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0. Introduction

In [Kr1, Kr2] Kronheimer constructed and classified all ALE hyperkihler 4-
manifolds which were originally discovered by physicists [EH, GH]. There he
proved that for each finite subgroup I'c=SU(2), there exists a family of ALE
hyperkdhler metrics on the minimal resolution of the quotient variety C2/I"
and then showed that they exhaust all ALE hyperkahler 4-manifolds. On the
other hand in the joint work with Bando and Kasue [BKN], the author pointed
out that they bubble off from points at which the curvature of a sequence
of Einstein metrics become concentrated (see also [An, Na]) and proved that
the existence of ALE coordinate system results from the finiteness of I*-norm
of the curvature and the maximal volume growth order condition. In both
works it becomes apparent that ALE hyperkéhler 4-manifolds share the same
properties with Yang-Mills instantons on IR*, and so we think that they have
as rich mathematical structures as Yang-Mills instantons.

In this paper we study the (framed) moduli space M of anti-self-dual connec-
tions on a principal bundle over an ALE hyperkdhler 4-manifold. It has the
natural Riemannian metric g, and the hyperkéhler structure (I, Jy, K,,) in-
duced from those on the base manifold. The constructions of these structures
are very natural, and were carried out over compact hyperkihler 4-manifolds
by Itoh [13] and Hitchin [H2]. The existence of these structures is strong
enough so that we can almost determine the moduli space at least when it
is 4-dimensional. In fact, we shall prove the following:

(0.1) Theorem. Let (X, g, Ix, Jx, Kx) be an ALE hyperkdhler 4-manifold which
is diffeomorphic to the minimal resolution of €2/ and P a principal bundle over
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X with the structure group G (a compact Lie group). Let M =M (P, k, p) denote
the (framed) moduli space of anti-self-dual connections on P with an instanton
number k and asymptotic to a flat connection on S3/I" associated with a homo-
morphism p: I' — G (see § 2 for more precise definition). Suppose that M is nonempty
and 4-dimensional. Then

(1) the moduli space M is a nonsingular manifold which has a natural Rieman-
nian metric g,, and a hyperkdhler structure (1, Jyy, Ky,

(2) the metric g, is complete,

(3) each noncompact component of (M, g,) is an ALE 4-manifold.

We remark that the existence of a hyperkidhler structure on noncompact
gravitational instanton is announced by Itoh [I3, p. 583, Remark (v)].

It is easy to figure the shape of the moduli space. When the sequence of
anti-self-dual connections goes to infinity in the moduli space, their curvature
become concentrated at infinity of the base manifold. If we choose an appropriate
sequence of rescalings of the metric, the connections converge to an anti-self-dual
connections on C€2/I. Conversely the Taubes’ existence theorem gives a diffeo-
morphism @ from the moduli space on €T to the end of the moduli space
on X. We shall prove that the moduli space MY on €?/I" is isometric to
C*\{0}/I" for some finite subgroup I" =SU(2) (possibly different from I') when
dim M" =4, and so that the map @ defines a coordinate system at infinity.

Since the topology of an ALE hyperkédhler 4-manifold is determined by
the fundamental group of the end (see Fact 1.2), we can determine that of the
noncompact component of the moduli space by studying the moduli space on
C2/I. But to determine moreover the hyperkihler structure we must know the
cohomology classes of three Kahler forms. For the examples given below we
can know them by constructing a homomorphism between two cohomology
groups of X and M.

(0.2) Theorem. Let (X, g, Iy, Jy, Ky) be as in Theorem 0.1 and (w¥, o¥, w¥) the
Kdhler forms associated with (Ix, Jx, K y). We consider the root system R associat-
ed with the finite subgroup I' =SU(2) as a subset of H,(X; Z) (see Sect. 1 for
the correspondence between binary polyhedral groups and root systems). For each
root X of R, there exists a complex line bundle Ly over X such that the reducible
connection D associated with the reduction E=C® Ly (C is the trivial complex
line bundle) is in a 4-dimensional moduli space M =M (P, k, p) with

(1) 6=UQ),

() k=1,

(3) p is trivial,

(4) ¢, (Ly) is the Poincaré dual of ZeH,(X ; Z).
Moreover M is isometric to the Eguchi-Hanson space and its Kdhler forms
(@}, o}, o) satisfy

[wX]1(0)=[wi](Z),

where o is a generator of H,(M; Z).

The Eguchi-Hanson space is the simplest ALE hyperkdhler manifold diffeo-
morphic to T'* CP! the holomorphic cotangent bundle of the projective line.

(0.3) Theorem. Let (X, g, Iy, Jx, Kx) be as in Theorem 0.1. There exists a noncom-
pact component M, of the 4-dimensional moduli space M =M (P, k, p) with

(1) G=SU(2),

(2) k=(I'|—1)/|T"| where |I'| is the order of I,
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(3) p is equal to the inclusion map I' - SU(2),
(4) M, is diffeomorphic to X.

If the group I' is a cyclic group (ie. I' is of type A,), (Mg, Zns Laes Jnns Kur)
is isomorphic to the base manifold (X, g, 1y, Jy, Ky) as a hyperkdhler manifold.

We owe the choices of p and k in Theorem 0.3 to Furuta and Hashimoto
[FH] who have studied the moduli space of anti-self-dual connections on C%/I"
in detail.

We conjecture that every component of the moduli space M in Theorem 0.1
is always noncompact. We remark our results imply that each compact compo-
nent, if exists, must be a K 3 surface or a torus since they are the only compact
hyperkéhler 4-manifolds.

In the explicit descriptions of moduli space of anti-self-dual connections
on $* so called the twister method has played an important role to reduce
the problem to the algebraic geometry. However in our cases our method is
purely differential geometric. The keys to the proof are the existence of the
hyperkéhler structure on the moduli space and the study of the behavior of
the metric on the end. In the spirit our method is similar to that used by
Mukai who has studied the moduli space of stable sheaves on a K3 surface
[Mu]. In fact, our results are inspired by his results. The key to his results
is also the existence of the hyperkéhler metric (which is essentially equivalent
to the existence of holomorphic symplectic structure in his papers).

The method to determine the hyperkéhler structures of the moduli spaces
in Theorems 0.2, 0.3 is very similar to the calculation of the polynomial invar-
iants defined by Donaldson for compact 4-manifolds {D4]. Recently Floer [F1]
introduced the homology groups graded by Z; for homology 3-spheres. Donald-
son pointed out that the polynomial invariants should take values in Floer
homology groups for the compact 4-manifold with boundary which is homology
3-sphere (see [At]). Although the quotient space S3/I" is not homology 3-sphere
except when I' is the binary icosahedral group, our results seem to suggest
that the definition of the Floer type homology groups for §3/I" is possible and
give examples of the calculation of the polynomial invariants for manifolds
with boundary S3/T.

The organization of this paper is as follows. In Sect. 1, we shall review the
results of [Kr1, Kr2] for the convenience of the reader. In Sect. 2, we shall
study the moduli space of anti-self-dual connections on the ALE 4-manifold
to prove that it is a nonsingular manifold and has a natural Riemannian metric.
In Sects. 3, 4, we shall give two types of existence theorems of anti-self-dual
connections. In Sect. 3, we shall use reducible connections, and in Sect. 4 we
shall give Taubes’ existence theorem. In Sect. 5, we study the behavior of the
metric on the end of the moduli space when it is 4-dimensional using the esti-
mates obtained in Sect. 4. In Sect. 6, we shall study the period of the moduli
spaces given in Theorem 0.2, 0.3.

The author would like to thank Dr. M. Furuta and Dr. Y. Hashimoto for
many valuable discussions about the moduli spaces on C%/T.

After the completion of this work, in the joint work with P. Kronheimer,
the author obtained a description of the moduli space by certain finite dimen-
sional matrices when the structure group is a unitary group, which is a general-
ization of the ADHM construction. Theorem 0.2 and 0.3 also follow from this
description.
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1. ALE gravitational instantons

We say an oriented Riemannian 4-manifold (X, g) is an asymptotically locally
Euclidean (we abbreviate it to ALE in this paper) manifold of order t>0 (cf.
[Ba, LP, BKN]) if there exist a compact set K< X, a C*-diffeomorphism 2':
X\K - (R*\Bg)/I" for some R>0 and a finite subgroup I = SO(4) acting freely
on IR*\ By, such that the metric g is represented in the coordinates Z as

gij(X)=0;+a,(x) for xeR*\ By,

where a;; satisfies

ptimes

(L.1) 0. 0a;(x)|=0(x|"?") for p=1,2,3,....

The definition is slightly different from the one used in [BKN]. The above
definition requires the decay of all higher order derivatives of a;;, though we
only assume that up to C"* in [BKN]. But for ALE hyperkihler spaces these
definitions are equivalent since we can derive the decay of higher order deriva-
tives from the Einstein equation using Schauder estimates.

The hyperkadhler structure on a Riemannian manifold (X, g) is, by definition,
three parallel almost complex structures (I, J, K) which satisfy the quaternionic
relation IJ = —JI=K. Then there exist three associated Kahler forms w;, wy,
Wg.
Let I' be a nontrivial finite subgroup of SU(2). It is well-known that these
subgroups correspond to root systems and are classified as follows (see [Kri]
and the references therein):

k
A, r={[% C(fk]k=o,...,n}gz,,ﬂ

where { is a primitive (n + 1)-th root of unity,
D,: I'=D}_, the binary dihedral group of order 4(n—2),
Eg: I'=T* the binary tetrahedral group,

E,: I'=0* the binary octahedral group,
Eq: I'=I* the binary icosahedral group.

The group I acts on €2 and the action is free outside the origin 0. The singularity
of the quotient space €2/I" at the origin is called a rational double point and
has been studied by many mathematicians. Let n: § — @2/I" be the minimal
resolution. We denote its underlying differentiable structure by X. Kronheimer
[Kr1, Kr2] proved the following:

(1.2) Fact. Let o, oy, axe H2(X; R) be three cohomology classes satisfying the
non-degeneracy condition
(*) for each ZeH,(X;Z) with X-Z=—2, there exists Ae{l,J, K} with
o,(2)=*0.
Then there exist a Riemannian metric g and a hyperkdhler structure (I, J, K)
on X such that the cohomology classes of the Kdhler forms [w,] are the given
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a4 (A=1,J, K) and the metric is ALE of order 4. Conversely all ALE hyperkdhler
4-manifolds of order 4 are obtained in the above manner and their isometry classes
are uniquely determined by the cohomology classes o;, a,, ag.

