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0. Introduction 

In [-Krl, Kr2]  Kronheimer constructed and classified all ALE hyperk/ihler 4- 
manifolds which were originally discovered by physicists [EH, GH].  There he 
proved that for each finite subgroup FcSU(2) ,  there exists a family of ALE 
hyperk/ihler metrics on the minimal resolution of the quotient variety C2/F 
and then showed that they exhaust all ALE hyperk~ihler 4-manifolds. On the 
other hand in the joint  work with Bando and Kasue [-BKN], the author pointed 
out that they bubble off from points at which the curvature of a sequence 
of Einstein metrics become concentrated (see also [An, Na]) and proved that 
the existence of ALE coordinate system results from the finiteness of L2-norm 
of the curvature and the maximal volume growth order condition. In both 
works it becomes apparent  that ALE hyperk/ihler 4-manifolds share the same 
properties with Yang-Mills instantons on R 4, and so we think that they have 
as rich mathematical  structures as Yang-Mills instantons. 

In this paper we study the (framed) moduli  space M of anti-self-dual connec- 
tions on a principal bundle over an ALE hyperkfihler 4-manifold. It has the 
natural Riemannian metric gM and the hyperk/ihler structure (1M, JM, KM) in- 
duced from those on the base manifold. The constructions of these structures 
are very natural, and were carried out over compact hyperk/ihler 4-manifolds 
by Itoh /-I3] and Hitchin EH2]. The existence of these structures is strong 
enough so that we can almost determine the moduli  space at least when it 
is 4-dimensional. In fact, we shall prove the following: 

(0.1) Theorem. Let (X, g, Ix, Jx, Kx) be an ALE hyperkdhler 4-manifold which 
is diffeomorphic to the minimal resolution of tE2/F and P a principal bundle over 
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X with the structure group G (a compact Lie group). Let M = M(P, k, p) denote 
the (framed) moduli space of  anti-self-dual connections on P with an instanton 
number k and asymptotic to a f lat  connection on S3/F associated with a homo- 
morphism p: F ~ G (see w 2 for more precise definition). Suppose that M is nonempty 
and 4-dimensional. Then 

(1) the moduli space M is a nonsingular manifold which has a natural Rieman- 
nian metric gM and a hyperkiihler structure (1M, JM, KM), 

(2) the metric gM is complete, 
(3) each noncompact component of  (M, gM) is an ALE 4-manifold. 

We remark that the existence of a hyperk/ihler structure on noncompact 
gravitational instanton is announced by I toh [I 3, p. 583, Remark (v)]. 

It is easy to figure the shape of the moduli  space. When the sequence of 
anti-self-dual connections goes to infinity in the moduli  space, their curvature 
become concentrated at infinity of the base manifold. If we choose an appropriate  
sequence of rescalings of the metric, the connections converge to an anti-self-dual 
connections on IEz/F. Conversely the Taubes'  existence theorem gives a diffeo- 
morphism �9 from the moduli  space on II~2/F to the end of the moduli  space 
on X. We shall prove that the moduli space M r on I122/F is isometric to 
IIJ2\{0}/F ' for some finite subgroup F ' c  SU(2) (possibly different from F) when 
dim M r= 4, and so that the map cb defines a coordinate system at infinity. 

Since the topology of an ALE hyperk/ihler 4-manifold is determined by 
the fundamental group of the end (see Fact  1.2), we can determine that of the 
noncompact  component of the moduli space by studying the moduli  space on 
11~2/F. But to determine moreover the hyperk/ihler structure we must know the 
cohomology classes of three K/ihler forms. For  the examples given below we 
can know them by constructing a homomorphism between two cohomology 
groups of X and M. 

(0.2) Theorem. Let (X, g, I x, Jx, Kx) be as in Theorem 0.1 and (oo x, ~o x, ~o x) the 
Kiihler forms associated with (Ix, Jx, Kx). We consider the root system R associat- 
ed with the finite subgroup F c S U ( 2 )  as a subset o f  H2(X; 7Z) (see Sect. 1 for 
the correspondence between binary polyhedral groups and root systems). For each 
root Z of  R, there exists a complex line bundle L~ over X such that the reducible 
connection D associated with the reduction E = ~_ G Lz (C is the trivial complex 
line bundle) is in a 4-dimensional moduli space M = M (P, k, p) with 

(1) G = U(2), 
(2) k = 1, 
(3) p is trivial, 
(4) c I (Lz) is the Poincar~ dual of  Z e H 2 (X; 7Z). 

Moreover M is isometric to the Eguchi-Hanson space and its Kgihler forms 
(a~?, (ny, to~) satisfy 

[coN] (~) = [co x] (I3, 

where cr is a generator of  H2(M; ~'). 

The Eguchi-Hanson space is the simplest ALE hyperk/ihler manifold diffeo- 
morphic to T'*tEIP 1 the holomorphic cotangent bundle of the projective line. 

(0.3) Theorem. Let (X, g, Ix, Jx, Kx) be as in Theorem 0.1. There exists a noncom- 
pact component M o of  the 4-dimensional moduli space M = M (P, k, p) with 

(1) G=SU(2),  
(2) k = ( l F [ -  1)/IF[ where IF[ is the order ofF, 
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(3) p is equal to the inclusion map F~* SU(2), 
(4) M o is diffeomorphic to X. 

I f  the group F is a cyclic group (i.e. F is of  type A,), (Mo, gM, IM, JM, KM) 
is isomorphic to the base manifold (X, g, lx, Jx, Kx) as a hyperkiihler manifold. 

We owe the choices of p and k in Theorem 0.3 to Furuta  and Hashimoto 
[FH]  who have studied the moduli  space of anti-self-dual connections on 1122/F 
in detail. 

We conjecture that every component of the moduli space M in Theorem 0.1 
is always noncompact. We remark our results imply that each compact compo- 
nent, if exists, must be a K 3 surface or a torus since they are the only compact 
hyperk~ihler 4-manifolds. 

In the explicit descriptions of moduli space of anti-self-dual connections 
on S 4, so called the twister method has played an important  role to reduce 
the problem to the algebraic geometry. However in our cases our method is 
purely differential geometric. The keys to the proof are the existence of the 
hyperk/ihler structure on the moduli space and the study of the behavior of 
the metric on the end. In the spirit our method is similar to that used by 
Mukai  who has studied the moduli space of stable sheaves on a K3  surface 
[Mu]. In fact, our results are inspired by his results. The key to his results 
is also the existence of the hyperk/ihler metric (which is essentially equivalent 
to the existence of holomorphic symplectic structure in his papers). 

The method to determine the hyperk/ihler structures of the moduli  spaces 
in Theorems 0.2, 0.3 is very similar to the calculation of the polynomial  invar- 
iants defined by Donaldson for compact 4-manifolds [D4].  Recently Floer IF1] 
introduced the homology groups graded by 7Z 8 for homology 3-spheres. Donald- 
son pointed out that the polynomial invariants should take values in Floer 
homology groups for the compact 4-manifold with boundary which is homology 
3-sphere (see [At]). Although the quotient space S3/F is not homology 3-sphere 
except when F is the binary icosahedral group, our results seem to suggest 
that the definition of the Floer type homology groups for S3/F is possible and 
give examples of the calculation of the polynomial invariants for manifolds 
with boundary S3/F. 

The organization of this paper is as follows. In Sect. 1, we shall review the 
results of [ K r l ,  Kr2]  for the convenience of the reader. In Sect. 2, we shall 
study the moduli  space of anti-self-dual connections on the ALE 4-manifold 
to prove that it is a nonsingular manifold and has a natural Riemannian metric. 
In Sects. 3, 4, we shall give two types of existence theorems of anti-self-dual 
connections. In Sect. 3, we shall use reducible connections, and in Sect. 4 we 
shall give Taubes'  existence theorem. In Sect. 5, we study the behavior of the 
metric on the end of the moduli  space when it is 4-dimensional using the esti- 
mates obtained in Sect. 4. In Sect. 6, we shall study the period of the moduli  
spaces given in Theorem 0.2, 0.3. 

The author would like to thank Dr. M. Furuta  and Dr. Y. Hashimoto for 
many valuable discussions about the moduli spaces on ~2/F. 

After the completion of this work, in the joint  work with P. Kronheimer, 
the author obtained a description of the moduli  space by certain finite dimen- 
sional matrices when the structure group is a unitary group, which is a general- 
ization of the A D H M  construction. Theorem 0.2 and 0.3 also follow from this 
description. 



270 H. Nakajima 

1. ALE gravitational instantons 

We say an oriented Riemannian 4-manifold (X, g) is an asymptotically locally 
Euclidean (we abbreviate it to ALE in this paper) manifold of order z > 0  (cf. 
[-Ba, LP, BKN]) if there exist a compact set K c X ,  a C~-diffeomorphism Y': 
X \ K  ~ 4 \ B R ) / F  for some R > 0 and a finite subgroup F c SO (4) acting freely 
on N 4 \ B  R such that the metric g is represented in the coordinates ~ as 

gij(x)=6~j+aij(x) for XE~_4\BR, 

where a~j satisfies 

p times 

(1.1) [O...da~j(x)[=O(Ix[ -p-~) for p = 1 , 2 , 3  . . . . .  

The definition is slightly different from the one used in [BKN].  The above 
definition requires the decay of all higher order derivatives of a~j, though we 
only assume that up to C 1'~ in [BKN].  But for ALE hyperk/ihler spaces these 
definitions are equivalent since we can derive the decay of higher order deriva- 
tives from the Einstein equation using Schauder estimates. 

The hyperk/ihler structure on a Riemannian manifold (X, g) is, by definition, 
three parallel almost complex structures (I, J, K) which satisfy the quaternionic 
relation IJ  = - J I  = K. Then there exist three associated KS.hler forms ~o~, ~Os, 
O K . 

Let F be a nontrivial finite subgroup of SU(2). It is well-known that these 
subgroups correspond to root systems and are classified as follows (see [Kr  1] 
and the references therein): 

where ( is a primitive (n + 1)-th root of unity, 

D,: F = D*_ 2 the binary dihedral group of order 4 ( n -  2), 

E6: F = T* the binary tetrahedral group, 

E7: F = O* the binary octahedral group, 

Es: F = I* the binary icosahedral group. 

The group F acts on ~2 and the action is free outside the origin 0. The singularity 
of the quotient space ~E2/F at the origin is called a rational double point and 
has been studied by many mathematicians. Let n: S ~  1 ~ 2 / / "  be the minimal 
resolution. We denote its underlying differentiable structure by X. Kronheimer 
[Kr  1, Kr2 ]  proved the following: 

(1.2) Fact.  Let ~ti, ~ts, ctK6H2(X; ~ )  be three eohomology classes satisfying the 
non-degeneracy condition 

(*)for each ~ ' ~ H 2 ( X ; ~  ) with 2 ~ . , ~ = - 2 ,  there exists A e { I , J , K }  with 
~A (S )*  O. 

Then there exist a Riemannian metric g and a hyperkgihler structure (I, J, K) 
on X such that the cohomology classes of  the Kgihler forms [coal are the given 
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et A (A = I, J, K) and the metric is ALE of order 4. Conversely all ALE hyperkdhler 
4-marigolds of  order 4 are obtained in the above manner and their isometry classes 
are uniquely determined by the cohomology classes etr, ets, Ctr. 

The exceptional set ~--1(0) of the minimal resolution of ~2/F decomposes 
to a union of II2~ 1 

~ -  1 (0) = Z 1 '-t- 222 -I" . .. -I- Zn , 

and the intersection matrix (Xi. X j) is the negative of the Cartan matrix associated 
with the root system. In this way the set {E~ . . . .  , X,} of irreducible components 
of the exceptional set can be identified with the set of simple roots. On the 
other hand the set of the homology classes {[225] . . . . .  [22,]} gives a basis of 
H2(X; 7/). Hence there is an isomorphism between H2(X; 7/) and the root lattice 
L. 

The same correspondence between the group F and the root system was 
discovered by McKay [Mc] in a different manner. Let {Po, P~ . . . . .  p,} be the 
set of all irreducible representations of F with P0 the trivial representation. 
Let pe be the canonical 2-dimensional representation defined by the inclusion 
F ~ SU(2). We define the matrix A = (a~j) by the decomposition formula 

PQ @ Pi= @aijPj, 
J 

where aij denotes the multiplicity of pj in pQ| Then the matrix 2 I - A  is 
the extended Cartan matrix with P0 corresponds to the negative of the highest 
root. 

Gonzalez-Sprinberg and Verdier [GV] give a geometrical explanation of 
the McKay correspondence as follows: 

Let Mi be a reflexive Cc2/r-module defined by a nontrivial irreducible repre- 
sentation Pl of F. We denote by M~ the C,~-module ~*M]tors ion .  Then ~r i 
is locally free, and {cl (2~1) . . . . .  cl (/~,)} defines the dual basis of {[Z~] . . . . .  IX,I}. 

