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A b s t r a c t  

The problem of the existence of normal forms for symplectic maps in R 2'~ is 
analyzed using a technique based on the generating functions. We discuss exten- 
sively the case of a map with an elliptic fixed point: both the resonant and non 
resonant cases are presented. 

Explicit  algorithms to calculate the analytic expansions of the normal  forms 
and the associated canonical t ransformation are also provided. 

I n t r o d u c t i o n  

The aim of this paper  is to generalize the well known results for Birkhoff's normal  
forms of a Hamiltonian system to the symplectic maps in R 2'~. Studying the behaviour 
of the orbits near an equilibrium solution, Birkhoff [1] showed the existence of a formal 
canonical t ransformation which reduces the Hamiltonian to a very simple form when the 
frequencies of the linearized equations are rationally independent.  Later Gustavson [2] 

in t roduced  a more general normal form which also admits study of the resonant case. 
More recently the theory of the normal  forms for Hamiltonian systems has been developed 
using the Lie t ransformations method [3] . 

In spite of the connection between the Hamiltonian systems and the symplectic 
maps, the previous results do not include a trivial generalization to the symplectic maps 
in more than two dimensions. Indeed the conditions for the symplecticity of a map in 
R 2'~ take a very complicated form and it is difficult to construct a normM forms' theory 
explicitly satisfying these conditions. This theory has been framed for the area-preserving 
maps [4] while a computer  code capable of calculating the normal form already exists [s] . 

In order to avoid these difficulties, we use extensively the possibility of representing a 
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symplectic map by a generating function. In this way we can construct explicit algorithms 
to compute the normal form and the associated canonical t ransformation.  Clearly the 
recurrent equations we must solve are more complicated than the corrisponding ones in 
the case of the differential equations, but  the use of the mappings has obvious advantages 
from a computat ional  point of view. Moreover the symplectic maps are useful in the s tudy 
of periodic differential equations of the form: 

d t  2 
+ t ) =  0 

k ) l  

(1) 

when the homogeneous polynomials )~k(x, t) are discontinuous functions of t. We recall 
for example that  the motion of a particle in a hadronic accelerator is well described by 
equation (1) with $k(x, t) stepwise functions [61. Other physical phenomena which involve 
instantaneous interaction, like the beam-beam interaction in modern colliders [7,121 , are 
easily described by means of symplectic maps. 

The difficulties of visualizing the phase space of a map in R 2'~ with n > 2, make the 
study of the geometry of the orbits a very hard task. Although the t ransformation which 
brings a map into normal  form is usually divergent [s] , we can extract relevant information 
about the behaviour of the orbits using the related first integrals of motion and the method 
of the interpolating Hamiltonian [91 . Anyway, a rigorous analysis with the normal  forms 
would involve the estimates of the remainders of the perturbat ive expansions. This has 
been done in the case of Harniltonian systems [101 obtaining an exponential  est imate of 
Nekhoroshev's type and there is strong evidence for the area-preserving maps [ l l ]  . Yet 
up to now a rigorous result in this sense for the symplectic maps in R 2" is not available. 

The present work is organized in the following way: 

In section 1 we define the normal form with respect to a subspace L C_ Z '~ for the 
symplectic maps in R 2" with an elliptic fixed point.We analyze the properties of such 
normal forms by means of Noether 's theorem. 

In section 2 we discuss in a general context the problem of the existence of a formal 
canonical t rasformation of variables which conjugates two given symplectic maps. 

In section 3 we prove the existence of a canonical t ransformation of variables which 
brings a symplectic map in normal form up to any finite perturbative order. We treat  both 
resonant and non resonant cases. The use of complex canonical coordinates in C 2~' requires 
the generating function to have a set of reality conditions to insure that  the t ransformation 
of variables is real. 

