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1. Introduction

In this paper, we will investigate the geometry of “rigid” integral curves of rank 2 dis-
tributions on manifolds. Recently, the geometry of curves in a manifold M tangent to a
specified distribution & C T'M has been making a reappearance in differential geom-
etry (for example, see Hamenstiddt (1990), Pansu (1989), or Strichartz (1986,1989)).
The study of these curves also has longstanding, close ties with control theory and the
calculus of variations with “non-holonomic constraints”. A natural approach to the
study of these curves is to generalize the treatment of path spaces a la Morse theory
and study the space §2.-(p, q) consisting of differentiable curves in M joining p to g
and staying tangent to the distribution 27. At most of its points, the space £2.-(p, q),
after being endowed with an appropriate topology, behaves very much like an infinite
dimensional manifold. However, there are sometimes special curves v € 2 (p, q)
around which the local structure of 2. (p,q) is drastically different. In this paper,
we show that, for most distributions &7 of rank 2, such special curves always occur.
(The precise meaning of “most” will be made clear in the following sections.)

The study of these special (or “non-regular”} curves is a old subject, with early
work having been done by Engel, Goursat, Cartan, Hilbert, and Bliss, while more
modern work (in the context of differential geometry or the calculus of variations)
has been done by Miito, Gardner, and Hermann. The subject also has close ties with
control theory and sub-Riemannian geometry, but we do not explore those in the
present paper.

Instead, we are concermned with studying the curves v at which £2.,(p, q) fails to
be a smooth manifold when endowed with the natural C'-topology. More precisely,
we are interested in the so-called non-regular curves y where a natural candidate for
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the tangent space T, {2 (p, q) fails to be the true tangent space. In fact, this paper
concentrates on the case of rigid /-curves, that is, points v € 2. (p,q) which are
essentially isolated. In Sect. 2, we remind the reader of the notion of the natural
tangent space T7,{2.-(p, q) as well as the notion of non-regular curves in this context.

That rigid curves exist is not new. In fact, examples of rigid curves were known for
a certain rank 2 distribution 2 on R* studied by Engel. What does appear to be new
is the fact that rigid </ -curves are quite common for nearly all rank 2 distributions. In
fact, our main result, Thm. 3.1, is that a rank 2 distribution &/ which satisfies some
mild non-degeneracy conditions always has rigid & -curves. Actually, our theorem is
more precise than this; in the course of its proof we give a new local normal form
for such distributions which allows one to check the rigidity of these non-regular
& -curves quite easily. This local normal form is likely to be useful in other contexts
as well.

Mikhael Gromov (private communication) has pointed out to us that these ex-
amples of rigid & -curves show that the sheaf of C'°-immersions 7:[a,b] — M
which are everywhere tangent to a bracket generating distribution &/ need not be
micro-flexible in his sense, contrary to one’s natural expectation (cf. Gromov (1986),
p- 84).

In Sect. 3, we also consider the phenomenon of local rigidity and, when & is
locally isomorphic to an Engel system, we give a necessary and sufficient condition
for a locally rigid &7 -curve - to be globally rigid. This condition takes the form of
determining whether the developing map of a certain canonical projective structure
on ~ has sufficiently large image in RP'. This test for global rigidity could quite
probably be generalized to the case of rigid & -curves where &7 is a system of
Goursat type (defined in Sect. 4), but we do not do this in this paper.

In Sect. 4, we turn to some interesting examples. We point out that, for the
generic rank 2 distribution &/ on a manifold M of dimension 5 or more (see Sect. 4
for the precise meaning of “generic”), there is at least one locally rigid &7 -curve
passing through each point m € M in each tangent direction in &,,. When M has
dimension exactly 5, the distributions which are generic in our sense are precisely the
distributions studied by Cartan (1910). We show that, in this case, there is precisely
one rigid &7 -curve passing through each point in each &7 -direction.

As an example of a system of Cartan type, we analyse the non-holonomic me-
chanical system which describes rolling one surface over another in space without
slipping or twisting. In the case where one of the surfaces is a sphere, this is a well-
known mechanical system. For example, when one surface is a sphere and the other
is a plane, this system is mentioned in Arnold (1989) and in a recent preprint of
Brockett and Dai. In the more general case of two arbitrary surfaces, we show that,
if the surfaces have unequal Gaussian curvatures, then the rank 2 distribution which
describes this mechanical system is of Cartan type and we interpret its rigid curves
in terms of the geodesics on the two surfaces.

As a final example, we consider the distribution <7 on the orthonormal frame
bundle .7 of F* whose integral curves are the Frenet frames of curves of constant
curvature £ = 1. We show that there is a 7-parameter family of rigid & -curves in
this case. Most of the corresponding curves in space do not have constant torsion and
hence are not generated by a 1-parameter subgroup of the Euclidean motion group.
This shows that the rigid curves of a distribution may very well not be homogeneous
even when the distribution itself is homogeneous.



Rigidity of integral curves 437

Finally, we remark that the study of rigid curves for distributions of rank greater
than 2 is more subtle. For example, it turns out that generic distributions of rank 3
in R’ or RS do not have any rigid curves, even though they have non-regular ones.
Thus, for distributions of greater rank, it appears that rigidity is a rarer phenomenon.

In closing, we would like to thank Kevin Corlette, Yasha Eliashberg, and Richard
Montgomery for interesting and helpful discussions during the course of this work.
We would also like to thank the referee for making several valuable and informative
comments about the control theory literature as well as making suggestions which
improved the exposition. The bulk of this paper was written during the 1992 workshop,
Geometric Variational Problems and Optimal Control, held at the Fields Institute
in Waterloo, Ontario. The authors would like to thank the Fields Institute for its
hospitality.

2. Integral curves of distributions

We begin with some basic definitions. We are going to be interested in the geometry
of curves (in manifolds) which are subject to what are often called non-holonomic
constraints in the literature. In the language of exterior differential systems (Grif-
fiths,1983), this is the geometry of 1-dimensional integral manifolds of a Pfaffian
system.

Let M™* be a connected smooth manifold of dimension n+s and let &4 C
TM denote a subbundle of rank n on M. The manifold M will be our model of a
(generalized) control system with n controls.

A smooth curve v: I — M (where [ is an interval or the circle) will be said to
be an integral curve of & (or, more simply, a &/ -curve) if ¥'(¢) lies in &, for
all t € I. Note that we do not require that v be an immersion. However, to avoid
obvious trivial cases, we shall henceforth assume that «y is not a constant map.

A distribution &/ on a manifold M is said to be bracket generating if, for every
v € T,, M, there exist some number k of vector fields X,,..., Xy on M which
are each everywhere tangent to the distribution & so that the iterated Lie bracket
Y = [Xl,[Xz, e [ X, Xkl ] has the value v at m. A distribution with the
bracket generating property is often said to satisfy Hérmander’'s condition. A theorem
of Chow (1939) asserts that if &/ is bracket generating then any two points of M can
be joined by a </ -curve.! Let us assume from now on that 7 is bracket generating
and let 2. (p, q) denote the set of & -curves ~:[a,b] — M which satisfy v(a) = p
and ~(b) = q. We shall endow §2. (p, g) with the C! topology.?

2.1 The local structure of the space of & -curves

A fundamental problem is to describe the topology of (2. (p, ¢). By Chow’s theorem,
we already know that 2. (p,q) is non-empty. In fact, it is not hard to show that
£2.,(p, q) has at least as many components as 7;(M). However, less is known about

! Unfortunately, Chow’s theorem does 7ot say that any two points of M can be joined by some immersed
&/ -curve. Although this is presumably true, there does not seem to be a proof available.

2 One should keep other topologies in mind as well. In fact, other topologies are often quite interesting.
For example, in connection with sub-Riemannian geometry the Sobolev H' topology is important,
see Hamenstidt (1990), Pansu (1989), and Strichartz (1986).
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the higher homotopy groups of {2, (p,¢) and, consequently, about things like the
space of unstable critical points of various natural functionals on 2.-(p, q).

Naturally, one wants to regard {2.-(p,q) as an infinite dimensional manifold of
some sort so as to apply Morse theory ideas. But it was recognized early on that this
approach has problems caused by the presence of so-called “non-regular” curves. We
now want to recall what these are and how they arise in the problem of studying the
local structure of £2.(p, ¢).

If £2.,(p, ¢) is to be a manifold, it must have a tangent space. What is the natural
candidate? When &/ = T'M, the obvious model for a tangent space is the space
- #9(T%) which consists of sections of T, = v*(T'M) which vanish at the endpoints.
In other words, it is the space of tangent vector fields along v which vanish at the
endpoints. Of course, this works; it is the foundation of the classical methods of the
calculus of variations.

In the case of &/ -curves where &/ is a proper subbundle, care must be taken. For
a given v € 24 (p,q), set T, = v* (TM) as before and set Q, =v*(TM/Z). One
first constructs a first order differential operator D.:. #°(T,) — . #'(Q,) with the
property that V €. 4°(T,) is of the form

Vit) = (L 8—F(t, 0 )
Js

for some I-parameter family of Z/-curves I'(-,8):[a,b] — M if and only if V
satisfies D, (V) = 0. (In the coordinate formulation, this “variational operator” ., is
quite classical. For an account with historical notes, see Bliss (1930).)