The exceptional set 77 '(0) of the minimal resolution of €%/I' decomposes
to a union of CIP*

T M) =2+ 2, +... +2,,

and the intersection matrix (X;- X ;) is the negative of the Cartan matrix associated
with the root system. In this way the set {X, ..., X,} of irreducible components
of the exceptional set can be identified with the set of simple roots. On the
other hand the set of the homology classes {[Z],...,[Z,]} gives a basis of
H,(X; Z). Hence there is an isomorphism between H,(X ; Z) and the root lattice
L.

The same correspondence between the group I' and the root system was
discovered by McKay [Mc] in a different manner. Let {p,, py, ..., p,} be the
set of all irreducible representations of I' with p, the trivial representation.
Let py be the canonical 2-dimensional representation defined by the inclusion
I'>> SU(2). We define the matrix A =(a;;) by the decomposition formula

PQ®P£=@‘1UP,”
J

where a;; denotes the multiplicity of p; in py® p,. Then the matrix 2/~ 4 is
the extended Cartan matrix with p, corresponds to the negative of the highest
root.

Gonzalez-Sprinberg and Verdier [GV] give a geometrical explanation of
the McKay correspondence as follows:

Let M; be a reflexive U¢zr-module defined by a nontrivial irreducible repre-
sentation p; of I. We denote by M, the Osmodule 7* M/torsxon Then M,
is locally free, and {¢,(M,), ..., ¢ (M,,)} defines the dual basis of {[X,], ..., [Z,]}.

2. Local structures of moduli spaces

In this section we study local structures {(e.g., manifold structure, Riemannian
metric, Kéhler structure, hyperkihler structure) of moduli spaces of anti-self-dual
connections on general ALE 4-manifolds (not necessarily hyperkahler). The cor-
responding results for compact 4-manifolds have been obtained in [D1, FU,
12, 13, H2]. Our results are modifications of their results to ALE manifolds.
Such modifications to non-compact manifolds were already done by Taubes
[T4] for manifolds with periodic ends. To save labor, we refer to his results
by changing the ALE metric to a cylindrical metric conformally, though it
is also possible to prove results by using analysis on ALE manifolds directly
(see e.g. [Ba]).

Let (X, g) be an oriented ALE Riemannian 4-manifold of order t>0 with
the coordinate system at infinity Z: X\ K — (R*\ Bg)/I". Let P be a principal
bundle over X with a structure group G (a compact Lie group) and Ad P the
adjoint bundle associated with P (i.e. the associated vector bundle with fiber
the Lie algebra g by the adjoint representation Ad: G — GL(g)). We take a
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homomorphism p: I'> G which will be identified with a flat connection on
$3/T. We assume that P has a connection 4, such that

(2.1) Ag=p on {t}xS¥I'<[R,o0)x S} T=X\K for t=R.

We define weighted Sobolev norms on the space Q%5(Ad P) of Ad P-valued k-

forms with compact supports. We follow the notation of [Ba, LP]. Let

r(p)=1Z(p)] on X\K, extended to a smooth positive function on all of X.

For a nonnegative integer /, 6eRR and p=1, the Sobolev norms ||, ,; on
Q% (Ad P) are defined by

jhmes

(2.2) el ps= Z{ﬂ .. ocl"r"“’ Me—s gyt

ji=0 X

where V, is the covariant differentiation associated with 4,. We denote by
Wy-#(Q*(Ad P)) the completion of (Ad P) by the norm ||, , .

We say a connection A is asymptotic to the flat connection (or to the homo-
morphism) p in W7, if we can write A=A, + « with

llexlls, .6 < 0.

The connection A naturally induces the exterior differential operator d:
Q& (Ad P) > Q4% 1(Ad P) and its formal adjoint d%: Q5 '(Ad P) - Q5(Ad P).

Fix an integer I>1. We define the space /' of Sobolev connections and
the group %4*' of Sobolev gauge transformations by

ot ={Ay+a|ae WhHQ (A P),
Gotti={se WLF 1 2(QUEnd (V)| s —idll;1 1.2, - <0, s€C ae.},

where G is considered as a linear subgroup by a faithful representation G
— GL(V) and End(V) is the associated vector bundle. The group #5"! acts
smoothly on /' by pullback

Vs,(A)=s"ol7Aos.
Our group %5"! is slightly different from the usual gauge group since it only
contains automorphisms converging to the identity. We introduce the gauge
group ¢'*! which naturally acts on 2/'. Let G, be a subgroup of G defined
by
G,={seGlsps™ '=p}.

We regard seG, as a section of End(V) by setting s on X\K and extending
smoothly to the ‘whole X. Then '+ is defined by

Gt L={se W' 2(Q%(End(V))|s€G ae.,
s —Swllis1,2,~1 <co for some s, eG,}.

The quotient space #' = .o¢'/%5" ! is the moduli space of connections on P asymp-
totic to p. (The moduli space is usually defined as the quotient of the gauge
group 4'* ! for compact manifolds, and the quotient of ¥4+ ! is called a “framed”
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(or “based”) moduli space. But since we are concerned only with %', we call
it the moduli space for brevity.)

To give a manifold structure on %', we change the metric conformally and
refer to results of [T4]. From coordinates at infinity &: X\K — (IR*\ Bg)/T,
we have cylindrical coordinates

@ X\K - S3/I'x (R, ©),

where %71 (0, u)=% ~'(e"6). By a conformal change with factor r~2 the metric
g is approximated by the standard metric of the cylinder:

(@/_1)*("_2g)=du2+d92+0(e‘(2+t)“),

We denote the new metric r~2g by g’. Then

w={or

%“={seW1£,:”(Q°<End(V»\

Jjtimes

1
Z fe? ...VAooz|§,dV;,<oo},
j=0 X

f jtimes
Y [, ..V, (s—id)|7 dV, <00, s€G ac-},
=0 X

where the norm | |- and the volume element dV,. are with respect to g’. Hence
the spaces .«', ¥4+! are isomorphic to the correspondmg spaces in [T4] where
the weight (J in the notation of [T4]) is equal to 2. The Hodge star operator
#, With respect to g’ relates to the original star operator by

x=e“" "% on k-forms.

In particular, we have
dba=0 ifand onlyif %, d,*,e**a=0 fora l-forma.
We then have the following “slice theorem™ [ T4, Lemma 7.3]:
(2.3) Proposition. The quotient space #'=.of'/%94" is a C*-Banach manifold

and the projection ©: o' — ' defines a principal 4% '-bundle. The tangent space
to [A)e#' is isomorphic to the slice

S, ={xe W-2(QL(Ad P))|d% a=0}.

Remark. 1t is not explicit that results in [T4, Sect. 5, 7, 8] hold for the specific
weight value 2. But if we restrict our concern to ALE manifolds, it can be
shown to be true (cf. [LLM, Sect. 9]).

Next we consider the moduli space of anti-self-dual connection. Let /%4
be the set of anti-self-dual connections asymptotic to p, i.e.

{Aeo/'|Ais anti-self-dual}.

Adapting the argument of [T 4, Proposition 8.2] as above, we have
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(2.4) Theorem. The quotient space M = .7} /4! is a nonsingular C* manifold
in a neighborhood of [A]le M if A satisfies

0=H3 _;:==Kerd%: W:(Q*(AdP))—> W:i(Q2'(AdP)).
The tangent space T; 4y M is isomorphic to
HY _,:={aeW-Z( QYA P)|d} a=d%a=0}.

It is worth while remarking that the moduli space is non-singular even at reduc-
ible connections. It is the main difference from the compact case.
When we want to specify the bundle P, the instanton number

1 2
_8—)5 A2 dV,

and the homomorphism p: I' — G, we use the notation M (P, k, p) for the moduli
space M.

For a later purpose, we define the Kuranishi map following [12]. For an
anti-self-dual connection A, consider an operator defined by

A =d}d%: WH12(QF (Ad P) - Wi312(Q7 (Ad P)).

If the assumption in Theorem 2.4 is satisfied, 4, is invertible. Hence we can
define

5, Wh(QU(Ad P) - WH2(Q1(Ad P))

asa+ddi A [ana]™.
Then
aeS,, Atoestl = E (eH, _,.

Since the Fréchet derivative of =, at 0 is the identity map, we have the inverse
=, ! defined on a neighborhood @ of 0 in W-2(Q!(Ad P)) by the inverse mapping
theorem. This Z; ! defines a coordinate system of M around [A4].

We set M={[A]JeM|H?% _,=0}. As in [12] we define a Riemannian metric
gy on the moduli space M by

2.5) Bl = [ g0 HAV  for a feH) o= Ty M

where the fiber metric on Q'(Ad P) is induced from the Riemannian metric
g and an Ad-invariant metric on g.

Now suppose (X, g) is a Kéhler manifold. The almost complex structure
I induces in a natural way an almost complex structure I,, on Q}(Ad P). As
is proved in [12], the almost complex structure I,, preserves the space HY _,,
and is covariant constant with respect to the Levi-Civita connection of g,,. Hence
(M, 1, g») is a Kihler manifold. When (X, g) has a hyperkihler structure
Iy, Jy, Ky), the moduli space (M, gy) has also the hyperkihler structure
(Ings Jus Kpg) (see [13]). (In fact, the existence of the quarternion structure on
the tangent space of M, when the base manifold is an ALE gravitational instan-
ton, was already noticed in [T1]. Our assertion is that they are covariant con-
stant.)
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(2.6) Theorem. The moduli space M has the natural Riemannian metric g,, defined
by (2.5). When the base manifold X has the Kdhler (resp. hyperkdhler) structure,
M also has the Kdhler (resp. hyperkdhler) structure.

These properties can be proved using the moment map and the symplectic
quotient method [HKLR] as in [H2, Ko, IN].

