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Introduction 

It is shown that multiplicative invariants of closed 3-manifolds correspond to 
special trace functionals on the infinite ribbon braid group in the same way as link 
invariants correspond to special traces on the infinite braid group. Using finite 
fusion representation rings, which are derived from the K-theory of "nice" braid 
representations, we obtain invariants of 3-manifolds as a "thermodynamical" limit 
of cablings of invariants of framed links; the limit can be interpreted as the left 
regular representation in the representation ring. Applying this to special versions 
of the Jones polynomial and its generalizations, one obtains a general, simple proof 
of the existence of invariants of 3-manifolds (predicted by Witten) for loop groups 
for classical compact Lie groups; they coincide with the invariants constructed 
using the corresponding quantum groups. In particular, various constants such as 
the predicted framing anomalies and values for simple 3-manifolds can be checked 
explicitly. This approach can also be extended to the corresponding projective groups. 

As in the work of Reshetikhin and Turaev [RT2]  and related work (e.g. [B1],  
[Li2], [MS],  [ K M ] ,  [TW],  [Wa])  invariants of unoriented framed links are 
constructed, which are invariant under Kirby moves. This yields, by well-known 
surgery theorems, an invariant of 3-manifolds. The difference between this and 
their approaches lies in the way this invariant is found: 

We construct from a given invariant ~ of framed links a sequence of invariants 
(~ ~ �9 . . 

via cabling; thin means, roughly speaking, if L is a framed link with s components 
and if ~ ~ N s, the invariant ~ ( L )  is obtained by evaluating A a at the framed link 
obtained from L by replacing the i-th component of L by ci parallel components, 
where "parallel" is determined by the framing (see Section 2). Our observation, 
slightly oversimplified, now is that under nice conditions, which will be made precise 
below, suitably normalized cabled invariants will converge to a limiting invariant 
which is invariant under Kirby moves if the number of cables goes to infinity. 

Let us briefly sketch the required conditions. It was observed in [ G W ]  that 
one can define a ring structure on K(p), the K-theory associated to a braid 
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representation p whose restrictions to finite braid groups are finite dimensional and 
semisimple. We show that under certain conditions (essentially that the Bratteli 
inclusion diagram for . . .  p ( C B , ) c  p ( C B , + I ) . . ,  has period d for some d ~ N) 
this ring has an interesting finite quotient ring/((p); it was shown in [ G W ]  that for 
Hecke algebra representations with q a root of unity one obtains the famous 
so-called Verlinde algebras for Wess-Zumino-Witten models for unitary loop 
groups. Assume now that p is a braid representation derived from the invariant of 
framed links ~ such that / ( (p)  is finite. Then each of the invariants 5 ~ can be 
decomposed into a linear combination of simpler "irreducible" invariants accord- 
ing to the structure coefficients of the fusion ring K(p). It will be shown that by 
changing the framing anomaly (which is the fixed scalar by which ~ (K) changes if 
the framing of the knot K is increased by 1), if necessary, one can assume that this 
decompostion is actually well-defined in the finite quotient/((p),  i.e. only finitely 
many irreducible invariants occur in all these decompositions. As an example, the 
change of framing anomaly for the Jones polynomial will yield the Kauffman 
bracket polynomial. 

Under additional positivity assumptions (essentially that p is unitarizable) and 
non-singularity conditions (namely that 0 + rtr(tr~)l = t9 -~ and that a second 
constant C depending on s is well-defined, see the beginning of Section 2.5 for 
details) we obtain an invariant Let~) of framed 3-manifolds as an average over all 
possible cablings; more precisely, it is given by the formula 

1 ~t'~J(M(L)) = lim ~ ~ CS~9 -lel ~ ( L  ~) 
N~oo N ~{1.2 .... N}s 

provided it does not depend on the choice of orientations in L; here s is the number 
of components of L, [~1 is the sum of the coordinates of ~ and M(L) is the 
3-manifold obtained from Dehn surgery at L. One obtains from s an invariant 

of 3-manifolds by a now standard renormalization (see [RT2],  I-Wa], [Li2],  
[KM]) .  Although defined by a limit, the invariant ~ can be written down 
explicitly as a linear combination of irreducible invariants of framed links; it can 
also be expressed in terms of a linear combination of finitely many cablings as it 
was done in the sl2 case by Kirby and Melvin. The advantage of the limit definition 
is that the invariance under Kirby moves follows from a simple Perron-Frobenius 
argument. 

This approach can be used to construct invariants of 3-manifolds for all these 
specializations of the Jones polynomial and its generalizations, the H O M F L Y  and 
the Kauffman polynomial, for which the associated braid representations are 
unitarizable. We show that these invariants coincide with the ones constructed in 
[RT2]  and [TW],  where quantum deformations of the classical Lie algebras were 
used. It is also possible to obtain the invariants corresponding to projective groups 
by the same procedure if one requires the number of cables to be divisible by the 
order of the center of the given compact group, except that we have not checked 
whether the constant C is well-defined in that case. 

