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This paper is motivated by the following "Tannakian"  question: to what extent 
is a complex Lie group, G, and a finite dimensional representation, (p, V) of 
G, determined by the dimensions of the various invariant spaces W G, where 
the W are obtained from V by linear algebra? That is, given dim((Sym2(V)a), 
dim((A 3 V)~), etc., can one determine (G, p)? This problem arises, for instance, 
in the cohomological study of exponential sums; we intend to apply the below 
results to the problem of "/-independence of monodromy" for compatible sys- 
tems of exponential sums in a subsequent paper. 

Let us first fix ideas concerning dimensions of spaces of invariants. 

Definition. We call dimension data for (G, p) the data associating 

(1) dim W e 

to every Lie group homomorphism GL(V) --* GL(W). 

Note that this definition makes sense only if dim(V) is given. If det(p)= 1, 
we can define dimension data to consist of 

dim(Homs~(U, V| ~) 

for every keN and every irreducible representation of the symmetric group 
Sk (which acts on V Ok by permuting the factors). This makes sense even when 
dim(V) is unknown; and it determines dim(V) as the largest integer k such 
that A k V has a non-trivial G-invariant. The classical invariant theory of SL(V) 
([6] 4.4.D, 7.5.C) tells us that the two definitions are equivalent. 

From now on, we assume that G is connected and semisimple except in 
w 1, where we allow it to be connected reductive. For obvious reasons we assume 
that p is faithful. Our main results are the following: 

Theorem 1. For any faithful finite dimensional representation p of a connected 
semisimpte Lie group G, dimension data uniquely determines G up to isomorphism. 

Theorem 2. Under the hypotheses of  Theorem 1, if p is irreducible, dimension 
data uniquely determines p up to isomorphism. 

* Supported by N.S.E Grants No. DMS-8610730 and DMS-8807203 
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Theorem 3. In the full generality of Theorem 1, p is not determined up to 
isomorphism by dimension data. 

A few notes may be in order here. We observe that dimension data determines 
dim(G) quite easily. Indeed, let nV be the direct sum of n=dim(V)  copies of 
V. The set of bases of V is an open dense subset of nV. Thus the stabilizer 
in G of the generic point of n V is the kernel of p, which is trivial by assumption. 
It follows that 

dim (C [n V] G) _- rt2 _ _  dim (G). 

Dimension data determines the Hilbert polynomial of the graded algebra 
C [-n V] 6 and hence its Krull dimension. Thus dim(G) is determined. 

Note also that Theorem 1 may be generalized as follows: if H is any linear 
algebraic group and p: G ~ H  is an injective homomorphism, the dimension 
data obtained by restricting all representations of H to G determine G up to 
isomorphism. This follows by embedding H in GL(V) and taking representations 
of GL(V). 

In Sect. 1, we show that dimension data is equivalent to certain data involving 
only a maximal torus of G. In Sects. 2 and 3, we study to what extent the 
root system of G is determined by this data, and we prove Theorems l and 
3. We give an effective procedure to construct a counter-example in Theorem 3. 
It can occur only if a certain root system naturally associated to dimension 
data (see w 2) is not reduced. This does not happen, for instance, for irreducible 
p, and this fact can be used to prove Theorem 2. In Sect. 4, however, we follow 
a different approach, using only the weights of the (irreducible) representation 
p. Theorem 4 completely determines which non-isomorphic pairs (G, p), with 
p irreducible, have the same weight configuration. These ideas lead to the proof 
of Theorem 2 that we present. 

This problem was suggested to us by N. Katz in his 1985-1986 Princeton 
University course on exponential sums. We enjoyed many useful conversations 
with him during the course of the work and numerous helpful comments on 
the exposition of this paper. It gives us both great pleasure to acknowledge 
our various debts to him. 

1. Sato-Tate measure 

Let G be a connected complex reductive Lie group and p: G--. GL(V) a faithful 
representation, of dimension n. Let K be a maximal compact subgroup of G, 
and T a maximal torus of K. We choose a basis of V so that 

p(T) ~ p(K) ~ p(G) 

N C'~ (7  

U(1)" c U(n) c GL(n). 
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Let the superscript ~ denote the set of conjugacy classes. Then we have the 
commutative diagram 

K ~ P ' U(n) 

P~t [Pv 

K ~ ~ ' U(n)' 

T ~_ oT , U(1)" 

where K ~ ~ T/W, U(n) ~ ~_ U(1)"/S,, and the maps zrr, rcv are the quotient maps. 
Let dk denote Haar measure on K, normalized to total volume 1. Given a 
measurable function f :  X--* Y and a measure p on X, we write f . #  for the 
measure on Y such that 

g(f(x)) p = ~ g(y)f.  #. 
X Y 

For any representation a: GL(V) ~ GL(W), 

dim(WG)=dim(WK) = S t r (ap(x ) )dk= 
K U(n) 

tr (a) p ,  d k. 

By the Peter-Weyl theorem ([5] w 6, p. 754), the values of these integrals deter- 
mine the measure 

Pv* P.  dk=p~* PK* dk  
on g (n) ~ 

This measure is determined by dimension data. We write supp(#) for the 
support of a measure #, that is, the smallest closed set such that the restriction 
ofp  to the complement is O. Since dk is Haar measure on K, supp(pK, d k ) = K  n 
= T/W, supp(p~. PK* dk)=p~(T /W) ,  and therefore 

y,=~{1 supp(p~. PK. d k ) = ~ j  t (p~(T/W))= U pr(T)L 
a~Sn 

The irreducible components of Y are the pr(T) ". These components differ only 
by the numbering of the coordinates of U(1)". We choose one such component 
and label it pr(T). As p is faithful, we can identify T with pr(T). 

What we would like to know is the Sato-Tate measure PK. dk  on K ~. Let 

v,~(t) = [ [  ( 1 -  ~(t)). 

The Weyl integration formula ([1] IX w 6 Th. 1 Cor. 2(b)) says 

l 
(2) IWl nr* F~(t) d t= pK , d k, 
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where d t  denotes normalized Haar  measure on T and ~b denotes the set of 
roots of G. If we knew the measure (2), we would know ~b by unique factorization 
(up to units) of Laurent polynomials. Unfortunately, p~ is not  always injective, 
even on the complement of a set of measure zero. The configuration of weights 
of V may have symmetries outside the Weyl group W =  W(G, T), or equivalently, 
an element of S , =  W(U(n), U(1)") which stabilizes T may not act on T by any 
element of W. In this case p~ is generically many-to-one. This reflects the fact 
that symmetries are preserved by the operations of linear algebra, and that 
consequently, our dimension data  bears only on a subcategory of Rep(K). This 
is the central difficulty in proving theorems 1 and 2, and it makes possible 
the counter-examples of theorem 3. 