The quotient group G,/Z(G) acts naturally on M. In fact, the “larger” gauge
group ¥'"' acts on the space o/, and induces the residual action of
%'*1/%*'=G, on M. The center Z(G) regarded as a subgroup of ¥'*! acts
trivially on M, Since the fiber metric of Ad P is 4" '-invariant, the action of
G, on M is isometric. Moreover it is holomorphic (resp. triholomorphic) when
X is Kibhler (resp. hyperkihler). If we translate the results proved on compact
manifolds, we see that G,/Z(G)-action is frec outside reducible connections (cf.
[FU, Theorem 3.1]). So each orbit of an irreducible connection is diffeomorphic
to G,/Z(G). The quotient space M/G, is equal to o/,4/%, and this coincides
with the moduli space of anti-self-dual connections on the orbifold X which
is usually used in the literature ([FS, La, FH}).

Now we calculate the dimension of the moduli space M. We use results
of [FS, La], compactifying X to an orbifold X = X U {o0} by a conformal change
of the metric g (see [Kr2, p. 687]). Uhlenbeck’s removable singularities theorem
[U1] implies the anti-self-dual connection 4 on X with finite curvature integral
can be identified with an anti-self-dual connection on X.

For simphcity, we assume that the structure group G is a unitary group
U(r). (Although the dimension formula [FS, La] was proved only for G=S0(3),
the adaptation is straightforward.) Let E denote the associated complex vector
bundle of rank r. The flat connection p, to which anti-self-dual connections
are asymptotic, defines an r-dimensional representation. We denote by y, its
character.

(2.7) Theorem. The dimension of the moduli space M at [A] is given by the
formula

dim M =dim G, — | ch(E* ® E) ch(S™) A(X)
X

lexp I)Xpy)(l_cm 0 oo s()’))

y¥e

where S* is the positive spinor bundle, |I'| is the order of T, r(y) and s(y) are
the rotation numbers corresponding to the action of yeI at .

At the end of this section we remark that the results of this section are
applied to the case that the base manifold is the quotient space R*/T, though
R*/I' has a singular point 0 if I' is nontrivial. In fact, if we consider R*/I"
as an orbifold and work in the equivariant setting, our results are easily adapted.
We explain more precisely; let P be a bundle over R*/I, which is by definition
I'-equivariant bundle over R*. Since the action of I' on R* has a fixed point
0, the action of I on the fiber B, induces a homomorphism p,: I' > G. As
before we fix a connection 4, on P satisfying (2.1), and denote by p_, the associat-
ed homomorphism of I Then through the trivialization induced from the con-
nection A, the bundle P is extended to a principal bundle over the compactifica-
tion S%/I" of R*/T. Let M" = MY (P, k, p,, p.,) be the moduli space of anti-self-dual
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connections on P which is asymptotic to 4, and with the instanton number
k. Then as above we can show that M" has a structure of C*-manifold (it
is easy to see that H% _, =0 for all [A]e M" cf. Proposition 5.1) with a natural
Riemannian metric g,, defined by L*-inner product. If I'c U(2), the complex
structure Iga,r is invariant under the action of I', and gives the complex structure
on M™. Moreover if ' =Sp(1)= SU(2), M" has the natural hyperkiihler structure
(Ipgrs Jur, Kpr). We also have the dimension formula:

28) dimM=dimG,_+2r | c,(E)
c2/r

1
L Lt e )

p=0,0 y*e

where r,(y) and s5,(y) are the rotation numbers corresponding to the action
of yat p=0, 0 (80 rg="ry, So= —Sy)-

3. Reducible connections

In this section and the next section, we give two types of existence theorems
of anti-self-dual connections on ALE 4-manifolds with negative definite intersec-
tion form. First one (given in this section) is the existence theorem of reducible
connections and relates to the intersection form of the base manifold. The other
one is Taubes’ implicit function theorem and relates to the fundamental group
I’ of the end of the base manifold. In Sect. 5, it is proved that the first one
gives “interior” points in the moduli space M, the other one corresponds to
the end of M, and they are connected by M.

In this section we only treat the case that the structure group G is U(2).
Let (X, g) be an oriented ALE 4-manifold with the coordinate at infinity Z':
X\K = R*/T. Let E be a complex vector bundle of rank 2 over X. A connection
A on E is said to be reducible if (E, A) decomposes into a sum of line bundles
with connections as (E, A)=(L,, A,) ®(L,, A,). Hereafter we shall identify the
connections on L; with that on E and use the same notation A.

Since the I?-norm and the harmonicity on 2-forms are invariant under the
conformal change of the metric, we can transcribe the results on an orbifold
X to show that each element of H2(X ; R) has the unique I2-harmonic represen-
tative form, and there is the decomposition H*(X;R)=H*@®H~ into
I?-self-dual and I2-anti-self-dual harmonic 2-forms. Hence as [FS, Proposi-
tion 5.3]

(3.1) Lemma. Suppose X has negative definite intersection form and satisfies
H!'(X;R)=0. Then each complex line bundle L over X has a unique gauge equiva-
lence class [A] of anti-self-dual connections.

There is 1-1 correspondence between H?(X; Z) and the isomorphism class
of complex line bundle L over X given by the first Chern class ¢,. By Lemma 3.1
the complex line bundle L has an anti-self-dual connection A4, and the de Rham
class [(1/27i))R,]Je H*(X;R) is the harmonic representative of the first Chern
class ¢, (L)g- As in Sect. 2, the anti-self-dual connection A induces a homomorph-
ism p: I' - U(1) by the action on the fiber L, over co. If we identify the homo-
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morphism p with the flat connection on S*/I' induced from p, we have the
relation i*(c,(L))=c;(p). As we remarked in Sect. 2, although reducible connec-
tions appear as singular points of the moduli space for compact manifolds,
but this is not the case for ALE manifolds.

As in Sect. 2 we extend the bundle E to a bundle (also denoted by E) over
the orbifold X using the trivialization induced from p. Then the instanton
number of the anti-self-dual connection is determined by the formulas

Cz(E)[X]=2C1(L1)'51(L2)-

We are interested in the case that the moduli space is 4-dimensional. First
consider the case corresponding Theorem 0.2. We seek a complex line bundie
L which satisfies

(1) the associated representation p: I' - U(1) is trivial,

2) ey (L= ~2.

The dimension formula (2.17) implies that the moduli space is 4-dimensional
around the connection 4 on the U(2)-bundle €@ L, where C is the trivial
line bundle.

Now suppose that the space X is an ALE hyperkihler 4-manifold diffeo-
morphic to the minimal resolution of ©*/I" for some nontrivial finite subgroup
I'cSU(2). Let R be the corresponding root system (see Sect. 1). Via the Poincaré
duality H*(X, 6 X ; Z)>~ H,(X ; Z) the intersection form on H*(X, 0 X ; Z) s given
by the negative of the Cartan matrix associated to I. The element
XeH*(X, 0X;Z) with *= —2 corresponds to a root. More geometrically, it
is realized as a Poincaré dual of a sum of irreducible components of the excep-
tional set of the resolution. The complex line bundle L associated with
j*(Z)e H*(X ; Z) satisfies the condition (2), and has an anti-self-dual connection
A. Moreover we have i* j*(2)=0, hence the connection A4 is asymptotic to the
trivial flat connection.

(3.2) Theorem. Let I' be a nontrivial finite subgroup of SU(2), R the set of
roots associated with I, and (X, g, I, J, K) an ALE hyperkdhler 4-manifold diffeo-
morphic to the minimal resolution of ©2/T. For each XeRc H*(X, 0 X ; Z), there
exists a reducible anti-self-dual U (2)-connection A associated with the decomposi-
tion E=C & L over X such that

(1) dim M =4,

@) e (L)=j*(2).

Next consider the case corresponding Theorem 0.3. We assume that the
group I' is cyclic (namely I’ is of type A4,), and hence all irreducible nontrivial
representations g, ..., p, are 1-dimensional (n=|I'|—1). Changing the order,
we may assume -

e i,
Pi=p1®...Qpy,

and the canonical representation p: I' - SU(2) is given by p, @ p,. As is proved
in [GV] (see Sect. 1), each representation p; determines a holomorphic line bun-
dle M, over the minimal resolution § which is asymptotic to the flat connection
p; on S3/T, and the set {c,(M)), ..., c,(M,)} gives a basis for H*(X; Z) (where
X is the underlying differentiable manifold of §). Moreover it is a dual basis
of the basis {[Z,], ..., [Z,]} given by the irreducible components of the excep-
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tional set. Then by direct calculation using the Cartan matrix for the A4,-type
root system, we can determine the Poincaré dual of [Z;]e H*(X, 0 X; Z) as

(3.3) J¥*PD.[Z]=—-20a,+a,, j*PD.[Z,}=0;—20,+a,...
FPD.IZ, =0, 20,y +a, J*PD.[XZ]=a, ,—20,,
where o;=c, (M,)). We define complex line bundles L,, ..., L, , by
(3.9 Li=M,, L,=M*®M,, L,=Mi®M,,...
L=M}_®M, L, =M}

Then (3.3) shows that line bundles L; satisfy the relation (¢, (L}), ¢,;(L;))= —n/(n
+ 1) and are asymptotic to the flat connection p,. In particular, they give reduc-
tions of the common vector bundle E=L;® L¥. By the above observation an
anti-self-dual connection on L; induces one on the vector bundle E which is
asymptotic to the flat connection associated with the canonical representation
p. Then by the index formula (2.17) we can see that the moduli space is 4-
dimensional.

(3.5) Theorem. Let I and X be as in Theorem 3.2 and assume that I is a cyclic
group of order |I'|. Then there exist reducible connections [A,], ..., [A] in
the moduli space M = M (P, k, p) where

(1) P is a principal bundle with the structure group SU(2),

() k=(I'|—-p/I|,

(3) p is the canonical 2-dimensional representation I' - SU (2),

4) dim M =4.
Although Theorem 0.3 holds for general I' not only of type A,, the results
of this section cannot be applied to I' of other types, since p is irreducible
in these cases.

4. Taubes’ existence theorem and I'-invariant instantons on IR*

In [T2] Taubes obtained the existence theorem of anti-self-dual connections
on compact 4-manifolds with negative definite intersection form. Essentially
he proved it by the implicit function theorem. Anti-self-dual connections on
S* whose curvatures are localized at a point is grafted onto the manifold X
to become “almost” anti-self-dual connections. Then by the implicit function
theorem, there exist anti-self-dual connections near them, where the existence
of the inverse mapping is guaranteed by the negative definiteness of intersection
form. Curvatures of the constructed connections concentrate around a point
in X.