This paper is organized as follows: In the first section we establish various 
correspondences between invariants of framed links and 3-manifolds and special 
trace functionals on ribbon braid groups. In particular, one obtains from these 
functionals representations p = _Pt, of ribbon braid groups. In Sect. 2.1 the defini- 
tions of the rings K(p) and K(p) are recalled from [ G W ]  and are slightly 
expanded. Section 2.2 reviews how cabled invariants can be decomposed into 
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"irreducible" invariants according to the structure coefficients of K(p) (these results 
have already more or less appeared in [M2] ,  [Re]  and [W2]).  In the special 
case of a framed knot L, it says that the invariant of the c-cabling of L can be 
written as 

~e(z,~ ~) = y, a~ c~ s ~(L) 

where 2 runs through an index set A labelling a basis o f / ( ( p )  and a(~ c) is the 
dimension of a simple p(CBc) module corresponding to 2; it coincides with the 
coefficient of ~ in the expansion of ~ I ,  where q~l is the basis element correspond- 
ing to the generating representation (or element) in K(p). Similar formulas also 
hold for an s-component link L, where one obtains an irreducible invariant for each 
assignment of an element Ac, to the i-th component of L, i = 1, 2 . . . .  s, (see 
Theorem 2.2). 

In Sect. 2.3 it is shown that a link invariant can be made rational by choosing 
a certain framing anomaly if the corresponding braid representation has a periodic 
Bratteli diagram (see Sect 2.1) and it has a projection p with the contraction 
property; this means that there exists d e N and p e p(CBa) such that 

pp(CB~)p  = pp(CBa+ 1, ~) ~- p(CBn+ 1, ~). 

In the quantum group picture, p would correspond to a projection onto the trivial 
representation. Sections 2.4 and 2.5 contain a proof of the invariance of ~ ,  defined 
as above, under the Kirby moves. 

In the third section, it is shown that our approach can be applied to unitarizable 
specializations of the H O M F L Y  and Kauffman polynomials. Moreover, we show 
that these invariants are the same as the ones obtained in [RT2]  and [ T W ]  for 
quantizations of classical Lie algebras. This result was also recently obtained by 
Turaev independently. As an interesting (possibly known) side result, we exhibit the 
connection between one of the conditions for the universal R-matrix and its 
behaviour under cabling (Sect. 3.3). We also compute the framing anomaly ~t~ for 
~ (Proposition 3.2.3) and the constant C, whose absolute value is equal to 
~-(S 1 x S 2) (Theorem 3.4). The latter is equal to 1/Soo, the (0,0)-entry of the 
so-called S-matrix (see [ K P  ]), as predicted by Witten. We also obtain the spectral 
decomposition of a full twist in the corresponding representation of the ribbon 
braid group and a proof of a periodicity phenomenon first observed numerically by 
Freed and Gompf. In the concluding remarks, we discuss connections between our 
approach and various other approaches, computability questions and applications. 

w 1. Topological invariants and functionals on (ribbon) braid groups 

For our approach, it will be useful to consider the following simple correspond- 
ences between invariants of links (resp. of framed links or of 3-manifolds) and 
special functionals on the infinite braid groups and ribbon braid groups respect- 
ively. The following proposition follows from Jones' discovery of link invariants 
[J2] and its easy converse [W2] ,  Proposition 3. 

Proposition 1.1. There exists a 1-1 correspondence between multiplicative link in- 
variants ~ (i.e. invariants ~LP such that ~(L1 u L2) = -La(L1) ~(L2) ,  where L1 u L2 
is the disjoint union o f  the links L1 and L2) such that ,La(unknot) = z eF 0 and local 
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Markov traces tr on the infinite braid group Boo, i.e. functionals tr: CBoo ~ C such 
that 

(M1) tr(~fl) = tr(fl~) for all, ~, fl ~ Boo 

(M2) tr(fla~ t) = tr(fl)tr(an) for fl ~ B, 

(M3) tr(~fl) = tr(~)tr(fl) for disjoint braids ~, fl~ Boo. 

Let (/~, n) be the closure of the n-braid fl (see [Bi]); then the correspondence is 
given by the formula 

~e(L n) 
tr(fl) = (LP (unknot))"" 

Let fo r f~  N the element a~Y) be given by replacing each string of cri byfparallel  
strings (see below) 

ff i f + f  

Fig. 1. 

Obviously the map ai ~-* cr~ IJ, i = 1, 2 . . . . .  n - 1 extends to an injective homo- 
morphism from B. into BnS. In order to deal with framed links it will be useful to 
deal with ribbon braid groups. They can be thought of as braid groups where the 
strands have been replaced by ribbons which can be twisted. Algebraically, the 
ribbon braid group RB. is isomorphic to the semidirect product of Z" by B,, 
i.e. RB,  ~- Z " x B n ,  where B. acts by permutations on Z" and Z" indicates the 
number of full twists for each of the n ribbons. The positive full twist of the i-th 
ribbon will be deonted by z~. 

It is easy to see that one can-obtain any framed link as closure of a ribbon braid. 
Indeed, using Alexander's theorem, one finds, for a given framed link, a ribbon 
braid whose closure gives the same link though not necessarily with the same 
framing; but the framing can be easily adjusted by adding zi's (or their inverses) at 
appropriate places. It is also interesting to observe that full-twists are not necessary 
for obtaining all the framed links as closures of ribbon braids. Just observe that zl is 
topologically equivalent to the half closure of at (see below). 

Fig. 2. 

It is also easy to formulate the corresponding Markov moves for framed links. 
First observe that conjugation by a braid (the first Markov move) does not change 
the framing. The second Markov move for framed links is given by 

(RM2)  (fl, n)*-* ( f l ~  1 an, n + 1)*-* (flz. a~ 1, n + 1). 
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(RM2) is an algebraic rephrasing of what is known to topologists as the 
C move. Observe that (RM2) does not change the framing of the closure 
of the corresponding ribbon braids and that it corresponds to the second 
Markov move in the quotient B, ~-RB,,/T,. It is an easy corollary of 
Markov's theorem that 2 ribbon braids give as closure the same framed link if 
and only if they are equivalent via the moves (RM1) (conjugation by a ribbon 
braid) and (RM2). One can now formulate similar correspondences as in Pro- 
position 1.1. In the following we shall denote the unknot with 0-framing by 
0 - unknot. 

