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Abstract. A family of straight line periodic motions, known as the Sitnikov motions and existing in the case 
of equal primaries of the three body problem, is studied with respect to stability and bifurcations. 
Continuation of the bifurcations into the case of unequal primaries is also discussed and some of the 
bifurcating families of three-dimensional periodic motions are computed. 

I. Introduction 

In the restricted three-body problem there exists a unique family of rectilinear motions 
of the infinitesimal particle perpendicular to the plane of motion of the two primaries. 
This family exists throughout the range of the mass parameter # but consists of 
rectilinear orbits only for # = 1/2. These orbits are segments of the z-axis and are simply 
called 'the Sitnikov motions' as they were originally studied by Sitnikov (1961); see also 
Moser (1973). They cross the plane of motion of the primaries at the inner collinear 
equilibrium point L 1. The family of periodic Sitnikov motions can be recognised as 
a special case (/z = 1/2) of the family L 3 of three-dimensional orbits emanating at L 1 for 
all admissible values of # and will be denoted here by L~. 

The existence of such a family offers the opportunity to study the stability of 
bifurcations of one-dimensional motions under perturbations in two additional 
dimensions which tend to take the moving particle directly into the full three- 
dimensional space. In this sense the present work can be considered as a special case of 
the investigation of bifurcations in systems of three degrees of freedom (see, e.g., 
Davoust and Broucke, 1982; Contopoulos, 1985, 1986). In relation to the increase of 
orbit dimensionality involved in the bifurcation mechanism in this special case we may 
mention here especially the work of DeVogelaere (1950). 

The treatment presented here is similar to the one applied by Bennett (1965) in the 
study of the stability of the equilibrium points of the elliptic restricted three-body 
problem, an apparently different stability problem. 

The resulting bifurcations of the family of periodic Sitnikov motions L~ and their 
continuation into the general case # :/: 1/2, where the family L 3 no longer consists of 
rectilinear motions, are studied in some detail. Numerical data are given for some of the 
bifurcating branch-families. 

It is evident from the results that the family L 3 has a very complex evolution as the 
z-axis amplitude of its member orbits is increased, a fact which explains the difficulty 
involved in its numerical determination. 
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2. Equations of Motion and Variation 

The equation governing the Sitnikov motions z(t) is easily obtained from the usual 
restricted three-body problem formulation for # = 1/2, x(t)= y(t)= 0, and can be 
written in the form 

Z 
= (Z 2 .~_ �88 (1) 

The usual expression of the Jacobi integral reduces in this case to 

2 
C = _ ~2 (2) 

(Z 2 + �88 1/2 

(see e.g. Szebehely, 1967). 

It is probably easier to study equation (1) numerically. One starts the integration 

with initial conditions z o = 0, ;~o arbitrary, and integrates until the velocity ;~ becomes 
zero for the first time at time, say, T. The solution is periodic with period T = 4T and 
the whole family of periodic solutions can be traced by repeating the numerical 

procedure for a sufficient number of discrete values of the family parameter (;~o in this 
case). In the present paper we adopt the above numerical treatment which we use for the 
purpose of studying numerically the stability properties of the family of periodic 
Sitnikov motions. 

Consider small perturbations x = ~, y = r / to  the 'horizontal' components of the 
rectilinear motion x(t)= O, y(t)= 0. It can be shown that small (first order) 

perturbations ~ to the 'vertical' component z(t) 4:0 do not change the equations of 
motion and we therefore focus our attention on a perturbed motion ~(t), r/(t), z(t), where 
only ~ and r/are small. 