An ALE manifold X is compactified as an orbifold X by a conformal change
of the metric and adding a point co. Since the anti-self-duality of connections
is invariant under the conformal change, we may construct anti-self-dual connec-
tions on X. To carry out the Taubes’ procedure on X with the curvature concen-
trating point oo, the only difference is to use anti-self-dual connections on S*/T’
instead of S*. But here we give a different proof by using analysis on ALE
manifolds since the estimates which we will obtain in the course of the proof
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are important when we study the end of the moduli space in Sect. 5. If we
blow up the metric of a compact 4-manifold to get an ALE metric, our proof
gives a different proof of Taubes’ existence theorem. Moreover the proof becomes
simpler since curvatures of almost anti-self-dual connections are uniformly
bounded on the ALE manifold. This idea is the same as that of Freed-Uhlenbeck
[FU] who give another different proof of Taubes’ existence theorem by using
a conformal change and analysis on manifolds with cylindrical ends.

In this section G is assumed to be a compact Lie group. Let P” be a principal
bundle with the structure group G over IR*/I" Since I' has a fixed point 0,
we have a homomorphism p,: I' -+ G induced from the action on the fiber
over 0.

{(4.1) Theorem. Let (X, g) be an ALE 4-manifold of order t >0 with the asymptotic
coordinate at infinity 4 X\K —(R*\BR)/T, and py, p,: I =G be homomor-
phisms which are identified with the flat connections over S3/I’. Suppose that
there exist principal bundles B, — X, P* - R*/T" with the structure group G and
anti-self-dual connections A, on Fy, A” on PT satisfying

1
(1) ko= [ R4, d%

1
@) ki=g— | IRuPdV,

87° pir

(3) A, is asymptotic to the flat connection p,,

(4) A" is asymptotic to the flat connection p.,

(5) P induces the homomorphism p, as the action on the fiber (PV), at the
origin,

(6) L*-kernel of d%_: Q*(Ad P)> Q' (Ad P) is trivial.
Then there exists an irreducible anti-self-dual connection A on a principal bundle
P over X such that

1
() ko+ki =gz TR, AN

(8) A is asymptotic to the flat connection p,.

Remark. The condition (6) preserved under a conformal change of the metric
since the I2-norm is a conformal invariant.

The notation 4=Ay4 A" which is used in [D3] illustrates the impression
of the above construction in the analogy of the connected sum of manifolds.

Throughout the proof we use the constant C in the generic sense. So the
symbol C may mean different constants in different equations. We take a positive
function r on X which is equal to [4'| on X\ K and suppose r <R on K (recall
|Z|=R on 0K).

For simplicity we assume that the bundle P is trivial and the anti-self-dual
connection A, is the trivial connection. Hence the assumption (6) is equivalent
to the negative-definiteness of the intersection form of X. See [11] for the general
case.

First we construct an almost anti-seif-dual connection on X. We fix a cut-off
function g: [0, o0) — [0, 1] satisfying

_ {0 for te[0, 1]
ﬁ(t)_{l for te[2, ),
B'(nz0.
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For A» R? we define a map @,: X -»IR*/I" using a coordinate at infinity &

by
(x)= { if r(x)<ﬂ
R T Whaeys  otherwise.

Let AT be an anti-self-dual connection on IR*/I" which satisfies the condition
of Theorem 4.1. The removable singularities theorem [U1] (see also [IN,
Sect. 4.2]) implies

C
4.2) |RAF(x)I§W for xeR*/I'

with a constant C independent of x. We consider the connection 4=@% AT
on X. Then direct calculations show the followings (see [T2, FUY).

(4.3) Lemma. The curvature R, and its anti-self-dual part R} satisfy
(1) R4()=0 for r(x) )<)/2,
Ci?
@) IR S e Jor 0 22)/%

. C c
(3) IRy (")'éu‘*w(x)‘*)r(x)ffr(x)m for r(x)22}/4,
C
@ RIS it o5 Sedor)/i<r<2)i

Jfor some constant C independent of .

We say a connection A is A-ASD when it satisfies the conclusions of Lem-
ma 4.3. We denote the domain {x|r(x)<n} by Q

From Lemma 4.3 we have estimates for If;_,-norm of R} for p>1, —2<$
<0.

(44) Lemma. For p>1 and —2 <6 <0 we have

”RI “0 ’ 6‘2Sc/1—min(5/2+1,t+6)

for some constant C.
Proof. 1t follows from direct calculation as follows:
{IRfPr-@-2r=4dy

X

[ IRFprr@-2e=4dyy [ [REPr-@-2e-4dy

Dy X\2>yx
© ,12 24
<C j r‘2"’")"“dr+C f o2ty
At i
§C(/1 6p+]“ (6+2)p/2)’
where
5= o+, if 0+1<2
T U4 +d)2—e i 54722

for arbitrary positive number ¢. Since 1+ (7 +9)/2>1+49/2, the conclusion fol-
lows directly. []

We give the scale-broken a priori estimates for d d% which is the key of
our proof of Taubes’ theorem.
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(4.5) Lemma. Suppose that A be a A-ASD connection over a bundle P on X
and 6eR is nonexceptional and nonnegative. For p>1 and —2<5<0 the map
dydi: WP QY AAP) > I5_,(Q*(AdP) is Fredholm and for any
ue W2 (Q" (Ad P)),

(4.6) Hu“z,p,o =< C(“d/T d¥ uHO,p,é‘ 2+ HuHLP(QRO))’

where C and R, are constants independent of A.

Progf. The Fredholm property follows directly from [Ba, Theorem (1.10}, Propo-
sition 1.14]. The only nontrivial assertion is that the constant C in (4.6) is inde-
pendent of A. The result of [Ba] only yields (4.6) with the constant C depending
on the difference between A and the trivial connection d. If we simply estimate
the difference between A and d, the required inequality (4.6) does not follow.
So we shall obtain the estimate by rescaling the metric of €2/I" and comparing
the connection A with A7,
First we prove the corresponding estimate for the anti-self-dual connection
T on R*/I" which satisfies (4.2). By taking Coulomb gauge and using a priori
estimates for elliptic system, we have some gauge over {xeR*/I'||x|>1} for
which d ,-=d + o with

j times

]l7 VAXISCyx]773 forall jz0,

where C; 1s constant dependmg on j and AT, Then by [Ba, Theorem 1.10] for
any ue WP (R*/T"; Q* (Ad P))

H“Hz po= C(”dArd Funo,p.a—z‘*' ”u”LP(BRO))s
where C and R, are constants depending on C; (j=0, 1), é and p. Moreover
since Kerdird%r=H%, ; is zero (it easily follows from Weitzenbdck formula,
see Proposition 5.1), we have

H““z p. :=C “dATdAFuHO.p.rS—Z'

Now let T be a diffeomorphism x~»x/A on R*/I" and consider the anti-self-dual
connection T* A”. Since we have

c! “”“k,p,a§1—a&2 BT ulli,p.s 2 C lulli p.s
with a constant C independent of A > 1, the above estimate implies
ulz,ps=C Hd;’;AFd#‘;Ar ullo.ps-2>
where C is a constant independent of A= 1. Since 4 is A-ASD, the difference
between the connection 4 and T* A" on Qg can be estimated by a constant
independent of A as
|A—@ W TFATISCr 3, (PA-@ P TraD|sCr
This gives (4.6) (see the proof of [Ba, Theorem (1.10)]). [

Now we use the negative-definiteness of the intersection form.
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(4.7) Proposition. Suppose that the space of I?-anti-self-dual harmonic 2-forms
H™ is trivial. Then for p>1, —2<6<0 there exists Ay>0 such that if A is
4-ASD, A2 Ay, then for ue Wi?(Q* (Ad P))

lull2,p,s S Cldg dfullo,p,s5-2.

where C is a constant independent of A In particular, d d% gives an isomorphism
between WP (Q* (Ad P)) and I5_, (2" (Ad P)).

Proof. Suppose the contrary. Then we can find sequences {4}, {#;} and {4;}
such that

(1) 4; goes to infinity as i— o0,

(2) A;is A-ASD,

(3) ||“i||2,p.a= 1,

(4) ld3,d% wllo. -2 converges to0asi—co.

Since the estimate (4.6) yields
1=lull2,,.sSCUdL &5 wllo,ps-2+ Hui“LP(QRO))a

the above condition (4) implies [u;]| Lo@ry) ZE for sufficiently large i with a posi-
tive constant ¢ independent of i. So on a compact domain Qg we apply the
usual Rellich lemma to show that {u;} has a subsequence which converges
strongly in I7(Qg ). We denote this limit by u,, so u,+0. On the other hand
A; converges to a trivial connection uniformly on each compact subset of X,
and {u;} has a subsequence which converges weakly in W?'?. Hence we obtain
a nonzero element u, € W2 ?(Q*) which satisfies d* d*u, =0. But this contra-
dicts to H* =0 by the following Lemma.

(4.8) Lemma. Let § <0. If ue W ?(Q7) satisfies d* d*u=0, u has the following
asymptotic behaviour:

lu|=0(*).

Proof. This is proved by a similar technique as [BKN, Appendix] (see also
[IN, Chap. 4]). The basic idea is due to [SSY].

First we show du=0. By [Ba, Theorem 1.17] u satisfies u=0{r~?). By the
elliptic estimates and the Sobolev inequality, we have

(4.9) lul=0(r=2), |Vul=0("").

We use the integration by parts on a domain Xz={x: r(x) <R} to get
* 2 a
0= [ duuw= [ |d*u*+ | T, WU
Xr Xr axg \9N

By (4.9) the second term of right hand side converges to 0 as R—oco. This
implies d* u=0, and hence du=0.
The same argument as in [BKN, Appendix] shows

HVu, w)P<|Vul® uf?
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where (Vu, u) is a 1-form defined by (Vu, u)(V)=(V, u, u) for a tangent vector
V.

So we get
(4.10) WV ul?Z31(Vu, ) lu| 2 =3 |du||>.