Proposition 1.2. (a) There exists a 1-1 correspondence between multiplicative invari- 
ants of  framed links 2/' such that Z~a(0 - unknot) # 0 and local Markov traces tr on 
RB~ (where (M2) is replaced by tr(fltr,)= Co ltr(fl%), for all fl E RB,  with 
Co 1 = (tr(trn)/tr(z~))). It is given by 

~et/~, n) 
t r ( f l )  - (*) 

~ ( 0  - unknot)" 

where ~ ( 0  - unknot) = Co = tr(zi)/tr(al). 
(b) There exists a 1-1 correspondence between multiplicative invariants ~ of  

closed connected oriented 3-manifolds with o~(S 1 x S 2) = Co 4 = 0 (multiplicative here 
means that ~ - ( M I # M 2 ) =  ~ ( M 1 ) f f ( M 2 ) )  and local Markov traces on RB~o 
satisfying for any fl ~ RBn and any m < n + 1 

tr ( ~ ~  = tr(fl)Co -m-1 = tr(fl)tr(tr~ m)) 

n3 m 

Fig.  3. 

and 

(K2) tr(al) = tr(ai -1) = 1~Co 2 

and such that the correspondin9 invariant of  framed links does not depend on the 
choice of  orientation of the links. The correspondence is given by 

(M (fl, n) ) 
tr(fl) = i f ( S 1  x $2)" (**) 

where ~-(S 1 x S 2) = Co = tr(zl)/tr(trl). 

Proof. For (a) this is basically the same proof as the one for Proposition 1.1. 
Assuming the existence of .~ as described above it is easy to see that tr is 
well-defined independently of the embedding of fl~ RB,  c RB,+ 1. Indeed, if 
fl~ RB, is viewed as an n + 1-ribbon braid, one has 

(/~, n + 1) = (fl, n) u (0 - unknot). 
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Hence ( * ) gives the same formula in both cases, using the multiplicativity of ~ .  
Observe that ( ~ ,  1) and (bl ,  2) are both the (1 - unknot). Hence one obtains from 
( ,)  

s - unknot) s - unknot) 
tr(zl)  = ~ ( 0 -  unknot) and t r (a l )  = La(0 _ unknot) / .  

The expression for L?(0 - unknot) follows from these 2 formulas. On the other 
hand, if we have a local Markov trace tr on the ribbon braid groups, we define 

by solving for the numerator in ( . )  and replacing ~ ( 0 -  unknot) by 
tr(zi)/tr(crl). The invariance of ~e under (RM1) and (RM2) follows now immedi- 
ately from the conditions on tr. 

For  (b) let ~ be a multiplicative invariant of 3-manifolds as in the statement. By 
the already mentioned surgery theorem, one obtains from this an invariant s  of 
framed links by ~ ( L )  = ~(M(L)), where M(L) is the manifold obtained from 
surgery at L. Recall the well-known fact that M ( 0 -  u n k n o t ) =  S i x  S z. Hence 
one obtains from (**) a well-defined trace on RBoo as in (a) with 

(S 1 X S 2) ~-. tr (za)/tr(aa). By Kirby calculus, in the version of Fenn and Rourke 
(further simplified by Turaev), L# gives the same value for framed links which are 
the same except in a small area where they look as sketched below (where m - 1 
indicates that we have m - 1 parallel ribbons and all the ribbons are supposed to 
be parallel to the plane of the paper (this is sometimes referred to as "blackboard 
framing"). It is easy to check, using (**), that the first picture implies the first 
equality in (K1) and the second picture implies (K2) (where we use the identity 
~ - ( S  3) = 1; see the corollary below). Also observe that by our first picture 
M(a ~ 2m) = M(O"-1 ), where the symbol O m- x denotes m - 1 unlinked unknots, 
each with 0-framing. The equality tr(a~ m)) = C o " - 1  follows now directly from the 
definition of tr. 

To prove the other direction, it suffices to show that any application of Kirby- 
Fenn-Rourke moves corresponds to replacing the closure of a ribbon braid fl by 
the closure of the braid on the. right hand side in Fig. 3. This can be accomplished 
by conjugating /3 by an appropriate ribbon braid (which does not change the 
closure) such that the relevant ribbons are at the end. 

o r  

to-1 

< > 

ca-1 

C ' Q  -- ; r - - ;  
Fig. 4. 
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Corollary. Let ~ and tr be as in Proposition 1.2b. Then 
(a) ~ ( S  3) = 1 
(b) .~(S 1 x S  2) = 1/tr(T~). 

Proof. Observe that M ~ S 3 is homeomorphic to M for any 3-manifold M. Hence, 
by multiplicativity of ~-, one has ~-(S 3) = 1. It follows from this and the fact that 
S 3 is obtained by surgery along (~t, 1) = (bl,  2) that tr(zl)  = 1/ ,~(S  1 x $2), which 
shows (b). 

Remarks. 1. Conditions (K1) and (K2) are algebraic reformulations of the Kirby 
moves using the versions of Fenn and Rourke. 

