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Abstract

The problem of the existence of normal forms for symplectic maps in R?” is
analyzed using a technique based on the generating functions. We discuss exten-

sively the case of a map with an elliptic fixed point: both the resonant and non
resonant cases are presented.

Explicit algorithms to calculate the analytic expansions of the normal forms
and the associated canonical transformation are also provided.

Introduction

The aim of this paper is to generalize the well known results for Birkhoff’s normal
forms of a Hamiltonian system to the symplectic maps in R?™. Studying the behaviour
of the orbits near an equilibrium solution, Birkhoff (1 showed the existence of a formal
canonical transformation which reduces the Hamiltonian to a very simple form when the
frequencies of the linearized equations are rationally independent. Later Gustavson [2]
‘introduced a more general normal form which also admits study of the resonant case.
More recently the theory of the normal forms for Hamiltonian systems has been developed
using the Lie transformations method (3 .

In spite of the connection between the Hamiltonian systems and the symplectic
maps; the previous results do not include a trivial generalization to the symplectic maps
in more than two dimensions. Indeed the conditions for the symplecticity of a map in
R?" take a very complicated form and it is difficult to construct a normal forms’ theory
explicitly satisfying these conditions. This theory has been framed for the area-preserving
maps 4 while a computer code capable of calculating the normal form already exists 9] .

In order to avoid these difficulties, we use extensively the possibility of representing a
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symplectic map by a generating function. In this way we can construct explicit algorithms
to compute the normal form and the associated canonical transformation. Clearly the
recurrent equations we must solve are more complicated than the corrisponding ones in
the case of the differential equations, but the use of the mappings has obvious advantages
from a computational point of view. Moreover the symplectic maps are useful in the study
of periodic differential equations of the form:

X Y M) =0 (1)

k>1

when the homogeneous polynomials Ag(x,?) are discontinuous functions of ¢{. We recall
for example that the motion of a particle in a hadronic accelerator is well described by
equation (1) with Ax(x,t) stepwise functions (8] . Other physical phenomena which involve
instantaneous interaction, like the beam-beam interaction in modern colliders [7.12] | are
easily described by means of symplectic maps.

The difficulties of visualizing the phase space of a map in R?™ with n > 2, make the
study of the geometry of the orbits a very hard task. Although the transformation which
brings a map into normal form is usually divergent [® , we can extract relevant information
about the behaviour of the orbits using the related first integrals of motion and the method
of the interpolating Hamiltonian [®! . Anyway, a rigorous analysis with the normal forms
would involve the estimates of the remainders of the perturbative expansions. This has
been done in the case of Hamiltonian systems [1°) obtaining an exponential estimate of
Nekhoroshev’s type and there is strong evidence for the area-preserving maps 1l . Yet
up to now a rigorous result in this sense for the symplectic maps in R?™ is not available.

The present work is organized in the following way:

In section 1 we define the normal form with respect to a subspace L C Z™ for the
symplectic maps in R?™ with an elliptic fixed point.We analyze the properties of such
normal forms by means of Noether’s theorem.

In section 2 we discuss in a general context the problem of the existence of a formal
canonical trasformation of variables which conjugates two given symplectic maps.

In section 3 we prove the existence of a canonical transformation of variables which
brings a symplectic map in normal form up to any finite perturbative order. We treat both
resonant and non resonant cases. The use of complex canonical coordinates in C?™ requires
the generating function to have a set of reality conditions to insure that the transformation
of variables is real.

In section 4 we present the recurrent equations which have to be implemented in a
computer code to calculate the normal form and the associated canonical transformation.
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1-Normal form for symplectic maps

Let x be an element of R2%™ :

2n n
X = E L€ = E :pje2_1—1 + gjez;
1=1 71=1

where e; is the standard basis. We shall say that the map:
x' = F(x)
is symplectic if the Jacobian matrix F,(x) has the following property:
F.(x)JF.(x)=J
where J is the 2n x 2n matrix:
=1e( V)

and the tilde denotes the transposed matrix.