In section 4 we present the recurrent equations which have to be implemented in a 
computer  code to calculate the normal form and the associated canonical t ransformation.  
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1-Normal form for symplectic maps 

Let x be an element of R 2'~ : 

2n n 

I=E x i e i  E p j e 2 j - a  q- q je2 j  
i = 1  j=l  

where ei is the s tandard  basis. We shall say that  the map: 

x '  = F(x)  (1.1) 

is symplectic if the Jacobian matr ix F , ( x )  has the following property: 

F . ( x ) J F . ( x )  = J (1.2) 

where J is the 2n • 2n matrix: 

j = f i |  1 0 1 )  
k--1 

and the tilde denotes the transposed matrix. 

Equation (1.2) is equivalent to usual conditions for the symplecticity: 

{ } { } Pj , Pk = qj , qk -~ 0 

{' '} Pj,qk = ~jk 

Vj, k = 1..n where we use the usual Poisson Bracket operator: 

(1.3) 

{aj, bk } = ~ Oaj Obk Obk Oaj 

We shall suppose from now on that  the symplectic map(1.1) is an analytic mapping with 
a fixed point at the origin. 

We characterize the normal forms for the maps by means of the property of sym- 
metry with respect to some particular groups. Let L be a subspace of Z '~, we define the 
rotational group GL, whose elements are the direct product  of n rotat ions in the plane 

condition with < pj, qj > with angle aj such that  the n-nuple a satisfies the resonant 
respect to L: 

k - a  = 0 rood 27r V k E L (1.4) 
In part icular when L - {0} and the condition (1.4) is satisfied for any a ,  we shall speak 
of the group G of rotations and of the non resonant case. 
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We say that  map (1.1) is a normal form of elliptic type with respect to L if: 

R ( a )  o F o R ( - a )  = F V (1.5) 

In the non resonant case the definition (1.5) provides n independent groups of symmetry 
to map F, one for each parameter  ctj and Noether's theorem (see appendix 1) allows us to 
find n independent first integrals of motion for map F: 

2 2 

pj = Pi + qJ with j = 1 .n (1.6) 
2 

Moreover these integrals are in involution because the groups of symmetry commute each 
other. 

Generally with L C_ Z '~ and dim L = r, we can always construct a matr ix M with 
integer entries and det M -- 1 such that: 

M(L)  C_ span{el  .... e~} (1.7) 

and the linear space M(L)  is isomorphic to Z ' .  
Now if a G lB. '~ is resonant with respect to L then it follows that  the n-nuple fl: 

is resonant with respect to M(L):  

h .  ~ = 0 rood 2~r V h e M(L)  (1.8) 

and vice versa (we show an example with n = 2 and r = 1 in Appendix 2). As one can see 
from the property (1.7), the parameters  B~+I..B,, in (1.8) are completely frcc and Noether's 
theorem allows one to construct n - r first integrals in involution for the normal form F. 
Such integrals read: 

j = l  2 : /=1  
l = r + l  .... n 

The normal form mappings have a simple expression in a set of complex variables which 
reduce R ( a )  to diagonal form. 

Let us enlarge our real space to the complex space C 2" defining the variables (lr, X) 
such that: 

'[ p = Relr q (1.9) 

The extension of a real map in C 2'~ will be characterized by the invariance of the subspace: 

{ Im~ = 0 

Imx 0 
(1.10) 
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We then perform the following change of variables in C 2'~ which preserves the symplec- 

'{ w = ~" - , x z  = ~r + ix (1.11) 

ticity: 

so that a generic R(ct) reads: 

~ (~-, ~ o) 
R(a) = 0 e-"i 

j = l  

(1.12) 

and the equation of the invariant subspace (1.10) becomes: 

w = z *  (1.13) 

In the non resonant case definition (1.5) and the invariance property 
reduce map F to a completely integrable form: 

of subspace (1.1 3) 

z' = zeift(zw) 

w' = we- i l l ( zw)  
(1.14) 

where f~(zz*) is real and: 

OS 
flj(p) - Opj (p) with j = 1...n 

In the resonant case a normal form with respect to L reads: 

z ' =  ~i~z + E Fk(z,w) 
k > 2  

w ' =  e-i~w + E Gk(~., w) 
k > 2  

(1.15) 

where the homogeneous polynomials Fk and Gk satisfy the following equations: 