2. A very common way of assigning a framing number to a link projection is to 
assume paper (or blackboard) framing; determine whether a crossing in the link 
diagram is positive or negative according to the right hand rule (e.g. the crossings in 
Fig. I are all positive; the crossing in tri-1 would be negative (see also e.g. [Ka])) .  
The framing number of a component of a link is then given by the number of 
positive selfintersections - number of negative selfintersections (i.e. we only count 
intersections if both pieces of the string belong to the same component). Also 
observe that if a knot K is the closure of a braid fl = 1--I at.f, the framing number of 
K is equal to the exponent sum e(fl) = S' .  ni. z...~ 3 

3. There is an easy way of producing invariants of framed links from link 
invariants via some rescaling; the opposite procedure was used by Kauffman to 
derive the Jones polynomial from his bracket polynomial and also for the deriv- 
ation of the Kauffman polynomial (see [Ka]) .  We shall need this procedure later, 
so we describe it here: 

Let 5r be a link invariant with Markov trace tr and let ct ~ C, ~ 4= 0. Then we 
obtain an invariant ~ of framed links by LP~(fl, n) = ~t ~<~ &o(fl, n). It is easy to see 
that whenever one changes the framing of a component of a link by + 1, its 
5r changes by 7• 1 (just observe that the Markov move (M2) changes the 
framing number by _ 1). 

On the other hand, we call an invariant 5e of framed links an invariant with 
framing anomaly ~ if, whenever one changes the framing of one of its component by 
+ 1, then its ~a-value changes by ct • ~. We leave it to the reader to check that 
&o_~ is a link invariant. As La is essentially already a link invariant, we shall also 
call 5a a link invariant with framing anomaly ct, although strictly speaking it is not an 
invariant of links. The following statements can also be checked easily (see also 
Lemma 2.1.1): 

If p is the representation of RB~: associated to the link invariant Z# with 
framing anomaly ~, we have p(Tj) = ctl and ct = t r ( a t ) f f ( 0  - unknot). 

w lnvariants of 3-manifolds via cabling 

2.1. Bratteli diagrams and K-theory for braid representations. We first need some 
notation for the description of increasing sequences of finite dimensional complex 
semisimple algebras. Let M,  be the ring of all complex n x n matrices. Observe that 
if ,4 and B are semisimple complex algebras, we can write them as A = ~)A~ and 
B = t~ B~ with A~ ~ Ma~ and B~ ~ Mb~ for appropriate  natural  numbers a~ and 
b~ and 2 and # running through index sets labelling the simple components of 
A and B. The vector ~ whose components are the numbers a~ is called the dimension 
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vector of A. The rank of an idempotent e ~ Mn is equal to Tr(e), where Tr is the 
usual trace on Mn, i.e. the sum of the diagonal elements. If e is an idempotent in the 
algebra A as described above, we define its rank K(e) (more precisely, it should be 
Ko(p)) to be equal to the vector 

K (e) = (Trz(e))~ 

where Trz is the functional which is the usual trace on Az -~ M,,  and 0 on the other 
simple components. Observe that if px ~ Az is a minimal idempotent, we obtain 

K(pz) = e~ = (0 . . . . .  0, 1, 0, . ,  0), 

where the 1 is in the slot labelled by 2. Hence the Z-linear span of {K(e), e an 
idempotent in A} is equal to Z ~, where s is the number of simple components of 
A and its N-linear span is equal to N s. These 2 sets (i.e. Z s and NS), denoted by 
K(A) resp. K§ (A) are called the K-theory of A. Let p be an idempotent in A. Then 
the set pAp = {pap, a ~ A} is a subalgebra of A. We leave it to the reader to check 
(e.g. by writing p in diagonal form) that 

dim ~ pAp = K(p) 

where ~ pAp is the dimension vector of pAp. If A is a subalgebra of B, any simple 
B~ module V~ is an A module. Let g,z be the number of simple Az modules in its 
decomposition into simple A modules. The matrix G = (g,z) is called the inclusion 
matrix for A c B. It is also easy to check that the column (g~x)u of the inclusion 
matrix is equal to the dimension vector of pxBpz, where p~ is a minimal idempotent 
in Aa. Hence it follows from the previous formula that the columns of G are given 
by 

(g~x)~ = K(px) 

where pz is a minimal idempotent in Ax. The inclusion of A in B is conveniently 
described by an inclusion diagram. This is a graph whose vertices are arranged in 
2 lines. In one line, the vertices are in 1-1 correspondence with the simple direct 
summands Ax of A, in the other one with the summands B~ of B. Then a vertex 
corresponding to Aa is joined with a vertex corresponding to B~ by g~x edges. If 
A and B have the same identity, there is an easy way of computing the dimension 
b~ of a simple B~ module. We just add up all the dimensions of simple A~ modules 
for those 2's which are joined to /~ by edges (with multiplicities), or in matrix 
notation. 

~ =  G~. 

Examples for inclusion diagrams will be given in Sect. 3. It was observed in 
I-GW] that for sufficiently nice braid representations one can define a multiplica- 
tion on their K-theory whose structure coefficients are closely related to the entries 
of inclusion matrices. More precisely, let p be a locally finite braid representation; 
this means that p(CRBn) is finite dimensional and semisimple for all n e N, i.e. one 
has 

p(CRBn) ~- (~ M~ 
~,r 

where An is a finite index set and a~ e N. The Bratteli diagram of p is the sequence of 
inclusion diagrams p(CRBo) c p(CRB1) c p(CRB2) c . . . .  with the vertices 
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standing for the simple components of p(CRB.) being in the n + 1-st line. In this 
context we define the K-theory K(p) of our representation as 

K(p) = (~ K(p(CRB.)) 
n > O  

where K(p(CBo)) is defined to be equal to Z. To define a multiplication on K(p) we 
use the fact that the algebraic tensor product C RB, | C RBs can be embedded into 
CRB,+r~ by juxtaposition of the braids (see picture below or [RT1 ], [FY]  or [JS]) 

~ E  B 2 7e B 3 ~| B 5 

Fig. 5. 

