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Abstract. A new regularizing transformation for the three-dimensional restricted three-body problem 
is constructed. It is explicitly derived and is equivalent to a simple rational map. Geometrically it is equiva- 
lent to a rotation of the 3-sphere. Unlike the KS map it is dimension preserving and is valid in n dimensions. 
This regularizing map is applied to the restricted problem in order to prove the existence of a family of 
periodic orbits which continue from a family of collision orbits. 

1. Introduction 

A. THE EQUATIONS OF MOTION 

We write the equat ions of mo t ion  for the circular three-dimensional  restricted 

th ree-body  p rob l em in a ro ta t ing  coord ina te  system q - - ( q l ,  % ,  q3) of  ro ta t ional  
f requency co = 1 in the following Hami l ton ian  form:  

= - ; - d / d t ,  (1) gl Hp, D = Hq 

where p = (Pl, P2, P3)' and where 

n = �89 ~ - I q l  -~ + co(q2Pl - P2ql )  + #G(p ,  q), (2) 

and 

G ( p , q ) = l q 1 - 1  - A - l - c o p 1 ,  A=lq-e2l, 
Iq]2= Z ~ = l q  2, e 2 = (0, 1, 0). In these coordinates  the larger of the two primaries,  
m 1 , of  mass  1 - #, 0 < # ~ 1, is at the origin while the smaller pr imary,  m 2 , of  mass  
# is at the posi t ion e 2 (see Figure  1). 

We carry  the pa rame te r  co along, but  keep in mind that  it is normal ized  to 1 for 
our  problem.  It  will be assumed that  p, q belong to R 3 throughout ,  unless otherwise 

stated. 

B. EXISTENCE RESULTS 

One of our  aims will be to p rove  the existence of a family of periodic orbits  for (1) 
for # :p 0 sufficiently small  which are obta ined  by cont inuat ion  f rom a per iodic  colli- 
sion orbi t  ~b*(0 = (p*(t), q*( t ) )  for # = 0. The collision orbi t  qS*(t) for # = 0 moves  

on the posit ive q3-axis (i.e. ql(t) = q2(0 = 0) and, of course, corresponds  to negative 
energy H l , = o  = - h < 0 .  After appropr ia te  regular izat ion this solution can be 
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Fig. l. The rotat ing coordinate system. 

continued through the collision and then gives rise to a periodic orbit with period 
2n(2h)-C3/2~. For each negative value of the energy there are exactly two such orbits, 
namely qS*(t) and the orbit-qS*(t) obtained by reflection in the qtqz-plane. These 
two collision orbits share with the circular orbits in the qlq2-plane about the origin 
the property that they are carried into themselves under rotation about the q3-axis 
which is essential for their continuation for small g 4; 0. 

We will prove: 

THEOREM A: On each fixed energy surface H = - h  < 0 there exists a unique t 
periodic orbit gb(t, #) for sufficiently small # for which qS(t, 0) = gS*(t) and whose period 
T(#) tends continuously to the period T(0) = 2n/~o* of ~b*(t), provided 

1 
co* 5aj' 

where j = 1, 2, 3 . . . . .  tt 
Moreover qS(t,#) is symmetric with respect to reflection in the qzq3-plane in 

q-space. 
Theorem A was proven already by Guillaume (see reference [9]). He used the 

Kustaanheimo-Stiefel transformation which requires increasing the dimension of 
the phase space; this leads to additional unpleasant degeneration. We will instead 
derive a new regularization which avoids such degenerations and consequently 
is a simpler approach. Moreover, our approach is more advantageous for numerical 

t Of course qS(t + c, #) is identified with 4~(t, ~), c~ 
tt If we ignore the normalizat ions made, this condit ion reads 

~ # + j .  
09* 
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work since we remain in 6-dimensional phase space and avoid the 8-dimensional 
extension of the KS transformation. In fact, these orbits are numerically studied in 
reference [2] and exhibit an unexpected behavior. Also, see reference [3]. In Section 5 
we will compare our map to the KS transformation. 

C.  R E G U L A R I Z A T I O N  

It is clear from Equation (2) that the system of differential equations given by (1) 
is singular at q = 0. Also, the energy manifold given by 

2 = {(p, q)lH(p, q) = - h < 0} 

has a singularity for q = 0. Indeed from (2) one derives that I q[ ~ 0 implies f Pl --' oo. 
This is easily seen if one writes (2) in the form 

H ~o + (q2 #))z 1 1 2 2 : - +  [p3 + - ( q 2  - _ + ~ 0 2  - q t  )2 ql 2 1 

- (1 - # ) l q {  - 1  - ]/A -1 .  

Thus, for (p, q)~Z, letting Iq[ 4 0  forces IPl--' o0. 