2. Local structures of moduli spaces 

In this section we study local structures (e.g., manifold structure, Riemannian 
metric, K/ihler structure, hyperk~ihler structure) of moduli  spaces of anti-self-dual 
connections on general ALE 4-manifolds (not necessarily hyperkghler). The cor- 
responding results for compact 4-manifolds have been obtained in [D 1, FU, 
I2, I3, H2].  Our results are modifications of their results to ALE manifolds. 
Such modifications to non-compact  manifolds were already done by Taubes 
[T4] for manifolds with periodic ends. To save labor, we refer to his results 
by changing the ALE metric to a cylindrical metric conformally, though it 
is also possible to prove results by using analysis on ALE manifolds directly 
(see e.g. [Ba]). 

Let (X, g) be an oriented ALE Riemannian 4-manifold of order r > 0 with 
the coordinate system at infinity ~ :  X \ K  ~ ( N 4 \ ~ ) / F .  Let P be a principal 
bundle over X with a structure group G (a compact Lie group) and Ad P the 
adjoint bundle associated with P (i.e. the associated vector bundle with fiber 
the Lie algebra g by the adjoint representation Ad: G-~ GL(.q)). We take a 
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homomorphism p: F ~  G which will be identified with a flat connection on 
S3/F. We assume that P has a connection A 0 such that 

(2.1) Ao= p on {t}•215 for t>=R. 

We define weighted Sobolev norms on the space Q~(Ad P) of Ad  P-valued k- 
forms with compact supports. We follow the notat ion of [Ba, LP]. Let 
r(p)=]Yf(p)[ on X\K, extended to a smooth positive function on all of X. 
Fo r  a nonnegative integer 1, 6~IR and p > l ,  the Sobolev norms II'll,,p,~ on 
ok (Ad P) are defined by 

1 jt imes 

(2.2) Ilell,.,,~ = E { J" [ 17Ao .-. VAoCtlPr-'~-J)P-4dV} '/p, 
j=O  X 

where Vao is the covariant differentiation associated with A 0. We denote by 
W0 I'p (f2k(Ad P)) the completion of f2~ (Ad P) by the norm H" ]] z,p,~- 

We say a connection A is asymptotic to the flat connection (or to the homo- 
morphism) p in W~ ~'p, if we can write A = A  o + c~ with 

II~EE.,,< oo. 

The connection A naturally induces the exterior differential operator dA: 
f2~ (Ad P) ~ f2ko + a(Ad P) and its formal adjoint d*: f2~ + l (Ad P) ~ f2~ (Ad P). 

Fix an integer l >  1. We define the space ~r of Sobolev connections and 
the group f~g+ 1 of Sobolev gauge transformations by 

d t .'={A o + cr I ~r Wt_'~ (Q ' (Ad P))}, 

~ +  t 0={sE W~to~ + "2(g2~ Ils- idl l t+ , .2 , - ,  < 00, seG a.e.}, 

where G is considered as a linear subgroup by a faithful representation G 
~GL(V) and End(V) is the associated vector bundle. The group ~+1  acts 
smoothly on d ~ by pullback 

Vs.(A) ~ S -  1 o VA O S. 
Our group ~g+l is slightly different from the usual gauge group since it only 
contains automorphisms converging to the identity. We introduce the gauge 
group ~ t+ l  which naturally acts on d t .  Let Gp be a subgroup of G defined 
by 

Gp={s~Glsps-l=p}. 

We regard s~Gp as a section of End(V) by setting s on X \ K  and extending 
smoothly to the whole X. Then ~l+ 1 is defined by 

(~l+ t ..= {s ~ Wlto+ 1,2(DO(End(V))[s~G a.e., 

HS--SooHI+ 1 , 2 , -  I < O0 for s o m e  soo~Gp} .  

The quotient space ~ t  = ~l/ff~+ 1 is the moduli  space of connections on P asymp- 
totic to p. (The moduli  space is usually defined as the quotient of the gauge 
group ff~ + t for compact manifolds, and the quotient of ~o § 1 is called a "f ramed" 
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(or "based")  moduli  space. But since we are concerned only with ~t, we call 
it the moduli space for brevity.) 

To give a manifold structure on ~ ,  we change the metric conformally and 
refer to  results of [T4]. F rom coordinates at infinity 2": X\K-- -~( IR4\BR) / I  ", 
we have cylindrical coordinates 

~ :  X \ K ~ S 3 / F x ( R ,  ~ ) ,  

where ~ -  ~ (0, u) = f -  1 (e . 0). By a conformal change with factor r -  2 the metric 
g is approximated by the standard metric of the cylinder: 

(0~/- 1)*(r- 2 g ) = d u  2 +d02 + O(e-~2 +ou). 

We denote the new metric r - 2 g  by g'. Then 

j i 0 jtimes t 
~ e 2u " , 

= ~s ~ w,L + ~, ~ (~o (End (V)) 

I jtimes 

Z ~e2UlVAo'"~ VA~(S--id)l~ ' dV,,<oo,  s~G a.e.} 
j = O X  

where the norm l l,, and the volume element dVg, are with respect to g'. Hence 
the spaces d ~, (r are isomorphic to the corresponding spaces in I-T4] where 
the weight (6 in the notat ion of [T4]) is equal to 2. The Hodge star operator  
%, with respect to g' relates to the original star operator  by 

In particular, we have 

d ~ a = 0  

, = e(4 - 2 k)u ,g,  o n  k-forms. 

if and only if .g, dA*g, e 2 u ~ = 0 for a 1-form ~. 

We then have the following "slice theorem" [T4, Lemma 7.3]: 

(2.3) Proposition. The quotient space Mt=~Ct/ff~+l is a C~-Banach manifold 
and the projection ~: d I ~ Ml defines a principal fCzo+ m_bundle. The tangent space 
to [A] ~ z  is isomorphic to the slice 

S A ' = { ~  1,2 , *~=0}. W2 2 ((2o (Ad P))] d A 

Remark.  It is not  explicit that  results in IT4, Sect. 5, 7, 8] hold for the specific 
weight value 2. But if we restrict our concern to ALE manifolds, it can be 
shown to be true (cf. [LM, Sect. 9]). 

Next we consider the moduli  space of anti-self-dual connection. Let ~dsa 
be the set of anti-self-dual connections asymptotic to p, i.e. 

{A ~ d ' l  A is anti-self-dual}. 

Adapt ing the argument of [T4, Proposition 8.2] as above, we have 
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(2.4) Theorem. 7he quotient space ~,,A/f----~asd/ / ( t f l  +1 is a nonsingular C ~ manifold 
in a neighborhood of  [A] 6 M  if A satisfies 

0 = H,]. -1 ,=Ker d*: WL'~ (f2 + (Ad P)) ~ WL' 2 (f21 (Ad P)). 

Tne tangent space TtA ] M is isomorphic to 

H~A, _2..={a~Wt_'2(O'(AdP))ld~ a = d] a = 0}. 

It is worth while remarking that the moduli space is non-singular even at reduc- 
ible connections. It is the main difference from the compact case. 

When we want to specify the bundle P, the instanton number 

k = ~  1 8=2 j" IRAI2dV, 
X 

and the homomorphism p: F ~ G, we use the notation M(P, k, p) for the moduli 
space M. 

For a later purpose, we define the Kuranishi map following [I2]. For an 
anti-self-dual connection A, consider an operator defined by 

A a = d]  d* : W/-] "2 (f2 + (Ad P)) ~ W_t~ 1,2 (f2 + (Ad P)). 

If the assumption in Theorem 2.4 is satisfied, A A is invertible. Hence we can 
define 

EA: Wt-'2(f2a(AdP)) -~ W/-'22(f2'(AdP)) 

Then 
c~'-~o:+�89 1 [c~/x 5] + 

o~ESA, A + ~edla~d ~ ~A(~)~H1A,_ 2" 

Since the Fr6chet derivative of ~A at 0 is the identity map, we have the inverse 
- 1 defined on a neighborhood (9 of 0 in W~ 22 (g21 (Ad P)) by the inverse mapping ~ A  

theorem. This EA a defines a coordinate system of M around [A]. 
We set M = {[A] ~ m IH 2, _ 1= 0}. As in [I 2] we define a Riemannian metric 

gM on the moduli space M by 

(2.5) gM(o~, fl)= ~ g(a, fl) d V for a, fleH1A _ 2= TtA]f4 
X 

where the fiber metric on OI(AdP) is induced from the Riemannian metric 
g and an Ad-invariant metric on g. 

Now suppose (X, g) is a Kfihler manifold. The almost complex structure 
Ix induces in a natural way an almost complex structure 1M on Q~(AdP). As 
is proved in [I2], the almost complex structure IM preserves the space H 1 A, - 2 ~  

and is eovariant constant with respect to the Levi-Civita connection of gM. Hence 
(-~, IM, gu) is a K/ihler manifold. When (X, g) has a hyperkfihler structure 
(lx,  ,Ix, Kx), the moduli space (h4 r, gM) has also the hyperk~ihler structure 
(1M, JM, KM) (see [-I3]). (In fact, the existence of the quarternion structure on 
the tangent space of M, when the base manifold is an ALE gravitational instan- 
ton, was already noticed in [T 1]. Our assertion is that they are covariant con- 
stant.) 
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(2.6) Theorem. The moduli space IVI has the natural Riemannian metric gM defined 
by (2.5). When the base manifold X has the Kdhler (resp. hyperkdhler) structure, 
M also has the Kiihler (resp. hyperkgihler) structure. 

These properties can be proved using the moment map and the symplectic 
quotient method [ H K L R ]  as in [H 2, Ko, IN].  

The quotient group GJZ(G) acts naturally on M. In fact, the " larger"  gauge 
group ff*+~ acts on the space ~/asd and induces the residual action of 
fC*+x/fC~+l=Gp on M. The center Z(G) regarded as a subgroup of fCl+l acts 
trivially on M. Since the fiber metric of A d P  is ffz+~-invariant, the action of 
Gp on M is isometric. Moreover it is holomorphic (resp. triholomorphic) when 
X is K/ihler (resp. hyperk~ihler). If we translate the results proved on compact 
manifolds, we see that Gp/Z(G)-action is free outside reducible connections (cf. 
[FU, Theorem 3.1]). So each orbit of an irreducible connection is diffeomorphic 
to GJZ(G). The quotient space M/Gp is equal to ,~a.,a/(r and this coincides 
with the moduli space of anti-self-dual connections on the orbifold .~ which 
is usually used in the literature ([FS, La, FH]). 

Now we calculate the dimension of the moduli space 1~. We use results 
of [FS, La], compactifying X to an orbifold X = X w { ~ } by a conformal change 
of the metric g (see [Kr2,  p. 687]). Uhlenbeck's removable singularities theorem 
[U 1] implies the anti-self-dual connection A on X with finite curvature integral 
can be identified with an anti-self-dual connection on )(. 

For  simplicity, we assume that the structure group G is a unitary group 
U(r). (Although the dimension formula [FS, La] was proved only for G = SO(3), 
the adaptat ion is straightforward.) Let E denote the associated complex vector 
bundle of rank r. The flat connection p, to which anti-self-dual connections 
are asymptotic, defines an r-dimensional representation. We denote by Zp its 
character. 

(2.7) Theorem. The dimension of the moduli space l~4 at [A] is given by the 
formula 

dim M = dim Gp - ~ ch (E* | E) ch (S +) A (X) 
X 

21FI ~)~~176 1 - c o t ~ c o t  , 

where S + is the positive spinor bundle, IF I is the order of F, r(7 ) and s(7) are 
the rotation numbers corresponding to the action of 7e F at ~ .  

At the end of this section we remark that the results of this section are 
applied to the case that the base manifold is the quotient space R4/F, though 
R4/F  has a singular point 0 if F is nontrivial. In fact, if we consider IRg/F 
as an orbifold and work in the equivariant setting, our results are easily adapted. 
We explain more precisely; let P be a bundle over ~4/F, which is by definition 
F-equivariant  bundle over ~,4. Since the action of F on ~ 4  has a fixed point 
0, the action of F on the fiber Po induces a homomorphism P0: F ~ G .  As 
before we fix a connection A 0 on P satisfying (2.1), and denote by Po~ the associat- 
ed homomorphism of F. Then through the trivialization induced from the con- 
nection A 0 the bundle P is extended to a principal bundle over the compactifica- 
tion S4/F of~* /F .  Let Mr=- Mr(p, k, P0, Poo) be the moduli space of anti-self-dual 
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connections on P which is asymptotic to A o and with the instanton number 
k. Then as above we can show that M r has a structure of C~-manifold (it 
is easy to see that H~,-1 = 0  for all [ A ] e M  r cf. Proposition 5.1) with a natural 
Riemannian metric gM defined by L2-inner product. If F c  U(2), the complex 
structure I~,/r is invariant under the action of F, and gives the complex structure 
on M r. Moreover if F ~ S p (1)~ S U (2), M r has the natural hyperk/ihler structure 
(IMp, JM~, K ~ ) .  We also have the dimension formula: 

(2.8) d i m M = d i m G p  + 2 r  ~ c2(E ) 
~2/F 

, _, ( r,(,) 
2 I l l  Y" ~Zo~(T )Zp~(7) 1 - c o t ~ - c o t  , 

p=O,~ ~:6e 

where rp(7) and s,(7) are the rotation numbers corresponding to the action 
of~ at p = 0 ,  ~ (so ro=r~,  So = - s ~ ) .  