What  we know is the measure 

1 t 
p~. nT. F~(t) d t = ,~;;;.., riG. PT* F~(t) d t 

t wl  DvvI 

on U(n) ~. The unique S,-invariant measure/~ on U(1)" such that 

is 

! 1 
nt;, # =,~7,,, nv,  PT* F~(t) d t  

n ~ .  Ivvl 

1 
[W( ~" a*pr* F~(t)dt" 

a~Sn 

The restriction of this measure to T =  pT(T) is 

1 
a,  Fr 

Iwl aeStabs T 

where Stabs, T is the group of automorphisms of S, which preserve the set 
T. Let F ~ be the image of Stabs, T in Aut (T)  or equivalently the group of 
automorphisms of T induced by permutation automorphisms of U(1)". We have 
seen that dimension data determines the measure 

1 1 
IWI Z T*(F~(t)dt) = ~ (T(F~))(t) dt  

~StabsnT I W l  ~Stabsn T 

on T, so it determines the group algebra element 

(3) F ~  ~ 7(F,~)6Q[X(T)] 
~/eF ~ 

up to a non-zero rational scalar multiple. (This scalar depends on [WI which 
at this point is unknown; a posteriori, i.e., as a consequence of Theorem 1, 
[WI and hence F ~ is determined exactly.) We summarize: 

Proposition 1. Let G be a connected reductive group and p: G ~ GL(V) a faithful 
representation. Let T, PT, and F ~ be as above. Then (T, PT, Q F~ is determined 
up to isomorphism by dimension data for (G, p). That is, given (G, p) and (G', p') 



Determining representations from invariant dimensions 381 

with the same dimension data, there exist maximal tori T and T' o f  G and G' 
respectively and an isomorphism of  triples (T, PT, Q F~ ~ (T', P'rP'T', QF'~ 

The converse is left as an exercise to the reader: 

Proposition 2. I f  G is a connected reduetive group, p: G - ~ G L ( V )  is a fa i t l fu l  
representation, and GL(V)--* GL(V') is a Lie group homomorphism, then (T, PT, 
Q F  ~ determines dim(V'G). 

We fix some notation to be used in the following paragraphs. Let A = X ( T )  
and X = A |  The weights of Pr  form a finite set S of elements s e X  taken 
with multiplicity m(s). We define an inner product on X* by setting 

( x t ,  x~)= ~. m(s) x*(s) x*(s). 
s e S  

We denote the dual inner product on X by ( , ) .  Since p is faithful, S spans 
X so ( , )  and hence ( , ) ,  is positive definite. As S is W-invariant, so is ( , ) .  
Note that this invariance alone determines ( , )  up to a positive scalar factor 
on each simple root system, by the W-irreducibility of simple root systems 
( [ l ]  VI w 1 Prop. 5 Cor. (i)). Let Z 4 ~ c X  denote the root  lattice, and 

the weight lattice. Since ( , )  is determined by Tand  PT, by the above proposit ion 
dimension data corresponds to the data (T, pT, X , A , ( , )  , F ~  ~ up to 
isomorphism. In the rest of the paper we study this 7-tuple in pieces: Sects. 2 
and 3 concentrate on (A, ( , ) ,  QF~ and Sect. 4 on (T, Pr). 

2. A root argument 

Definition 1. By  a root  system we mean a f ini te  set cb spanning a real vector 
space, and an inner product ( , )  on R ~  such that 

i) 0 ~ ,  and x ~  i f  and only if - x E @ .  
i)  For all c(eeb, S~, the reflection through the hyperplane perpendicular to 

~, preserves 4.  

iii) ~ e Z  for  all ct, fl6@. 

If,  in addition, ~, K ~ ~ q~ implies K = +_ 1, we say �9 is reduced. 

Every reduced root  system is associated to some semimsimple Lie algebra. 
A simple Lie algebra determines the corresponding reduced root system up 
to scalar multiplication; more generally, a semisimple Lie algebra g determines 
the corresponding root  system up to scalar multiplication on each simple factor. 
In what follows we will often speak loosely of " the"  root system of type g. 
Whenever the normalization of ( , )  matters, however, we will take care to 
specify it more precisely. 

Definition 2. A root subsystem 4~c t/' o f  a root system 7 j is a subset o f  ~t' such 
that ~ is root system and the inner products ( , ) ~  and ( , ) ~ .  coincide on RcP c R ~  
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The Weyl group of a root system is generated by reflections S~ ; these depend 
on ct and the inner product on X. In particular, with our definitions, the Weyl 
group of a root  subsystem of �9 is a subgroup of the Weyl group W(q~). 

Definition 3. A sum of root systems 4 h + @  z is a root system in R~1(~R@ z 
obtained by taking the union of the (orthogonal) sets ~i ~ R~i c R@I (~Rcl) z. The 
4~i are factors of 49. A root system which is not of the form 491 + q)2 is simple 
or irreducible. 

Theorem 1 is a consequence of the following theorem: 

Theorem 1'. Fix a finite dimensional R-vector space X with a positive definite 
inner product ( , ~  and a lattice A c X ,  and let F be the (necessarily finite) 
group of all isometries of A. Then every reduced root system cI) in X of rank 
dim(X) such that Z q ) c A c A ,  is determined up to conjugation by F by the l- 
dimensional subspace Q F  c Q IX],  where 

F=S~(G) and G=lqil-[~])  

as in (2) and (3). 

We observe that this implies in particular that the triple (A, ( , ) ,  4) is 
determined up to isomorphism by (X, A, ( , ) ,  QF). Since F contains the group 
F ~ defined in w 1, Q F  is determined by Q F  ~ Theorem 1 follows: Lie(G) is deter- 
mined by dimension data  (because �9 is), and the center of G is determined 
by dimension da ta  (because A is). If Theorem 1' remained true with F replaced 
by an arbitrary group of isometrics containing W(q~), it would imply Theorem 2 
without the irreducibility hypothesis. Unfortunately, as Theorem 3 shows, this 
is too much to hope for. The rest of this section gives a proof of Theorem 1', 
modulo some technical results proved in w 3. Note that throughout  we employ 
additive notation for the group law on characters. 

Definition 4. A short root  in a root system q) is any root which is short in its 
irreducible component of O). We denote the set of short roots cb ~ 

Lemma 1. For every root system cI), the short roots generate the root lattice ZcI). 

Proof The root lattice of a sum of root systems is the direct sum of the root 
lattices of the components, so it suffices to check irreducible root systems. If 

is reduced, every pair c~,/~ of roots of different length generates a root subsys- 
tem of rank 2, either B2=C2, G2, or A I + A I .  In the first two cases the long 
root  is a sum of short roots. Thus every long root which is not a sum of 
short roots is orthogonal to all short roots. The Weyl group of a simple root 
system �9 acts irreducibly on Rq~ ([1] VI w 1 Prop. 5 Cor. (i)) and stabilizes 
the set of short roots, so this is impossible. If ~ is BC,, the root lattice is 
Z", which is generated by the short roots el. []  

Lemma 2. The set cI) ~ is a root system. 

Proof Every reflection a~W(cl)) fixes all but one component,  ~ of cb. If c ~ 7  s, 
a(c0=~. If c ~  ll~r(~)ll2= II~N 2, so ~r(c~) is short in 7 ~ and hence in 4~. Finally, 
the short roots span R ~  by Lemma 1. [ ]  
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Lemma 3. I f  cp is a root system, A a lattice such that Z q ~ c A c A + ,  and F a 
group of isometries such that W ( c b ) c F c A u t ( A ) ,  then FeP is a (not necessarily 
reduced) root system. 

Proof As F is contained in a compact (orthogonal) group and fixes a lattice, 
it is finite. Hence Fq~ is finite. It obviously spans RcP. As r satisfies Definition 1 
(i), so does FqJ. If 7aeFcP, the reflection in @a)" is 

S~ = 7S= 7-  l 

As F =  W(~), 7 and S, belong to F, so S~,eF fixes Fq~. Finally, ifTl ~1, 72 cqeFcb, 
then 

1171 ~xll 2 [l~all 2 

since~q -1 72~:2~Fcrp~A=A,. [] 

Lemma 4. Under the hypotheses of Theorem I', QF determines (Feb) ~ 

Proof Let 6 denote one half the sum of the roots of q~+. As 

~Z 0~ H ~ 0~ +N)ILo (N i t  
= [ ~  s g n ( w ) [ - w ~ ] ] [ ~  sgn(w)[wd]] 

w ~ W  w ~ W  

= ~ w'( ~ sgn(w)[6-w6]) ,  
w ' r  w ~ W  

we have 

Now, 

and 

SO 

F =  ~ ~(F~)=IWI ~ ~( Z s g n ( w ) [ 6 - w 6 ] ) .  
y~F TeE w E W  

116- w61l 2 =2116112-2<6, w6> = (26,  6 - w 6 ) ,  

6 _ w 6 =  1 
1 

2 a e c b  + o~r + a e ~  + c ~ w ~  

kL6-w6[h 2= K 2 (6 ,~ ) .  