Then we use Weitzenbdck formula for Ad P-valued self-dual 2-forms
+ + N
O=d " d*u=V*Vu-2W (u)+§u,

where W*: Q% > Q? is the self-dual part of the Weyl tensor, and § is the scalar
curvature. Using (4.10), we get

1 3
ALl 2= )™ Al = ] ™3 d

Qw Hﬁmyuwz

In the last inequality we have use the ALE property of the metric g. Then
by the argument of [Ba, Theorem 1.17], we have

ult2=0("2)
(—2 is the greatest negative exceptional value in R%) [J

Since the trivial connection A, satisfies
0=Kerd¥ d,,: W "(Q°(Ad P)> W5(Q°(Ad P))

(it follows from the maximal principle), the same argument shows the following
estimates which will be necessary in Sect. 5.

(4.10) Proposition. For p>1, —2<<0 there exists 1y>0 such that if A is
A-ASD, A= A, then for ue WP (Q°(Ad P))

lullz,ps=Clid%daulo,ps-2

where C is a constant independent of A. In particular, d%d , gives an isomorphism
between Wi ?(Q°(Ad P)) and I%,_,(Q2°(Ad P)).

We remark that Propositions 4.7, 4.10 give the estimates for Green operators
on Q°(Ad P) and Q7 (Ad P) independent of A2 A,.
By the same argument as [FU, Theorem 7.26] we obtain

(4.11) Proposition. Under the same assumption on Proposition 4.7 consider the
operator Ly=d} d%¥+[BAd%]" with Bel® ,(Q'(AdP)) (q=4p/3p—4)). Then
there exists a constant ¢>0 independent of A such that if |Blo, -2=¢, then
Jor ue WP (Q* (Ad P))

”u”z,p,a§C”LB“HO,p,a—z-
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As in [FU, Theorem 7.27] we use the continuity method to the equation
Lou=dj dfu+3[dfundiu]" +tR; =0,

we have an anti-self-dual connection A +d% u, near A.

(4.12) Theorem. Under the same assumption on Proposition 4.7, there exists
ue W2 P(Q* (Ad P)) such that the connection A+ d*u is anti-self-dual and satisfies
the estimate

(4.13) lull2,p.s SCIRF o p6-2-

Moreover such u is uniquely determined by A.

In the rest of this section, we give some examples of anti-self-dual connections
over S*/I. We are interested in the case that G=SU(2), 'cSU(2), and the
moduli space is 4-dimensional (cf. Theorem 0.3). Furuta and Hashimoto [FH],
and independently Austin [Au], obtained more general and detailed results
when I is a cyclic group.

(4.14) Theorem. Suppose I' = SU(2) is a finite subgroup of order |I'|. Let k=T
—1. Then there exists a principal bundle P' on S*/I" with the structure group
SU(2) such that c,(P")[S*/I']=k/(k+ 1), and an irreducible anti-self-dual connec-
tion A" on P, where the actions p, and p,, of I' on the fibers PI and PL are
given by

(1) py is the trivial,

(2) py is the canonical 2-dimensional representation I’ - SU (2).

Moreover the moduli space M™ of anti-self-dual connections on PT is diffeomorphic

t0 (C\{O})/T.

By the dimension formula (2.18) the moduli space becomes 4-dimensional
in the above situation.

For the proof of (4.14), we use the result of Atiyah-Drinfeld-Hitchin-Manin
[ADHM] (see also [ D 2]) which gives a parametrization of framed moduli spaces
of anti-self-dual connections on $* (or of moduli spaces on IR%). Anti-self-dual
connections on S*/I' are I'-equivariant anti-self-dual connections on §* and
their parametrization is also possible. See [FH, Au] for detail.

(4.15) Fact. For an SU(2) principal bundle P over R*/T, there is a one-to-one
correspondence between M (P, k/|I'|, po, p ) and the quotient of the set of matrices
(g, ay, a, b) satisfying:

1) oy, 0,eM(k, k; €), ac M2, k; €), be M (k, 2; ©),

(2) [oty, 2, ]+ba=0,

3) [y, a¥]+ oy, a¥]+bb*—a*a=0,

4) for all A, ue@, o, + 4, a,+p, al is injective and [A—ay, oy —pu, b] is
surjective,

(5) (ay, ay, a, b) is [-equivariant in the following sense

pu(? ™) oy pu() =71 %1 +72 %

po(r ™y pu()=—vr 0+, o, [ 71 Vz]
- or y: - -~ |

a=p.(y Napy(y) % ~¥2 Ti

b=py(y b ps(y)
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by the action of Ur(k)={uecU k)| py(y " Dupy(y)=u}:

wiou"'a;u,  arau, brulh.

Here py: I'> U(k) is a representation and can be uniquely determined by p,,
P k.

The representation p, at 0 is calculated by the following way. The fiber
of the associated vector bundle over 0 is identified with the set

{—azul +ay u2+bu3=0}

oafuy +ofu, +a*u;=0

(4.16) {(ul,uz, u)eCro Cp C?

Then I' acts on this set by

(4.17) “1’"’91}(?_1)(&‘1“1“3’2 u,)
Uy py (3 ™2y 7, uy)
U= po (3™ Hus.

Matrices satisfying the above conditions are obtained from the following
Lemma which was used in [Kr1] for the construction of ALE hyperkihler
4-manifolds.

Let {(pg, Q) be the canonical 2-dimensional representation of I' and (pg, R)
the regular representation. Define Y=(Q ® End(R))", the space of I'-invariant
elements in Q ® End(R). Taking an orthonormal basis for Q, we represent an
element of Y as a pair of endomorphisms (f, g). The group Ur(R) consisting
of unitary transformations of R which commutes with the action of I’ on R
acts on Y by

(,geY>w fuu 'gu for ucUAR)

Dividing out the group of scalar matrices, we have an effective action of Up(R)/S™.

By its definition, the regular representation has a basis {e,} indexed by yeI’
with the property R(d)(e,)=e;s,. We define an inclusion map i: €2 > Y by i(x, y)
=(/, g), where

X X
fe)=xe,. gle)=re, (V)=0m()).
Yy y
The map i is equivariant for the action of I' on €? and that of Uq(R) on
Y. We then have
{(4.18) Lemma [Kr1, Lemma 3.1, Corollary 3.2]. The quotient space
{(£ 9eY|L/ g1=0, [ £ f*]+18 g*1=0}AU(R)/S")
is isomorphic to €*/T.

Now we are in a position to start the proof of Theorem 4.14. The regular
representation of I' decomposes as

(pRs R): @q:n( ®(pf’ Ri)’
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where {(po, Ro), (01, Ry), ..., (p» R,)} is the set of all irreducible representation
of I, with (p,, R,) the trivial representation. Set

(lea Vl)= @Cni®Ri7 (PV;a V2)=(p0’ RO)

i>0
The quotient group Up(R)/S" is identified with [ | U(R,)=Up(V}). Via the decom-

i>0

position (pg, R)=(py ., V1) ®{(py,, V3), an element (f, g)e Y is represented as
| % b, %2 —b,
f——[ax 0}’ g_[az 0 ]

a=[21], b=[b, b,],

2

If we set

a direct calculation shows that («,, ,, a, b) satisfies (4.14) with py,=py , p, =py-
Moreover (f, g} satisfies the equation [f, g]=[f f*]1+[g, g*]1=0 if and only
if (a4, o,, a, b) satisfies the equations (2), (3) in Fact 4.15.

Next we check the property (4). Suppose that (f, g)+(0, 0) and v, is an ele-

ment in the kernel of [Zl iﬂ Then v=(v,, 0}e ¥, @ V, = R satisfies
2

(f+4id)v=0, (g+uid)v=0.

We represent v by the basis {e,} as

v=Y v,e,.

For (f, g)ei(C*) Y,
(f+rid)yo=Y v,(x,+A) e,=0

(g+uidyo=3 v (y,+u)e,=0.

Hence v,=0 unless —(/, y)=(x,, y,), namely —'(4, 1)=Q(y)(x, y). Since the
action of I' on C? is free outside 0, there exists at most only one nonzero
v,. On the other hand, since v has no V,-component, we have

(Ua Z ey) =0,

where the inner product on R is defined so that {e,} is an orthonormal basis.
This implies ) v,=~0, hence v,=0 for all y. The surjectivity can be checked
similarly.

Finally we calculate the action on the fiber over 0. The set defined in (4.16)
is isomorphic to the set

{(v, w)eR xR

fuot+gweV,
f*w—g*vel,
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under the correspondence

where

If we write v and w as
U:ZUyev’ szwve:”
they must satisfy

XU, + Y, W, =XV + YW,
;yuy~;ywy=ﬁve—iwe.
The definition of (x,, y,) implies
(4.19) (0, W) =(0, wo) Q37 1)
The action defined in (4.17) corresponds to the action defined by
v RO (y 0=y, W)
w R ) (y, v+, w).

Then (4.19) shows the action is trivial.

5. Geometry of the end

In this section we study the behavior of Riemannian metric g,, on the end
of the moduli space M. We shall show that on each end the metric g,, is ALE.
Our calculations are similar to those of [D1, GP] which show that an end
of a moduli space on a compact definite 4-manifold X is (0, 1] x X ({0} x X
is the infinity) in both topologically and metrically in C°-level, but our purpose
requires more detail since we must study the curvature of the moduli space.

Throughout this section we assume that G is a compact Lie group and
(X, g) is an ALE Riemannian manifold of order 7=4 with a hyperkéhler struc-
ture (Iy, Jx, Kx). Let P be a principal G-bundle over X, p: I' - G a homomor-
phism. We consider the moduli space M = M (P, k, p) of anti-self-dual connections
on P which are asymptotic to p and have the instanton number k. As in the
previous sections we use constant C in generic sense.

Before starting the study of the ends of M, we prove the smoothness of M.

(5.1) Proposition. For each anti-self-dual connection [A]1e M = M (P, k, p), it holds
H% _,=0.

In particular, the moduli space M is a nonsingular C*-manifold.
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Proof. We use Weitzenbock formula for Ad P-valued self-dual 2-forms. For all
aeQ"(Ad P) we have

S
2d) dio=V% VAa—ZW*(a)-f—? a+[RY, a],

where W*: Q2 Q2 is the self-dual part of the Weyl curvature and S is the
scalar curvature. Since A is anti-self-dual, we have R} =0. We also have W* =0
and S=0 because X has a hyperkéhler structure. Hence for xe H3 _, we obtain

Ala)?=2V,a|*+2(VFV, o, 2)=0.