G~')(r ~-'Ow) = r w) 

G~')(r ~-'Ow) = ~-'o G~')(., w) (1.16) 

V c~ E 1~ '~ resonant with respect to L and have precise constraints due to the con- 
ditions for symplecticity. Indeed we can represent map (1.15) by means of a complex 
generating function : 

G(z, w') = ei~zw ' + E Gk(~" w') (1.17) 

where the homogeneous polynomials Gk(z, w) are invariant under the action of group GL: 

Gk(e'az, e-i=w) = Gk(z, w) (1.18) 
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It must be pointed out that  the invaxiance property (1.18) of the generating function (1.17) 
implies the commutative property (1.5) for the corresponding transformation because we 
are using the complex coordinates (1.11). In the original variables (p, q) this is no longer 
true as may easily be checked. The reason is that  the generating function G is not a 
geometrical object: i.e. G depends on the coordinates we are using. 

We recall that  z = w* is an invariant subspace for map (1.15) 

and consequently the generating function G(z, w')  has some special properties which we 
discuss in appendix 4. 

2-Conjugat ion  theory  

Let us consider two symplectic maps F and G: 

x ' =  F , x  + F2(x) + F3(x) + ..... (2.1) 

x ' =  G , X  + G, (X)  + G~(X) + ..... (2.2) 

where Fk(x) represents a 2zt-vector whose components are homogeneous polynomials in x 
and Yl = F . (0)  and the same for G. 

We say that  maps (2.1) and (2.2) axe conjugated to each other up to terms of order 
N if there exists a canonical change of variables T : x ,~ ; X defined in a neighbourhood 
of the origin such that: 

G = T o F o T -1  + o ( N )  (2.3) 

Establishing the conditions for the existence of transformation T is a necessary step in 
order to construct a normal form theory for the maps. 

The main problem is to exhibit explicitly the symplectic character of the maps. 
We overcome this difficulty using the representation of a symplectic map by means of a 
generating funtion: a real function S(x) in R 2" such that: 

OS 
s (o )  = o = a  o~ (o) = o 

defines a symplectic map: 

by means of the equations: 

0 :  (p, q) ~ (p' ,  q') 

(9S~ , 
p = p, + ~ t p ,  q) 

q, = q + o_~s, (p, q) 
u p  

(2.4) 
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wherever the implicit function theorem is satisfied. We shall use the following notation: 

x ' =  g , (x )=  (1 + M s )  (x) (2.5) 

Let us introduce the symbol = defining: 
k 

A(x) = B(x) ',, A(x) = B(x) + o(k + 1) 
k 

We recall the properties of symplectic maps close to the identity (for a proof see appendix 
3): 

1) Given a symplectic map in IK 2'~ : 

x ' =  x + Fk(x)+  Fk+l(x) + ...... 

it is possible to find a homogeneous polynomial Sk+l(x) such that: 

x ' -  (1 + Msh+t) (x) 

differs from (2.6) by terms of degree larger than k. 

(2.6) 

2) if A is a symplectic m a p  in R 2'~ : 

A(~)  = A ~  + A~(x)  + .... 

then: 
A o  (1 + M s ~ )  o A  -1 = 

k--1 
1 + MshoA~t ) 

Moreover one can easily check that the following equations hold V k: 

( -' ( ) = 1 + M - s h  1, + Msh) k-~ 

j - - S  j-----a 

(2.7) 

We now procccd computing order by order the right hand side, T o F o T -1, of 
equation (2.3). The linear part implies that F1 and G1 axe similar matrices and we can 
a s s u m e  G 1  = F 1  without loss of generality. 

Then transformation T can be written in the form: 

�9 - 

h>s 

(2.8) 
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In order to find an explicit expression for the second order terms we write maps 
F(x)  and G ( X ) i n  the following form: 

2 

where the homogeneous polynomials F3 and G3 are calculated using property 1: 

2 

-1= (1 + Mos)X a )(x) = G(G~ 

and as a consequence: 

2 

Now we substi tute eq. 