We shall have to compute a few examples in the following sections, so we will give
a brief description of D, in a formulation suitable for those computations. Suppose
that fy([a,b]) lies in a region U on which the bundles &# and T'M are trivial. We
may then choose linearly independent 1-forms w!,...,w™,6',...,0° on U with the
property that, for all m € U,

Lo = {U e T, M | %) = ()} .

(We shall often say that &/ is defined in U by the Pfaffian equations 6! = ... =
6° = 0.) Associated to this coframing, there exist functions C¢ = —C7%; (unique)
and 1-forms ¢3 (unique modulo the span of the 67’s) so that the following structure
equations hold (note the use of the summation convention):

d9* = —¢3 n0° + 1C% W' nw 2.1

If X,...,X,,Y1,...,Y, is the basis of vector fields on U dualto w',...,w™,6',...,
¢°, then any V €. 4°(T,) can be written in the form

V)= (t, v') Xi(v(®) + v*() Ya (YD) ) 2.2

for some unique functions 4! and v® on [a,b]. The formula for D, then takes the
form

Dy(V)(@) = (t, Vo) ® (dv® + 93 (v () vP dt + CZ (7))’ (Y ) u* dt) ) s
Q.

where Y o (t) € Ty4yM/ Pz is the obvious reduced vector. (For a verification that this
is indeed a correct formula for D., and that this operator is well-defined independent
of the choice of coframing, see Hsu (1992).)
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Now, the most obvious candidate for T, (£2,(p, q)) is kerg D, = ker D, €3(T),
i.e., the “</ -variational vector fields along -y which vanish at the endpoints”. However,
unless Dy ( */lg(T,Y)) =, /é‘(QW), it can happen that some elements of kerq D, are
not the first variation field of any smooth curve in {2, (p,q). In fact, this can fail
spectacularly. As Bliss (1930) points out, there are cases where the only elements
of £2.-(p,q) in a C'-open neighborhood of ~ are reparametrizations of ~! We will
see many such examples in Sects. 3 and 4 below.

On the other hand, it is an easy consequence of the Implicit Function Theorem
(the classical finite dimensional one) that, if the map D.:. 4)(T,) — . 41(Q,) is
surjective, then every element of kerg D,, is, in fact, the first variation field of some
curve in 2. (p, q) which passes through . A proof which works in a local coordinate
chart can be found in Bliss (1930, Sect. 7) and this argument is easily extended to
the manifold case.

It has become standard to call a &/-curve v € §2.,(p, q) normal when the map D,
is surjective. However, because of the way the Implicit Function Theorem is utilized
in the analysis of such curves, we prefer the term regular, in analogy with the notion
of a regular point of a smooth mapping.

In any case, the cokernel of D., denoted by

Q)

T =
"7 D A@)

is always of finite dimension, and, in fact, has dim.#, < s. Indeed, because the D,
has surjective symbol, the usual closed range theorems show that its dual space %;
is isomorphic to the kernel of the formal adjoint

*, 20 * 21 *
D 2(Q%) — . 4N (Ty).
Relative to a coframing described as above, we have the following formula for D:
Letting &* and 7%, respectively, denote the obvious basis of sections of T, then

D3 (54, 07) (1) =@ (1) ® (C2 (v())w? (¥ (®)) 50 dt)

o / (2.4)
+0° () ® (—dsa + L (Y1) spdt) .

Thus, a &-curve « is non-regular if and only if there exists a non-zero solution
p = (pqo) to the system of equations

dpa = v*(¢) ps
0= 7*(C’£w’) Pa -

Note that, because the first set of these equations is a determined set of linear ODE
for the functions p,, every solution p = (p,) which is not identically zero is nowhere
vanishing.?

This test for non-regularity can be formulated globally. First, recall that the
cotangent bundle m:T*M — M has a canonical symplectic structure {2 = dw,
where w is the unique 1-form on T*M with the property that w(v) = & (7r’ (1))) for
allv e T; (T*M ) Using this symplectic structure, our test for non-regularity is cod-
ified in the following proposition, which, again, is simply a global rephrasing of the

(2.5)

3 Eqs. (2.5) are called the “adjoint equations” in the control literature, see Pontrjagin, et al (1962).
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classical conditions for “normality”. It will be used as our test for non-regularity in
the rest of the paper.

Proposition 2.1 Let Q* C T*M be the annihilator of the distribution & C TM.
Let W be the pullback of the canonical symplectic 2-form 2 on T* M to the subman-
ifold Q*. Then a &/ -curve ~v: [a,b] — M is non-regular if and only if it has a lifting
7:[a,b] — Q* which misses the zero section and which satisfies %'(t) =¥ = 0 for all
t € {a,bl.

Proof. By definition, any section o € . 4(Q%) is of the form o(t) = (t,5(t)) where
7:{a,b] — Q* is a lift of . Now, it is a straightforward (local) calculation that
D>(o) = 0 if and only if F (@)W = 0 for all t € [a,b). For more details, see

Hsu (1992). O

Of course, it follows from Prop. 2.1 that every sub-curve of a non-regular /-
curve is also non-regular and, obversely, every extension of a regular & -curve is also
regular.

Recall that, for any closed 2-form ¢ on a manifold N, a characteristic curve of
@ (or, more simply, a -characteristic) is an immersed curve ¥: [a,b] — N which
satisfies ¥'(£) 2@ = 0 for all t € [a,b]. In the present case, it is easy to see that
a characteristic curve of ¥ on (J* minus its zero section projects to M to be a
non-constant &/ -curve (which is, of course, non-regular). Thus, we have a way of
generating all of the non-regular & -curves: we simply find the characteristic curves
of ¥ on the “punctured” bundle Q*.

Now, any given non-regular curve +: [a,b] — M has at least a 1-parameter family
of distinct liftings to Q* as a W-characteristic curve. To see this, recall that, since Q*
is a vector bundle, it has a natural action of R*, given by scalar multiplication in
the fibers. This action clearly scales ¥ and hence carries W-characteristic curves to
¥-characteristic curves with the same projection to M. We will say that two W-
characteristic curves which differ by an action of an element of R* are homothetic.
Obviously, for the purpose of studying the non-regular & -curves, we may as well
regard homothetic ¥-characteristics as equivalent.

2.2 The prevalence of non-regular curves

It is an interesting question just how frequently one needs to deal with non-regular
curves. For example, might there not be a simple, frequently satisfied condition on
distributions & which forces all &7 -curves to be regular? Alas, this is not the case.
In fact, systems & which have no non-regular &7 -curves are something of a rarity.

For example, if n is odd, then the manifold Q* C T M will have odd dimension,
since its dimension is 2s+n. Thus, ¥ cannot be non-degenerate on Q*. It follows
that there will be many W-characteristic curves, most of them transverse to the fibers
of @Q* — M. The projections of these curves will, of course, be non-regular.

Even if n = 2p for some integer p, it very often happens that the set Z C Q*\ 0
where ¥ is not of full rank (i.e., where ¥**? = 0) contains a non-empty hypersurface
H C Z which submerses onto M. (For example, this is easily seen to be true if p is
odd.) For dimension reasons, this hypersurface H will contain many ¥-characteristic
curves which project to M to be non-regular curves.
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In fact, it is very rare that Z is empty {(which weuld, of course ensure that there
are no ¥-characteristic curves in @ \ 0 and hence no non-regular & -curves). For
example, it can easily be shown that Z is empty if and only if £/ is strongly bracket
generating.*

In Rayner (1962, Appendix 2), it is shown that, for given values of n and s, a
distribution 7 of rank n exists on some manifold M™**® with the property that Z is
empty if and only if there exist s everywhere linearly independent vector fields on
the (n—1)-sphere. Thus, for example, n must always be even if s is positive, n must
be divisible by 4 if s > 1, and n must be divisible by 8 if s > 3. Clearly, this is
much too special to be a generally useful criterion (although it might occasionally be
useful).

Thus, it appears that a good understanding of the space f2. (p,q) will very likely
entail understanding non-regular & -curves in 2. (p. g).

3. Rigidity in systems with n =2

In this section, we are going to show that, not only are non-regular curves frequently
encountered in the study of non-holonomic systems, but, in the first non-trivial case,
an extreme form of non-regularity occurs, which we shall call rigidity. First, we make
the following definition.

Definition 3.1 A & -curve v:[a,b] — M is rigid if there is a C'-neighborhood 24
of v in §2o (fy(a),'y(b)) s0 that every 1 € ¢4 is a reparametrization of . We say
that v is locally rigid if every point of I = [a,b] lies in a subinterval J C I so that ~y
restricted to J is rigid.

Note that rigid curves are at the opposite extreme from regular ones. In some
sense, they are as badly behaved as possible. Nevertheless, we are going to show
that, when .= 2 and s > 1 (the first non-trivial case) they are quite common.’

3.1 Engel systems

Consider the case where n =2 and s = 2. The bracket generating assumption on the
system &/ C T'M ensures that, at least on an open subset of Af, the system [&/, /]
has dimension 3 and the system [[&/, /], /] has dimension 4. We shall say that
& is an Engel system on M if these dimension counts hold at every point of M.
(We have chosen the name “Engel” because of the extensive work that Engel did on
systems of this kind in connection with the theory of Monge characteristics.)

It was proved by Engel himself that these systems have a simple local normal
form. In fact, according to Engel, each point of M has an open neighborhood U on

* This means that every local non-vanishing vector field X; tangent to & belongs to a local basis
{Xi,Xa,...,Xn} for the sections of & so that the (2n—1) vector fields X, .... Xn, [X1, X2],
... [X1, Xn] span the local tangent vector fields on M. Of course, this clearly cannot hold unless
s < n—1, which is already a severe limitation on the usefulness of the criterion.