The linearized equations of the perturbed almost rectilinear motion are 

~"- 2i/= [Fl(Z) + F2(z)] 

0 + 2~ = F 1 (z)q 

+ F3(z) 

(3 )  

- [Fx(z) - 1]z + F4(z ) ~ z 

where we have abbreviated: 

F l ( Z )  = 1 - [ ( 1  - ~)~;3/~ + u ~ ; 3 / 2 ]  

- 5/2 5/2 Fz(z) = 3#(1 - #) [-#(I) x + (1 - #)(I) 2 -] 

F3(z) = - ~ ( 1  - ~ ) ( ~ 1 3 / ~  - ~2 ~/~) 

F~(z) = 3 ~ ( 1  - U)(~; ~/~ - ~;~/~) 

(I)1 = 1./2 ..[_ Z 2, (I)2 = ( p _  1)2 + Z 2 

(4) 
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The first two Equations (3) are written in the form: 

= A(z(t))~, 

where r = (~1, r ~3, ~4) T, ~1 = r ~2 = r/, ~3 = ~, r = 0, 

A(z(O) 

l 

m 

m 

0 0 1 0 

0 0 0 1 

F~o(Z ) + F2o(Z ) 0 0 2 

0 Flo(Z ) - 2  O _  

(5) 

(6) 

and FlO(Z ), F2o(Z) are the above functions Fl(z  ), F2(z ) for # = 1/2. 
Equations (5) are independent of the third of Equations (3) and can be treated 

separately. They describe the evolution of the perturbations ~, r/of the Sitnikov motion 
z(t) and can be called the 'variational' equations of this rectilinear motion. A study of 
Equations (5) will reveal the stability properties of the rectilinear motions z(t) under 
perturbations ~, r/which are 'normal' to it. This kind of stability of a one-dimensional 
motion will be called normal stability. 

3. Stability Properties of Periodic Sitnikov Motions 

Consider z*(t), a particular solution of (1), i.e. a member of the Sitnikov family L I of 
rectilinear motions z(t), and let T* be the period of this member-solution. Then, the 
linear system of variational Equations (5) of this solution is periodic with period T* and 
the Floquet theory applies. 

The general solution of Equations (5) will determine the normal stability of the basic 
solution z*(t) and this general solution depends on the characteristic roots Sk, k = 1, 2, 
3, 4 i.e. the roots of the characteristic equation 

det((~ - sl) = O, (7) 

where I is the 4 x 4 unit matrix and 

C" = X - ~ ( t ) X ( t  + T*), (8) 

with X(t) a fundamental solution of system (5). With no loss of generality we can set 
X(0) = I and Equation (8) gives 

= X ( T * ) .  (9) 

If the roots Sk of (6) are distinct, then there exist four linearly independent solutions 
x k satisfying the property 

Xk(t + T*)  = SkXk(t ), k = 1, 2, 3, 4. (10) 

It follows that unit roots correspond to periodic solutions of (5), with the same period 
T* of the coefficient matrix A(z(t)). 
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For non-unit roots the solutions are bounded (correspondingly unbounded) if the 

roots satisfy the condition Iskl < 1 (correspondingly Iskl > 1). 
The fundamental solution X(t)  of (5) is a linear combination of the canonical 

solutions Xk, k = 1, 2, 3, 4. It follows that the stability of the Sitnikov motion (1) under 

'normal'  perturbations ~, q is determined from the characteristic roots s,, i.e. from 
Equations (7) and (9). This requires the determination of the fundamental solution at 
t =  T*. 

In the restricted three-body problem, if s is a root of (7) then so is s -  ~, the product of 
the four roots being 1 (Wintner, 1947). The characteristic equation has the form 

S 4 + ps  3 + qs  2 "+ ps  -k- 1 = 0 (11) 

where the left-hand side of the equation can be written as the product of two quadratic 
factors giving 

S 2 "~- a*s + 1 = O, s 2 + a~s + 1 - -0  (12) 

with 

a]' = �89 + v/A), a~' = �89 - x//-A) (13) 

and 

A = p2 _ 4(q - 2) 

4 

p = - ~ C,, = - T r  (~ (14) 
i = 1  

4 4 

Z Z (c,,cjj- c,jcj,). 
j = i + l  i = 1  

As is well known, in such cases the stability conditions are 

a > 0, la 'l 2, la l 2. (15) 

In this paper we determine the matrix (~ from (9) by integrating numerically the 
fundamental solution X(t )  from t = 0 to t = T*/4,  and applying the relation 