Rg (x) = = x 
2 

(2.9) and (2.11)in the conjugation equation (2.3) obtaining: 

(2.9) 

(2.~0) 

(2.11) 

k > 3  h > 3  

Therefore retaining only the second order terms we have: 

(2.12) 

or equivalently: 

neous 

Then thanks to property 2) and equalities (2.7), equation (2.13) takes the form: 

Thus maps (2.1) and (2.2) are conjugated to each other up to order 2 if a homoge- 
polynomial T3 exists such that:  

T3(x) - T3(F~-~(0)x) + F3(x) = G3(x) (2.15) 
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where Fs and G3 are defined in (2.9). 
Using an inductive argument we shall show the explicit form of the generic order 

N of eq. (2.3). We assume by hypothesis that we have just calculated the polynomials 
T3(x)...TN(X) such that: 

z _ ,  -1 

k = 3  k = 3  

and that we also know the homogeneous polynomials 
following equality: 

G3 (x)...GN(x) 

(2.16) 

which verify the 

N - 1  
(2.17) 

Therefore according to eq. (2.16) and (2.17) we can write: 

(2.18) 

where: 

k=S k=S 

G(X)-  Rg~)G(~-~)(X) (2.19) 

N - 1  

= x 
N - 1  

We observe that the remainder R (N)depends not only on F but also on the polyno- 
mials Tk with k = 3...N. 

Then we can calculate two homogeneous polynomials FN+I and GN+I with the 
following property: 

R ( m -  (1 4- MF~v+I) 

R ( N ) -  (1 + MoN+,) 

so that equation (2.3) reads: 

(2.20) 

i > s  J,>s 

k = 3  k = 3  

(2.21) 
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Applying map (G(N-1) )  -1 to both sides of eq. (2.21), we obtain: 

(1 4- MGN+t) N (1 4- MT~r+x)o (1 4- MFN+x)o G(N-1)~ (1 4- MTN+I) -1 o (G(N-1)) -1 

Finally we recover the same form of equation (2.14): 

(1 4- MGN+~)N (1 4-MTu+I+FN+I_TN+loF-;I(O)) 
i . e .  �9 

T N + I ( x ) -  TN+I(F= 1 (0)x) 4- FN+I(x) = GN+1(x) (2.22) 
Therefore we can formulate the T h e o r e m :  

Two analytic maps F and G with a fixed point at the origin are conjugated to each 
other up to terms of order N: 

G = ToFoT -I 
N 

where: 

T-(1+ T.) 
h ) S  

if the homogeneous polynomials Tk satisfy the recurrent equations: 

T~(x) - y ~ ( F ~ - ~ ) +  F~(~) = Gk(x) 

with k = 3...N + 1 
where the polynomials G k give a factorization of map G according to: 

(1+ (1+ 
N 

while the polynomials Fk depend on map F and on the polynomials Tj with j = 3 . . . k -  1. 
The complexity of the computation of Gk and Fk are irrelevant because other algorithms 
will be proposed when the existence of the solution is garanteed. 

3 - R e d u c t i o n  to normal  form of  a s y m p l e c t i c  m a p  

Let ~ be an element of C2": 

~ = ~ ~iei = ~ zje2j-1 4- wje2j 
i = 1  j = l  
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with z and w defined by (1.11). We consider a map  F: 

~' = F(~) = R(to)~ + F2(~) + F3(~) + .... (3.1) 

which is the  image of a real map:  i.e. z* = w is an invaxiant subspace for F.  
We say tha t  the n-nuple  to is non resonant with respect to M if: 

k - t o  = 21rn with n integer : ;, k E M 

If (3.2) holds with M = {0} in (3.2) we simply say tha t  to is non resonant .  
We shall const ruct  a canonica l  t rasformat ion  T on C 2'~ : 

(3.2) 

T -  
k > a  

such that  if to is non resonant  with respect to M then  map G: 

G=ToFoT -I (3.3) 

is the image of a real normal  form of elliptic type with respect  to M .  
Then  we must  not only solve the conjugation equat ion (3.3) but  also verify tha t  

t ransformat ion  T is the image of a real t ransformat ion  of variables; this can be achieved 
by requiring the reali ty conditions for Tk (see appendix  4): 

T~(-., w) + T;(w, ~) = n~(-., w) (3.4) 

These equat ions are not trivial and  in effect play the role of symplect ic  
t ransformat ion  T.  