Since ~b*(t) passes through this singularity on E our first goal will be to remove 
this singularity by an appropriate regularization. We will construct such a regulariza- 
tion in Section 2. It will be derived by making use of a result of Moser (see Section 
2 or reference [1]) which says that on the energy manifold for the Kepler problem* 
for negative energy the Kepler flow is equivalent to the geodesic flow of S 3: V 3 32 = A-ak = 0 k 

1, with the north pole, ~o = 1, corresponding to the collision, after a change of the 
independent variable. The equivalence is established by making use of the stereogra- 
phic projection from S 3 to the momentum space p = ( p l , p 2 , p 3 ) e R  3. Under the 
stereographic projection, points with [ p [ ~  oo are mapped into points approaching 
the north pole, and the regularization is accomplished by extending the geodesic 
flow on 5~ 3 = {r 3, 40 r 1} to the north pole. Since this flow is obviously regular at 
the north pole regularization of the Kepler problem is achieved by simply restoring 
the north pole and extending the flow across it. Moreover, we see that on the 
5-dimensional energy surface 2 ~  {H~ q)= - h  < 0} the singular locus corres- 
ponds to the two sphere given by the tangent vectors at the north pole of fixed length. 

Now, the above procedure refers to regularization of the Kepler problem on the 
energy surface 2; ~ To obtain a regularization of the restricted problem we will proceed 
somewhat differently, however, and construct a canonical transformation of the whole 
phase space (p, q) of the Kepler problem into itself which maps the singular locus 
into a compact manifold which will also turn out to be the 2-sphere. This will be 
accomplished by the following consideration: Since the geodesic flow on S 3 is in- 
variant under the rotation group 0(4) we choose a fixed rotation R taking the north 
pole to some different point 3. Subjecting this map R to the stereographic projection 
gives rise to a rational transformation of the p-space taking the point at infinity to a 

t T h e  K e p l e r  p r o b l e m  in i ne r t i a l  c o o r d i n a t e s  is d e f i n e d  by  (1), (2), w h e r e  e) = # = 0. W e  cal l  t h e  c o r r e s -  

p o n d i n g  H a m i l t o n i a n  H ~ 
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finite one. Subsequently we will extend the mapping so obtained to a canonical one of 
the phase space (p, q) which will serve for our regularization of the restricted problem 
as will be seen in Sections 2, 3, and 4. In particular, see Propositions 1, 2 in Section 
2, and Summary A in Section 3, and also Theorem B in Section 4. 

We illustrate this consideration with the reflection 

~o - ~  - ~o  

4k --+ 4k, k = 1, 2, 3, (3) 

in S 3" V 3 y2 _- 1 so that the north pole gets mapped into the south pole and converse- 
" Z . . ~ k = O ' ~ k  

ly. If we denote by p the canonical extension to (3) and by ~ the extension of the 
o ~ 3 

stereographic projection mapping the tangent bundle T S  3 {(4, ~ / ) [ ~ 3 ,  ~,k=O~kqk 
= O} to the phase space (p, q ) ~ 6 ,  satisfying Z3=lqkdPk = -- 23= Ot/kd~k , then the 
desired transformation of ~ 6 ~  ~6 is given by O opoO-1, or more explicitly by 

P q ~ [ p [ 2 q  _ 2(p, q)p, (4) 
P - + l p [ 2 '  

where p = (Pl, P2, Pa), q = (q~, q2, q3) and (p, q) = •3= ~Pkqk (see reference {-1]). The 
canonical map given by (4) gives rise to a regularization of the Kepler problem 
which was used by Sundman: It is simply a canonical extension of the inversion with 
respect to the sphere. Clearly, (4) takes p = Go --, p = 0, however, since the south 
pole, corresponding to p = 0, is interchanged with the north pole, the previously 
regular state p = 0 becomes singular. In our case this is not desirable because on 
~b*(t) the value p = 0 is taken on when m 3 reaches its maximum point. A way to remedy 
this situation is, e.g. to rotate S 3 by 90 ~ so that instead of (3) we have (see Figure 2) 

40 ---+ - -  ~1 = ~'0 

41 -+ 40 = ~'1 (5) 

4k-+ {k = ~k , k = 2 , 3 .  

o 

/ 
Fig.  2. 

1_ 
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We calculate the desired canonical  t ransformat ion as above by ~ o p o ~b- ~ : N6 ~ N6 

where p now represents the canonical  extension of (5). This is done in detail in Section 
2, and the relevant map  in m o m e n t u m  space turns out  to be 

Ip l2-1  
tP+eal 2 

pk---+ `6k ~- 

k = l  

k = 2 , 3  

(6) 

2 P  k 

Ip+el l  2 

where e 1 = (1, 0, 0). Thus, unlike the Sundman map,  (6) maps p = oo ~/~ = - e  1 
and p = 0 ~/~ = e 1. Since the map of the m o m e n t u m  in (4) and Map (6) correspond 

to an inversion and rota t ion of S 3 respectively, then they are M6bius  maps  preserving 

the family of  lines and circles. The map  of m o m e n t u m  in (4) and Map  (6) become 

respectively, in the two-dimensional  complex notat ion,  

1 p - 1  
p ~ p ,  p ~ - -  

p + l "  