3. Reducible connections 

In this section and the next section, we give two types of existence theorems 
of anti-self-dual connections on ALE 4-manifolds with negative definite intersec- 
tion form. First one (given in this section) is the existence theorem of reducible 
connections and relates to the intersection form of the base manifold. The other 
one is Taubes'  implicit function theorem and relates to the fundamental group 
F of the end of the base manifold. In Sect. 5, it is proved that the first one 
gives " inter ior"  points in the moduli  space M, the other one corresponds to 
the end of M, and they are connected by M. 

In this section we only treat the case that the structure group G is U(2). 
Let (X, g) be an oriented ALE 4-manifold with the coordinate at infinity ~r: 
X \ K  ~ ~4/F. Let E be a complex vector bundle of rank 2 over X. A connection 
A on E is said to be reducible if (E, A) decomposes into a sum of line bundles 
with connections as (E, A)=  (L1, A l ) G  (L2, A z). Hereafter we shall identify the 
connections on L i with that on E and use the same notat ion A. 

Since the U-norm and the harmonicity on 2-forms are invariant under the 
conformal change of the metric, we can transcribe the results on an orbifold 
J? to show that each element of H z ( x ;  1t) has the unique LE-harmonic represen- 
tative form, and there is the decomposit ion H E ( X ; I I ) = H + ~ H  - into 
L2-self-dual and LE-anti-self-dual harmonic 2-forms. Hence as [FS, Proposi- 
tion 5.3] 

(3.1) Lemma. Suppose X has negative definite intersection form and satisfies 
H 1 (X; ~ ) =  0. Then each complex line bundle L over X has a unique gauge equiva- 
lence class [A] of anti-self-dual connections. 

There is 1-1 correspondence between H2(X; 2g) and the isomorphism class 
of complex line bundle L over X given by the first Chern class cl.  By Lemma 3.1 
the complex line bundle L has an anti-self-dual connection A, and the de Rham 
class [(I/2rci)RA]~H2(X; I!) is the harmonic representative of the first Chern 
class cl (L)R. As in Sect. 2, the anti-self-dual connection A induces a homomorph-  
ism p: F ~  U(1) by the action on the fiber L~ over oo. If we identify the homo- 
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morphism p with the flat connection on S3/F induced from p, we have the 
relation i*(cl (L))= cl (p). As we remarked in Sect. 2, although reducible connec- 
tions appear as singular points of the moduli space for compact manifolds, 
but this is not the case for ALE manifolds. 

As in Sect. 2 we extend the bundle E to a bundle (also denoted by E) over 
the orbifold )? using the trivialization induced from p. Then the instanton 
number of the anti-self-dual connection is determined by the formulas 

c2 (E) [)(]  = 2 c, (L 1). c, (L2). 

We are interested in the case that the moduli space is 4-dimensional. First 
consider the case corresponding Theorem 0.2. We seek a complex line bundle 
L which satisfies 

(1) the associated representation p~ : F ~ U(1) is trivial, 
(2) c 1 ( L ) 2 = - 2 .  

The dimension formula (2.17) implies that the moduli  space is 4-dimensional 
around the connection A on the U(2)-bundle C G L ,  where _C is the trivial 
line bundle. 

Now suppose that the space X is an ALE hyperkfihler 4-manifold diffeo- 
morphic to the minimal resolution of C2/F for some nontrivial finite subgroup 
F c SU(2). Let R be the corresponding root system (see Sect. 1). Via the Poincar~ 
duality H2(X, ~X; 71) ~ H2(X; 71) the intersection form on H2(X, OX; Z) is given 
by the negative of the Cartan matrix associated to F. The element 
Z~H2(X,  OX; 71) with Z 2 = - 2  corresponds to a root. More geometrically, it 
is realized as a Poincar6 dual of a sum of irreducible components of the excep- 
tional set of the resolution. The complex line bundle L associated with 
j* (Z)6H 2(X; 7/) satisfies the condition (2), and has an anti-self-dual connection 
A. Moreover we have i*j*(Z)=O, hence the connection A is asymptotic to the 
trivial flat connection. 

(3.2) Theorem. Let F be a nontrivial finite subgroup of  SU(2), R the set of 
roots associated with F, and (X, g, I, J, K) an ALE hyperkdhler 4-manifold diffeo- 
morphic to the minimal resolution of ~2/F. For each Z~ R ~ H 2 (X, ~ X; 71), there 
exists a reducible anti-self-dual U (2)-connection A associated with the decomposi- 
tion E = C • L over X such that 

(1) dim M = 4 ,  
(2) c, (L)=j*(Z). 

Next consider the case corresponding Theorem 0.3. We assume that the 
group F is cyclic (namely F is of type A.), and hence all irreducible nontrivial 
representations Pl . . . . .  p,  are 1-dimensional ( n = l F I - 1 ) .  Changing the order, 
we may assume 

i l i m e s  

P i = P ,  | " "  @ P'I, 

and the canonical representation p: F ~ SU(2) is given by pl ~)p. .  As is proved 
in [GV] (see Sect. 1), each representation Pi determines a holomorphic line bun- 
dle/~r i over the minimal resolution ~ which is asymptotic to the flat connection 
Pl on S3/F, and the set {c1(541) . . . . .  e l (A.)}  gives a basis for H2(X; 71) (where 
X is the underlying differentiable manifold of S). Moreover it is a dual basis 
of the basis {[2;1] . . . . .  [X.]} given by the irreducible components of the excep- 
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tional set. Then by direct calculation using the Cartan matrix for the A,-type 
root system, we can determine the Poincar6 dual of [Zi] ~H2(X, •X; ~E) as 

(3.3) j* RD. IS1] = -- 2 cq + c~ 2, j* RD. [Z2] = ~ 1 -  2 ~2 + c% . . . .  

j * R D . [ Z , _ I ] = ~ , _ 2 - 2 ~ , _ I + C ~ , ,  j * R D . [ Z , ] = ~ , _ I - 2 c ~  . ,  

where ei = cl (/~ri). We define complex line bundles L 1 . . . . .  L,+ 1 by 

(3.4) L1 =]~1,  L2 = ~f~' (~)/~f2, L3 = / ~  (~ ]~ 3 . . . .  

L , =  M*_ I | M,,  L , + I = M  *. 

Then (3.3) shows that line bundles L i satisfy the relation (Cl(Li), cl (L i ) )=-n / (n  
+ 1) and are asymptotic to the flat connection p~. In particular, they give reduc- 
tions of the common vector bundle E=L~GL*.  By the above observation an 
anti-self-dual connection on L~ induces one on the vector bundle E which is 
asymptotic to the fiat connection associated with the canonical representation 
p. Then by the index formula (2.17) we can see that the moduli  space is 4- 
dimensional. 

(3.5) Theorem. Let F and X be as in Theorem 3.2 and assume that F is a cyclic 
group of order IF[. Then there exist reducible connections [A1] . . . . .  [Alrl] in 
the moduli space M =  M (P, k, p) where 

(1) P is a principal bundle with the structure group SU(2), 
(2) k = ( I r l -  1)/Irl, 
(3) p is the canonical 2-dimensional representation F-~ S U (2), 
(4) dim M = 4. 

Although Theorem 0.3 holds for general F not only of type A,, the results 
of this section cannot be applied to F of other types, since p is irreducible 
in these cases. 

4. Taubes' existence theorem and r-invariant instantons on p.4 

In [T2]  Taubes obtained the existence theorem of anti-self-dual connections 
on compact 4-manifolds with negative definite intersection form. Essentially 
he proved it by the implicit function theorem. Anti-self-dual connections on 
S 4 whose curvatures are localized at a point  is grafted onto the manifold X 
to become "a lmos t"  anti-self-dual connections. Then by the implicit function 
theorem, there exist anti-self-dual connections near them, where the existence 
of the inverse mapping is guaranteed by the negative definiteness of intersection 
form. Curvatures of the constructed connections concentrate around a point 
in X. 

A n  ALE manifold X is compactified as an orbifold )( by a conformal change 
of the metric and adding a point ~ .  Since the anti-self-duality of connections 
is invariant under the conformal change, we may construct anti-self-dual connec- 
tions on ~ .  To carry out the Taubes'  procedure on ~ with the curvature concen- 
trating point o% the only difference is to use anti-self-dual connections on S4/F 
instead of S 4. But here we give a different proof by using analysis on ALE 
manifolds since the estimates which we will obtain in the course of the proof  
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are important  when we study the end of the moduli  space in Sect. 5. If we 
blow up the metric of a compact 4-manifold to get an ALE metric, our proof 
gives a different proof  of Taubes'  existence theorem. Moreover the proof becomes 
simpler since curvatures of almost anti-self-dual connections are uniformly 
bounded on the ALE manifold. This idea is the same as that of Freed-Uhlenbeck 
[FU]  who give another different proof  of Taubes'  existence theorem by using 
a conformal change and analysis on manifolds with cylindrical ends. 

In this section G is assumed to be a compact Lie group. Let pr  be a principal 
bundle with the structure group G over ~,4/F. Since F has a fixed point 0, 
we have a homomorphism Po: F--*G induced from the action on the fiber 
over 0. 

(4.1) Theorem. Let (X, g) be an ALE 4-manifold of  order z > 0 with the asymptotic 
coordinate at infinity X:  X\K-',(]R_4\B-R)/F, and Po, P~: F-*  G be homomor- 
phisms which are identified with the f iat  connections over S3/F. Suppose that 
there exist principal bundles Po-* X, p r _ ,  ~ 4 / F  with the structure group G and 
anti-self-dual connections Ao on Po, A r on pr  satisfying 

1 
(l) ko=~zTz 2 ~ IgAolEdV, 

X 

1 
(2) k 1 = 8 - 2  ~ IR~rl2dV, 

~4/F 

(3) A o is asymptotic to the f lat  connection Po, 
(4) A r is asymptotic to the f lat  connection p~, 
(5) pr  induces the homomorphism Po as the action on the fiber (Pr)o at the 

origin, 
(6) L2-kernel of  d*o: O + (Ad P) ~ f21 (Ad P) is trivial. 

Then there exists an irreducible anti-self-dual connection A on a principal bundle 
P over X such that 

1 
(7) k0+kl=8~-nz ~IRAI2dV, 

X 

(8) A is asymptotic to the f lat  connection p~. 

Remark. The condition (6) preserved under a conformal change of the metric 
since the L2-norm is a conformal invariant. 

The notation A = A  0 4~A r which is used in [D3]  illustrates the impression 
of the above construction in the analogy of the connected sum of manifolds. 

Throughout  the proof we use the constant C in the generic sense. So the 
symbol C may mean different constants in different equations. We take a positive 
function r on X which is equal to I~l  on x \ g  and suppose r < R  on K (recall 
lY ' I=R on c~g). 

F o r  simplicity we assume that the bundle P is trivial and the anti-self-dual 
connection Ao is the trivial connection. Hence the assumption (6) is equivalent 
to the negative-definiteness of the intersection form of X. See [I I]  for the general 
case. 

Firs t  we construct an almost anti-self-dual connection on X. We fix a cut-off 
function fl: I-0, ~ ) - ~  1-0, 1] satisfying 

fl(t)__fO for t~[0,  1] 
for t~l-2, oo), 

3'(r)>O. 
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For ~.~R 2 we define a map q~z: X---+~,.4/F using a coordinate at infinity f 
by 

if r(x) < 
cb~(x)={;(r(x)/[f2) X(x)/2 otherwise. 

Let A r be an anti-self-dual connection on ~x4/[" which satisfies the condition 
of Theorem4.1. The removable singularities theorem [U1]  (see also [IN, 
Sect. 4.2]) implies 

C 
(4.2) I R a ~ ( x ) l < - -  for x ~ , 4 / F  

= 1 +lxl  4 

with a constant C independent of x. We consider the connection A=~b~ A r 
on X. Then direct calculations show the followings (see [T2, FU]). 

(4.3) Lemma. The curvature R A and its anti-self-dual part R]  satisfy 
(1) RA(x)=Ofor  r(x)<]/2,  

C)~2 for r(x) => 2~2, (2) IRa(x) l< 24 + r(x) 4 

(3) ]R,~(x)]< C22 C for r(x)=>21/2, 
= (24 + r(x) 4) r(x) ~ < r(x),+ 

< Cfl222 < C .  forl/X<r(x)<21/2~ 
(4) IRa(x)l = 2 4 ~  r ( x p -  r(x) ~ ~ v - 

for some constant C independent of  2. 

We say a connection A is 2-ASD when it satisfies the conclusions of Lem- 
ma 4.3. We denote the domain {xlr(x)<=n} by O,. 