But by the Sobolev inequality [Ba, Theorem 1.2] we have |¢|=0("!) as r—» o0
and the strong maximal principle implies that «=0. [

This lemma implies that the space of I?-self-dual harmonic 2-forms are trivi-
al; H* =0 especially. Hence the intersection form of X is negative definite.

We compactify X to an orbifold (X, §) adding the point oo (see §2) and
identify anti-self-dual connections on X with ones on X.

(5.2) Theorem. Suppose that the dimension of the moduli space M is equal to
4. Then for every sequence {[A;]} in the moduli space M =M/{P, k, p), there exist
a subsequence (also denoted by [ A;]), gauge transformations s;,€% such that one
of the following (1), (2) holds.

(1) There exists an anti-self-dual connection [A,1e M (P, k, p) such that s¥(A;)
converges to A, in the C®-topology on X.

(2) There exist an anti-self-dual connection [A,]e M (P, k', p') on a different
principal bundle P over X and an  anti-self-dual  connection
[AT e M(PT, ky, po, p) On a principal bundle over S*/I" such that

(2.a) s¥(A;) converges to A, outside co.

(2.b) There exists a divergent sequence {4;} such that (9] ')* A; converges to
AT (after gauge transformations) in the C{.-topology on R*/T" (@, is defined in
Sect. 4).

(2.c) AT is not flat.

(24d) k=k'+k,.

(2¢) p=pu, p'=po.

Proof. We use the compactness theorem of Uhlenbeck [U2] on X (see also
[T 3, Proposition 4.4]). Since X has a hyperkihler structure, the second cohomo-
logy group H% _, vanishes for each anti-self-dual connection A. And the dimen-
sions of moduli spaces are given by the dimension formulas (2.7), (2.8).

We take a subsequence of {[4;]} and gauge transformations s; such that
s;(A4;) converges to an anti-self-dual connection 4, on P’ outside a finite set
(possibly empty). If curvature concentration happens a point other than oo,
an anti-self-dual connection on S* bubbles off from there. Then the instanton
number decreases so that the dimension of the moduli space decrease more
than 8, so it is impossible if dim M =4.

When curvature concentration happens at oo, anti-self-dual connection
LALleM(BT, k,, pB, p%) (n=1, ..., N) on $*/I" bubble off. A connection A4;, for
sufficiently large i, ressmbles A, % A, 4 ... 4 A%. Then we have

N
dimM (P, k, p)=dimM (P, k', p')+ Y dim M (B, k,, p, p%).

n=1
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Since each MT (BT, k,, p%, p",) has a hyperkihler structure, its dimension is a
multiple of 4. It has a nontrivial action of R™, hence it has the dimension
greater than 1, In particular, it is not 0. So if dim M =4, we have N=1 and

dim M(P', k', p')=0
dim M(P, ky, po, pr)=4. O
Next we recall the following lemma of Uhlenbeck [U 17:

(5.3) Lemma. Let B(p, r) be a geodesic ball of radius r in a 4-dimensional complete
Riemannian manifold (X, g). There exists a positive constant e=¢(g) such that
if Ais a Yang-Mills connection on B(p, r) with f |R4|><e, then

B(p.r)

sup [RAPSCr™* [ |R,PdV

Blp.r/2) B(p,n)

for some C=C(g).

(5.4) Proposition. Suppose that dim M =4. Then the Riemannian manifold (M, g,,)
is complete.

Proof. First we shall show that
(5.5) IRP=Cr?

fore some constant C independent of [A]e M. Suppose the contrary. So there
exists a sequence {4;} such that

supr?|R, |-o0 as i-—oo,
X

and by Theorem 5.2 we may assume
(5.6) A;—> A, in C-topology on X,
(@:1* A, > AT in CE.-topology on R*/T'\{0},

fIR4PdV=[|R, I>dV+ | [RylPdx.
X X R4/T

We take a sufficiently large R so that

J IR, PdVsie,

r>R

f |RA1rI2dx§%8.
x|<R-!

Then for sufficiently large i, we have

[ IR41?dVZ | IR, 1PdV—1e

r<R r<R

>{|R, *dV—3e
X
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Similarly we get
| IR PdVZ [ |[R?dx—}e.

F2XR-124, R4T
Combining the above inequalities, we have

[ IR PdV=e.

R=Zr<R- 14,

We apply Lemma 53 to a ball B(x,r/2)c{RSr<R™'1} (RRZr=r(x)
<R71'},/2) by rescaling the metric with the factor »~*. Then we find

sup  |Ry|=Cr?

2R<r<R-132
for some constant C. On the other hand by (5.6) we have

sup |[R,|=C

r<2R

sup {R, =27 sup |Rerips®)|SCr 2
rzR-1142 }x]>R-1/2 '

Hence we have verified (5.5).
To prove the completeness of (M, g,,) we have to show that an open curve
[A4](te[0, t5)) in M of finite length has a limit point. We may assume that

qo;% A, satisfies the followings:

(57) A4, 0,=0
flod*=1
X

for all te[0, to). By Weitzenbock formula for Ad P-valued 1-forms [BL] we
get

0= AA, @,
=V¥V, 0.+ [Ry, @]
This together with (5.5) implies

C
4 |§0t'g_;7|(/)t|~

By the L*-estimate for subsolutions of elliptic equation (see e.g. [GT, Theo-
rem 8.17]) we have

lp(x)P<Cr % | |ol2dV<Cr
B(x,r/2)

Hence we obtain

|4, —A,|ZSCr ?|t—s].
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On the other hand by (5.7) we get

fIVAt¢,|2§C j I(Pt|2§C~
X X

Combining these, we have

f e l?=C,
X

and hence
§ Vi (4, —AJP=Clt—s).
X

This implies that R, =R, +d 4 (A, —Ao)+1[A,— Ao A A,— Ao] satisfies

j |RA,_RA5|2§C|t_S|'
b's

This means that R, is a Cauchy sequence in I?, and hence converges strongly
as t —tq. So the sequence [A4,] converges to 4,,eM. []

(5.8) Corollary. Suppose (X, g, I, Jx, Ky) is an ALE hyperkdhler 4-manifold
and G, = SO(3). Then each component of the moduli space M = M(P, k, p) is isomet-
ric to the Eguchi-Hanson space if dimM =4. The fixed points set of G ,-action
is written as G,[A.] for a reducible connection [A,] and is isometric to S
In this way there is a bijective correspondence between the components of M
and the reduction of the bundle P.

Proof. Since G,=S0(3) acts on the complete hyperkihler 4-manifold
M, g, 1,4, Jy, K,,) triholomorphically and isometrically, each component of the
moduli space M is isometric to the Eguchi-Hanson space ({AH], see also [GR,
Proposition 2.7]). Moreover we know that the fixed point set F of SO(3)-action
is isometric to S2. Hence F is the orbit of a reducible connection. [7]

Now we can determine the Riemannian structure of the moduli space M"
on IR*/T" when T is a nontrivial subgroup of SU(2).

(5.9) Proposition. Each component of the moduli space M' (with the natural
Riemannian metric gyr) is isometric to (R*\{0})/I" for some finite subgroup
I'=SU(2) when dim MT =4,

Proof. As is observed in Sect. 4, there is a natural R*-action on M'. For AeR*
let T} be a diffefomorphism

T,x)=A"'x for xeRYT.

We take a point [AJeM” and a tangent vector aeT,,M"=H) _,. Since
T,l*oceH%;(A),_z, the action on the tangent vector A*« is equal to T;¥a. Hence
we have

gur(A* o, ¥ )= | |TFra(x))Pdx=1> | |a(y)>dy=2%gpr(x ).
R4T R4/
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This shows that M’ is isometric to the warped product (R* x 87, d 12+ A2 ggr)
for some Riemannian manifold S” (this holds even if dim M' +4). Hence the
sectional curvature of g,,r vanishes for any plane tangent to /0 A.

We have seen in Sect. 2 that the metric g,,r is hyperkihler. We take a normal
coordinate at a point [A] and calculate the curvatures by using the index nota-
tion for tensors, We may assume

R,y;;;=0 forall i

Since gy, is hyperkéhler, the curvature tensor is anti-self-dual. Combining with
the above, we have

R; ;=0 forall j, k.

Hence the metric is flat.

On the other hand we apply the argument of Lemma (5.3) to this situation
to prove that the metric space [1, 00) x S"< M7 is complete as a metric space.
So ST is a space form of constant curvature +1. This completes the proof
of the proposition. []

It is conjectural that the moduli space M7 itself is connected. When G =SU(2)
and T is a cyclic group, it is proved by [FH] by the ad hoc method.

In examples of Theorem 4.14 we already observed that M' is diffeomorphic
to (R*\ {0})/I. Combining this with Proposition 5.9, we get that this is in fact
isometric. Since M is “asymptotic” to M" at the end in a certain sense, this
gives an evidence that M is ALE.

We recall some facts on Riemannian geometry of the moduli space (M, gy
({12]). In Sect.2 we defined the Kuranishi map =,: W!2(Q'(AdP))
- WL2(Q'(Ad P)) for [A]eM and it was shown that if H; _,=0, then Z:
S%4—» HY _, defines a coordinate system of M around [A4]. Itoh observed that
this gives in fact a normal coordinate system ([12, Proposition 3.4]) with respect
to the Riemannian metric g,,. Let {V;} be an orthonormal basis of H} _, with
respect to g,- We denote by (x1, ..., x") the normal coordinate system associated
with {V¥;}. In this coordinate system, the second derivatives of the metric tensor
g;; are written as ([12, (5.18)])

2
(5101 B 0)= ~ g (Vi Vi Gl Vi Vi) + g [ViA VT, G LA V1)

_gM({Vka V;}a GA{I/ia V;})+gM([V;c/\ I/l]+7 GA([V;A Vj:l+))>

where G, is the Green operator and {-,-}: Q“(AdP)x Q*(AdP)
- QE@+b=2(A( P} is defined by contraction

(VW)= X, VA is, W),

i=1

where i. is the interior product and {E,},-{ 34 is an orthonormal basis of
T, X with respect to the Riemannian metric g of X. In particular, the Riemannian
curvature tensor R is represented as ([12, (5.19)])
Ry j(0)=gu(R(V, V) Vi, V)
= —gM({VD Vl}9 GA{Vk’ V;})_ng({V;v VI}’ GA{Vi’ VJ})
+8u{V M}, Ga{Va, Vi +em (Vi A V17, G4([ViA V1Y)
—gu(lV; A VD™, G4(LVi A V)
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When the curvature tensor R vanishes identically, we have 6%g,;/6x 0 x*=0.
Then (5.10) implies

(5.11) V=0, [VAV1T=0

for all i, I (remark that {-,-} is skew-symmetric and [- A -] is symmetric on
1-forms).