It will be proven in Section 3 that  these maps can be described by the same ex- 

pressions l /p ,  (p - 1)/(p + 1) in the n-dimensional case by using a Jo rdan  algebra 

which will offer a generalization of the complex notation.  In particular, see L e m m a  1. 
It is impor tan t  to note that  (6), together with the corresponding map q ~ ~ as given 

by (14), represents a local  regularization. This is easily seen as follows: 
q~*, in m o m e n t u m  space, is the p3-axis. Our  map  (6) takes this line into the unit 

circle l`61 : 1, and therefore {b* in the new coordinates  (`6, c)) will be regular. However,  
according to (6), the previously regular value p = - e 1 gets mapped into 5 = oo ; but  
this presents no difficulty since p = - e 1 is never taken on by q}*. Thus this singular 

value is avoided on q~* and evidently p = - el will not  be taken on for those orbits 
sufficiently close to {b*. Therefore (6) represents a local regularization. In fact. (6), 

(14) regularizes everywhere except at those points where p -- - e 1 . Hence any collision 

orbit  where p = - e~ is not  taken on can be regularized by (6), (14). If  p = - e~ is 
taken on for a collision orbit  then a suitable regularizing map can be constructed 
by using a different ro ta t ion  of S 3. 

We finally remark  that  our  map  applied to the nonsingular  circular orbit  given in 

m o m e n t u m  coordinates  by ]pl = 1 gets mapped  into the `63-axis which is singular. 

In this context it is emphasized that our  map is of  main interest in its application to 

singular or nearly singular orbits. 

2. The Regularizing Map 

In this section we derive the regularizing map which we will use. It is given by formula 
(11) below. 

To derive this map  we recall from Section 1C that it is given by the map 
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I1/o p o I1/- 1 : ~ 6  ~ [~6, w h e r e  0 is  t h e  e x t e n s i o n  o f  t h e  stereographic projection d e f i n e d  

in Section 4C, mapping TS 3 to the phase space (p, q)e ~6, and where p is the canonical 
extension to (5). More explicitly the stereographic projection gives rise to the follow- 
ing map, 0, 

4k 
P k - - l _ 4 0 ,  qk=tlk(40--1)--4kr/O (7) 

of the tangent bundle TS 3 = {4,  1141 -- x, (4, 0, 4o ~ 1) onto R 6 such that 

3 3 

tlk d4k = _ ~ qk dpg, 
k - 0  k= l  

which we write more compactly as 

tld4 = - qdp (8) 

(see reference [1]). The map p is constructed by canonically extending (5) with the 
map 

% -- '  - t/1 = 0 o  

~1 ----} nO = ~1 (9) 

tlk ~ tlk = ~k, k = 2 , 3 .  

Clearly, 

t~d~ = t/d~. 

One notes that with the matrix 

0 - 1  0 0 

1 0 0 0 
E =  

0 0 1 0 

0 0 0 1 

we can write (5) and (9), i.e. p, as 

(10) 

respectively. 

PROPOSITION 
q(p, q) on ~6 given by 

llp[2-1 
Pk=fk(P)= P + el2Pk [2 

1. The map "~= Et 1, 0 = Etl gives rise to the map I )=f(p) ,  ~ = 

k = l  

k = 2 , 3  (11) 
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ql ( I - I p l 2  + (p, q)(pl + 1) k = l  

elk = Ok(P, q) = / U  

[]Pl2+~lqk+paqk--pkql--(p,q)pk , k = 2,3. 

Proof. Clearly we must compute 0 o p o 0-1 ,  where ~ -  1 is given by 

]p12 _ 1 2Pk k = 1, 2, 3 (12) 

and 

]p]2 -t- 1 
rio = - (P, q), rik 2 qk + (P' q)Pk, k = 1, 2, 3 (13) 

(see reference [1] ). We derive/)k = fk(P) first: Using (5) and (12) yields 

]p[2 _ 1 

~1 ~i ~o lpl 2 + 1 
P l - - I _ ~ o ~ P l  1 _ ~ ' o - -  1 +~1 2Pl 

l + ] p ] 2 + l  

Ip}2-1 Ip[2-1 
Ip[ 2 + 2p I + 1 [p+el[ 2" 

Similarly, for k = 2, 3 

~k ~k ~k 2PR 
P k - - l _ ~ o  " ~ P k - - l _ ' ~ o - - l + ~ l - - [ p + e l l  2" 

In the same exact way we can also derive Ok = qk(P' q) where Equations (5), (6), (12), 
and (13) are used. 

The map given by (11) is our desired regularizing map as will be seen. 

P R O P O S I T I O N  2. The map given by (11) is canonical. 
Proof. Clearly under ~b- 1 i.e. (12), (13), we have 

qdp = - rid~ 

as follows from (8). Now, we recall the relation given by (10). Finally, mapping 
T ( S  3 ) t o  ~ 6  by ~, implies 

q d ~ "  = - ~ d ~ .  

