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1. Introduction 

In this paper, we will investigate the geometry of "rigid" integral curves of rank 2 dis- 
tributions on manifolds. Recently, the geometry of curves in a manifold M tangent to a 
specified distribution ~ C T M  has been making a reappearance in differential geom- 
etry (for example, see Hamenst~idt (1990), Pansu (1989), or Strichartz (1986,1989)). 
The study of these curves also has longstanding, close ties with control theory and the 
calculus of variations with "non-bolonomic constraints". A natural approach to the 
study of these curves is to generalize the treatment of path spaces ~t la Morse theory 
and study the space X?~(p, q) consisting of differentiable curves in M joining p to q 
and staying tangent to the distribution cj~. At most of  its points, the space ~?~(p, q), 
after being endowed with an appropriate topology, behaves very much like an infinite 
dimensional manifold. However, there are sometimes special curves 3' E g-2~(p, q) 
around which the local structure of ~ ( p , q )  is drastically different. In this paper, 
we show that, for most distributions ~ of rank 2, such special curves always occur. 
(The precise meaning of "most" will be made clear in the following sections.) 

The study of  these special (or "non-regular") curves is a old subject, with early 
work having been done by Engel, Goursat, Caftan, Hilbert, and Bliss, while more 
modem work (in the context of differential geometry or the calculus of variations) 
has been done by Mfito, Gardner, and Hermann. The subject also has close ties with 
control theory and sub-Riemannian geometry, but we do not explore those in the 
present paper. 

Instead, we are concerned with studying the curves 7 at which $2~ (p, q) fails to 
be a smooth manifold when endowed with the natural Cl-topotogy. More precisely, 
we are interested in the so-called non-regular curves 7 where a natural candidate for 
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the tangent space T.~Y2~(p, q) fails to be the true tangent space. In fact, this paper 
concentrates on the case of rigid c_~-curves, that is, points %' 6 Q ~  09, q) which are 
essentially isolated. In Sect. 2, we remind the reader of  the notion of the natural 
tangent space T.J2~(p,  q) as well as the notion of non-regular curves in this context. 

That rigid curves exist is not new. In fact, examples of rigid curves were known for 
a certain rank 2 distribution ~ on •4 studied by Engel. What does appear to be new 
is the fact that rigid ~ - c u r v e s  are quite common for nearly all rank 2 distributions. In 
fact, our main result, Thm. 3.1, is that a rank 2 distribution ~ which satisfies some 
mild non-degeneracy conditions always has rigid C~-curves. Actually, our theorem is 
more precise than this; in the course of its proof we give a new local normal form 
for such distributions which allows one to check the rigidity of these non-regular 
~ - c u r v e s  quite easily. This local normal form is likely to be useful in other contexts 
as well. 

Mikhael Gromov (private communication) has pointed out to us that these ex- 
amples of rigid c~-curves show that the sheaf of C~- immers ions  7: [a, b] --~ M 
which are everywhere tangent to a bracket generating distribution ~ need not be 
micro-flexible in his sense, contrary to one's natural expectation (cf. Gromov (1986), 
p. 84). 

In Sect. 3, we also consider the phenomenon of local rigidity and, when ~ is 
locally isomorphic to an Engel system, we give a necessary and sufficient condition 
for a locally rigid ~_~g-curve "y to be globally rigid. This condition takes the form of 
determining whether the developing map of a certain canonical projective structure 
on -y has sufficiently large image in p.~?l. This test for global rigidity could quite 
probably be generalized to the case of rigid 6_~-curves where ~ is a system of 
Goursat type (defined in Sect. 4), but we do not do this in this paper. 

In Sect. 4, we turn to some interesting examples. We point out that, for the 
generic rank 2 distribution .cj on a manifold M of dimension 5 or more (see Sect. 4 
for the precise meaning of "generic"), there is at least one locally rigid ~ - c u r v e  
passing through each point m 6 M in each tangent direction in c ~ .  When M has 
dimension exactly 5, the distributions which are generic in our sense are precisely the 
distributions studied by Cartan (1910). We show that, in this case, there is precisely 
one rigid ~ - c u r v e  passing through each point in each ~g-direction. 

As an example of  a system of Cartan type, we analyse the non-holonomic me- 
chanical system which describes rolling one surface over another in space without 
slipping or twisting. In the case where one of the surfaces is a sphere, this is a well- 
known mechanical system. For example, when one surface is a sphere and the other 
is a plane, this system is mentioned in Arnold (1989) and in a recent preprint of 
Brockett and Dai. In the more general case of two arbitrary surfaces, we show that, 
if the surfaces have unequal Gaussian curvatures, then the rank 2 distribution which 
describes this mechanical system is of Cartan type and we interpret its rigid curves 
in terms of the geodesics on the two surfaces. 

As a final example, we consider the distribution ~ on the orthonormal frame 
bundle ~ "  of  E 3 whose integral curves are the Frenet frames of curves of constant 
curvature n -- 1. We show that there is a 7-parameter family of rigid o'S-curves in 
this case. Most of the corresponding curves in space do not have constant torsion and 
hence are not generated by a l-parameter subgroup of the Euclidean motion group. 
This shows that the rigid curves of a distribution may very well not be homogeneous 
even when the distribution itself is homogeneous. 
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Finally, we remark that the study of rigid curves for distributions of rank greater 
than 2 is more subtle. For example, it turns out that generic distributions of rank 3 
in R 5 or ~6 do not have any rigid curves, even though they have non-regular ones. 
Thus, for distributions of greater rank, it appears that rigidity is a rarer phenomenon.  

In closing, we would like to thank Kevin Corlette, Yasha Eliashberg, and Richard 
Montgomery for interesting and helpful discussions during the course of this work. 
We would also like to thank the referee for making several valuable and informative 
comments  about the control theory literature as well as making suggestions which 
improved the exposition. The bulk of this paper was written during the 1992 workshop, 
Geometric Variational Problems and Optimal Control, held at the Fields Institute 
in Waterloo, Ontario. The authors would like to thank the Fields Institute for its 
hospitality. 

2. Integral curves of  distributions 

We begin with some basic definitions. We are going to be interested in the geometry 
of curves (in manifolds) which are subject to what are often called non-holonomic 
constraints in the literature. In the language of exterior differential systems (Grif- 
fiths,1983), this is the geometry of 1-dimensional integral manifolds of a Pfaffian 
system. 

Let M '~+s be a connected smooth manifold of dimension n+s  and let c j  C 
T M  denote a subbundle of rank • on M .  The manifold M will be our model of a 
(generalized) control system with n controls. 

A smooth curve 7: ! --' M (where 1 is an interval or the circle) will be said to 
be an integral curve of c j  (or, more simply, a Y - c u r v e )  if 7~(t) lies in c~,~(t) for 
all f C I .  Note that we do not require that "7 be an immersion. However, to avoid 
obvious trivial cases, we shall henceforth assume that -,/is not a constant map. 

A distribution ~ on a manifold M is said to be bracket generating if, for every 
v E T,,~M, there exist some number  k of vector fields X l , . . .  , X k on M which 
are each everywhere tangent to the distribution ~ so that the iterated Lie bracket 
Y = [X1, [ X 2 , . . . ,  [ X k - l , X k ] . . . ]  has the value v at ra. A distribution with the 
bracket generating property is often said to satisfy Hi4rmander's condition. A theorem 
of Chow (1939) asserts that if c~  is bracket generating then any two points of M can 
be joined by a c~J-curve. 1 Let us assume from now on that c j  is bracket generating 
and let ~ ( p ,  q) denote the set of cJJ-curves "7: [a, b] ~ M which satisfy ~,(a) = p 
and -y(b) = q. We shall endow ~2~(p, q) with the C a topology. 2 

2.1 The local structure of the space of CJ-curves 

A fundamental  problem is to describe the topology of ~2~(p, q). By Chow's  theorem, 
we already know that ~2~(p,q)  is non-empty. In fact, it is not hard to show that 
g2~ (p, q) has at least as many components  as 7rl (M).  However, less is known about 

Unfortunately, Chow's theorem does not say that any two points of M can be joined by some immersed 
CJ-curve. Although this is presumably true, there does not seem to be a proof available. 

2 One should keep other topologies in mind as well. In fact, other topologies are often quite interesting. 
For example, in connection with sub-Riemannian geometry the Sobolev H 1 topology is important, 
see Hamenst~idt (1990), Pansu (1989), and Strichartz (1986). 
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the higher homotopy groups of Y2~(p, q) and, consequently, about things like the 
space of unstable critical points of various natural functionals on g2~ (p, q). 

Naturally, one wants to regard Y2~(p, q) as an infinite dimensional manifold of 
some sort so as to apply Morse theory ideas. But it was recognized early on that this 
approach has problems caused by the presence of so-called "non-regular" curves. We 
now want to recall what these are and how they arise in the problem of studying the 
local structure of Y2~(p, q). 

If Y2~(p, q) is to be a manifold, it must have a tangent space. What is the natural 
candidate? When ~ = T M ,  the obvious model for a tangent space is the space 
�9 ~0 ~ (T7) which consists of sections of T.~ = 7* ( T M )  which vanish at the endpoints. 
In other words, it is the space of tangent vector fields along 7 which vanish at the 
endpoints. Of course, this works; it is the foundation of the classical methods of the 
calculus of variations. 

In the case of C~_curves where ~ is a proper subbundle, care must be taken. For 
a given 7 C Y2~(p, q), set T.~ = 7* ( T M )  as before and set Q.y = ~* ( T M / ~ ) .  One 

first constructs a first order differential operator D.r:, Z~ --~. jgl (Q.y) with the 

property that V C.  "g~ is of the form 

V(t )= (t ,  ~ s  (t,O) ) 

for some l-parameter family of ~ - c u r v e s  F(-,  s): [a, b] ~ M if and only if V 
satisfies D~(V) = 0. (In the coordinate formulation, this "variational operator" D.~ is 
quite classical. For an account with historical notes, see Bliss (1930).) 

We shall have to compute a few examples in the following sections, so we will give 
a brief description of  D- r in a formulation suitable for those computations. Suppose 
that 7([a ,b])  lies in a region U on which the bundles ~ and T M  are trivial. We 

may then choose linearly independent 1-forms w l , . . . ,  w '~, 01 , . . . ,  0 '~ on U with the 
property that, for all m C U, 

~,n = {v ~ T~M I O~(v) = 0 } .  