From Lemma 4.3 we have estimates for L~_2-norm of R~ for p >  1, - 2 < 6  
<0. 

(4.4) Lemma. For p > 1 and - 2 < 6 < 0 we have 
+ <c~-min(6/2+l,r+~J liRa IIo,p,a-2 = 

for some constant C. 

Proof It follows from direct calculation as follows: 

I IR~ IPr-(O-2)p-4dV 
X 

= ~ IR~]Vr-tO-2)p-4dV+ ~ ]R,~IPr-(O-2)p-4dV 
Y~2 V~. X\Y~2 V~ 

< C  ~ [ ~2 ~pr(2_6_r)p_ 1 21/~ 
\ ,~4+r4] d r + C  f r ( -Z-~)p- ldr  

2v~ 
=< C(2- o'p + 2-(a+ 2)p/2), 

where 
, ( 6 + z ,  if 6 + z < 2  
= l l + ( z + a ) / 2 - - e ,  if 6 + z > 2  

for arbitrary positive number e. Since 1 + (z + 6)/2 > 1 + 6/2, the conclusion fol- 
lows directly. []  

We give the scale-broken a priori estimates for d~ d* which is the key of 
our proof of Taubes' theorem. 
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(4.5) Lemma. Suppose that A be a 2-ASD connection over a bundle P on X 
and 6 ~  is nonexceptional and nonnegative. For p> 1 and - 2 < ~ 5 < 0  the map 
dA+ da.*" |~2"P(fi+ (Ad P ) ) ~  L~_ 2(fi+ (Ad P)) is Fredholm and for any 
ue Wa2'p(ti+ (Ad P)), 

(4.6) IlUHz,p.~ <-_ C(lld~ d* ull0,~,~- 2 + Ilull LP<~.ol), 

where C and R o are constants independent of 2. 

Proof The Fredholm property follows directly from [Ba, Theorem (1.I0), Propo- 
sition 1.14]. The only nontrivial assertion is that the constant C in (4.6) is inde- 
pendent of 2. The result of [-Ba] only yields (4.6) with the constant C depending 
on the difference between A and the trivial connection d. If we simply estimate 
the difference between A and d, the required inequality (4.6) does not follow. 
So we shall obtain the estimate by rescaling the metric of Ci/F and comparing 
the connection A with A r. 

First we prove the corresponding estimate for the anti-self-dual connection 
A r on ]Rg/F which satisfies (4.2). By taking Coulomb gauge and using a priori 
estimates for elliptic system, we have some gauge over { x ~ R 4 / F l l x [ >  1} for 
which daF = d + ct with 

jtimes 

I F . . . V A ( x ) I < C . i l x l  - j  3 for all .j > 0, 

where C i is constant depending on j and A r. Then by [Ba, Theorem 1.10] for 
any u~ W~2'P(~,4/F; f2 + (Ad P)) 

ILulli,..~ < C(lld)~rd*ruLLo,..~ 2 + IlullL,.~.o~), 

where C and Ro are constants depending on C~ U=0,  1), 6 and p. Moreover 
since + * KerdA,-dA,------HZa~o is zero (it easily follows from Weitzenb6ck formula, 
see Proposit ion 5. l), we have 

qlulli,p,~<C + , HdArdAl"U[lo.p.,~- 2. 

Now let T~ be a diffeomorphism x~-~x/2 on ~ 4 / F  and consider the anti-self-dual 
connection T* A r. Since we have 

C - 1  [[Ullk,p,fi~ ~ ' - '~-2  II T~" ullk,p,a < C [lullk.p.~ 

with a constant C independent of 2 >= 1, the above estimate implies 

+ * I]Ulji,p,6 ~ C ]]dr* Ardr*ArUllo,m~_ 2, 

where C is a constant independent of 2 >  1. Since A is 2-ASD, the difference 
between the connection A and T*A  r on fiRo can be estimated by a constant 
independent of A as 

[ A - ( W - ~ ) * T * A r [ < c r  -3, IV(A--( ,~ ' -~)*T*Ar)I<Cr -4. 

This gives (4.6) (see the proof  of [Ba, Theorem (1.10)]). [ ]  

Now we use the negative-definiteness of the intersection form. 
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(4.7) Proposition. Suppose that the space of L2-anti-self-dual harmonic 2-forms 
H + is trivial. Then for p > l ,  - 2 < 6 < 0  there exists 20>0  such that if A is 
~.-ASD, 2 > 20, then for u E W~ 2' p (f2 + (Ad P)) 

Ilul[2,p.,s< C lid + d* Ullo.p,a-2, 

where C is a constant independent of )~. In particular, d] d* gives an isomorphism 
between W~ 2" p (g2 + (Ad P)) and L~_ z (f2 + (Ad P)). 

Proof Suppose the contrary. Then we can find sequences {2,}, {ui} and {Ai} 
such that 

(1) 2i goes to infinity as i ~ ,  
(2) Ai is 2i-ASD, 
(3) Iluill~,p.o= 1, 
(4) + * IIdA, da, ui[I O,p,~- 2 converges to 0 as i ~  @ .  

Since the estimate (4.6) yields 

1 = Iluillz.p.6<f(lld~,d*uillo.p,o_2+ IluillL.~o~), 

the above condition (4) implies [[ ui[I LPIORO > e for sufficiently large i with a posi- 
tive constant e independent of i. So on a compact domain f2Ro we apply the 
usual Relticb lemma to show that  {ui} has a subsequence which converges 
strongly in LV(f2go). We denote this limit by u~, so u ~ * 0 .  On the other hand 
Ai converges to a trivial connection uniformly on each compact subset of X, 
and {ul} has a subsequence which converges weakly in W~ 2,v. Hence we obtain 
a nonzero element uoo~W62'P(~t~ +) which satisfies d + d*u~o=0. But this contra- 
dicts to H § = 0 by the following Lemma. 

(4.8) Lemma. Let 6<0.  I f  ueW~2'p(f2 +) satisfies d + d ' u = 0 ,  u has the.following 
asymptotic behaviour : 

lul=O(r-4). 

Proof This is proved by a similar technique as I-BKN, Appendix]  (see also 
[IN,  Chap. 4]). The basic idea is due to [SSY]. 

First we show du=O. By [Ba, Theorem 1.17] u satisfies u=Ofr-2). By the 
elliptic estimates and the Sobolev inequality, we have 

(4.9) lul=O(r-e), IVaul=O(r-3). 

We use the integration by parts on a domain XR = {x: r(x)<R} to get 

0 =  ~ (Au, u)= S Id*u,2+ ~ ( ~ u , u ] .  
XR XR OXR 

By (4.9) the second term of right hand side converges to 0 as R ~ .  This 
implies d* u = 0, and hence d u = 0. 

The same argument as in [BKN, Appendix] shows 

3 I(V u, u)l~_-_ I Vul  2 lut 2 



ALE gravitational instantons 283 

where (Vu, u) is a 1-form defined by (17u, u)(V)=(Wu, u) for a tangent vector 
V. 

So we get 

(4.10) [Vul2>=31(Vu, u)121u [ 2= 31d[u[[2. 

Then we use Weitzenb6ck formula for Ad P-valued self-dual 2-forms 

O=d + d*u=V* Vu- -2W+(u)+  3 U, 

where W+: 0 2 --,f22 is the self-dual part of the Weyl tensor, and S is the scalar 
curvature. Using (4.10), we get 

�88 23 
A lulX/2= lu1-3/2zllul -~[ul-3/21dlul[2 

>---(IW + I + ~ ) l u l  '/z 

c 
= - ~  lul x/2. 

In the last inequality we have use the ALE property of the metric g. Then 
by the argument of [Ba, Theorem 1.17], we have 

lull/2=O(r-2). 

( - 2  is the greatest negative exceptional value in IRa.) [] 

Since the trivial connection Ao satisfies 

0 = Ker d* o dao: W~ 'p ( f2~ (Ad P)) ~ W~~ ~ (g2 ~ (Ad P)) 

(it follows from the maximal principle), the same argument shows the following 
estimates which will be necessary in Sect. 5. 

(4.10) Proposition. For p > l ,  - - 2 < 6 < 0  there exists 20>0  such that if A is 
2-ASD, 2. > 20, then for u~ Wa2'P(O~ P)) 

IlUllz,p,6~ C [[d~ d A U]]0,p,a- 2 , 

where C is a constant independent of  2. In particular, d* da gives an isomorphism 
between W~2'P(~2 ~ (Ad P)) and L~_ 2 ( f2~ (Ad P)). 

We remark that Propositions 4.7, 4.10 give the estimates for Green operators 
on ~2~ P) and t2 + (Ad P) independent of 2_-> 2 o. 

By the same argument as [FU, Theorem 7.26] we obtain 

(4.11) Proposition. Under the same assumption on Proposition 4.7 consider the 
operator L~=d,~ d* +[B A d*] + with B~LC 2(f21(AdP)) (q=4p/(3p--4)).  Then 
there exists a constant 5 > 0  independent of 2 such that if IlBllo,q_2<e, then 
for ue WaZ'P (f2 + (Ad P)) 

Null2,p,~<C IILnuNo,,,~- 2. 



284 H. Nakajima 

As in [FU, Theorem 7.27] we use the continuity method to the equation 

_ + . 1 [ d ] u t A d * u , ] + + t R ] = O ,  Lr ut - da dA Ut + 

we have an anti-self-dual connection A + d* Ul near A. 

(4.12) Theorem. Under the same assumption on Proposition4.7, there exists 
ue W~E'P(Q + (Ad P)) such that the connection A + d* u is anti-self-dual and satisfies 
the estimate 

(4.13) Hu[[2.p.~-_< C ]IR + IIo,p.o- 2 �9 

Moreover such u is uniquely determined by A. 

In the rest of this section, we give some examples of anti-self-dual connections 
over S4/F. We are interested in the case that G=SU(2),  F c S U ( 2 ) ,  and the 
moduli space is 4-dimensional (cf. Theorem 0.3). Furuta and Hashimoto [FH],  
and independently Austin [-Au], obtained more general and detailed results 
when F is a cyclic group. 

(4.14) Theorem. Suppose F c S U ( 2 )  is a finite subgroup of  order IF[. Let k=  IF[ 
--1. Then there exists a principal bundle pr  on S4/F with the structure group 
S U(2) such that c2 (pr)[S4/F] = k/(k + 1), and an irreducible anti-self-dual connec- 
tion A r on pr, where the actions Po and p~ of F on the fibers Po r and pr  are 
given by 

(1) Po is the trivial, 
(2) Poo is the canonical 2-dimensional representation F ~ SU(2). 

Moreover the moduli space M r of  anti-self-dual connections on pr  is diffeomorphic 
to (~2\{0})/r. 

By the dimension formula (2.18) the moduli space becomes 4-dimensional 
in the above situation. 

For the proof of (4.14), we use the result of Atiyah-Drinfeld-Hitchin-Manin 
[ A D H M ]  (see also [D 2]) which gives a parametrization of framed moduli spaces 
of anti-self-dual connections on S 4 (or of moduli spaces on ~4). Anti-self-dual 
connections on S4/F are F-equivariant anti-self-dual connections on S 4, and 
their parametrization is also possible. See [FH, Au] for detail. 

(4.15) Fact. For an SU(2) principal bundle P over ~4/F, there is a one-to-one 
correspondence between M (P, k/[F[, Po, Po~) and the quotient of  the set of  matrices 
(al, ~2, a, b) satisfying: 

(1) cq, a2~M(k,  k; IE), a~M(2,  k; IE), br  2; IE), 
(2) [al,  a 2 ] + b a = 0 ,  
(3) [al, a* ]+[a2 ,  ~ * ] + b b * - a * a = O ,  
(4) for all 2, #O];, t[~x+2, ~2+#,  a] is injective and [ 2 - c q ,  ~2 -~ ,  b] is 

surjective, 
(5) (~1, ~2, a, b) is F-equivariant in the following sense 

{ Pv(~ -1) ~1 Pv(~)=Ya ~1 +~2 ~2 

a=po~(y_l)apv(7) for L-72 71J 

b = Pv(Y- ' )  b po~ (7) 
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by the action of Ur(k) = {u6 U(k) lpv(7-1)upv(7)= u}: 

O~i~-'-~U-- l O~iU, a~--,au, bw-*u- l b. 

Here Pv: F ~  U(k) is a representation and can be uniquely determined by Po, 
p~,k. 

The representation Po at 0 is calculated by the following way. The fiber 
of the associated vector bundle over 0 is identified with the set 

(4.16) {(Ul ' U2 ' , , , ~ k ~ - ~ k ~ 2 l f - - C ~ 2 U l  + ~ 1  u 2 + b u 3 = O ]  
U3)ffl, L {~_)IL, {~_)IL. ]~ ~ ,  Ul.+.~ u2 + a ,  u3=O ; . 

Then F acts on this set by 

(4.17) 

u2~Pv(~- ~)(72 ul +71 u2) 

U3 ~-*p~e ( '~- 1) U3 . 