Thus 

qdp = - rid{ = - Od~=  - ( -  ~dD 
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o r  

q d p  = qd/3, 

and hence dq/x dp = d o/x d/3. 
We could have constructed (11) by canonically extending /3 = f ( p )  to the map 

~1 = q(P, q) using a generating function w = r(/5, q) where by p = rq,  (1 = r~.  (1 = r.~ 
defines our extension if we choose 

3 

r = E qkfk-l(/3) ' 
k = i  

Of course, the most general extension is obtained by adding an arbitrary function 

fo~)  to r. 
Before proceeding to the next section, we calculate the inverse to (11). This can be 

done by observing that one must reverse the direction of rotation of (5), (6). For  
example, to compute the inverse to the momentum map in (11), p =f-1(/3),  (5) takes 
the form (see Figure 3) 

~k--* ~k = ~k, k = 2,3, 

Fig .  3. 

and similarly for (6). Proceeding exactly as in the proof of Proposition 1, we obtain 

Pk = f k -  1 ( ~ )  = 

2/3k k = 2, 3. 
I /3- ell 2 

(14) 
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q k : 9 :  1(/~, c~) = / !  1-~ 1 1  "~-(P' 0 ) ( ] ~ 1 _  1) ] s  l ,  

I L2+ 
2 k=2,3.  

It  is interesting to note  that  the maps  c~ = 9(p, q) and q = g -  1 (/5, ~) have no denomi-  

nators.  This is also the case with Sundman ' s  m a p - s e e  formula  (4). 

3. A Specialized Jordan Algebra 

The above  t rans format ion  (1 I), which we refer to as @, can be convenient ly presented 
in te rms of a non-associa t ive  a lgebra  which we now describe. Its elements z are of the 

fo rm 

z = z o + i l z  x + i 2 z  2 -{- . . .  i , z  n, 

where z ~ R ,  v = 0, 1, 2, . . . ,  n, and  where 

i i~ = - 6 ~ .  

The set of all such elements  forms a non-associat ive a lgebra  which is called a 'special '  
J o rda n  a lgebra  (see references [4] and [5]). This  a lgebra  is clearly commuta t ive .  If 

we now define the opera t ion  of ' conjugat ion '  

Z .~- Z 0 - -  i l Z  1 - -  i 2 z  2 - -  . . .  - -  i n Z n ,  

we obta in  a set of elements  with algebraic propert ies  similar to the complex  numbers ,  

e.g. 

2 
Z Z  : IZI  2 ~ Z k ,  

k=O 

Re z = z o = �89 + z--), 

1 
Im i  z =  z =  ~ ( z -  z-), . = 1  . . . . .  n, 

R e z ~  = (z, w) = ~" ZkW k. 
k = 0  

Division is defined via 

1 
z - l z l 2  

We call this non-associa t ive  algebra A .  Clearly, A 1 = C, A o -- ~. 
It  is now seen how much  A misses being associative by comput ing  the 'associa tor '  

a = a(x,  y, z) = x (y z )  - ( xy ) z  where.x,  y, z ~ A , .  In part icular ,  for the case n = 2, which 
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concerns us, 

a = (x2z 1 - x l z2) ( iy  2 - J Y I ) ,  

where we have set i I = i, i 2 = j .  One  mus t  be careful of the nonassociat ivi ty  when 

doing calculations. For  example,  c~fi = 7 does not  imply a = 713- 1, where c~, 13, 7~A,, 
since (~]3)]3- 1 need not  equal c413] 3 -  1) ___ c~. 

We now write �9 in terms of A 2. For  the map/5 = f ( p )  of(11) we have 

L E M M A  1. 

For p, ~seA 2,/5 = f (P)  becomes 

~_p-1 
p + 1" (15) 

Proof.  Set/5 =/51 + i/52 +J/53 and similarly for p, then 

- -  p - -  1 - -  (p  - -  1) ( f f  [-]-2 1) ]p[2 - -  1 + p - / 5  
/5 p +  1 I p +  1 ] p +  1] 2 ' 

but  p - p = 2iP2 + 2jp 3 ; therefore 

]pl 2 - 1 + 2ip2 + 2jp 3 
P =  Ip + 1[ 2 

Equat ing  ' real '  and ' imaginary '  par ts  proves  the Lemma.  

We see that  (15) agrees with the complex  version in Section 1C. The  fractional linear 

character  of /5  = f (p )  is now evident. One  verifies that  the other  half  of the m a p  

= 9(/), q) of (11) can be writ ten as 

c~ = q(1 +/5) 2 - (qp)/5 + q(p/5), (16) 

where p , q ~ A  2. Thus  @ is also represented by  (15), (16). Fo rmu la  (15), (16) can also 
be immedia te ly  generalized to n-dimensions,  i.e. p, q c A  i. 

Before proceeding further we make  a r emark  on notat ion.  In what  follows we will 
do computa t ions  and state formula  in bo th  vector  nota t ion  and in A .  As we saw 
above,  ~ is represented by (11) in vector  no ta t ion  and  by (15), (16) in A 2. Also, a te rm 
which often arises is (Pl - 1) 2 + p22 ~- p23. In vector  nota t ion  it is writ ten as [p -- e 1 ]2 
while in A 2 we write it as IP - 1 [2. We will always specify what  no ta t ion  is being used. 