X ( T * )  = [ M X -  ~ ( T * / 4 ) M X ( T * / 4 ) ]  2, (16) 

which is due to the special symmetry of the Sitnikov motions and can be easily 
established. The matrix M involved in (16) is the constant symmetry matrix 

M 

m m 

1 0 0 0 

0 - 1  0 0 

0 0 - 1  0 

_ 0  0 0 1 _  

(17) 

The economy in computing time involved in using (16) instead of a direct 
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computation of X(t) from t = 0 to t = T* is obvious. For better accuracy we have 

applied the Newton identities and verified the form (11) of the characteristic equation. 
We observed that when the elements of (~ were of the order of 10 3 to 10 4 the accuracy of 

the constant term in (11) was approximately two decimal digits. When the elements of 
(~ were smaller (of the order of 10 2 and 10 3) then the accuracy of the constant term was 
much better (four to six decimal digits). For even smaller elements of C (101 to 10 2) the 

accuracy of the constant term was even better (8 to 10 decimal digits). 
All members of the family were found to be unstable. The stability conditions (15) 

are never satisfied along the family z(t) of rectilinear orbits. This is due to the fact that 

one of the two stability parameters (a~) is always absolutely larger than 2. However, 
the other stability parameter a* does obtain values in the interval [ - 2 ,  2] and this 
fact is responsible for the occurrence of bifurcations as described in Section 4 below. 
The behaviour of the stability parameter aT along the basic family is illustrated 

in Figure 1. 
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Fig. 1. Stability diagram for the basic family L]. 
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3.1. THE LIMITING CASE Zo > 0 

The rectilinear motions z(t) given in Table I correspond to finite values of the family 
parameter ~o. It is interesting and useful, for verification, to examine the situation for :~o 
tending to 0. In that case the (infinitesimal) rectilinear motion is governed by the 
linearized version of (1), 

8 =0. (18) 

This is a simple harmonic motion and the stability analysis can easily be performed 
without resort to computer calculations. The two stability parameters aT and a~' are 
decoupled and can be determined from separate stability considerations. One of the 
two parameters describes the usual 'horizontal stability' (i.e. under 'horizontal' 
perturbations ~, r/) of the infinitesimal rectilinear motion ((t) and should be given by 

a* = - 2  cosh 2T*, i = 1 or 2, (19) 

where 2 = 3.7 833462 (root of the characteristic equation of the equilibrium point for 
# = 1/2; se Szebehely loc. cit., p. 311). This calculation gives the following limiting value 
of the second stability parameter a~, which is thus identified as the one corresponding 
to the usual 'horizontal' stability parameter: a~ = -4467.0441. The other stability 
parameter can also be determined, in the limiting case. It is provided by 

a* = -cos(2rcS/Sz) = - 1.9 851 325 (20) 

where s and Sz 
571-574 and p. 311). The above limiting values of aT 
numerical results. For ~o = 0.001, for example, the 
values a~' = - 1.9 851 322, a~ = -4467.0 394. 

are the horizontal and vertical angular velocities (Szebehely, loc.cit., pp. 
and a* agree perfectly with our 
numerical procedure gives the 

4. Critical Solutions and Bifurcations 

In relation to property (10) above, we note that the solutions satisfying 

la~'l = 2, i =  1 or 2, (21) 

are called critical and are of special interest because they mark the occurence of 
bifurcations of new families of periodic orbits. In general this does not signify a change 
of stability along the basic family since such a change would occur only at a point where 
the full set of stability conditions (15) either start or cease to be valid. On the other hand 
bifurcations occur every time (21) is satisfied for one of the two stability parameters (see, 
e.g., Contopoulos, 1986). 