Now we start the study of the end of the moduli space M. For simplicity
we only treat the case that the limiting connection A, (see Theorem 5.2) is
the trivial connection. It is casy to adapt the proof to the general case (see
[X1]). Let 2: M* —(0, o) be the projection to the first factor of M7 =(0, o) x S'.
We shall identify S” with a submanifold {[A"]eM"|A([A"])=1}. By Theo-
rem 4.12 we can define a smooth map ¥: (44, 00) x ' — M for sufficiently large
A into M by

Y, [AT):=[A+d%u,] for [A"]eST,

where A=®% A" is the almost anti-self-dual connection constructed in Lem-
ma 4.3, and u=u, is the solution of the equation

di dfu+3[dEundiu]™ +R; =0
with the condition
”u”Z,p,&gC“R:”(),p.é——za (_2<5<O)

(see Theorem 4.12). Moreover this construction is gauge equivariant, and the
map ¥ is well-defined as the map from the moduli space M”.

To study the behavior of the map ¥ we need estimates of tangent vectors
of the moduli space MT.

(5.12)  Proposition. There exists a positive constant C such that for V' e T, ;rM”™
we have

C C
VxS ———5, IV ar () £ ——p,
VNS s VO S e

where we suppose A({ A" =1, and g, ~(V', V) =1.
The proof is the same as that of Lemma 4.8.
Using (5.12), we have some estimates on ¢¥ V7.

(5.13)  Lemma. Let A" be an anti-self-dual connection with J([A"])=1. We take

unit length tangent vectors V', W'e T, ;rM" Then A=®% A", V=171 &%V and
W=A"1@* W' satisfy the followings:

(1) 1-CA™ 2 =gy (V)14 CA72,
2 IVl - SCA7CTH,

3 1d3 Vo,ps-a SCATO2T2,

) 1%V llo,p5-2 S CATE2F2,

&) IV A W] llo,p, -3 <CA752,

{6) YV, Whiop -3 CA7%2,

where —2< <0, and C is a constant independent of /.
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Proof. Since these inequalities follow from direct calculation, we only show
(1). Other inequalities is proved in a similar way (see also the proof of Lemma
(4.3)). For (5) (6) see (5.11).

Since |(€,),/£CA™", Lemma 5.12 implies estimates for V:

CA

< 77

=T
This gives

f WPdv—=i"2 | |TpVPPdy
X\22y71 1x1>2V2
2

mdr_ﬁ_(fls"‘*

o0
<C { r!
2Va

with arbitrary positive number ¢. On the other hand we have

2V
j' lVi2dv<ca* j r3dr<Ca 2.
Qa7 Va
Since
| |T1*VF|2dx—1f=

Ixl>2va

[ Vrdy—1)=ca?,
Ivi=>2/V2

we have got (1). [

(5.14)  Proposition. The map ¥ gives an into diffeomorphism for sufficiently large
Ag- Moreover there exists a positive constant C such that

0 (P (CATD, 0)— 1] SCA™,

@ B (P V7, )~ gyr (VWS CA P,
o) (AL A0 NP
@ 1V W W o2 SCA

where oeM is a fixed point, [A"] is a point in MT with A=A([A"]) and V",
W'e T M7 are tangent vectors satisfying gy (V", V)= gy (W', Wh=1.

Proof. We treat two types of tangent vectors i) V=171 T VI with ¥V eTS",
and 1i) V' =8/0 A separately.

First let V=471 TV with VIeTS". Let {47} (|t|<e) be a smooth family
of anti-self-dual connections in M" with A([A7])=1 and Al = V. Here the sym-
bol “-” means the differentiation with respect to tr. Then we have a family of
4-ASD connections {4, = &% A’}. The tangent vector 4, is given by

Ap=2"10* VL.
By Theorem 4.12 we have a family of the solutions of

a5, 45, u+31d% u A dg,u] " +R3,=0
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with
(5.15) Iz, p,6 SC IR Mo po-2 SCATE2HD

for —2<4<0. Differentiating the above equality by ¢ and evaluating at t=0,
we obtain

d dh tio — 3, { Ao, uo} +[Ag A dfyuo)* .
+[d%, uo Ad%, o] T —[d%, uo A {Ao, 1o} 1" +d3, Ao =0.
Substituting (5.13) and (5.15) into this equality, we get
ld%, di, tio +[d3, uo Ad3, 1] ¥ llo,ps—2 S CATOP.
By Proposition 4.11
(5.16) gl 5.5 < CA™@2%2),
Now we estimate ¥, (V''). Let A, =4, +d¥,u,. Then we have
Ag=A, +d%, o — {ZO, Uo}-
Since d},(Ao)=0, the harmonic part H,_ (4,) is given by
HAO (/‘io) = /‘io - dAu A;ol (dﬁo Ao)-

The invertibility of 4, is guaranteed in Proposition 4.7. More precisely using
(5.15), (5.16) we have

145, @% Al 2.p, 1 C lld%, Aolio.p. -3 S C A7
145 e A 2., — 112 SC I, Apllop, 52 SC 2774
So finally we obtain
lga (B V! B V=1 =| | IH (AP dV=1]=C A7
X
If tangent vectors VY, W' of unit length are written respectively as V'
=270 vE, Wh=2"1 T WS with V{, Wl e TST, then we have
(5.17) lgn (B VT, B WD) —gpur (VT WD) SC 232
IEVEAYW Y g, -2 SCAT
H¥ VT, B W o2 -3 SCAT4,

where in the second and third inequalities we viewed ¥, V!, ¥, W' as element
of Hyp4ry, - 2- Hence we have verified the assertion (2), (3), (4) in this case.

Next we consider the case VT'=4/8 1. We take a family of diffeomorphisms
S;.:1 X = X (|t| <e) which depend smoothly on t and satisfy

¢1+1=(p1°si,t,
Sy 0=id.
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More precisely we take the radial coordinate system (r, Y)e[R, o0) x S3/I" on
X\K, and then S, , is represented as

S3.4(r, )=(f3,:(r), 0),

where f , is a function satisfying

(B B0 p( 1)

The function f; , is uniquely determined by the above equation on rz|/A+t,

and extended smoothly on R™* so that f, ,(r)=r if r§[/1/2. In particular we
have

fl,,(r)=i—i_£? if rzmax(2)/2+1t, 2(4+1))/ 7.

Moreover f, , satisfies
} d d

f}.,t(r) ?17

t=0

df.()

<.
=0 A

dr

L&
=

We lift the diffeomorphism S, , to a bundle map S, ,: P — P by setting
8, w=12(u) for uek,

where 17 is the parallel translation along the curve x(s)=S5, (x) (0<s<1) from
x to S, .(x). Then we have a family of A-ASD connections {4,=S8%, &% AT}
for fixed ATe MT with A({AT])=1. Remark that A, and ®%,,A" are gauge equiva-
lent. Differentiating by ¢, we have

Ao=ix, Ry,

where X, is the generating vector field of S, , and iy, is the interior product
(see [BL]). Then direct calculation shows (cf. Lemma 5.13)

lix, Raglli ps-1 SCA7ETD
lld%(ix, Ralo.ps—2 SCA™W2*D
ld (ix,RagMo,ps-2=C AT62+2)
Moreover remarking that ZO — 171 GV on X\, 5 we see

| lix, R, P dV—1]£C 272
X
| § (ix, Rags A7 B W AV|SC A2
X

ILAo A Ao]* llo.p, -3 SC A~
ILAo A A~  @FWET* g.p -3 SC A7
1{Ag, A~ B WY g.p. -3 SC A4,
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where W{ is a unit length tangent vector of 7S'. Then as above we obtain
the inequalities of the statement (2), (3), (4).

The above calculation shows that the map ¥ gives a finite covering map
from (44, 00) to M for sufficiently large 1,. We now prove that ¥ is, in fact,
a diffeomorphism onto its image (if we replace the constant A, by a larger
one). Suppose the contrary, and assume that there exist sequences {(4; |, [A],])}
and {(4,; 5, [4],])} in (4o, 00) x S* such that

Ait> A= 00  as  i—00,
V(4 (AL D) =P (42, [4i,])  foralli.

Since ST is compact, we may assume that A], converges to an anti-self-dual
connection Af on each compact subset of R*/I'\ {0} (k=1, 2). We shall prove
that 4, | 4,7 converges to 1 as i— o0 and [A]]=[43].

We denote by A, the anti-self-dual connection constructed from (4; ;, AL,)
by Taubes existence theorem (k=1,2). From the assumption there exists a
sequence of gauge transformations {s;}€%, such that A; ,=s}A4,; i From the
definition of the map ¥ and Theorem (4.10) the connection TE(&~ )* 4, , con-
verges to Af on each compact subset of R*/I'\{0}. This, in partlcular implies
that there exists a positive constant C such that

C <, iisC

We may assume that A, , 4,3 converges to a positive number A as i— 0. Hence
the connection T;* (%'~ y* 4; , converges to T . 4,. If we pull back the gauge

transformation s; by the map 2 ~'« T |, it converges to a gauge transformation
s on R*/I"\ {0} such that

s(x)—»id as x-so0,
Tr AL =s* AT,
Thus we have [T3x, AL]=[AL]. But since 1(4})=A(45)=1, we must have =1

and [AT]=[AY]. Hence ¥ is an into diffeomorphism. The assertion (1) follows
directly combining this with (2). [

(5.18) Corollary. Each noncompact component of the moduli space M is an ALE
hyperkdhler 4-manifold.

Proof. Proposition 5.14 (1)(2) implies that ¥ gives coordinates at infinity at
least in the Ievel of C%-norm. The curvature of g,, is written ([I12, Theorem 6.1])

gu(R(V, WYW, V)=3g, ({V, W}, G {V, W) —gu([VAW]", G,[VAW]Y)
+eu(lVAV]T, G, [WAW]H).

Since the operator norm of the Green operator G, is bounded (Propositions 4.7,
4.8), Proposition 5.14, 3, 4 implies

|R(p)|=0(d(o, p)”°"2).

