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Abst rac t .  The objective of this note is to present some results, to be proved in a 
forthcoming paper, about  certain special solutions of the Euler-Lagrange equations 
on closed manifolds. Our main results extend to time dependent periodic Lagrangians 
with minor modifications. 
We have chosen the autonomous case because this formally simpler framework allows 
to reach more easily the core of our concepts and results. Moreover the autonomous 
case exhibits certain special features involving the energy as a first integral that  
deserve special attention. They are closely related to the link found by Carneiro [C] 
between the energy and Mather 's  action function [Ma]. 

1. The Autonomous Case 
Let L be a Lagrangian on a closed manifold M,  i.e. L: T M  --+ R is 

a C ~ function and has positive definite Hessian on the fibers. The 

Euler-Lagrange equation, 

d~ Ovv (x 'k)  - Ov - (x 'x)  = 0 (E-L) 

generates a smooth  flow f t : T M  -+ T M  defined as follows. Given 

w = (p, v) E T M ,  denote x~o: R --+ M the solution of (E-L) with ini- 

tial condition: 
x~(0) = p 
~(0) = v. 

Now define ft: T M  --+ T M  by f t (w)  = (xw(t) ,  icw(t)) Hence every orbit 

7(t) of this flow can be uniquely wri t ten as 7(t) = (x(t) ,  x(t)), where x(t) 

is a solution of (E-L). 
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It is well known that  solutions of (E-L), and through them, orbits of 

the flow ft: T M  --+ T M ,  are characterized by local variational properties. 

Here we shall revisit an old subject: orbits of the flow ft, selected in 

the intricate phase portrait  of f~, by requiring of them to satisfy global 

variational properties instead of the local ones that  every orbit satis- 

fies. Research on these special orbits goes back to Morse ([Mo], 1924) 

and Hedlund ([H], 1932), and has recently reappeared in the works of 

Bangert ([B]) and Mather ([Mall, [Ma2]). Our approach while visi- 

bly conceptually indebted to those works, will be independent and self 

contained leading to new results and also to stronger forms of already 

known ones, like Mather 's  Graph Theorem ([Ma]) or the coboundary 

property ([M]). 

Recall that  the action of the Lagrangian L on an absolutely contin- 

uous curve x: [a, b] -~ M is defined by 

b / ,  

S L ( X )  = / a  L ( x ( t ) ,  2(t))dt. 

Given two points pi E M, i = 1, 2 denote Ac(pl,P2) the set of absolutely 

continuous curves x: [0, T] --+ M, with x(0) = Pl, x(T) = P2. For each 

k E I~ we define the action potential Ok: M • M --+ R by 

(Pk(Pl,P2) = inf{SL+t~(x)lx E Ac(pl,P2) }. 

Theorem I. There exists c(L) E ]R (called the critical value of L) such 

that: 

a) / f k  < c(L), then ~(Pl ,P2)  = -oc ,  VPl,P2 E M. 

b) If  k >_ c(L), then ~k0ol,P2) > - o c ,  Vpl,p2 E M, and ~k is a 

Lipsehitz function. 

c) I f  k > c(L), then 

~k(Pl,P3) <_ ~k(Pl,P2) + ~k(P2,P3), Vpl,P2,P3 E M, 

~k(Pl,P2) + (Pk(P2,Pl) >_ 0, Vpl,P2 E M. 

d) If  k > c(L), then Ck(pl,p2) + r > O, V p l C P 2  in m .  

Defining dk:M • M ---+ ]R by dk(pl,P2) = Ck(Pl,P2) + r 
the properties above say that  dk(',.) is a metric for k > c(L) and a 
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pseudometr ic  for k = c(L). 

Denote M (L) the  set of invariant probabilit ies of the  flow f t .  

Theorem IL (Ergodic Determination of  c(L).) 

c(L) = - m i n ( f  Ld,,, M(L)} 

Definition. We say that it E M (L) is a minimizing measure i f  

c(L) = - f Ldp  

A 

We will denote by M ( L )  the set of the minimizing measures in M ( L ) .  
A 

Generically, in the  sense of [M], the  s t ructure  of A4(L) is simple. 
A 

Theorem I lL  For a generic L,  A4(L) contains a single measure and 

this measure is uniquely ergodic. When this measure is supported by a 

periodic orbit, this orbit is hyperbolic. 