(We shall often say that ( J  is defined in U by the Pfaffian equations 01 . . . . .  
0 "~ = 0.) Associated to this coframing, there exist functions C~ = - C ~  (unique) 
and l-forms 0~ (unique modulo the span of the 0 "y's) so that the following structure 
equations hold (note the use of the summation convention): 

1 f*(~ i ' dO~ = - r  AOZ + ~(~ij ~O AO2 3 (2.1) 

If X , , . . . ,  X,~, Y1,-. �9 Ys is the basis of vector fields on U dual to w l , . . . ,  w ~, 0' . . . .  
0% then any V E ,  "g~ can be written in the form 

V(t) = (t, ui(t) Xi (7(t)) + v~(t) Y~ ( 7 ( t ) ) )  (2.2) 

for some unique functions u i and v ~ on [a, b]. The formula for D~ then takes the 
form 

D~(V)(t) = (t, F~(t)  | (dr ~ + r (7'(t)) v ~ dt + C~j (~/(t))~o 3 (7 ' (0)  u ~ dt) ) ,  
(2.3) 

where Y~(t)  E TT(t)M/~TCt ) is the obvious reduced vector. (For a verification that this 
is indeed a correct formula for D 7 and that this operator is well-defined independent 
of the choice of coframing, see Hsu (1992).) 
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Now, the most obvious candidate for T r ( ~ ( p ,  q)) is ker0 D.~ = ker D.~ A. g0~ 
i.e., the "( / -variat ional  vector fields along 7 which vanish at the endpoints". However, 
unless Dr( .  "Z~ = . / / ) ( Q r ) ,  it can happen that some elements of ker0 D r are 
not the first variation field of any smooth curve in f2~(p,q).  In fact, this can fail 
spectacularly. As Bliss (1930) points out, there are cases where the only elements 
of ~2~(p, q) in a Ct-open neighborhood of 7 are reparametrizations of 7! We will 
see many such examples in Sects. 3 and 4 below. 

On the other hand, it is an easy consequence of the Implicit Function Theorem 
(the classical finite dimensional one)that,  if the map D r : .  "~~ ---~.  J~l (Qr)  is 
surjective, then every element of ker0 D r is, in fact, the first variation field of some 
curve in Y2,5, (p, q) which passes through 3'. A proof which works in a local coordinate 
chart can be found in Bliss (1930, Sect. 7) and this argument is easily extended to 
the manifold case. 

It has become standard to call a Y-cu rve  7 E ~2~(p, q) normal when the map D r 
is surjective. However, because of the way the Implicit Function Theorem is utilized 
in the analysis of such curves, we prefer the term regular, in analogy with the notion 
of a regular point of a smooth mapping. 

In any case, the cokernel of D r,  denoted by 

, ~ 1  ( ( ~ r )  

is always of finite dimension, and, in fact, has dim :~]~(r <- s. Indeed, because the D r 
has surjective symbol, the usual closed range theorems show that its dual space ,:7r 
is isomorphic to the kernel of the formal adjoint 

Dr" 

Relative to a coframing described as above, we have the following formula for D.~: 

Letting ~ and 0~, respectively, denote the obvious basis of sections of T~, then 

. --c~ (x 
D r 0 )(t) = o ( %  dr) 

(2.4) 
+ 0 (t) e + 02 dr ) .  

Thus, a (~-curve 7 is non-regular if and only if there exists a non-zero solution 
p = (p~) to the system of equations 

dp~ = - * %;~  p 
(2.5) 

Note that, because the first set of these equations is a determined set of linear ODE 
for the functions p~, every solution p = (p,~) which is not identically zero is nowhere 
vanishing. 3 

This test for non-regularity can be formulated globally. First, recall that the 
cotangent bundle 7r:T*M ~ M has a canonical symplectic structure ~) = dw, 
where w is the unique 1-form on T * M  with the property that w(v) = ~(~r'(v)) for 

all v c T~ ( T ' M ) .  Using this symplectic structure, our test for non-regularity is cod- 
ified in the following proposition, which, again, is simply a global rephrasing of the 

3 Eqs. (2.5) are called the "adjoint equations" in the control literature, see Pontrjagin, et al (1962). 
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classical conditions for "normality". It will be used as our test for non-regularity in 
the rest of the paper. 

Proposit ion 2.1 Let Q* c T * M  be the annihilator of  the distribution c j  C T M .  
Let O be the pullback of  the canonical symplectic 2-form J'2 on T* M to the subman- 
ifold Q*. Then a C~-curve 7: [a, b] --~ M is non-regular if  and only if  it has a lifting 
~/: [a, b] ~ Q,* which misses the zero section and which satisfies ~'(t) ~ O = O for all 
t E [a,b]. 

. s * Proof. By definition, any section a 6 /~(Q,~) is of the form ~r(t) = ( t ,5(t))  where 
"~: [a, b] ~ Q* is a lift of 3'. Now, it is a straightforward (local) calculation that 
D,y(~r) = 0 if and only if -~'(t)~ O = 0 for all t 6 [a, b]. For more details, see 
Hsu (1992). [] 

Of course, it follows from Prop. 2.1 that every sub-curve of a non-regular c~_ 
curve is also non-regular and, obversely, every extension of a regular c~ -curve is also 
regular. 

Recall that, for any closed 2-form ~ on a manifold N,  a characteristic curve of 
(or, more simply, a ~-characteristic) is an immersed curve ~b: [a, b] ~ N which 

satisfies ~b'(t)~ ~ = 0 for all t 6 [a, b]. In the present case, it is easy to see that 
a characteristic curve of O on Q* minus its zero section projects to M to be a 
non-constant ~ - c u r v e  (which is, of course, non-regular). Thus, we have a way of 
generating all of the non-regular ~ - c u r v e s :  we simply find the characteristic curves 
of  O on the "punctured" bundle Q*. 

Now, any given non-regular curve -y: [a, b] ~ M has at least a 1-parameter family 
of distinct liftings to Q* as a O-characteristic curve. To see this, recall that, since Q* 
is a vector bundle, it has a natural action of R*, given by scalar multiplication in 
the fibers. This action clearly scales O and hence carries O-characteristic curves to 
O-characteristic curves with the same projection to M.  We will say that two O- 
characteristic curves which differ by an action of an element of R* are homothetic. 
Obviously, for the purpose of studying the non-regular c~-curves, we may as well 
regard homothetic O-characteristics as equivalent. 

2.2 The prevalence of  non-regular curves 

It is an interesting question just how frequently one needs to deal with non-regular 
curves. For example, might there not be a simple, frequently satisfied condition on 
distributions ~ which forces all P~-curves to be regular? Alas, this is not the case. 
In fact, systems ~ which have no non-regular c~J-curves are something of a rarity. 

For example, if n is odd, then the manifold Q* c T * M  will have odd dimension, 
since its dimension is 2s+n. Thus, O cannot be non-degenerate on Q*. It follows 
that there will be many O-characteristic curves, most of them transverse to the fibers 
of Q* ~ M.  The projections of these curves will, of course, be non-regular. 

Even if n = 2p for some integer p, it very often happens that the set Z C Q* \ 0 
where O is not of full rank (i.e., where O ~+p = 0) contains a non-empty hypersurface 
H C Z which submerses onto M.  (For example, this is easily seen to be true if p is 
odd.) For dimension reasons, this hypersurface H will contain many O-characteristic 
curves which project to M to be non-regular curves. 
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In fact, it is very rare that Z is empty (which would,  o f  course ensure  that there 
are no ~'-characterist ic curves in Q* \ 0 and hence  no non-regular  S - c u r v e s ) .  For  
example ,  it can easily be  shown that Z is empty  if  and only if ~ is strongly bracket  
generating.  4 

In Rayner  (1962, Appendix  2), it is shown that, for given values o f  n and s, a 
distribution ~ of  rank n exists on some manifo ld  3//'~§ with the property that Z is 
empty  if  and only if  there exist s everywhere  linearly independent  vector  fields on 
the ( n - 1 ) - s p h e r e .  Thus, for example ,  n must  a lways be even if s is positive,  n must  
be divisible by 4 if  s > 1, and n must  be divisible by 8 if  s > 3. Clearly, this is 
much too special  to be a general ly useful cri terion (although it might  occasional ly be 
useful). 

Thus,  it appears that a good unders tanding of  the space ~Q~ (/9, q) will  very likely 
entail unders tanding non-regular  ~ - c u r v e s  in J?~(p ,  q). 

3. Rigidity in systems with n = 2 

In this section, we are going to show that, not only are non-regular  curves frequently 
encountered  in the study of  non-ho lonomic  sys tems,  but, in the first non-trivial  case, 
an ex t reme form o f  non-regulari ty occurs,  which we shall call rigidity. First, we make  
the fo l lowing definition. 

Def in i t ion  3.1 A ~ - c u r v e  7: [a, b] ~ M is rigid i f  there is a C 1-neighborhood )~ 
of 7 in ~ (7(a), 7(b)) so that every 71 E ~ is a reparametrization of  7. We say 
that "7 is locally rigid i f  every point of  I = [a, b] lies in a subinterval J C 1 so that 7 
restricted to J is rigid. 

Note  that rigid curves are at the opposi te  ex t reme from regular ones. In some 
sense,  they are as badly behaved as possible.  Nevertheless ,  we are going to show 
that, when  n = 2 and s > 1 (the first non-trivial  case)  they are quite common .  5 

3.1 Engel systems 

Consider  the case where  n = 2 and s = 2. The bracket generat ing assumpt ion on the 
sys tem ~ C T M  ensures  that, at least on an open subset o f  M ,  the sys tem [cA,, c~]  
has d imens ion  3 and the sys tem [[c~,, cj~], c cr ] has d imens ion  4. We shall say that 
c j  is an Engel system on M if these d imens ion  counts hold  at every point  o f  M .  
(We have chosen  the name "Enge l"  because of  the extensive work that Engel did on 
sys tems o f  this kind in connec t ion  with the theory o f  M o n g e  characterist ics.)  