Matrices satisfying the above conditions are obtained from the following 
Lemma which was used in [ K r l ]  for the construction of ALE hyperkfihler 
4-manifolds. 

Let (Pc, Q) be the canonical 2-dimensional representation of F and (PR, R) 
the regular representation. Define Y=(Q| r, the space of F-invariant 
elements in Q|  Taking an orthonormal basis for Q, we represent an 
element of Y as a pair of endomorphisms (f, g). The group Ur(R) consisting 
of unitary transformations of R which commutes with the action of F on R 
acts on Y by 

(fg)~Y~-*(u-lfu, u lgu) for u~Ur(R). 

Dividing out the group of scalar matrices, we have an effective action of Ur(R)/S 1. 
By its definition, the regular representation has a basis {er} indexed by 7eF 

with the property R (6)(er)= %~. We define an inclusion map i: II~ 2 ~ Y by i(x, y) 
-= (f, g), where 

xr ( 
f (e , )=x,e , ,  g(e,)=y,e,, (y~)~-- Q ,) (~). 

The map i is equivariant for the action of F on lI; 2 and that of Ur(R) on 
Y. We then have 

(4.18) Lemma [Kr 1, Lemma 3.1, Corollary 3.2]. The quotient space 

{(f, g)~ YI I f  g] =0,  [ f , f * ]  + [g, g*] =O}/(Ur(R)/S 1) 

is isomorphic to ~2/F. 

Now we are in a position to start the proof of Theorem 4.14. The regular 
representation of F decomposes as 

(pR, R) = @ r  | (p,, ni), 
i 
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where {(Po, Ro), (Pl, R1) . . . . .  (p,, R,)} is the set of all irreducible representation 
of F, with (Po, R0) the trivial representation. Set 

(pv,, vo=@r174  g,, (pv~, V2)=(po, Ro). 
i > 0  

The quotient group Ur(R)/S ~ is identified with YI U(RI)= Ur(VO. Via the decom- 
i > O  

position (PR, R)=(pv,, V1)@(Pv~, V2), an element ( f  g)~ Y is represented as 

If we set 

~ 2  -bl 

b=Eb, b=], 
LazJ 

a direct calculation shows that (~ t, cq, a, b) satisfies (4.14) with Pv = Pv,, P ,  = Po." 
Moreover ( f  g) satisfies the equation If, g]= [ f  f*] + [g, g * ] = 0  if and only 
if (~ ,  a2, a, b) satisfies the equations (2), (3) in Fact 4.15. 

Next we check the property (4). Suppose that ( f  g)~(0, 0) and v~ is an ele- 

ment in the kernel of[  ~' ~ + 2[. ~ Then v=(vl, 0)~ 1/1 ~ 1/2 = R satisfies 
L~2 + PJ 

( f +  2 id) v = 0, (g +/ t  id) v = 0. 

We represent v by the basis {er} as 

U~ZUT~').. 
? 

For ( f  g)~i(IE2)= Y, 

( f +  2 id) v = ~ v~ (xr + 2) er = 0 

(g +/ t  id) v = ~ vr(y~ + p) e). = O. 

Hence v v = 0 unless - (2 ,  #)= (xr, yr), namely -t(2, tt)= Q(y)~(x, y). Since the 
action of F on ~2 is free outside 0, there exists at most only one nonzero 
yr. On the other hand, since v has no V2-component, we have 

(v, ~ e~) = O, 
), 

where the inner product on R is defined so that {er} is an orthonorrnal basis. 
This implies ~ v r = 0 ,  hence v~=0 for all Y- The surjectivity can be checked 
similarly. 

Finally we calculate the action on the fiber over 0. The set defined in (4.16) 
is isomorphic to the set 

{(v, w)~RxR f f v + g w e V 2  "~ 
( f *  w - g *  v~ V2J 
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under the correspondence 

I_-- u3] 
where 

U ~ 3 

If we write v and w as 

v = Z v ,  e , ,  w = 2 w ,  e 7, 
they must satisfy 

X,Iv~+ y~w~=XVe+YWe 

fl~, VT-- X~, W~ = y Ve-- X W e . 

The definition of (x~, y~) implies 

(4.19) (v , ,  Wy)=(Ue, We) Q.('~-1). 

The action defined in (4.17) corresponds to the action defined by 

w~-~ R ( 6 -  ')(Tz V+ 7, w). 

Then (4.19) shows the action is trivial. 

287 

5. Geometry of the end 

In this section we study the behavior of Riemannian metric gM on the end 
of the moduli space M. We shall show that on each end the metric gM is ALE. 
Our calculations are similar to those of [D1, GP] which show that an end 
of a moduli space on a compact definite 4-manifold X is (0, 1] x X({0} x X 
is the infinity) in both topologically and metrically in C~ but our purpose 
requires more detail since we must study the curvature of the moduli space. 

Throughout this section we assume that G is a compact Lie group and 
(X, g) is an ALE Riemannian manifold of order z = 4 with a hyperk/ihler struc- 
ture ( lx ,  Jx,  Kx). Let P be a principal G-bundle over X, p: F ~ G a homomor- 
phism. We consider the moduli space M = M(P, k, p) of anti-self-dual connections 
on P which are asymptotic to p and have the instanton number k. As in the 
previous sections we use constant C in generic sense. 

Before starting the study of the ends of M, we prove the smoothness of M. 

(5.1) Proposition. For each anti-self-dual connection [A] ~ M = M (P, k, p), it holds 

H 2 = 0 .  A , - I  

In particular, the moduli space M is a nonsingular C~-manifold. 
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Proof We use Weitzenb6ck formula for Ad  P-valued self-dual 2-forms. For  all 
c~ s (2 + (Ad P) we have 

S 
2d + d * ~ =  V* VA ~ - 2 W + ( c ~ ) + ~  ~ + [ R  +, ~], 

where W+: f2z--*f2 z is the self-dual part of the Weyl curvature and S is the 
scalar curvature. Since A is anti-self-dual, we have R,~ =0.  We also have W + = 0  
and S - -0  because X has a hyperk~ihler structure. Hence for ~HZa,_ 1 we obtain 

A Io~[z=21lTA~12+2(V * VAO~ , o~)~0. 

But by the Sobolev inequality [-Ba, Theorem 1.2] we have I~ l=O(r  1) as r ~  
and the strong maximal principle implies that ~ = 0. []  

This lemma implies that the space of U-self-dual harmonic 2-forms are trivi- 
al; H + = 0 especially. Hence the intersection form of X is negative definite. 

We compactify X to an orbifold (X, ~) adding the point ~ (see w and 
identify anti-self-du.al connections on X with ones on )~. 

(5.2) Theorem. Suppose that the dimension of the moduli space M is equal to 
4. Then for every sequence {[AJ} in the moduli space M = M (P,, k, p), there exist 
a subsequence (also denoted by I-A J), gauge transformations si~ffo such that one 
of  the following (1), (2) holds. 

(1) There exists an anti-self-dual connection [-A~]~M(P, k, p) such that s*(Ai) 
converges to A~ in the C~-topology on X. 

(2) There exist an anti-self-dual connection [A~] ~ M (P', k', p') on a different 
principal bundle P' over ~ and an anti-self-dual connection 
[Ar]~M(  Pr, kl, Po, P~) on a principal bundle over S4/F such that 

(2.a) s*(Ai) converges to A~ outside oo. 
(2.b) There exists a divergent sequence {2i} such that (~,1)* A i converges to 

A r (after gauge tran.r in the C~-topology on P,.4/F (eb~ is defined in 
Sect. 4). 

(2.c) A r is not flat. 
(2.d) k=k '+k~.  
(2.e) p = p ~ ,  P'=Po. 

Proof We use the compactness theorem of Uhlenbeck [U2]  on )? (see also 
IT 3, Proposit ion 4.4]). Since X has a hyperkahler structure, the second cohomo- 
logy group H 2 vanishes for each anti-self-dual connection A. And the dimen- A ,  - 1 

sions of moduli  spaces are given by the dimension formulas (2.7), (2.8). 
We take a subsequence of {I-AJ} and gauge transformations s~ such that 

s~(A~) converges to an anti-self-dual connection A~ on P'  outside a finite set 
(possibly empty). If curvature concentration happens a point other than oo, 
an anti-self-dual connection on S 4 bubbles off from there. Then the instanton 
number decreases so that  the dimension of the moduli  space decrease more 
than 8, so it is impossible if dim M = 4. 

When curvature concentration happens at ~ ,  anti-self-dual connection 
[Ar]~M(P, r, k,, p~, p~) ( n = l  . . . . .  N) on S4/F bubble off. A connection Ai, for 
sufficiently large i, resembles A ~ 4~ A r 4r # Aru. Then we have 

N 

dim M(P, k, p )=dimM(P' ,  k', p')+ ~" dimMr(P, r, k,, P"o, P"~). 
n = l  
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Since each Mr(p, r, k,, P"o, P~) has a hyperk/ihler structure, its dimension is a 
multiple of 4. It has a nontrivial action of R+ ,  hence it has the dimension 
greater than 1. In particular, it is not 0. So if dim M = 4, we have N = 1 and 

dim M(P',  k', p ' ) = 0  

dimM(Pt  r, kl, p l ,  p~)=4 .  []  

Next we recall the following lemma of Uhlenbeck [U 1] : 

(5.3) Lemma. Let B(p, r) be a geodesic ball of radius r in a 4-dimensional complete 
Riemannian manifold (X, g). There exists a positive constant e=~(g) such that 
if A is a Yang-Mills connection on B(p, r) with ~ ]RA[2<e, then 

B(p,r) 

sup IRAI2<Cr -4 ~ IRAIedV 
B(p,r/2) B(p,r) 

for some C = C(g). 

(5.4) Proposition. Suppose that dim M = 4. Then the Riemannian manifidd (M, gM) 
is complete. 

Proof. First we shall show that 

( 5 . 5 )  ] RAIE< = Cr  - 2  

fore some constant C independent of [A]~M. Suppose the contrary. So there 
exists a sequence {A~} such that 

supr2IRA,[~oO as i ~ o o ,  
X 

and by Theorem 5.2 we may assume 

(5.6) Ai ~ A ~  in C~oc-topology on X, 

(q~,l) ,  A, ~ A r in C~oc-topology on IR4/F\{0}, 

IRA, I2dV - ~ ]RA| ~ ]RA~] 2dx.  
X X Ra/F 

We take a sufficiently large R so that 

S IRA~I2dV<=�88 ~, 
r>R 

IRA:12dx<=�88 
I x l < R - ~  

Then for sufficiently large i, we have 

IRA,12OV > ~ IRA~Izov- �88  
r=<R r-<_R 

> j" IRAQI2 dV- �89  
X 
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Similarly we get 

IRa,12dV-~ ~ IRAyI2dx--�89 ~,. 
r>=R- l )~ R4/F 

Combining the above inequalities, we have 

IRA, I 2 dv<~. 
R<r<R-12~ 

We apply Lemma5.3 to a ball B(x,r /2)~{R<r<R-a2i}  (2R<r=r(x) 
< R -  a 2i/2) by rescaling the metric with the factor r -  1. Then we find 

sup [RA, I<Cr -2 
2R<r<=R 121/2 

for some constant C. On the other hand by (5.6) we have 

sup IRA,[<C 
r<2R 

sup IRA, I=2/z sup ]R(~x,).A.(X)I<Cr -2. 
r>R 12~/2 Ixl>R-1/2 

Hence we have verified (5.5). 
To prove the completeness of (M, gM) we have to show that an open curve 

[At]( te[0,  to)) in M of finite length has a limit point. We may assume that 
d 

opt = ~ -  At satisfies the followings: 

(5.7) AA t q~t=0 

I~,l z = l  
X 

for all t~[0, to). By Weitzenb6ck formula for AdP-valued 1-forms [BL] we 
get 

O = A A ,  tPt 

=FA*, 17a, q~,+ [RA~, q~,]. 

This together with (5.5) implies 

A I~0,1~ -~2 I~o,I. 

By the L~-estimate for subsolutions of elliptic equation (see e.g. [GT, Theo- 
rem 8.17]) we have 

Iq~t(x)lZ<Cr -4 ~ [q~,lZdV<Cr -4. 
B(x,r/2) 

Hence we obtain 

[At-A~[<__Cr -2 I t - s[ .  



ALE gravitational instantons 291 

On the other hand by (5.7) we get 

[Va~Ot[2~ C ~ [qJt]2~C. 
X X 

Combining these, we have 

and hence 

5 [Vaoq~ 2~C,  
X 

[ Vao(At- As)[2 ~ C It--s]. 
X 

This implies that RAt = R ao + d Ao (A t -- Ao) + �89 [At-- Ao ^ At - Ao] satisfies 

[RA,--RA. L2<--_CIt--sl. 
X 

This means that RA, is a Cauchy sequence in L 2, and hence converges strongly 
as t ~ t  o. So the sequence [A,] converges to A,oeM. [] 

(5.8) Corollary. Suppose (X, g, Ix, Jx, Kx) is an ALE hyperkiihler 4-manifold 
and Gp = SO (3). Then each component of  the moduli space M = M(P, k, p) is isomet- 
ric to the Eguchi-Hanson space if d i m M = 4 .  The f ixed points set of  Gp-action 
is written as Gp[A0] for a reducible connection [Ao] and is isometric to S 2. 
In this way there is a bijective correspondence between the components of  M 
and the reduction of  the bundle P. 