5 When s = 1 things are different: An everywhere non-integrable plane field &/ on a 3-manifold M is
just a contact structure on M and every &/ -curve is easily seen to be regular in this case. However,
note that the “generic” 2-plane field & on M3 will be a contact distribution only away from a
certain closed hypersurface H C M and that this hypersurface will contain non-regular curves, see
Montgomery (1993).
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which there exist local coordinates (w, ,y, z) in which the system &7 is simply the
span of the vector fields

Xy = 2+z2 w2 and X2=i.
ow

Oz 0z @D

The corresponding annihilator bundle Q*U C T™*U is then spanned by the 1-forms
#' = dy — zdzr and 02 dz — wdx. We shall call such a local coordinate chart
an Engel chart for /. (For a proof of this normal form, see Bryant, et al (1991,
Thm. IL5.1).)

Let us use the method suggested by Prop. 2.1 to compute the non-regular & -curves
which lie in the domain U of an Engel chart. It is clear that there is a diffeomorphism
Q*U = U x R?, where we use coordinates p; and p, on the R2-factor, so that the
2-form ¥ is given by

¥ =d(p 6" +p;6°)

gl - (3.2)
=dp n8' +(dpy +pr1dz)A 8 — prdwadzx

Clearly ¥ has full rank away from the locus p; = 0. Hence all of the characteristic
curves of ¥ must lie in this hypersurface. Since we are only concerned with the curves
which also satisfy p; # 0, it follows immediately that the characteristic curves of ¥
are defined by the Pfaffian equations

' = =dr=dp =0 (3.3)

in the set where p; = 0 and p; # 0. Since the linear span of {6', 6, dz} is the same as
that of {dx,dy,dz}, it follows that the non-regular & -curves in U are the & -curves
on which z, y, and z are constant. Thus, U is foliated by a 3-dimensional family of
non-regular & curves.

This calculation clearly globalizes, so that M itself has a canonical foliation whose
leaves are precisely the immersed non-regular & -curves. We summarize this in the
following proposition.

Proposition 3.1 Let a 4-manifold M* be endowed with an Engel system &/ C TM.
Then there is a canonical associated foliation F of M by curves which has the prop-
erty that a & -curve +:[a, b} — M is non-regular if and only if the image of =y lies in
a single leaf of 7 .

We are now going to show that, for an Engel system &/, the immersed non-regular
S -curves are locally rigid. First, we prove the following proposition.

Proposition 3.2 Let M = R* have coordinates (w,x,y, z) and let & be the Engel
system spanned by the two vector fields

a o 0 0]
X—-é;+za—y+w£ and W——%

Then up to reparametrization, there is a unique & -curve v in R* joining p =
(wo, Zo, Yo, 20) to ¢ = (wy,To, Yo, 20) and satisfying the condition that v*(dw) is
nowhere zero.

Proof. First, note that &/ is invariant under transformations of either of the forms
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(w,x,y,2) — (W, T+ Tg, Y, 2)
or

(w,z,y, z) — (w+ wy, r, y+y0+zox+%woa:2, z+2zp+wox)

and that such transformations leave dw invariant. Next, note that &/ is also invariant
under transformations of the form (w, .y, 2) — (rw,x,ry,rz) where r # 0 is any
constant and that these transformations merely replace dw by r dw. It follows from
these observations that we may, without loss of generality, reduce to the case where
p=1(0,0,0,0) and ¢ = (1,0,0,0).

Suppose now that «:[0,1] — B* is a & -curve satisfying the conditions of the
proposition and satisfying v(0) = p and ~(1) = ¢q. Then the w-component of ~ is
clearly an increasing smooth function of ¢ with non-vanishing derivative which maps
[0, 1] diffeomorphically onto itself.

Thus, v can be reparametrized so as to be of the form ~(t) = (t,w(t), y(t), z(t)).
By construction, the functions (%), y(t), and z(¢) are smooth functions on [0, 1] which
vanish at the endpoints and satisfy the differential equations

Yy =22 ®),

34
) =ta'@t). G4
Since x(0) = z2(0) = 0, it follows that
t
2(t) =t x(t) — / o(r)dr , (3.5
0

from which it further follows that x(t) is the derivative of a function A(t) which also
vanishes at the endpoints. This yields the formulae

x(t) = h/(t) and 2 =th'(t) — h() . (3.6)
The differential equation for y now becomes
Y =22’ = (A ) — M) h'©®) . (3.7
Since, by hypothesis, y(0) = 2(0) = 0, integrating by parts gives

1 t
yt) = Lt (WD) = hay ') + 5 / (1)’ dr . (3.8)
0

However, now setting ¢ = 1 in this formula and using h(1) = y(1) =0 gives

1
0= / (W) dr . (3.9)
0

It follows that h/(t) = 0, so h(t) = 0. Thus y(t) = (£,0,0,0), as desired. T[]
This result has the following immediate corollary.

Proposition 3.3 For any Engel structure £ on a 4-manifold M, the leaves of the
associated foliation .F of non-regular 2 -curves are locally rigid.

Naturally, this raises the question of whether these locally rigid curves are globally
rigid too. The following Proposition gives a necessary and sufficient condition for this
by a criterion reminiscent of the theory of focal points in Riemannian geometry.
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Proposition 3.4 Let & be an Engel siructure on a 4-manifold M and let .7 be
the associated foliation by non-regular 7 -curves. Then each leaf L of 7 carries a
canonical projective structure. Moreover, an immersion y:[a,b} — L is a rigid &/ -
curve if and only if some (and hence every) developing map 6:[a,b]l — RP! of the
induced projective structure on [a, b is one-to-one except possibly at the endpoints.

Proof. First, we explain how the canonical projective structure on the leaves of 7 is
constructed. Suppose that p € M is fixed and let (w, z,y, 2) and (MU', X, Y, Z) be any
two Engel charts for & with domain U containing p. Thus, the Engel system %/ can
be described by either of the following pairs of Pfaffian equations:

dy—zdr=dz—wdr=0, or dY —-ZdX=dZ-WdX =0. (3.10)

As we computed above, the leaves of the foliation .77 in U are given by dz = dy =
dz = 0 and hence they must also be given by dX =dY =dZ = 0. It follows that the
1-forms dX, dY, and dZ are linear combinations of dz, dy, and dz. We may thus
regard X, Y, and Z as functions of x, y, and z. Moreover, since direct calculation
yields that [&7, ] is described by either dy — zdz = 0 or dY — ZdX =0, we
see that there must be a function A so that dY — ZdX = A(dy — z dx) and another
function y so that

dZ -~ WdX = p(dz —wdz) mod (dy — zdzx) . 3.11)
Expanding this out and comparing coefficients yields the relation

X, +2X )W — Z, — 27,
w=
X, W+ Z,

(3.12)

When restricted to each leaf L of .7, all of the functions X, Y, Z, and their partials
with respect to z, y, and z become constant. Thus, Eq. (3.12) shows that, on each
leaf L, the function w is well-defined up to a linear fractional transformation with
constant coefficients. It follows that there exists a unique projective structure on each
leaf L of 7 with the property that the first coordinate w of any Engel chart (w, x, y, 2)
is a projective coordinate on each leaf. This is the canonical projective structure whose
existence was asserted.

Now, we want to see how this projective structure detects rigidity. Let ~y: [a, ] —
L be an immersion. Without loss of generality, we will assume that [a,b] = [0, 1].
Let p = (0) and let D* C &3 be a disk centered on 0 € &> and let ¢: D> — M be a
smooth immersion with ¢(0) = p which is also transverse to L at p. By shrinking D if
necessary, we may assume that #(D) is transverse to .# at all of its points. Since .7~
is a foliation and [0, 1] is compact, we may use the usual techniques to construct a
smooth immersion $: D x (—¢, 1+¢) — M with the properties that first, $(0,1) = y(t)
for all ¢ € [0,1]; and, second, for each u € D, the curve ~,(t) = ®(u,t) is an
immersion of (—¢, 1+¢) into a leaf of .77,

Clearly, +y is rigid as a & -curve if and only if the curve {0} x [0, 1] is rigid in
D x (—¢,1+¢) as a &*(7)-curve. Thus, for the rest of the proof we may (and shall)
assume that M = D x (—¢, 1+¢) and that @ is simply the identity mapping.

Now consider the distribution &, = [, &/'], which has rank 3. As noted above,
in a Engel chart, this distribution is described by the Pfaffian equation dy — 2 dz =0,
which is clearly constant along the leaves of % . It follows that, by shrinking D
again if necessary, we may assume that there are independent functions z, y, and
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z, globally defined on D x (—g, 1+¢) and vanishing at (0, 0), for which the Pfaffian
equation dy — zdr = 0 describes the system %] and moreover, so that the foliation
F is described by the Pfaffian equations dx = dy =dz =0.

Since D x (—g, 1+€) is simply connected, there exists, on D x (—¢, 1+4¢), a function
6, unique up to additive multiples of =, so that the Engel system & is described by
the Pfaffian equations

dy — zdx =cosfdz —sinfdx =0 . (3.13)

The fact that these equations describe an Engel system implies that the functions
(z,y,2,0) are independent at every point of D X (—¢, 1+¢). Hence they define an
embedding of D x (—¢, 1+¢) into R*.