It was proved  by Engel  h imse l f  that these systems have a s imple local normal  
form. In fact, according to Engel ,  each point  o f  M has an open ne ighborhood  U on 

4 This means that every local non-vanishing vector field Xl tangent to cj- belongs to a local basis 
{XI, X2 , . . . ,  Xn } for the sections of c(/ so that the (2n-1) vector fields XI . . . . .  Xn, [Xj, X2t, 
. . . .  [Xj, Xn] span the local tangent vector fields on hr. Of course, this clearly cannot hold unless 
s _< n -  l, which is already a severe limitation on the usefulness of the criterion. 

5 When s = 1 things are different: An everywhere non-integrable plane field ~ on a 3-manifold M is 
just a contact structure on M and every c-Z-curve is easily seen to be regular in this case. However, 
note that the "generic" 2-plane field ~ on 3/[ 3 will be a contact distribution only away from a 
certain closed hypersurface H C M and that this hypersurface will contain non-regular curves, see 
Montgomery (1993). 
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which there exist local coordinates (w, x, y, z) in which the system ~ is simply the 
span of the vector fields 

0 0 0 0 
x~ = Uxx + z ~ + ~ ~ and x2  = ~ V '  (3.1) 

The corresponding annihilator bundle Q*U c T*U is then spanned by the 1-forms 
01 = dy - z dx and 02 = dz - w dx. We shall call such a local coordinate chart 
an Engel chart for c~4. (For a proof of this normal form, see Bryant, et al (1991, 
Thm. II.5.1).) 

Let us use the method suggested by Prop. 2.1 to compute the non-regular ((.g-curves 
which lie in the domain U of an Engel chart. It is clear that there is a diffeomorphism 
Q*U = U • ~2, where we use coordinates Pa and P2 on the P.,Z-factor, so that the 
2-form ~ is given by 

gs = d(pt 01 + P2 02) (3.2) 

= dpl A 01 + (dp2 + Pl dx) A 02 - P2 dw/~ dx 

Clearly g/ has full rank away from the locus Pz = 0. Hence all of the characteristic 
curves of  ko must lie in this hypersurface. Since we are only concerned with the curves 
which also satisfy Pl ~ 0, it follows immediately that the characteristic curves of 
are defined by the Pfaffian equations 

01 =0 2 = dx = dpl = O (3.3) 

in the set where P2 = 0 and Pt 5 ~0. Since the linear span of {0 t, 0 2, dx} is the same as 
that of {dx,  dy, dz},  it follows that the non-regular c_~+/-curves in U are the ~ - c u r v e s  
on which x, y, and z are constant. Thus, U is foliated by a 3-dimensional family of 
non-regular ~ curves. 

This calculation clearly globalizes, so that M itself has a canonical foliation whose 
leaves are precisely the immersed non-regular ~..~g-curves. We summarize this in the 
following proposition. 

Proposition 3.1 Let a 4-manifold M 4 be endowed with an Engel system ~ c T M .  
Then there is a canonical associated foliation . '~  of  M by curves which has the prop- 
erty that a ~_~-curve 7: [a, b] ~ M is non-regular if  and only if  the image of ' , / l ies in 
a single leaf o f . 7 .  

We are now going to show that, for an Engel system ~c~, the immersed non-regular 
~5~-curves are locally rigid. First, we prove the following proposition. 

Proposition 3.2 Let M = II~ 4 have coordinates (w, x, !1, z) and let ~ be the Engel 
system spanned by the two vector fields 

0 0 0 0 
X = ~ x + Z ~ y + W ~ z  and W = ~ w  w. 

Then up to reparametrization, there is a unique CJ-curve ~/ in l~ 4 joining p = 
(wo, xo, Yo, Zo) to q = (wt ,xo,  Yo, Zo) and satisfying the condition that ~/*(dw) is 
nowhere zero. 

Proof. First, note that ~ is invariant under transformations of either of the forms 
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(w,  x ,  y,  z)  ~ (w,  x + xo, y,  z)  

o r  
1 ( w , x , y , z )  ~-+ (w+w0 ,  x, y + yo + z o x  + ~ w o x  2, z + zo + w o x )  

and that such transformations leave d w  invariant. Next, note that ~ is also invariant 
under transformations of the form (w,  x ,  y ,  z)  ~-~ ( rw,  x ,  r y ,  r z )  where r ~ 0 is any 
constant and that these transformations merely replace dw by r dw. It follows from 
these observations that we may, without loss of generality, reduce to the case where 
p = (0 ,0 ,0 ,0)  and q = (1,0,0,O). 

Suppose now that "~: [0, l] --~ F. 4 is a c:j.-curve satisfying the conditions of the 
proposition and satisfying 3,(0) = p and "7(1) = q. Then the w-component of y is 
clearly an increasing smooth function of t with non-vanishing derivative which maps 
[0, l] diffeomorphically onto itself. 

Thus, " /can be reparametrized so as to be of the form ~/(t) = (t,  x( t ) ,  y(t) ,  z ( t ) ) .  
By construction, the functions x(t), y(t) ,  and z( t )  are smooth functions on [0, 1] which 
vanish at the endpoints and satisfy the differential equations 

y ' ( t )  = z( t )  x ' ( t ) ,  
z ' ( t )  = t x ' ( t )  . (3.4) 

Since x(0) = z(0) = 0, it follows that 

/0' z(t) = t x(t) - x(T) d r ,  (3.5) 

from which it further follows that x( t )  is the derivative of a function h(t)  which also 
vanishes at the endpoints. This yields the formulae 

x ( t )  = h ' ( t )  and z( t )  = t h ' ( t )  - h ( t ) .  (3.6) 

The differential equation for y now becomes 

y ' ( t )  = z ( t )  x ' ( t )  = (t h ' ( t )  - h( t ))  h" ( t )  . (3.7) 

Since, by hypothesis, y(O) = h(O) = O, integrating by parts gives 

1 y( t )  = ~t (h ' ( t ) )  2 - h(t) h'( t )  + h'(7)) 2 d r .  (3.8) 

However, now setting t = 1 in this formula and using h(1) = y(1) = 0 gives 

/0 l 0 = (),h'(T). 2 tiT. (3.9) 

It follows that h~(t) =- O, so h(t)  - 0. Thus 3'(t) = (t, 0, 0, 0), as desired. 

This result has the following immediate corollary. 

Proposition 3.3 For  any Enge l  s tructure c j  on a 4 -mani fo ld  M ,  the leaves o f  the 
assoc ia ted  fo l ia t ion  .27" o f  non-regular  C~-curves are locally rigid. 

Naturally, this raises the question of whether these locally rigid curves are globally 
rigid too. The following Proposition gives a necessary and sufficient condition for this 
by a criterion reminiscent of the theory of focal points in Riemannian geometry. 
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Proposition 3.4 Let  ~ be an Engel  structure on a 4-manifold M and let . 7  be 
the associated fol iat ion by non-regular CJ-curves. Then each leaf  L o f . ? 7  carries a 
canonical projective structure. Moreover,  an immersion "7: [a, b] ~ L is a rigid ~ -  
curve i f  and only i f  some (and hence every) developing map 6~: [a, b] -~ ~_F 1 o f  the 
induced projective structure on [a, b] is one-to-one except possibly at  the endpoints. 

Proof.  First, we explain how the canonical projective structure on the leaves of , 7  is 
constructed. Suppose that p E M is fixed and let (w, x, y, z) and (14\ X,  Y, Z) be any 
two Engel charts for ~ with domain U containing p. Thus, the Engel system ~ can 
be described by either of the following pairs of Pfaffian equations: 

d y - z d x = d z - w d x = O ,  or d Y - Z d X = d Z - W d X = O .  (3.10) 

As we computed above, the leaves of the foliation . 7  in U are given by dx  = dy = 
dz  = 0 and hence they must also be given by d X  = d Y  = d Z  = 0. It follows that the 
1-forms d X ,  d Y ,  and d Z  are linear combinations of dx,  dy,  and dz.  We may thus 
regard X,  Y, and Z as functions of x, y, and z. Moreover, since direct calculation 
yields that [ ~ , ~ ]  is described by either dy - z d x  = 0 or d Y  - Z d X  = 0, we 
see that there must be a function A so that d Y  - Z d X  = A (dy  - z dx)  and another 
function # so that 

d Z  - W d X  =_ i z (dz  - w d x )  mod (dy - z d x ) .  (3.11) 

Expanding this out and comparing coefficients yields the relation 

( X x  + z X  u) W - Z x  - z Z  v 
w = (3.12) 

- X z  W + Z~ 

When restricted to each leaf L of . 7 ,  all of the functions X ,  Y, Z, and their partials 
with respect to x, y, and z become constant. Thus, Eq. (3.12) shows that, on each 
leaf L, the function w is well-defined up to a linear fractional transformation with 
constant coefficients. It follows that there exists a unique projective structure on each 
leaf L o f , 7  with the property that the first coordinate w of any Engel chart (w, x, y, z) 
is a projective coordinate on each leaf. This is the canonical projective structure whose 
existence was asserted. 

Now, we want to see how this projective structure detects rigidity. Let ~,: [a, b] 
L be an immersion. Without loss of generality, we will assume that [a, b] = [0, 1]. 
Let p = "7(0) and let D 3 C ~3 be a disk centered on 0 C ~3 and let 4~: D 3 --~ M be a 
smooth immersion with r = p which is also transverse to L at p. By shrinking D if 
necessary, we may assume that r  is transverse to . 7  at all of its points. Since . 7  
is a foliation and [0, 1] is compact, we may use the usual techniques to construct a 
smooth immersion ~: D x ( - ~ ,  l+c) ~ M with the properties that first, ~(0, t) = 7(t) 
for all t C [0, t]; and, second, for each n E D,  the curve "/u(t) = ~P(n,t) is an 
immersion of  ( - a ,  l+c) into a leaf of . ~ .  

Clearly, "7 is rigid as a ~ - c u r v e  if and only if the curve {0} • [0, 1] is rigid in 
D • ( - s ,  l+a) as a ~*(5~)-curve. Thus, for the rest of the proof we may (and shall) 
assume that M = D x ( - e ,  l+a) and that ~ is simply the identity mapping. 

Now consider the distribution ~ = [ ~ ,  ~ ] ,  which has rank 3. As noted above, 
in a Engel chart, this distribution is described by the Pfaffian equation dy  - z dx  = O, 
which is clearly constant along the leaves of , ~ .  It follows that, by shrinking D 
again if necessary, we may assume that there are independent functions x, y, and 
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z, globally defined on D • ( - c ,  l+c) and vanishing at (0, 0), for which the Pfaffian 
equation d y  - z & c  = 0 describes the system c,~q and moreover, so that the foliation 
, 7  is described by the Pfaffian equations d x  = d y  = d z  = O. 