Equation (1.2) is equivalent to usual conditions for the symplecticity:

{pg-,pi} = {Q§,ql} =0

{Phrai} =t

V3, k = 1..n where we use the usual Poisson Bracket operator:

", 8a; 8b, Ob: Oa;
. b — J _ J
{aJ ’ k} ; Opi 01 Opi Oqi
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(1.1)

(1.2)

(1.3)

We shall suppose from now on that the symplectic map(1.1) is an analytic mapping with

a fixed point at the origin.

We characterize the normal forms for the maps by means of the property of sym-
metry with respect to some particular groups. Let L be a subspace of Z™, we define the
rotational group G, whose elements are the direct product of n rotations in the plane
< pj,q; > with angle a; such that the n-nuple a satisfies the resonant condition with

respect to L:
k-a=0 mod2r V keL

(1.4)

In particular when L = {0} and the condition (1.4) is satisfied for any a, we shall speak

of the group G of rotations and of the non resonant case.
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We say that map (1.1) is a normal form of elliptic type with respect to L if:
R(a)oFoR(—a)=F V R(a)e€ Gy (1.5)

In the non resonant case the definition (1.5) provides n independent groups of symmetry
to map F, one for each parameter a; and Noether’s theorem (see appendix 1) allows us to
find n independent first integrals of motion for map F:

2 4 2
1 g2
p; = 5 5 4 with j=1l.n (1.6)

Moreover these integrals are in involution because the groups of symmetry commute each
other.

Generally with L C Z™ and dimL = r, we can always construct a matrix M with
integer entries and det M = 1 such that:

M(L) C span{e;....e.} (1.7)

and the linear space M(L) is isomorphic to Z".
Now if a € R™ is resonant with respect to L then it follows that the n-nuple 3:

B =M""(a)
is resonant with respect to M(L):
h-=0 mod2r V heM(L) (1.8)

and vice versa (we show an example with n = 2 and » = 1 in Appendix 2). As one can see
from the property (1.7), the parameters 3,,;..8, in (1.8) are completely free and Noether’s
theorem allows one to construct n — r first integrals in involution for the normal form F.
Such integrals read:

Il:ZMU( '72 J) =ZM1jpj l=r+1....n
Jj=1

j=1

The normal form mappings have a simple expression in a set of complex variables which
reduce R(a) to diagonal form.
Let us enlarge our real space to the complex space C?™ defining the variables (, x)

such that:
P = Rer
(=t o

The extension of a real map in C?™ will be characterized by the invariance of the subspace:

{I""" =0 (1.10)

Imy =0
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We then perform the following change of variables in C*™ which preserves the symplec-

ticity:
Z =7 X (1.11)
W =1 —1Y '

so that a generic R(a) reads:

R(a) = 1211® (e;’ e_O,,J.) (1.12)

and the equation of the invariant subspace (1.10) becomes:
w=1z" (1.13)

In the non resonant case definition (1.5) and the invariance property of subspace (1.13)
reduce map F to a completely integrable form:

g — gt SU(ZW)
(1.14)
w' = we—152(zw)
where ((z2z"*) is real and:
oS
Qi(p) = — with 7 =1..n
J( ) apj (P)
In the resonant case a normal form with respect to L reads:
(2' = ez + Y Fi(z,w)
k>2
\ L 1.15
w =e w4+ ) Gy(z,w) (1.15)
\ k>2

where the homogeneous polynomials F; and G, satisfy the following equations:
Gs:)(e"az, e w) = eiaGi')(z, w)
G (e'*z, e "*w) = e=2G{" (2, w) (1.16)

V a € R™ resonant with respect to L. and have precise constraints due to the con-

ditions for symplecticity, Indeed we can represent map (1.15) by means of a complex
generating function :

G(z,w') = ezw' + ) Gi(z,w') (1.17)
k>1

where the homogeneous polynomials G;(z, w) are invariant under the action of group Gy.:

Gr(e®z, e~*w) = Gi(z, W) (1.18)
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It must be pointed out that the invariance property (1.18) of the generating function (1.17)
implies the commutative property (1.5) for the corresponding transformation because we
are using the complex coordinates (1.11). In the original variables (p, q) this is no longer
true as may easily be checked. The reason is that the generating function G is not a
geometrical object: i.e. G depends on the coordinates we are using.