We may thus now regard our problem as one of determining the rigidity of the
non-regular &/ -curves in R* endowed with the Engel structure </ defined by the
(global) equations

dy — zdx =cosfdz —sinfdr=0. (3.14)
Note that, by construction, the map §: D x (—¢, 1+¢) — RP' defined by

8(p) = [cos B(p). sin O(p)] (3.15)

projectively develops each fiber of .7 into RIP! according to its canonical projective
structure. Moreaver, the developing map é,(¢) = [cos 00, 1), sin 6(0, t)] is one-to-one
on the open interval (0, 1) if and only if [6(0, 1) — 6(0,0)| < 7.

In order to ease the following argument notationally, it is convenient to make a
slight change of coordinates. If we replace y by (y + zz)/2, the Pfaffian equations
describing & take the more symmetric form

dy — zdr+xdz=cosfdz —sinfdx=0. (3.16)

Also, let us note that we are free to apply coordinate changes of the following form:
If a, b, c, and e are constants satisfying ae — bc # 0, then the equations

- 317
E=cx+ez

[cos @, sinf] = [a cos @ + b sinB.c cosf + e sin O]

define a new set of coordinates (with # globally defined uniquely up to an additive
integral multiple of 7) in which the defining equations of the distribution &/ are still
of the form

dij —3di+FdE=cosfdz —sinfdz=0. (3.18)

Thus, the mapping (z,y,2,0) — (Z,7,Z %,0) is a diffeomorphism of R* onto itself
which preserves /. This allows us to make a projective change of parameter in 6.
Note that all changes of this form preserve the length of a @-interval if and only if
this length is an integer multiple of .

By aid of such transformations, we are reduced to deciding which curves of the
form (z,y, z,0) = (0,0,0,t) with 0 < ¢ < P are rigid. We claim that this &/-segment
is rigid if and only if P < . By the above remarks on the developing map 6, this
claim is equivalent to the remaining part of the proposition to be proved.
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First, suppose that P < . Clearly this segment has a C'-neighborhood #4 in
2y ((0, 0), (0, P)) which contains only curves on which the form d# is non-vanishing.

It follows that any curve % in 24 can be written in the form 4(6) = (x(8), y(0), z(6), 0)
for some smooth functions x(8), y(#), and z(#) on the interval [0, P] which vanish at
the endpoints § =0 and § = P. Since we must have

0=cosfdz —sinfdx

3.19
=d(z cos@ — x sinf) + (z sinf + x cos §) db ¢ )

it follows that there must be a smooth function ~(6) defined on [0, P] which satisfies

zcosf —xsinf= h (3.20)
zsin@+xcosf= —h '

where, clearly, h and A’ must vanish at the endpoints. We can solve these equations
for & and z, obtaining
2@ = h(@) cosf — h'(@)sind
z(8) = —h(0) sinf — h/(B)cos O

and then substitute this into the relation dy = z dx — x dz and finally integrate (using
the endpoint conditions) to obtain

(3.21)

N
y(0) = WO (6) + / (h(©)* — (H'(©))* dt . (3.22)

0

However, since h(P) = y(P) = 0, this gives

P 2 2
0= [ (m©)* - (W)’ ae. (3.23)
0

Now, it is well known that for any non-zero differentiable function ~ on [0, 7] which
vanishes at the endpoints, we have

[ ey ae < [ Gy ae, (3.249)
with equality if and only if A is a constant multiple of sin . Since we must also have
h'(0) = 0, it follows that the only possibility for equality is & = 0. Of course, this
establishes that the given segment is rigid when P < 7.

Finally, to establish the non-rigidity for P > , it suffices to exhibit an appropriate
family of functions h, which describe a non-trivial deformation of the initial curve.
As an example with P = 27/+/3 < 2, consider the 1-parameter family of functions

ha(®) = A (1~ cos(v36) ) (3.25)

(where A is a parameter). These all satisfy hx(0) = hy(P) = h{(0) = h\(P) =0
and moreover the functions x5 (6), y»(6) and z,(#) constructed from k) by the above
formulae all vanish at the endpoints. Thus, this segment is not rigid. Any longer
interval cannot be rigid since we can merely extend this family of h’s by zero past
P. For shorter intervals (but still longer than 7), we take advantage of the fact that
the transformation group preserving &/ on R* described above can be used to make
equivalent any two intervals whose f-length is strictly between 7 and 27.
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3.2 Rigidity in higher dimensional cases

We now turn to the higher dimensional case. We are going to show that if &/ is a
non-integrable rank 2 distribution on M 2** satisfying the condition that the rank 3
distribution & = [Z, /] also be non-integrable, then there always exist many non-
regular & -curves which are locally rigid.

First, we do some preliminary work on the structure equations. We may as well
assume that s > 2, since the case s = 2 is just that of Engel systems. Let &/ be a
non-integrable rank 2 distribution on A/2** and let U C M be an open set on which
both &7 and TM are trivial bundles. Then, on U, there exist linearly independent

1-forms w',w?,8',...,0° so that &/ is defined in U by the Pfaffian equations
0l =0"=...=0°=0. (3.26)

As we have seen, there exist functions C'* on U so that
A" =Cw' A’ mod 6',. .., 6°. (3.27)

By hypothesis, these functions C'* do not vanish simultaneously at any point of U so
it is possible to make a basis change in the 8% so that we have the equations

= ... = s—1
= =db ? 2} mod §',....6° . (3.28)

I

df* =w' rw

The Pfaffian relations #' = --- = 85~ = 0 then define the distribution </;. Now, we
are assuming that 2/, is nowhere-integrable, i.e., that {4, ]] properly contains &,
at every point. It follows that we have structure equations

d0* =0° A(BY w' +B§w?) mod 0',...,0°" foralll<a<s—1. (3.29)

where not all of the functions B¢ vanish simultaneously. Of course, in the generic
situation, the (s—1)-by-2 matrix B = (B?) will have rank 2, but, for our purposes,
we only need to assume that it has rank at least 1.

The upshot of all of these calculations is that we have normalized structure
equations of the following form (where the greek index now runs over the range
1<a,B<s~1)

df* = g3 A 0° +6° A (Bf w' + By w?)
de’® = ~¢>%A6’6 — PG +w' Aw?,
We will now use Egs. (3.30) to describe the non-regular < -curves which lie
in U. Since all the bundles involved are trivial over U, we have Qf; = U x IR°. Using

coordinates py,...,ps on the R*-factor, we can write the canonical 2-form ¥ in the
form

W=d(p1 0"+ +p.0) = (dpa — pp 62 — pa d3) A O°
+ (dps — ps &3 — paBY w') n6° +pyw! AW’

(3.30)

(3.31)

It is clear from this equation that ¥ has maximum rank (and hence no characteristics)
except along the hypersurface p, = 0. On this hypersurface, but away from the (proper)

sublocus where pr? = prf =0, the form ¥ clearly has characteristics defined by
the following 2s Pfaffian equations:
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dpa —pp ol =0 =0"=psB w' =0. (3:32)

We will denote this Pfaffian system by % .

Let Q7 C @* C T*M denote the subbundle which is the annihilator of &, C TM.
In the above trivialization of @7, over U, this subbundle is simply the locus defined
by ps = 0. We will denote by Q) C Q7 the (dense) open subset of )7 which, in
each local trivialization as above, is the complement of the locus p[,»Bf = przﬂ =0.
Although we used a local coframing to compute the Pfaffian system ¥ of rank 2s on
the (2s+1)-manifold )3, the result is clearly independent of that choice of coframing
and hence is well-defined globally on (.

We can now state our main theorem.

Theorem 3.1 Let & be a non-integrable rank 2 distribution on a manifold M*™*.
Suppose further that the distribution &y = [Il N/ } (which has rank 3) is nowhere-
integrable. Then the projection to M of any W-characteristic in QY is a locally rigid
I -curve.

Proof. The proof rests on the following lemma, which generalizes Engel normal
form (valid for the case s = 2) to a normal form for distributions &7 satisfying the
hypotheses of the theorem.

Lemma 3.1 For each & € QF, let C¢ be the characteristic curve of ¥ passing through
& Let C¢ be the image of C¢ under the natural submersion QY — M. Then there is an
open neighborhood U of the basepoint m. of & on which there exists a local coordinate
chart (w,x,y, 2,01, . ..,Vs—2) centered on m with the following two properties. First,
the component of CE N U which contains m is described by

T=Yy=z=v = =ve2=0
Second, there are functions Fy, . .., Fs_5 onU so that & is spanned in U by the vector
felds
I} 19, 9 0 1o}
W=_— d X=r—4z—4+ws+F —+- +F,_ .
Jw an or z Oy v oz ! vy -2 Ovs_»

Assuming Lemma 3.1 for the moment, we will now prove that C¢ is locally rigid
in a neighborhood of m. Indeed, consider any compact segment S C C.’g defined, in
the local chart of the Lemma, by the set of relations a <w <bandr=y=z=v, =
-+« = vz = 0. This segment can obviously be parametrized as vy: [a,b] - U C M
in such a way that, in the normal coordinates of the Lemma, we have

Yot) = (£,0,...,0) . (3.33)

Clearly, v has a C'-neighborhood 24 in £24 (vo(a), y(b)) so that every other & -
curve v in 44 can be parametrized in the form

’Y(t) = (tv .I'(t), y(t)a Z(t)v ’U](t), cee ,vSAZ(t)) . (334)

Since v € 24 (yo(a), 10(b)), the functions z(t), y(t), z(t), vi(t), . . ., vs—2(t) must van-
ish at the endpoints of the interval ¢ <t < b and also must satisfy the equations
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y'(t) = 2(H) 2/ (t)
2@t =ta'(t)
vi(t) = F) (ta x(t),. .., 'Us—Z(t)) ') (3.35)

2 = Fooa(t, 2(D), . .. vsa(D) 2 (1)

However, by the proof of Prop. 3.2, which carries over verbatim to this case, the
endpoint conditions together with the first two of these equations imply that x(?),
y(t), and z(f) vanish identically. Of course, the remaining equations in turn now
imply that the v,(¢) are all constants. Since they must also vanish at the endpoints,
they must in fact be zero. Thus, the curve ~y is rigid, as desired. ]

It remains to prove Lemma 3.1. It is not clear why one might guess this Lemma
to be true, but the essential hint is to be found in Cartan (1915), which contains a
study of the case s = 3 (the first interesting case). Our proof was inspired by this
analysis.