This extends to natural embeddings of CRB~ ~ into CRB,I  and to embeddings of 
finitely many finite ribbon braid groups into CRB| We define now a multiplica- 
tion, respecting the natural gradation, by 

e z x e u e K ( p(C RB.) ) x K (p(C RBm) )~-~ K (pa | p~) e K (p(C B.+m) ) 

where pz and pu are minimal idempotents in p(CRB.)z and p(CRBm),, i.e. elements 
in the inverse image of ez and e,. The structure coefficients c~  of this multiplication 
are defined by 

= E4 ev 
r 

where v e A.+m. We have the following 

Proposition 2.1.1. (a) The multiplication above is Z linear and makes K(p) into an 
abelian, associative ring. 

(b) I f  lr is the identity in p(CRB,), the multiplication by K(1,) is given by the 
infinite matrix G ~, where we take the natural basis (e z ) of K (p) as described above, and 
where G is ffiven by 

G = I ~ ) G~ 0 

G2 0 

�9 , 

with G. being the inclusion for p(CRB.) c p(CRB.+ 1). 

Proof. The first statement has been shown in [GW] .  For the second statement, 
obeserve that for any p~ e p(CRB.) the element p~ | 1, is just the usual embedding 
of p~ in p(CRB.+r). So for r = 1, we obtain 

K(pz | 11) = (az,),~A,+, e K(p(CRB.+t)). 

This shows the claim. 
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An example for such a ring would be the ring of symmetric functions in 
d variables, i.e. the representation ring of the unitary group U(d). It can be obtained 
from the representation Pv of the symmetric group S~, defined by permuting the 
factors in | ~o End V with dim V = d. The representation ring of SU(d) appears as 
quotient of K(pv),  defined by the ideal generated by (1 - K(Pt~q)), where Pt~q is 
the central idempotent belonging to the Young diagram consisting of 1 column 
with d boxes. The corresponding representation on the tensor space is of course the 
determinant representation (see also Sect. 3 for more details). 

By definition, the ring K(p) is infinite dimensional. In special cases, however, it 
will be possible to reduce these rings to finite dimensional rings by factoring over 
an ideal similarly to what was just sketched above. We say that an idempotent 
p ~ p(CBa) has the contraction property if 

pp(CBn)p ~- pp(CBd+l,n) ~- p(CBd+I.~) for all n > d 

where Bd+ ~,n is the subgroup of Bn generated by trd+l, tra+2 . . .  an - t .  

Lemma 2.1.2. 1he following statements are equivalent: 
(a) There exists p ~ p(CBd) with the contraction property, 
(b) There exists an injective map j: An --* A,+dfor all n ~ No which preserves the 

structure coefficients of  the multiplication, i.e. we have 

cJ(V) ~j(v) = c[u for all 2 ~ A~, ~t ~ Am and v e An+m j(;Oa = c2,j(#) 

(c) There exists an injective map j: A~ -~ An+d for all n 6 No which preserves the 
entries of  the inclusion matrices i.e. we have 

gj(u)j(x) = Oux for all 2 ~ An, t~ ~ An+ ~ and n e No. 

Proof. Assume (a). The central idempotents of pp(CB~+d)p are given by pz, with 
I ~  An+d. Hence the isomorphism between pp(CBn+d)p and p(CBn) defines an 
injective map j: An --* A~ + d. The second statement of (b) follows from the associativ- 
ity of our multiplication. Indeed, let Px and p, be minimal idempotents in p(CBn) 
and p ( C B m ) .  Then also p |  is a minimal idempotent by the contraction 
property, i.e. eox ex = era). But then 

eox  (e~ • e,)  = eo • ~ c~  e~ = ~ c~, ej~v) 
v v 

while 

'(eox e~) x e~ ej(~) x e~ ~cj(~)~,e~,. 

Setting the last two equations equal yields the claim. (c) follows from (b) immedi- 
ately, using the fact that g~u = c~1 ~. To prove the last implication, let p be in 
the inverse image of j(1) ~ K(p(CBd)). Then it follows from our assumption that the 
inclusion matrix of pp(CBn)p c pp(CBn + 1)P coincides with the inclusion matrix 
for p(CB~-d) c p(CBn+ l-d). Statement (a) can now be shown easily by induction 
o n  n. 

The braid representation p is said to be periodic with period d if there exists 
no e N such that the map j, as defined in the previous Lemma, is surjective for all 
n > no. We shall see below that one always obtains a finite dimensional ring from 
a periodic braid representation by factoring over the ideal generated by (1 - K(p)). 
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G = Gn+ 1 

Gn+d-2 

where we assume n > no and n is divisible by d. 

It has been already shown in [ G W ]  that one obtains fusion rings of Wess- 
Zumino-Witten models this way (see also Sect. 3). 

To formulate our result, we define the j-orbit of an element 2 ~ A, to be the set 

O j(2) = {j"(2), n ~ Z such that j"(2) is well-defined}. 

Proposition 2.1.3. (a) I f  p admits a projection p with contraction property, then the 
quotient K(p)p = K(p)/(1 - K(p))  has a basis labelled by the j-orbits. 