If ~ = Zr~ ~i, where the 7i are simple roots, 

2 ( 6, o; ) =  ~ ri llotill 2, 
i 

since ~ is the sum of the fundamental weights ([1] V1 w 1 Prop. 29). Thus, if 
wv~l, 

I t6-w6112>min~+lMI 2, 

with equality if and only if ~+ n w @ - ) =  {~} and a is a simple root of shortest 
possible length. By [1] VI w 1 Prop. 17, this occurs if and only if the Weyl 
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chambers associated to 4 + and w(~ +) are joined by the wall ~• i.e., if and 
only if w=S,.  As all occurrences of terms of length min~,Nc~ll 2 in F ,  (and 
therefore in F) have s g n ( S , ) = -  1, there can be no cancellation. Therefore the 
terms of minimal non-zero length in F are precisely the I-7~], where 7~/~, and 

is a root  of minimal length in 4. Let X'  be the vector space generated by 
these 7~, and let X" be its orthogonal complement. By construction X' is F- 
stable, hence W-stable, and hence the span of a (root system) factor ~b' of 4. 
If 4"  is the complementary factor, 

F@, | F~,, = F~e Q [Zq)] = Q [ Z 4 ' ]  |  [Z4"] .  

The constant term of F,, is non-zero, so the terms in F ,  which belong to Q [X"] 
are, up to a constant non-zero multiple, just the terms of F,,,. By induction 
on rank, the lemma follows. []  

Lemma 5. Consider a root system f2=f2 ~ and a lattice A with Z f 2 c A c A o .  
Then the collection of all (possibly non-reduced) root systems ~ f 2  such that 
~~ = f2 and A,v ~ A possesses a unique maximal element. 

Proof Denote the collection of all such 5 u by S. Since f2 is an element, S is 
non-empty. By Lemma 1, the short roots generate the root lattice. In any simple 
root system, ( ~ , ~ ) < 4 ( f l ,  fl) for all roots c~ and fl ([1] VI w 1 Prop. 12-14), 
so every element of every ~ueS lies in a bounded subset of Z f 2 = Z T J ~  
It follows that S is finite, so it suffices to prove that for any ~ ,  ~ S  there 
exists a root  system ~3~S containing both. Elements of W(~)  preserve length 
and therefore preserve 7~?= O. We let W~ 2 denote the subgroup of Aut (f2) generat- 
ed by W(7~0 and W(~U2). We set ~3=W12(l~lk.) I//2). Given wEW12, ~ E ~ w ~ ,  
we have 

Sw~=W& W-l~W12, 

so % is stable by Sw,. The root lattices generated by f2, 7~1, and 7~2 all coincide, 
and 14112 preserves this lattice. Therefore, 7~3 also satisfies the integrality condition 
for root systems. The inclusions Z ~ c A  cA~,, show that A is stable by W(~). 
It is therefore preserved by W12, and hence 

A c  (~ w(Avc~A,e2)=A~,3, 
w~W12 

as desired. Finally, 7~=f2. Indeed, W12 stabilizes f2, and each of the systems 
already contains ~. On the other hand, every short  root of 7' a is an Aut(O)- 

translate of an element ~ of some ~ and can be short in ~u 3 only if c~ is short 
in 2 ,  i.e., only ifc~eg2. []  

Let ~ be the unique maximal root system given by Lemma 5, such that 
7~~ ~ and A c A v .  We have just seen that (X,A, ( , ) , Q F )  determines 
~. Moreover, 7 ~ contains 4) and is stable by E We are therefore led to the 
following slightly more general question: Fix a possibly non-reduced root system 
7 ~ and a lattice ZTJcAcA~, .  Let F = A u t ( ~ ,  A) be the group of all isometries 
of A that preserve ~ Let 4 c  ~ be a root  subsystem of equal rank; we do 
not require that it be a closed subsystem, i.e., that it satisfy the condition ~ + fie 7 ~ 
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implies c~ + fl~ q~ for all c~, fl ~ q~. To what extent is q~ determined by the 1-dimen- 
sional subspace QF, defined as in Theorem 1'? The following two propositions 
address this question. 

Proposition 1. Let 71 be a reduced root system, and {4~} a set of representatives 
,for the W(7")-conjugacy classes of subsystems ~ 71 such that rk(q~)=rk(7"). 
Then the sums 

Z 7 (F~,) 
?e  W(LP) 

are linearly independent. 

Note that if 7/= 7" + 7"", then 7" and 7"" are both reduced, and every equal 
rank subsystem q~ of 7" is of the form ~b'+ q~", where cb' and ~b" are equal 
rank subsystems of 7" and 7"" respectively. Moreover, W(7")= W(7") • W(7""), 
so two subsystems q~ and (i~ 2 a r e  Weyl group conjugate if and only if their 
corresponding components are Weyl group conjugate. As 

Fm,| = F , ~ Q  [ZT']  = Q {z  7"] |  [Z 7""], 

the W(7")-trace of F ,  is just the tensor product of the W(7")- and W(7"")-traces 
of F,, and Fro,, respectively. If {u~} and {vl} are linearly independent vectors 
in U and V respectively, then {u~| is a linearly independent set of vectors 
in U| Applying this fact to the group algebras above, it suffices to prove 
Proposition 1 for simple reduced root systems. 

Proposition 2. Let 7"=BC,. Let {q~i} be a set of representatives for the W(7")- 
conjugacy classes of subsystems q~ ~ 7" of equal rank. Then the 

7(F~) 
~,e W ('P) 

are pairwise linearly independent. 

Proof of Theorem 1'. Decompose 7" = % + ~ r ,  where 7"o is the sum of all reduced 
simple factors of ~, and ~ r  the sum of all factors of type BC. Since for every 
root system of type BC the root lattice coincides with the weight lattice ( f l ]  
VI Ex. w 1, no. 3), the inclusions Z T ' c A c A w  show that we have an orthogonal 
decomposition A = AoOZT', , ,  with Z %  c Ao c Awo. By definition 71 is stabilized 
by F, so in particular this decomposition is stabilized. Thus, if Fo is the group 
of all isometrics of Ao, and F,r the group of all isometries of Z ~ r ,  the inclusion 
Fo x F , r = F  is in fact an equality. Next let ~r=Y',~=l ~ be the decomposition 
into simple ~ - B C , , .  If an element of F.~ maps a short root of ~ to one of 
3 ,  with iCj,  then the short roots of both have the same length, so ~ +  
can be embedded into some BC,,+,j. As BC.,+.j has the same set of short 
roots and the same weight lattice as ~ +  ~ ,  by our definition of 7" this cannot 
happen. Thus F.r stabilizes each ~ .  Letting F~ be the group of all isometries 
of Zcbi, it follows as above that F.r = I]~= 1Fi. In particular the decomposition 
7" = ~7= o ~ corresponds to a decomposition F = I]~= o F/. With ~b i = q' c~ ~/ this  
implies 

y~ ~(F.)= (I ( Y'. ~(F.,)), 
? ~ r  i = o  y ~ r ,  
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so all our data decomposes. Reasoning as in Proposition 1, we reduce to the 
following two cases: 7 j is reduced, or 7 '=  BC,. 

