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Abstract. A Gaussian integral kernel G(x, y) on R" x R" is the exponential of 
a quadratic form in x and y; the Fourier  transform kernel is an example. The 
problem addressed here is to find the sharp bound of G as an operator from LP(R ") 
to Lq(R ") and to prove that the L~(R ") functions that saturate the bound are 
necessarily Gaussians. This is accomplished generally for 1 < p < q < ~ and also 
for p > q in some special cases. Besides greatly extending previous results in this 
area, the proof technique is also essentially different from earlier ones. A corollary 
of these results is a fully multidimensional,  multi l inear generalization of Young's 
inequality. 

I. Introduction 

The classic Hausdorff-Young-Titchmarsh IT] inequality for Fourier  integrals 
states that for 1 < p < 2 the Fourier  transform on LP(R ") is a bounded map into 
LP'(R ") with a bound that is at most 1; here lip' + 1/p = 1. In 1961 Babenko [BA] 
showed that when p' is an even integer greater than 2 and n --- 1 the bound  is in fact 
less than 1, and he determined its value. This bound  is achieved for Gaussian 
functions and Babenko states, but  does not  demonstrate explicitly, that Gaussians 
are the only functions with this property. Babenko's method was to apply analytic 
function theory to the Euler-Lagrange equat ion associated with the maximizat ion 
problem. 

The Fourier  integral is but  one example of a transform given by a Gaussian 
integral kernel G(x, y), i.e., the exponential  of a quadratic plus linear form in x 
and y. In the Fourier  transform case in R" the kernel is G(x, y) = exp{ - 2i(x, y)}. 
Another  well known example in R" is the purely real operator 

= exp{tA + 2tx'V} on Gauss  space (with measure d~t = e x p { -  Ixt 2 } dx)in- 
vestigated by Nelson [NI ;  N2] as an operator from LP(R ", d/t) to Lq(R ", d/~). In 
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terms of Lebesgue measure, this amounts to considering the kernel 

G ( x , y ) = e x p - q l X I 2 - ~  - lyl 2 (1 _ c2) ~ 

from LP(R ") to Lq(R ") for 0 < c = e -t  < 1. Nelson defined the operator ff by 
(~f)(x) = S G(x, y)f(y)dy and showed that fq is bounded from LP(R ") to Lq(R ") 
when p < q if and only if(q -- 1)c 2 < p - l; he also derived the explicit value of the 
bound--which  again is achieved whenf is  a Gaussian. This is the famous hypercon- 
tractivity theorem. [In [N1] Nelson showed that ~ is bounded ifc is small enough; 
Glimm [GL]  used this fact plus the spectral gap in the generator to show that .~ is 
a contraction on Gauss space for some still smaller c. Finally Nelson IN2] proved 
the sharp bound as stated above. In 1976 Neveu [NE]  and Brascamp and Lieb 
[BL] found other proofs, and Simon [SI] found a proof  for p = 2 and 
q = 2, 4, 6, 8 . . . .  Recently, Carlen and Loss [CL] have used their method of 
competing symmetries to construct another proof of the hypercontractivity the- 
orem.] However, Nelson's method seems incapable of showing that Gaussians are 
the only maximizers; the p roof  of this fact, as well as a completely different proof 
(using rearrangement inequalities) of the hypercontractivity theorem was given by 
Brascamp and Lieb [BL]. The method in [CL] also yields uniqueness. Nelson's 
original proof used stochastic integrals and Gaussian processes in R" (in fact it even 
extends to infinite dimensions). Segal IS] showed how to use Minkowski 's inequal- 
ity [HLP]  to reduce the R" case of Nelson's kernel to the R 1 case; he also showed 
that ~ is a contraction on Gauss space for small c. The R 1 case was simplified by 
Gross [G]  who showed the equivalence of hypercontractivity with logarithmic 
Sobolev inequalities and built  up one-dimensional Gauss measure from two-point 
measures via the central l imit  theorem. See the survey by Davies et al. [DGS].  

In his important  1975 paper, Beekner [B1; B2] used the Nelson-Gross machin- 
ery and the Hermite semigroup to settle the question raised by Babenko. By using 
the tensor product structure of Fourier  transforms and an application of Min- 
kowski's inequality related to, but distinct from, Segars [S], he reduced the R" case 
to the R 1 case. He also showed that for all 1 < p < 2 the sharp constant in the 
Hausdorff-Young-Titchmarsh inequality is given by Gaussian funct ions--as  
found by Babenko. However, this method also leaves open the question of whether 
Gaussian functions are the only maximizers. 

Since then the Nelson-Gross-Beckner method has been extended to other 
complex (as distinct from purely real or  purely imaginary) Gaussian kernels in R" 
(i.e., the complex Mehler kernel) [C; E; J; W]. In this paper the 9eneral problem in 
R" in the p < q case will be settled by a completely different method and, moreover, 
the maximizers will be shown to be Gaussian functions. Some of the p > q cases will 
be settled as well. Before discussing the earlier results in detail it is necessary to 
define the problem more completely. 

The most general Gaussian kernel on R" x R" is 

and its action on complex valued, measurable functions f :  R " ~  C, is formally 
given by 

((~f)(x) = I G(x, y)f(y) dy . (1.2) 
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In (1.1) A, B and D are (complex) n x n matrices with A and B being symmetric 
while L is a vector in C 2". The Four ier  t ransform corresponds to A = B = 0, L = 0 
and D = iI, with I denot ing the identity. 

Notation. If ~ and fl are vectors in C" then (ct, fl) - ~ = 1  ~,fl, and not ~7=1, ~,fli. 
Lebesgue integrat ion over  R" is denoted simply by S dx whenever the n in question 
is clear from the context.  The LP(R ") norm of a measurable function f will be 
denoted by I I fl l  p, i.e., { S If(x) lPdx } J/~. The notat ion o) 

Dr = M + iN (1.3) 

will also be used, where M and N are real, symmetric 2n • 2n matrices. The sole 
condit ion imposed on G is that  M is positive semidefinite. G is said to be 
nondegenerate if M is positive definite, while G is said to be degenerate if M has 
a zero eigenvalue. The Four ier  t ransform kernel and Nelson's  kernel with 
(q - 1)c 2 = (p - 1) are examples of degenerate kernels. The opera tor  fq should 
perhaps be written ~o ,  but  this will not be done since the pair ing of ~ and G will 
always be clear from the context. 

The linear opera tor  f~ associated to G will be studied as an opera tor  from 
LP(R n) to Lq(R n) for 1 < p < oo and 1 < q < co. (The cases p or q = 1 or oo can 
also be analyzed by the methods of this paper  but  they will be omit ted since these 
cases involve extra technical considerations.)  When G is nondegenerate  the defini- 
t ion of f# in (1.2) makes sense (by H61der's inequality) but  if G is degenerate then 
(1.2) is meaningless unless f is also in LP(R n) n LI(R'). Assuming that  f~, when 
restricted to LP(R ") n L~(R"), is bounded from LP(R ") to Lq(R ") then, for any 
f ~  LP(Rn), f f f ~  Lq(R ") is uniquely defined by taking any sequence 
fj ~ L P ( R " ) n L I ( R  ") tha t  converges to f in LP(R ") and then noting that  
f # f=  l i m j ~ f f f j  is well defined since fff~ is a Cauchy sequence in Lq(R"). This 
definition is well known and is, in fact, the way that the Four ier  transform is 
defined when 1 < p < 2. 

Associated to G and the numbers  p and q with 1 ~ p < az and 1 < q < oo is 
the ratio 

11Nf [Iq (1.4) 
~ ' P ~ q ( f ) -  [I f l ip  

f o r f e  LP(R") , f4 :0  and,  in case G is degenerate, f e  L I (R  ~) as well. The norm of 
from LP(R ") to Lq(R ~) is defined to be 

Cp,q = s~p ~p.q( f )  (1.5) 

in which the supremum is over the class o f f ' s  just stated. In case 0 4 : f e  LP(R ") and 
Cp~q< oo and 

II fr = Cp~qllfilp 

(using the above definit ion of fCfas a limit when G is degenerate) t h e n f i s  said to be 
a maximizer  for fr (or for G). If there is any ambigui ty  abou t  the G under  discussion 
(e.g., in Theorem 3.3) the nota t ion  ~p~q(G,f) and Cp~q(G) will be used. 

Funct ions from R" to C of the form 

g(x) = p exp{ - (x, Jx) + (/, x)} (1.6) 
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with0 ~/~ e C, l ~ C" and J a symmetric n • n matrix with Re(J) positive definite 
will be called Gaussian functions. In case L = 0 in (1.1) or I = 0 in (1.6) then G (resp. 
g) will be called a centered Gaussian kernel (resp. function). If A, B, D and L in (1.1) 
are real then G is said to be a real Gaussian kernel. Likewise, if J and l (but not 
necessarily/~) in (1.6) are real then g is said to be a real Gaussian function. 

A preliminary simplification of G can be made. Without loss of generality it 
can be assumed that A and B are real matrices because the imaginary part of B can 
be absorbed into f i n  (1.4) without changing N f tl p. The imaginary part of A can be 
omitted without changing qlfffllq- For the same reason the vector L can be 
assumed to be real. Furthermore, when G is nondegenerate then we can also set 
L (which is now real) equal to zero. The reason is simply that the affine change of 

variab,e (X) (x) ,  bo n   eunique o utiono t eequatio  
M V  = L in R 2", eliminates the real linear term from (1.1) and merely changes Cp~q 
into Cp~qexp{(L, V)}. When G is degenerate, L can also be eliminated in the same 
way provided M V  = L has a solution. Because Rank(M) < 2n in the degenerate 
case, such a solution conceivably might not exist, but it turns out that a solution 
does indeed exist whenever .~ is bounded. This is the content of Lemma 2.2 below. 
Therefore, without loss of  generality, the only G's that need to be studied are those for 
which 

(i) A and B are real, symmetric n x n matrices, 
(ii) L = 0, i.e., G is centered. 

These assumptions will be made in the theorems in this paper. 
On the other hand, suppose that the supremum of ~p .q ( f )  in (1.5) is taken over 

Gaussian functions only (which are automatically in LP(R ") for every p). Then, 
according to Lemma 2.3 below, only centered Gaussian functions need be con- 
sidered in (1.5). This is a considerable simplification that is not altogether obvious 
and it is important in the application of Theorem 4.1 which states that this 
restricted supremum is all that need be considered. 

The results of this paper can be summarized as follows. Three.cases are treated. 
With the assumptions (i) and (ii) above, 

(A) D i s r e a l a n d  1 < p <  oo and 1 < q <  oo 
(B) D is imaginary and either 1 < p < 2 and 1 < q < oo or else 1 < p < oo, and 

2 < q <  oo. 
(C) D is complex and 1 < p < q < oo. 

If G is nondegenerate then ~p .q  has exactly one maximizer and it is a centered 
Gaussian function. These are Theorems 3.2, 3.3 and 3.4. 

If G is degenerate then in all cases 

Cp_q = sup ~'p.q(g), (1.7) 
g 

where the supremum is over centered Gaussian functions. This is Theorem 4.1. 
Furthermore, if the supremum in (1.7) is achieved for some Gaussian function then, 
when p < q, every maximizer is a Gaussian func t ion- -as  Theorems 4.5 shows. 
Theorem 4.3 gives a sufficient condition for the achievement of the maximum in 
(1.7) in the degenerate case; in Case (A) it is necessary as well. Thus, Case (A) is 
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settled completely: in the degenerate case with p > q there is no maximizer of any 
kind, while if p < q all maximizers are Gaussian functions. 

In general, the question of the existence of a maximizer in the degenerate case is 
a subtle one. For the Fourier  transform (which is both Case (B) and (C)), every 
function in L2(R ") is a maximizer when p = q = 2; on the other hand the seemingly 
harmless modification of the Fourier  transform in 4.2(5) below is bounded but  has 
no maximizer of any kind when q = p' >_- 2. When q = p' > 2 the Fourier  transform 
on R 1 has a three real parameter  family of maximizers, f(y) = exp{ - jy2 + ly} 
with J > 0 and l ~ C. When p < q the convolut ion kernel 
G(x, y) = exp{ - (x - y)2} on R 1 has a one real parameter  family of maximizers, 

p' 
f(y) = exp{ - jy2 + ly} with 1 ~ R and J = --7 - 1; when p = q, G is bounded  but  

q 
there is no maximizer (see 4.2 below). There does not  seem to be any simple rule. In 
simple cases (which include all the standard ones in R" and all the cases in R 1) the 
existence of a Gaussian maximizer in (1.7) can be decided by computation.  Other- 
wise, (1.7) reduces to a complicated algebraic problem and precise condit ions are 
not  given here. Moreover it is not  even proved that the absence of a Gaussian 
maximizer in (1.7) precludes the existence of a non-Gauss ian  maximizer - -a l though  
a conjecture to this effect is made in 4.4. 