Since D • ( - e ,  l+e) is simply connected, there exists, on D • ( - c ,  l+c), a function 
0, unique up to additive multiples of 7r, so that the Engel system ~ is described by 
the Pfaffian equations 

d y  - z d x  = cos 0 d z  - sin 0 d x  = 0 .  (3.13) 

The fact that these equations describe an Engel system implies that the functions 
(x, y, z, 0) are independent at every point of D x ( -~ ,  l+e). Hence they define an 
embedding of D • ( - e ,  l+c) into R 4. 

We may thus now regard our problem as one of determining the rigidity of the 
non-regular ~ - c u r v e s  in I~ 4 endowed with the Engel structure c,(Z defined by the 
(global) equations 

d y -  z d x  = c o s O d z  - s i n O d x  = 0 . (3.14) 

Note that, by construction, the map & D • ( - e ,  l+e) ~ i-~IP l defined by 

6(;o) = [cos 0(p), sin 0(3))] (3.15) 

projectively develops each fiber of .~- into 1RIP 1 according to its canonical projective 
structure. Moreover, the developing map 67( t )  = [cos 0(0, t), sin 0(0, t)] is one-to-one 
on the open interval (0, 1) if and only if [0(0, 1) - 0(0,0) I _< 7r. 

In order to ease the following argument notationally, it is convenient to make a 
slight change of coordinates. If we replace y by ( y  + x z ) / 2 ,  the Pfaffian equations 
describing ~ take the more symmetric form 

d y  - z d x  + x d z  = cos 0 d z  - sin 0 d x  = 0 .  (3.16) 

Also, let us note that we are free to apply coordinate changes of the following form: 
If a, b, c, and e are constants satisfying a e  - bc  : /O,  then the equations 

~ = ( ~ x + b z  

fl = ( a e  - bc) 9 (3.17) 
~.=CX+~.Z 

[cos 0, sin 0] = [a cos 0 + b sin O, c cos 0 + e sin 0] 

define a new set of coordinates (with 0 globally defined uniquely up to an additive 
integral multiple of rr) in which the defining equations of the distribution ~ are still 
of the form 

d~ - s + s = cos0d~  - sin 0 d~ = 0 .  (3.18) 

Thus, the mapping (z, y, z, 0) ~ (~;, ~, $, 0) is a diffeomorphism of R 4 onto itself 
which preserves ~ .  This allows us to make a projective change of parameter in 0. 
Note that all changes of this form preserve the length of a 0-interval if and only if 
this length is an integer multiple of 7r. 

By aid of such transformations, we are reduced to deciding which curves of the 
form (z, 9, z, 0) = (0, 0, 0, t) with 0 < t < P are rigid. We claim that this :C~-segment 
is rigid if and only if P _< 7r. By the above remarks on the developing map 6, this 
claim is equivalent to the remaining part of the proposition to be proved. 
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First, suppose that P < 7r. Clearly this segment has a Cl-neighborhood ~[  in 
J2~ ((0, 0), (0, P) )  which contains only curves on which the form dO is non-vanishing. 

It follows that any curve 5' in ~/~ can be written in the form "~(0) = (x(0), y(0), z(0), 0) 
for some smooth functions x(0), y(0), and z(O) on the interval [0,/9] which vanish at 
the endpoints 0 = 0 and 0 = P .  Since we must have 

0 = cos 0 dz - sin 0 dx 
(3.19) 

= d(z cos 0 - x sin 0) + (z sin 0 + x cos 0) dO 

it follows that there must be a smooth function h(O) defined on [0, P]  which satisfies 

z c o s 0 - x s i n 0 =  h 
z sin 0 + x cos 0 = - h ~ (3.20) 

where, clearly, h and h r must vanish at the endpoints. We can solve these equations 
for x and z, obtaining 

z(O) = h(O) cos 0 - h~(O) sin 0 
(3.21) 

x(O) = -h(O) sin 0 - h'(O) cos 0 

and then substitute this into the relation dy = z dx - x dz and finally integrate (using 
the endpoint conditions) to obtain 

y(O) = h(O)h'(O) + fo ~ (h(~)) 2 - (h'(~)) 2 d~.  (3.22) 

However, since h(/9) = y(P)  = 0, this gives 

0 = fo P (h(~)) 2 - (h'(~)) 2 d~.  (3.23) 

Now, it is well known that for any non-zero differentiahle function h on [0, rr] which 
vanishes at the endpoints, we have 

2 < r 2 (3.24) 

with equality if and only if h is a constant multiple of sin 0. Since we must also have 
h~(0) = 0, it follows that the only possibility for equality is h _= 0. Of course, this 
establishes that the given segment is rigid when /9 < 7r. 

Finally, to establish the non-rigidity for 19 > 7r, it suffices to exhibit an appropriate 
family of functions hA which describe a non-trivial deformation of the initial curve. 
As an example wi th /9  = 27r /v~  < 27r, consider the 1-parameter family of functions 

hA(O) : A ( 1 - cos(v/3 0) ) (3.25) 

(where A is a parameter). These all satisfy hA(0) = hA(P) = h~(O) = h~(P) = 0 
and moreover the functions :cA(O), y~,(O) and zA(O) constructed from hA by the above 
formulae all vanish at the endpoints. Thus, this segment is not rigid. Any longer 
interval cannot be rigid since we can merely extend this family of  h 's  by zero past 
P .  For shorter intervals (but still longer than 7r), we take advantage of the fact that 
the transformation group preserving ~ on R 4 described above can be used to make 
equivalent any two intervals whose 0-length is strictly between 7r and 27r. 
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3.2 Rigidity in higher dimensional cases 

We now turn to the higher dimensional case. We are going to show that if ~ is a 
non-integrable rank 2 distribution on M 2+s satisfying the condition that the rank 3 
distribution (ZI = [ ~ ,  ~ ]  also be non-integrable, then there always exist many non- 
regular ~ - c u r v e s  which are locally rigid. 

First, we do some preliminary work on the structure equations. We may as well 
assume that s > 2, since the case s = 2 is just  that of Engel systems. Let c~  be a 
non-integrable rank 2 distribution on M 2+~ and let U C M be an open set on which 
both ~ and T M  are trivial bundles. Then, on U, there exist linearly independent 
1-forms wl ,go2,01, . . .  ,0  s so that ~ is defined in U by the Pfaffian equations 

01 = 02 . . . . .  0 "~ = 0 .  (3.26) 

As we have seen, there exist functions C a on U so that 

dO c~ ~ C ~ g o  I Ago 2 mod 0 J , . . .  ,0 s . (3.27) 

By hypothesis, these functions C "  do not vanish simultaneously at any point of U so 
it is possible to make a basis change in the 0 ~" so that we have the equations 

dO1 == . . .  =_ dO.SdO sl ~ gol0 Ago 2 1 mod 01 , . . . . .  0 s (3.28) 

The Pfaffian relations 0 t . . . . .  0 s-1 = 0 then define the distribution c~,q. Now, we 
are assuming that ~ l  is nowhere-integrable, i.e., that i t /q,  c ej.l] properly contains fZq 
at every point. It follows that we have structure equations 

dO ~ -- 0 "~ A'n~ 1 t t ~  co + B ~ g o  2) r o o d 0 1 , . . . , 0  ~-1 fo ra l l  1 < c , < s - l .  (3.29) 

where not all of the functions /3~ vanish simultaneously. Of course, in the generic 
situation, the ( s - 1 ) - b y - 2  matrix /3 = (B~)  will have rank 2, but, for our purposes, 
we only need to assume that it has rank at least 1. 

The upshot of all of these calculations is that we have normalized structure 
equations of the following form (where the greek index now runs over the range 
1 <_ c~,3 < s - l ) :  

dO '~ = - - r  AO 3 +0sA(B{~go I + B ~ c o  2) 
(3.30) 

dO s = _ r  ,, 0 9 _ ~ ,, 0 ~ + ~ ,, go2 

We will now use Eqs. (3.30) to describe the non-regular CJ-curves which lie 
in U. Since all the bundles involved are trivial over U, we have Q ~  = U • R ~. Using 
coordinates p j , . . .  ,p~ on the ~'~-factor, we can write the canonical 2-form ko in the 
form 

= d(p, o' + . . .  + p s o  = ( d w  - v;, r  
(3.31) 

+ ( d p . s - P s ~  - P o B ~  goz) AOS+ps gol Ago2 

It is clear from this equation that ~ has maximum rank (and hence no characteristics) 
except along the hypersurface Ps = 0. On this hypersurface, but away from the (proper) 

sublocus where p~B~ = p3B~2 = 0, the form ~P clearly has characteristics defined by 
the following 2s Pfaffian equations: 
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= = = p;~B i co = 0 .  (3.32) 

We will denote this Pfaffian system by ~ .  
Let QT c Q* c T * M  denote the subbundle which is the annihilator ofC~l C T M .  

In the above trivialization of Qb over U, this subbundle is simply the locus defined 
by p~ = 0. We will denote by Q~ c Q~ the (dense) open subset of Q~ which, in 

each local trivialization as above, is the complement of the locus p~B{ ~ = pet3~2 = O. 
Although we used a local coframing to compute the Pfaffian system U~ of rank 2s on 
the (2s+l)-manifold Q~, the result is clearly independent of that choice of coframing 
and hence is well-defined globally on Q~. 

We can now state our main theorem. 

Theorem 3.1 Let (~ be a non-integrable rank 2 distribution on a manifold M 2+8. 
Suppose further that the distribution ~ = [cj ,  ~ ]  (which has rank 3) is nowhere- 
integrable. Then the projection to M of  any gt-characteristic in Q~ is a locally rigid 
~-curve. 

Proof. The proof rests on the following lemma, which generalizes Engel normal 
form (valid for the case s = 2) to a normal form for distributions c j  satisfying the 
hypotheses of the theorem. 