(b) I f  p also makes p periodic with period d, then the ring K(p)p is finite 
dimensional (over Z). One can choose a basis labelled by the elements of 
A, u A,+ a w . . .  w A,+a- a where n > no. In this quotient ring, the infinite matrix 
G of the last lemma will be replaced by thefinite dimensional matrix, denoted by the 
same symbol, 

"rn Gn+d-1 I 

(c) Assume p is periodic with period dl and with period d 2 where the periodicity is 
given by the idempotents Pl and P2 respectively. Then the quotient over the ideal 
generated by ( 1 -  K(Pl)) and by ( 1 -  K(p2)) has a basis as in (b) where 
d = g.c.d(dl, d2). 

Proof. Let K ( p ) =  eo. Then it follows from eo x e~ = ei(x) and induction that 
ex - e~ rood (1 - K(p)) if # ~ O j(2). On the other hand, the multiplication does 
induce any additional relations between these equivalence classes by the last 
lemma, hence the quotient ring has a basis as in the statement. (b) is essentially just 
a special case of this. For (c), one applies (a) first to the quotient ring with respect to 
Pl and then, in this quotient ring, one applies (a) with respect to/((P2). 

2.2. Decomposition of cabled invariants. The rings constructed in the previous 
section will now be used to express invariants of cablings of framed links in terms of 
so-called "irreducible" invariants. Let ~'~ be an invariant of framed links and let 
L be a framed link with s components. Moreover, let ~ = (cl, c2 . . . . .  c~) ~ N ~. 
Then it is easy to show that one obtains an invariant S a~ of framed links by 

Z, ee(L) = ~ ( L  e) 

where L e is the framed link obtained by cutting the ribbon of the i-th component of 
L into ci parallel ribbons�9 ~ will also be referred to as a cabling vector. Similarly, if 
/~ is a (ribbon) braid such that its closure L is an s-component link, one defines fl~ to 
be the braid obtained by replacing a string belonging to the i-th component of L by 
ci parallel strings. This definition ensures that L e is the closure of flL This can also 
be expressed in terms of the cycles of a braid. Recall that any permutation of S. can 
be written as a product of disjoint cycles. Similarly, we define the cycles of a braid 
by its image under the epimorphism B . - ~ S .  (e.g. ~1 ~B3 has the cycles (1,2) 
and (3)). The permutation obtained from ~ ~ B, is denoted by ~. It is easy to 
see that strings of a braid are in the same cycle if and only if they are in the 
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same component of the link obtained by the closure of a braid. In the following 
we shall always assume that the cycles are of the form (1,2 . . . .  ,mr), 
(ml + 1, mr + 2 . . . . .  m~ + m2) . . . .  i.e. they can be characterized by a cycle 
vector rh = (m~, m2 . . . . .  ms). Also observe that the braids which leave invariant 
the cycle structure rh form a subgroup RB~ c RB, of colored ribbon braids, where 

Recall the definition of t / |  ~ in Sect. 2.1. This extends to natural embeddings of 
C RB~" into C RB,c and to embeddings of finitely many finite r ibbon braid groups 
into CRB~ . In particular we define for # e RBy the elements #| e RB~f by 

~| = ~ | ~ | . . . | ~ (s times). 

Observe the formal similarity to the coproduct for group algebras. Similarly as in 
that case, one has an interesting action of the symmetric group on such formal 
tensor powers. 

Similarly as the c-th tensor power of a representation of a group can be 
decomposed into irreducibles, one can also decompose A a~ into a linear combina- 
tion of simpler invariants. This will be made precise below where we extend the 
discussion in [ W 2 ]  to colored l inks.  Similar results have also been independently 
obtained, by somewhat different methods, by Reshetikhin [Re]  and J. Murakami  
[M2] .  We shall first need the following simple 

Observation. Assume that 7 e RB, has cycle structure rhe N ~. Fix a cabling vector 
b e  N ~ and choose for the j-th string of ~) an element /~je RB,,,, where i is the 
number of the cycle in which j lies. Then 

In particular, elements of the form ~| commute with 7 ~. 
This can be seen easily at the following example with 7 = a~-1 a~-1 and c = 3. 

131 | 132 | ~3 

Fig. 6. 

Let tr and p be as above. Observe that by the multiplicativity property (M3) of tr 

Ptr(C Bn @ C Bm) "~ Ptr(CBa) | Ptr(C Bm) 

so all the relations above also go through in the representation. We can now prove 
the following theorem (see also [M1] ,  [Re]  and [W2]).  

Theorem 2.2. Let notations be as just introduced and let, moreover, ~ be an s-tuple of 
elements A(o e Ac~ (where Am was a labelling set for the simple components of  p (C Bin)). 
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Then there exists an invariant ~ of colored framed links with s components such that 
one has for any such link L 

where the summation goes over all possible s-tuples ~ and a~i -- 1-L=l~ a~, '). 

Proof. Let L be a link with s components. If ? ~ RB. is a ribbon braid such that 
L = (p, n), then the corresponding permutation ~ under the natural  quotient map 
RB,~-* S, has exactly s cycles. After conjugating by an appropriate braid, if 
necessary, one can assume that ? has cycle structure th as described above. Let 
p~ ~ p(CRB~,) be a minimal idempotent for i = 1, 2 . . . . .  s. Then one defines 

~ / ' (L)  = tr(y~| - unknot) <~'~') (*)  

where (& th) is the number of strings of y~. 
It is easy to show that this defines an invariant of framed links (see [ M ]  or [W2, 

Proposit ion 4]). It only depends on the equivalence class of p, (i.e. if one replaces 
p~ by another minimal idempotent in the same simple component of p(CRB:)  one 
obtains the same invariant). Hence one can replace p by ~ = (2~, ~2 . . . . .  "~s) where 
2i labels the simple component to which the idempotent corresponding to the i-th 
cycle belongs. 