We recall that z = w” is an invariant subspace for map (1.15)

60(z,2)] " = (" (z,2")

and consequently the generating function G(z,w') has some special properties which we
discuss in appendix 4.

2-Conjugation theory
Let us consider two symplectic maps F and G:
x' = F1x + Fy(x) + F3(x) + ..... (2.1)

X' = G1X + G3(X) + G3(X) + ..... (2.2)

where F(x) represents a 2n-vector whose components are homogeneous polynomials in x
and F; = F,(0) and the same for G.

We say that maps (2.1) and (2.2) are conjugated to each other up to terms of order
N if there exists a canonical change of variables T : x — X defined in a neighbourhood
of the origin such that:

G=ToFoT !4 oN) (2.3)

Establishing the conditions for the existence of transformation T is a necessary step in
order to construct a normal form theory for the maps.

The main problem is to exhibit explicitly the symplectic character of the maps.
We overcome this difficulty using the representation of a symplectic map by means of a
generating funtion: a real function §(x) in R*™ such that:

0S
0) = d —(0)=0
S©0)=0 amd 2(0)
defines a symplectic map:
®:(p,q) — (p’q)
by means of the equations:

'p=p'+%§(p',Q) 2.4
2.4

" 0S (1
|4'=a+ g(phq)
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wherever the implicit function theorem is satisfied. We shall use the following notation:
x' = &(x) = (1 + Ms) (x) (2.5)

Let us introduce the symbol - defining:
A(x) = B(x) = A(x) = B(x) + o(k + 1)

We recall the properties of symplectic maps close to the identity (for a proof see appendix
3):

1) Given a symplectic map in R?" :

x' = x4 Fp(x) + Frp1(x) + oo (2.6)

it is possible to find a homogeneous polynomial Sx41(x) such that:

x' = (1+Mg,.+1)(x)

differs from (2.6) by terms of degree larger than k.
2) if A is a symplectic map in R?" :
A(x) = Ajx + Az(x) + ....

then:

Ao(14+Ms,)oA™ = (14+Mg,,)

Moreover one can easily check that the following equations hold V k:

(1+MT,,)o(1+MS,,) - (1+MT,,+S,)

k-1
(1 T MS")—I 1 (1 + M—S")
(1+M,.+1 ) = (1+MT,,+1)0(1+M. ) (2.7)

DI A 2T
;=3 j=3

We now proceed computing order by order the right hand side, T o F o T™!, of
equation (2.3). The linear part implies that F; and G; are similar matrices and we can
assume G; = F; without loss of generality.

Then transformation T can be written in the form:

T = (1 + MZ Tu) (2.8)
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In order to find an explicit expression for the second order terms we write maps

F(x) and G(X) in the following form:

F(x) =RPoF;x =R o (1 + MF,,) oFix = (1 + Mps) o Fix
2

(2.9)
G(X) =RY o FiX =RY ¢ (1+ Mg, ) o 1X - (1+Mq,) o FiX
where the homogeneous polynomials F3 and G3 are calculated using property 1:
R{(x) = F(F7'x) = (1+Mg,)(x)
RS (X) = G(G;" = (1+ Mg, )X (2.10)
and as a consequence:
Rg)(x) = =X
(2.11)
RY(X) = =X

Now we substitute eq. (2.9) and (2.11) in the conjugation equation (2.3) obtaining:

RO (1 —|—MG3) oF,X = (1+MZ T.) oRY o (1+MF3) oF; 0 (1+M2Th)_l(X)

A>3 k>3

Therefore retaining only the second order terms we have:

(1 n MGS) o F1X = (1 + MT,,) 0 (1 + MF,)}:"1 0 (1 + MT,)_I(X) (2.12)

or equivalently:

(1 n MG,)X - (1 + MT,) 0 (1 + MF,)F1 0 (1 + MT,) o FIIX (2.13)

Then thanks to property 2) and equalities (2.7), equation (2.13) takes the form:

(14 Mg, )(X) = (1+ Mgy pyopyers ) (X) (2.14)

Thus maps (2.1) and (2.2) are conjugated to each other up to order 2 if a homoge-
neous polynomial 75 exists such that:

Ty(x) — T3 (F71(0)x) + Fa(x) = Ga(x) (2.15)
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where F3 and G3 are defined in (2.9).

Using an inductive argument we shall show the explicit form of the generic order
N of eq. (2.3). We assume by hypothesis that we have just calculated the polynomials
T3(x)...Tn(x) such that:

G(X) = (1 +Min) oF o (1+M§T~)—l (2.16)

and that we also know the homogeneous polynomials G3(x)...Gn(x) which verif;' the
following equality:

G(X) = (1 + MGN)....(I + MG,) o F; X = GV-1)(X) (2.17)

Therefore according to eq. (2.16) and (2.17) we can write:

~1
(1+MN )oFo(l-}—MN ) =R§;.N)0G(N) (2.18)
5 n $n
k=3 h=3
G(X) = RVeW¥-1)(x) (2.19)

where:

(N)
R -
F (x) N1 X

RV xy =
MX) = X

We observe that the remainder R(F.N)depends not only on F but also on the polyno-
mials Tk with k£ = 3...N.

Then we can calculate two homogeneous polynomials Fy4; and Gn41 with the
following property:

( RS;'N) (1 + MFN+1)
< (2.20)
5 (1)

21

21

so that equation (2.3) reads:

(1 +MGN+1) o G(N-l)(X) ; G(X) = (1 +MZ Tu) oFo (1 +MZ Th)—l(X) I=V

k>s k>S

(1+MTN+1) (1+M§:Th) oFo (1+1\!I§:Th)-1 o (1+MTN+1)—1(X) ;

k=3 h=S8S

(1 n MTN+1) o (1 + MFM) o GIN-1) (1 + MTN+1) -I(X) (2.21)

N
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-1
Applying map (G(N"l)) to both sides of eq. (2.21), we obtain:

(1 + MGN+1) ~ (1 + MTN+1) o (1 +MFN+1) o G(N-1) 4 (1 + MTN+1)—1 5 (G(N—l))—l

Finally we recover the same form of equation (2.14):

o Tav41(%) — T2 (F71(0)x) + Favpa(x) = Grva () (2.22)

Therefore we can formulate the Theorem:

Two analytic maps F and G with a fixed point at the origin are conjugated to each
other up to terms of order N:

G =ToFoT™!
N

T=(1+My )

h>s

where:

if the homogeneous polynomials T}, satisfy the recurrent equations:
Tk(X) — T],(Fi—lx) + Fk(X) = Gk(x)

with k =3..N +1
where the polynomials G give a factorization of map G according to:

G = (1+ Mgy, )-(1+Ma,) o Fy

while the polynomials F} depend on map F and on the polynomials T; with j = 3...k — 1.
The complexity of the computation of G and Fj} are irrelevant because other algorithms
will be proposed when the existence of the solution is garanteed.

3-Reduction to normal form of a symplectic map

Let £ be an element of C2™:

2n n
£ = E e = E zjegj_1 + wjes;
1=1

j=1
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with z and w defined by (1.11). We consider a map F:

€ = F(€) = R(w)E + Fa(€) + Fa(€) + ... (3.1)

which is the image of a real map: i.e. z* = w is an invariant subspace for F.
We say that the n-nuple w is non resonant with respect to M if:

k-w=2mn with n integer = keM (3.2)

If (3.2) holds with M = {0} in (3.2) we simply say that w is non resonant.
We shall construct a canonical trasformation T on C?™ :

T = (1+MZT.)

such that if w is non resonant with respect to M then map G:
G=ToFoT! (3.3)

is the image of a real normal form of elliptic type with respect to M.