L e m m a  3.1 For each ~ C Q~ , let C( be the characteristic curve of g; passing through 
~. Let C~ be the image of  C~ under the natural submersion Q~ --~ M.  Then there is an 
open neighborhood U of  the basepoint m of  ~ on which there exists a local coordinate 
chart (w, x, Y, z, Vl , �9 �9 �9 vs-2) centered on m with the following two properties. First, 
the component of  C~ N U which contains ra is described by 

x = y = Z = V l  = . . .=Vs_2=O.  

Second, there are functions F l , .  �9 �9 F,s-2 on U so that ~ is spanned in U by the vector 
fields 

0 
W = - -  

Ow 
and 

0 0 0 0 0 

Ov~_--~" 

Assuming Lemma 3.1 for the moment, we will now prove that C'~ is locally rigid 
in a neighborhood of m. Indeed, consider any compact segment S C C'~ defined, in 
the local chart of the Lemma, by the set of relations a < w < b and x = y = z = v 1 = 

. . . .  %-2  = 0. This segment can obviously be parametrized as 70: [a, b] ~ U C M 
in such a way that, in the normal coordinates of the Lemma, we have 

70(t) = (t, 0 , . . . ,  0 ) .  (3.33) 

Clearly, "Y0 has a Cl-neighborhood '~?~ in f2~ (3'0(a),'y0(b)) so that every other c j_  
curve -y in / g  can be parametrized in the form 

7 ( 0  = (t, x(t),  y(t), z(t), v K t ) , . . . ,  vs-2(t)) . (3.34) 

Since 3' E f2~ (~/o(a), "y0(b)), the functions x(t), 9(t), z(t), v l ( t ) , . . . ,  % - 2 ( 0  must van- 
ish at the endpoints of the interval a < t < b and also must satisfy the equations 
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y'(t) = z(t) x'(t) 
z'(t)  = t x ' ( t)  
v'~(t) = F~ ( t ,  x ( t )  . . . .  , v~_2(t)) x '( t)  

v2 2(t) = F~_2(/, x(t) . . . . .  Vs-2(t)) x'(t) 

(3.35) 

However, by the proof of Prop. 3.2, which carries over verbatim to this case, the 
endpoint conditions together with the first two of these equations imply that x(t), 
y(t), and z(t) vanish identically. Of course, the remaining equations in turn now 
imply that the v~(t) are all constants. Since they must also vanish at the endpoints, 
they must in fact be zero. Thus, the curve 70 is rigid, as desired. [] 

It remains to prove Lemma 3.1. It is not clear why one might guess this Lemma 
to be true, but the essential hint is to be found in Cartan (1915), which contains a 
study of the case s = 3 (the first interesting case). Our proof was inspired by this 
analysis. 

Proof. (of Lemma 3.1) Let 4 r Q~ be fixed. Let rn E M be the basepoint of 4, so 
that 4 r T,*,~M. First, we fix an m-neighborhood U on which there is a coframing 
w 1 , w 2, 01 , . . . ,  0 s satisfying the normalized structure equations defined above. Since, 
as a vector bundle, the sections of  (Q~')~, are spanned by the 1-forms 0~ , . . . ,  0 s - l ,  
we may use a change of normalized coframing to arrange that the point 4 correspond 
to the point (m , (1 ,0  . . . .  ,0)) under the identification (Q~)u = U x R "~ 1 described 
above. In fact, under this identification, we have 

~P=d(plO t +'' '+p,~ 10 S-1) 
(3.36) 

-- ( po - 0 + (-pfm  w ' )  0 s, 

where, since 4 = ( m , ( 1 , 0 , . . .  ,0)) is an element of Q~, the 1-form B~ ~' + B~w 2 
must be non-zero at m. By shrinking our m-neighborhood U, we may assume that 
this l-form is non-vanishing on U. It follows that the closed 2-form ~' has Engel 
half-rank s on (Q~)v '  which is a manifold of dimension 2s+l .  

Now, by Darboux' theorem, there must exist a neighborhood V of 4 in (Q]')~ and 

a submersion F :  V -~ R 2~ so that ~P = F*(~20), where Y20 is the standard symplectic 
structure on R 2s. Note that the fibers of F are the characteristic curves of ~.  Now, 
consider the subspace 

E = {v  E T~(QT) U ](dp~ -pf~O~)(v)=0,  1 < c~ < s - 1  } c T((QT) U. 

This vector space has dimension s+2. Moreover, E has the property that ~P, when 
restricted to E ,  becomes decomposable (i.e., of half-rank 1) as well as the property 
that it contains the !P-characteristic direction through 4. 

From this latter property, it follows that the image subspace E = Ft(E) C 
TF(~)~ 2'~ is of dimension s+l  while, from the former property, it follows that -Q0 

restricted to E has half-rank 1. Now, given these properties of E ,  it is a standard fact 
of symplectic geometry (which follows from the Darboux-Weinstein Theorem) that 

is the tangent space of a smooth submanifold S C ]~2s of dimension s+ l  with the 
property that ~0 pulls back to S to be a closed decomposable 2-form. 

Thus, if we let S = F - '  (S) ,  then S is a smooth manifold of dimension s+2 
with following properties: First, 4 lies on S and T~S = E;  second, the pull-back 
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of k0 to S is a closed non-zero decomposable 2-form; and third, 5' is foliated by 
characteristic curves of g'. In particular, by shrinking V, we may suppose that the 
component of C~ N V which contains ~ actually lies in S. 

Since E is transverse to the fibers of the submersion Q~ ~ M ,  it follows that, 
by shrinking U again if necessary, we may suppose that S is the image of a smooth 
section 0 of Q~ over U and hence is described by equations of the form p~ = f~  where 
the fo  are functions on U. Since ~ lies on S, these functions must satisfy f l ( m )  = 1 

and f ~ ( m )  = 0 for 1 < ~ < s. By making a change of coframing, replacing 01 
by f l  01 + " '"  + f s - l  08-I ,  we may clearly arrange it so that 5' is described by the 
equations Pl = 1 and p,~ = 0, so we do this. 

Now, by construction, the 2-form 

dO1 = --~a#l A0c~_v (B{w I + B ~ w 2 ) A O  s (3.37) 

is decomposable. Also, by construction, we have dO 1 =_ 0 mod 0 1 , . . . ,  08 while dO I 

0 mod 01 , . . . ,  0 '~-l. It follows that dO 1 has a linear factor which lies in the span 
of 01 , . . .  ,08 but not in the span of 01 , . . .  , 0 8 - 1 .  Thus, dO l must have a factor of 
the form 08+  gl 0l + " "  + 9.~-1 08- l .  Again, by changing coframe, replacing 0* by 
0~ +91 01 + " '" + 9,~-1 0~-1, we may arrange that 0 ~* itself is a factor of dO 1. Finally, 
by making a suitable coframe change involving co I and co 2, we can arrange to have 

dO l = - 0  s/x co I . (3.38) 

By the Pfaff-Darboux theorem (Bryant, et al, 1991, Thm. II.3.4), it follows that 
there exist functions x, y, and z on a neighborhood of m so that 01 = d 9 - z d x .  It 
is easy to see that, by taking sufficient care, we may arrange that OSAdx  : / 0  and that 
x, y, and z vanish at m .  Since 

dO l = - d z  A d x  = - 0  ~ A co I , (3.39) 

it follows that 08 = A ( d z  - w d x )  for some non-zero function A and some function w 

on U. Replacing 0 ~, wl,  and co 2 respectively by ( l /A)0  ~, )~z l, and ( 1 / A 2 ) J ,  we may 
keep all of our structure equations so far and arrange that 0 s = d z  - w d x ,  Replacing 
y, z, and w, respectively, by y - � 8 9  2, z - w(m)x,  and w - w ( m ) ,  we may even 
arrange that the function w vanishes at rn. Finally, by adding a suitable multiple of 0 s 

to co I, we may arrange that w I = d x .  

The structure equations 

dO 1 = - d z  A d x  = - O s  Ao31 
(3.40) 

dO ~ = d x A d w -  co I A~ 2 mod 0 1 , . . . , 0  ~ 

now show that the functions w, x, y, and z all have linearly independent differentials 
on U and that we have 

d w  -~ w 2 mod 0 1 , 0 ~ , d x  . (3.41) 

Clearly, we may modify w 2 so as to have co 2 = d w  without affecting any of our 
previous normalizations. Thus, from now on, we assume that w 2 = d w .  

We must still find s - 2  more functions to complete our desired coordinate system. 
To do this, let us return to the consideration of the foliation of S by characteristic 
curves of k~. Since 0 t, regarded as a section of Q~" has its image equal to S, we 
can use 01: U ---, S to pull back this characteristic foliation to a foliation ,~7 of U 
by 6JY-curves. By Prop. 2.1, this foliation consists of  non-regular ~c~-curves. In fact, 
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by our constuction, the leaf of , 7  passing through m is precisely the component of 
C~ N U containing m. Since these leaves are CJ-curves, all of the forms 0" vanish 
on the leaves of . 7 .  Also by our construction, the leaves of .,jr" are characteristic 
for 01, and, since 01/xdO L = - d x A d y A d z ,  it follows that the functions x, y, and z are 
constant on the leaves of , 7 .  In particular, ~1 = d x  vanishes on the leaves of .~ ' .  It 
follows that ~2 = d w  must pull back to each of the leaves of . 7  to be non-zero since 
this is the only 1-form left in the coframing which does not vanish on the leaves of 
, 7 .  

Now, shrinking U again if necessary, we may choose, beyond x ,  y ,  and z, an 
additional s - 2  independent functions v l , . . . , v , - 2  vanishing at m which are also 
constant on the leaves of, '7". Since d w  does not vanish on the leaves o f . 7 ,  it follows 
that the differentials of the s+2 functions w , x , y , z , v ~ , . . .  ,v~ 2 are independent. 
Hence they form a local coordinate system centered on m .  