But  we can hope even more: 
A 

Conjecture .  For a generic L, M ( L )  consist of a single measure sup- 

ported in a periodic orbit. 

The  prerequisite of the next definition is this remark:  for every ab- 

solutely continuous x: [a, b] --- M and all k _> c(L): 

SL+k(x) >_ ~ ( x ( a ) ,  x(b)) > -~k(x(b) ,  x(a)). (,) 

Definition. Set c = c(L). We say that x: [a, b] -~ M is a semistatic curve 

i f  it is absolutely continuous and: 

S L + c ( X ] [ t o , t l ]  ) : ( I ) c ( X ( t O )  ~ x ( t l ) ) ,  (1) 

for  all a < to <_ t l  < b; and that is a static curve i f  

S L + c ( X ] [ t O , t l ] )  = -~c(X( t l ) ,  x(to) ) (2) 

for  all a < to <_ t l  < b. 

By (,), equality (2) implies (i). Hence static curves are semistatic. 

Semistatic curves are solutions of (E-L). This follows from classic re- 

sults that grant that absolutely continuous curves with much weaker 

variational properties are solutions. 
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Definition. 
E(L) = {w E TM[x~: ~ --+ M is semistatic}, 

~(L) = {w E TMlx~:  IR ---+ M is static}, 

E+(L) = {w E TMIx~][o,~) is semistatic}. 

Remarks. 

a) Replacing c by any other real number in the definition of semistatic 
solution the set E+(L) (and then E(L) C E(L) C E+(L)) becomes 
empty. 

b) In [Ma2], E denotes what in our setting would be the closure of the 
union of the supports of the minimizing measures. This set is in 
general much smaller than the set called E(L). 

Theorem IV. (Characterization of Minimizing Measures). A measure 

p E Ad(L) is minimizing if and only if supp(p) C E(L). 

Theorem V. (Recurrence Properties). 
a) E(L) is chain transitive. 

b) E(L) is chain recurrent. 

c) The c~-limit set of a semistatic orbit is contained in E(L). 

Theorem VI. (Graph Properties). 

a) If  ~/(t),t > 0 is an orbit in E+(L) then denoting 7c:TM --+ M the 

canonical projection, the map 7cI{7(t)lt>_0} is injective with Lipschitz 
inverse. 

b) Denoting E0(L) C M the projection of E(L), for every p E E0(L ) 
there exists a unique ~(p) E TpM such that 

(p, ((p)) E E+(L). 

Moreover 

(p, ~(p)) E E(L), 

and the vector field ~ is Lipsehitz. Obviously E(L) = graph(g). 
The following result will imply the covering property: 

7r~,+(L) = M, 

while also dealing with the injectivity of ~r on certain subsets of E + (L). 
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Define the pseudometric dc(-, ") on M by 

de(a, b) = 4c(a, b) + Oc(b, a). 

Denote by ~ these set of equivalence classes of the equivalence relation 

de(a, b) = 0 in P,(L). If F E G set 

r + = {w < E+(L)10a(w) C r}.  

Obviously P + is forward invariant. Set: 

r ~ - =  LJ retiE+" 
t>0 

Theorem VII. (Covering Property). If F E 

a) rer + = M.  

b) For all p E F~, there exists a unique W(P) E TpM such that 

(p, E r +. 

Moreover F + is an open and dense subset of  M and ~F is Lipschitz. 

Remarks. 

a) The solutions of ~ = ~F(x), are defined in [0, oc) and are semistatic 

c u r v e s .  

b) On E(L) A F, we have ~P = {. 

The next result is an stronger form of Theorem III. 

Theorem VIII. Gener ic  S t ruc tu re  of E(L)). For a generic Lagrangian 

L, E(L) is a uniquely ergodic set and, i f  it is a periodic orbit, it is a 

hyperbolic periodic orbit. 

Now we can state the extension to all E(L) of a property proved in 

[M] for supports of ergodic minimizing measures. 