Now,  one would like to per form 'usual '  a lgebraic opera t ions  on (15) wi thout  having 
to be concerned with nonassociat ivi ty,  e.g. see the c o m m e n t  before L e m m a  1. It  turns 
out  that  we can in fact freely manipula te  (15) wi thout  the concern of  nonassociat ivi ty.  
For  the p roof  of  this fact see reference [-2]. The  inverse to (15) is therefore given by 

1 +/5 (17) 
P = l - / 5  
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which  agrees  wi th  the  m a p  Pk = fk -  1(/~) in (14) when  it is wr i t t en  in c o m p o n e n t  form.  
Severa l  useful  ident i t ies  can  be  o b t a i n e d  f r o m  (15). 

P R O P O S I T I O N  3. Let p, ~cA2,  then 

] / ~ -  1]1 p + 11 = 2, (18a) 

Ipl = Ip + 11/I,6 - 11, (18b) 

[p[2 = [2(i,612 + 1)/1/~ - 112] - 1. (18c) 

Proof. By (15),/~ - 1 = (p - l ) / (p  + l) - 1 = - (2)/(p + 1), and  t a k i n g  the  a b s o l u t e  
va lue  of  b o t h  sides ofl? - 1 = - (2)/(p + 1) p r o v e s  (18a). T a k i n g  the  a b s o l u t e  va lue  of  
b o t h  sides of  (17) yields  (18b). T o  p r o v e  (18c) we use (17) and  f o r m  

Ir  2 1r 
]p[2 + 1 - 1 / - -  112 + 1 = [/~_ 112 , 

but  ]t5 + 112 + [~ - 1] 2 = 2(1~[ 2 + 1) which yields (18c). 

W i t h  a little m o r e  w o r k  we have  for  the  c a n o n i c a l  ex t ens ion  ~ ,  see re fe rence  [2] ,  

P R O P O S I T I O N  4. Let p = (p l ,  P2, P3), q = (ql ,  q2, q3), etc., then in the usual vector 
notation 

q2Pl - qlP2 = q2 1 -1/~]2 2 t-/~2(/~, q), (19a) 

Iql = ] /~ -  e,121 
2 ell" (19b) 

W e  m e n t i o n  tha t  the  s e c ond  p a r t  o f  the  inverse  q = 9 -  ~(fi, c~) in (14) can  be wr i t t en  

in A 2 a s  
~ 

q = 2(1 - F) 2 + 4 @ )  - 
/7 

@)~.  

T h e  resul ts  o b t a i n e d  a b o v e  for  ou r  canon ica l  m a p  oo, a n d  qb- 1, are  n o w  s u m m a r i z e d  
whe re  we a l low r ight  a w a y  n - d i m e n s i o n s :  

S U M M A R Y  A. q~ and  O -  1 are  g iven in the  usua l  v e c t o r  n o t a t i o n  as 

[ Ipl 2 -  1 
{ p + e l [  2 k = l ,  

/~k = 

2Pk 12 k = 2 . . . . .  n 
IP + el (20a) 

ql + ( p , q ) ( p l  + 1 )  k = l ,  

0k 
- |  ipl2 + 1 

~ q k + P ~ q k - - P k q l - - ( P ' q ) P k  k = 2  . . . . .  n [ 
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Pk = 

l-I/512 
~ k = l  

2Pk k = 2 . . . . .  n 
I -e,I 2 

: I ~ O  1 q-(/5, q) Q/31-- 1) k=l ,  

qk [ 1/5122+~1 0k ~-O1/sk--/slOk--(/5'~1)/sk k = 2,...,n 

(20b) 

or in A _  1 by 

/ 5 _ p - 1  
p + l '  

1 + / 5  
P - t - y  

c~ = q(1 + p)2 _ (qp)ff + q(p~), 

q = q(1 - ~)2 _ (61/5)/~ At- q(fip). 

(20c) 

(20d) 

In addition, we have the following useful identities which are written in vector 
notation: 

I/5-elllp+eal= 2, }pl=l/5+ell/l/5-ell, (20e) 

Ipl 2 = I-2(I/512 + 1)/I/5 - el 12] _ 1 

q2Pl -- qlP2 = q2 1 --I/~[ 2 [/5 -- e I 12 
2 +/52(/5,'~), [q[ - 2 [4[. (20t3 

4. Existence and Properties of a Family of Periodic Orbits 

A. REGULARIZATION 

We use the transformation �9 to regularize our system near ~b*. The standard iso- 
energetic transformation will be used (see reference [10]): The system defined by 
(1) in Section 1A on H = - h < 0  can be transformed under a canonical 
transformation O, 

P =f (p ,  q) 

Q = q(p, q), 

and by a time transformation 

s = ~ r(P, Q) dt, 
d 
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or ds/dt = r(P, Q) > 0, into 

P ' = F Q ,  Q ' =  - F  e 

' =- d/ds, and where 

F = r - l H o ~  -1. 

on F = O, (21) 

We take for qb our  t r ans fo rmat ion  as defined in S u m m a r y  A with/~ and 4 replaced 
replaced by P, Q respectively for notat ion.  We also take 

r-'=--]q]=�89 

T H E O R E M  B: System (21) obtained Ji'om (1) on H = - h by the above isoenergetic 
transformation is regular near 0o(o*. 

