (95c) and (96) and integrate in w, taking into 
account the boundary conditions (99d) and (101) for w , 0. We obtain 

( 14h-5 ~2k:~ 1) 7 h_ 1 28 h_ 3 133 h h- sw4--bO(w 5) (103) 
s 6 

and 

2 16 - + = h  
3 9 

_h-bw  
9 

( 160h-7+7k2h-3) w2 
+ 922h-1 -r --81 9 (104) 

2240 h _  9 56 224 h _  3 -4 + 

+ 81 729 
k2h- )w 3 + O(w4). 

The four equations (102), (103) and (104) give the full solution, with w as the 
independent variable and wl, w2, r t as the dependent variables. This solution 
depends on the four integration constants h, k, ~, r. 

We have thus obtained the general solution as a formal series. Kruskal (1962) has 
proved that  the series derived by his method are asymptotically correct solutions 
of the original problem. 

We can now go back to the original variables; this involves some heavy but 
straigthforward algebra, which we will not describe in detail. First, zl and z2 are 
computed as expansions in w from (94) and (102). Next, the equations (92) are 
inverted so as to give Yl, Y2, yz, v as functions of zl, z2, z3, r this can be done 
recursively, using the fact that  e is a small parameter. Finally, using (ss), (Sl), 
(74), and (68)7 we obtain expressions of ~, ~7, u, v as functions of w. The time t 
is itself given as a function of w by (I04). We do not quote these expressions for 
reasons which will become immediately apparent. 

These expressions can be compared with those given in Sec. 3.2. The relation 
between the variable w used here and the variable yc used in Sec. 3 is found by 
comparing (104) with (46): 

w - Sr/c I 7k2h-2 -a 14k2h-4sr/~5 + O(r/[6). (105) 

Substituting this, and using also (51) to sabsti tute 0 for t - to in (103), one finds 
that  the present expressions are identical with the expressions (61) of Sec. 3.2. 
The same developments have thus been obtained by two quite different routes. 
This provides a welcome check of the correctness of the computations. The fact 
that  the same developments are found in the two different situations considered 
in Section 3 and in the present Section can be explained: the condition for the 
validity of these developments is simply that I~1 be large. Thus, for the orbits 
with an arbitrary impact parameter h considered in Section 3, the expansions (61) 
describe the asymptotic behaviour of the orbit; for the orbits with a small impact 
parameter considered in the present Section, they describe the whole orbit since 
I~[ remains large at all times. 
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4.6.  PROPERTIES 

The equations ( 
ties: 

102) which describe the slow motion have some interesting proper- 

1. These equations can be solved for h 2 and k 2, again as series in w: 

h 2 

k 2 = w2 + 8 w 2 w  3 

8 ( 3 4  14 )w3 16w4 : Wl -~- ~tV-+- -- 3 Wl -~- "-~W2 

( + 304w~ - 133WIT2 + -~-w + 3 

( ) - 204wlw2 +33w~ w5 + 32 

1 2 9 7  
- - w l  A 

6 
w2) w 6 + 

6 + 

( 1 0 6 )  

These expressions are therefore two constants of the motion.  However, a part icular  
combinat ion of h 2 and k 2 corresponds to an already known constant,  namely the 
Jacobi integral, as shown by (50). Therefore we have uncovered essentially one 
new constant,  k 2 . This quant i ty  is the a d i a b a t i c  i n v a r i a n t  which characterizes the 
motion for small impact  parameters .  

2. An immedia te  consequence of the existence of this invariant is that  the values 
of h 2 and k 2 characterizing the asymptot ic  motion must  be the same for t > - o o  
and for t , +oo. .  This explains the near-perfect reversal of Aa  = a 3  - a 2  found 
numerically by Dermot t  et al. (1980) for small Aa. 

3. If we keep only the first 
and (925), we obtain 

te rm in the r ight-hand side of (102b) and use (97) 

Y2 -- k[1 + O(h6)].  (I07) 

Thus Y2 is constant  to a very good approximation.  This accounts for the observed 
fact (Peti t ,  1985) tha t  the fast epicyclic motion has a nearly constant ampli tude 
along the orbit. 

4. The case of asymptot ical ly  circular orbits is of par t icular  interest.  Then k = 0, 
and (1025) shows that  w2 vanishes identically. Therefore y2 = 0, and Eqs. (92a) 
to (92c) reduce to 

Zl = Yl, z2 -- 0, z3 = Y3. (108) 

Going back to the original variables, we obtain 
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~2 = y~ = w l  = h 2 - ~ w + 8  34h2w33 224w49 _ 304h4w 5 -J 17965_9 hUw6 + O(wT), 

8 
r ] =  , 

if) 

51 
su = - 2 w  2 + "~ h 2w 4 

2 
1723435 h6 

+ ig 
V - 3 5  

71 - -  

_ 78w 5 _ 1140h4w 6 + 9126h2w 7 

495523 ) ws + O(w9)' 

2 

_ ~  [32  25w3 -~ ~303 h 2 w 5 5 9 1 ~  w 6 8 2 1 ~ 5 u  h4wT+48177h2wS+ O(wg)] 

( 1 0 9 )  

Here again, it can be verified that the equations (109) are identical with the solution 
(45) derived in Section 3. 