All quantities associated with a particular member of the family depend entirely on 
'the family parameter'  :~o. Here we seek those orbits for which 

la~'(~o)l = 2. (22) 

Applying a simple differential-correction procedure we obtain the required correction: 

6~ o = - [2 + a'f(~o)]/[OaT(~o)/C3~o], (23) 
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TABLE I 
Bifurcation orbits of the family L1 1" 

Z-o z(T*/4) a~ T*/4 C 

B1 1.2058314 0.6058850 -462.53 0.9508536 2.5459707 

B2 1.6466218 1.4692823 -91.284 2.3420700 1.2886366 

B3 1.7043778 1.7565471 -25.533 2.9389476 1.0950962 

B4 1.7522080 2.0921592 -42.385 3.7045148 0.9297670 

B5 1.7942219 2.5123094 -9 .6904 4.7566414 0.7807677 

B6 1.8067357 2.6721000 -21.310 5.1821617 0.7357059 

B7 1.8394755 3.2062645 - 11.840 6.6986793 0.6163297 

B8 1.8614253 3.7040543 -6.94~9 8.2335006 0.5350957 

where the derivative in the denominator can be calculated (approximately) with an 
extra integration. Using this simple procedure we have determined numerically the first 
eight bifurcation points of the basic Sitnikov family L~. The numerical data for these 
bifurcations are given in Table I. 

4.1. EXAMPLES OF BRANCHES 

In order to verify and illustrate the occurrence of branches of the basic family at the 
bifurcation points, we have computed two such branches, which we call B3 and B6, 
occuring at the bifurcations B3 and B6 of Table I, respectively. These branches are 
families of three-dimensional (no longer rectilinear) periodic solutions of double 
symmetry (with respect to the x-axis and the x - z  plane). The numerical determination 
of these branch-families and the stability parameters of their member solutions was 
carried out using known procedures. 

The initial conditions and other numerical data (including the stability parameters 

TABLE II 
Numerical data for the family of periodic solutions branching 

from the basic Sitnikov family at the bifurcation point B6. 

to X o Yo z(T/4) T/4 a I a2 C 

1.8067357 

1.8000000 

"1.6845256 

1.600(K~ 

1.40(0)O)0 

1.20(0)0(O 

1.0(0)0(0)0 

0.80(0)0(0 

0.600(0)00 

0 . 4 0 ( 0 ) 0  

0.20(0)0(0 

0.1000000 

0.0050000 

0 

0.0347889 

0.1377585 

0.1708902 

0.2174734 

0.2445190 

0.2621261 

0.2741035 

0.2822701 

0.2875949 

0.2906107 

0.2913450 

0.2915876 

0 2.6721000 5.1821617 - 2  

-0.2248319 2.6579033 5.1826805 -3.1173 

-0.9293338 2.4259411 5.1904655 -2 .0000 

-1.1840226 2.2677930 5.1951005 0.3181 

-1.5861314 1.9229769 5.2036236 1.8888 

-1.8542726 1.6084103 5.2097859 1.8904 

-2.0480479 1.3149807 5.2143414 1.2694 

-2.1907298 1.0366379 5.2177103 0.3840 

-2.2939349 0.7690377 5.2201412 -0 .5320 

-2.3641204 0.5088379 5.2217876 -1 .3072 

-2.4049629 0.2532937 5.2227423 - 1.8207 

-2.4150336 0.1265079 5.2229773 -1 .9547 

-2.4183702 0.0063231 5.2230553 -1.9999 

-21 .310 

-18.603 

-62.403 

- 148.94 

-415.71 

-689.74  

-930 .36  

- 1125.7 

- 1274.2 

- 1377.8 

- 1438.8 

-1453.9  

- 1458.9 

0.7357059 

0.7301193 

0.6462703 

0.5963508 

0.5047515 

0.4387977 

0.3902363 

0.3544596 

0.3287174 

0.3113195 

0.3012451 

0.2987672 

0.2979468 
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Fig. 2. Family characteristic of the branch-family B6. Projections in the (to, Xo) and (to, ,Vo) planes. 
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ax and a2) of the typical member solutions of the branch B6 are given in Table II. All 
members of the two computed branches are unstable. Both branches begin with their 
respective bifurcations from the basic Sitnikov family L] and terminate with planar 
periodic solutions. The terminating members of the branches B3 and B6 were identified 
as the 'vertical-critical orbits' hzv and hz3v , respectively, given in Hrnon (1973). The 
numerical data for the termination of B6 are approximated well with the data in the last 
entry of Table III. The entry marked with an asterisk corresponds to another 
bifurcation along the branch B6, i.e. the beginning of a 'branch of the brach'. The same 
phenomenon occurs along the other branch B3. 