Proof: By our  m a p  qb, H(p, q) as defined by (2) becomes  

~ = H , ~ _  1 1 ] P + e i ]  2 2 

=2 IP_el]  2 {p-et]g]Ql +~176 

o n / 4  = - h < 0, where by Propos i t ions  3, 4 in Section 3 

1 - I P I  2 t- P(P, Q), 
~ = ~ ~  = Q 2  2 

_ 2 _ A - I  1 - 1 P [ 1 2  ' 
G = G ~ ( D - 1  ip_e,  lZlQ I - ~ 1 7 6  , 

i 

with ~o = 11 and 

z~ = Ao(I) -1 = [ l l p - e l l 4 1 Q , 2 -  

- 2 ( ' P ' ;  + l Q 2 q - Q I P 2  - P ,  Q2-(P,Q)P2)-{- l l  1/2" 

We can cancel out  the d e n o m i n a t o r  I P - e I [2 i n /~  which has a zero on Ooq~* by an 

appropr ia t e  t ime t ransformat ion .  To  make  this t ime t rans format ion  we consider  the 
H a m i l t o n i a n / ~  + h( = 0) and then apply  the above t ime t ransformat ion ,  writ ten as 

i 1 ilP_el[2[Q[d r ' 

~hich has the effect of  mul t ip lying H + h by  �89 P - el 121QI - We remark  that  the t ime 
I ransformat ion  t =  5 s i P  - exl2da could have been used, but  we prefer the inde- 
9endent variable s defined by  t = 5S[q[da because for p = 0 this t r ans format ion  
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carries the Kepler  p rob lem into itself and therefore the solutions 

available. 
If  we call the Hami l ton ian  �89 - e I ] 21Q[ (H + h), F, then 

r = I 0!{Ip + e 1 12 -}- 2(h + co0~)l P - e 1 ]2} _ 1 + l~f(P, Q) 
, +  

where 

are explicitly 

( = 0), (22) 

F(P,Q)= IP-e IZIQI = I-}IP-e,12IQIa-I-2]OI(1-}pI2), 

with co = I. 
Now,  we must  p rove  that  F is regular  on our  reference orbit  qb* = (p*, q*) in the 

coordinates  P , Q  which we call X * =  (P*, Q*). In particular,  we will show that  
Q*(s) ~ 0, 7~(X*(s)) ~ O. We now list ~b*(s) and X*(s) : 

~a*(s)=(p*(s),q*(s))=(O,O,x/-2hCO 0, h - i S  2 ) (23) 
S ~ ~ 

X* (s) = (P* (s), Q* (s)) = 

( 
where S = s i n x / ~ s ,  

$2-2hC2 CS ~22 ~_~ ) 
$2 + 2hC2 , O, $2  "Jr- 2hC2, C S ,  O, S 2 - C a , (24) 

C = c o s . , / ~ s .  Clearly, Q*(s) r o for Q*(s)= 0 only when 

cos(,Jh72s)=sin(x/~s)=O which is impossible.  In addit ion,  ~ ( X * ( s ) ) =  
= ( 1 ] p * ( s ) -  el ]41Q * (s) l 2 + 1) 1/2 which clearly does not  vanish: This concludes the 
p roof  of T h e o r e m  B. The  analytici ty of  F on X* is now evident. 

We remark  that  the collision states on the energy surface F(P, Q) = 0 cor respond  
to the 2-dimensional  sphere 

P=e,, 101=1- . 
For  # = 0 the orbit  (24) intersects this collision manifold at P = e I , Q = - e  3 for 

s = 0 .  

B. PROOF OF THEOREM A 

We prove T h e o r e m  A by the Poincar6 cont inuat ion  method  for orbits  with symmet ry  

(For  an a l ternate  a rgument  see Section 4C). We will look at solutions which are 
symmetr ic  with respect  to the q:q3-plane.  In other  words, we search for solutions 
which are invar iant  under the reflection 

t --+ -- t, (ql,  q2 '  q3,  P l ,  P2, P3) -+ ( --  ql ,  q 2 '  q3 '  P l ,  --  P2, -- P3) 
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If we write this reflection in the algebra e 4 2 ,  i t  becomes t--+ - t ,  q--* - e l ,  p--* ft. 

Applying this to q~ written in A 2, see (22c), and to our time t ransformat ion 
t --+ s = ~]ql-1 dt yields s --* - s, Q --+ - 0 ,  P --+/5 or, 

s--+ - s,(Q t , Q z , Q 3 , P l , p z , P 3 ) - - *  ( -  Q t , Q z , Q 3 , P t , -  P2, - P3). 