All these results extend to Gaussian kernels on R" x R", in which A is m x m, 
B is n • n, D is m • n and L e C "+". The proof is given in Sect. V. This generaliz- 
ation, while it is an easy one, does occur in applications, e.g., the entropy bound  for 
coherent states in [L1]. 

Multilinear Gaussianforms are discussed in Sect. VI and it is proved there that 
the methods and results of Sects. II V carry through for real forms. As an 
application of the real multi l inear result in Sect. 6.1, the fully multidimensional 
Young inequality for K functions (which was left unresolved in [BL], p. 162) is 
proved in 6.2. The method of proof is, of course, quite different from that in [BL]; 
there, rearrangement  inequalities were used and they were not  flexible enough to 
encompass the fully mult idimensional  case. 

The relationship of the results of this paper to earlier results on Gaussian 
kernels (beyond [BA; NI ;  N2; B1; B2]) can be summarized as follows. In 1976 
Brascamp and Lieb [BL] found the norm for Case (A) in R" (Theorem 7) and 
proved that Gaussian functions are the unique maximizer in R 1 in the degenerate 
case (Theorem 13); this latter proof easily extends to R" and to the nondegenerate 
case. In fact, by a simple change of variables (see the proof of Theorem 4.3 below) 
the R" Case (A) reduces to a simple tensor product  of R ~ kernels. In 1979 Coifman 
et al. [C] used Beckner's result and an interpolat ion technique to deduce the norm 
for the complex Mehler kernel in R ~ for q = p' > 2 (which is in Case (C)). In the 
same year Weissler [W] extended Nelson's and Beckner's results to the complex 
Mehler kernel in R ~ with the exception of 2 < p < q < 3 and ~z < P < q < 2. In 
1988, Epperson [E] found the norm for the following nondegenerate cases in RI:  
Case (C), Case (B), the case p > 2 > q. He also found the norm for certain R 1 cases 
q < p < 2 and 2 < q < p with sufficiently nondegenerate kernels (Theorem 2.10), 
and for the R ~ degenerate Case (C) if A > 0 and B > 0 (corresponding to Theorem 
4.3 here). 

The only complex cases in R" that were known prior to Epperson's work were 
the simple tensor products of R 1 kernels; these could be analyzed for p < q via 
Minkowski 's  inequality, as shown by Beckner [B1; B2]. Epperson was able 
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to handle the nondegenerate Case (C) for which there is an n x n complex sym- 
1 

metric matrix W with II WII < 1 such that A = W ( I -  W2) - 1 W - - I ,  
q 

1 
B = (1 - W2) - 1 _ ~7 1 and D = W(I - W2) - 1. Here, I is the identity matrix. 

It will be seen from the above summary that all the previous cases, except for 
Epperson's R 1 cases of p > 2 > q and the special q < p < 2 and 2 < q < p cases, 
are covered in the cases (A), (B) and (C) treated in this paper. Moreover cases (A), 
(B) and (C) are resolved here in full R" generality (i.e., not only for simple n-fold 
tensor products of R 1 kernels). The main methodological point of this paper, 
however, is that all the previous results, except for I-BL] and [BA], ultimately rely 
on the Nelson-Gross machinery which, while it is natural in its original context of 
quantum field theory and Gauss measures, is conceptually complicated in the 
context of general Gaussian kernels with Lebesgue measure. The two settings 
(Gauss measure and Lebesgue measure) for Gaussian kernels are mathematically 
equivalent, however, and the choice is a matter of taste. Lebesgue measure is used 
in this paper because it is felt that it is more natural to retain translation invariance 
(e.g., in the Fourier transform). Prior to Epperson's work all results in the field, 
except for [BL] and [BA] came from translating Gauss measure bounds for 
products of complex R 1 Mehler kernels into R" results via Beckner's Minkowski 
lemma. The proofs here use only Minkowski's inequality and simple facts about 
analytic functions (which appear to be unrelated to Babenko's use of analyti- 
c i ty - - the  Euler-Lagrange equation is not used). 

Basically there is one idea that runs through Theorems 3.1, 3.3 and 4.5, 
although the technicalities are different in each. The main idea is to study fq | fr 
from LP(R 2n) to Lq(R 2") and use Minkowski's inequality. By considering the ,ff | ff 

[ ' ' ~ l / x ~ Y l  + Y2 Yt -- Y2 
maximizer F(yi, y2)= f k ~ ) f [ - - - - ~ ) ,  where f i s  a maximizer for if, it is 

possible to conclude that f m u s t  be a Gaussian. It will be noted that some of the 
proofs are long, and so it may appear at first that their structure is not really very 
simple. To a large extent the length is due to the fact that proving uniqueness raises 
technical considerations that would be absent if only inequalities are proved, e.g., it 
is not sufficient here to prove the inequalities for a dense set of smooth functions. 

Apart  from the extension to R" (which is handled here in a natural way) the 
main new theorem in this paper is that a maximizer must be a Gaussian, and it is 
unique in the nondegenerate case. In the degenerate case Cp~q(G) is determined by 
examining only Gaussian functions and, if a Gaussian maximizer exists, every 
maximizer is a Gaussian. This is Theorem 4.5 and it can be useful as in IL l ]  and 
[L2]. Except for the real case [BL], it was previously known that Gaussian 
functions were among the maximizers. The one exception to this rule was pointed 
out by Beckner (private communication) for the Fourier transform from LP(R ") to 
Lr ") with the restriction p' > 4. His proof that a maximizer must be a Gaussian 
function in this case uses a result in [BL]; the proof is 

[[ f II ~ ~ •, [1 f * f  II, _-> #,(C,n)" [1 f * f  [I,, = #,(C~)" II (f)2 I1,, = ~(C~)" IIf  II 2 

with r' = p'/2 > 2, with (C,n)" being the sharp Beckner (or Babenko) constant for 
the Fourier transform (denoted b y / ~  ), and with #, being the sharp constant in 
Young's convolution inequality which was derived simultaneously in [B 1, B2] and 
in [BL]. A Gaussian function f(y) = exp{ - jy2 + ly} with J > 0 and l E C gives 
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equality above. However, [BL] (Theorem 13) proved that such functions are the 
only ones that give equality in Young's inequality. 

It is a pleasure to acknowledge my debt to Eric Carlen. He helped to stimulate 
my interest in this problem and to understand the literature in the field. He also 
critically examined the work as it took shape. Thanks are also due to the Institute 
for Advanced Study for its hospitality during part of this work, and to Michael 
Loss for valuable discussions. 

II. Some basic properties of Gaussians 

2.1. Lemma (nondegenerate Gaussian kernels are compact and have maximizers). 
Let G be a centered, nondegenerate Gaussian kernel in R ~ x R ~ as in (1.1) with M in 
(1.3) positive definite and L = O. Let  1 < p < oo and 1 < q < oo. Then ~ in (1.2) is 
a compact operator from LP(R ") to Lq(R ") and there is at least one maximizer 
f ~ LP(R")(i.e., ~tpoq(f)  = Cp~) .  

Every such maximizer f :  R"-~ C, has the following three properties, in which 
ct and fl are positive constants that depend on G, p and q but not on f. 

(a) There is an entire analytic function of  order at most 2, m : C " ~  C, such that 
f (x )  = Im(x) f 'm(x)  -~ .for x ~ R ~. Here 1/p + l /p'  = 1. Moreover, for z ~ C ", 

]m(z)[ < ~llfl[~ -x exp{fllz[ z } . 

(b) The function Ifl =~p- *~from R" to R has an extension to an entire analytic function 
from C" to C whose order is at most 2. l f  g: C"--+C is this extension then for 
z ~ C  n 

(c) For x e R" 

]g(z) l ~ ~t II f L[ 21p- l~ exp {fllz ]a } . 

If(x)] < ~lifLIpexp{ - fl(x, x)} . 

Finally, i f f  i ~ LP(R")for j = 1, 2, 3 . . . .  is an L e bounded maximizing sequence for 

G(i.e., ~p~q( f j ) -~  Cp.q) then there is a junction f e LP(R ") and a subsequence 
j(l),j(2) . . . .  such that f~k I ~ f strongly in LP(R ") as k -~ oo. l f  f 4: 0 (i.e., i f  ll f j  ll p -~ 0 
as j ~ oo) then f is a maximizer. 

Proof. For a n y f e  LP(R"), H61ders inequality can be used to deduce 

I(fff)(x)[ _-< T(x)[[ f lip (1) 

with T(x) = l[ G(x, ")[[p,. Simple computation shows that there are positive numbers 
7 and 6 depending only on G and p such that [T(x)l < 7 exp{ - 3(x, x)}. The fact 
that G is nondegenerate is crucial for this result. The fact that T ~ LI(R ") c~ L~(R ") 
shows that ff is bounded from LP(R ") to Lq(R"). Now suppose that fj ~ LP(R n) is 
a sequence that converges weakly in LP(R n) to somef~  LP(R ~) asj  ~ or. Since, for 
each x ~ R", G(x, .) is in LP'(R"), it follows that (fffj)(x) -~ (fff)(x) as j ~ oo for 
each x ~ R". It can be assumed that thefj andfsatisfy [[ fj tip and ]] f lip --< C for some 
C > 0 and hence, from (1), the functions fffj and if f a r e  bounded pointwise by the 
function CT. Since T s Lq(R"), [I fff~ - f f f  []q ~ 0 by dominated convergence. Thus 

takes weakly convergent sequences in LP(R ") into strongly convergent sequences 
in Lq(R"), and so ff is compact. 
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Now letf~ be a bounded  maximizing sequence, i.e., ~p,q(f~) ~ Cp~q a s j  ~ oo. 
We can assume Ilfj I1. -- 1 for each j.  By the Banach-Alaoglu theorem, there is an 
f ~  LP(R ") and a subsequence j(l) ,  j(2) . . . .  such that  fj ~ f w e a k l y  in LP(R"). As is 
well known, II f lip _-< 1. Then, by the strong convergence proved above 

Cp~q = lim It fgfj~kl IIq = Ilfr < Cp~qllfllp < Cp~q. 

This implies that  llfllp = 1 and tha t  f is a maximizer.  Moreover,  the fact that 
llfltp = l implies (by the uniform convexity of the L p norm) that  fj~k) converges to 

f s trongly in LP(R"). Thus, the first and last  assertions of the lemma have been 
proved. 

It remains to prove that  a maximizer fsat isf ies  condit ions (a), (b) and (c) and  it 
suffices to assume that  {I f lip = 1. There is a function h ~ Lq'(R ") such that  ]] h llq, = 
1 and Cp~q = bjc~fltq = ~ h(x)(~f)(x)dx.  Let 

m(y) = ~ G(x, y)h(x)dx = e -~y' ~yl ~ e -~x' a~)- 21~. Oy~h(x)dx (2) 

so that, as in the proof  of (1) above, [m(y)l < W(y) =/1 exp{ - v(y, y)} for suitable 
positive numbers # and v which depend only G and q. H6lder 's  inequality implies 
that  the function (x, y)~--~ h(x)G(x, y) f(y)  is in L~(R" x R'), and Fubini ' s  theorem 
then implies that  I[ cSf [bq = ~ m(y)f(y)dy. If m(y) =-]m(y)l exp{i0(y)}, the opt imum 
choice for f is f(y) = [Im(y) l/II m IIp,]P'- 1 exp { - i0(y) }, for otherwise ~ p~ q( f )  can 
be increased. 

The function m:R" ~ C has an extension to an entire analytic function on C" of 
order  at most  2. This can be seen easily from the representat ion (2) above and 
H61der's inequality; i fy j  = uj + iv~ f o r j  = 1 . . . .  , n and D = E + i H  with u~, vj, E 
and H real then 

lm(y)l < exp{(v, By) - (u ,  Bu) } [~ exp{ - q'(x, A x ) -  2q' (x, Eu) + 2q'(x, Hv) }dx] ~/q" 

= (const.)exp {(v, By) - (u, Bu) + (Eu -- Hv, A- I (Eu  - Hv))} . 