Proof. (of Lemma 3.1) Let £ € @ be fixed. Let m € M be the basepoint of &, so
that 5 € T M. First, we fix an m-neighborhood U on which there is a coframing

2.6",...,6° satisfying the normalized structure equations defined above. Since,
a6 a vector bundle the sections of (Q}),, are spanned by the 1-forms 6',...,6°7",
we may use a change of normalized coframing to arrange that the point £ correspond
to the point (m,(1,0,...,0)) under the identification (Q}), = U x R*"! described
above. In fact, under this identification, we have

U=d{p '+ +p,_16°7")
= (dpa — P ) A 0% + (—psB] ') 07,

where, since £ = (m.(1,0,...,0)) is an element of Q}, the 1-form B} w' + B} w?
must be non-zero at m. By shrinking our m-neighborhood U, we may assume that
this 1-form is non-vanishing on U. It follows that the closed 2-form ¥ has Engel
half-rank s on (Q7),,, which is a manifold of dimension 2s+1.

Now, by Darboux’ theorem, there must exist a neighborhood V of ¢ in (Q}‘) y and

a submersion F:V — &% so that ¥ = F*(§2), where (2 is the standard symplectic
structure on [R?*. Note that the fibers of F are the characteristic curves of ¥. Now,
consider the subspace

E={veT(Q}), | (dpa —psdh)®) =0, 1 <a<s—1}CTe(Q}),

This vector space has dimension s+2. Moreover, E has the property that ¥, when
restricted to F, becomes decomposable (i.e., of half-rank 1) as well as the property
that it contains the ¥-characteristic direction through &. N

From this latter property, it follows that the image subspace £ = F'(E) C
TrR? is of dimension s+1 while, from the former property, it follows that f2,
restricted to F has haif-rank 1. Now, given these properties of E, it is a standard fact
of symplectic geometry (which follows from the Darboux-Weinstein Theorem) that
E is the tangent space of a smooth submanifold S C R?® of dimension s+1 with the
property that {2, pulls back to S to be a closed decomposable 2-form.

Thus, if we let § = F ~l(g), then S is a smooth manifold of dimension s+2
with following properties: First, £ lies on S and T¢S = E; second, the pull-back

(3.36)
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of ¥ to S is a closed non-zero decomposable 2-form; and third, S is foliated by
characteristic curves of W. In particular, by shrinking V, we may suppose that the
component of Ce NV which contains £ actually lies in S.

Since E is transverse to the fibers of the submersion Q7 — M, it follows that,
by shrinking U again if necessary, we may suppose that .S is the image of a smooth
section 0 of Q7 over U and hence is described by equations of the form p,, = f,, where
the f,, are functions on U. Since £ lies on S, these functions must satisfy fij(m) =1
and f,(m) = 0 for 1 < a < s. By making a change of coframing, replacing 6"
by fi0' +---+ fo16°71, we may clearly arrange it so that S is described by the
equations p; = 1 and p, = 0, so we do this.

Now, by construction, the 2-form

do' = —¢), n6% — (Blw' + Bjw?) A 07 (3.37)
is decomposable. Also, by construction, we have d8' = 0 mod 6',. .., 8° while df' #
Omod #',...,0° ', Tt follows that df' has a linear factor which lies in the span
of §',...,0° but not in the span of 8! ..., 0°"!. Thus, df' must have a factor of

the form 6% + g, 8' +--- + g,_; #°~'. Again, by changing coframe, replacing 6° by
65 +¢g 0"+ --+g,_1 05, we may arrange that 6° itself is a factor of d6'. Finally,
by making a suitable coframe change involving w' and w?, we can arrange to have

do' = —6° At . (3.38)

By the Pfaff-Darboux theorem (Bryant, et al, 1991, Thm. 11.3.4), it follows that
there exist functions z, y, and z on a neighborhood of m so that ! = dy — zdz. It
is easy to see that, by taking sufficient care, we may arrange that 8°dx # 0 and that
z, y, and z vanish at m. Since

dot = —dzndz = —0° rw' (3.39)

it follows that 6° = /\(dz —w dx) for some non-zero function A and some function w
on U. Replacing 6%, w!, and w? respectively by (1/0)8%, Aw!, and (1/A*)w?, we may
keep all of our structure equations so far and arrange that 8* = dz — w dx. Replacing
Y, 2, and w, respectively, by y — %w(m)zz, z —w(m)z, and w — w(m), we may even
arrange that the function w vanishes at m. Finally, by adding a suitable multiple of 6°
to w!, we may arrange that w' = dz.

The structure equations

df! = —dz ndz = —0° AW

3.40
d6® =dzrndw=w' rw? mod §,...,6° 340

now show that the functions w, z, y, and z all have linearly independent differentials
on U and that we have
dw = w? mod 8',6°, dz . (3.41)

Clearly, we may modify w? so as to have w? = dw without affecting any of our
previous normalizations. Thus, from now on, we assume that w? = dw.

We must still find s—2 more functions to complete our desired coordinate system.
To do this, let us return to the consideration of the foliation of S by characteristic
curves of ¥. Since 6', regarded as a section of @} has its image equal to S, we
can use §: U — S to pull back this characteristic foliation to a foliation .# of U
by & -curves. By Prop. 2.1, this foliation consists of non-regular & -curves. In fact,
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by our constuction, the leaf of .3 passing through m is precisely the component of
C¢ NU containing m. Since these leaves are &/-curves, all of the forms 6% vanish
on the leaves of .77 . Also by our construction, the leaves of .% are characteristic
for 6, and, since #'Adf' = —dzadyndz, it follows that the functions x, y, and z are
constant on the leaves of .77 . In particular, w! = dx vanishes on the leaves of .7 . It
follows that w? = dw must pull back to each of the leaves of .77 to be non-zero since
this is the only 1-form left in the coframing which does not vanish on the leaves of
7.

Now, shrinking U again if necessary, we may choose, beyond x, y, and z, an
additional s—2 independent functions v, ...,vs_ vanishing at m which are also
constant on the leaves of .. Since dw does not vanish on the leaves of .7, it follows
that the differentials of the s+2 functions w,z,y, 2,v;,...,v,_» are independent.
Hence they form a local coordinate system centered on m.

Finally, since the foliation .7 is defined by the Pfaffian system

de=dy=dz=dvy=---=dvs_2=0, (3.42)

and consists of &7 -curves, and since we know that dx is linearly independent from
the forms 8',..., 6%, it easily follows that there must exist functions Fy,..., Fy_,
on U so that, on U the system </ is defined by the Pfaffian equations

dy—zdr=dz —wdx=dv, — Fidz=---=dvs_y — Fs_2dz=0. 3.43)

However, this is exactly the statement of the lemma. [

The referee asked if it wasn’t true that one could arrange that all of the functions F;
vanish at . In fact, one can easily arrange this to be true. If one notices that

d(v, — F(m)z) — (F, — F,(m)) dz = dv, — F, dz

and simply uses the functions ¥; = v, — F,(m)x instead of the original functions v,,
this will not destroy any of the desired properties of the original coordinate system
and will replace each function F; by F, — F,(m) in the normal form. It is conceivable
that this vanishing condition may be desirable in some situations.

It is interesting to note that the local normal form provided for by Lemma 3.1
depends on a choice of s—2 functions of s+2 variables, namely the functions
Fy,...,F._,. Here is why this should be expected: A rank 2 distribution on a
manifold of dimension s+2 is determined by a section of the Grassmannian bun-
dle Go(T'M) — M of 2-planes in tangent spaces to M. The fibers of this bundle are
Grassmannian manifolds of the form G,(R**?) and hence have dimension 2s. Thus,
the local rank 2 distributions depend on 2s functions of s+2 variables. Since the
local diffeomorphisms in dimension s+2 depend on s+2 functions of s+2 variables,
it should be expected that the local diffeomorphism class of a rank 2 distribution in
12*+2 should depend on 25 — (5+2) = s—2 functions of s+2 variables. Of course, this
is exactly what our normal form produces. Thus, this normal form is, in some sense,
optimal.

Our main theorem does not say anything about the non-regular curves which have
a lifting to a W-characteristic which happens to lie in Q7 \ Qf. It is an interesting and
open problem to determine whether, under the bracket generating assumption, all of
the non-regular curves are rigid.
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4. Examples

In this section, we are going to consider some examples which illustrate the general
theory of the previous sections. First, let us introduce some notation. For any distribu-
tion 27 on a manifold M, we define & = (&, &] and, by induction, &, = [Z;, Z],
for all ¢ > 1.