In the latter case F = A u t ( 7 0 =  W(~), so the assertion is an immediate conse- 
quence of Proposition 2. In the former case observe that if F is any group 
of automorphisms of 7 / tha t  contains W(70, the linear independence of F-traces 
is weaker than the linear independence of W(70-traces. Applying this to our 
given ~ and F, we obtain Theorem 1'. 

To prove Propositions 1 and 2 we first make a list of all possible equal 
rank subsystems of simple root systems. In order to do this, we introduce some 
notation. When there are exactly two different simple root  subsystems �9 of 
ku which differ by a non-trivial scalar factor in ( , ) ,  we distinguish them by 
writing �9 s and �9 t for the embeddings corresponding to the smaller and larger 
inner product  respectively. For  instance, every pair of roots + c~ in a root system 
7 ~ corresponds to a root subsystem A1 c O .  If 7' has roots of two different 
lengths, A] and At  correspond to short and long embeddings respectively. The 
problem of how to denote embeddings of At  in BC,  is solved by the following 
conventions: C~ =Am consists of a pair of long roots  of BC,,  B1 =A~ consists 
of a pair of short roots, and D2=A1 + A t  consists of two orthogonal pairs 
of roots of intermediate length. We also identify D 3 and A3. 

Proposition 3. The following list gives for each simple 7 j a complete list of reduced 
root subsystems �9 of  equal rank. For each type there is just one conjugacy class 
under W ( ~). 

Ar : At. 

BCr: EBb,+Ecc,+ED , 
( E b i  + E c i +  E d i  = r, all bi, c i >= 1, d, > 2.) 

B, : ~Bb,+~Da,  

(~bi + ~dl = r, all b i > 1, d i > 2.) 

: Zcc,+ZD , 
(Y',ci + ~ di = r, all ci > 1, d i >= 2.) 

Dr : ~'Da~ 
(Y~d~ = r, all d i >_>_ 2.) 

E6 : E 6 , A s + A 1 , 3 A 2 .  

E 7 : E T , D 6 + A 1 , A ~ + A 2 , 2 A 3 + A 1 , A 7 , D 4 + 3 A 1 , 7 A 1 .  
E8 : E s , A s , D s , A T + A t , A s + A 2 + A t , 2 A 4 , 4 A 2 , A 2 + E 6 , A I + E T ,  

D6 + 2A1,Ds + A3,2D4,D4 +4A1 ,2A3  + 2A1,8  At .  

F4 : F4, B 4 , D t 4 , B 3 + A S l ,  t s s A3 + A 1, C,,  D4, Ca + A~, A~ + All, 2 Bz, 

B2 + 2 a t , B2 + 2 A],  4 A], 2 A t + 2 A], 4 A], A~2 + A~2 . 
l s G 2 : G 2 , A 2 , A 2 , A t + A S t  . 

Proof Suppose first that all the roots of 71 have equal length. Then c~,/~, ~ +/36 ke 
implies 

-I1~112 
II~l[==lI/~tl==ll~+/~ll2; (~'/~)= 2 
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Therefore if c~, flecb, 

s,(/~)=/~ II<t" -~+/~e4,. 

Hence, root  subsystems of ~P correspond to Lie subalgebras. In these cases, 
that is when 7J=Ar, Dr, or E,, the assertions follow directly from [2], Table 10, 
and the remarks after Table 10. 

If 71 = BC,,  we define 

i ~ j  ~ i = j  or e i - e i e  cl) or ei + ejecb, 

where e l ,  ... ,  e, are the standard basis vectors of Z r = Z ~ .  The invariance of 
~b under reflections at any of its elements implies that this is an equivalence 
relation. Let S be an equivalence class for this relation. Then the roots 

Cl) ~ {el, 2ei, + ei • ejl i, j~  S } 

form a root system q~s which is a factor of 4). Since rank(q))=r,  rank(cbs)=lS ]. 
Changing the signs and indices of ei if necessary, we may assume that el - e 2 ,  
. . . ,  e l S l _ l - - e l S l ~  s. Therefore q~s contains A;s I i. As rank(~s)=lSI ,  some ei, 
2ei or e~ + ej must belong to q~s. In the first case q~s = Blsl, in the second, 4~ s = Clsl, 
and otherwise (bs= Dis I. The conjugacy modulo W(7*) is clear, and this shows 
the assertions for 7~e{Br, C,} as well. 

Next let 7*=F 4. Observe that the orthogonal complement of A] in D~, is 
of type 3A].  Therefore if q~c~D] contains a simple factor of type A], or is 
empty, then q~ is contained in a copy of B 4 inside F 4. By the above calculation 
this gives rise to the following types, each of which represents one conjugacy 
class under W(B4): 

B 4 , B 3 + A ] , 2 B 2 , B 2 + 2 A ] , 4 A ] , B z + 2 A  ] , 2 A ] + 2 A ] , 4 A ] ,  A ] + A 3 , D  ' 

By the remark after [2], Table 10, any two subsystems of F4 of type B4 are 
conjugate under W(F4). Thus each of these types occurs in precisely one conju- 
gacy class under W(F4). Next by dualizing we obtain the complete list 

C4, C 3 ~- A],  A] + A~, D] 

of all subsystems that are contained in a copy of C4, but not in any copy 
of B4. Again each such type corresponds to precisely one conjugacy class under 
W(F4). If q~ is any other subsystem, then by the above remark and by dualizing 
it must contain roots  of both lengths, and neither q) n D~, nor �9 c~ D~ may have 
a simple factor of type A~. If q~ is simple, this leaves only the case @=F4. 
Otherwise ~ must decompose into two simple factors of rank 2. Clearly such 
a factor must be of type A2, so only the case cb=A~2+A~ remains. Since none 
of the other possible cases has a direct factor of type A~, the factor A~ must 
be the orthogonal complement of A~ in F4. Since by the above argument any 
AZ2 corresponds to a Lie subalgebra of D~, and hence of F4, it follows that 
any r = A~ + A[ corresponds to a Lie subalgebra of F4. By [2], Table 10, there 
exists a unique conjugacy class of this type. This confirms the list given above. 

The case ~u = G2 is trivial. [ ]  

[ ,emma 6. Proposition 1 holds for  every ~U~{A,, E, ,  F 4, G2}. 
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P r o o f  These case 7 / = A 0  is trivial.  Fo r  the o the r  cases observe  t ha t  r eason ing  
as in L e m m a  4, the square  l eng th  [1~:(6-w6112 a t t a ins  its greates t  value exactly 
when  w 6 = - 6 .  Since there  is a un ique  such w~W(eb),  all these t e rms  occur  
with  the  same sign in F. In pa r t i cu la r  the  te rms s g n ( w ) ?  [ 6 - w 6 ]  do  no t  cancel  
in F, so 1126[[ 2 is the  greates t  square  length  of  a vec tor  occur r ing  in E W e  
e n u m e r a t e  these values for 7J~{E, ,  F4, G2}. The  lengths  are no rma l i zed  so t ha t  
I/c~ll 2 = 1 for every shor t  roo t  c~. This  tab le  can  easily be  checked  using the  fo rmu-  
las in [1]  ch. VI  (planches)  for the  sum of all roo t s :  

E 6 E 6 156 
E 6 As+A 1 36 
E 6 3A 2 12 

E 8 E 8 1240 
E8 Ev + A t 400 
E8 D8 280 
E 8 E 6 + A2 160 
E 8 A 8 120 
E 8 D6+2A 1 112 
E8 Av+AI 85 
E8 D 5 + A 3 70 
E 8 2D. 56 
E8 As + A2 + AI 40 
E s 2A,, 40 
E 8 D4+4A 1 32 
E8 2A3+2A1 22 
E 8 4A 2 16 
E 8 8A t 8 