Thus Ira(y)[ < (const.)exp { (const.)[(u, u) + (v, v)] } which implies that  the order  of 
m is at most  2. This establishes conclusion (a). Since m is entire, the function 
y~--,m*(y) =--rn(y:) (with the bar denot ing complex conjugate) is also entire, and 
hence N(y) =- m(y)m*(y) is also entire with order  at most  2 and with a pointwise 
bound  that  is independent  o f f  However,  when y ~ R"(i.e., vj = 0 for all j )  then 
N(y) = tm(y)l 2. Conclusion (b) is then an immediate  consequence of the relat ion 
between f and m which implies tha t  for y e R", If(y)121p-I) = Ilmll~,21m(y)l 2= 
iI m 11 p;2 N(y); thus If[  2t~- a) has an analytic extension of order at most  2, namely 
ttmll~ZN. It only has to be shown that  Ilmltp; 2 is universally bounded,  but this 
follows from the relation Cg_q = II fr = f m f =  Ilmllp,. 

Conclusion (c) follows from the fact that  when y s R" then I f (y ) l=  
[[m(y)j/jlmllp,] p'- x < W(y)p'-~l]rn[[~, -p'. [] 

The next two lemmas validate the assertion in Sect. I that linear terms can be 
el iminated from Gaussians.  

2.2. Lemma (elimination of  linear terms f rom Gauss ian  kernels). Let G be the 
(degenerate or nondegenerate ) Gaussian kernel given in (1.1) with positive definite or 
semidefinite real quadratic form M in (1.3) and with real linear term L ~ R ~". Let G O 
denote the Gaussian kernel with no linear term, which is obtained from G by setting 
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f / / x \ \ )  
L = 0 ,  i.e., G o , x , y , : G ( x , y ,  e x p ~ - 2 ~ L , ~ ) ) ~ . L e t  l < p <  oo and t < q <  oo. 

k. \ k J / I 3  

Then the following conditions are equivalent. 

(i) ~o is bounded from LP(R ") to Lq(R ") and the equation M V = L has a solution 
V ~ R 2". 

(ii) .~ is bounded from LP(R ") to Lq(R"). 
In case these conditions are both satisfied the relation between the norms is 

Cp~q(G) = Cp~q(Go)exp{(L , V)} . 

The number (k, V) is uniquely defined even if the vector V is not unique. ~ has 
a unique maximizer i f  and only i f  f# o has one. 

Proof. ( i ) ~  (ii). This was explained in Sect. I. Simply change variables; writing 

( a ) , l e t x ~ x + a a n d y ~ y + b .  Then V =  b 

The imaginary terms above do not  affect the norm. Since M is Hermit ian L must  be 
orthogonal  to ~ - kernel of M c R 2", while any two solutions V 1 and V 2 differ by 
an element of off. Thus, (L, V) is unique. This change of variables also shows that 
c~ has a unique maximizer if and only if f#0 has one. 

(ii) ~ (i). Suppose that M V = L has no solution. Then, since M is Hermitean, 

L is not orthogonal  to ~ and thus there is a vector W =  ( : )  ~ J~ such that the 

number  P = (W, L) is positive. Make the change of variables x ~ x  + s and 
y ---, y + t. Then, since M W = 0, G becomes 

y, oxp{ N w ,  

The change of variables is an isometry so the norm of .~ is the same as the norm of 
f# and, since the imaginary terms are irrelevant, we have Cp~q(G) = Cp~((~)=  
e2PCp~q(G). This is a contradict ion since Cp~q(G) 4= O. Thus M V  = L has a solu- 
tion and the same change of variables can be made as before to derive the relation 
between the norms of f# and f#o. [] 

2.3. Lemma (elimination of linear terms from maximizers). Let G be a centered 
Gaussian kernel (degenerate or nondegenerate) and let 1 < p < oo and 1 < q < oo. 
Assume f#:LP(R")--* Lq(R ") is bounded (which is automatically true in the non- 
degenerate case), l f  g(x) = exp{ - (x, Jx)  + (l, x)} is a Gaussian function that mam- 
mizes ~p~q(g) among all Gaussian functions then go(X)= exp{ - ( x ,  Jx)}  is also 
a maximizer. Moreover, if  .~tp~q(g) does not have a maximizer among Gaussian 
functions (which can happen only i f  G is degenerate) then the supremum of  ~p~q(g) 
over Gaussian functions equals the supremum over centered Gaussian functions. 
Finally, i f  G is nondegenerate then g = go, i.e., l = O, and therefore g is centered. 

Proof. Consider the functions ga(x) = exp{ - (x, Jx)  + 2(l, x)} with 2 a real para- 
meter. Clearly ga ~ LP(R ") for all 2 and, by a well known property of Gaussian 
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integrals, 

IIg~ll~= Ilgoll~e ~= and IlfCg~llq = II~r ~a= 

for some real constants  ~ and ft. There are three cases to be considered: 

(i) c~ > ft. By setting 2 = 0, ~ 'p ,q  is increased, i.e., ~p~q(g0) > Ytp~q(g). This means 
that  g is not  a maximizer - -which  is a contradict ion.  
(ii) ~ < ft. By letting 2 tend to infinity we conclude that  ~p~q (and hence also fq) is 
unbounded - -wh ich  is a contradict ion.  
(ii) ~ = ft. In this case g~ is a maximizer  for every 2 and hence go is a maximizer,  as 
claimed. 

These considerat ions prove all but  the last sentence of the lemma. 
If G is nondegenerate  it is possible to go further. Consider  the following 

sequence of functions with 2 = j ,  namely hj = Z jg j  for j = 1, 2, 3 . . . . .  where the 
numbers  Zj  are chosen so that  II h i lip = 1 for each j. This is a bounded maximizing 
sequence and, by a trivial modificat ion of the last par t  of Lemma 2.1 (using the fact 
that  a nonzero LP(R ") weak limit of Gauss ian  functions is a Gauss ian  function), 
there is a nonzero Gauss ian  function h ~ LP(R ") and a subsequence j(1),j(2) . . . .  
such that  h j t k l  --* h strongly in LP(R ") as k ~ ~ .  If I 4; 0, however, it is easy to check 
that  h~ ~ 0 weakly in LP(R ") as j ~ ~ .  This contradicts  the supposed strong 
convergence to a nonzero function. [] 

IlL Nondegenerate gaussian kernels 

A main ingredient in the following theorems is Minkowski ' s  inequali ty for inte- 
grals. It was exploited by Beckner I-B1; B2] to prove that  the sharp bound for the 
tensor product  of two opera tors  (e.g., Four ier  transforms) is often the product  of 
the individual  bounds.  In particular,  the bound  for the Four ier  transform from 
Lr(R ") to LP'(R ") is (C~)", where C~ is the sharp constant  for R 1. A proof  of 
Minkowski ' s  inequality can be found in [HLP] .  Of  crucial impor tance  here is the 
sharp form in which the necessary and sufficient condi t ion for equality is specified; 
this condi t ion was not  used before to analyze Gauss ian  kernels. 

3.1. Lemma (Minkowski 's  inequality). Let f :  R ' x  Rm--, [0, oo] be Lebesgue 
measurable and let 1 < r < ~ .  Suppose that the measurable function M,  defined for 
almost every x ~ R" by 

M(x)  = ~ f ( x ,  y)r dy , 
R ~ 

is f inite for  almost every x and that M 1/, ~ L 1 (R"). Then the measurable function 

N(y) - S f ( x ,  y )dx  
R" 

is f inite for  almost every y ~ R m and 

N" < I M 1 / ' '  
m Rn 

(,) 
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Furthermore, if r > 1 and if there is equality in (*) then there are nonneoative, 
measurable functions A ~ La(R ") and B ~ U(R") such that 

f(x, y) = A(x)B(y) 

for almost every (x, y) E R" • R". 

Remark. This lemma extends to an arbitrary pair of measure spaces (X,/~) and (Y, v) 
in place of (R", dx) and (R m, dy) when/~ and v are sigma finite. 

As a first application of Minkowski's inequality the uniqueness of maximizers 
for real, nondegenerate Gaussian kernels for all p and q will be proved. This is Case 
(A) of Section I. It is to be noted that the order of integration in Theorem 3.2 is as in 
IS] and is opposite to that of Theorem 3.4 and opposite to the order in Beckner's 
lemma. Analyticity considerations play only a subsidiary role in Theorem 3.2 and 
can be bypassed if desired, but they are important later. Theorem 3.2 was already 
essentially contained in [BL] Theorems 7 and 13. The following proof is offered 
because (i) it is different from the [BL] approach and (ii) it illustrates the techniques 
of the present paper. 

3.2. Theorem (unique Gaussian maximizer for all p and q in the real nondegener- 
ate case). Let G be a real, nondegenerate, centered Gaussian kernel, i.e., the matrix 
N in (1.3) is zero. Let l < p <  oo and 1 < q <  oo. Then ~ has exactly one 
maximizer, f (up to a multiplicative constant)from LV(R ") to Lq(R ") and f is a real, 
centered Gaussian, i.e.,f (x) = exp{ - ( x ,  Jx) } with J bein9 a real, positive definite 
matrix. 

Proof Consider the linear operator fit2) = c~ | C~:LV(R2,) ~ Lq(R2,) given by the 
Gaussian kernel Gt2~((Xl, x2), (Yl, Y2)) = G(xl, Yl)G(x2, Y2) with Xl, x 2, Yl and Y2 
in R". The first goal is to prove that Cv~q(G~2) ) = C_oq(G) 2. If F ~ LP(R z") then 
(Yl, Y2) ~ Gt2~((xl, x2), (Yl, Y2)) F(Yl, Y2) is in LI(R s for every (x I ,xz) because 
G 12) is nondegenerate. Fubini's theorem and Minkowski's inequality yield 

[IcSt2~ F ltqq = [. { ~. J [. ( ~ G(x~, y,)G(x 2, Y2)F(yl, Y2)dYl)dY21q dx, } dx 2 (1) 

<= ~ { ~ [ ~ G(x2, y2)lK(x,, y2)ldy23qdx, }dx2 

(with K(x 1, Y2) = ~ G(xl, Yl )F(Yl, Y2)dYl) (2) 

~= I { ~ [ ~ G(x2, Y2)qI K (xx , Y2)lq dxl ]'m dy2}qdx2 (3) 

< (Cp~q(G)) q ~ { ~ G(x2, Y2)[ ~ [f(Yx, Y2)lPdYl]~/Pdy2}qdx2 (4) 

< (Cp.q(G))Zq{ ~ IF(y1, y2)]Pdy~ dy2} q/v. (5) 

(Notes: (2) -~ (3) is Minkowski's inequality. (3) -* (4) uses Cp.q(G) > ~p ,q (F ( ' ,  Y2)) 
for each Y2. (4)-*(5) uses Cp,~(G)> ~p~q((~[ F(yl,')[Pdyl)l/P). The fact that 
G(x, y) > 0 is crucial. Here the x~ integration was done before the x 2 integration; 
in Theorem 3.4 the x 2 integration will be done first.) Inequalities (1)-(5) establish 
that Cp~q(G(2))~ Cp,q(G) 2. Clearly, by considering F's of the product 
form F(y~, Y2) = h(yl)h(Y2), the reverse inequality is obtained, and so the goal is 
reached. 

Suppose now that F : R  2n ~ C is a maximizer for G (21. Since G (2) is nondegener- 
ate, it has a maximizer by Lemma 2.1. Since G(x, y) > 0 for all x and y, it is clear 
that F = 2IF[ and 121 = 1, for otherwise replacing F by IFI will increase the 
quotient .~p~q for G ~2). It can be assumed henceforth that F > 0. Since F is 
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a maximizer all the inequalities in (1)-(5) must be equalities. Equality of (2) and (3) 
implies, by Lemma 3.1, that for almost every x 2 there are measurable functions Ax~ 
and Bx2 : R" -~ [0, ~ )  such that 

G(x2, Y2)K(x1, Y2) = Ax2(Xl)Bx2(Y2) (6) 

for almost every xl and Y2. Since G > 0, this equation can be divided by G(x2, Y2) 
to obtain K ( X l , y 2 ) =  Ax2(xx)Exz(Y2) with Ex2(y ) = Bx2(y)/G(xz, y). However, 
K(x l ,  Y2) is independent of x2 and therefore if any particular value of x 2 is chosen 
for which (6) holds for almost every xl and Y2, and if the functions A and 
E: R" -+ [0, oo) are defined by A = Ax2 and E -- Ex~ for this value of x 2, then 

K(x l ,  Y2) = A(xl)E(Y2) 

for almost every x 1 and Y2- If this equation is multiplied by G(x 2,yz)  and 
integrated over Yz the result is 

(f(2)F)(Xl,  X2) = A(x1)Z(x2)  

for almost every x~ and x 2 with Z = fiE. Since G (21 > 0, both A and Z are strictly 
positive functions. 

There is a function H ~Lq'(R 2") with NHHq, = 1, such that Nf~2)Fllq= 
H . f t Z ~ F .  In fact 

H(x l  ' x2 ) = (const.)[(f(2JF)(xl ' xz)]q- a = (const.)A(x0q- 1 Z(xz)q-  1 . 