4.1 Goursat systems

E. Goursat [1923] made a study of rank 2 distributions & on M%** with the property
that each of the distributions &, for 0 < ¢ < s was of constant rank 2+i. Note that,
for s > 2 this is not “generic” behavior. For example, when s > 2, a “generic” rank 2
distribution &/ will have distributions &% and % be of ranks 3 and 5, respectively.®

In any case, for distributions &/ satisfying this hypothesis, Goursat derived the
following result (which he attributed to von Weber): There exists a closed “excep-
tional” set E C M with no interior, so that A \ E can be covered by open sets U
on which there exist coordinates (x,yo, y1,. .., ¥s) so that, in U, the distribution &7
is described by the Pfaffian equations

dyo —y1de =dy; —yppder = =dys1 —ys dx=0. “.1n

Note that, except for the caveat about the exceptional set, this is a generalization of
Engel’s normal form.

In an open set U in which the system can be placed in this normal form, it is easy
to describe the rigid curves which arise as the projections of ¥-characteristics in ¢J7.
They are simply the curves of the foliation described by

das=dy0=dy1=~--=dys#1=0. (42)

Moreover, any </ -curve on which dx is not identically zero is easily seen to be
regular. Thus, the non-regular & -curves of the Goursat system (1) form a foliation
of B2,

This suggests that the following proposition might be true.

Proposition 4.1 Let & be a rank 2 distribution on M*** and suppose that %, and
D = [, D] have constant ranks, respectively, of 3 and 4. Then the U -characteristic
curves in Q% project to M to define a foliation . of M by locally rigid 7 -curves.

Proof. The hypotheses on &7 make it possible to choose, for any point m € M, an

m-neighborhood U and a coframing w',w?,6',...,6° on U, so that, on U, we have,
first, that & is defined by the Pfaffian equations 8! = - - - = §° = 0; second, that % is

6 The referee has pointed out to us that, in the control theory literature, a Goursat system is sometimes
referred 1o as an “integrator”.
For historical accuracy, it should be noted that Goursat did not notice that his proof of the stated
normal form failed on an exceptional set. This was first noticed by Giaro, et al (1978), who provided
an example with s = 3 where this exceptional set was non-empty. Their example was the system
on R® defined by the equations dyy — y1dx = dyy — yadx = zdy, — dx = 0. In this case, the
exceptional set is the hyperplane z = 0; away from this locus, setting y3 = 1/z puts the system
in Goursat normal form. As we shall see, this example actually fits quite nicely into the context of
Cartan’s result, Thm. 4.1.

7
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defined by the Pfaffian equations §' = -.- = ¢°~! = 0; and, third, that & is defined
by the Pfaffian equations #' = - .. = #*~2 = 0. Moreover, we have the congruences
d*= 0 modf',....60°7", 1<a<s-2
d*= 0 modf,...0° ., 1<a<s-I, (4.3)

df* = Aw' Aw? mod 6}, ...,6°

Ll

where A is a non-zero function. By replacing w' by an appropriate multiple, we can
assume that A = 1. Moreover, since & is not completely integrable, it follows that
we must have

A = (g w' +aawH A0  mod ', .., 0%, 4.4)

where a; and a, are not both zero. By making a unimodular basis change among w'
and w? (so as not to disturb the d9° congruence), we may assume that a;, = 1 and
az = 0. Thus, our structure equations take the form

do® = —¢5n0° — 6> A0*!
d0° ™ = =g A7 — @i A0 T W A6 (4.5)
d0® = ~¢5n 0% — ¢S A0 — @I A0T +w! AW?

where we are now restricting the greek index to the range 1 < o < s—2. We shall

say that a coframing 6',...,0° w!,w? on a domain U C M is adapted to & if
#' = ... = 6% = 0 defines the distribution & in U and, moreover, Eqgs. (4.5) hold.
It is easy to see that the Pfaffian system spanned by 8'....,6° ' is independent

of the choice of &/ -adapted cotraming in an open set U. Of course, it follows that there
is a Pfaffian system 7 globally well-defined on M which, relative to a & -adapted
coframing in U, is spanned by the 1-forms 8' ... 6% w' We will let .7 denote
the foliation of M by the integral curves of 7. Of course, relative to a & -adapted
coframing in U these are defined by the Pfaffian equations

l=...=0=w'=0. (4.6)

Let us now tix a & -adapted coframing in an open set U. Then, in the standard
identification (Q))y = U x Re~! discussed in §2, the subset (@M is described by
the inequality ps— # 0. Our formula for ¥ becomes

W = d(pa 6 +pe1 67
= (dp(x - P[)‘ d)g — Ps—1 ¢i—l) /\90 (47)
+ (dps—l iy ] ¢f_1 — Ps—1 @2:%) AT e p i w! A 67

It follows from this that the ¥-characteristics on (Q?)
equations

.; are defined by the Pfaffian

*=0""=0"=w'=0,
(dpo ~ pp @2 — ps_1657") =0, 4.8)
(dps‘l —Ps ¢§_1 — Ps-1 (b::%) =0.
Equation (4.8) makes it clear that the ¥-characteristic curves project to be the leaves

of .# and that, conversely, every leaf of .77 is the projection of a ( (s—1)-parameter
family of ) ¥-characteristic curve(s).
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4.2 Prolongation and deprolongation

At this point, it is worth discussing a result of Cartan (1914), which gives a local
structure theorem for rank 2 systems satisfying the conditions of Prop. 4.1. First, we
recall the definition of prolongation in this context.

If & is a rank 2 distribution on a manifold M>*%, then, regarding & as a vector
bundle, we can certainly define its projectivization 7w: P&/ — M, which is a bundle
over M whose typical fiber P<Z,, is the space of 1-dimensional linear subspaces of
the 2-dimensional vector space %, . Thus, the fibers of 'Y/ are isomorphic to RP! as
projective 1-manifolds. There is a canonical rank 2 distribution " on P defined
by setting @gl) = (n')~1(£) for each linear subspace £ C . The distribution %V
is called the (first) prolongation of &/ .

For any immersed & -curve ~:[a,b] — M, there is a canonical lift v'V: [a.b] —
P defined by letting 4(f) = R-~'(¢). It is easy to verify from the very definition
that ¥ is an immersed & {V-curve which is transverse to the fibers of 7 and that,
conversely, every immersed & (D-curve :[a,b] — P& which is transverse to the
fibers of 7 is of the form iy = v for a unique immersed & -curve ~.

Thus, with the obvious exception of the fibers of 7, which are clearly &7 -curves,
“almost all” &V-curves are in one-to-one correspondence with “almost all” &-
curves.

Now, it is easy to show that " = [Z®, ¥ V] = 7*(Z) and that 7" =
[@,m, (J](])] =7" (%) It follows that, if &% has rank 3 everywhere, then I!](l) has
rank 3 and .‘//2“) has rank 4. Thus, the prolongation of a generic rank 2 system satisfies
the conditions of Prop. 4.1. It should come as no surprise (and, in any case, is easy to
check) that the canonical foliation .# constructed in Prop. 4.1 is, in the case of Z(V,
merely the foliation by the fibers of «.

The following result shows that, in fact, every distribution satisfying the hypothe-
ses of Prop. 4.1 is locally of the form 7! for some distribution &7,

Theorem 4.1 (CARTAN, 1914) Let & be a rank 2 distribution on a manifold M***
and suppose that &y and 5 have ranks 3 and 4 respectively. Furthermore, suppose
that there is a submersion f: M — N**! with the property that the fibers of f are the
leaves of the canonical foliation .7 . Then there exists a unique rank 2 distribution
' on N with the property that & = f*(Z") and, moreover, there exists a canonical
smooth map fV: M — PY' which is a local diffeomorphism, which satisfies f =

7o fO, and which satisfies & = (f(”)vl (@M.

We will not give the proof of this result here, instead referring the reader either
to Cartan or to the more modern exposition in Sluis (1992). Alternatively, one can
simply verify that the following definitions work: The distribution %' is defined by
the rule

(Zjl(z) = f'(x) (((f/l )z) 4.9)

and the map f is defined by f(z) = f'(z)(Z.). The only slightly subtle point
is that one must use that the fibers of f are connected in order to show that this
well-defines &7/, Note that every point of M lies in a neighborhood U which does
have a submersion whose fibers are the leaves of .7 restricted to U, so this theorem
can always be applied locally. Indeed it is the basis of the proof of Goursat’s theorem.

If &/ is a rank 2 distribution with the property that the systems &, (as defined
earlier in this section) all have constant rank, then there is a largest integer ¢ for which
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the rank of &7, is £+2. According to Gardner (1967), the rank of &%, is then either
£+2 (in which case %)y, = 2 and the distribution 7 is a Frobenius system) or else
is £+4 (which is, in some sense, the “generic” situation). In this latter case, it follows
that 7 can be locally “deprolonged” (/—1) times to a rank 2 distribution % on a
manifold N2*$~“=D and this 7 is not the prolongation of a rank 2 distribution on a
lower dimensional manifold.

It is interesting to note that, when ¢ > 2, there is a distinguished subset £ C M
corresponding to the points x € M such that fV(z) is tangent to the canonical
foliation .77/ associated to the distribution &4/ on N. When s = 5, this set is precisely
the “exceptional set” on which Goursat’s normal form fails. A similar description of
the exceptional set can be given for larger s as well.