Theorem IX. (Coboundary  Proper ty ) .  I f  c = c(L), then (L + C)I~,L) is 

a Lipschitz coboundary. More precisely, taking any p ~ M and denning 

G: E(L) --+ IR by 

G(w) =  c(p, re(w)), 

then 
dG 

(L + c)l~(L)_ -- 
d f '  
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where 

= h- olim - 

Exploi t ing tha t  the energy, E: T M  ---+ R, defined as usual by 

E(x ,  v) = OL (x, v)v - L(x,  v) 
Ov 

is a first integral of the  flow generated by L, leads to the  information 

on the position of E+(L).  First  observe tha t  it is easy to check tha t  a 

semistatic curve x: [a, b] --+ M satisfies: 

E(x(t) ,  2(t)) = c. (**) 

This  follows from calculating the derivative at A = 1 of the  function 

F: ]R --~ R given by 

F(/~) = fab(L + c)(x~(t), 2a(t))dt, 

where xa: [a, b] ~ M is given by x~(t) = x(At). 

From (**) follows tha t  

E(L) C E - l ( c ) ,  

t ha t  together  with 7rE(L) = M implies: : rE- l (c )  = M. Hence, 

c >__ maxE(q, 0). 
q 

Moreover E(L) C E - l ( c )  implies: 

Corollary. # E AA(L) is minimizing if and only if 

O v  (x ,  = o, 

supp(#) C E-I(c(L)) .  

From the view point  of the  variational calculus, the  relevance of the  

critical value appears  in the following results. 

T h e o r e m  X. I f  k > c(L), for all a, b E M ,  there exists a solution of 

(E-L) such that x(O) = a, x(T) = b for some T > O, and 

SL+k (X[[0,T]) = min SL+k (Y), 
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where the min imum is taken over all the absolutely continuous 

y: [0~T1] --+ M, T1 _> 0, y(0) = a, y(T1) = b. Moreover, the solution 

x(t) is contained in the energy level E- l (k ) .  

Using that  on E - l ( k )  we obtain L + k = (OL/Ov)v, it follow that: 

OL 
(L + k)(x, v) = ~v (X, v)v, 

on E- l (k ) ,  it follows that: 

Corollary. 
a) I f  k > c(L) and a, b E M ,  there exists a solution x(t) of (E-L) such 

that x(O) = a, x(T) = b for some T >_ O, E(x( t ) ,x( t ) )  = k for all 

t E ~,  and 

fOT OL fOT OL Ov (x(t), x(t))J~ dt = rain ~-v (y(t), ~/(t)) 9 dr, (3) 

where the min imum is taken over all the absolutely continuous 

y: [0, T]] --+ M ,  Yl >_ O, y(O) = a, y(T1) = b, and E(y(t), y(t)) = k for 

a.e. [O, T1]. 
b) Conversely, if given k > c(L), and a,b E M ,  there exists an 

absolutely continuous x: [0, T] --+ M ,  with x(O) = a, x(T)  = b, 

E(x(t) ,  x(t)) = k and satisfying the minimization property (3), then 

x(t) is a solution of (E-L). 

An interesting characterization of the critical value, in terms of an 

analogous to Tonelli's Theorem ([Ma]) in a prescribed energy level is 

given by the following result. 

Theorem XI. Suppose that k E ~ has the following property: for all a, 

b E 7cE-l(k) there exists an absolutely continuous curve x: [0, T] --+ M, 

T >_ O, such that: 

a) E(x( t ) ,x( t ) )  = k for a.e. t C [0, T], 

b) x(O) = a, x(T) = b, 

c) 

foT O L fOT O L ~ v  (x(t), 2(t))2(t) dt = min ~v (y(t), il(t))il(t) dt, 

where the min imum is taken over all the absolutely continuous 

y: [0, T1] -+ M ,  T1 >_ O, y(O) = a, y(T1) = b, and E(y(t),  y(t)) = k for 
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a.e. [0, T1]. 
Then k > c(L) and x(t) is a solution of (E-L). 

Now let us prove the  characterizat ion of the minimizing measures 

given in Theorem IV. 

Assume c(L) = 0, define An: TM --+ R, Fi: TM --+ R, i = 1, 2 by: 

An(O) = SL(xI[o,n]), 

FI(O) = ~oOr(O), 7c(f1(0))), 

F2(0) = ~0(Tv(fl(0)), 7v(0)), 

where x: R --+ M is the solution of (E-L) wi th  (x(0), ~(0)) = 0. 