Then we must not only solve the conjugation equation (3.3) but also verify that
transformation T is the image of a real transformation of variables; this can be achieved
by requiring the reality conditions for T} (see appendix 4):

Tw(z,w)+ Ty (w,2) = Ri(z,w) (3.4)

These equations are not trivial and in effect play the role of symplectic conditions for
transformation T.

Let us consider order k — 1 of equation (3.3) (see eq.2.22):

Ti(§) — T(R(-w)£) + Fie(€) = G(¢) (3.5)

It 1s useful to introduce the IIps projector in the space of complex polynomials P(£) which
are invariant under the action of group Gy :

We recall that the condition:

MmGr=Gy YV k (3.6)

garantees that map G (see eq. (2.17) ) is a normal form with respect to M.
Therefore we split equation (3.5) into the system:

[ (1 - Tin) [Th(€) — TW(R(-w)6) + Fu(§)] =0

(3.7)
| In |T4(€) — T(R(-w)¢)] + Tt (Fi(8)) = G()
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Now we substitute T} ,F and G with their explicit expressions:

Te(¢) = > £,

1,meZ" ,|l|+|m|=k

with the convention: _

£[l,m] — H Z;-j w;ni

j=1

obtaining the following equations:

-y i+ fim=0 if l-m¢gM
(3.8)
(1 - eiw-(m—l))tl’m -+ fl,m = gl,m if l-meM
If w is non resonant with respect to M, we know that:
kdM= (1—¢e“k%)z£0
and consequently we can always solve the first equation of system (3.8) letting:
b = ——Jlm (3.9)

(1 _ eiw-(m—l))

Conversely the second equation of system (3.8) determines the coeficients ¢ ,,, while the
remaining coeflicients ) ,,, are free.

The proof that we can always find a T} solution for equations (3.7) consistently with
reality conditions (3.4) makes use of an inductive argument.

Let us consider the case k = 3. Then eq.(3.4) has the simple form:

Ts(z,w)+ T35 (w,z) =0 (3.10)

or more explicitly:
tm +1) =0 with [+ |m|=3 (3.11)

Replacing tj ;» with the right hand side of (3.9), eq. (3.11) reads:

1
(1 _ eiw-(m—l))

m + oy = (fum + faag) =0 with (1-m)¢M

so that if Fj satisfies the reality conditions, the same holds for (1 — IIpg)T3. Recalling that
the initial map F is the image of a real map and that F3 is defined by:

F - (1+MF,) o R(w)

one can easily check that F3 has the required property.
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This shows the consistency of (1 — HM)T3 with the reality conditions; thus if we
choose the remaining coefficients of IIpgT3 according to:

li,m +t:n,l =0 with (l — m) eM

we complete the proof in the case k = 3.

Let us consider the generic order k, assuming by inductive hypothesis that we have
just solved our problem at every order < k. We choose a homogeneous polynomial T}, that
satisfies equation (3.4) and we calculate the polynomial G}:

k(6) = Ti(€) — Th(R(-w)§) + Fi(€) (3.12)

In this way we conjugate the initial map F with a map G’ of the form:

¢ = (1+Mg)o (14 MGH)....(l + MGS) o R(w)

which is the image of a real map up to the terms of order k — 1. Moreover by our inductive
hypothesis the map:

G+ = (14 Mg, , ). (14 Mg, ) o R(w)

is a normal form with respect to M.
It is easy to see that at this perturbative order map G' can be read in the form:

r = ' (k—z)
G = (1 + M(l_nM)G;) o (1 + MHMG’.) Xe (3.13)

From the group’s property of the normal forms with respect to M, we see that all the
terms not in normal form in the right hand side of (3.13) come from