Let us consider order  k - 1 of equat ion (3.3) (see eq.2.22): 

condit ions for 

rk(~) - T~(rt(- , ,)~) + F~(~) = ak(~) (3.5) 

It is useful to in t roduce the IIM projector  in the space of complex  polynomials  P(~)  which 
are invaxiant under  the action of group GM : 

IIMP(R(a)~) = IIMP(~) V R(~) ~ G~ 

We recall tha t  the condition: 

I IMGk = Gk V k 

garantees tha t  map  G (see eq. (2 .17) )  is a normal  form with respect  to M .  
Therefore we split equat ion  (3.5) into the system: 

+ nM = 

(3.6) 

(3.7) 
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Now we substi tute Tk ,Fk and Gk with their explicit expressions: 

l,meZ",lll+lml=k 

h,m~[l'ml 

with the convention: 

obtaining the following equations: 

~[l,m] __ 1 ~  Z~'JW? j 
j=l 

(1 - e i~  m + ] l ,m  = 0 if 1 -  m 9~ M 

(1 ei"(m-D)ti ,m + fl,m gl,m if 1 -  m E i 

If w is non resonant with respect to M,  we know that: 

(3.s) 

k r M .~ (1 - e i~'k) # 0 

and consequently we can always solve the first equation of system (3.8) letting: 

--fl,m 
h,m = (1 -- e i ' ' ' (m-D) (3.9) 

Conversely the second equation of system (3.8) determines the coefficients ~l,m while the 
remaining coefficients h,m are frcc. 

The proof that  we can always find a Tk solution for equations (3.7) consistently with 
reality conditions (3.4) makes use of an inductive argument. 

Let us consider the case k = 3. Then eq.(3.4) has the simple form: 

or more explicitly: 

T,( . ,  w) + T;(w, . . )  = o 

h,m + t~,,  = 0 with [11 + Iml = 3 

Replacing h,m with the right hand side of (3.9), eq. (3.11) reads: 

(3.~0) 

(3.11) 

lit 

f l ,m + t in,  1 : 
1 

(1 - ~'~(--')) (f''- + fm,,) = 0 with ( I -  m) r M 

so that  if Fs satisfies the reality conditions, the same holds for ( 1 -  IIM)TS. Recalling that  
the initial map F is the image of a real map and that  Fs is defined by: 

(1+ 
one can easily check that  F3 has the required property. 
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This shows the consistency of (1 - IIM)Ta with the reality conditions; thus if we 
choose the remaining coefficients of IIMTa according to: 

tl,m + tm,s = 0 with (1- m) E M 

(3.12) 

(1 - IIM)G~ satisfies the reality conditions which read: 

(1 -- IIM)a~(z,w)+ ( 1 -  IIM)G~*(w, z )=  0 

We replace in (3.14) G~ with the right hand side of (3.12) obtaining: 

(1 - IIM)[(T~ - T~ o R(-~))(z, w)+  (T~" - T~" o R(~))(w, z)] + 

G' (1 + M( l_r i~)a~ . )o  (1 + M r I ~ a ~ . ) o G  (k-2) (3.13) 

which is the image of a real map up to the terms of order k -  1. Moreover by our inductive 
hypothesis the map: 

is a normal form with respect to M. 
It is easy to see t h a t  at thisJperturbative order map G '  can  be read in the form: 

m 

B 

k - - 1  

From the group's property of the n o r m a l  f o rms  with respect to M, we see that all the 
terms not in normal form in the right hand side of (3.13) come from 

(1 + M(1-riM) a~.) 