5. If we keep only the first two terms in (109a), the first term in (109c), and the 
first term in (109d), we obtain 

( )  3 
3, 

(110) 
We recover the simple horseshoe approximation expressed by (62), (63) and (66) 
(for the case s - 1). Here again, as in (107), the relative error is of order h 6. Thus 
the horseshoe approximation is in fact very good for small impact parameters. 

6. (109a) shows that ~r decreases from its asymptotic value h 2 as w increases 
from 0. It vanishes for a particular value w - wcr; from the first two terms of 
(109a), we obtain w~r -~ 3h ~/8, in agreement with (65). A refined value is obtained 
by solving (109a) for ~ -  0; the result is a remarkably simple series: 

Wet 

( ) ( )1o 
-83 h2 + 2 h 2 + 36 h 2 + 1514 h 2 + O(h2~). (111) 

(Note: this was derived from an extension of the series (109a) to an order higher 
than shown here). This value corresponds to the crossing point of the horseshoe 
orbit with the y axis. The corresponding value ~/cr of r/ is immediately obtained 
from (1095). At that point, ( - 0, and also v - 0 as shown by (109d). It 
follows then from the classical symmetries of Hill's problem that  the whole orbit 
is symmetrical with respect to the ~? axis. Thus, the existence of an adiabatic 
invariant explains completely the near-perfect symmetry of the orbits for small h 
observed numerically by Dermott and Murray (1981). 

The symmetry of the orbit is also directly apparent in (109): for a given value 
of r], i.e. a given value of w, (109a) gives two opposite values of ~, corresponding to 
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two symmetrical points of the orbit. Moreover, (109c) and (109d) show that  these 
points have the same value of u and opposite values of v. 

The expressions (109) are much simpler than the expressions (45) obtained in 
Section 3. The series (45) for ~ and v involve powers of h - l ;  more precisely, they 
contain terms of the form hl-2iW - i  for all positive values of i. Therefore they are 
meaningful only for [y] >> h -2,  i.e. for ]y[ large compared to its minimal value 
[r/or I- On the contrary, the series (109) contain only positive powers of h; thus, for 
h small, these series are applicable to the whole orbit. 

This difference is easily explained. Because of the symmetry, ~ and v are o d d  

functions of ( t - to t ) ,  while r/and u are even functions of (t-tr Therefore, near the 
crossing point, we have ~ oc v/r} - r}c~: ~(r/) is a non-analytic function, and d~/drl 
becomes infinite at the crossing point. Clearly, therefore, the series (45a) must fail 
before this point is reached. The same is true for the series (45c) describing v. 
On the other hand, ~2 and v/~ are even functions of t -  t~ ,  and are analytical 
functions of y even in the vicinity of the crossing point. The corresponding series 
are therefore meaningful for the whole orbit. 

4 .7 .  B R E A K D O W N  OF THE ADIABATIC INVARIANT 

The existence of an adiabatic invariant implies that for small h, the final eccentricity 
k ~ is very nearly equal to the initial eccentricity k. Here we verify this by obtaining 
the asymptotic form of U for h , 0 in the case of initially circular orbits, i.e. 
k = 0. This computation is due in part to Balbus and Tremaine (1985). 

We consider a horseshoe orbit, described in first approximation by (64). We 
choose the origin of time so that tcr - 0. The motion can also be represented by 
(28) and (29), with the Di no more constant but slowly varying. Their variation 
is found by substituting (28) and (29) in (24): 

D1 - ~ sin t +p32~} cos t , /)2 = - f  cos tp3 + 2U sin t , 

D3 - -  2 ~  194 - -  2 ~  - 3Tit p3' p3 " (112) 

Only the first two equations will be of interest here. Since r/is positive and much 
larger than Ill, we can take p _~ ~?. We integrate over time to obtain the variations 
of D1 and D2: 

f_ +oo f sin t + 2r/cos t f + o o  
A D1 -~3 dr, A D2 = 

O 0  ~ 0 0  

-~ cos t + 2y sin t 
T/3 dr. (113) 

We substitute the horseshoe solution (64) in the right-hand sides of (113). AD2 
vanishes because of the symmetry of the orbit. The first term in (l13a) can be 
integrated by parts after substitution of ~ - - 2 ~ / 3  from (62), giving 

5 f_{-oo cost (114) 
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At t -- - o o ,  D1 and D2 are zero since we consider an initially circular orbit.  
Therefore at t -  +oo,  we have D1 = AD1, D2 0, and the final eccentricity is 

k ' -  AD1 -- ~h  oo cosh 2 A cos p(A + ~s inh2A)  , (115) 

with 

This can be wri t ten 

16 
p -  (116) 

9h 3" 

k,_ s_hff 
-- 6 oo cosh2A 

exp [ip(A + 1 sinh2A)].  (117) 

To compute  this integ-ml we look for a contour in the complex plane A = Ar + iAr 
on which the argument  of the exponential  is real. Such a contour BD is shown on 
Figure 3; its equation is 