(1 + M(I—HM) G;,)

By our choice, map G' is the image of a real map up to terms of order k — 1 then
(1 — Om )G, satisfies the reality conditions which read:

(1 —Im)G(z,w) + (1 — Om)Gy(w,2) =0 (3.14)
We replace in (3.14) G}, with the right hand side of (3.12) obtaining:
(1 - Te) [(TL — T4 o R(~w))(2, ) + (Tf" — T4 o R(w))(w, )|+
+ (1 — Om) [Fk(z,w) + F"(w,z)] =0 (3.15)

Now, our initial hypothesis was that 7T} satisfies reality conditions (3.4); consequently
equation (3.15) reduces to:

(1 — ) [F,,(z, w) + Fi(w,2)| + (1 - IIm) [(Ri - Ruo R(—w))(z,w)] —0 (3.16)
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Replacing Fi and R; with their explicit expressions we obtain the system
fim + fog + (1 — ei“"(m_l))rl,m =0 with 1-m¢gM (3.17)
So if we consider solution (3.9) for (1 — IIm)T% , from eq. (3.17) it follows easily that

—(fl,m + fr':-x,l)
(1 . eiw-(m—l))

tym +im = =7 m with 1-m¢gM (3.18)

which proves the reality conditions for (1 — HM)Tk.
We then choose the remaining part, IlIpgT%, consistently with reality conditions (3.4)
(this is always possible as one can check) and we calculate G, from the equation:

Gi(§) = OmFi(€) + Om(Tk(§) — Tu(R(-w)E)) (3.19)

This completes the reduction into normal form of map F up to terms of order k£ — 1.

Freedom in the choice of lIpg T means that the normal form G is defined except for
a similarity relation:

G'=UoGoU™! (3.20)

where U is a canonical transformation in normal form with respect to M; i.e. the initial
map F has in general a whole family of normal forms with respect to a subspace M. The

only exception is the non resonant case, when the set of the normal forms is an abelian
group so that equation (3.20) reduces to:

G =G

We summarize the previous results in the following Theorem:

Given a symplectic map F in R?"

¢ = R(w)¢ + F3(6) + F3(£) + ...

if w is non resonant modulo M,subspace of Z?", it is possible to find a canonical trasfor-
mation T in a neighbourhood of the origin such that the map:

G=ToFoT™!

is in normal form with respect to M up to terms of order N. Transformation T is deter-
mined except for a further change of variables in normal form with respect to M. Moreover

in the non resonant case,the part in normal form of map G depends only on the initial
map F.
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4-Algorithms for the calculation of normal forms

We shall present the recurrent equation it is necessary to implement in a computer
code,calculating the normal forms for a map.
The analytic expansions of map F and the normal form G read:

( Z' = e“"z + E f(k)(z,w)
k>2
$ i (4.1)
w =e W+ E g(k)(sz)
\ k>2
(Z' = e“"Z -+ Z u(k)(Z,W)
k>2
ﬁ ! —tw (42)
W' =e "W + E V(k)(Z,W)
\ k>2

while the canonical transformation T : £ — E is given in implicit form by the equations:

2=Z+ T FHEzw)
< 23 4.3)
W=w+k§3%Ti(Z,w) (

Using the commutativity of diagram

F
3 +¢!
Tl jT
= &
G

we can construct a set of recurrent equations in order to calculate the expansions (4.2)
and (4.3).
We start from the right hand side of the diagram, represented by the equations

(2 =2 + > —a—T—’%(Z',w')
i>3 OW
{ - 811 (4.4)
WI — wl + Z s(zl’wl)
k i>3 0Z

and we substitute in the order: 2’ and w’ from equations (4.1), W’ and 2’ from equations
(4.2) and finally w and Z from equations (4.3).

In this way we obtain a set of polynomial equations in (Z, w) which must be iden-
tically satisfied. The generic perturbative order k reads:

( e"""% (T,,.,.l(z,w) — Tri1(e“z, e“‘"w)) — ui(z, w) = C{"(z, w)

e 2 (T,,_,.](z, W) — Tap1(e“s, e'“"w)) + va(z, w) = C{ (2, w)

- .