The point here is that H is a product function. Then, as in the proof of Lemma 2.1, 
F satisfies 

F(y~, Y2) = (const.) { ~ G(x~, yl)G(x2, y2)H(x1, xz)dx I d x 2 }  p ' - I  = ~(Yl)fl(Y2) (7) 

for some positive function ~ and f l : R " ~  [0, ~) .  In brief, F must be a product 
function, and this fact is crucial for the next step. 

One example of a maximizer is F ( y l , y 2 ) = f ( Y O f ( Y 2 ) ,  where f is an 
LV(R ") ~ Lq(R ") maximizer for G (whose existence is guaranteed by Lemma 2.1). 
For  the reason given before about F, we can and do assume that f (x)  > 0 for all 
x ~ R  n. 

A more interesting maximizer is 

'/ "X t / ~ Y l  -- Y2 Yt + Y2 
F(Yl,  ,8, 

Here, the essential property of 0(2) rotation invariance of products of centered 
Gaussians and of Lebesgue measure is being exploited. If 0 is any fixed angle and if 
x ' l , x~ ,y ' l , y~  in R" are defined by x ' l = X l C O S 0 - X  1sin0, x ~ = x l s i n 0 +  
x 2 cos 0, y'l = Yl cos 0 - Y2 sin 0, y~ = Yl sin 0 + Yz cos 0, the 0(2) invariance of 
Lebesgue measure is that dx~dx 2 = dx]dx'2 and d y l d y  2 = dy'ldy'2. The 0(2) 
invariance of centered Gaussian functions is that g(x~)g(xz) = g(x'~)g(x'z), while for 
centered Gaussian kernels G ( x l , y O G ( x 2 , Y 2 ) =  G(X'l,y'l)G(x'2, y'2). With the 
choice 0 = n/4, these observations lead to (8). Combining (7) and (8), 

i(y - yAi(y, + \---~--} \-~-~ii=~(y,)l~(y:). (9) 

for almost every y~ and Y2. 
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Equation (9) implies that f is a Gaussian. Instead of proving this in full 
generality for LP(R ") functions, as is done by Carlen [CA], it is easier to simplify the 
proof here by taking the 2(p - 1) th power of (9) and by taking advantage of the 
analyticity result Lemma 2.1(b). Introducing h =f2~p-1~, y=ct2~p-~) and 
6 =/32tp- 1), it is seen from (9) (by fixing Y2) that 7 is analytic; likewise 6 is analytic. 
Thus, (9) holds for all Yx and Y2 because when two analytic functions on C" x C" 
agree almost everywhere on R" x R" then they agree everywhere. Furthermore 

f never vanishes for real y because if f (Y) = 0 then, setting Yl = Y2 + ,~/2 Y, we 
would have that 0 = ~(Y2 + , ~ Y ) 6 ( Y 2 )  for all Y2; this is impossible, given that 

and 6 are analytic, unless ~, = 0 or 6 = 0, which contradicts the assumption that 
. f~  0. Thus, the logarithms of h, 7 and 6 are real analytic and 

k \ xf2 J3 + L \ ~ / 3  In[y(yO] + In[3(y2)]. (I0) 

If ?~ denotes the derivative with respect to the i th coordinate, and ~i with respect to 
yx and dj with respect to Y2 is taken in (10), then 

h) (Y ,  - Yz'] ( ~ 2 Y ~ )  (t3,djln \ x/~ /=(c~,t?jlnh) 

which implies that the function O~c~jlnh is a constant (call it 4 ( t -  p)J~j) and 
1 

therefore l n [ f ( y ) ]  - ln[h(y)] = - ( y ,  Jy) + (l, y) for some vector I. Ac- 
2 ( p -  l) 

cording to Lemma 2.3, 1 = 0 since G is centered and nondegenerate. This completes 
the proof that f must be a centered Gaussian. 

It remains to prove tha t f i s  unique (i.e., the matrix J above is unique). One way 
would be to compute ~p~q(exp{ - (x, Jx)}) for G and then deduce that there is 
only one optimum J. A very much easier route is to suppose that there are two 
maximizers f l  and fz  with f i (y)  = exp{ - (y, J iy)}. Then, for the same reason as 
before (0(2) symmetry) the function 

, /  ,/2 

is a maximizer for ~2). There are two ways in which this implies t h a t f  ~ = f2 .  The 
first is to use (7), namely F must be a product function, and to note that this 
product structure is true if and only if J~ = J 2 The second way is to note that since 
the F in (11) is never zero and, since (3) ~ (4) must be an equality, we have that the 
function y~ ~ hr~(yt) =- F(y~, Y2) must be a maximizer for N for almost every Y2. 
Although the function hy~ is a Gaussian for each Y2, the Gaussian will have a linear 
term for each Y2 4= 0 unless J 1 = J 2. However, Lemma 2.3 precludes the existence 
of such a linear term, so J~ = J 2. [] 

The next theorem concerns Case (B) of Sect. I. 

3.3. Theorem (unique Gaussian maximizers in the imaginary, nondegenerate case). 
Let G be a centered, nondegenerate Gaussian kernel with a real diagonal part and 
a purely imaginary off-diagonal part, i.e., 

G(x, y) = exp{ - (x, Ax) - (y, By) - 2i(x, By)} 
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where A, B and D are real n • n matrices and A and B are positive definite. Let 
l < p < 2 and l < q < oo or else l < p < oo and 2 < q < oo . Then, in either case, 
f~ has exactly one maximizer, f, (up to a multiplicative constant)from LP(R ") to Lq(R ") 
and this f is a real, centered Gaussian, i .e. , f  (x) = exp{ - (x, Jx) } with J being a real, 
positive definite matrix. 

Proof. Assume at first that D is nonsingular. Since A and B are positive definite 
there are nonsingular real matrices U and V so that the change of variables x ~ Ux 
and y -~ Vy changes A and B to the identity matrix, I, that is I = U r A U  = VrBV,  
where T denotes transpose. Then (x, D y ) ~  (x, Dy) with D = U T DV. The polar 
decomposition of /5 is /~ = Wl/~l, where W is orthogonal and 1/$1 is positive 
definite (the assumption that D is nonsingular is used here). Then there is an 
orthogonal matrix Y such that Y r l D  [ Y is diagonal and there is a real diagonal 
matrix Z such that Z Y r l D I  Y Z  = I. Now make one more change of variables: 
x ~ W Y Z x  and y ~ YZy  so that (x, IDy) ~ ( W Y Z x ,  W[/~[ YZy) = (x, y) and 
(x, x) = (x, Ix) -~ ( W Y Z x ,  W Y Z x )  = (x, ZZx) and (y, y) ~ (YZy,  YZy) = (y, Z2y). 
These two changes of variables affect ~'p~q in a trivial way (involving only p and 
q and the determinants of U, V and Z) and, most importantly, take Gaussian 
functions into Gaussian functions. In short, it can be assumed without loss of 
generality that G has the canonical form 

G(x, y) = exp{ - (x, Ax) - (y, ay)  - 2i(x, y)} , (1) 

where A is positive definite and diagonal. 
By duality Ct,~q(G ) = Cq,,p,(G r) with G'r(x, y) =- G(y, x) = G(x, y), so it suffi- 

ces to consider only the case 1 < p < 2 and 1 < q < oo. It is easily seen that 
(c~f)(x) = exp{ - ( x ,  Ax)}l~(x) where /~ is the Fourier transform of the function 
h(y) = e x p { -  (y, Ay)}f(y) .  Since f e  LP(R ") it has a Fourier transform )~ and 
Beckner's theorem (which will also be proved here in Theorem 4.1 and 4.2 (1)) states 
that II f lip, -<- (Cpn)" It f [Jp, where Beckner's constant Cp n is the sharp constant for the 
p --* p' norm of the Fourier transform in R 1. By the convolution formula,/~ satisfies 

/~(x) = ~ ~ exp { - (x -- y, A - i  (x - y)) } f ( y )  d y ,  

where/~~> 0 is a constant which depends only on A. Therefore ( faf)(x)  = g( faf ) (x)  
where G is the real, centered, nondegenerate Gaussian 

t~(x, y) = exp{ - (x, Ax)  - (x -- y, A -  a(x - y))} . (2) 

Thus 

~lp~a(G,f ) [[ f [[ ~ =/~#~p.,~(t~,f) I[ f [],, </~Cp, ~q(t~)II f II p, </~Cp, ~q((~)(Cpn)" II f I1,, 
(3) 

from which it follows that Cp~(G)  < #(C~)"Cp,.~(d). However, equality can be 
achieved in (3) in exactly one way (up to a multiplicative constant). By Theorem 3.2 
there is exactly one choice for f that will make the first inequality in (3) into an 
equality. This f is a real, centered Gaussian, f ( x )  = exp{ - (x, Jx)}. Its inverse 
transform f is also a real, centered Gaussian, i.e., f (x )  = (const.)exp { - (x, J -ix)}. 
The second inequality in (3) (Beckner's) is an equality for any real Gaussian (in 
particular, our f), and therefore f is the unique maximizer as asserted in the 
theorem. 
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In case D is singular, a change of variables similar to the above replaces the 
canonical form (1) by 

G(x, y) = exp{ - (x, Ax) - (y, Ay) - 2i(x, Py) } 

I 0 m 
w h e r e P = ( 0  0 )  i s a d i a g o n a l p r o j e c t i o n o n t o R  ( w i t h m < n b e i n g t h e r a n k o f  

D ) a n d A  = ( ;  ~)wi thc tpos i t i vede f in i te ,  m x m a n d d i a g o n a l .  W r i t i n g x ~ R " a s  

(x~, x2) with x 1 ~ R"  and x z ~ R" m, define g : R r" ~ C by 

g(y~) = ~ exp { - (Y2, Y2)} f (Y l ,  yE)dy2,  (4) 
Rn-= 

and G * : R  m • R"--* (0, ~ )  by G * ( x l , y  0 = e x p {  - ( x l , c t x l ) - ( y l , o t y l )  
- 2i(x~, Yl)}. Then, using Fubini's theorem and the same analysis as before with 

and m in place of A and n, and with (~* : R"  • R" ~ (0, ~ )  as given in (2), 

~v~q(G. f )  II f I[ L.(n") = v.~v~,(G*, g)II g II L.(R-) ----< v/~Cp,~q(a*)(CBp) m [Ig l[ L'(R') (5) 

where v is the Lq(R n-m) norm of the Gaussian function exp{ - (x z, x2) }. As was the 
case for (3) and the subsequent argument, equality in (5) is uniquely achieved by 
a real. centered Gaussian 

g(yt)  = exp{ - (Yl, EYl) } , (6) 

where E is a real, positive definite m • m matrix. By H61der's or Minkowski's 
inequality, it follows from (4) that 

]1 g II LV(R ") ~ NII f II L.(R") (7) 

where N is the LV'(R "- m) norm of the Gaussian function exp { - (Yz, Y2)}. Equality 
in (7) is compatible with (6) if and only iff(y) = f ( y l ,  YE) = (const.) exp { - Y I ,  EYl) - 
( P ' -  1)(yz, Y2)}. The reason is that equality in (7) requires that 
f (Y l ,  Y2) = 2(y0exp{ - (P' - I)(Y2, Yz)) for almost every Yl ~ Rm. Then, comput-  
ing the integral in (4), one fnds  that exp{ - (Yl, EyI)} = g(YO = (const.) 2(y 0. [] 

Finally, Case (C) of Sect. I will be considered. 

3.4. Theorem (unique Gaussian maximizer when p < q in the general nondegener- 
ate case). Let G be a centered, nondegenerate Gaussian kernel and let 
1 < p < q < ~ .  Then f~ has exactly one maximizer, f, (up to a multiplicative 
constant)from LP(R ") to Lq(R ") and f is a centered Gaussian function. 