G 2 G 2 28 
G 2 A~ 12 
G2 A~ 4 
G2 At~ +A] 4 

Ev E7 399 
E 7 D6+A 1 111 
E7 A7 84 
E7 As+A2 39 
E 7 D4+3A 1 31 
E 7 2A3+A ~ 21 
E 7 7A 1 7 

F 4 F 4 156 
F4 B4 84 
F 4 C 4 60 
F 4 D] 56 
F 4 B3+A ] 36 
F,, C3 + A] 30 
F,, D~. 28 

Aa+A 1 21 
F4 2B2 20 
F4 B2+2A~ 14 
F 4 A~+A~ 12 
F4 A~ + A~ 12 
F4 B 2 + 2 A] 12 
F4 4At1 8 
F, 2At+2A]  6 
F 4 4A] 4 

F o r  E6 and  E 7 this  direct ly implies the desired l inear  independence ,  since 
every l eng th  occurs  jus t  once. In  the r ema in ing  cases, we mus t  modify  the  above  
lists, rep lac ing  the  offending vectors  by  sui table  l inear  c o m b i n a t i o n s  so tha t  
no  l eng th  occurs  twice. To find such l inear  c o m b i n a t i o n s  write m ( N  l) for the 
sum of  the  coefficients of  all the  t e rms  wi th  II [I 2=1 in ~ ?(F,).  F o r  ~U=E8 one  
checks t h a t  ~wl~v) 

m ( q ~ , 3 8 ) = { 2 3  if ~ = A s + A 2 + A  1, 

rn (q~, 40) 22 if ~ = 2 A 4 ,  

and  for 7 j = G 2 t ha t  

rn(qO, 3) f 1 if ~ = A t l + A ] ,  

m ( # , 4 )  ) - 2  if r  
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For  ~ = F 4  let t~ 1 =A~+A~, ~ 2 = A ~ + A ~ ,  and ~b3=B2+2A~1. One verifies the 
matrix equation 

1, m(tbi, 12)' m(~;, 12)]1 =<i=<a = - 2  , 
1 - 3  

and observes that this matrix is invertible. Thus in each of the three cases 
the length inequalities hold after the troublesome terms are replaced by suitable 
linear combinations. Now the above argument applies. []  

The proof of Propositions 1 and 2 in the cases B., C., D., BC. will be carried 
out in the next paragraph, where we develop the appropriate  machinery. 

3. Root subsystems of BCn, and counter-examples 

In this section we study root subsystems of BC,,, and construct the counter- 
example promised in the introduction. The idea is that if all BC, are considered 
together, the functions F in theorem l '  appear  naturally as elements of a certain 
commutative algebra, such that direct sums of subsystems correspond to prod- 
ucts in this algebra. The linear independence in w 2 Proposition 1 is then equiva- 
lent to algebraic independence in this algebra, and the assertion of w 2 Proposi- 
tion 2 translates into a question about unique factorization. The counter-exam- 
ple can be constructed precisely because the analogue of Proposition 1 is false 
for BC,. 

Let Z .  = Q [Z"], W, = { _-4-1 }">~S,. For  m < n, the injection 

Zm'~ Z": (al . . . . .  am)~--~(al . . . . . .  a.,,O . . . . .  O) 

extends to an injection i,...: Z,. ~* Z. .  We define q~ ..... : Z,. -~ Z. :  

1 
q5 .... ( z ) = ~  ~ w(im,,,(z)). 

w E  W n 

E v i d e n t l y  t~m,n~)k,m=~)k,n for k<_m<_n. The image of ~b,.,. lies in Y.=Z w', so 
we can form the direct limit under ~b.,,.: 

Y=lim 1I.. 
n 

We define maps j . :  Z . ~  Yby composing ~b., v with the injection Yp~ Yfor any 
p>n. The maps ~bm, . are not ring homomorphisms, so a priori, Y is only a 
vector space. It can be endowed with an algebra structure as follows: The obvi- 
ous isomorphism Z " q ) Z " - ~ Z  m+" gives a canonical isomorphism M: 
Zm| Given two elements of Y represented by Y~Ym and y'~Y., 
we define 

yy' =jm+.(M(y| 

This product is independent of the choice of m and n and is commutative and 
associative. 
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Let {ei} denote the standard basis for Z". The monomials [-el]"'... [e,]"- 
form a Q-basis of Z , .  Therefore, Y has a Q-basis 

e(al , a2 . . . . .  a,)=j,( [e l]"'... [e,]"-), 

indexed by n > 0 and integers al  => a2 > ... > a, > 0. Mapping each such element 
to x~ x,~...x~., we obtain a Q-linear map from Y to the polynomial algebra 
in countably many variables Q [Xl, x2 . . . .  ]. 

Lemma. This map is an algebra isomorphism. 

Proof Since bijectivity is clear, it remains to prove that 

e(al . . . . .  a~) e(bl . . . . .  b,)=e(a~ . . . . .  a,,, bl . . . . .  b.). 

This easy calculation is left to the reader. [ ]  

From now on we identify Y with Q [x~, x 2 . . . .  ] through the above isomorph- 
ism. The resemblance of this construction to that of the algebra of symmetric 
functions in infinitely many variables is perhaps somewhat misleading. Note, 
in particular, the very different way in which the multiplicative structure arises. 

Let �9 be a root  subsystem of equal rank of some BC,. As usual we let 
F~ denote the Weyl product H ~ ( 1 - [ - ~ ] ) .  setting F(4~)=j,(F~)~Y, we have 
F ( ~  1 +~2)=F(4~1)F(rb2) by construction. Let b,=F(B,) ,  c ,=F(C,)  for n >  1, 
and d,=F(D,)  for n>2 .  By Proposition 3 the F(~b) for all W(BC,)-conjugacy 
classes of root subsystems ebcBC,  are precisely the monomials  
l-I b~, Hc, , j  Hd,~,  where all li, mj> 1, rig>2, and ~ ' l i + Z m j + Z n k = n .  

Proposition. 
(a) For every n, the elements b~ . . . .  , b,, c 1 . . . . .  c,, and d2 . . . .  ,d.+ 1 all lie in 
O Ix, . . . . .  x M .  

(b) These elements are pairwise inequivalent primes in this ring. 
(c) Each of  the subset {b I . . . . .  b,, Cl,...,Cn}, {b I . . . . .  b,,  d 2 . . . . .  dn+l}, and 
{c I . . . . .  c,,  d z . . . . .  d,+ 1} is algebraically independent. 

Proof We recall that 

F~= ~, w~( ~ sgn(w2)[(5-w2d]). 
wlEWlq~) wzeW(~) 

For rl)~{B,, C., D,} we have, in standard notation, 6=(n-~,,  n - l - e ,  . . . . .  1 -e) ,  
where e, is �89 for B,,  0 for C,,  and 1 for D,.  By the known structure of the 
Weyl group we get the formula 

(4) 1 F(q~)= ~ sgn(a) E h e, xl(,_~}_~,,,(1)_~,)l, 
I W(~)l . ~ s .  eel• ~}- i=1 

where in the case q~---D, the second sum is extended only over those ee{ + 1}" 
with 1]7= 1 e, = 1, and where we write x0 = 1. It suffices to prove the assertions 

, b, , c. , d. 
for b , - -  ~;n~-.t , c. = ~-n.V, and d , = ~ .  We immediately find that b'~ = - x l  + 1, 

c] = - x 2  + 1, and d~ = x 2 -  2x21 + 1, so all three assertions are obvious for n = 1. 
Let R , = Q [ x l  . . . . .  x .]  for every n>0 ,  and for simplicity set b o = c o = d l = l .  
In the above sum let us separate the terms into (i) those with an  = n and e, = - 1, 
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(ii) those with an = n - 1 ,  a ( n - 1 ) =  n, and e . =  e._ 1= - 1 ,  and (iii) the remaining 
terms. Then for n > 2 (4) implies 

b 'ne-x2 , ,_ lb '  n 1--X22n_2b'n 2-}-X2n_2R2n 3 - + - R 2 n _ 3 ,  

( 5 )  Cn~--X2nC n l - -X2n_l  C n 2 + X 2 n _ 1  R2n_2-{-g2n_2, 

d' .+16-xz .d ' . -x22._1d ' .  1+x2 .  1R2n 2+R2n-2 �9 

In particular we have b'nERzn_ 1, and c'., d'.+l~R2., which by induction proves 
(a). 