1 
m �9 Ai -- ~ arccos sinh 2At (118) 

A 

A , 
7. 

q 

izr/4 

E 

. ~ 

-oo 0 A +oo 
T" 

Fig. 3. Contour of integration for (117). 

cosh A vanishes at A = it~2; we avoid this singularity by a small detour  C. 
We replace the integration along the real axis by an integration along ABUDE 
(Figure 3). The contributions from A and E are zero because the first factor in 
(117) is vanishingly small. For BCD we use an integration by parts:  

~f 

k ' ][ -- ~h tanh A exp [ip(A + 1 sinh 2A) 
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The first term vanishes because the argument of the exponential tends to - c o  at 
the two ends of B C D .  The second term has no singulari~ any more at A i~r /2 ,  
so we can eliminate the detour C. Writing 

= + z (120) 
2 

we obtain 

' 1 = -~iph sinh 2z exp p( D -2 ~- i z  -- -~ sinh 2z) d z .  

For p large, we expand around z -- 0 and keep only the leading terms: 

(121) 

(122) 

The equation of the contour (118) near z = 0 is 

with a sign + on B and 
we obtain 

z "~ At(1 4- 
i (123) 

- on D. The integral (122) is then easily evaluated, and 

k' - 22/3 3 -3/2 S IF'(~) exp 9 h  3 . (124) 

This expression agrees well with numerical results (Petit and H6non, 1985). It 
shows that k' decreases exponentially fast for h ; 0; this behaviour is typical of 
adiabatic invariants. 

5. Large  h n p a c t  p a r a m e t e r  

We consider the case where the coordinate ( remains large at all t imes . .Then  the 
orbit of each particle is only slightly deflected by the other, and a perturbation 
theory can be used. 

A simple ~impulse approximation ", 
encounter, has sometimes been used in 

which treats the problem as a two-body 
the literature. Unfortunately it gives in- 

correct results (H6non, 1984). The correct theory was first given by Goldreich 
and Tremaine (1980), for the case where one of the satellites has a negligible mass 
compared to the other (v small). A simpler derivation is sketched in Goldreich and 
Tremaine (1982, p. 276). Here we rederive the result in Hill's coordinates; this 
gives an even simpler treatment, and also it automatically generalizes the result to 
the case of an arbitrary mass ratio. 

The terms ~/p3, y/p3 in (24) will be considered as small perturbations. In 
the zero-order approximation, i.e. when these terms are neglected altogether, the 
solution has the form (28), (29). Since ~ remains large for all t, 03 must be 
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large. We assume that the reduced eccentrici~ is moderate, so that  Dx and D2 
are small compared to D3. We can then retain only the D3 terms in the present 
approximation. (The D4 term can be eliminated by a change in the origin of time). 
The relative motion has the form (36), with r = 0. 

Now we insert this solution into the perturbative terms ~/p3,  ~l/p3 and we solve 
(24) to obtain the first-order approximation. To do this it is convenient to make a 
change of variables and to replace ~, r/, u, v by D1, D2, D3, D4, the correspondence 
being defined by (28) and (29). The De are no more constants; but they will vary 
slowly. Their variation is here again given by the equations (112), where the zero- 
order solution (36) should be substituted in the right-hand side members. We 
compute the net effect of the encounter by integrating from - c o  to +co: 

AD1 D1 (+co) - 91 ( - co )  - h -2 (sin t - 3t cos t) 1 + t 2 dt -- O, 
--OO 

AD2 = h -2 f _  ( -  cos t - 3ts int)  1 + t 2 

A D 3  = h - 2  3t 1 + t 2 d t -  0, 

o o  

dt 

(125) 
The divergence of &D4 is again a consequence of the logarithmic singularity men- 
tioned in Section 3; fortunately this quantity will not be needed. The computation 
of AD2 results from an integration by parts, and the use of Abramowitz and Stegun 
(1965 , formula 9.6.25); K0 and K1 are modified Bessel functions. 

Equations (125) give a simple result in the special case where the orbit before 
the encounter is exactly circular. We have then 

D1 ( - co )  = 0, D2( -co )  = 0, D3( -co )  - h; (126) 

therefore: 

(127) 
This gives the reduced eccentricity of the orbit after the encounter. An equation 
which contains (1275) as a particular case was derived by Julian and Woomre (1966) 
in the context of galactic dynamics. 

In the present first-order approximation, the impact parameter D3 does not 
change, so that  it seems at first view necessary to go to second order to find its 
variation (Goldreich and Tremaine, 1980). However, the result can be obtained 
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much more simply, using only the first-order solution, 
of the Jacobi constant (Goldreich and Tremaine, 1982). 
constant, we have 

thanks to the conservation 
Using the form (30) of this 

and therefore, using (126) 

3 -~D3AD3 - A(D~ + D~), 

and (127): 

(128) 

128 [ ( 2 ) ( 2 ) ]  2 
AD3 -- 2 ~  h-5 2K0 ~ + Ki ~ - 3.34379...  h -5.  (129) 

Numerical computations by Petit and Hdnon (1985) give excellent agreement with 
this formula: at h = 10, the error on ADz is already less than 1 percent. 
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