Proof. As in the proof of Theorem 3.2, the key is to study the kernel G tz) = G | G 
by means of Minkowski's inequality. Now, however, the x 2 integration is done first. 
Thus, for F e LV(R2"), 

II c~tZ)F IIq q = ~ { J'IS G(x2, Y2)( ~ G(x~, Y t )F (y l ,  y2)dy~)dy2l~dx2}dx~ (1) 

= ~ { ~L~ G(x2, y2)K(x~,  y2)dy2lqdx2}dx~ 

(with K ( x l ,  Y2) = ~ G(xa, Yl) F(Ya, Y2)dYx) (2) 

< (Cp,q(G)) ~ ~ { ~ IK(x~, y2)lVdy2}~/Vdx~ (3) 

"( (Cp~q(G))q { ~ [ ~ [ K (xa, y2)lqdxl ]V/qdy2} q/p (4) 

< (Cp~q(G)) 2q { ~ I F(y~, y2)[Vdy~dy2} q/v �9 (5) 
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(Notes: (2) ~ (3) uses Cv,q(G) > ~v~q(K(xl , . ) )  for each x I. (3) ~ (4) is Min- 
kowski's inequality for the exponent r = q/p > 1 and the function tK(Xl, y2)l p. 
(4) ~ (5) uses Cp~q(G)> ~ p , q ( F ( ' ,  Y2)) for each Y2-) This inequality (along with 
consideration of F ' s  of the form F(Yl, Y2) = h(yl)h(y2)) shows that 

C p ~ q ( G  (2)) = C p ~ , / ( G )  2 �9 

Suppose now that F:REn-'-~ C is a maximizer for c~2). Since G I:) and G are 
nondegenerate, maximizers exist for each of them by Lemma 2.1. Then all the 
inequalities in (1)-(5) must be equalities. In particular, inequality (4) -~ (5) implies 
that the function ylv-~F(yl, Y2) must either be the zero function or it must be 
a maximizer for c~ for almost every Y2 E R n. (It is well known that this function is in 
LP(R") for almost every Y2.) As in the proof of Theorem 3.2, the 0(2) invariance of 
G 12) implies that the function given by 

i ( y , -  y  i(y, + F(y, ,y2)= \ ~ j  \ ~ /  (6) 

is a maximizer for f9 t2) whenf i s  a maximizer for if, as will henceforth be assumed. 
Thus, for almost every z in R", the function 9:(Y) = F (y, z) is in LP(R ") and either (a) 
it is a maximizer for c~ or (b) g: is the zero function. The second possibility (b) can be 
excluded by Lemma 2.1 (b). Ifgz - 0 then, from (6),f(w) = 0 for all w in some set 
A = R" of positive Lebesgue measure. But If l  2tp- 1)is analytic and this is imposs- 
ible unless f =  0. Thus it can be assumed that Oz is indeed a maximizer for almost 
every z, i.e., g~ 4: 0. 

In fact 9z is an LV(R ") maximizer for every z e R". To prove this assertion, fix 
z and let Za, z2 . . . . .  be any sequence in R" such that zj ~ z a s j  ~ 00 and such that 
gz, is an LP(R ") maximizer for each j. Such a sequence exists because 9~ is 
a maximizer for z's in a dense set. Define hi(y) = Zjg~j(y) where Z i is chosen so that 
[[ hj II p = 1 for each j. By Lemma 2.1, there is a subsequence (still denoted by hi) and 
a maximizing function h ~ LV(R n) such that hj --, h strongly a s j  ~ or. By passing to 
a further subsequence this convergence can also be assumed to be pointwise almost 
everywhere. However, translation is a continuous operation in LP(R ") and thus, by 
passing to a further subsequence, f((y + zi)/xf2 ) converges pointwise to 
f((y + z)/x//2) for almost every y. Likewise, by passing to a further subsequence, 
f((y - zj)/x/2 ) converges pointwise to f ( (y  - z)/x/2 ) for almost every y. It follows 
then that the maximizer h satisfies 

h(y) = f ( y _ ~ z ~ f ( y ~ f  ~ l im Z~ 
\ x / 2 /  \ x / 2 / J  ~ 

for almost every y. Therefore l i m j ~ Z  2 exists and 9~ is a maximizer for every 
z ~ R  n. 

Our first application of this result will be the proof that there is a Gaussian 
(2) 2 maximizer.' Take z =.~2)0 so t h a t f  (y) =-f(y/~/2) is a maximizer. Then apply the 

same conclusion t o j  so thatfl4)(y) =f(y/2) 4 is also a maximizer. Repeating this 
indefinitely, the sequence of LP(R ~) functions given by 

9j(Y) = N i f ( D ) i  (7) 
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is a sequence of maximizers for j  = 2, 4, 8, 16 . . . . .  The number  Nj is chosen in each 
case so that II 0j lip -- 1. Using Lemma 2.1 again we infer the existence of a subsequ- 
ence (still denoted by j )  and a maximizer g such that gj ~ g strongly in LP(R ") and 
pointwise almost everywhere. Our  goat will be to prove that 0 is a Gaussian. This 
can be inferred from the central limit theorem, but the following argument  is more 
direct and will be needed later for the proof that every maximizer is a Gaussian. 

The first step is to prove that f(0)4= 0. Recall from Lemma 2.1(b) that 
R - [fl 2(p- 1)is analytic. Likewise S -= 19[ 21p- 1) is also analytic and 

N2(p-1)R( Y ~ i S(y) = lim (8) 

for almost all y e R". Since Sj(y) =- N ]Ip- 1)R(y/x/))~ is the 2(p - 1) th power of the 
modulus  of a maximizer with unit  LP(R ") norm (namely g j), Lemma 2.1(b) states 
that the analytic extension of Sj is uniformly bounded on compact subsets of C". 
The almost everywhere convergence in (8) then implies (by Vitali's theorem) that (8) 
holds for all y e C" and that all partial derivatives with respect to y of the sequence 
of functions Sj also converge as j - - ,  ov to the corresponding derivatives of S. 
However, it is easily seen by Leibniz's rule that if R(0) = 0 then every derivative of 
Sj at y = 0 converges to zero as j --* or. This is impossible unless S(y) vanishes 
identically, which contradicts the fact that II O lip = 1. 

The second step is to prove that 9 is a Gaussian. By Lemma 2.1(a), for y E R", 
f(y) = [m(y)lr where re:C" ~ C is entire analytic. Since f(0) 4= 0, also m(0) 4= 0 
and hence there is a neighborhood U of 0 e C" on whichfhas  an analytic extension 
and on whichf i s  never zero. [Reason: rn l(y) = Re(re(y)) can be written as a Taylor 
series for y e R", and so can mz(y ) = Im(m(y)). Consequently m 1 and m 2 extend to 
entire functions. Then (m~ + m2) p'/2 is analytic on  U since 
m1(0) 2 + m2(0) 2 = Ira(0)] 2 4= 0.] Therefore f has a logarithm, H, which is analytic 
on U, i.e., f(y)=f(O)exp{H(y)}.  The function H can be written as 
H(y) = (V,y) - (y, Jy) + O(y 3) for some V~  C" and J a symmetric matrix. For  

each y ~ R", the point y/x//) lies in U for all sufficiently la rge j  and therefore, by (7), 

• = lim NJ(O)Jexp{x~j(V, y) - (y, Jy) + O(y3j - ~/2)} 
j~c~ 

for almost every y E R". The factor exp{O(y3j - 1/2)} converges to 1 a s j  --* oo and 
thus 

9(Y) = exp{ - (y, Jy)} lira Njf(O) ~ exp {x//)(V, y)} . 
j~oo 

Clearly this last limit can exist for almost every y if and only if V = 0 and Njf(O) i 
has a finite limit (which cannot  be zero since H9 l[p= 1). This proves that 9 must  be 
a Gaussian as claimed (and hence Re(J ) is positive definite) but we also note that 
the argument  also proves the following three statements: Whenever f i s  a maximizer 
then (/) f is analytic in some complex neighborhood of 0; (ii)f(O)4= 0; 
(iii) (Of/3y~)(O) = 0, for i = 1 . . . . .  n. 

The second assertion of the theorem is that every other maximizer, f, is 
proport ional  to the one just  found, namely g(y) = exp{ - (y, Jy))}. Instead of (6) 
take 

9 ( Y l -  Y2~ f f  Yt + Yz'~ 
F(y l 'Y2)= \ - ~ / ]  ~ - - ~ - - J  
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which is obviously also a maximizer for ~(2). By the same reasoning as before, F has 
the property that y~--~k~(y) =- F(y, z) is a maximizer for each fixed z e R". By the 
three statements just made above, we conclude that k~ is analytic near 0, 

k~(0) =1:0 and (OkJOy~)(O) = O . 

This is equivalent to the statement that for every z ~ R", f i s  analytic near z/.,f2, 
f ( z /~ f2 )  + 0 and 

(c~f/Oy' = [ - Jz]i , 

which shows that f =  g. [] 

IV. Degenerate Gaussian kernels 

In the three cases (A), (B) and (C) of Sect. I, which correspond to Theorems 3.2, 3.3 
and 3.4, every nondegenerate Gaussian kernel has a unique maximizer which is 
a Gaussian function. By taking suitable limits the following formula 4.1 (*), which is 
one of the main results of this paper, can be deduced for the LP(R ") to Lq(R ") norm 
of degenerate kernels. This formula is, of course, trivially true in the nondegenerate 
c a s e .  

4.1. Theorem (the sharp bound for degenerate kernels). Let G be a centered 
Gaussian kernel as in (1.1) with L = 0 and let p and q satisfy the appropriate 
conditions given in (A), (B) or (C) of Sect. I, according to the properties of G. Then ~ is 
bounded from LP(R ") to Lq(R ") if and only if the following supremum is finite, in which 
case the supremum is equal to Cp~q. 

sup ~p~q(9) = Cp~q, (*) 
0 

where the supremum is taken over all centered Gaussian functions, and in Cases (A) 
and (B) they can be restricted to be real. 

Proof For each e > 0 let h~(x ) -  e x p { -  e(x,x)} and define G~(x,y) =- 
G(x, y)h~(x)h~(y), which is nondegenerate. Correspondingly, there is the linear 
operator ~ .  For each f e  LP(R ") 

~p~q(G~,f)ll f l lp = Ilh~ffl(h~,f~)[Iq < Itfq(h~f~)llq < Cp~q(G)llh~s 

< Cp,q(G)tlf l lp.  (1) 

This proves that Cp,q(G,) < Cp~q(G). 
On the other hand, assuming that Cp~q(G) < ~ ,  for each 6 > 0 there is an 

f~ e LP(R n) with tlflltp = 1 such that II fqfallq > Cp~q(G) - ~. Then 

Cp~,~(G~) > ,~p~q(G,,f '~) = II fq,(fo)Ilo = II h~fq(hJ '~) Ilq. (2) 

As e ~ 0, h~.l ~ ~ f n  strongly in LP(R"), so f#(h , f  ~) ~ N( fa)  strongly in L~(R"). This 
implies that h ~ ( h , f  ~) ~ N ( f ' ~ )  strongly in Lq(R ") as well, and thus, from (2), 
lim inf,.oCp~q(G~) > Cp~q(G) - 6. Since 6 is arbitrary, and in view of (1), 

lim Cp~q(G~) = Cp~q(G) . (3) 
~ 0  

A similar argument shows that (3) holds even if Cp~q(G) = ~ .  
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Now let g~ denote the maximizer  for G~, which is a centered Gauss ian  function. 
Assume IIg, Ltp = 1. Then 

II h~g~ l[pCp~,/(G) > II h~g~ IIp.~p~q(G, h~g~) = II fq(h~g~)llq 

>= ]lhef~(heg,)Hq = II f#~(g~)llq = Cp~q(a~). (4) 

Assuming ~ to be bounded,  (4) together with (3) and the fact that  
II h~g~ lip < II g~ I1~ = 1 implies that  [I h~g~ Itp ~ 1 as e ~ 0. Then 

Cp~q(G) = lim Cp~q(G~) < lim Jtp~q(G, h~g~) < Cp~q(G) . (5) 
~ 0  e ~ O  

This proves the theorem in the bounded  case since h,g~ is a Gauss ian  function 
(which is real in Cases (A) and (B)). 

In case (r is unbounded,  (4) and (5) imply that  

oo = lim Cp~q(G~) < lim ]]h~g~llpJlp~q(G, h~g~) < lim ~p~q(G, h~g~) 
e ~ O  e ~ O  t:~O 

which proves the theorem since h~g~ is a Gauss ian  function. [] 

4.2. Remarks and examples. Theorem 4.1( , )  is a formula for the LP(R ") ~ Lq(R ") 
norm of ft. The same formula is, of course, also valid for nondegenerate  kernels, but  
in that  case we are assured that  there is precisely one g that  achieves the supremum. 
In the degenerate case a maximizer  may not exist--even if  ~ is bounded--as the 
examples below show. In any event, the evaluat ion of this formula is, in general, 
a difficult nonlinear  algebraic exercise, a l though it is simple in many applications.  