The 'family characteristic' of the branch B6 is given in Figure 2, and some typical 
member solutions of this branch are presented graphically in Figure 3. The members of 
the other branch B3 have similar, but simpler, shapes. 

5. Continuation of the Bifurcations for Non-Equal Primaries 

It is easy to see that the bifurcations of the basic family continue to exist when/~ 4= 1/2, 
i.e. when the basic family ceases to consist of rectilinear solutions, its members 

becoming three-dimensional periodic solutions of double symmetry (as given for 
# = 0.4 by Bray and Goudas, 1967). Let us consider the linearized Equations (3) with 
# = 1/2 + e. Linearizing with respect to ~ we obtain, for the expressions (4), 

FI(z ) = 1-Oi -o  a/2 

V (z) = k o  ;o 

F3(z)  = kO  1-0 5/2 8 

V , ( z )  = 

(24) 

with 

_ • 2 (25) ( I ) l o  - -  4- "~ Z , 

and Equations (3) become 

2 0  = (I - + + 

0 + 2~ = (1 - �9 i--03/2)F], 

- -  _ f ~ 1 3 / Z z .  

(26a) 

(26b) 

(26c) 

Equations (26) are now the equations of motion for the basic family (small ~, r/) for 
# slightly different from 1/2 (small e). We see that the equation for z does not change, 
therefore the period of a member of the basic family remains the same in this linear 
theory for # = 1/2 + e. 

It can be shown numerically that if the first two of Equations (26) have a periodic 
solution (for e =~ 0) with the period T* of one of the critical solutions of the Sitnikov 
family of rectilinear motions (e = 0), then this periodic solution is the continuation of 
the critical Sitnikov solution to the case/~ = 1/2 + e. 
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To illustrate that a bifurcation of the Sitnikov family continues to exist for 
# = 1/2 + e and sufficiently small e, one needs to show that the first two of (26) admit a 
periodic solution with the period T* of the bifurcation. The periodicity conditions are 

0o) = o 

0o) = o, 
(27) 

where the left-hand sides are assumed to be evaluated at t = T*/4 (we seek periodic 
solutions of double symmetry). A simple differential-corrections procedure for the 
satisfaction of (27) is to start with ~o = ~o = 0 and obtain the corrections A~o, A~o 
from 

a la o a laOoJLA o] _ 

= ~(0, 0)] (28) 

Since for # = 1/2 + e (e # 0) the quantities r/(0, 0) and ~(0, 0) will not be simul- 
taneously zero at t = T*/4, it suffices to show that for the bifurcation solution (/~ = 1/2) 
the determinant of the coefficient matrix is non-zero. This has been established 
numerically for the four bifurcations B1, B4, B5, B7 which we have continued for 
# # 1/2 (see below). 

We note that the corrector (28)only needs to be applied once. The values 

~Ol = ~o + A~o = A~o, r/ol = ~o + A~o = A~o obtained after one application of the 
corrector are sufficiently accurate to lead to exact periodicity (within the accuracy of 
the numerical integration and of the machine itself). 

For large deviations of # from the value 1/2 the above linear approximation is no 
longer helpful and we have used the full equations of the restricted three-body problem 
to determine the bifurcations, i.e. to determine the initial conditions x o, .Vo, ~o satisfying 
the following periodicity and criticality conditions 

~(Xo, ~o, ~o; ~) = 0 

~(Xo, ~o, ~o;/~) = 0 

al (Xo, Yo, Zo; #) = - 2, 

(29) 

where the left-hand sides are computed at the appropriate crossing of the x - z  plane. We 
shall not describe this differential-corrections procedure in detail. We merely note that 
as implied from (29) the bifurcations are isolated for fixed/~ but if # is allowed to vary 
they comprise monoparametric 'series'. Four of these (bifurcations B1, B4, B5, and B7) 
we have computed in the range # = 0.5 to # - 0.4 and present here in Tables III to VI. 
Typical shapes of these bifurcation solutions are presented in Figure 4. 