Let us do (c) next. By induction it suffices to prove that each of the sets 
{b', G}, {b', d~,+l}, and {c;, d '+l}  is algebraically independent over R2. 2, for 
n>2 .  Since (5) implies that b'nERzn_l\Rzn_ 2 and r this is so 
for {b'., c'.}. The same argument applies to {b'., d'.+0. Suppose that c'. and d'.+ 1 
are algebraically dependent o v e r  Rzn 2. Then by (5) we must have 

t / ! l ,t 
dncn--C'n_ 1 d'n+lGX2n_l(cn_l dn_l-d 'ncn_z)-b  Xzn_ 1 Rzn_ z-b Rzn_ 2. 

This implies c'._ 1 d'._ 1= d'. c'._ 2. But by the induction hypothesis, c'._ 1 and d'. 
are algebraically independent o v e r  Rzn_ 4. Since c' .-2, d'._~ are non-zero ele- 
ments of R 2 n _ 4 ,  w e  get a contradiction. 

Returning to (b), observe that by (c) any two b~, c,., d .+l  are algebraically 
independent. Thus it suffices to prove that each of these is a prime. Again 
we proceed by induction over n, noting that any prime of Rk stays prime in 
Rk+.,, since the latter is a polynomial ring over the former. Thus it remains 
to prove the primality of b'. in Rzn_ 1 and of c'., d'.+l in R2n. By the inductive 
assumption, b'.-1 is a prime in the ring Rzn_3, and by the above formula it 
is not contained in any smaller Rk. Since, again by the inductive assumption, 
b'.-2 is nonzero, and lies in Rzn_4, the prime b'._ 1 cannot divide b'. 2. Therefore, 
by the above formula it does not divide b'.. This in turn implies that b'. is 
prime. The proofs for c'. and d'. +1 are analogous. []  

It is now easy to prove w 2 Proposition 2 and finish off w 2 Proposit ion 1. 
In fact, for 7' = B. and 7* = C. the assertion of Proposition 1 is equivalent to 
the linear independence of all monomials in {b l,  b 2 . . . . .  d2, d3 . . . .  }, respectively 
in {ca, c2 . . . . .  d2, d3 . . . .  }. This is just the algebraic independence in (c) above. 
For  7*=D. this gives the same assertion, but with W(D.) replaced by W(C.). 
But by w 2 Proposit ion 3, the root subsystems of D. form the same conjugacy 
classes under either of these groups, so Proposition 1 also follows for D.. The 
assertion of Proposit ion 2 is equivalent to the linear independence of any two 
monomials in {bl, b2 . . . . .  cl ,  c2 . . . . .  d 2, d 3 . . . .  }. This follows from (b) above, 
and unique factorization in Y. 

Also it is easy to see that the analogue of Proposit ion 1 is false for every 
sufficiently large BC..  In fact, consider 

bk Ck dk + 1 
bT' b~-~ ' bk+, e q ( x ,  . . . . .  x2m ) 

for 1 _< k-< m. Leaving out 1 = b fib 1, they form 3 m -  1 distinct nonscalar elements 
in a field of transcendence degree 2m over Q. Therefore, if m >  1, they satisfy 
non-trivial polynomial  equations with rational coefficients, i.e. there exist non- 
trivial linear relations between monomials in these elements. After multiplying 
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through by a sufficiently large power of b~, we get non-trivial linear relations 
between monomials of equal weight, where each of bk, Ck, dk has weight k. If 
the total weight of such a relation is n, then this shows that there exist 
W(BC,)-inequivalent subsystems ~ . . . .  , cb ,~BC,  of rank n, such that the 
F(q~l) . . . . .  F(q~) are linearly dependent. 

We can now prove Theorem 3. Fix such q~cBC, .  For each i let G~ be 
a semisimple group and T~ ~ G~ a maximal torus with q~ ~ Z" = X (T~) the associat- 
ed root system. We shall construct elements v~ . . . .  v, in Y,, such that for all 
i, j there exists a faithful representation V~j of G~ with formal character v;. If 
we require that the image of G~ in GL(Vu) contains no scalar matrix except 
the identity, then 

V= @) V, < .  |  | V~(~) 
qEAr 

and 

V t= @ Via(l> |  | Vro-tr> 
aeS~\Ar 

are faithful representations of G = l |  Gi. 

Lemma. We can choose vi and V 0 as above so that the stabilizer in GL(Z r") 
of the formal character of V is W,r>~Ar . (Recall that W, = { + 1}'>~S,.) 

Proof. Given any semi-simple Lie algebra g with weight lattice X=A, tg )  and 
Weyl group W, every element p e Z  [X] w corresponds to a virtual representation 
of g. The condition that p correspond to an effective representation can be 
expressed by saying that the coefficient of every vector x e X  must be larger 
than some linear combination of the coefficients of vectors of greater length 
than x. In particular, if we start with some value of x and declare that its 
coefficient is 1 and that no longer vectors has non-zero coefficient, we can then 
proceed inward, making each coefficient sufficiently large as we go. Of course, 
in choosing the vi we have to satisfy effectivity conditions for many Lie algebras 
simultaneously, but we can always satisfy a finite number of conditions of the 
form (coefficient of x)>Cu If we choose v 1 with longest vector (1, 2, ..., n), v2 
with longest vector ( n + l ,  n + 2  . . . . .  2n), and so on, we see that the orbit of 
vl | ... | vr under W~,/W, r consists of linearly independent elements of Z[Zr"]. 
Indeed, each w(vl | ... | vr) possesses a w([ l ,  2 . . . . .  rn]) term, which no other 
z(vl | ... | vr) can have. We conclude that the trace of vl | ... | vr under Ar 
is invariant by W,~><A, and no more. Finally the v~ can be chosen such that 
every V u contains at least one copy of the trivial representation. This guarantees 
that the condition about scalars is also satisfied. [] 

We have constructed faithful representations (V, p) and (V', p') of G. Letting 
T =  lq~= 1 Ti, by the lemma we have F = Aut(T, PT)= W,r>~Ar " Thus by construc- 
tion p~--- w(Pr) for every we W.~>~Sr - W[><A,, but for no element we W,">~A~ =/2. 
In particular the pairs (G, V) and (G, V') are not isomorphic, and Aut(T, p~,) 
is also equal to E Finally the linear dependence of the F(q~) means that 

F(~a) A ... A F (~,)=O 
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in A ' Q  [Z"]. This implies that 

F =  E 7(Fe) = E 7(F,, e ... | F~r) 
7~ F 7e W'n>~Ar 

: z o ( $  z 
~ E A  r \ i = 1  w f i W  n ] a ~ A r  \ i = 1  / 

is invariant under the whole of W2>~S,. Thus the triples (T, pr, QF ) and 
(T, p~, QF) are isomorphic, so by w 1 Proposition 2, the dimension data for (G, V) 
and (G, V') coincide. []  

One of the simplest examples that can be constructed by the above method 
is the following. We have seen that there is a non-trivial linear relation between 
monomials in bl, b2, c~, c2, d2, d3 of equal weight. It is easy to check that 
there exists no such relation for a proper subset of these elements. Explicit 
calculation shows that there is a non-trivial relation between 13 distinct mono- 
mials of total weight 6. The above construction yields a semisimple group of 
rank 13 x 6=78.  It can be checked that it consists of 60 almost simple factors 
of abstract type A1, B2, and A 3. Clearly the smallest representation in the 
above lemma must be rather large. 