By our choice, map G' is the image of a real map up to terms of order k - 1 then 

(3.14) 

Now, our initial hypothesis was that T~ satisfies reality conditions (3.4); consequently 
equation (3.15) reduces to: 

( 1 -  IIM)[Fk(z, w)+  F~(w, t)] + ( 1 -  IIM)[(Rk- Rko R(-~))(z, w)] = 0  (3.16) 

satisfies equation (3.4) and we calculate the polynomial G~,: 

G~(~) = T~(~) - T~(R(-w)~) + Fk(~) 

In this way we conjugate the initial map F with a map G ~ of the form: 

G' - ( I + M G ~ . )  o (1 + M a . _  ) (1 + Ma3)  ~ R( ~ ) 
k - - 1  t . . . .  

we complete the proof in the case k = 3. 
Let us consider the generic order k, assuming by inductive hypothesis that we have 

just solved our problem at every order < k. We choose a homogeneous polynomial T~ that 
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Replacing F~ and Rk with their  explicit expressions we obta in  the sys tem 

fl,m + f~ , ,  + (1 -- e i~ ' (m- ' ) ) r , ,m = 0 with 1 -  m r M 

So if we consider solution (3.9) for (1 - I I M ) T k ,  from eq. 

--(fl ,m +/~n, l )  
tl,m + t~, l  -- (1 - e i ' ' (m- l ) )  - rl,m with 1 -  m ~ M 

w h i c h   o.dition  ( 1  - rt )T . 

(3.17) it follows easily tha t  

(3.18) 

We then choose the remaining par t ,  IIMTk, consistently with reality condit ions (3.4) 
(this is always possible as one can check) and we calculate Gk from the equat ion:  

= - (3.19) 

This completes the reduct ion into normal  form of map  F up to te rms of order  k - 1. 
Freedom in the choice of IIM Tk means tha t  the normal  form G is defined except for 

a similarity relation: 

G '  = U o G o U -1 (3.20) 

where U is a canonical t rans format ion  in normal  form with respect to M;  i.e. the initial 
map F has in general  a whole family of normal  forms with respect to a subspace M .  The  
only exception is the non resonant  case, when the set of the normal  forms is an abehan  
group so tha t  equat ion (3.20) reduces to: 

G'=G 

We summar ize  the previous results in the following T h e o r e m :  

Given a symplect ic  map  F in R ~" 

~' = R ( ~ ) ~  + F2(~)  + F3(~)  + .... 

if r is non resonant  modulo  M,subspace  of Z 2'~, it is possible to find a canonical trasfor- 
mat ion  T in a ne ighbourhood  of the origin such tha t  the map:  

G =ToFoT -1 

is in normal  form with respect to M up to terms of order  N.  Transformat ion  T is deter- 
mined except for a fur ther  change of variables in normal  form with respect  to M .  Moreover 
in the non resonant  case, the par t  in normal  form of map  G depends  only on the initial 
map  F.  
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4-Algor i thms  for the calculation of  normal  forms 

We shall present the recurrent equation it is necessary to implement in a computer 
code,calculating the normal forms for a map. 

The analytic expansions of map F and the normal form G read: 

�9 . ' =  ~'~-. + E f(~)(-., w )  
k > 2  

w' = e-i~'w + ~ g(k)(z, w) 
k > 2  

(4.1) 

z' = ~ z  + E u(~)(z, w )  
k > 2  

w ' =  ~ - ' ~ w  + E ~(~)(z, w )  
k > 2  

(4.2) 

while the canonical transformation T :~ ,  ) .~. is given in implicit form by the equations: 

�9 . = z + E ~ ( Z , w )  
k ) 3  

k>3  

(4.3) 

Using the commutativity of diagram 

F 

TI IT 
G 

we can construct a set of recurrent equations in order to calculate the expansions (4.2) 
and (4.3). 