Thus  the reflection p defined by this formula commutes  with q~: 

p o  (I) = (I)o p.  

We note that  F is invariant  under  p, i.e. 

F o p = F .  

which implies: If  X(s) = (P(s), Q(s)) is a solution of (23) so is pX(  - s) a solution, and 

more  generally, so is pX(s  o - s) where s o is a fixed value of s. 

We call a solution symmetr ic  with respect to p if 

p x (  - s) = X(s).  

A symmetr ic  solution is characterized by its initial condit ions X(O) satisfying 

px(o) = x (0 ) ,  o r  

(2~(o) = e~ (o )  = P~(O) = o 

so that  symmetric  solutions are characterized by only 3 initial values Q2(0), Q3(0), 

P1 (0). 
In addition, we restrict the initial values to the energy surface F(P(0), (2(0)) = 0. 

Since, at X*(0) = (1, 0, 0, 0, 0, - 1), 

OF 
1 r  

0(23 

we can use O:(0), PI(0) as independent  variables near X*(0) and express Qs(0), via 

the implicit function theorem, in terms of Q2(0), Pl(0). One can easily prove the 
following result (see reference [2]). 

L E M M A  2: If  for a symmetr ic  solution X(s) one has for some value o f S  > 0 

QI(S) = P2(S) = Pa(S) = 0, (25) 

then X(s) = X(s + 2S), i.e. the symmetr ic  orbit  has period 2S. 

We note that X*(s) is a symmetric  solution satisfying (25) with S = S* = (~/2) (2/h). 
This follows since Q*(0) = (0, 0, - 1), P*(0) = (t, 0, 0) and for S = S* one has Q*(S) = 
(0, 0, 1/2h), P*(S) = ( - 1, 0, 0) which again lies on Q1 = P2 = P3 = 0, and 2S* = r~ 2/h 
is the corresponding period. Thus, the two points of  intersections with the symmetry  
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manifold Q1 = P 2  = P 3  = 0 correspond to the collision and the maximum point of 
the orbit. 

In order to find symmetric solutions of period 2S on F = 0 for p different from zero 
we merely have to determine S = S(#), Q2(0), Px(0) near S*, Q~(0), P*(0) such that (25) 
holds by applying the implicit function theorem, which requires that the functional 
determinant 

D = det 3 ( Q I ' P 2 ' P 3 )  
0(S, o o Q2, P1) 

does not vanish for # = 0, S = S*, X ~ -= X(0) = X*(0). 

To calculate the determinant D we need only consider the unperturbed problem 
for # = 0: For # = 0 we have the Kepler problem in rotating coordinates where all 
the solutions are known explicitly, and the calculation of D is in principal simple. 
One finds that up to a constant factor, see reference [2], 

1 - s in  ~ 0 

�9 7I" / r  

D = det 0 0 sm = sin 2 co~-. 

1 0 o /  
Hence for 1/co* ~ j , j  = 1, 2, 3 . . . . .  we can determine S = S(#), QO(#), po(/~) near 

S*, Q~(0) = 0, P*(0) = 1 such that the initial values X(0, #) give rise to a symmetric 
solution X(s, #) of period 2S near 2S* which proves Theorem A. 

It is important  to note that it is not clear whether the continuation ~b(t,#)= 
= (q(t, #), gl(t, #)) is a noncolliding periodic orbit or a collision orbit. Towards this 
end the following result can be proven: 

C O R O L L A R Y  A: If ~b(t, #) is a collision orbit then 0 E Y  at collision for 0 
sufficiently small, where 5 P is the symmetry plane, 5 P = {qlql = 0}. The proof  of this 
result is accomplished by assuming the contrary, namely that ~r  P at collision. 
A contradiction is obtained by making use of the uniqueness and the symmetry 

properties of ~b. For  the full proof  of Corollary A see reference [2]. Numerical  results 
indicate that c~e5 e at collision for a discrete set of co* only. These numerical results 

will be presented in a forthcoming paper  (see reference [-3]). 

D.  THE ORBIT  M A N I F O L D  

Geometrically we can obtain an overview of the orbit manifold for # sufficiently 
small by noting that for each fixed # Theorem A yields a one-parameter family of perio- 
dic orbits parameterized by the energy E, or by the period T since T is functionally re- 
lated to E by Kepler's equation. This one-parameter  family of periodic orbits ~b~ sweeps 
out a 2-dimensional manifold M 2 in the 6-dimensional phase space R 6. For each 
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E, q5 e lies on the 5-dimensional energy surface X 5 (E)=  { ( p , q ) l H ( p , q ) =  E <0}.  
Thus 

(a e = M 2 c~ 2 5 ( E  ). 

If we let d = m a x { [ O E ( S l ) - - 4 ~ ( s 2 ) l }  then from the behavior of ~b*(s), see (23), 

for s e I  one finds that as E ~ - oo; d ~ oo and as E ~ -0;  d --+ ~ ,  at least for/~ = 0. 
The above is summed up in the following picture (Figure 4). For  /~ = 0 we must 

eliminate those orbits o f M  2 s.t. 1/co* = j ,  j = 1, 2, 3 . . . . .  