Hence by [BKN, Theorem 1.1] we have coordinates at infinity of order 5/2
on this end.
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Since (M, g) is hyperkihler, it is Ricci-flat. Then each component of M has
at most one end by Cheeger-Gromoll splitting theorem [CG]. So the end corre-
sponding to Taubes’ existence theorem is the only end of a component of M. [

6. Periods of the moduli spaces

The results in previous sections determine the differentiable structures of the
moduli spaces in principle. So the remained problem is to determine the
hyperkdhler structures. These are determined by cohomology classes of three
Kihler forms (see Fact 1.2). In this section we relate the homology group
H,(M; Z) of the moduli space to that of the base space and compute the values
of Kihler forms evaluated on the homology group for examples given in Theo-
rems 0.2, 0.3.

Throughout this section we assume that the group G is a unitary group
U@) and (X, g, Ix, Jx, Kx) is an ALE hyperkdhler 4-manifold diffeomorphic
to the minimal resolution § of €%/I. Let o}, w¥, wf denote the associated
Kaihler forms. The irreducible components X, ..., X, of the exceptional set give
a basis of the homology group H,(X;Z) and the intersection matrix (X, X))
is the negative of the Cartan matrix.

Let P be a principal bundle over X with the structure group G which can
be extended to the orbifold X =X U {w}, p: I' - G the homomorphism induced
by the action on the fiber P, and M =M(P, k, p) the moduli space of anti-self-
dual connections on P asymptotic to p. We denote by E the associated complex
vector bundle.

Now we assume dim M =4. In the previous sections we have observed that
M has a natural complete metric g,, with the hyperkahler structure (I, Jy, Ky)-
It may have several components, but we already know that each noncompact
component is ALE, and each compact component must be a K3 surface or
a torus. We denote by w¥, oY, w¥ the Kihler forms associated with the
hyperkéhler structure on M.

Since the reduced gauge group %, acts freely on 7,4, there exists a universal
bundle P= ./ x4, P over M x X. We take the associated vector bundle IE
over M x X. The bundle IP admits a natural universal connection A which
is equivalent to 4 when restricted to {[A]} x X (cf. [AS2]).

Following [Mu, D3], we define homomorphisms f: H*(X; R)— H*(M; R),
J': H3(M; R) - H?*(X; R) (where H? denotes the cohomology group with com-
pact supports) by

(6.1) f()=—(§ ach(E)?, f'(B)=—({ Bch(E)?,
X M

where (-)® means a 2-form component.

(6.2) Theorem. If the Ad-invariant inner product on g is suitable chosen, then
(1) (f(@), B=(o, f'(B)) for ae H*(X; R) and fe H2(M; R),
) f([wf)=[of], f[w])=[o]], f([0f])=[o¥]

where [*] denotes the cohomology class.

Proof. The statement (1) follows easily. In fact,

(f (@), B)=(a-ch(IE)- B)LX x M]=(a, f"(B))-



ALE gravitational instantons 299

The statement (2) was proved in [D4, (5.10)]. Using the universal connection
A, we take the representation —(1/87?) tr(R3) of ch*”(IE) via the Chern-Weil
theory. For (a, v)e TM x TX the curvature form R, satisfies

Rp(a, v)=a(v)

where in the right-hand side the tangent vector a is viewed as Ad P-valued
1-form on X [AS2]. Hence for a, be TM

1
—(J ch(E) A w7)(a, b)= pps;

[tr@@anb)nof.
X

The right-hand side is the Kahler form w?. The correspondence for J and
K can be proved similarly. This shows (2). [

The meaning of the map f is explained by using the determinant line bundie
(see [D3, Sect. 2], [BF]). Suppose that ae H>(X;R) is the Poincaré dual of
the homology class [X;]. We couple the Dirac operator on X; with the family
of connections on IE to get the family of twisted Dirac operators on X;. Then
we have the determinant line bundle %= %; whose fiber over [A]e M is defined
by

(Zs)a=(/\ ker D ))* ® (/\ coker D ,).
Then the class f(PD.[X;]) can be calculated by the families index theorem [AS1]
FED.[2])=— j ch(E)= —c¢,(ind D))=c,(¥).

z

There is a canonical section det D; of ¥, which is nonzero exactly where D,
is invertible. Moreover when X, is a complex submanifold of (X, g), we can
define a natural holomorphic structure on %, since [E with the connection A
is a holomorphic vector bundle over X x M (see e.g., [[4]). Then there is a
correspondence (cf. [H 1])

(6.3) kerD,=H®(Z,;; 0O(KY*® E))
coker D~ H'(Z;; O(K' ® E)),

where K'/2 is the square root of the canonical bundle (i.e. a holomorphic line
bundle with K2 ® K= K). In this case the canonical section det D, is holo-
morphic.

First we study the case considered in Theorem 0.2. We take a complex line
bunle L over X which is asymptotic to the trivial connection and satisfy
¢ (L)?[X]=—2. Let ZeH,(X;Z) be the Poincaré dual of ¢,(L). Since ¢, (E)
=¢; (C® L)=c,(L), the line bundle L is determined from a topological datum
of E. We already know that each component of the moduli space M is isometric
to the Eguchi-Hanson space up to a constant factor (Theorem 5.11) and contain
a reducible connection corresponding S? (the exceptional set of the resolution).
This shows that M itself is connected. In particular, it is diffeomorphic to the
minimal resolution of €*/Z,, and has a generator ¢ of H,(M; Z) determined
by the exceptional set of the resolution.
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(6.4) Theorem.
f@Lol=(c (L), y=a(2) for aeH*(X;R).
(6.5) Corollary.
[0X1(0)=[w}](Z) forall A=1,J,K.
Proof. Theorem 6.4 implies
(f(@),PD.5)=(o ¢, (L) for ae H*(X;R).

Together with Theorem 6.2, 1, this implies f'(PD.Z)=c,(L). Then using Theo-
rem 6.2, 2, we have

[wi1(0)=f [@iD(@)=([wi].f' (PD.2)=([w}], c,(L). O

Proof of Theorem 6.4. We fix a point [4,]e M which corresponds to the reduc-
tion E=C® L. The group G,=50(3) acts on the set # = M of reducible connec-
tions transitively, and the isotropy subgroup at [A,] is isomorphic to S' = C*
which acts the complex line bundle L as the scalar multiplication. In particular,
A is isometric to S?, in fact coincides with the exceptional set of the minimal
resolution of €%/Z,.

We compute the values of the map f on PD.[X,], ..., PD.[£,]eH*(X; R)
by studying the action of the isotropy subgroup S* on the fiber of the determinant
line bundle %, at [4,] (cf. [D 3, Lemma 2.28]). Via the decomposition E=C® L,
the determinant line at [ A,] is written as

F=detDy, cdetDy ;.

Since S! acts on L with weight 1, the index theorem implies the action on
% is with weight

—c (LLZ].

¢ (B[R] =2¢,(D[Z].

This shows

Since H,(M; Z) is generated by [#]
()= —c,(L)[Z]PD.[#].

The conclusion follows directly from the above. []

Next we turn to the case considered in Theorem 0.3. The method is almost
the same as the above and we use the action of G,=S" essentially. The fixed
points Fix(S!) of S'-action are n+1 reducible connections [4;], ..., [4,+ ]
(Theorem 3.6). In particular, the Euler number of the moduli space M is equal
to n+ 1. Since M has a component M, diffecomorphic to X whose Euler number
is equal to n+1, the Euler number of the other components must be zero.
So the other components are tori. The component M, is diffeomorphic to the
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minimal resolution of ©%/I, and has a basis 6, ..., 6, of H,(M,; Z) determined
by the irreducible components of the exceptional set. The intersection matrix
(0}, ;) is the negative of the Cartan matrix.

(6.6) Theorem. The classes f(PD.[Z)(i=1, ..., n) belong to H*(M,, 0M,; Z)
and the intersection matrix (f(PD.[2.]), f (PD.[X])) is equal to the negative of
the Cartan matrix.

(6.7) Corollary. The component (Mg, gps Lng, Iy Kag) of the moduli space M,
is isomorphic to (X, g, Ix, Jx, Kx) as a hyperkdhler manifold.

Proof. By Theorem 6.6, the map f gives an isomorphism between H,(X; Z)
and H,(M,; Z) which preserves the intersection product. Then we have

[wi1(0)=[0X](Z),

where o;=f(2;). This implies (M, g») and (X, g) are isomorphic. [J

Proof of Theorem 6.6. Since the bilinear form (f(+), f(-)) on H?(X ; R)is indepen-
dent of the metric g on X (see [[D4]), we may assume that (X, g) is biholomorphic
to the minimal resolution of €%/T. So X,, ..., Z, are complex submanifolds
biholomorphic to €IP! and the determinant line bundle % have holomorphic
structures under which the canonical section det D; is holomorphic.

When the connection [AJe M, goes to the infinity, it converges to the trivial
connection on a compact subset of X. So there exists a compact subset C
of M, such that the restriction of a connection 4 in M \C to X; is trivial
as a holomorphic bundle, and hence the Dirac operator D; is invertible (see
(6.3)). Hence the zero set Z; of detD; is a compact complex submanifold of
M. It is invariant under the action of G,=S§", and the intersection Fix §'n Z;
is two points [4;] and [ 4, ,]. Thus Z, must be biholomorphic to CP!. Moreover
for i <j the zero sets Z; and Z; intersect if and only if i+ 1 =/ and the intersection
point is [A;,,] (Fig. 1). Hence the set {[Z,],...,[Z,]} gives a basis for
H,(M,; Z) and its intersection matrix is the same as that of {Z, ..., Z,}.

The class ¢, (%) is written as a; PD.[Z;] with a positive integer a;. To calculate
a; we study the S*-action on the fiber of %, at fixed points. At [4,] the bundle
E splits into L;® L; ' (see (3.5)), and S' acts with weight 1 on L; and with
weight (—1) on L7 '. So 5! acts on % with weight

e (L)[Z]—c (LT H[2Z]=2.

On the other hand (— 1) acts trivially on Z,, and in fact S!/{ + 1} is acts eflectively.
Thus we have ¢,(#)[Z;]= —2 and hence ¢, (¥)=PD.[Z]. [
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