4. A weight argument 

In this section we consider a faithful irreducible representation (V, p) of a con- 
nected semisimple group G. Let T be a maximal torus of G, and Pr the restriction 
of p to T. We want to study to what extent the isomorphism class of (G, V) 
is determined by the isomorphism class of (T, Pr). Under  the given assumptions, 
it turns out that the ambiguities can be described completely. 

If (G/, V/) and (G'i, Vii') are pairs of irreducible representations of semisimple 
groups with the same formal character, then (G1 x ... x Gk, V1 |  | Vk) and 
( G '  1 • . . .  • G~,, V~ |  | Vk' ) have the same formal character. So in order to 
describe all ambiguities, it is enough to give a generating set of ambiguous 
pairs. This set is described in the following theorem. Using it, at the end of 
this section we prove theorem 2. 

Theorem 4. Let T be a torus, and Pr a faithful representation of T. Suppose that 
there exists a connected semisimple group G, a faithjul irreducible representation 
p of G, and an isomorphism between T and a maximal torus of G, such that 
Pr is the pull-back of p. Then the pair (G, p) is uniquely determined up to isomorph- 
ism by (T, Pr), except for the equivalences generated by the following exceptions: 
(a) The spin representation of B, restricts to the tensor product of the spin repre- 
sentations of ~ B,, c B,, Y'.ni = n. 
(b) For every n>2 the representations of C, and D, with the highest weight 
(k, k -  1 . . . . .  1, 0 . . . . .  O) for 1 < k < n -  1 have the same formal character. 
(c) There are unique irreducible representations of A2 and G2, of dimension 27, 
which have the same formal character. 
(d) There are unique irreducible represenations of D 4, C4, and F 4, of  dimension 
4096 = 212, which have the same formal character. 
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Here as usual the conventions B 1 = A~, D 2 = 2A~ c C2, and D 3 = A 3 are in force. 
Moreover the relation for  D 2 c C  2 in (b) is the same as that for 2 B l C B  2 in 
(a), and the relation for D 4 ~ C 4 in (b) is the same as that in (d). 

Proof  Since p is faithful, it suffices to prove that the root system of G is uniquely 
determined in X = X ( T ) |  with the exceptions mentioned above. Let F 
=Aut(T,  P T), and X - - @  X i be a decomposition into F-irreducible subspaces. 
Letting �9 denote the root  system of G, the representation of W(4~) on X contains 
every irreducible representation at most once. Since F ~ W(4~), the same follows 
for F, so the realization of each X i as a subspace of X is unique. Now with 
4) i = X i c~ ~ we have �9 = ~ 45 i. Moreover Pr  e Z IX]  ~- @ Z [Xi] splits canoni- 
cally as @ p~, where pg is the formal character of a faithful irreducible representa- 
tion of the Lie algebra with root system ~ .  This decomposition cannot depend 
on G because an element of C [x~  . . . . .  x [ ,  y (  . . . . .  y [ ]  can be written as a 
product of a Laurent polynomial  in x and a Laurent polynomial  in y in at 
most one way (up to scalars). Indeed, f l  (x) g 1 (Y) =f2 (x) g2 (Y) implies f l  (x)/f2 (x) 
=g2(Y)/gl (Y), which means both sides must be constant. The Pi are normalized 
by the condition that they are formal characters of irreducible representations 
and therefore have non-negative integral coefficients with g.c.d. 1. This allows 
us to reduce the problem to the case that F acts irreducibly on X. 

Consider the subgroup of X generated by all differences of weights in Pr.  
Since p is an irreducible representation of G, any two such weights differ by 
a linear combination of roots, so this subgroup is contained in the root lattice. 
But p is faithful, so in fact we have equality. This shows that the root lattice 
Z4~ is determined by (T, Pr). As in w 1, Pr determines a canonical positive definite 
inner product ( , )  on X. Our next aim is to extract as much information as 
possible from the data (Z 4~, ( , ) ) .  

We say that a lattice A in an inner product space factors as A t x A 2 if 
A = A I @ A  2 and A t •  A lattice is irreducible if it does not have a non-trivial 
factorization. It is well-known, and easy to check, that with respect to a positive 
definite inner product,  factorization into irreducible lattices is unique. 

Lemma. Let  4) be a simple root system in a euclidean space X .  
(a) The shortest non-zero vectors in Z ~  are jus t  the short roots. 
(b) I f  all roots in �9 have the same length, then the root lattice o f  q) is irreducible. 

Proof  A consideration of the rank-2 root systems shows that every pair of 
roots which form an obtuse angle have a sum which is also a root. This shows 
that every non-zero sum of roots 2 can be written as a sum of roots, every 
one of which makes an angle __< n/2 with every other. Fix one such root, e. 
Then (2, c~)> (~, c~), so (2, 2 ) > ( c q  ~), with equality if and only if 2=~.  This 
gives (a). For  (b), suppose that A = Z r  splits non-trivially as AI (~A2 .  Then 
the shortest non-zero vectors in A all lie in A I U A 2 .  By (a) this forces 4~ to 
split, contrary to the assumption. [ ]  

Proposition. Let  q~ be an arbitrary root system in a euclidean space (X, ( , ) ) .  
Then q~o is determined by (Zq~, ( , ) ) .  

Proof  The short roots generate the root lattice, i.e. Z4~=Zqb ~ Let 4 i o = ~  O~ 
be the decomposit ion into simple factors. Then by part  (b) of the lemma, Z4~ 
= @ Zf2~ is the (unique) decomposition into irreducible lattices. By part (a) 
of the lemma, every f2~ is determined by its lattice. [ ]  
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Coming back to our situation, this shows that q~~ is determined by the 
given data. Moreover by the definition of ( ,  >, F consists of isometries of Z4~. 
Since F acts irreducibly on X, the lattice Zq~ is an orthogonal direct sum of 
isometric irreducible lattices. In particular 4,~ is isotypic, say of simple type 

o ~  n O. Since (B,) =A1,  ( C , ) ~  (F4 )~  and (G2)~ by classification ~P~ 
is simple for every simple root system 7 ~ not of type B,. 

Assume that Q ~ A 1 ,  then 4~=Y'.q~i with cbl simple and ( 4 , f ~ O .  Then PT 
= (~) pi, where each p~ is the formal character of an irreducible representation 
of a Lie algebra of type ~ .  Since all p~ are determined by our data, we are 
reduced to the case where �9 is simple. Then the only ambiguities are between 
different simple root systems with the same short roots. By classification we 
only have to consider the following pairs of types: D . ~ C ,  (n>3), D4cF4, 
C 4  c F 4 ,  and A z c G  2. 