Proof Since Gp=SO(3) acts on the complete hyperk/ihler 4-manifold 
(M, g, IM, JM, KM) triholomorphically and isometrically, each component of the 
moduli  space M is isometric to the Eguchi-Hanson space ([AH],  see also [GR,  
Proposition 2.7]). Moreover we know that the fixed point set F of SO(3)-action 
is isometric to S 2. Hence F is the orbit of a reducible connection. []  

Now we can determine the Riemannian structure of the moduli  space M r 
on Fx4/F when F is a nontrivial subgroup of SU(2). 

(5.9) Proposition. Each component of  the moduli space M r (with the natural 
Riemannian metric gMr) is isometric to (~4\{0}) /F '  for some finite subgroup 
F' c SU (2) when dim M r = 4. 

Proof. As is observed in Sect. 4, there is a natural  lR+-action on M r. For  2~11 + 
let Tz be a diffeomorphism 

T z ( x ) = 2 - 1 x  for x~.~x4/F. 

We take a point [ A ] e M  r and a tangent vector o~ET[AI Mr~HI= A.-Z" Since 
T *  1 cteHr. t~)_2,  the action on the tangent vector 2"c~ is equal to T*ct. Hence 
we have 

gMr(2*~,2*a)= S [T*ct(x)l 2 d x = 2 2  ~ [ct(Y)l 2dy=22g~r(ct 'e)"  
~4/F N4/F 
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This shows that M r is isometric to the warped product (R+ x S r, d 2  2 ..}_~2 gsr ) 
for some Riemannian manifold S r (this holds even if dim M r #  4). Hence the 
sectional curvature of g~,- vanishes for any plane tangent to t3/t32. 

We have seen in Sect. 2 that the metric gMr is hyperk~ihler. We take a normal 
coordinate at a point [A] and calculate the curvatures by using the index nota- 
tion for tensors. We may assume 

R l i l i = O  for all i. 

Since gMr is hyperk~ihler, the curvature tensor is anti-self-dual. Combining with 
the above, we have 

Rjkjk = 0 for all j, k. 

Hence the metric is flat. 
On the other hand we apply the argument of Lemma (5.3) to this situation 

to prove that the metric space [1, ~ ) x  S r c M  r is complete as a metric space. 
So S r is a space form of constant curvature + 1. This completes the proof 
of the proposition. []  

It is conjectural that the moduli space M r itself is connected. When G = S U (2) 
and F is a cyclic group, it is proved by [FH] by the ad hoc method. 

In examples of Theorem 4.14 we already observed that M r is diffeomorphic 
to (~4\{0})/F. Combining this with Proposition 5.9, we get that this is in fact 
isometric. Since M is "asymptotic" to M r at the end in a certain sense, this 
gives an evidence that M is ALE. 

We recall some facts on Riemannian geometry of the moduli space (M, gM) 
([I2]). In Sect. 2 we defined the Kuranishi map ~A: Wl-'22(f21(AdP)) 
--* WL2(f21(AdP)) for [ A ] ~ M  and it was shown that if H ]  _1=0, then ~a:  
s a s d  r r l  defines a coordinate system of M around [A]. Itoh observed that A - - ~ / ~ A ,  - 2 

this gives in fact a normal coordinate system ([I 2, Proposition 3.4]) with respect 
to the Riemannian metric gM. Let { Vii} be an orthonormal basis of 1 HA, - 2 with 
respect to gM. We denote by (x 1 . . . .  , x") the normal coordinate system associated 
with {Vii}. In this coordinate system, the second derivatives of the metric tensor 
glj are written as ([I2, (5.18)]) 

02 glj 
( 5 . 1 0 ~  (0) = - g~,({ v,, v~}, 6A { v~, vj})+ gM(Ev, ^ vd +, 6A([v~ ^ vii +)) 

--gM({Vk, VII}, GA{V~, Vj})+ gM(EVk A V~] +, GA([-V~ A Vj] +)), 

where G A is the Green operator and {. , .}:  O a(AdP)•  b(AdP) 
--~ (2(a+b-Z)(Ad P) is defined by contraction 

4 

{ V, W} (x)-'--- Z [ice VA i~  W], 
i .=1  

where i. is the interior product and {Eu}u=l,2,3, 4 is an orthonormal basis of 
TxX with respect to the Riemannian metric g of X. In particular, the Riemannian 
curvature tensor R is represented as ([I2, (5.19)1) 

Rlklj(O)----gM(R(Vi, Vj) Vk, Vt) 
---- --gu({ V~, Vt}, GA{Vk, Vj})--2gM({ Vk, V~}, Ga {V~, Vj}) 

+gn({Vj, Vz}, Ga {Vk, V~})+g~(EVi^ Vd +, GA(EVk ̂  Vii +)) 
-- gM(EVi ̂  VJ +, GA([V k ̂  VJ +)). 
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When  the curvature  tensor  R vanishes identically, we have 02 glj/OX i (~xk=o. 
Then (5.10) implies 

(5.11) {v, v,} =0, [v,A v3+ =0 

for all i, I ( remark that  { . , .}  is skew-symmetr ic  and [-/x .] + is symmetr ic  on 
1-forms). 

N o w  we s tar t  the s tudy of the end of the modul i  space M. Fo r  simplicity 
we only treat  the case that  the l imit ing connection A~ (see Theorem 5.2) is 
the trivial connection.  It is easy to adap t  the p roof  to the general case (see 
[-I 1]). Let  2: M r ~ ( 0 ,  or) be the projec t ion  to the first factor of M r  =(0, oo) x S r. 
We shall identify S r with a submanifold  { [ A r ] E M r ] 2 ( [ A r ] ) = I } .  By Theo-  
rem 4.12 we can define a smooth  map  7~: (2o, ~ )  x S r ~ M for sufficiently large 
40 into M by 

7J(2, [Ar]):=[A+d*UA] for [ A r ] ~ s  r, 

where A = ~ * A  r is the a lmost  anti-self-dual connect ion  constructed in Lem- 
ma 4.3, and u = UA is the solut ion of the equat ion  

d] d * u + � 8 9  + R ~ = O  

with the condi t ion 

Ilull2,p,a<C[lR~llo,p.a_2, ( - 2 < 6 < 0 )  

(see Theorem 4.12). Moreove r  this cons t ruc t ion  is gauge equivariant ,  and  the 
map  ~P is well-defined as the m a p  from the modul i  space M r. 

To study the behavior  of the map  tp we need est imates of tangent  vectors 
of the modul i  space M r. 

(5.12) Proposition. There exists a positive constant C such that for  v r  ~ TtArlM r 
we have 

C 
I vr(x)l ~ , I VAdX)l ~ 1-4-Ixl ~ '  

where we suppose 2 ( [ A r ] ) =  1, and gMr(V r, V r) = 1. 
The proof  is the same as tha t  of L e m m a  4.8. 
Us ing  (5.12), we have some est imates on 4 "  V r. 

(5.13) Lemma.  Let A r be an anti-self-dual connection with 2 ( [ A t ] ) =  i.  We take 
unit length tangent vectors V r, Wr  ~ TtarlM r Then A = eP* A r, V=2 -a eP* V r and 
W = 2  1 cb* W r satisfy the followings: 

(1) 1--Cj.-2<=gM(V, V) =< 1 + C/I, -2 ,  

(2) [[ Vii 1,p,~ - I ~ C.~-(~ 1) 
(3) [[d~ " ~ '  < C 2  -(a/2 + 2) vll0,p,6- 2 = 
(4) lid* Vl[o,p,6_ 2 ~ C2-(6/2 + 2}, 

(5) N[VA W]+llo,p _3~C,~  -5/2 , 

(6) II{V, W } ] [ o . , - 3 < C 2  -5/2, 

where - 2  < 6 < O, and C is a constant independent of  L 
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Proof. Since these inequalities follow from direct calculation, we only show 
(1). Other inequalities is proved in a similar way (see also the proof of Lemma 
(4.3)). For (5) (6) see (5.11). 
Since 1(4~),1 < C2 -1 , Lemma 5.12 implies estimates for V: 

This gives 

C2 
] V ] ~  j[3 + (f i r)3 " 

j :  IV12 d V - 2 - 2  ~ ITa*Vrl2dz 
x\ v:X Izl > 2V~ 

Y 22 
=<C j r -1 C2 ~-4 

2V3L (2 3 + r3)2 dr < 

with arbitrary positive number e. On the other hand we have 

Since 

2V2 
[VI2dV<=C2 -4 ~ r 3 d r ~ C 2  -2. 

t22v~ V~ 

~-2]zi>~2va IT*Vr l2dx- -1  = Irl>!/va I V r l z d y - 1  <=C2-2' 

we have got (1). [] 

(5.14) Proposition. The map 7 j gives an into diffeomorphism for sufficiently large 
2 o. Moreover there exists a positive constant C such that 

(1) 

(2) 
(3) 
(4) 

1 
12 dM (7 j ( [A r] ), o) -- 1 [ < C 2 -  3/4, 

[ g u W ,  V r, ~P, W r) - gur(  V r , wr)l ~ C 2 -  3/2, 
[ [ ] - ~ , V  F A ~,WF]+Ho.p_3<C2 -9/4, 

II{~,V r, tfJ, wF}Ho,p _3 <C,~-9/4 

where omM is a f i xed  point, [A r] is a point in M r with A=2([A~]) and V r, 
w r  e TtarlM r are tangent vectors satisfying gM(V r, V r) = gM ( Wr, w r ) =  1. 

Proof  We treat two types of tangent vectors i) v r = 2 - 1 T  * Vo r with V r m T S  r, 
and ii) v r =  ~/~ 2 separately. 

First let v r = 2  -1 T* Vo r with Vor~TS r. Let {A r} (]tl<e) be a smooth family 
of anti-self-dual connections in M r with 2([Ar]) = 1 and Ao r = Vo r. Here the sym- 
bol " ."  means the differentiation with respect to t. T.hen we have a family of 
2-ASD connections {/it = q~' Ar} �9 The tangent vector Ao is given by 

j o = 2  -1 ~* Vo r. 

By Theorem 4.12 we have a family of the solutions of 

d-* u l+  + R + t = 0  d~,d**ut+�89 A, tJ 
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with 

( 5 . 1 5 )  HUttI2.p,t~ C }lR~,l[o.p,a- 2 ~ -~ C f l~-(o/2 + 1) 

for - 2  < 6 < 0. Differentiating the above  equali ty by t and  evaluat ing at t = 0, 
we obta in  

+ * + 
d* " "+ {~o,  Uo}+[~ toAdaouo]  d;4o ;40 U o -  aa,, 

�9 + "~ 
+ [d*o u o A d~o rio] + - [d*o u o A {Ao, Uo} ] + + d,~ o Ao = 0. 

Subst i tut ing (5.13) and (5.15) into this equali ty,  we get 

d* * " + < C ,,,'[ - ( a / 2  + 2) IId-Jo d]o fiO + [ ao uo A d~4o Uo] No.p.a-2~_ 

By Propos i t ion  4.11 

(5.16) ll~loH 2,p,a ~ C ~. -(t9/2 + 2) 

N o w  we est imate ~,  (vr) .  Let A, = A, + d~  u r Then we have 

Ao=ao+d*oaO-{ o, Uo}. 
Since d~,,(]to)= 0, the harmonic  par t  Mao(,,io) is given by 

IHAo(/iO)= " - '  , �9 A o -- dao AIA o (dA o Ao). 

The invert ibi l i ty of AAo is guaranteed  in Propos i t ion  4.7. More  precisely using 
(5.15), (5.16) we have 

IIA 74o~ (d*o Ao)l12,p _ , < C ]]d*o Aollo,p. _ 3 < C 2 - 3/2 

IIAT~o'(d~oAO)ll2,p, ~/2 < C lld~,o AoJlo.~ -5/2 <-_C ;~ -vIa. 

So finally we obta in  

igM(~, V r, F', v r ) - l l = i  ~ IR-IAo(ft)I2 d V - 1 I < =  C }L - 3/2. 
X 

If tangent  vectors V r, W r of unit  length are wri t ten respectively as V r 
= 2 - 1  Ta* V f ,  w r =  2 - 1 Ta* Wo r with V f  , w r  ~ T S  r, then we have 

(5.17) I gM(7', V r, 7** W r ) - - g M ~ ( V  r, Wr) l  ~ C 2 - 3 / 2  

fl[~, V r A ~, W r ]  + 11o.2 _a<=C2 -9/" 

II { ~ ,  V r, % W r ) q { o . 2 _ 3 < C 2  -9 / ' ,  

where in the second and third inequali t ies we viewed ~,  V r, ~ ,  W r as element 
of H~,taq, _ 2- Hence we have verified the asser t ion (2), (3), (4) in this case. 