E ~.-o 

F i g .  4. T h e  o r b i t  m a n i f o l d .  

E. C A L C U L A T I O N  O F  T H E  F L O Q U E T  M U L T I P L I E R S  

It is very easy to compute the Floquet multipliers of ~b* for # = 0 and in this way get 
an alternate existence proof, which, however, does not yield the symmetry of the 
orbits. This fully carried out in reference 2 where the corresponding Poincar6 map 
is constructed. The Floquet multipliers are calculated to be 2 = e +2~i(~ 1, each 
taken double. Clearly, the pair of ones is due to the existence of the energy 

integral. They can be eliminated by the restriction of the Poincar6 map to an appro- 
priate four dimensional transversal section to qS*. Thus, to insure that the remaining 
multipliers, which are the eigenvalues of the restricted Poincar~ map, do not equal 
one means that we must require 1/o9" :~j, j = 1,2, 3 , . . . ,  where we have normalized 
co = 1. This is precisely our previous condition in Theorem A. 

5. Comparison with the KS Map 

The KS map is a 3-dimensional regularization of the restricted problem. We now 
compare it to our regularizing map  �9 as given in Summary A, Section 3. 

The KS map is a generalization of the 2-dimensional Levi-Civi ta  map. The Levi-  
Civita map in complex notation is given by 

1 q = u 2, p = ~-3-x3uv, 
z l u v  
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where u = u 1 + iu  2 ,  v = v t  + iv2, and is thus a map of N4 _._, N4. This map provides a 
regularization for the 2-dimensional restricted problem, i.e. where m 3 is restricted 

to lie in the plane determined by m 1, m 2 . The Levi-Civi ta  map was developed at the 
turn of the century. There was the desire to generalize it to 3 or more dimensions. This 
was accomplished in 1964 by Kustaanheimo and Stiefel (see reference [6]) and is 
based on the Hopf  map (see references [7], [8]) when restricted to the position 
space q~N3. The resulting map on the full phase space (p, q)eN6 is called the KS map. 
Its restriction to the q-space is given by 

2 2 2 2 = 2(Ul - -  ql = u~ - - /~2  - u3 -}- u 4 ,  q2 u2 IA3u4),  

q3 = 2(ul U3 ~- /A2U4)' (26) 

This is a map from N4. ~ N3. One finds that, similar to the Levi-Civi ta  map,  I ql = I u f2. 
Thus, when lul = 1, i.e. u e S  3 ~ JR4., this restriction is a map o fS  3 ~ S 2. One sees that 
this restriction is the Hopf  map. 

A drawback to the KS map is that it introduces another integral when one requires 
it to regularize the perturbed Kepler problem (see reference [6]). In particular, if 
the variables conjugate to u are called v, this integral is given by 

I =/)1/24. - /)2u3 --t--/)3u2 - / ) 4 U l  , 

where one has canonically extended (26) to a map of the p-space: 

1 
p = 2 ~ A / ) ,  (27) 

w h e r e  p = (Pl, P 2 '  P3 )G [~3  V = (/)1" / )2 '  /)3 '  /)4- )E ~ 4  

(u)  U 1 U 2 - -  N 3 

A u~ - - /g3  " U 2 - -  /,/4. 

U 3 U 4 U 1 U 2 

It is required that I = 0 along solutions (see references [6] and [11] ). The introduction 
of another integral complicates the perturbation t h e o r y -  since the system for the flow 

is autonomous,  another pair of ones as Floquet multipliers will be introduced. To 
make the Poincar6 continuation argument go through, to prove the existence of a 
continuation to ~b*, the dimension of the Poincar6 map has to be reduced by two so 
that the ones can be eliminated. This adds complications. This problem is avoided 
with our map because no new integrals are introduced. 

The increase of the dimension of the phase space from 6 to 8 is a disadvantage of 
the KS map since all computat ional  work, whether it be on the computer  or analytical, 
is significantly increased, q5 does not increase dimension. 

Another advantage of@ is that it is automatically valid for n-dimensions whereas the 
KS map  is valid for only 3. 
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An a d v a n t a g e ,  h o w e v e r ,  o f  the  K S  m a p  is t ha t  it no t  o n l y  regu la r izes  the  s ingu la r i ty  

at q = 0 b u t  i n t r o d u c e s  g l o b a l  va r i ab le s  for the  ene rgy  surface,  whi le  ~ i n t r o d u c e s  n e w  

s ingular i t ies .  H o w e v e r ,  this  d i s a d v a n t a g e  of  �9 does  n o  h a r m  in o u r  case  since these  

n e w  s ingula r i t i es  lie o u t s i d e  of  o u r  p e r i o d i c  o rb i t  as was  seen in the  I n t r o d u c t i o n .  

It  is f inal ly  m e n t i o n e d  tha t  o t h e r  r e g u l a r i z a t i o n s  can  be found  in re fe rence  [12].  
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