We start from the right hand side of the diagram, represented by the equations 

�9 .' = z' + E -~ , (Z ' ,w , )  

w '  = w ' +  E a~z (Z',w') 
(4.4) 

and we substitute in the order: z' and w' from equations (4.1), W' and Z' from equations 
(4.2) and finally w and Z from equations (4.3). 

In this way we obtain a set of polynomial equations in (Z, w) which must be iden- 
tically satisfied. The generic perturbative order k reads: 

(4.5) 
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Moreover the polynomial Tk+l must verify the reality conditions 

) R(') C3 w) + T/~+I Tk+l(z, (w,z) = =.k+l(z,w) 

~ 7  (Tk+~(z, w ) +  T;+~(w z))  r~<w) , = w )  
(4.6)  

Clearly equations (4.5) and (4.6) form an overconstrained system but we know a priori  of 
the existence of a solution for T~+I , uk and v k. Consequently it is sufficient to retain only 
a part of system (4.5) and (4.6) in order to avoid useless repetition of calculations. 

The remainders CA and Rk+l are constructed by using only the composition of 
polynomials. Thus the main limitations for a computer code based on eq. (4.5) and (4.6) 
derive from the quantity of storage we need when working with polynomials in more than 
two variables. 

APPENDIX 1 

We shall present a proof of Noether's theorem for symplectic maps. 
Let g'  with s E R be a monoparametric group of symplectic maps in R 2n 

gO = E2,~, we say that g" is a group of symmetries for a mapping F: 

p'= f(p, q) 
q' g(p, q) 

if: 

with 

g ' o F - F o g ' = 0  V s E R  

Deriving both sides of equation (1) for s, we obtain: 

Os g~ o F - F o g~ = 0 
0 

The symplectic nature of g" implies the following expansion in s: 

g'(p, q) - 

Then equation (2) takes the form: 

~q# OG 

cOG p - s ~-~(p, q) + o(s 2) 

+ s ~w~--G (p, q) + o(s 2) q 
v V  

Of OG Of OG G I OG 0-~-0-p-j- + ~ -0 - -~  = {f, j = - ~  o F  

(1) 

(2) 

(3) 

(4) 
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On the left hand side of (4) we recognize the matrix: 

-Y4 

Now we recall that  the Jacobian matr ix F .  has the property 

- ( J F . J )  -1  = F .  

so that  we can explicitly invert equations (4) obtaining: 

_~p OG Og. OG OG ~p-~ o F + ~ p  ~ o F =  

~qOG o F +  o F =  ogj oa Oa 

Now it is easy to recognize that  the previous equations can be writ ten in the form: 

~ p  ( G o F - G ) = 0  

~ q ( G o F - G )  = 0  
(5) 

or equivalently: 

G(F(x) )  - G(x) : const. V x E R 2'~ 

Recalling tha t  by our hypothesis map F has a fixed point in the origin, the previous 
equation reduces to: 

C ( F ( x ) )  - C ( x )  = 0 V x E R 2'~ (6) 

This means that  the real funtion G defined in (3) is a first integral of motion for map F 
and we refer to it as the integral associated to the group of symmetries 9"- 

A P P E N D I X  2 

Let L be a subgroup of Z 2 with dim L = 1; then two integers p and q having no 
common divisors, exist such that;  

L = { k E Z 2/k = l(rp, rq))  (1) 

where r is a fixed integer while 1 E Z. 
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We shall construct the 2 x 2 matrix M with integer entries: 

M= (mll m12)  
m 2 1  m 2 2  

such that M(L) C Z and det M = 1. We shall determine the entries of M by means of 
the equations 

rnllp + m12q = 1 

rrt21p + m22q = 0 (2) 

t r t l l m 2 2  - -  m 1 2 m 2 1  : 1 

If we choose m21 = - q  and m = p the second equation will be satisfied. Consequently 
the remaining equations are reduced to the single equation 

rnllp + rn12q = 1 (3) 

Now it is well known that if p and q have no common divisor, then it is always possible 
to find two integers such that equation (3) holds. Using definition (1),we see that by our 
choice: 

M(L) = l r M  ( p)q = I t (  1)0 = l ( r ) 0  V I E Z  

i.e. M(L) is the subgroup of Z which contains all the multiples of r. 