Take now any partit ion of unity (p}i)), of minimal idempotents of p(CRB~,) (i.e. 
~ ,  Pt = 1 and if t 4: t, then PtPr = 0). Choose n not necessarily distinct idempotents 
pj, j = 1, 2 . . . . .  n such that pj~p(CB~,) i f j  is in the i-th cycle of ? e B , .  Then it 
follows, with notations as above, 

tr((p~ | P2 | �9 �9 �9 | Pn) 2 ~ )  = tr((p~ | P2 | �9 �9 �9 | Pn) ~ )  

�9 ( P ? ( 1 )  | P~(2) | �9 �9 �9 | P~tn))) 
= tr((p~t~)pl | P~,(2)P2 | �9 �9 �9 | P~tn) P,) ~ ) .  

It follows from this easily that the expression above is equal to 0 unless p~ = p~ 
whenever i and j belong to the same cycle of ~?, i.e. one only needs to consider 
summands of the form /5 *~', where i b = ( p ,  . . . . . .  p~,) with p,,~(pJ~ for 
i = 1, 2 , . . . ,  s. Hence one obtains by a simple counting argument 

t r ( 7 ~ ) = t r ( ( ~ P , ) |  | �9 ' �9 ( ~ P . ) ? ~ )  

~:) trY(?) t r ( ~  ~) = E a ~  

where Pa = (Pt . . . . . .  P,s) with p,, ~ p(CRB:)a,. The claim follows now after multi- 
plying both sides of this equation by ~c~(O - unknot) <~'~>, using (*). 

2.3. Rationality and framing anomaly. In analogy of rational eonformal field 
theories we have the following 

D e f i n i t i o n .  (a) We call a Markov trace tr and the corresponding braid representa- 
tion Ptr rational with periodicity d if there exists an idempotent p~p(CBa) with 
contraction property such that K(p) = K(p)/(1 - K(p)) has finite Z rank. 
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(b) We call an invariant of framed links rational if there exists a finite set A and 
if there exists for each s e N  a collection of invariants S '~  of framed links with 
s components, labelled by the s-tuples ~ e A s such that ~ t~ is a linear combination 
of the s162 for all ~ e N  s. 

We shall show in Proposit ion 2.3(b) that if the braid representation of an 
invariant s of framed links is rational, then ~ can be made rational by renor- 
malizing its framing anomaly (see end of Sect. 1). For  that recall that if p is 
a representation of RB| and if cteC, ~ #: 0, then also the map p,: a~--* ctp(a~), 
z~ --* ~p(z~) defines a representation of RB~.  Taking the original Markov trace on 
this representation, one obtains the invariant L~,. 

In order to compare the c-cabling with the (c + d)-cabling, one needs the 
following braids 7,.m (n, m e N) 

n m 

Fig. 7. 

Proposition 2.3. Let p be a unitary braid representation with the contraction prop- 
erty for some fixed d e N coming from a link invariant 3s Then 

(a) p can be suitably scaled by a scalar ot such that 

PP~(~i,d) - i =PP~(Ta, 1) and p Q p p ~ ( a  ta))= 4 -p |  

(13) I f  p is rational with periodicity d, then there exists c~ with Is[ = 1 such that 
~L~'~ is rational; in particular, Ae~(K) = 1 for all knots K. 

Proof. Observe that the contraction property implies that p is a minimal idem- 
potent in p(CBd) and p(CBd+I). Hence one can find a rescaling of the braid 
representation such that the first equality in (a) holds. Observe that p is a projection 
and P(h,d) is a unitary. By the uniqueness of the adjoint one has 
PP(Yl,a) = PP(?a, 1)- 1, or in pictures 

o / 

Fig. 8. 

This means, whenever we have p together with d strings, we can move it through 
any other string. Applying this consecutively to p | p p(tr(a)), one shows easily that 
this is equal to p | pp(tr('~)) - 1. From this follows the second equality in (a). 
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To show (b), let ct be as in (a). We can assume that we have a + sign in the 
just mentioned equality: this can either be achieved by multiplying the tr~'s by 
- 1 for d odd or by replacing d by 2d and p by p | p. We shall now show that 

the identification of an idempotent pa with p | p~ in Sect. 2.1 can be carried over 
to reduced link invariants, as defined in Sect. 2.2. Observe that if we apply p 
to d cables in L ~, one can separate p-times the closure of these d cables from the 
rest of the link (by, e.g. replacing any crossing of these d cables with any other 
string not belonging to these cables by an overcrossing if necessary). For  an 
example, see Fig. 9 (with d = 3). 

Fig. 9. 

Again by using Fig. 8, we can transform the resulting unlinked d cable knot into 
the unknot. More generally, one shows this way that for any knot K we have 
Z~a~(K) = L,a~(0 - unknot) = 1, where the last equality is shown in the corollary of 
Lemma 2.4.2. Using this and the multiplicativity of _La~, one sees that applying p to 
d cables o fL  ~ and evaluating it by LP~ gives the same value as if we evaluate it for L ~ 
with those d cables removed. 