Fo r  example,  when G(x, y) = exp{2i(x, y)} (the Four ier  t ransform kernel), it is 
easy to deduce from 4.1 (*) that  G is bounded if and only if q = p' > 2, in which case 
a Gauss ian  function is a maximizer  if and only if it has the form 

g(x) = p exp{ - (x, dx) + (l, x)} 

with J positive definite, real and symmetric and l e C. Both J and l are arbi t rary.  
This g is not  necessarily centered even though G is. In the degenerate case it is not  
asserted that  every maximizer  must  be centered when G is centered. The sharp 
constant  is then C p ~ p ,  = (CBp) n with 

C~ -- lrl/P'pl/2p(p') - 1/2p' (1) 

[Note: The Four ie r  t ransform is an example of both Cases (B) and (C). While the 
proof  of Theorem 3.3 (Case (B)) required 4.1 (,) and 4.2(1), the proof  of Theorem 3.4 
(Case (C)) did not. Therefore no circular reasoning is involved because 3.4 = 4.1 (*) 
for Case ( C ) ~  4 .2 (1)~  3.3 ~ 4 .1( , )  for Case (B).] 

Another  example is the (real convolut ion opera tor  G(x, y ) = e x p {  - 2 ( x -  y, 
x - y)} which, using Theorem 4.1, turns out  to be bounded  if and only i fp  =< q (see 
[BL] Section 4 for more details). There is a maximizing Gauss ian  function if and 
only if p < q and it must  have the form 

g(x) = exp{ -- J(x,  x) + (l, x)} (2) 
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with J = 2 - 1 and with 1 ~ R" arbitrary. Also 

(Cp~q)2/, = (p, _ q,)l/p-1/qpl/p(q,)l/p'q-1/q(p,)-a/q, . (3) 

When p = q the limiting value Cp~q = n/2  is correct but, since J = 0 in this case, 
there is no Gaussian maximizer. Indeed, there is no maximizer of  any kind in this 
case. To prove this, note that G(x, y) = H(x - y) with H(x)  = exp{ - 2(x, x)} and 
S H(x  - y ) f ( y )dy  = S f (x  - y)H(y)dy. Then, by Minkowski 's  inequality, 

{ [.ISf( x - Y)H(y)dylPdx} lip < [. { S I f (x  - y)lPH(y)Pdx}l/edy 

= I l f l l p I H ( y ) d y =  Ilf l t ,  �9 (4) 

Since the condit ion in Lemma 3.1 for equality is clearly not  satisfied, and since 
(n/2) "/2 has already been shown to be the sharp bound,  a maximizer cannot  exist. 

A second example of a degenerate G that is bounded but  does not  have 
a maximizer is the following modification of the Fourier  transform in R 1 with 
2 > 0 .  

Ga(x, y) = exp{ - 2y 2 - 2ixy} . (5) 

It is easily verified for all p that Np~q(O) is unbounded  on complex Gaussian 
functions when q < 2. Thus, it can be assumed that q > 2, which places us in Case 
(B) of Sect. I. Iffj(x) = exp{ - J x  2} is an arbitrary Gaussian function, one finds 
that when q > 2 the opt imum choice is J real and 

[~p~q(fj)]2 = rex/q + 1/p'pX/pq- 1/qj 1/p(2 + j )-  l/q, . (6) 

By maximizing this with respect to J one finds that Cp~q is finite whenever p > q' 
and Cp~q = ~ when p < q'. I fp  = q' there is no J that maximizes the right side of 
(6) (i.e., J -* oe), al though the right side is bounded.  Indeed, there is no maximizer of 
any kind when p = q'. If there were a maximizer f e  LP(R 1) then, by imitating the 
proof of Theorem 4.1, it is easily seen that Cp~p.(G,a) > Cp~p,(Ga) when 0 < # < 1. 
This contradicts the conclusion of Theorem 4.1 which states that the supremum 
over J of the right side of (6) correctly gives Cp~p,(Gz) for every 2, but  this 
supremum is obviously independent  of 2. 

These examples motivate the following theorem. 

4.3. Theorem (a condi t ion for Gaussian maximizers). Let G be a degenerate Gaus- 
sian kernel with the property that the n x n real, symmetric matrices A and B in (l.1) 
are both positive definite. I f  l < p <= q < oo then f~ is bounded from LP(R ") to Lq(R"). 
I f  additionally, p < q then (9 has a maximizer which is a Gaussian function. 

I f  G is also real then obviously A and B must be positive definite if  f~ is bounded at 
all. In this real, degenerate case ~ is unbounded when 1 < q < p < ee and f~ has no 
maximizer o f  any kind when 1 < p = q < oe. 

Proof  It can be assumed that G is centered and, as in the proof of Theorem 3.3, we 
can use the fact that A and B are positive definite to change variables so that G(x, y) 
is brought  into the canonical  form 

G(x, y) = exp{ - (x, x) - (y, y) - 2(x, Ey) - 2i(x, H y ) } ,  (1) 
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where E and H are real matrices and E is also diagonal. In the real case H = 0. 

S i n c e M = ( I E  E )  must be positive semidefinite, the eigenvalues el . . . . .  e, of 

E must  be in the interval [ - 1, 1]. Since G is degenerate at least one of the ei's (say 
el) is + 1 or - I and, by changing y to - y if necessary, we can assume that 
e 1 = - 1. Thus, G(x, y) contains the factor exp{ - (x 1 - yl)2}. 

In the real case, H = 0, G in (1) is seen to be a tensor product of operators on R 1, 
i.e., G(x, y) = G~(xl,  y l ) . . .  Gn(xn, Yn)" If p > q the operator fr corresponding to 
e~ is unbounded,  as shown in 4.2, so f# is unbounded  as well. In case p < q the 
Minkowski  inequality argument  in the first part of the proof of Theorem 3.2 
(applied sequentially to fgl, f#2 . . . .  , fr shows that any maximizer, F, for ~ must  
be of the product form, i.e., F(y  1 . . . .  , Y , ) = f l ( Y l ) - - - f ~ ( Y , )  and each f~ must  be 
a maximizer for the corresponding (r When p = q, however, fr does not  have 
a maximizer as stated in 4.2 and therefore ~ has no maximizer. When p < q we 
know from 4.2 that each fql has a Gaussian maximizer gi. Since 1-I~g~(xi) is 
a Gaussian function on R", the proof for the real case is complete. 

For  the general case with p < q, let G~ y) be the real kernel given by (1) but  
with H set equal to zero and let ~o denote the corresponding operator. If 
f E  LP(R ") c~ Ll (R ") then clearly ~p_q(G,f )  < ~p~q(G ~ F), where F = Ifl. Since 
f#o is bounded when p < q, then fr is also bounded. Referring now to Theorem 4.1 
let G~ be the kernel defined in that proof, i.e., G~(x, y) = G(x, y)h~(x)h~(y) with 
he(x) = exp{ - e ( x ,  x)),  and let 9, denote its unique Gaussian maximizer with 
II g, II p --- 1. Let g~(x) = p~ exp { - (x, J,x) - i(x, K,x)  } with J and K real, symmetric 
and with J~ positive definite. Define g~ = / ~  exp { - x, J,x)}. Let ~ ~ 0 through 
the sequence ~ = 1/j with j  = 1, 2, 3 . . . .  There is a subsequence of t he j ' s  (which we 
continue to denote by j )  such that the eigenvectors of J~ and K~ have limits as 
j --* ~ (because the manifold O(n)is compact). The corresponding eigenvalues of J~ 
must be uniformly bounded away from 0 and ~ since otherwise ~ p ~ ( G  ~ gO) will 
converge to zero, as the following computat ion shows. 

Apart from irrelevant constants,  llg ~ lip = [J~l-l/p, where I'1 denotes the deter- 
minant.  Also, lq fq~176 = I J~ + l ] - l l l  - E(J ,  + l ) -~E[ -l/q. Using the fact that 
1I - M r M [  = II - M M  r ] for any real matrix, M, we have [I - E(J~ + l ) - l E [  
= [ l - - ( J , + I ) - l / 2 E 2 ( j , + I ) - l / 2 l = l J ~ + l  [ l I J ~ + l - E Z l > = l J ~ +  
I ] -  1 [J~l. Therefore 

9t~-~(G~ g ~ --< I Lll/~-l/~l L + Zl -l/~' = I~I (J~)l/~-l/~( 1 + d ' , ) - ' /~ ' ,  
i = 1  

where the J~'s are the eigenvalues of J~. Since p < q  the function 
t~-'~tl/P-1/q(l + t) -llq' is bounded and goes to zero as t ~ 0  or t ~ ~ .  

0 0 __~ The possibility that ~p~q(G , g~ ) 0 is not  allowed by 4.1( . )  and the fact that 
~p~q(G o, gO) > 9tp~(G, g~). Thus we can pass to a further subsequence such that J~ 
has a positive definite limit J as e ~ 0. This implies tha t /~  also has a finite, nonzero 
limit/~. 

The eigenvalues of K~ must  also stay bounded away from infinity for otherwise 
g~ would tend weakly to zero in LP(R ") and then the function fr would tend to 
zero pointwise. (This is so because the function y~--~ G(x, y)exp{ - �89 Jy)} is in 
LP'(R ") for each x.) But fq(g~) is bounded above pointwise by fr and the 
pointwise convergence to zero would imply by dominated convergence that fg(g~) 
converges to zero in Lq(R ") norm. Thus, by passing to a further subsequence, J~ and 
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K~ have limits J and K. From this it follows that g~ converges strongly in LP(R n) 
norm to g(x) =/~ exp{ - (x, Jx )  - i(x, Kx)}.  

The Gaussian function 9 is the desired maximizer for fr First note that h~g ~ g 
in LP(R ") norm as e --* 0. Also 9~ ~ g, and thus we can write h~9, = g + A, with 
6~ = 11A~ lip ~ 0 as e ~ 0. Then, since ff is bounded, 

C,~q(G ) ~ ~p~q(G, 9) >= ~lp~q(a, h~g,) -- Cp~q6, . 

Taking the limit e--* 0, 

Cp~q(G) > .~p,q(G, y) > lim sup ~lp~q(G, h~9~) �9 
~ 0  

But by Eq. (5) of the proof of Theorem 4.1, this latter limit equals Cp,q(G). [] 

4.4. Remarks  and conjectures. Formula 4.1(*) gives the sharp bound. The ques- 
tion that is incompletely resolved here is whether there is a Gaussian maximizer in 
the degenerate case or, indeed, any maximizer at all. In the cases of most interest 
(e.g., Nelson's kernel of Sect. I and the Fourier transform) the existence of a Gaus- 
sian maximizer can easily be verified by simple computation. The general case is 
algebraically complex, although Theorem 4.3 does give a criterion for a Gaussian 
maximizer and it completely settles the case of real Gaussian kernels. Indeed, as 
shown in 4.2, a maximizer need not exist even if f~ is bounded. 

The examples given here lead to the following conjectures. 

(1) If there is a maximizer for cases (A), (B) or (C) of Sect. I then there is a Gaussian 
maximizer. 

(2) There is a maximizer in these cases if and only if the unique Gaussian 
maximizer 9~ for the mollified kernel G~(x, y) = G(x, y)h~(x)h~(y) defined in the 
proof of Theorem 4.1 has a strong limit 0 in LP(R ") as e ~ 0. 

Maximizers need not be unique, as shown in 4.2, but if there is any Gaussian 
maximizer for  p < q then every maximizer is a Gaussian. This is Theorem 4.5, and it 
completely settles the Fourier transform case, for example. (Note that when 
p = q = 2, every function in L2(R ") is a maximizer for the Fourier transform and 
thus there is at least one case in which there are maximizers that are not Gaussians.) 

Theorem 4.5 also completely settles the real Case (A) because, by Theorem 4.3, 
no maximizer exists in this case when p > q and a Gaussian maximizer does exist 
when p < q. 

4.5. Theorem (when p < q, a Gaussian maximizer implies all maximizers are 
Gaussians). Let  1 < p < q < ~ and let G be a degenerate Gaussian kernel. Assume 
that f f  is a bounded operator from LP(R ") to Lq(R ") and that 9 is a Gaussian function 
that is a maximizer for ft. l f  f ~ LP(R ") is another maximizer for f f  then f is also 
a Gaussian (but f i s  not necessarily proportional to 9 and f i s  not necessarily centered 
even i f  G is). 

Proof  Step 1. According to Lemmas 2.2 and 2.3 it can be assumed without loss of 
generality that both G and 9 are centered. As in the proof of Theorem 3.4, we study 
the kernel G ~2) = G | G. For F e LP(R 2") c~ L 1 (R z") the inequalities (1)-(5) there 
are valid and we conclude that Cv~q(G ~zl) = (Cp~q) 2, where Cp~q =- Cp~(G).  