The end result of this is that in the constant rank case one either has a Goursat
system or else by a process of “de-prolonging” one can always reduce to the case
where the rank of /] is 3 and the rank of &% is 5. In this latter case, we have the
following analog of Prop. 4.1.

Proposition 4.2 Ler &/ be a rank 2 distribution on M*** and suppose that &,
and & = [, 4} have constant ranks, respectively of 3 and 5. Then, for each
1-dimensional subspace & C U, there is an (s—1)-parameter family of non-
homothetic W-characteristic curves in QY which project to M so that they pass
through m tangent to &.

4.3 Systems of Cartan type

Cartan (1910) contains a thorough study of rank 2 distributions & on S-manifolds
which have the property that </ has rank 3 and &/ has (the maximum) rank 5. It is
easy 1o see that these rank assumptions hold almost everywhere for a generic rank 2
distribution on a 5-manifold. We shall call these distributions systems of Cartan type.

For any system of Cartan type, the bundle Q7 is simply ), minus its zero sec-
tion. As a result all of the non-regular immersed </ -curves are projections of V-
characteristic curves in Q1. It is then a consequence of Prop. 4.2 and a dimension
count that there is exactly a 5-parameter family of non-regular & -curves and that
they are all locally rigid. Moreover, there is a unique non-regular curve through each
point in each direction tangent to the distribution 7.

It follows that there is a sort of “projective exponential” surface X, associated
to each point p € M> which is generated by the 1-parameter family of non-regular
curves through p. The geometry of how these surfaces sit in M is quite interesting.
For example, by analysing them, it can be shown that, if M is connected, then any two
points of M can be joined by a piecewise smooth & -curve whose smooth segments
are rigid. Thus, the “piecewise rigid” curves are always present in any variational
problem for </ -curves joining any two points of M.

In Cartan (1910) it is shown that one can associate a connection and consequently
a curvature to any distribution & of Cartan type. The fundamental curvature tensor
of this connection turns out to be a homogenous quartic form F on &7, i.e., a section
of S4(Z™).

Cartan showed that, when F vanishes identically, then every point of M has an
open neighborhood U on which there exists a coordinate chart (w, z,y, z, v) in which
& is described by the Pfaffian equations
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dy-zdac:dszdw=dv—w2da:=0. 4.10)

Moreover, he showed that the Lie algebra of infinitesimal symmetries of this &/ has
the largest possible dimension of any system of Cartan type and was isomorphic to
the 14-dimensional exceptional Lie algebra of non-compact type g,. It is interesting
to note that this very example was written down by Hilbert (1912) as an example of a
system whose integral curves could not be expressed in terms of an aribtrary function
and a finite number of derivatives. That no such formula existed was interesting
because it showed that the problem of constructing local, fixed-endpoint variations of
the corresponding &7 -curves was non-trivial.

The quartic form F is probably the analog for systems of Cartan type of the Ricci
tensor in Riemannian geometry. For example, it seems that when F is everywhere
positive definite and M is “&J-complete” in an appropriate sense, then A/ must be
compact. However, the analysis of this geometry is rather complicated and will be
postponed to a later paper devoted to the geometry of rigid curves in systems of
Cartan type.

4.4 Rolling surfaces

We will content ourselves with studying one geometric case where systems of Cartan
type arise, the case of the mechanical system represented by rolling one surface over
another without slipping or twisting. Special cases of this, usually a sphere rolling
over a plane or, more generally, over a surface in F?, have been mentioned in the
literature (cf. Arnold (1989, p. 96) or the recent preprint by Brockett and Dai). Our
treatment will be more general and abstract.

In usual formulations of the problem, one starts with a stationary surface X
and a moveable surface Y, imagined embedded in Euclidean space. The state space
is then described by choosing two points p; € X} and p» € X, and an isometric
identification ¢ of the tangent spaces,

L T,,lZ] - szzz.

Geometrically, one should imagine that the surface X is stationary and that one
moves the surface 2, into tangential contact with X; so that p; is coincident with
p1 and then rotates and/or reflects 2 so that the desired identification of the tangent
spaces is achieved. It is clear that the space of triples (py, p2,t) forms a manifold M
of dimension 5. We are going to describe the canonical rank 2 distribution & on M
which has the property that &7 -curves represent the possible ways of “rolling” X
over X, without slipping or twisting.

It is easy to see that a curve v: [a,b] — M which represents such a motion must
be of the form

A(t) = (wi(t), ua(t), ut)) @.11)

where u;: [a, b] — X; are smooth curves with the property that «(¢)(u} (1)) = u5(?) for
all a <t < b. This captures the property of “rolling without slipping”. However, this
is not sufficient to prevent “twisting”. The “twisting” condition is easily encoded as
follows: If we let ey, f1: [a,b] — T2, denote a parallel orthonormal frame field along
the curve u;, then we require that the corresponding frame field ey, fo: [a,b] — T X5
defined by

ex(t) = u(t)(er (1)) L) =) (H®) (4.12)
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should also be parallel (along u,).

It is clear from this formulation that no reference need be made to the actual
embeddings of the surfaces in Euclidean space. In other words, this problem could
just as well be considered for an arbitrary pair of abstract surfaces endowed with
Riemannian metrics, so this is what we shall do. For simplicity of the exposition, we
are going to restrict to the case of orientable surfaces and oriented identifications, but
this is a trivial restriction.

Thus, let 3} and X, be oriented surfaces endowed with Riemannian metrics daf
and do? respectively. Let F (respectively, F») denote the oriented orthonormal frame
bundle of X, (respectively, ) with respect to its induced metric.

As usual (see any elementary book on the Riemannian geometry of surfaces), there
are canonical 1-forms «y, o, and az; (= —a;3) on F| and corresponding 1-forms /3,
[, and (B2 (= —fB12) on F satisfying the structure equations

doy = ay a0 déy = Baunjh
daz = — N d@z = AﬁZl /\ﬂl (413)
dayy = Aoirag dBu= BpBiab

whzere A (respectively, B) is the Gauss curvature of the metric do? (respectively,
doz).

Now, each of F; and F; are principal right SO(2)-bundles. Let SO(2) act diago-
nally on F| x F; (this is, of course, a free action) and set M = (F} x F3)/SO2). A
moment’s thought shows that an element of the 5-manifold M has a natural interpre-
tation as a triple (py, p2,t) where 1: T}, X'y — T, X5 is an oriented isometry, so M is
actually the “state space” of our desired mechanical system.

Let & be the rank 3 distribution on Fy x F, defined by the Pfaffian equations

a—Bi=m—Fr=ay—0FM=0. (4.14)

Note that &7 is invariant under the diagonal SO(2)-action on F| x F, and that it
contains the tangents to the fibers of the submersion F} x F, — AL It follows that
there is a well-defined rank 2 distribution &/ on M which is the “push-down” of the
distribution 4. .

Now, it is clear that any & -curve 7:[a,b] — F) X B is of the form

F(t) = ((p1(®); e1 (D), f1(t)), (P2(t); e2(t), f2(1)) ) (4.15)

where each (e;, f,) is an oriented orthonormal frame field along p,:[a.b] — X,
where there exist functions g and h on the interval [a,b] so that, for { = 1 or 2,
we have pl(t) = g(t) e;(t) + h(t) f,(t), and, moreover, where the “rotation rates” of
the two frame fields along their respective base curves are the same at each time ¢.
It follows that the quotient curve v:{a,b] — M of such a 4 represents a “rolling-
without-twisting-or-slipping” of one of the surfaces over the other. Conversely every
such “rolling-without-twisting-or-slipping” clearly arises in this way. It follows that
a motion of rolling without twisting or slipping corresponds exactly to a & -curve.
Thus, # describes the “non-holonomic” constraints of our mechanical system.
Let us set

0' = %(041 - 51)
0° = L(o2— B) (4.16)
0> = Lo — Bar)



458 R.L. Bryant and L. Hsu

and also set w' = 1(ay + A1) and w? = J(ay + 3,). We easily compute that

1 — 3,2
ZZZ = Z*M' } mod 6', 6> @.17)
= —tU AW
and, moreover, that
df’ = (B - A)w' nw’ mod 6',6°,6° . (4.18)

It follows that, on the open set in M where A — B # 0, the distribution & is of
Cartan type.

Straightforward computation using Prop. 2.1 now shows that, on the open set
where A — B #0, the S-parameter family of rigid curves (not surprisingly) describes
the motion of rolling X, along X, in such a way that each of the contact curves p,
traces out a geodesic in X,. (Of course, if (B — A) vanishes identically on M, then the
Gaussian curvatures of the two surfaces must not only be equal, they must be constant.
In this case, the distribution &7 is completely integrable. Its leaves correspond to the
(local) isometries of the two surfaces.)