Finally, since the foliation . 7  is defined by the Pfaffian system 

d x  = d y  = d z  = d v l  . . . . .  d % - 2  = 0 , (3.42) 

and consists of ~ - c u r v e s ,  and since we know that d x  is linearly independent from 
the forms 0~ , . . . ,  0", it easily follows that there must exist functions F , , . . . ,  F,~_2 
on U so that, on U the system cS is defined by the Pfaffian equations 

d y  - z d x  = d z  - w d x  = dvL - F1 d x  . . . . .  dv~_2  - F ~ - 2  d x  = 0 . (3.43) 

However, this is exactly the statement of the lemma. [] 

The referee asked if it wasn't true that one could arrange that all of the functions F~ 
vanish at m. In fact, one can easily arrange this to be true. If one notices that 

d ( v ,  - F d m ) x )  - ( F ,  - F , ( m ) )  d x  = d v ,  - F ,  d x  

and simply uses the functions ~i = v, - bSdm) x instead of the original functions v~, 
this will not destroy any of the desired properties of the original coordinate system 
and will replace each function Fz by _IV, - F , ( m )  in the normal form. It is conceivable 
that this vanishing condition may be desirable in some situations. 

It is interesting to note that the local normal form provided for by Lemma 3.1 
depends on a choice of s - 2  functions of s+2 variables, namely the functions 
F I , . . . , F . ~ - 2 .  Here is why this should be expected: A rank 2 distribution on a 
manifold of dimension s+2 is determined by a section of the Grassmannian bun- 
dle G 2 ( T M )  --~ M of 2-planes in tangent spaces to M.  The fibers of this bundle are 
Grassmannian manifolds of the form G2 (JR s+2) and hence have dimension 2s. Thus, 
the local rank 2 distributions depend on 2s functions of s+2 variables. Since the 
local diffeomorphisms in dimension s+2 depend on s+2 functions of s+2 variables, 
it should be expected that the local diffeomorphism class of a rank 2 distribution in 
]p>s+2 should depend on 2s - (s+2) = s - 2  functions of s+2 variables. Of  course, this 
is exactly what our normal form produces. Thus, this normal form is, in some sense, 
optimal. 

Our main theorem does not say anything about the non-regular curves which have 
a lifting to a ~P-characteristic which happens to lie in Q~ \ Q~. It is an interesting and 
open problem to determine whether, under the bracket generating assumption, a l l  of 
the non-regular curves are rigid. 
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4. Examples 

In this section, we are going to cons ider  some examples  which  illustrate the general  
theory o f  the previous sections.  First, let us introduce some notation. For  any distribu- 
tion 6~ on a manifo ld  M ,  we  define .c~Jt = [.~6.63, c j ]  and, by induction,  ( J i + l  ---- [ ( J z ,  ( ~ ] ,  

for all i > 1. 

4.1 Goursa t  sys tems  

E. Goursat  [1923] made  a study o f  rank 2 distr ibutions c~  on M 2+'* with the property 
that each of  the distr ibutions ~ for 0 < i < s was  o f  constant  rank 2+/. Note  that, 
for s > 2 this is not  "gener ic"  behavior.  For  example ,  when  s > 2, a "gener ic"  rank 2 
distribution ~ will  have distr ibutions c'~t and c-~2 be of  ranks 3 and 5, respect ive lyP 

In any case,  for distr ibutions c ~  satisfying this hypothesis ,  Goursat  der ived the 
fo l lowing result  (which he  attributed to von Weber):  There  exists a c losed "excep-  
t ional" set E C M with no interior, so that M \ E can be covered  by open sets U 
on which  there exist  coordinates  (x, Y0, Yl~ �9 �9 - , Ys) SO that, in U, the distribution 
is descr ibed by the Pfaffian equations 

dyo - Yl d x  = dyl  - Y2 d x  . . . . .  dy,~ 1 - -  Ys dx  = 0 .  (4.1) 

Note  that, except  for the caveat  about  the except ional  set, this is a general izat ion of  
Enge l ' s  normal  form. 7 

In an open set U in which  the sys tem can be placed in this normal form, it is easy 
to descr ibe the rigid curves which arise as the project ions  o f  g ' -characterist ics  in Q~. 
They are s imply the curves of  the foliation descr ibed by 

d x  = dyo = dy l  . . . . .  dy .s - t  = 0 .  (4.2) 

Moreover ,  any ~c~-curve on which  d x  is not  identically zero is easily seen to be 
regular.  Thus,  the non-regular  CJ-curves  of  the Goursat  sys tem (1) form a foliation 
o f  ]p2+~. 

This suggests  that the fo l lowing proposi t ion might  be true. 

P r o p o s i t i o n  4.1 Let  ~ be  a rank  2 dis tr ibut ion on M 2+8 and  suppose  that .cJ't and  
c2292 = [ ~  , ~Jl ] have  cons tan t  ranks,  respect ively,  o f  3 and  4. Then the ~P-characteristic 
curves  in Q~ pro j ec t  to M to define a fo l ia t ion  . ~  o f  M by locally r ig id  c~ -curves.  

Proof .  The hypotheses  on ~ make  it poss ib le  to choose,  for any point  m E M ,  an 
m - n e i g h b o r h o o d  U and a cof raming  w I, co 2, 0 t , . . . ,  0 ~ on U,  so that, on U, we have,  
first, that ~ is def ined by the Pfaffian equat ions 0 ~ . . . . .  0 ~ = 0; second,  that c.~ is 

6 The referee has pointed out to us that, in the control theory literature, a Goursat system is sometimes 
referred to as an "integrator". 

7 For historical accuracy, it should be noted that Goursat did not notice that his proof of the stated 
normal form failed on an exceptional set. This was first noticed by Giaro, et al (1978), who provided 
an example with s = 3 where this exceptional set was non-empty. Their example was the system 
on ~5 defined by the equations dyo - Yl dx = dyl - Y2 dx = z d y 2  - d x  = 0. In this case, the 
exceptional set is the hyperplane z = 0; away from this locus, setting y3 = 1/z puts the system 
in Goursat normal form. As we shall see, this example actually fits quite nicely into the context of 
Cartan's result, Thin. 4.1. 
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defined by the Pfaffian equations 0 t . . . . .  0 ~-I = 0; and, third, that ~ is defined 
by the Pfaffian equations 01 . . . . .  0 '~-2 = 0. Moreover, we have the congruences 

dO ' k =  - 0 m o d O I , . . . , O  "~-1 ,  l < a < s - 2 ,  

dO s =- 0 mod 0 1 , . . . , 0  s 1 < c~ < s - 1, (4.3) 

dO s ~ A a j I A o :  2 mod 0 1 , . . . , 0  "~ , 

where A is a non-zero function. By replacing ~z t by an appropriate multiple, we can 
assume that A = 1. Moreover, since ~Jl is not completely integrable, it follows that 
we must  have 

dO s - I  ~ ( a l  ~ 1  + a2&JZ) A0S mod 01 . . . . .  0 "~-I , (4.4) 

where al and a2 are not both zero. By making a unimodular basis change among co 1 
and ~o 2 (so as not to disturb the dO* congruence), we may assume that al  = 1 and 
a2 = 0. Thus, our structure equations take the form 

dO ~ - - r  9 - 0 ~  1AO'~ I 

dO.S-1 = _ O ~ ( l  AO 9 .~ 1AO.~-t - r + w l  AO'~ (4.5) 

s _ A O 's 1 s d O S - - O r ~  AOJ O~ I r A0'~+~l/xc~ 

where we are now restricting the greek index to the range 1 < c~ < s - 2 .  We shall 
say that a coframing 0 1 , . . . , 0 ~ . w l ; w  2 on a domain U C M is adapted to ~ if 
01 . . . . .  0 <~ = 0 defines the distribution ~ in U and, moreover, Eqs. (4.5) hold. 

It is easy to see that the Pfaffian system spanned by 0 1 , . . . ,  0'Leo I is independent 
of the choice of  r_rX-adapted coframing in an open set U. Of course, it follows that there 
is a Pfaffian system 7,  globally well-defined on M which, relative to a (_.g-adapted 
coframing in U, is spanned by the 1-forms 01,.. . ,0"~,co ~. We will let ,~7" denote 
the foliation of M by the integral curves of ~ .  Of  course, relative to a (.(J-adapted 
coframing in U these are defined by the Pfaffian equations 

01 . . . . .  0 '~ = co I = 0 .  (4.6) 

Let us now fix a (_CZ-adapted coframing in an open set U. Then, in the standard 
identification (Q~)u = U x R2 -1 discussed in w the subset (Q~)u is described by 
the inequality p~_ i ~' 0. Our formula for !P becomes 

qx = d ( p ~ O "  + p ~ _ l O  ~ - I )  

= (dp(~ - p;3 r - Ps-1 r  A0C~ (4.7) 

f~ , s - I  + Ps--1 col A O s + (dp.~-I - PiT r  - Ps- I  Os- l ) /x  0 s-1 

It follows from this that the !/X-characteristics on (Q~)t., are de fned  by the Pfaffian 
equations 

O" = 0 '~- I = 0  s = w 1 = 0 ,  

(dp~  - p;~ r  - P s - ,  r  = 0 ,  (4.8) 

(dp.s-I - p#s 0;~ .~-I o s - I  - -  P s - 1  = �9 

Equation (4.8) makes it clear that the q~-characteristic curves project to be the leaves 
of . 7  and that, conversely, every leaf of .~7" is the projection of a ( ( s -  l )-parameter 
family of)  ~-characterist ic curve(s). 
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4.2 Prolongation and deprolongation 

At this point, it is worth discussing a result of Cartan (1914), which gives a local 
structure theorem for rank 2 systems satisfying the conditions of Prop. 4.1. First, we 
recall the definition of prolongation in this context. 

If ~ is a rank 2 distribution on a manifold M 2+s, then, regarding c j  as a vector 
bundle, we can certainly define its projectivization 7r: !Pc~ --~ M, which is a bundle 
over M whose typical fiber If>c_(,gm is the space of 1-dimensional linear subspaces of 
the 2-dimensional vector space cJ~m. Thus, the fibers of IPc~ are isomorphic to II~ ~l as 
projective 1-manifolds. There is a canonical rank 2 distribution ~ ( n  on 1P~ defined 
by setting ~_9~2 l) = (Tr t )  - 1  (~) for each linear subspace ~ C cj,~. The distribution cj(l) 
is called the (first) prolongation of ~ .  

For any immersed ~ - c u r v e  ~/: [a, b] ---, M, there is a canonical lift 7(1): [a, b] --+ 
II>c~ defined by letting ~/(1)(t) = E.~/t(t). It is easy to verify from the very definition 
that 7 (7) is an immersed cJ(ILcurve which is transverse to the fibers of 7r and that, 
conversely, every immersed ~(I) -curve ~: [a, b] -+ p c j  which is transverse to the 
fibers of 7r is of the form ~ = ",/(~) for a unique immersed T-cu rve  3'. 