Step 2. I f f e  LP(R ") is a maximizer for f# then, using 0(2) invariance again, 

# y ,  + y A  (y, - y A  
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is obviously a maximizer for ~2~ i f f is  also in Lt(R"), in which case F 6 Lt(R2"). 
If f r  LI(R ") consider the mollified function Fj(yt, Y2) = F(Yt,  Y2) 
exp{ - (yt + Y2, Y~ + Y2)/J} forj  = 1, 2 . . . . .  which is in LX(R2"). Clearly Fj --* F 
strongly in LP(R 2") as j ~ ~. The function ~t2)Fj can be computed as a dy~dy 2 
integral of G~2)Fj and the result (using the 0(2) invariance of G t2~ and a change of 
variables) is 

X 1 + x 2 

with fj(y) =f(y)exp{ - 2(y, y)/j}. Now the q'h power integral of ~Z)Fj can be 
computed by changing variables again and the result is [[ ~(2)e~tl~ = II ~f~ I[~ tt ~ e  its, 
However I I~f~ l l~  II~fl]~ = C~llf as/-- ,  o~ s i n c e f - ~ f i n  La(R ") norm, and 

. p a ,I 2 
we conclude that ]1 ff~2)F ]1~ = l i m ~  II fft2)F~ll~ (by definition) = (Cyst) It F tlv, so 
that F is indeed a maximizer for fit2). 

Step 3. Since 9 is a Gaussian, it is obvious that the function z ~ F ( z , y )  is in 
LP(R ") c~ L ~ (R") for each y and therefore that 

K (x, y) - I G(x, z) F (z, y)dz (2) 

is well defined for each x and y in R". Since ff is a bounded operator, the function 
x w .  K(x, y) is in Lq(R ") for each y. We now assert that the function y ~ ,  K(x, y) is in 
LP(R ") for almost every x ~ R" and that this function satisfies 

{ ~ [ I I K( x,y)lqdx]v/~dy} q/v = I{  ~lK(x,y)lVdy}a/Pdx,  (3) 

with the understanding that both sides of (3) are finite. Formally, this assertion is 
a consequence of inequality (3) ~ (4) in the proof of Theorem 3.4 and the fact that 
all the inequalities 0)-(5) must be equalities since F (Yl, Y2) is a maximizer for fit2) 
If F ~ Lt(R 2") this would be correct, but if F ~ LI(R 2n) a proof is needed. 

Set _F~(yl,Y2)=F(ya,y2)exp{ -(Y2, YE)/J/ for j =  1,2 . . . . .  Clearly 
F j e  L~(R 2") and Fj ~ F strongly in LP(R 2") asj  -~ or (Note that this Fj is not the 
same one as in step 2.) Let Kj(x, y) be as in (2) with F replaced by F~, so that 
Ki(x, y) = K (x, y)exp { -- (y, y)/j). The inequalities (1)-(5) in the proof of Theorem 
3.4 are then valid with F replaced by Fj. Asj  -~ oo the left side of these inequalities, 
namely tl (r converges to 1]~2~F I1~ = (C~q)2~l] F II~ - (Cp~q) qZ since F is 
a maximizer. Likewise, the right side, namely (Cv~q) 2q II F~ II~ also converges to 
(Cp~q)qz since Fj ~ F. Therefore the numbers 

Bj =- { f [ I tKj(x, y)lqdx]P/qdy} q/p - ~ { ~ tK~(x, y)lPdy}~/t'dx (4) 

(which are nonnegative by Minkowski's inequality) must converge to zero as 
j ~ ~ .  Moreover, each term in Bj is bounded by (Cp~) q II FjlI~ < Z, and each term 
converges to Z as j ~ ~ (because of inequalities (1)-(5)). The first term in B~. is 

and, by the monotone convergence theorem, A i converges to A -= (the left side of 
(3)). Therefore A = Z. The second term in B~ is 

{ { ) )'/P 
P y)~dy~ dx .  D r =- ~ ~lK(x,y)lPexp J - _ ( y ,  
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The inner integral (call it E~(x)) converges (by monotone convergence) to 
E(x) = ~ rK(x, y)lPdy. The function E is measurable since it is the monotone limit of 
measurable functions Ej. Then ~ {E~ }q/P converges to ~ { E }~/P by monotone conver- 
gence, so Dj converges to the right side of (3). But, as stated above, Dj also 
converges to Z, so the two sides of(3) are equal and E(x) is finite for almost every x, 
as asserted. 

Step 4. Since q > p, the strong form of Minkowski's inequality and the equality in 
(3) implies the existence of measurable functions ~ and fl : R" ~ [0, ~ )  such that 

IK(x, Y)I --- ,(x)fl(y) (5) 

for almost every x and y in R". Writing G ( x , y ) = e x p { - ( x ,  Ax ) - -  
(y, By) - 2(x, Dy)} as usual (with A and B real, symmetric, positive definite), and 
writing #(y)=  e x p { -  (y, Jy)} (with J symmetric and Re(J )  positive definite) 
a simple computation gives 

K(x, y) = exp { - (x, Ax) + (Drx, (B + d )- 1DTx) 

-- (y, Jy)}Q((B + J )y - Drx) (6) 

with Q : C n ~ C given by 

Q(w) = exp{ - ( w , ( B  + J ) - lw)}  ~ f ( - ~ 2 ) e x p {  - (z,(B + �89 J)z) + 2(z,w)}dz . 

(7) 

Evidently Q is an entire analytic function of order at most 2. Define the function 
M : R 2" ~ C by M(x, y) = Q((B + J )y - DTx). Plainly, since Q is entire M has an 
extension to an entire analytic function from C 2" to C; call this extension N. The 
function N* : C 2" ~ C defined by N*(x, y) = N(~c, ~) for x and y e C" is also entire 
analytic, and thus P = N N *  is entire analytic as well. It is also true that 
P(x, y) = JM(x, y)j2 when x and y are in R". From (5) and (6), 

P(x, y) = ~(x),~(y) (8) 

for almost every x and y in R", and where ~ and 6: R" ~ [0, ~ ) are the measurable 
functions given by 7(x) = ~(x) 2 exp{2(x, Ax) - 2Re((Drx, (B + J )-1Drx))} and 
6(y) = fl(y)2 exp{2Re((y, Jy))}. If Yo is a value of y such that 6(yo) + 0 and such 
that (8) holds for almost every x, we see by substituting this Yo in (8) that 7 has an 
extension to an entire analytic function. Likewise, 6 has an extension. Thus (8) 
holds for every x and y in C" (because if two entire functions agree almost 
everywhere on R" x R" then they agree on all of C" x C"). 

Now suppose that 7(Xo) = 0 for some Xo in C". Then, by (8), P(x o, y) = 0 for 
every y ~  C", which implies that for each y either ( i )N(xo ,  Y)=O or 
(ii) N*(xo, y) = 0. This, in turn, means that for each y e C" either (i) N(xo, y) - 
Q((B + J )y - Orxo) = 0 or (ii) N(s o, ~) -- Q((B + J )~ - Ors = 0. Necessar- 
ily, either case (i) holds for all y in some set S c C" of positive 2n-dimensional 
Lebesgue measure ,~2n or case (ii) holds in some set S of positive .~2n measure. As 
y ranges over S both (B + J )y and (B + J )~ range over sets of positive ,,~2n 
measure (because Re(B + J ) is positive definite and therefore Rank(B + J ) = n). 
An analytic function that vanishes on a set of positive t~2n measure vanishes 
identically, and thus Q would vanish identically if 7(Xo) = 0. This contradicts the 
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fact that  K(x, y) is not  identically zero. Thus, the assumption that  7(Xo) = 0 is not  
possible, and it will be assumed henceforth that  7(x) 4 :0  for all x �9 C". 

Define the set A = {y �9 R":6(y) 4: 0} c R". This set A has positive n-dimen- 
sional Lebesgue measure Lf", for otherwise K(x, y) = 0, L,e 2" almost  everywhere. 
(In fact ~ " ( R "  ~ A) = 0 because 6 is analytic and 6 does not  vanish identically, but  
this fact is l~ot needed.) For  y ~ A, the function Zr:C'---,C defined by 
Zy(x) = K(x, y) is entire analyt ic  of order  at most  2 and never zero (because ?(x) is 
never zero). Then Zy has the form 

Zr(x) = K(x, y) -7 exp{ - (x, T,x) - (Ry, x) + #,} , (9) 

where T r is a complex, symmetric matrix,  Rr ~ C n and #r e C (all of which depend 
on y). I thank Eric Carlen for the simple proof  of this fact, which is that  Zy, being 
zero free, has an entire analytic logari thm, i.e., Zr  = exp{Hy}. Then, since Zr has 
order  at most  2, [Hy(x)l is bounded above by (const.) [xl z. By a well known 
argument  using Cauchy's  integral formula, Hr must  be a polynomial  whose order  is 
at most  2, i.e., Zr  has the form stated in (9). 

Step 5. As noted in step 2, the function x~--~K(x, y) is in Lq(R ") for almost  every 
y �9 R". By (4) ~ (5) of Theorem 3.4, the function z ~ F (z, y) (which is in LP(R ") for 
a lmost  every y) must be a maximizer  of .~p~q for almost  every y. (Note that  
z ~,  F(z, y) cannot  be the zero function for any y since g never vanishes.) Thus there 
is at  least one point  Yo �9 R" such that  6(yo)4:0 and (9) holds and such that  
z ~ F (z, Yo) is a maximizer  in LP(R"). Fix this Yo henceforth and denote the matr ix  
in (9) simply by T. There is then a function h �9 Lq'(R ") with II h I1~, = 1 such that  

h(x)K(x, yo)dx = II g ( . ,  Y0)llq = Cv~q I[ F (-, Yo)lip. (10) 

Since K ( . ,  Yo) ~ Lq(R"), the matr ix T must satisfy Re (T)  is positive definite and 
therefore K(. ,yo)  is a Gaussian.  The op t imum h satisfies h (x )= (cons t . )  
IK(x, yo)[q/K(x, yo) for x �9 R" and therefore h is also a Gauss ian  (and hence 
h �9 L~(R")). As remarked in step 3, F ( ' ,  Yo) is in L~(R"). Therefore the function 
(x, y)~-~ h(x)G(x, y)F(y, Yo) is in L 1 (R 2") and Fubini ' s  theorem can be applied to 
(10). Thus, 

h(x)K(x, yo)dx = ~ { ~ h(x)G(x, z)dx} F(z, yo)dz .  (11) 

Since h is a Gaussian,  the inner integral  in (11) (call it k(z)) is also a Gaussian.  Since 
F(. ,yo)  is a maximizer,  F(z, yo)=(const.)[k(z)lP'/k(z)-r(z) for a lmost  every 
z e R". Clearly r is a Gauss ian  and, by (1) 

f f z  + Yo'~ ( z  - Yo~ = r(z) (12) 

for almost every z �9 R". Setting z = w - Yo, (12) yields f (w/x /~  ) = r(w - Yo)/ 
g((w - 2Yo)/x/2), which is a Gauss ian  (in w) as asserted in the theorem. [] 

V. Gaussian kernels from LP(R ") to Lq(R m) 

This section consists essentially of a simple remark,  but  it can be a useful one in 
applications,  e.g., in [L1].  Let G be a Gauss ian  kernel on R m x R" with m 4: n, i.e., 
G(x, y) is given by (1.1) with A m x m symmetric,  B n x n symmetric, D m x n and 
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L e C m+", and with M in (1.3) a positive semidefinite (m + n) • (m + n) matrix. 
Evidently Lemmas 2.1, 2.2 and 2.3 continue to hold in this case, and it can be 
assumed without loss of generality that A and B are real and L = 0. The linear 
operator ~ from LP(R ") to Lq(R ") and the norm Cp~q(G) are defined, mutatis 
mutandis, as in Sect. I. The remark is the following. 

5.1. Theorem (extension to m ~ n). Let G be a Gaussian kernel on R m • R" as 
defined above. Then all the precedin9 theorems and lemmas in this paper holds, 
mutatis mutandis, in this more general case. 

Proof. Suppose m < n and extend G to a Gaussian kernel, (7, on R" • R" by 

(7(x, y) = h(xl)G(x2,  y) 

where x e R" is written as (xl,  x2) with xa e R " - "  and xz e R", and where 
h ( x l ) -  e x p { -  (xl,  xl)  }. Let c~ be the corresponding operator from LP(R ") to 

Lq(R"). Note that (7 has the same properties as G, i.e., the degeneracy or nondegen-  
eracy of (7 is the same as that of G; (7 is in Case (A), (B) or (C) if G is; the n x n 

and it will be assumed henceforth that N is bounded.  
l f f ~  LP(R~) then evidently, as functions in Lq(R"), ( ~ f ) ( x ) =  h(Xl)(~f)_(x2) 

and thus II N f  II L,~R .) = II h II L,~R"--) II (gf  II L~(~-).~ This proves that Cp~q(G) = 
Cr~q(G) II h I[L'IR"-'I and t h a t f i s  a maximizer for N if and only i f f is  a maximizer for 
N. This concludes the m < n case. 