4.5 Space curves of constant curvature

All of our examples so far have had the property that, when the distribution was
homogeneous, the rigid curves were also homogeneous. However, this is not generally
true. We will now present a counterexample.
Consider the configuration space of the orthonormal frame bundle .7 of E2. Thus,
a point of . is of the form
f=(x; e[, e, €3) (4.19)

where x is a point of > and e = (e,, e;, e3) is an (oriented) orthonormal triple. As
usual, there are well-defined 1-forms w; = e,-dx and w,; = —w;, = e;-de;, which
satisfy the equations

dx = €; w; dwi = Wiy AWy
(4.20)
dei = €5 Wy, dwi] = Wik AWy

It is easy to see that any integral curve of the distribution defined on .77 by the

Pfaffian equations
Wy = W3 = Wiy =0 (421)

on which w, and w;; are non-zero is the Frenet frame of a smooth non-degenerate
curve in [E3.
Consider now the rank 2 distribution & defined on .77 by the Pfaffian equations

Wy =W3 =W3p =Wy —w = 0. (422)

The & -curves on which w; is non-zero are clearly the Frenet frames of space curves
satisfying k = 1.

Now, it is easy to see that the ranks of & and &% are 3 and 5 respectively. Thus,
we have the conditions of Prop 4.2.

In this case, it is easy to identify Q C T*7 with .7 x R?* (with coordinates p,,
p3, p31, and py; on the R*-factor) so that
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U = d( pyws + p3ws +pag wa +por (war — wi) )
=(dp2 — pa w3 + P21 wi2) Awa + (dps — pr was + Pag Wi3) A w3
+{(dp31 +p3 w1 — P21 wn) Awsy + (dp21 + prwp) Awa — wi)
+ P31 w3 AWt .

(4.23)

Clearly, Q) is defined by the locus p3; = 0 and Q7 is defined by the relations p3; =0
and (p3, p21) # 0. On this locus, the characteristic system of ¥ is defined by the rank 8
system

Ww=wy=wy =wy —w =0

dpy —pswn —prw =0
dps +prwip =0 (4.24)

dpy+prwr =0

paw+miwy =0

There is an 8-parameter family of characteristic curves, but simultaneously scaling ail
of the p-variables by a constant will clearly preserve the system and carry each integal
curve into another integral curve representing the same rigid < -curve in .% . Thus,
there is a 7-parameter family of rigid &/ -curves. The above system can be integrated,
up to a point, as follows:

First, note that the functions pspy; and p} + p} + p3, are each a first integral of the
above system.

Now, consider the case where p3p;; = 0. On any characteristic curve in (%, either
ps3 vanishes identically or else p;; vanishes identically. If p;; is identically zero, then
w; must vanish identically (since ps cannot vanish), which forces the curve in.# to
satisfy dx = de; = 0, i.e., it represents a frame spinning at a fixed base point about its
first leg. On the other hand, if p; vanishes identically, then w3, = 0 and the curve in
.7 satisfies dx = dey = 0, i.e., it represents a curve with torsion 7 = 0, a plane curve.
We already know that the plane curves with k = 1 are simply the circles of radius 1.

Next, consider the case where p3p;; # 0. Then, of course, py; never vanishes. Set
T =—p3/pn # 0 and ¢ = p;/p21, and the above equations imply that wy = 7w (s0
that 7 is, indeed, the torsion of the underlying space curve) as well as the differential
equations

dr =210 w; ,

4.25
do=(@® -7+ Duw . ( )

Along any solution curve, we may take w; = ds where s is the element of arc length
measured from a point where |7| acheives a minimum.

Solving the above equations, it follows that a space curve with x = 1 is locally
rigid among all space curves with x = 1 if and only if there is a constant A satisfying
IA] <1 so that the torsion is given by the formula

A
8= — - 4.26
7(s) cos? s+ A sin’ s (4.26)

(where s denotes arc-length along the curve measured from a point where 7 is a min-
imum). Note that, except when X equals O or £1, these curves are not homogeneous,
i.e., they are not the orbits of any 1-parameter subgroup of the Euclidean motions.
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4.6 Non-rigidity

As a final closing remark, let us note that rigidity when n > 2 seems to be a rarer
phenomenon. For example, it can be shown that, for the generic distribution of rank 3
in &3 or RS, there are no rigid curves, even though there are non-regular ones. The
proof that the non-regular curves in these cases are not rigid is non-trivial and we will
defer it to a later paper. We will content ourselves by simply giving a few examples.

First, consider the distribution & on R> with coordinates (z, 4!, y?, 2', 2?) defined
by the Pfaffian equations

dy' — Z'de =dy* - 22dx=0. 4.27)

Note that & is of rank 3 at every point.
It is easy to compute that every immersed non-regular &7-curve can be paramet-
rized in the form ~: [0, 1] — B> where

(@) = (mo,yé,yg, z(') +rtcosf, z(z) +rtsind) (4.28)

for some constanis Zo, Y3, 2§, r > 0, and 0. By applying transformations which
preserve the distribution &, such a v can be transformed into the special case

70(t) = (0,0,0,%,0) . (4.29)

However, this &7 -curve is clearly not rigid since, for any function A on the inter-
val {0, 1] such that it and its derivative vanish at the endpoints, the curve

W) = (R'(@®), th'®) — h(t), 0, t, 0) (4.30)

is a non-trivial variation of ~y through &7 -curves.

As another example, let x and y denote coordinates on two copies of F* and
consider the rank 3 distribution & defined on JR® = R> x R defined by the Pfaffian
equations

dy —xxdx=0. 4.31)

It is easy to see that there is a 7-parameter family of non-regular &/ -curves and that
they are all of the form

() = (x(®),y(t)) = (X0 + tu, yo+1(xo x 0)) (4.32)

for some constant vectors Xg, Yo, and u ¥ 0 in R3. By using symmetries and
reparametrization, each of these curves can be brought into the form ~p:[0, 1] — rS
given by

Yo(t) = (te;, 0), (4.33)
so it suffices to show that this curve is not rigid. However, again, for any function h
on the interval [0, 1] such that it and its derivative vanish at the endpoints, the curve

(t) = (te +h (t) e, (R (E) — 2h(t)) e ), (4.34)

is a & -curve with the same endpoints as 7. Thus, this curve is not rigid.



Rigidity of integral curves 461

References

Arnold, V.I.: Mathematical Methods of Classical Mechanics. Second Edition. Graduate Texts in Mathe-
matics 60, Springer, New York, 1989

Bliss, G.: The problem of Lagrange in the calculus of variations. Am. J. Math. 52, 673-744 (1930)

Brockett, R., Dai, L.: Non-holonomic kinematics and the role of elliptic functions in constructive control-
lability (1992, preprint)

Bryant, R., Chern, S.-S., Gardner, R., Goldschmidt, H., Griffiths, P.A.: Exterior Differential Systems. MSRI
Publications 18, Springer, New York, 1991

Cartan, E.: Les systémes de Pfaff 2 cing variables et les équations aux dérivées particlles du second ordre.
Ann. Ec. Norm. 27, 109-192 (1910)

Cartan, E.: Sur P'équivalence absolue de certains systémes d’équations différentielles et sur certaines
familles de courbes, Bull. Soc. Math. France 42, 12-48 (1914)

Cartan, E.: Sur I'intégration de certains systemes indéterminés d’équations différentielles. J. Reine
Angew. Math. 145, 86-91 (1915)

Cartan, E.: Lecons sur les Invariants Intégraux. Hermann, Paris, 1924

Chow, W.L.: Uber Systeme von linearen particilen Differentialgleichungen crster Ordnung. Math. Ann.
117, 98-105 (1939)

Gardner, R.: Invariants of Pfaffian systems. Trans. Am. Math. Soc. 126, 514-533 (1967)

Giaro, A., Kumpera, A., Ruiz, C.: Sur la lecture correcte d’un résult d’Elie Cartan. C. R. Acad. Sc. 287
Série A, 241-244 (1978)

Goursat, E.: Legons sur le problem de Pfaff. Hermann, Paris, 1923

Griffiths, P.A.: Exterior Differential Systems and the Calculus of Variations. Progr. Math. 25, Birkhiuser,
Boston, 1983

Gromov, M.: Partial Differential Relations. Springer, Berlin Heidelberg, 1986

Hamenstidt, U.: Some regularity theorems for Carnot-Carathéodory metrics. J. Differ. Geom. 32, 819-850
(1990)

Hermann, R.: Differential Geometry and the Calculus of Variations. Math. Sci. Eng. 49, Academic Press,
New York, 1968

Hilbert. D.: Uber den Begriff der Klasse von differentialgleichungen. Math. Ann. 73, 95-108 (1912)

Hsu, L.: Calculus of Variations via the Griffiths formalism. J. Differ. Geom. 36, 551-589 (1992)

Montgomery, R.: A counterexample in subRiemannian geometry (preprint, 1993)

Miito, Y.: Critical curves on a two-dimensional distribution. Tensor, N.S. 28, 337-352 (1972)

Pansu, P.: Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un. Ann.
Math. 129, 1-60 (1989)

Pontrjagin, L., Boltyanskii, V., Gamkredlidze, R., Mishchenko, E.: The Mathematical Theory of Optimal
Processes. Wiley Interscience, New York, 1962

Rayner, C.: The exponential map for the Lagrange problem on differentiable manifolds. Phil. Trans. of the
Royal Soc. of London, ser. A, Math. and Phys. Sci., no. 1127, 262, 299-344 (1967)

Sluis, W.: Absolute Equivalence and its Applications to Control Theory, a thesis presented to the University
of Waterloo, Ontario, Canada, 1992

Strichartz, R.: Sub-Riemannian geometry, J. Differ. Geom. 24, 221-263 (1986)

Strichartz, R.: Corrections to “Sub-Riemannian geometry”. J. Differ. Geom. 30, 595-596 (1989)

This article was processed by the author
using the Springer-Verlag TgX PJourlg macro package 1991.