Next  we consider  the case v r =  0/c3 2. W e  take a family of di f feomorphisms 
Sxa: X --+ S (I t l < e) which depend  smooth ly  on t and  satisfy 

~a+t  = ~aoS;~,t, 

Sa, o = i d .  
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More precisely we take the radial coordinate system (r, ~9)~[R, ~ ) •  S3/F on 
X \ K ,  and then S~,, is represented as 

Sza(r, O)=(f~,t(r), 0), 

where f~,t is a function satisfying 

t / , t + t  

The function f~.~ is uniquely determined by the above equation on r >  2 1 / ~ ,  
and extended smoothly on ~ +  so that fz . t (r)=r if r<]/~/2.  In particular we 
have 

f~"(r) =-22+t if r>_max(2i~+t, 2(2+OIl~2 ). 
Moreover f~,t satisfies 

~,=of~,,(r) <Cr d~ ,=o dfx,t(r) <-C- = 2 '  = 2 "  

We lift the diffeomorphism S~,, to a bundle map S~.,: P + P by setting 

gz,t(u),=v~ for u~P~, 

where T ~ is the parallel translation along the curve x(s) = Sz.s(x) (0 < s < t) from 
x to Sz,t(x). Then we have a family of 2-ASD connections {At= S* , q>* A r} 
for fixed A r E M  r with 2( [Ar] )=  1. Remark that A~ and q~+t Ar are gauge equiva- 
lent. Differentiating by t, we have 

~o = ix~ R;lo 

where Xz is the generating vector field of Saa and ix~ is the interior product 
(see [BL]). Then direct calculation shows (cf. Lemma 5.13) 

Ilix~R:4olll,~,~-~ _-<C2 -(~+') 

II d* (ix~ Rao ) II o, ~,~- 2 ~ C/~ -(~/2 + 2) 

N d] (ix~ Rao)II 0,~,~- 2 < C 2-  (~/2 + 2). 

Moreover remarking that ~0 = 2-1 ~ .  Vo r on X\f22 v~, we see 

I ~ l i x~ R ao l2dV - 11~  C 2 - 2  
X 

I j (ixx R;~o, 2 - '  ~* Wor) d V l < C 2  -2 
X 

It E~Z~O /% ~ 0 ]  + II O,p, - 3  ~ C ,~ - 9/4 

II EJo ^ 2 - '  ~ '  r + Wd] 110,.,_3 ~ C 2  -9/4 

II{Jo, ~-~ ~* Wor}llo,~,- 3-< C2 -9/4, 
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where Wo r is a unit length tangent vector of TS r. Then as above we obtain 
the inequalities of the statement (2), (3), (4). 

The above calculation shows that the map 7' gives a finite covering map 
from (2o, oo) to M for sufficiently large 2 o. We now prove that 7* is, in fact, 
a diffeomorphism onto its image (if we replace the constant 2o by a larger 
one). Suppose the contrary, and assume that there exist sequences {(2i, 1, r [A,, ,])} 
and {(2i,2, [Ar2])} in (2o, oo) x S r such that 

hi, l, 2i,2--+ O0 as i-+ oo, 

7"(21,,, [A[ , ] )= 7"(2i,2, r [Ai,2] ) for all i. 

Since S r is compact, we may assume that A r converges to an anti-self-dual i ,k  

connection A r on each compact subset of P,4/F\{0} (k= 1, 2). We shall prove 
that 2i 1 2-1 converges to 1 as i--+c~ and [Ar]  = [Azr]. , 1 , 2  

We denote by Ai,k the anti-self-dual connection constructed from (2~.k, Ark) 
by Taubes existence theorem ( k = l ,  2). From the assumption there exists a 
sequence of gauge transformations {si}mf#o such that Ai, z=s*Ai ,1  . From the 
definition of the map 7* and Theorem (4.10) the connection T~*~ (~c-1). Ai,k con- 
verges to A r on each compact subset of IRg/F\{0}. This, in particular, implies 
that there exists a positive constant C such that 

2-1 <C.  C -1<2i,1 i,2 - 

We may assume that 2~,1 2~2 ~ converges to a positive number 2 as i~oo .  Hence 
the connection T~,(.Y{'-1). Ai,2 converges to T~*, A 2. If we pull back the gauge 
transformation si by the map X -  1 o Ts ~, it converges to a gauge transformation 
s on ~ 4 / F \ { 0 }  such that 

s(x) --, id as x--* 00, 

T ,  , a t _  o. A F 
"~2 - ~  ~ 1  " 

Thus we have IT*-, A r]  = [ a r ] .  But since 2(Ar)=2(A2r)= 1, we must have 2 =  1 
and [AI r] = [Ar].  Hence 7" is an into diffeomorphism. The assertion (1) follows 
directly combining this with (2). []  

(5.18) Corollary. Each noncompact component o f  the moduli space M is an ALE 
hyperkgihler 4-manifold. 

Proof. Proposit ion 5.14 (1)(2) implies that 7" gives coordinates at infinity at 
least in the level of C~ The curvature of gM is written ([I 2, Theorem 6.1]) 

gu(R(V, W)W, V)= 3gM({V, W}, Ga{V, W } ) - g M ( [ V / x  W] +, GA[Vt ,  W] +3 

+gM([VA V] +, G A [ W A  W]+). 

Since the operator  norm of the Green operator  Ga is bounded (Propositions 4.7, 
4.8), Proposit ion 5.14, 3, 4 implies 

I R (p) l = 0 (d (o, p) -  9/~). 

Hence by [BKN, Theorem 1.1] we have coordinates at infinity of order 5/2 
on this end. 
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Since (M, g) is hyperk~ihler, it is Ricci-flat. Then each component of M has 
at most one end by Cheeger-Gromoll splitting theorem [CG].  So the end corre- 
sponding to Taubes' existence theorem is the only end of a component of M. []  

6. Periods of the moduli spaces 

The results in previous sections determine the differentiable structures of the 
moduli spaces in principle. So the remained problem is to determine the 
hyperk/ihler structures. These are determined by cohomology classes of three 
K/ihler forms (see Fact 1.2). In this section we relate the homology group 
H2(M; Z) of the moduli space to that of the base space and compute the values 
of K~ihler forms evaluated on the homology group for examples given in Theo- 
rems 0.2, 0.3. 

Throughout this section we assume that the group G is a unitary group 
U(r) and (X, g, Ix, Jx, Kx) is an ALE hyperk/ihler 4-manifold diffeomorphic 
to the minimal resolution S of ~.2/F. Let ~o x, eJ x, (or x denote the associated 
Kfihler forms. The irreducible components Z1, ..., Z, of the exceptional set give 
a basis of the homology group H2(X; 7Z) and the intersection matrix (Zi, Z j) 
is the negative of the Caftan matrix. 

Let P be a principal bundle over X with the structure group G which can 
be extended to the orbifold X = X  w {oo}, p: F--* G the homomorphism induced 
by the action on the fiber P~, and M=M(P, k, p) the moduli space of anti-self- 
dual connections on P asymptotic to p. We denote by E the associated complex 
vector bundle. 

Now we assume dim M =4. In the previous sections we have observed that 
M has a natural complete metric g~t with the hyperk/ihler structure (IM, J~, KM). 
It may have several components, but we already know that each noncompact 
component is ALE, and each compact component must be a K3 surface or 
a torus. We denote by o)~, co~ t, c0~ the K/ihler forms associated with the 
hyperk/ihter structure on M. 

Since the reduced gauge group c~ 0 acts freely on d ,  sd, there exists a universal 
bundle F=dasdX~oP over M x X .  We take the associated vector bundle 1E 
over M x X. The bundle IP admits a natural universal connection & which 
is equivalent to A when restricted to {[A]} x X (cf. [AS2]). 

Following [Mu, D3], we define homomorphisms f :  H2(X; N ) ~ H 2 ( M ;  IR), 
f ' :  H 2(M; ~)--* H z (X; ~ )  (where H~ denotes the cohomology group with com- 
pact supports) by 

(6.1) f(ct)= - ( I  ~ch(lF))(2), f ' ( f l )=  --( I flch(ll~')) (2)' 
X M 

where (~ m e a n s  a 2-form component. 

(6.2) Theorem. I f  the Ad-invariant inner product on g is suitable chosen, then 
(1) (f(~t), fl)=(a,f'(fl)) for a~H2(X; R) and fl~H2(M; ~) ,  
(2) f(Eco/])= [o)~], f(Ecoax])= o~ ~ co x [ s ] , f ( [  K ] ) = [ ~ O ~ ]  

where [ ' ]  denotes the cohomology class. 

Proof. The statement (1) follows easily. In fact, 

( f  (a), fl) = (a. ch (HE). fl) [X x M] = (a, f'(fl)). 
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The statement (2) was proved in [D4, (5.10)]. Using the universal connection 
&, we take the representation - - ( i /8 / r  2) tr(R 2) of ch(g)(]F~.) via the Chern-Weil 
theory. For  (a, v)e T M  x T X  the curvature form R,~ satisfies 

R•(a, v)=a(v) 

where in the right-hand side the tangent vector a is viewed as AdP-va lued  
1-form on X [AS2].  Hence for a, b E T M  

x - 1  
--(~ ch(E)ACOl)(a, b)=4~2~ 2 ~ t r ( a^b )A c o  x. 

X X 

The right-hand side is the K/ihler form co~. The correspondence for J and 
K can be proved similarly. This shows (2). []  

The meaning of the map f is explained by using the determinant line bundle 
(see [D3, Sect. 2], [BF]). Suppose that c~eH2(X;IR) is the Poincar6 dual of 
the homology class [ZJ .  We couple the Dirac operator  on Z~ with the family 
of connections on IE to get the family of twisted Dirac operators on Z~. Then 
we have the determinant line bundle 5~ = L,~ whose fiber over [A] ~ M is defined 
by 

max max 

(~S.)A = ( /k  ker DA)* |  coker DA). 

Then the class f(P.D. [-Z~]) can be calculated by the families index theorem [AS 1] 

f (RD.  [2;~]) = - ~ ch(E) = - cl (ind D3 = c~ (L.W~). 

There is a canonical section det Di of L,~ which is nonzero exactly where D A 
is invertible. Moreover when 2;i is a complex submanifold of (X, g), we can 
define a natural holomorphic structure on LP~ since IE with the connection & 
is a holomorphic vector bundle over X x M (see e.g., [I4]). Then there is a 
correspondence (cf. [H 1]) 

(6.3) kerD A --- H~ ~O(K 1/2 | E)) 

coker D A -~ H t (El; (9 (K 1/2 (~ E)), 

where K 1/2 is the square root of the canonical bundle (i.e. a holomorphic line 
bundle with K1/2| K1/2~ K). In this case the canonical section det D i is holo- 
morphic. 

First  we study the case considered in Theorem 0.2. We take a complex line 
bunle L over X which is asymptotic to the trivial connection and satisfy 
c l ( L ) 2 [ ) ? ] = - 2 .  Let Z'~H2(X;7Z ) be the Poincar6 dual of cl(L). Since cl(E) 
=c l  (~_ ~ L )=c t  (L), the line bundle L is determined from a topological datum 
of E. We already know that each component  of the moduli  space M is isometric 
to the Eguchi-Hanson space up to a constant factor (Theorem 5.11) and contain 
a reducible connection corresponding S z (the exceptional set of the resolution). 
This shows that M itself is connected. In particular, it is diffeomorphic to the 
minimal resolution of 1 ~ 2 / 7 ~ 2 ,  and has a generator cr of Hz(M;  2g) determined 
by the exceptional set of the resolution. 
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(6.4) Theorem. 

f (~ ) [ a ]  =(c1(L), a )=a(X)  for o:~H2(X; IR). 

H. Nakajima 

(6.5) Corollary. 

[09#] (a) = [coxa] (Z) for all A = I, J, K. 

Proof Theorem 6.4 implies 

(f(c0, P.D.S)=(a,  ca(L)) for c~mH2(X; R). 

Together with Theorem 6.2, 1, this implies f ' (ED.Z)=cl(L) .  Then using Theo- 
rem 6.2, 2, we have 

[coa u]  (a) =f([coax])(a) = ([cox],f,(ED. Z)) = ([cox], c, (L)). []  

Proof of Theorem 6.4. We fix a point [A0] ~ M  which corresponds to the reduc- 
tion E = 112 G L. The group Gp = SO (3) acts on the set ~ c M of reducible connec- 
tions transitively, and the isotropy subgroup at [Ao] is isomorphic to S ~ el l ;*  
which acts the complex line bundle L as the scalar multiplication. In particular, 

is isometric to S 2, in fact coincides with the exceptional set of the minimal 
resolution of Ir.2/292. 

We compute the values of the map f on ED.[XI]  . . . . .  P.D.[X,]mH2(X; •) 
by studying the action of the isotropy subgroup S 1 on the fiber of the determinant 
line bundle S~i at [Ao] (cf. [D 3, Lemma 2.28]). Via the decomposition E = ~ �9 L, 
the determinant line at [Ao] is written as 

= det D~,,r det D L.L. 