A P P E N D I X  3 

We shall show some properties of the symplectic maps close to the identity. Let us 
consider a map F in R 2" whose analytical expansion reads: 

x' = x + F k(x) + F k+l(x) + ... (1) 

Using the symplectic conditions (1.2) on the Jacobian matr ix ,  we can write: 

OFk OFk (I + ~ k-1 ( 1 +  ~ ) J  ) - J (2) 

so that the following equation holds: 

0 k 0Fk 
- ~ - J  + J - ~ -  - 0  (3) 

Recalling that J = - J  we deduce from equation (3) that: 

0Fk 
J - -  

Ox 
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is a symmetric matrix.  Thus we can always find a homogeneous polynomial Sk+l (x) such 
that 

_ a 0 F k  _ _ 02Sk+a (4) 
0x 0x0x  

If we consider the map: 

(1 + M s , + t )  (5) 

by definition we have: 

1 + Msh 
O S k + l  _ 

+, (x) ~ x + J ~ (x) = x + F k(x) ; F(x)  

This proves point 1). 

In order to prove the second point we write map (5) in the form: 

x'  - O S k + l  x + S - ~  (x) 

Then if we perform the change of variables: 

(6) 

x = A(~) 

on eq. (6), we obtain the equation: 

OSk+, 
x'  - A (A -~ (x) + a (A -~ (x) ) )  (7) 

Now it is easy to check that 

(A-~(x))  = A.(~lb- ~ s~+~ (x)  

Thus we can write eq. (7) in the form: 

~ x + J b -  ~ (8) 

Then the thesis follows from equation (8) recalling the definition of map (5). 
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A P P E N D I X  4 

We shall characterize the complex generating functions which represent a symplectic 
map in (3 2'` with an invariant subspace of equation w = z*. 

Let us consider the complex generating function 

s(.., w) = ,. .~ + ~ s~(.., w) (~) 
k > 3  

which represents a map in C 2n : 

by means of the equations: 

M: ( . ,w)  , ( . ' ,~ ' )  

�9 = , ' +  E ~ ( , ' , ~ )  
k > 3  

k > 3  

(2) 

We require that: 
W : Z*  ~ W t : Z t* 

Let us take the complex conjugates of equations (2) 

(3) 

OSi (z" 
z* =z'* +k~>30w. ,w*) 

~s.( w" = w" + ~ z", ~ ' )  
k > 3  

(4) 

then request (3) implies that  the following equations must identically hold: 

W - - - -  

Z t _-- 

I#..--W! ,-'))[ (5)  

Replacing z and w' with the right hand side of equation (2), we obtain the identities in z 
and w 

(6) 
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We shall refer to equations (6) as to the reality conditions for Sk(z, w). 
At the generic order k -  1 the reality conditions read: 

~z(Z, w) + Ow* ~w = 

0Z*  

(7) 

where the remainders Rk depend on Sj with j < k. Now we replace the left hand side of 
eq. (7) with the following equalities: 

OSk OS~, 0 (Sk(z,w)+ ST,(w, z)) o-~ (., w) + ~ (w,.) = o. 

0,, 0( ) os~ (. w) ~ ~ ( w  .) = s~(., w) + S~(w,.) (8) 
Ow ' Oz* ' o ~  

and system (8) takes the form: 

~ (s,(.., w) + S;(w,,.)) = R~')(,, w) 

o~~ sk(', w) + sk'(w,,)) = R~ -) (.,w) 
(9) 

This is clearly an overconstrained system, but we know a priori that  this system is inte- 
grable so that  the reality conditions for Sk reduce to: 

sk(-, w) + Sg(w,.) = R~(., w) (~0) 

where as usual remainders Rk depend on Sj with j < k. When k = 3 we have simply: 

s~(., w) + S;(w,..) = 0 

i.e. the real part  of S3(z,z*) is zero. 
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