If m > n duality can be used: Cp~q(G) = Cq,~p,(G r) where Gr(x,  y) = G(y, x). 
This changes the m > n case into the m < n case and, since all the theorems in this 
paper are "duality invariant",  the m > n case is proved. [] 

Remark. Clearly the proof of Theorem 5. l is such that if other cases with m = n are 
settled in the future then Theorem 5.1 for m ~ n holds for those cases as well. 

VI. Multilinear forms in the real case and Young's inequality 

After Sects. I to V were completed, Eric Carlen suggested that the same methods 
should yield similar results for real multi l inear forms. Indeed this is so and the 
proof is outlined here (the omitted details are merely a repetition of those given 
before). Some remarks about  the complex case will also be made here. Finally, 
Theorem 6.2 contains an application of the result in Sect. 6.1 for real multi l inear 
forms: The truly mult idimensional  generalization of Young's inequality, which was 
surmised in [BL, p. 162], will be proved. 

6.1. Multilinear forms. For  i = 1, 2 . . . . .  K let ni be a positive integer and let x~ 
denote a point in R"'. The point X = (xl . . . . .  XK) denotes a point  in R N with 

K . �9 ~ ,  �9 N = ~ =  1 hi" Let G(X) be a Gausslan kernel , i.e., 

i = l j = l  

where Aij is a n i x nj matrix with A~i = Aj~, and  where L ~ C N. The N • N 
symmetric matrix A is the matrix whose blocks are the A~j's and G is said to be 
nondegenerate if M = Re(A) is positive definite. Otherwise M > 0 and  G is degen- 
erate. 
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Let P = (p~ . . . . .  Pr) satisfy 1 < Pi < oo for each i. The multilinear form is 
K 

~(f~ . . . . .  Jr)  = ~ G(x l  . . . . .  x r )  17 fi(x,)dx~ . - .  d x r ,  (1) 
i = 1  

where the integration is over R "' • R "2 • . . .  • R"K and eachf~ e LP'(R"'). The 
problem is to evaluate 

C e = sup ~( f l  . . . . .  fr)  (2) 

where the supremum is over f~'s with [[fill~. = 1. As before, if G is degenerate we 
have to take f /~  LP'(R "') c~ Lt(R "') and then take limits. 

The cases treated in Sects. I to V correspond to K = 2 with p~ = p and P2 = q'. 
The case K = 1 is t r i v i a l - -by  H61der's inequality. 

Lemma 2.1 is easily generalized to the complex, nondegenerate multi l inear case; 
the details are left to the reader. The conclusion of Lemma 2.1 holds for eachf~ in 
a maximizing set (fl  . . . . .  fK). The conclusions (a), (b) and (c) follow by fixing all the 
f j ' s  with j 4= i and then investigating the dependence of aJ(f 1 . . . . .  f r )  ~  

Lemma 2.2 obviously carries through as well; that is A,  can be assumed to be 
real and G can be assumed to be centered, i.e., L = 0. Likewise Lemma 2.3 carries 
through: When G is centered (i.e, L = 0) and when the supremum in (2) is restricted 
to Oaussian functions f ,  then each f,. can be taken to be centered and, in the 
nondegenerate case, each f must be centered. 

Let us now turn to the real case, i.e., each A~i is real and L = 0. Theorem 3 .2 for  
the nondegenerate case carries through for  every choice of P. The maximizing 
K-tuple (f~ . . . . .  fK) is unique (up to multiplicative constants) and each 
f/(x) = exp { - (x, J ix)}  with J~ being real and positive definite. To prove t h a t f  1 , say, 
has this property we write (with q = p'~) 

C e - sup II ,~(f2 . . . . .  fK) I1~ 

where the supremum is onf2 . . . . .  fK with [If~llp~ = 1 and where 
K 

~(f2 . . . . .  fK)(Xl) = 5 G(x ,  . . . . .  x r )  H fJ(xa)dx2 - �9 �9 dxt(- 
j = 2  

As before, we replace ~ by a~12~=~ |  and f2(x2) . . . . .  fK(XK) by 
F2(x2, Y2) . . . . .  FK(XK, y r )  with F j e  LP'(R2"'). To imitate the inequalities (1)-(5) in 
Theorem 3.2, define 

K 

K ( x l ,  Y2 . . . . .  YK) = ~ G ( x l ,  Xz,  " " ", XK) l-[ Fj(x j ,  y j ) d x  z . . .  d x  K . 
j = 2  

Then, proceeding as in (1)-(5) (and with the Fj nonnegative for the same reason as 
before) 

H ~ 2 ) ( F z  . . . . .  FK) Iqg = 

< 

=< 

< 

S [ ~ G(Yl . . . . .  Y r ) K ( x l ,  Y2 . . . . .  YK)dY2 �9 �9 " dYr]  q d x l d y l  

{ ~ G(Yl . . . . .  Yr ) [  ~ K(X l ,  Y2 . . . . .  Yr )qdx l]  1/q 

x dy E . . .  dyr}qdy l  
K 

(Ce) q ~ { ~ G(Yl  . . . . .  Yr)  l-I h i (y j )dy2 . . . dy r }qdY l  
j = 2  

(with hi(y) = [ ~ Fi(x, y)P~dx] I/p~) 
g 

(Cp) 2q ]~ HF~[[~,. 
j = 2  
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As t~elbre, Minkowski's inequality implies that 

K ( x l ,  Y2, " " �9 , YK) = A(xl)E(Y2 . . . . .  YK) , 

which then implies that 

~t2)(F2 . . . . .  Fr)(x l ,  Yt) = A(x l )Z (Y t ) "  

However, ~2)(F 2 . . . . .  FK) = F~'-1,  and hence F x is a product function. The rest 
of the proof is identical to the proof of Theorem 3.2. 

By taking limits, the analogue of Theorem (4.1) hold in the degenerate case 
whenever it is known that the nondegenerate case has a Gaussian maximizer 
K-tuple. In particular, Theorem 4.1 holds in the real case. The analogue of 4.1(.) is 
that Cp is given by (2) with the supremum restricted to centered Gaussian func- 
tions. Likewise, Theorem 4.3 extends to the multilinear case under the same 
assumption about the nondegenerate case; the analogous hypothesis is that each 
A ,  is positive definite. In particular Theorem 4.3 holds in the real case. 

These results can be used to derive the sharp constants in the fully multidimen- 
sional generalized Young's inequality. Recall that Young's original inequality 
states that i ff~ LP(R ") and g ~ Lq(R ") then f ,  # ~ if(R")with 1/p + 1/q = 1 + 1/r: 
here �9 denotes convolution. The sharp constant in this inequality was derived 
simultaneously by Beckner [B1, B2] and by Brascamp and Lieb [BL]. Another 
way to state the inequality is that 

S ~ h ( x ) f ( x  - y)g(y)dxdy < C II h I1,. IlflJpllg IIq (3) 
R" R" 

with 1/p + 1/q + 1/r' = 2. The Beckner, Brascamp-Lieb result is that C can be 
determined by restricting f, g and h to be Gaussian functions. (These, in fact, are the 
only maximizers, as shown in [BL].) 

Young's inequality (3) was generalized in several ways in [BL]. The first way is 
to allow an arbitrary number of funct ionsf~, . . .  ,fK instead of merely three as in 
(3). These are functions from R" to C andfj e LPJ(R'). This is Theorem 7 of [BL]. 
The integration is then over (R")" and the arguments of the f / s  are taken to be 
((at, x l )  . . . . .  (a~, x , ))  �9 R',  where a~ �9 R" are specified vectors and x i �9 R' .  Un- 
fortunately, this is not a fully mn-dimensional generalization of the n = 1 result 
because R m" is split unnaturally into (R'~) ". Following Theorem 7 in [BL] we asked 
whether the full generalization is possible and Theorem 6.2 below gives it. 

A second generalization was the incorporation of a fixed Gaussian function in 
the integral, as in Theorem 6 of [BL]. Again, the Gaussian in [BL] was completely 
general when n = 1, but not otherwise. In Theorem 6.2 it is completely general. 

6.2. Theorem (fully generalized Young's inequality). Fix  K > 1, n~ . . . . .  n K and 
Pl . . . .  , Pr > 1 as before. Let  M > 1 be an integer and let B i ( for i = 1 . . . . .  K )  be 
a linear mapping from R M to R"'. For nonnegative functions f l , . . .  ,fK, with 
f ie  L~(R n') consider 

K 

I(f~ . . . . .  f x ) =  ~ H f,(B,x)dx . (1) 
RM i~ l 

More generally, let g : R M ~  R +, g(x)= exp{ --(x, Jx) }, be a fixed, centered, real 
Gaussian function and consider 

g 

l#(f~, . . . ,fK) = ~ I~ f~(B,x)g(x)dx . (2) 
R M i = 1  
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Le t  
C o -  sup {lg(f~ . . . . .  fK) : l l f~ l l~= l}  (3) 

f l  . . . . .  f g  

and similarly for  C (with lg replaced by I).  Then 

Cg = sup{I0(fl  . . . . .  fK) :fl . . . . .  f r  are real, centered Gauss ian  functions 
with II f~ I1~ = 1 } ,  (4) 

and similarly f o r  C. 

P r o o f  Suppose the theorem is false and that  the right side of (4) (call it Do) is 
strictly smaller than Cg. (Alternatively, D < C.) Then there are nonnegative summ- 
able functions that  are not all Gaussians,  f ~ , . . .  , f r  of unit L ~ norm, such that  
l , ( f l  . . . . .  fK) > D~ (or l ( f  1 . . . . .  f r )  > O). 

Consider  the functions f!*~:Rn' ~ R + given by f ! * ) - f / , o !  t~ for l a positive 
integer, where g!t~(x) =- ( l /x)  n'/2 exp{ - I(x, x)} is an L 1 (R"') normalized Gauss ian  
function. We note that  [I f!l~ lip, < l and that  f !  l) --*fi in LP~(R "s) as l ---, o~. By passing 
to a subsequence (henceforth still denoted by I) we can assume thatf~l~(x) -*f/(x) for 
a lmost  every x in R"'. 

Evidently we can assume that  M > m a x { n , , . . .  , nr}  and that  the rank o fB  i is 
ni for all i. Otherwise, I or lg involves knowledge of some fi only on a hyperplane in 
R 0~ and this means that  I or lg can be made  arbi t rar i ly  large (with all f~'s being 
Gauss ian  functions) while preserving II fl I[~ = 1; the theorem would then be true in 
this case because both sides of (4) would be infinite�9 Similarly, the mapping 
W _-- J + ~ r_  ~ B* Bj (with * denot ing adjoint)  from R u to R u is positive definite; 
otherwise Ig can again be made arbi t rar i ly  large with Gauss ian  fi's. A similar 
condi t ion holds for I with J = 0. Since B~ is linear and has full rank n~, the a lmost  
everywhere pointwise convergence o f f !  *~ to f / i n  R"' implies that  f~l~(Bix ) o f i ( B i  x) 
for a lmost  every x in R M. 

By Fa tou ' s  lemma 

C' o =- lira inf la( f l  ~ . . . . .  f ~ )  > la(f~ . . . . .  f r )  > Do (5) 

and similarly for C' (with I in place of lo). By Fubini ' s  theorem, however, 
K 

ig( fltt), . . ~ _ �9 , J K ,  -- S G~I)(Yx . . . . .  YK) ~I  f~(Y,)dYl " "  dYx"  (6) 
R N i= i 

Here N K = ~ i =  1 ni as in Sect. 6.1, Yi ~ Rn', and G~ t~ is the centered Gauss ian  kernel 

K 

G~'I(Yl . . . . .  YK) = ~ I~  g!O(Bix -- Yi)g(x) dx  " (7) 
RM i = 1  

Similarly, (6) and (7) hold  for I in place of Ig by deleting the g. (Note: Because W is 
positive definite, the integral  in (7) is always finite.) 

The number  C~ defined in (5) is either finite or infinite. In either case, there is 
some finite integer k such that  C~ - Ig(f~ k~ . . . . .  f~) )  > Dg. However,  by (6) we see 
that  C~ is a mult i l inear  form as in 6.1 (1). Such a form has the property,  as we have 
seen in Section 6.1, that  its supremum over f/'s with IIf~ll~ = l is equal to its 
supremum over real, centered Gauss ian  functions. But if we set all t he f t s  equal to 
Gauss ian  functions we have thatf!k~'s are also Gauss ian  functions and I[ f l  k~ lip, < 1. 
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This means that C~<Dg,  and this is a contradiction. The same proofholdsfor I in 
place of  ~ .  [ ]  
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