It must be stressed that, due to the rectilinear shape and high instability of the 
bifurcation solutions for # = 1/2, their numerical continuation to other values of 
# would be extremely difficult without the use of the linear approximation, presented in 
the beginning of this section, which provides the knowledge of the appropriate in each 
cace intersection of the x - z  plane and the accurate starting values necessary for the 
above continuation. 
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TABLE III 
The bifurcation B1 for different values of #. 

# X 0 S'o ?'o z(T/4) T/4 a2 C 

0.50 

0.48 

0.46 

0.44 

0.42 

0.40 

0 

0.0298848 

0.0597898 

0.0897356 

0.1197432 

0.1498349 

0 

0.0051117 

0.0102254 

0.0153428 

0.0204658 

0.0255958 

1.2058314 

1.2052117 

1.2033487 

1.2002295 

1.1958319 

1.1901247 

0.6058850 

0.6056123 

0.6047924 

0.6034187 

0.6014802 

0.5989610 

0.9508536 

0.9508992 

0.9510369 

0.9512677 

0.9515934 

0.9520168 

-462.52 

-462.68 

-463.13 

-463.89 

-464.95 

-466.32  

2.5459707 

2.5467313 

2.5490127 

2.5528163 

2.5581438 

2.5649976 

TABLE IV 
The bifurcation B4 for different values of/~. 

# X 0 Z-o z(r/4) T/4 a2 C 

0.50 

0.48 

0.46 

0.44 

0.42 

0.40 

0 

0.0762509 

0.1465625 

0.2083896 

0.2620263 

0.3087579 

0 

-0.0680192 

-0.1264225 

-0.1708594 

-0.2015093 

-0.2203394 

1.7522080 

1.7589751 

1.7764571 

1.7988606 

1.8211013 

1.8398066 

2.0921592 

2.0816796 

2.0541703 

2.0178108 

1.9799681 

1.9457685 

3.7045148 

3.7128352 

3.7356879 

3.7688621 

3.8089296 

3.8540193 

-42.385 

-56 .007 

- 102.62 

-193.30  

-336.04  

-533.82 

0.9297670 

0.9402387 

0.9685877 

1.0084609 

1.0541840 

1.1018528 

TABLE V 
The bifurcation B5 for different values of/~. 

X 0 S'o ?.o z(r/4) r/4 a2 C 

0.50 

0.48 

0.46 

0.44 

0.42 

0.40 

0 

0.0495133 

0.0969675 

0.1415898 

0.1836932 

0.2239843 

0 

-0.1383391 

-0.2587052 

-0.3524838 

-0.4191705 

-0.4613504 

1.7942219 

1.7919226 

1.7862877 

1.7797891 

1.7743114 

1.7707145 

2.5123094 

2.5079365 

2.4970151 

2.4836867 

2.4707339 

2.4587892 

4.7566414 

4.7509766 

4.7354886 

4.7132205 

4.6866887 

4.6572772 

-9 .6904  

- 13.674 

-27 .594  

-55.631 

-102.27 

- 172.74 

0.7807677 

0.7768351 

0.7673196 

0.7571086 

0.7509342 

0.7525913 

TABLE VI 
The bifurcation B7 for different values of p. 

# X 0 ?'o z(T/4) T/4 a2 C 

0.50 

0.48 

0.46 

0.44 

0.42 

0.40 

0 

0.1496513 

0.2338265 

0.2922441 

0.3381886 

0.3766009 

0 

-0.1827156 

-0.2594361 

-0.2927061 

-0.3042306 

-0.3029268 

1.8394755 

1.8889273 

1.9528468 

2.0035197 

2.0401672 

2.0631786 

3.2062645 

3.1080677 

2.9818016 

2.8805544 

2.8041504 

2.7510309 

6.6986793 

6.7453021 

6.8125440 

6.8775355 

6.9407029 

7.0035629 

- 11.840 

-231.21 

- 1003.3 

-2216.1 

-3772.2  

- 5622.8 

0.6163297 

0.6648238 

0.7351749 

0.8017587 

0.8632777 

0.9195886 
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