Then  by Birkhoff 's  Theorem,  for all # E AA(L), we have: 

f L d , =  f A~d#, for all n, 

and 

f Fl d# >_ O, 

this last proper ty  because 

n-1 

n-i 

= l im - ~o(Tr(fjO), 7 r ( f j +  l ( O ) ) d #  
j n~oc  n 

>_ l im --~50(7r(0), 7r(fn(O) )d# = O. 
n---* o c  n 

Moreover from the definition of ~0: 

A1 _> F~. (4) 

Now suppose tha t  # is minimizing. Then:  

c(L)=O= f Ldp= f Aldu >_ f Fldp >_O. 
Hence 

f A l d p = f F l d # ,  

that ,  by (4), implies A1 = F1 #-a.e. By the  continui ty of bo th  functions, 

we get 

AI(0) = FI(0), for all 0 E supp(#). (5) 
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Then, if we prove: 

AI(0) = -F2(0), for all 0 ~ suppp, (6) 

the prove of supp(#) C E(L) will be complete. To prove (6) we use that 

L d #  = 0 

implies that for a.e. O, there exists a sequence nj --+ cc such that: 

Anj (0) --+ O, (7) 

d(0, (0)) o. (8) 

From (8) follows that 

Since 

F2(0) < lira (fnj-l(O)). j _ _ , + ~  A n j  - 1  

Anj(O) = AI(0)+  Anj- l ( fn j - l (O))  

and (7), we obtain F2(0) _< -AI(0) .  Using (5), we get F2(0) _< -FI(0) .  

Using that F2 + F1 > 0 (because do(', ") is a pseudometric), we obtain 

(6). 

Now suppose supp(#) C E(L). On E(L) we have A1 = F1 = -F2  by 

definition of E(L). Then 

fLdp=fAldp=/Fldp>O. 
Moreover the same argument used to prove that the U-average of F1 is 

positive can be used to prove that the p-average of F2 is positive. Then: 

/Ldp=fAldp=-fF2dp<_O. [] 
Finally, let us recall a weaker concept of global minimization (taken 

from Bangert [B]) that, as the next three results will show, has many 

interesting connections with the forms of global minimization introduced 

above. 

Definition. We say that a solution x(t) of (E-L) is a minimizer (resp. 

forward minimizer) if  

SL(X][t0,tl]  ) ~ SL(y), 
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for  every t o < tl  (resp. 0 < t o <_ t l )  and every absolutely continuous 

y: [to, tl] -+ M with y(ti) = x(ti), i = 1, 2. 

Denote A(L) (resp. A+(L)) the  set of (p,v) E T M  such tha t  the  

solution x(t) of (E-L) wi th  initial condit ion (x(O),k(O)) = (p,v) is a 

minimizer  (resp. a forward minimizer).  

T h e o r e m X I I .  The w-limit set of an orbit in A+(L) is contained in E(L). 

Theorem XIII. ftlA(L) is chain transitive. 

Theorem XIV. 

a) There exists C > 0 such that setting c = e(L), 

SL(xl[t0,tl]) <- C, 

for every forward minimizer x(t) and all 0 <_ to <_ t l .  

b) I f  x(t) is a forward minimizer and p E M is such that 

p =  lira X(tn), 
n--+ ~-OO 

for some sequence tn -+ + ~ ,  then the limit 

lim SL(X[[t0,tn]), 

exists and depends only on p. 

Now let us recall a device, exploited at length and in a protagonic 

role in [B], [Mall,  [Ma2] to enlarge the  scope of the  methods  presented 

above. It consists in observing tha t  the Lagrangians L and L -  O, where 

0 is a closed 1-form on M,  generate the same flow. Then  the  set of 

minimizing measures of L - 0, to be denoted  by ~4~ is contained in 

M ( L ) ,  and the  subsets of T M  given by E(L - 0), E(L - 0), A(L - 0), 

A+(L - 0) are invariant sets of ft. All these sets, as well as the  critical 

value c(L - O) of L - 0 depend  only on the cohomology class [0] E 

H 1 (M, R) of 0. It is not difficult to check the  convexity of the  function 

fl*: H I ( M ,  IR) ---+ ]R defined by 

/3*([0]) = e ( L  - 0).  