Thus, with the obvious exception of the fibers of 7r, which are clearly cJ'-curves, 
"almost all" cJ(~)-curves are in one-to-one correspondence with "almost all" ~ -  
curves. 

Now, it is easy to show that c~f~l(') = [~(1) ,~(1)]  = rr .(c~) and that cj.(1) = 

[s (1), c~r ] = 7r* (~_c~1). It follows that, if cgl has rank 3 everywhere, then c~l(tl has 

rank 3 and c-_/~2(1) has rank 4. Thus, the prolongation of a generic rank 2 system satisfies 
the conditions of Prop. 4.1. It should come as no surprise (and, in any case, is easy to 
check) that the canonical foliation .57 constructed in Prop. 4.1 is, in the case of c~j(l), 
merely the foliation by the fibers of 7r. 

The following result shows that, in fact, every distribution satisfying the hypothe- 
ses of Prop. 4.1 is locally of the form cj~ (l) for some distribution ~ .  

Theorem 4.1 (CARTAN, 1914) Let c~, be a rank 2 distribution on a manifold M 8+2 
and suppose that c~1 and ~ have ranks 3 and 4 respectively. Furthermore, suppose 
that there is a submersion f:  M ---+ N '~+l with the property that the fibers o f f  are the 
leaves o f  the canonical foliation . 7 .  Then there exists a unique rank 2 distribution 
c~,, on N with the property that ~ = f . ( c ~ , )  and, moreover, there exists a canonical 
smooth map f(l): M --+ IpcJ); which is a local diffeomorphism, which satisfies f = 

71- o f(l), and which satisfies ~ = (f(l)) - I  (((~,)(1)). 

We will not give the proof of this result here, instead referring the reader either 
to Cartan or to the more modern exposition in Sluis (1992). Alternatively, one can 
simply verify that the following definitions work: The distribution c1 '  is defined by 
the rule 

c~f(x) = f ' ( x ) ( ( ~  )~) (4.9) 

and the map f(l) is defined by f(I)(x) = f'(x)(CJ:c). The only slightly subtle point 
is that one must use that the fibers of f are connected in order to show that this 
well-defines c~,. Note that every point of M lies in a neighborhood U which does 
have a submersion whose fibers are the leaves of , 7  restricted to U, so this theorem 
can always be applied locally. Indeed it is the basis of the proof of Goursat's theorem. 

If c~  is a rank 2 distribution with the property that the systems ~ (as defined 
earlier in this section) all have constant rank, then there is a largest integer f for which 
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the rank of cJ;e is g+2. According to Gardner (1967), the rank of c.(,4,e+l is then either 
g+2 (in which case ~+1  = c-Ze and the distribution c_~,e is a Frobenius system) or else 
is g+4 (which is, in some sense, the "generic" situation). In this latter case, it follows 
that ~cj can be locally "deprolonged" ( g - l )  times to a rank 2 distribution ~ on a 
manifold N 2+s-(e-l) and this cj, is not the prolongation of a rank 2 distribution on a 
lower dimensional manifold. 

It is interesting to note that, when g >_ 2, there is a distinguished subset E C M 
corresponding to the points z E M such that f (u ( z )  is tangent to the canonical 
foliation . 7  ~ associated to the distribution c c~1 on N.  When s = 5, this set is precisely 
the "exceptional set" on which Goursat's normal form fails. A similar description of 
the exceptional set can be given for larger s as well. 

The end result of this is that in the constant rank case one either has a Goursat 
system or else by a process of "de-prolonging" one can always reduce to the case 
where the rank of ~ is 3 and the rank of c_c_,g2 is 5. In this latter case, we have the 
following analog of Prop. 4.1. 

Proposition 4.2 Let ~ be a rank 2 distribution on M 2+'~ and suppose that 
and c-(/2 = [-~[1, c~]  have constant ranks, respectively of  3 and 5. Then, for each 
1-dimensional subspace ~ C c~, .... there is an (s-D-parameter  family of  non- 
homothetic IP-characteristic curves in Q~ which project to A1 so that they pass 
through ~z tangent to ~. 

4.3 Systems of  Cartan type 

Cartan (1910) contains a thorough study of rank 2 distributions c_(Z, on 5-manifolds 
which have the property that c~q has rank 3 and o f  2 has (the maximum) rank 5. It is 
easy to see that these rank assumptions hold almost everywhere for a generic rank 2 
distribution on a 5-manifold. We shall call these distributions systems of  Cartan type. 

For any system of Cartan type, the bundle Q~ is simply Qi minus its zero sec- 
tion. As a result all of the non-regular immersed CJ-curves are projections of ~'- 
characteristic curves in Q~. It is then a consequence of Prop. 4.2 and a dimension 
count that there is exactly a 5-parameter family of non-regular (Z,-curves and that 
they are all locally rigid. Moreover, there is a unique non-regular curve through each 
point in each direction tangent to the distribution c~; 

It follows that there is a sort of "projective exponential" surface ~p associated 
to each point p E M 5 which is generated by the 1-parameter family of non-regular 
curves through p. The geometry of how these surfaces sit in M is quite interesting. 
For example, by analysing them, it can be shown that, if M is connected, then any two 
points of M can be joined by a piecewise smooth CS-curve whose smooth segments 
are rigid. Thus, the "piecewise rigid" curves are always present in any variational 
problem for c.fZ-curves joining any two points of M.  

In Caftan (1910) it is shown that one can associate a connection and consequently 
a curvature to any distribution ~_~ of Cartan type. The fundamental curvature tensor 
of this connection turns out to be a homogenous quartic form F on c/y, i.e., a section 
of S 4 (('~*). 

Cartan showed that, when F vanishes identically, then every point of M has an 
open neighborhood U on which there exists a coordinate chart (w, a:, !j, z, v) in which 

is described by the Pfaffian equations 
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d y  - z d x  = d z  - w d x  = d v  - w 2 d x  = O.  (4.10) 

Moreover, he showed that the Lie algebra of infinitesimal symmetries of this c~ has 
the largest possible dimension of any system of Cartan type and was isomorphic to 
the 14-dimensional exceptional Lie algebra of non-compact type g2. It is interesting 
to note that this very example was written down by Hilbert (1912) as an example of a 
system whose integral curves could not be expressed in terms of an aribtrary function 
and a finite number of derivatives. That no such formula existed was interesting 
because it showed that the problem of constructing local, fixed-endpoint variations of 
the corresponding c~g-curves was non-trivial. 

The quartic form F is probably the analog for systems of Cartan type of the Ricci 
tensor in Riemannian geometry. For example, it seems that when F is everywhere 
positive definite and M is " ~ - c o m p l e t e "  in an appropriate sense, then M must be 
compact. However, the analysis of this geometry is rather complicated and will be 
postponed to a later paper devoted to the geometry of  rigid curves in systems of 
Cartan type. 

4.4 Rol l ing  sur faces  

We will content ourselves with studying one geometric case where systems of Caftan 
type arise, the case of  the mechanical system represented by rolling one surface over 
another without slipping or twisting. Special cases of this, usually a sphere rolling 
over a plane or, more generally, over a surface in E 3, have been mentioned in the 
literature (cf. Arnold (1989, p. 96) or the recent preprint by Brockett and Dai). Our 
treatment will be more general and abstract. 

In usual formulations of the problem, one starts with a stationary surface Z~ 
and a moveable surface $2, imagined embedded in Euclidean space. The state space 
is then described by choosing two points P l c  Zj  and P2 E ~'2 and an isometric 
identification i~ of the tangent spaces, 

~: T p 1 $1  -~ Tp 2 $2 .  

Geometrically, one should imagine that the surface S l  is stationary and that one 
moves the surface $2 into tangential contact with $1 so that P2 is coincident with 
Pl and then rotates and/or reflects $2 so that the desired identification of the tangent 
spaces is achieved. It is clear that the space of triples (p~ ,P2, c) forms a manifold M 
of dimension 5. We are going to describe the canonical rank 2 distribution ~ on M 
which has the property that g - c u r v e s  represent the possible ways of "rolling" $2 
over S1 without slipping or twisting. 

It is easy to see that a curve 7: [a, b] ~ M which represents such a motion must 
be of  the form 

~/(t) = (u l ( t ) ,  u2( t ) ,  t ( t ) )  (4.11) 

where u~: [a, b] ---, S i  are smooth curves with the property that t(t)(u'l(t) ) = u~(t) for 
all a < t < b. This captures the property of "rolling without slipping". However, this 
is not sufficient to prevent "twisting". The "twisting" condition is easily encoded as 
follows: If we let el, f l :  [a, b] ~ T S I  denote a parallel orthonormal frame field along 
the curve ul ,  then we require that the corresponding frame field e2, f2: [a, b] ~ TL'2 
defined by 

e2(t) = c(t) (el(t)) fz(t) = c(t) (fl  (t)) (4.12) 
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should also be parallel (along U2). 
It is clear from this formulation that no reference need be made to the actual 

embeddings of the surfaces in Euclidean space. In other words, this problem could 
just as well be considered for an arbitrary pair of abstract surfaces endowed with 
Riemannian metrics, so this is what we shall do. For simplicity of the exposition, we 
are going to restrict to the case of orientable surfaces and oriented identifications, but 
this is a trivial restriction. 

Thus, let ZI and Z2 be oriented surfaces endowed with Riemannian metrics &rl 2 
and da  2 respectively. Let Ft (respectively, F2) denote the oriented orthonormal frame 
bundle of S j  (respectively, E2) with respect to its induced metric. 

As usual (see any elementary book on the Riemannian geometry of surfaces), there 
are canonical 1-forms <xl, c~2, and c~21 (= - cq2 )  on Fl and corresponding 1-forms/31, 
/42, and f421 (= -/312) on F2 satisfying the structure equations 

d o q  = 0~21 A O~ 2 d ~ l  = ]321 A [~2 

do<2 = - o Q 1  A Oq d& = --/321 A /31 ( 4 . 1 3 )  

doe21 = A og 1 A O~ 2 rift21 = .B/31 A f12 

where A (respectively, B) is the Gauss curvature of the metric dcr 2 (respectively, 
d%2). 