(4.5)

\
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Moreover the polynomial T}, ; must verify the reality conditions

(

3% (Tk+1(z, w) + T,:‘H(W,z)) = Ri'_zl(z, w)

(4.6)
% (Tk+1(2, w)+Tg, ,(w, z)) = Ri‘l)l(z, w)

AN

\

Clearly equations (4.5) and (4.6) form an overconstrained system but we know a priori of
the existence of a solution for T} ; , ux and v;. Consequently it is sufficient to retain only
a part of system (4.5) and (4.6) in order to avoid useless repetition of calculations.

The remainders C, and R4, are constructed by using only the composition of
polynomials. Thus the main limitations for a computer code based on eq. (4.5) and (4.6)
derive from the quantity of storage we need when working with polynomials in more than
two variables.

APPENDIX 1

We shall present a proof of Noether’s theorem for symplectic maps.
Let g* with s € R be a monoparametric group of symplectic maps in R?"® with
g° = E,,,, we say that ¢g* is a group of symmetries for a mapping F:

{p' = f(p, q)

q' = g(p,q)
if:
g’oF —-Fog’=0 VseR (1)
Deriving both sides of equation (1) for s, we obtain:
0

—0 (2)

—(g’oF—-Fog’) 0

Os

The symplectic nature of g° implies the following expansion in s:

¢

p— 3%%(?,‘1) + ofs?)

q+ 8G’( 2 (3)
La+s55(P,q) +ofs”)

9°'(p,q) = ¢

Then equation (2) takes the form:

(4)
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On the left hand side of (4) we recognize the matrix:
0 0
ypa_| 5 o
JEJ =1 "or  of
dq OJp
Now we recall that the Jacobian matrix F, has the property

S~

~(JF.J) =F,

so that we can explicitly invert equations (4) obtaining:

Bf_aa F 4+ Fi8C o = 4C
9f; 3G 99; G , ¢ — 9G
| 34 9p; °F T 39 9q; °F = 3q

Now it is easy to recognize that the previous equations can be written in the form:

> .

(%(GOF—G)=O

< (5)
%(GOF—G)=O

or equivalently:
G(F(x)) — G(x) = const. ¥ x e R*"

Recalling that by our hypothesis map F has a fixed point in the origin, the previous
equation reduces to:

G(F(x))-G(x)=0 V xeR*" (6)

This means that the real funtion G defined in (3) is a first integral of motion for map F
and we refer to it as the integral associated to the group of symmetries g°.

APPENDIX 2

Let L be a subgroup of Z? with dimL = 1; then two integers p and ¢ having no
common divisors, exist such that;

L= {k € Z%/k = l(rp,rq)} (1)

where r is a fixed integer while [ € Z.
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We shall construct the 2 X 2 matrix M with integer entries:
M= [ ™1 ™
mz1 M22

such that M(L) C Z and det M = 1. We shall determine the entries of M by means of

the equations
(( My1p + miz2q = 1

w_ .

ma1p + ma2q =0 (2)

\ M11M22 — Mi2Mm2; = 1

If we choose my; = —¢q and m3, = p the second equation will be satisfied. Consequently
the remaining equations are reduced to the single equation

myp+myq=1 (3)

Now it is well known that if p and ¢ have no common divisor, then it is always possible
to find two integers such that equation (3) holds. Using definition (1),we see that by our

choice:
. P\ 1\ r
M(L)—lrM(q>—lr(O)—l(O) V leZ

i.e. M(L) is the subgroup of Z which contains all the multiples of r.