(This is the dual  of Mather ' s  action function/3:  H I ( M ,  R) --+ N). Define 
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the  strict critical value co(L) by 

co(L) = min c(L - 0). 
0 

Using the concept of homology (or asymptot ic  cycle) of a # E AJ(L), 

it can be proved that :  

-co(L) = min { /  Ld# # ~ AA(L),p(#) = O}. 

This is par t  of the  dual i ty between ~* and Mather ' s  action function. 

Observe tha t  in an energy level E - l ( c )  with  c > c0(L), the results of 

Theorem X and its Corollary can be applied replacing L by L -  0 where 

0 is a closed form satisfying: 

e > c (L  - O) > co(L) .  

Moreover, observe that 

co(L) > maxE(x ,  0), 
x 

because the  energy functions of L and L -  0 coincide. The  equality holds 

when L is a mechanical  Legrangian, i.e. of the form 

1 (v, v>x - V ( x ) ,  L(x, v) = 

where (., "}x is a Riemannian  s t ructure  on M,  and V: M --+ 3~ is a poten-  

tial. In fact, in this case c(L) = maxx E(x,  0) and the minimizing mea- 

sures are linear combinat ions of the  Dirac probabilit ies concentra ted  at 

the  max imums  of V. 

But  in general the equality doesn ' t  hold. An example will be given 

after the following corollary of Theorem X. 

Corollary. I f  k > co(L), for every free homotopy class of M there exists 
a periodic orbit in E - I ( k )  such that its projection on M belongs to that 

free homotopy class. 
Now let us exhibit  a Lagrangian on the  two dimensional  torus T 2 = 

~2 /Z2  having energy levels E - l ( k ) ,  k E [a, b] with  b > maxx E(x, 0), 

such tha t  the Corollary above doesn ' t  hold in E - l ( k ) ;  hence co(L) > 

b > maxE(x,  0). 
x 
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The example will be a Lagrangian of the form: 

l {v , v}x  + Ar - r A E IR, L),(x, v) = 

where (.,-)~ is the Euclidean inner product  and r r are bump func- 

tions as in the figure below. 

1 

"it/2 

T z 

X 2 
1 

?~2 ~ ' ~  - 

Figure 1. 

Then the energy is 

1 
E (x ,v )  = ~LIvll 2 + r 

independently of A. When  A > 0 the effect of the term Ar is 

tha t  of a magnetic field normal to the plane supported in the band 

[0, 1] x supp(r ~-- R / Z  x supp(r Denote c = maxr and [kl, k2] = 

r Then 0 < kl < 1 < k2 < 1. Denote S a c  T 2 the set of 

points tha t  can be reached from a point (Xl, x2) with x2 = 1, through 

a solution of (E-L) with L = La, contained in the level E = c (i.e. the  
1 2 initial velocity satisfies ~ llvII = c ) .  For A = 0, SO = T 2 - [kl, k2] x R / Z .  

When  A > 0, Sx diminishes, say Sx C [kl(A), k2(A)] • R / Z  with 0 < 

kl(A) < kl < k2 < k2(A) < 1. Then the level E - I ( c ) ,  for A > 0 doesn ' t  

contain an orbit whose projection is in the homotopy class of (0, x2), 

x2 E R, because such orbits would intersect x2 = 1. 

Since the minimizing measures of L - 0 share the same basic prop- 

erties, it is convenient, following Mather  [Mall,  to extend the term 
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minimizing measures to all the  measures in 

AJ* ( L ) =  [_J AA~ 
0 

Similarly it is also convenient to extend the terms semistatic,  static, 

and minimizing orbits to all the  orbits having the corresponding prop- 

erty for some L - O. The  sets 

E*(L) = U E ( L -  0), 
0 

and 

E*(L) = U E ( L -  0) 
0 

A(L) = [..J A(L - 0), 
0 

are closed, E(L - O) and A(L - O) are upper  semicontinuous functions of 

[0]. From this proper ty  follows that :  

Corollary. E* (L) is chain transitive. 
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