Now, each of F1 and F2 are principal right SO(2)-bundles. Let SO(2) act diago- 
nally on FI x F2 (this is, of course, a free action) and set M = (Fl x F2)/SO(2). A 
moment 's  thought shows that an element of the 5-manifold ]~] has a natural interpre- 
tation as a triple (p,, P2, 5) where 5: T m ~1 -~ Tp 2 ~'2 is an oriented isometry, so M is 
actually the "state space" of our desired mechanical system. 

Let ~ be the rank 3 distribution on F1 • F2 defined by the Pfaffian equations 

(Yl - -  8 1  = O~2 - -  ~5~2 = OQI - -  /321  = 0 . (4.14) 

Note that ~ is invariant under the diagonal SO(2)-action on FI • F2 and that it 
contains the tangents to the fibers of the submersion F1 • F2 ---, 3.I. It follows that 
there is a well-defined rank 2 distribution ~ on M which is the "push-down" of the 

distribution ~J,. 
Now, it is clear that any ~ - c u r v e  5': [a, b] -+ Fl  • F2 is of the form 

"~(t) = ( (pl(t); el(t), f l( t)) ,  (p2(t); ez(t), f2(t)) ) (4.15) 

where each (e i , fO is an oriented orthonormal frame field along p,: [a, b] --+ Er 
where there exist functions 9 and h on the interval [a, b] so that, for i = 1 or 2, 
we have p~(t) = 9(0 ei(t)+ h( t ) f , ( t ) ,  and, moreover, where the "rotation rates" of 
the two frame fields along their respective base curves are the same at each time t. 
It follows that the quotient curve 7: [a, b] ---+ M of such a ~ represents a "rolling- 
without-twisting-or-slipping" of one of the surfaces over the other. Conversely every 
such "rolling-without-twisting-or-slipping" clearly arises in this way. It follows that 
a motion of rolling without twisting or slipping corresponds exactly to a ~ - c u r v e .  
Thus, ~ describes the "non-holonomic" constraints of our mechanical system. 

Let us set 
01 l 

02 J = ~(C~z - /32)  (4.16) 

03 = 1 (OL21 --  /321) 
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1 co2 1 and also set co' = $ (c,1 +/3,)  and = ~ (c~2 +/32). We easily compute that 

dO l ~_ 03 At.02 } mod 01,02 
dO 2 - 0  3 A &l  

and, moreover, that 

(4.17) 

dO 3 -7_ �89 - A ) c o '  Aco 2 mod 01,02,03 . (4.18) 

It follows that, on the open set in M where A - B 5~ 0, the distribution ~ is of 
Cartan type. 

Straightforward computation using Prop. 2.1 now shows that, on the open set 
where A - B 5~ 0, the 5-parameter family of rigid curves (not surprisingly) describes 
the motion of rolling Z2 along Y_Tl in such a way that each of the contact curves p~ 
traces out a geodesic in Z, .  (Of course, if ( B -  A) vanishes identically on M ,  then the 
Gaussian curvatures of the two surfaces must not only be equal, they must be constant. 
In this case, the distribution ~ is completely integrable. Its leaves correspond to the 
(local) isometries of the two surfaces.) 

4.5 Space  curves  o f  cons tant  curvature  

All of our examples so far have had the property that, when the distribution was 
homogeneous,  the rigid curves were also homogeneous. However, this is not generally 
true. We will now present a counterexample. 

Consider the configuration space of the orthonormal frame bundle . 7  of E 3. Thus, 
a point of . 7  is of the form 

f =  (x; el ,  e2, e3) (4.19) 

where x is a point of Z 3 and e = (el,  e2, e3) is an (oriented) orthonormal triple. As 
usual, there are well-defined 1-forms coi = e<dx and co~j = -coj~ = ei.d% which 
satisfy the equations 

d x  = ei  coi dcoi = -col3 A cos (4.20) 
de~ = ej a.,3~ dc~3 = -coik A a3kj 

It is easy to see that any integral curve of the distribution defined on . 7  by the 
Pfaffian equations 

co2 = co3 = co31 = 0 (4.21) 

on which wl and co21 are non-zero is the Frenet frame of a smooth non-degenerate 
curve in 63 . 

Consider now the rank 2 distribution ~ defined on . 7  by the Pfaffian equations 

co2 = co3 = co31 = co21 - col = 0 .  (4.22) 

The ~ - c u r v e s  on which col is non-zero are clearly the Frenet frames of space curves 
satisfying g -- 1. 

Now, it is easy to see that the ranks of ~-~l and ~ are 3 and 5 respectively. Thus, 
we have the conditions of Prop 4.2. 

In this case, it is easy to identify Q c T * , 7  with . 7  • IR 4 (with coordinates P2, 
P3, P3b and P21 on the ~4-factor) so that 
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gt = d (p2  r + P3 603 + P31 6031 + P21 (6021 - -  CJI) ) 

= ( d p 2  - P 3  6032 q" P21 6012) A o32 "4- (d / )  3 - P2 6023 +/921 6013) A a) 3 

+ ( @ 3 1  + P3 091 - -  P21 6023) A 6031 + (dp21 + P2 601 )/x (6021 - 601) 

+ P3t 6023 A 6021 �9 

(4.23) 

Clearly, QI is defined by the locus P31 = 0 and Q~ is defined by the relations P3J = 0 
and (/93, P21) ~ 0. On this locus, the characteristic system of g' is defined by the rank 8 
system 

0".12 = 6 0 3  =0331 ----6021 - - 6 0 l  = 0 

d p 2  - P 3  6032 - P21 601 = 0 

dp3 + P2 6032 = 0 (4.24) 

dp21 +P2 601 = 0 

P3601 +P21 6032 = 0 

There is an 8-parameter family of  characteristic curves, but simultaneously scaling all 
of the p-variables by a constant will clearly preserve the system and carry each integal 
curve into another integral curve representing the same rigid C~-curve in . 7 .  Thus, 
there is a 7-parameter family of rigid CJ-curves. The above system can be integrated, 
up to a point, as follows: 

First, note that the functions P3P21 and p~ +p2 +p21 are each a first integral of the 
above system. 

Now, consider the case where P3P21 = 0. On any characteristic curve in Q~, either 
p3 vanishes identically or else P21 vanishes identically. If P21 is identically zero, then 
601 must  vanish identically (since P3 cannot vanish), which forces the curve in .~7" to 
satisfy dx = del = 0, i.e., it represents a frame spinning at a fixed base point about its 
first leg. On the other hand, if P3 vanishes identically, then 6032 = 0 and the curve in 
. 7  satisfies dx = de3 = 0, i.e., it represents a curve with torsion 7- = 0, a plane curve. 
We already know that the plane curves with n = 1 are simply the circles of radius 1. 

Next, consider the case where P3P21 5 t O. Then, of course, P2~ never vanishes. Set 
7- = --P3/P21 5 t 0 and 0- = P2/P2~, and the above equations imply that cd32 = 7- 601 (SO 

that 7- is, indeed, the torsion of the underlying space curve) as well as the differential 
equations 

dT- = 27-0- 601 , (4.25) 
do- = (0  -2 - 7-2 + 1)60! . 

Along any solution curve, we may take 601 = ds where s is the element of arc length 
measured from a point where 17-I acheives a minimum. 

Solving the above equations, it follows that a space curve with /; _= 1 is locally 
rigid among all space curves with t~ _= 1 if and only if there is a constant A satisfying 
IA] < 1 so that the torsion is given by the formula 

A 
r ( s )  = (4.26) 

COS 2 8 + .~2 sin 2 s 

(where s denotes arc-length along the curve measured from a point where ~- is a min- 
imum). Note that, except when A equals 0 or 4-1, these curves are not homogeneous, 
i.e., they are not the orbits of any 1-parameter subgroup of the Euclidean motions. 
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4.6 N o n - r i g i d i ~  

As a final closing remark, let us note that rigidity when n > 2 seems to be a rarer 
phenomenon. For example, it can be shown that, for the generic distribution of rank 3 
in ~5 or ~6, there are no rigid curves, even though there are non-regular ones. The 
proof that the non-regular curves in these cases are not rigid is non-trivial and we will 
defer it to a later paper. We will content ourselves by simply giving a few examples. 

First, consider the distribution ~ on ~5 with coordinates (x, yl,  y2, z t ' z 2) defined 
by the Pfaffian equations 

d y  1 - z I d x  = d y  2 - z 2 d x  = 0 . (4.27) 

Note that ~ is of rank 5 at every point. 
It is easy to compute that every immersed non-regular cJ.~-curve can be paramet- 

rized in the form 7: [0, l] --* R 5 where 

7(t) = (xo, Yo,Yo,l 2 z~ + r t  cos O, z~ + r t  sin 0) (4.28) 

for some constants xo, y~), z~, r > 0, and 0. By applying transformations which 
preserve the distribution ~ ,  such a 7 can be transformed into the special case 

"/0(t) = (0, 0, 0, t, 0 ) .  (4.29) 

However, this ~ - c u r v e  is clearly not rigid since, for any function h on the inter- 
val [0, 1] such that it and its derivative vanish at the endpoints, the curve 

7h( t )  = ( t { ( t ) ,  t h i ( t )  - h(t), O, t, O) (4.30) 

is a non-trivial variation of 70 through V~-curves. 
As another example, let x and y denote coordinates on two copies of ]~3 and 

consider the rank 3 distribution ~ defined on •6 = ]~3 • R3 defined by the Pfaffian 
equations 

dy - x • dx = 0 .  (4.31) 

It is easy to see that there is a 7-parameter family of non-regular C~-curves and that 
they are all of  the form 

7 (0  = (x(t), y(t)) = (Xo + t u, Yo + t (Xo x u) ) (4.32) 

for some constant vectors xo, Yo, and u :~ 0 in ~3. By using symmetries and 
reparametrization, each of these curves can be brought into the form 70: [0, 1] --~ R 6 
given by 

70(t) = ( t e l ,  0 ) ,  (4.33) 

so it suffices to show that this curve is not rigid. However, again, for any function h 
on the interval [0, 1] such that it and its derivative vanish at the endpoints, the curve 

7 h ( t )  = ( t el + h '  ( t )  e2, (t  h '  ( t )  - 2h(t)) e3 ), (4.34) 

is a ~ - c u r v e  with the same endpoints as 7o. Thus, this curve is not rigid. 
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