APPENDIX 3

We shall show some properties of the symplectic maps close to the identity. Let us
consider a map F in R?"™ whose analytical expansion reads:

x' =%+ Fg(x) + Fr1(x) + - (1)

Using the symplectic conditions (1.2) on the Jacobian matrix, we can write:

OF OF
il —) = 2
(1+6x)J(1+6x)k—1J (2)
so that the following equation holds:
OF, . OF,
—J+J— = 3
5 TI 5 =0 (3)
Recalling that J = —J we deduce from equation (3) that:
F
J?_"

Ox



NORMAL FORMS FOR SYMPLECTIC MAPS OF R 125

is a symmetric matrix. Thus we can always find a homogeneous polynomial Si+1(x) such

that
_yOFk _ 3?Sky1 (4)
Ox Ox0x
If we consider the map:
(1+Ms,,,) (5)

by definition we have:

(14 Ms,,.)(0) = x+ T2 () = x 4 Fa(x) £ F(x)

This proves point 1).

In order to prove the second point we write map (5) in the form:

’=
X kx+J Ox

Then if we perform the change of variables:

X = A(x)

on eq. (6), we obtain the equation:

! -1 65 1 -1
X' = A(ATNX) +I5 (A (X))

Now it is easy to check that

P (A (X)) = Kol 5 (Susa (A7 (X))

Thus we can write eq. (7) in the form:

X' =X+ A.(x)JX:(X)-a%{- (Sk+1(A—1(X)))

= |l

X+ A‘(X)JI’(X)% (Sk+1 (A‘{IX))

= X+ J-(,% (Sk+1(A77X))

Then the thesis follows from equation (8) recalling the definition of map (5)

|l

O5k1 (4 (6)

(7)

(8)
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APPENDIX 4

We shall characterize the complex generating functions which represent a symplectic

map in C?" with an invariant subspace of equation w = z*.
Let us consider the complex generating function

S(z,w) =2z -w+ Z Sk(z,w)
k>3

which represents a map in C2" :
M:(z,w) — (z',w')

by means of the equations:

(2 =2 + > %i—ﬁ(z',w)

< k>3
_ OSk (1
| w' _w+k22:3 #(z , W)

We require that:
w=z"<<—w =2"

Let us take the complex conjugates of equations (2)

, 8S:

zt — zlt + 3 zlt W‘
{ Z wt ()
6 ]
wu — W‘ + ‘h zn w-o-
\ k§_>_:3 z ( ’ )

then request (3) implies that the following equations must identically hold:

| w = (z" + Y g"-—s;;(z",z))

k>3

s'*=w'

g = (w‘ + 3 %g—.’;(w',w‘))

\ k>3

w'=g

(1)

(2)

(3)

(4)

(5)

Replacing z and w' with the right hand side of equation (2), we obtain the identities in z

and w r

> 365;k+g§;(w+ > %%,z+ > %‘S}) =0

4 k>3 k>3 k>3
8S aS‘( as dS ) _
et (w+ Y BEs+ Y Gk ) =0
\ :.2223 Oz k‘; z kzz:s

(6)
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We shall refer to equations (6) as to the reality conditions for Si(z, w).
At the generic order k — 1 the reality conditions read:

4( Ok (2, w) + gv%é(w,Z) = Bz, w) (7)
\ %(Z, W) + %L_:;(w)z) = Ri“')(z’w)

where the remainders R; depend on S; with j < k. Now we replace the left hand side of
eq. (7) with the following equalities:

T (3, w) + gk (w,2) = o Sa(a,w) + Si(w,1)
ok m,w) + Sk (w,) = 2 (Sularw) + S3(w,2) ) 8)

and system (8) takes the form:

B (Sutmw)+ 53(w0)) = RO, w)

B (Suaw) 4 51w2)) = B w)

> -

(9)

This is clearly an overconstrained system, but we know a priori that this system is inte-
grable so that the reality conditions for S reduce to:

Sk(z,w)+ Sy (w,2z) = Re(z,w) (10)
where as usual remainders R, depend on S; with j < k. When k£ = 3 we have simply:
S3(z,w) + S3(w,z) =0
i.e. the real part of S3(z,2z"*) is zero.
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