Since S a acts on L with weight 1, the index theorem implies the action on 
is with weight 

--  c l  (L) [ S , ] .  
This shows 

cl (~ )  [N] = 2 c a (L) [Si] .  

Since H2(M; Z) is generated by [ ~ ]  

C 1 ( e ~ / )  = - -  C 1 (L)[XJ ED. [ ~ ] .  

The conclusion follows directly from the above. [ ]  

Next we turn to the case considered in Theorem 0.3. The method is almost 
the same as the above and we use the action of Gp=S 1 essentially. The fixed 
points Fix(S 1) of Sa-action are n + l  reducible connections [A~] . . . . .  [A,+x] 
(Theorem 3.6). In particular, the Euler number of the moduli  space M is equal 
to n + 1. Since M has a component Mo diffeomorphic to X whose Euler number 
is equal to n + l ,  the Euler number of the other components must be zero. 
So the other components are tori. The component Mo is diffeomorphic to the 
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minimal resolution of I ~ 2 / F ,  and has a basis 0" 1 . . . . .  O" n of H2 (Mo; Z) determined 
by the irreducible components of the exceptional set. The intersection matrix 
(a~, or j) is the negative of the Cartan matrix. 

(6.6) Theorem. The classes f(RD.[221])(i= 1 . . . . .  n) belong to HZ(Mo, c 3Mo; 2~) 
and the intersection matrix (f(RD. [221]), f (RD. [Zj])) is equal to the negative o f  
the Cartan matrix. 

(6.7) Corollary. The component (Mo, gM, IM, JM, KM) of  the moduli space M o 
is isomorphic to (X, g, Ix ,  ,Ix, Kx)  as a hyperkdhler manifold. 

Proof  By Theorem 6.6, the map f gives an isomorphism between H 2 (X; 27,) 
and Hz(Mo; Z) which preserves the intersection product. Then we have 

Eo~]  (oi) = E~o5] (223, 

where ag=f(Zi).  This implies (Mo, gM) and (X, g) are isomorphic. []  

Proof of Theorem 6.6. Since the bilinear form ( f  ('), f (-)) on H 2 (X; 1t) is indepen- 
dent of the metric g on X (see [D4]), we may assume that (X, g) is biholomorphic 
to the minimal resolution of (EZ/F. So 2;1, ..., 22, are complex submanifolds 
biholomorphic to 1121P 1 and the determinant line bundle ~ have holomorphic 
structures under which the canonical section det Di is holomorphic. 

When the connection [A] e M o goes to the infinity, it converges to the trivial 
connection on a compact subset of X. So there exists a compact subset C 
of Mo such that the restriction of a connection A in M o \ C  to 221 is trivial 
as a holomorphic bundle, and hence the Dirac operator  D~ is invertible (see 
(6.3)). Hence the zero set Z~ of detDi is a compact complex submanifold of 
M 0. It is invariant under the action of G o = S 1, and the intersection Fix S 1 c~ Z i 
is two points [Ai] and [Ai+ 5]- Thus Zi must be biholomorphic to IE~ '1. Moreover  
for i < j  the zero sets Z i and Z i intersect if and only if i + 1 = j  and the intersection 
point is [A~+1] (Fig. 1). Hence the set {[Z1] . . . . .  [Z,]} gives a basis for 
H2(Mo; 27) and its intersection matrix is the same as that of {221, ..., 22,}- 

The class Cl (L~) is written as ai RD. [ Z J  with a positive integer al. To calculate 
a i we study the Sl-action on the fiber of ~ at fixed points. At [Ai] the bundle 
E splits into Li(~L: ,  1 (see (3.5)), and S ~ acts with weight 1 on L~ and with 
weight ( -  1) on L[ t .  So S 1 acts on ~ with weight 

cl (L,) [Xi] - c 1 (El 1) [z~i] = 2. 

On the other hand ( -  1) acts trivially on Zi, and in fact $1/{ +_ 1} is acts effectively. 
Thus we have cl(s - 2  and hence c l ( ~ ) = P . D . [ Z i ] .  [] 



302 H. Nakajima 

References 

[An] Anderson, M.: Ricci curvature bounds and Einstein metrics on compact manifolds. 
J. Am. Math. Soc. (to appear) 

[At] Atiyah, M.: New invariants for 3- and 4-manifolds. Preprint 1987 
I-AH] Atiyah, M., Hitchin, N.: The geometry and dynamics of magnetic monopoles. Prince- 

ton: Princeton Univ. Press 1988 
[AHDM] Atiyah, M., Drinfeld, V., Hitehin, N., Manin, Y.: Constructions of instantons. Phys. 

Lett. 65A, 185-187 (1978) 
lAPS] Atiyah, M., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geome- 

try. I. Math. Proc. Camb. Philos. Soc. 77, 43-69 (1975) 
[AS l] Atiyah, M., Singer, I.: The index of elliptic operators. IV. Ann. Math. 93, 54~%604 

(1971) 
[AS2] Atiyah, M., Singer, I.: Dirac operators coupled to vector potentials. Proc. Natl. 

Aead. Sci. USA 81, 2597 2600 (1984) 
[Au] Austin, D.: SO(3)-instantons on L(p, q) x ~,.. Preprint 
[BF] Bismut, J.M., Freed, D.S.: The analysis of elliptic families. I: Metrics and connections 

on determinant bundles. Commun. Math. Phys. 106, 159 176 (1986); II: Dirac opera- 
tors, eta invariants, and the holonomy theorem. Commun. Math. Phys. 107, 103 163 
(1986) 

[BKN] Bando, S., Kasue, A., Nakajima, H.: On a construction of coordinate at infinity 
on manifolds with fast curvature decay and maximal volume growth. Invent. Math. 
97, 313-349 (1989) 

[Ba] Bartnik, R.: The mass of an asymptotically flat manifold. Comm. Pure Appl. Math. 
39, 661-693 (1986) 

[BL] Bourguignon, J.P., Lawson, H.B.: Stability and isolation phenomena for Yang-Mills 
fields. Commun. Math. Phys. 79, 189 230 (1981) 

[CG] Cheeger, J., Gromoll, D.: The splitting theorem for manifolds of nonnegative Ricci 
curvature. J. Diff. Geom. 6, 119-128 (1971) 

[DW] Dold, A., Whitney, H.: Classification of oriented sphere bundles over a 4-complex. 
Ann. Math. 69, 667-677 (1959) 

[D 1] Donaldson, S.K.: An application of gauge theory to the topology of 4-manifolds. 
J. Diff. Geom. 18, 279-315 (1983) 

[D2] Donaldson, S.K.: Instantons and geometric invariant theory. Commun. Math. Phys. 
93, 453~460 (1984) 

[D3] Donaldson, S.K.: Connections, cohomology and the intersection forms of 4-mani- 
folds. J. Diff. Geom. 24, 275-341 (1986) 

[D4] Donaldson, S.K.: Polynomial invariants for smooth four manifolds. Preprint, Oxford, 
1987 

[EH] Eguchi, T., Hanson, A.J.: Asymptotically flat self-dual solutions to Euclidean quan- 
tum gravity. Phys. Lett. 74B, 249 251 (1978) 

[FS] Fintushel, R., Stern, R.: Pseudofree orbifolds. Ann. Math. 122, 335 364 (1985) 
[FI] Floer, A.: An instanton invariant for 3-manifolds. Commun. Math. Phys. 118, 215- 

240 (1988) 
[FU] Freed, D.S., Uhlenbeck, K.K.: fnstantons and four-manifolds. MSRI Publ. Berlin, 

Heidelberg, New York: Springer 1984 
[FH] Furuta, M., Hashimoto, Y.: Equivariant instantons on S 4. Preprint 
[GH] Gibbons, G.W, Hawking, S.W.: Gravitational multi-instantons. Phys. Lett. 78B, 

43(L432 (1978) 
[GR] Gibbons, G.W., Ruback, R.J.: The bidden symmetries of multi-centre metrics. Com- 

mun. Math. Phys. 115, 267-300 (1988) 
[-GT] Gilbarg, D., Trudinger, N.S.: Partial differential equations of second order, second 

edition. Berlin, Heidelberg, New York: Springer 1983 
[GV] Gonzalez-Sprinberg, G., Verdier, J.L.: Construction g6om6trique de la correspon- 

dance de McKay. Ann. Sci. Ec. Norm. Sup. 16, 409~J,49 (1983) 
[GP] Groisser, D., Parker, T.: The geometry of the Yang-Mills moduli space for definite 

manifolds. J. Diff. Geom. 29, 499-544 (1989) 
[H 1] Hitchin, N.: Harmonic spinors. Adv. Math. 14, 1-55 (1974) 



ALE gravitational instantons 303 

[H 2] 

[HKLR]  

[ i  l] 

[12] 

[t3] 

[I4] 

[IN] 

[Ko] 

[Kr 1] 

[Kr2]  

[La] 

[LP] 

[Li] 
[LM] 

[Mc] 

[Mu]  

[Na] 

[Pr] 

[SSY] 

[T I ]  

[T2] 

[T3] 

[T4] 

[u1] 

[u2] 

Hitchin, N.: Metrics on moduli spaces. In: Proceedings of the Lefschez Centennial 
Conference (Contemporary Math, 58, Part 1). A.M.S., Providence, R.I., 1986 
Hitchin, N., Karlhede, A., Lindstr6m, U, Ro~ek, M.: Hyperkfihler metrics and super- 
symmetry. Com. Math. Phys. 108, 535 589 (1989) 
Itoh, M.: Self-dual Yang-Mills equations and Taubes' theorem. Tsukuba J. Math. 
8, 1 29 (1984) 
ltoh, M.: Geometry of anti-self-dual connections and Kuranishi map. J. Math. Soc. 
Jpn. 40, 9 33 (1988) 
ltoh, M.: Quaternion structure on the moduli space of Yang-Mills connections. 
Math. Ann. 276, 581 593 (1987) 
Itoh, M.: Yang-Mills connections and the index bundles. Tsukuba Math. J. (to 
appear) 
Itoh, M., Nakajima, H.: Yang-Mills connections and Einstein-Hermitian metrics 
(survey). In: Survey of Einstein metrics and topics in complex geometry. Adv. Stud. 
Pure Math.: Kinokuniya 1990 (to appear) 
Koboyashi, S.: Differential geometry of complex vector buindles. Publ. of Math. 
Soc. of Japan, Iwanami Shoten and Princeton Univ. (1987) 
Kronheimer, P.B.: The construction of ALE spaces as hyperkfihler quotient. J. Diff. 
Geom. 29, 665 683 (1989) 
Kronheimer, P.B.: A Torelli-type theorem for gravitational instantons. J. Diff. Geom. 
29, 685 697 (1989) 
Lawson, T. : Normal bundles for an embedded ~,p2 in a positive definite 4-manifold. 
J. Diff. Geom. 22, 215 231 (1985) 
Lee, J., Parker, T.: The Yamabc problem. Bull. Am. Math. Soc. N.S. 17, 37 91 
(1987) 
Lichnerowicz, A. : Spineurs harmoniques. C.R. Acad Sci. Paris 257, 7 9 (1963) 
Lockhart, R., McOwen, R.C.: Elliptic differential operators on noncompact  mani- 
folds. Ann. Sci. Norm. Sup. Pisa 12, 409447  (1985) 
McKay, J.: Graphs, singularities and finite groups. Proc. Symp. Pure Math. 37, 
183 186(1980) 
Mukai, S.: On the moduli space of bundles on K3 surfaces I. In: Vector bundles 
on algebraic varieties, pp. 341-413. Oxford: Oxford University Press 1987 
Nakajima, H.: Hausdorff convergence of Einstein 4-manifolds. J. Fac. Sci. Univ. 
Tokyo 35, 41 l 424 (1988) 
Price, P.: A monotonicity formula for Yang-Mills fields. Manu. Math. 43, 131 166 
(1983) 
Schoen, R., Simon, L., Yau, S.T.: Curvature estimates for minimal hypersurfaces. 
Acta Math. 134, 275 288 (1975) 
Taubes, C.H.: Stability of Yang-Mills moduli spaces. Commun.  Math. Phys. 91, 
235-263 (1983) 
Taubes, C.H.: Self-dual connections on non-self-dual manifolds. J. Diff. Geom. 17, 
139 170 (1982) 
Taubes, C.H.: Path-connected Yang-Mills moduli spaces. J. Diff. Geom. 19, 337 392 
(1984) 
Taubes, C.H.: Gauge theory on asymptotically periodic 4-manifolds. J. Diff. Geom. 
25, 363 430 (1987) 
Uhlenbeck, K.K.: Removable singularities in Yang-Mills fields. Commun.  Math. 
Phys. 83, 11-30 (1982) 
Uhlenbeck, K.K.: Connections with L p bounds on curvature. Commun.  Math. Phys. 
83, 31 42 (1982) 