We introduce the following notation. For  any reduced root system 4, and 
any f ~ Z [ A o ]  we let 

a l t o ( f ) =  ~ s g n ( w ) . w f .  
w ~ W ( O )  

If 2EX is regular, the Weyl orbit of [2] consists of IWI linearly independent 
elements of Z[A~] ,  so a l t o ( [2 ] )#0 .  Moreover, for any collection of regular 
{2i}, no two of which are Weyl-conjugate, the alto([2i])  are linearly independent. 
On the other hand, if 2 is singular, it lies on a wall of some Weyl chamber 
and is therefore invariant under some reflection in W; it follows that a l t , ( [2 ] )  
=0.  If 2~A o is a dominant  weight, we let 

qo(2) = alto( [2 + 60) 3 ), 

where 6o is one half the sum of all positive roots in q~. Weyl's theorem ([3] 
w 24.3) says that qo(O) p T = q o ( 2 )  if Pr  is the formal character of the irreducible 
representation with highest weight 2. Moreover 

a E ~  + 

Let ~bc 7 j be as above, then any order on 71 induces one on q~. By the last 
formula we get 

Ho+ i 
If 2 is a dominant  weight for ~, and the irreducible representations of both 
Lie algebras with this highest weight have the same formal character Pr,  then 
it follows that 

q~,(2) = q ~  q~(O) Or = qo(2) 1] -- -- �9 
a E ~  + \ O  + 

Let us apply this in the case 4~ = D, ~ C, = ~, for n > 2. If 2 =(21 . . . . .  2,) is 
the highest weight of our given representation, then 21> ... > 2 , > 0 .  Since 
(21 . . . .  , 2 , - 1 , - 2 , )  occurs in the irreducible representation of D, of highest 
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weight 2, and is itself dominant  for D., we must have 2, = 0. Writing {ei ll < i <  n} 
for the standard basis of Z", we calculate 

([1[ l) altoa a ( ) qD.(2) l~ ~ - - - - ~  [2+6D.] ([ei]--[--e'i]) 
~eC,~ \D~  i= 1 

=al tc .  [ 2 + 6 c J  I~ ( 1 - [ - 2 e i ]  . 
i=1 

This is equal to qc,(2) if and only if 

(6) Y~(- 1) Isl altc~ + 6 c , -  2 2ei]) = 0, 
S i e S  

where the sum is extended over all nonempty subsets S c { 1 ,  . . . ,  n - 1 } .  Since 
6c=(n . . . . .  2, 1), I~s=2+6c- ~ 2~i is regular unless at least one of the follow- 

ing conditions holds: i~s 
i) 21=21+ 1 =2i+2,  ieS, i+2r (for some 1 <i<n-2). 

ii) 2 i = h i + 1 + 1, i e S, i + 1 ql S (for some 1 < i < n - 1). 
iii) 2,_ 1 = 0 and n -  1 e S. 
If, for $4~S', #s and /~s, are both regular, they cannot be Weyl-conjugate. 

Indeed, the coordinates of both are positive, so they could only differ by a 
permutation. But we have coordinate inequalities 

(#s)i > ( u s ) j -  1, (Us,)i >(uS, ) j -  1, 

for j >_ i and the parity condition/~s-/~s,  s 2 Z", so this is impossible. We conclude 
that (6) is equivalent to the condition that #s is singular for every 04=Sc  
{1 . . . . .  n--  1}. When S =  { n -  1}, conditions (ii) and (iii) imply 2,_~ e{0, 1}. When 
S =  {i}, 1 < i <  n - 2 ,  conditions (i) and (ii) imply 2ie{2i+ 1 + 1, 2i+2}. Taking into 
account the inequalities 21 > ... > 2 , = 0  one easily proves that this leaves only 
those 2 specified in the theorem. Conversely, for such 2, it is easy to verify 
that the above condition holds for all S. This finishes the case D, c C,. 

The cases D4cF4, C4~F4,  and A z c G  2 c a n  be treated along the same lines, 
with no new idea needed. Note that these cases can also be treated by finite 
computat ions since the rate of growth in Weyl's dimension formula guarantees 
that 

dim(W.(2))>dim(Vc.(2))>dim(Vn.(2)) and dim(VG~(#))>dim(VA:(lt)) 

for all but finitely many dominant  weights 2, ~. The remaining cases can be 
checked using tables, e.g. [4]. 

We come back to the case q~~ Identifying the root lattice with Z" 
in the standard way, q~ becomes a root subsystem of B., and F becomes a 
subgroup of W(B,)= {_+ 1}">~S, that contains { _  1}". The weight lattice of 4~ 
is contained in that of ~~ which is �89 under our identification, so we can 
consider P r  as an element of Z [�89 Z"]. 

Define an equivalence relation on the set {1 . . . . .  n} by i~j if and only if 
the permutat ion (i j) is in E Since F acts irreducibly on X, it acts transitively 
on this set, so all equivalence classes have the same size, say m. These equivalence 
classes define a decomposit ion Z"=(Z" )  k. Since F contains the Weyl group 
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of 4), every root in 4) must already lie in one of the factors. In other words, 
we have a corresponding decomposition 4) = ~ =  1 4)~- Now Pr  splits accordingly 
as @ =  1 Pi. Up to scalars, the pi are determined by Pr. Since they correspond 
to irreducible representations, the coefficients of the highest weights are 1, so 
the requirement that all coefficients be non-negative integers determines them 
completely. Having decomposed 4) and Pr  canonically into products, we can 
check the assertion factor by factor. We may now assume that F = { + 1 }n>~S,. 

By unique factorization in the ring Z[�89 there exists a unique finest 
n k decomposition Z - @ i = ~  Zn' so that P r = @f=l  P~ with p ~  Z [�89 Z"']. Again the 

p~ are uniquely determined if we require each coefficient to be a non-negative 
integer. Since F fixes Pr  and acts irreducibly on X, it transitively permutes 
the factors Z n' and the p~. But clearly the only S,-invariant decompositions 
are the trivial decomposition (k= 1) and the complete decomposition (k=n). 
In the first case Pr cannot decompose at all, hence 4) is simple. Then we must 
have 4)= B,, and there is no ambiguity. 

In the second case we have p~.~p~" with p~eZ[ �89  and we may assume 

that n>-_2. The highest weight of pr is then of the form )~=(- 2 . . . . .  2 )  for some 

integer m >  1. Since Or is the formal character of an irreducible representation, 

(2  ..... it is well-known (e.g. [3] w 22 ex. 1) that the multiplicity of 2 '  - 

is 1 for any even integer O<_i<_2m, and 0 for all other i eZ .  This implies that 
all non-zero coefficients of pl  are 1, and the same follows for Pr- But with 
Freudenthal 's  formula ([3] w 22.3) one easily checks that the multiplicity of 

. . . . .  ~ ,  ~ 1 , -~ - -1  is 2 i f  m>2.  Thus we must have m = l ,  and p l = [ � 8 9  

+ [ - � 8 9 1 8 9  This is the formal character of the standard representation 
of SLz, viewed as the spin representation of B:.  Clearly p~k is the formal 
character of the spin representation of Bk, for every k. This shows that, with 
the given choice of p~, p r=p~  ~ comes from an irreducible representation of 
every root system 4)= ~ B , ,  : this is the exception (a) in theorem 4. []  

Proof of Theorem 2. By w 1 Proposit ion 1, (T, Pr) is determined by dimension 
data. Let F =  Aut(T, Pr), and as in the proof of Theorem 4 consider the unique 
decomposit ion X = X ( T ) |  = @ Xi into F-irreducible subspaces. Since F and 
the root  system 4) of G respect this decomposition, so does 

F= y, 7(Fe)eQ[X(T)]. 

(Cf. w 2 Proposit ion 1.) We are therefore reduced to the case where X is F-  
irreducible. 

In this case, Theorem 4 shows that either 4) is isotypic and is uniquely deter- 
mined by Pr,  or Pr is an ambiguous representation, and 4) is one of cCn+dD, 
(n>3), cC4+dD4+fF4, aAz+gG2, or Y B, , .  By Theorem 1, the latter cases 
are dlstmgmshed by F. Moreover, Theorem 4 lmphes that F=Aut(4)~ so the 
isomorphism class of 4) determines that of (4), Pr), as desired. (Remark: After 
the reduction to the F-irreducible case, as above, an estimate of the longest 
vector occurring in F, as in w 2, leads to an independent proof  of Theorem 2.) 
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