In particular, we obtain for a knot K that ~ |  L#~'(K) for any 
minimal idempotent p~p(CRBc). Hence, !f p is periodic, the irreducible 
invariants occurring in a (d + c)-cabling of a knot coincide with the ones occurr- 
ing in the (c)-cabling by Lemma 2.1.2 for c sufficiently large; so all irreducibles 
already occur in the c, c + 1 . . . .  , c + d - 1 cablings of that knot. The periodi- 
city of ~ ,  in general follows from this argument applied to each component 
of a link separately. 

It is actually quite easy for the Kauffman polynomial  to describe explicitly 
idempotents which satisfy the conditions under (a). The reader who is not familiar 
with the skein relations of this polynomial and its algebraic description should first 
check Sect. 3.1 for details. In this particular case, one extends the braid group to 
a braid monoid by also allowing tangles ei as shown on the left hand side of Fig. 10 
(of unoriented strings). Here, this extension just serves for simplifying computations 
via pictures; the e~'s can also be written as a linear combination of braids. The 
contracting idempotent can now be expressed by the tangle p = (1/x)el, with x the 
parameter as in [W3, (3.1)1. It is easy to see from the pictures that we have indeed 
(p | p)g~2)= p | p. We leave it to the reader to check the transformations of 
Fig. 9 (with d = 2) with p as given below. 
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i i+1 

L) U 

A A 

Fig. 10. 

2.4. Properties of  rational invariants. In the following we assume that ~9 ~ is a link 
invariant with framing anomaly ~ (see end of Sect. 1) such that ~ ( 0 -  un- 
knot) = O, the Perron Frobenius value of G and that the braid representation 
corresponding to ~ is periodic and unitarizable. To construct Markov traces 
which are invariant under K 1 we need some more notations. Recall first that there 
is up to scalar multiples only one trace of M,  (the algebra of all n x n matrices), 
given by the sum of the diagonal entries of a matrix. Hence any trace tr on 
B = • B u is completely determined by its weight vector ~ = (t~), where t,  = tr(p~) 
and p~ is a minimal idempotent of B~. A trace tr on B is called nondegenerate if its 
annihilator ideal is equal to 0 or, equivalently, if for any nonzero b e B there is 
a b ' e  B such that tr(bb')  ~ 0. In the semisimple case it is easy to check that tr is 
nondegenerate if and only if t ,  :# 0 for each #. Let A c B be algebras with 
a nondegenerate trace tr such that also its restriction to A is nondegenerate and has 
the weight vector L Then (see e.g. [J1, Eq. (3.2.4)]) 

G ~  = ~ (2.4.1) 

where G T is the transposed of the inclusion matrix G for A c B. In this set-up one 
defines the conditional expectation en: B ~ A to be the orthogonal projection from 
B onto A with respect to the bilinear form (b l ,  b2) = tr(bib2), i.e. cA(b) is the 
unique element in A for which 

tr (a~a(b)) = tr (ab) for all a e A. (2.4.2) 

In this context we define e,,m to be the conditional expectation onto p(C RB., m), 
the subalgebra of p(CRB| generated by the image of a . ,  tr .§ . . . . .  am-1 and 
z. with the simplification em = el,re. The following easy lemma provides simple 
exercises to get used to working with conditional expectations. 

Lemma 2.4.1. Let tr be a Markov trace on Bo~ and let p be the corresponding 
representation. Then 

(a) e.(p(a,)) = tr(a.)  1, 
(b) ec(p(a~))) = tr(al)Cp(Ar where A[ is the full-twist of  c strings (see e.g. [Bi] 

or Fig. 2 (with c = 2)), 
(c) Let tr be a trace on RB~ satisfying the Kirby condition (K1) of  Lemma 1.1.2. 

Then e~_ x (p(a~))) = tr(ati ~)) 1. 
(d) For any inclusion o f  algebras A c B c C such that eB is well-defined one has 

en(A' n C) = A' c~ B 

Proof By definition of Markov trace one has 

tr(fla.) = tr (fl)tr(a.) = tr(fl( tr(tr .)) l)  for all fl e B. 

which shows (a). Claimf,(c) goes similarly. For  claim (b), just observe that for any 
f l e  B.~ the closures (fltrt~ r , (n + l)c) and (fl%t~), nc) are isotopic (see Fig. 2). Hence 
their traces have to coincide up to a renormalization given by Lemma 1.1. Finally if 



Braids and invariants of 3-manifolds 251 

a E A and c e A'  c~ C, one has tr(cab) = tr(acb) for all b ~ B. Hence en(ea) = eB(ac) 
by (2.4.2). As a ~ B, one shows easily that  en(ca) = en(c)a and gB(ac) = ae~(c), which 
proves (d). 

Corollary.  Assume that ~ is a link invariant with framing anomaly ~ and let tr be its 
Markov trace. Then the assignment ptC): tr#__+tr~c) and zlt--+etCA~ extends to an 
algebra homomorphism from C R B ~  into CB~ such that tr o ptC) is the Markov trace 
of  5~ ~) (where s is obtained from ~ by assigning e cables to each component of  
a given link). 

Proof. It  is easy to see that  p~C) defines a representat ion of RB~.  Obvious ly  
~ ) ( 0  - unknot)  = O c. If f l~ RB.  is a product  of the at 's,  it follows from the 
definitions of ~tc~ and ptC) that  ~c~) = O,< tr(pt ,  l(fl)). By Propos i t ion  1.2, it remains  
to check that  OCtr(p~)(fltr,))= tr(p~)(flz.)).  This follows from Lemma 2.4.1(b) 
(with the bra ids  shifted by (n - 1)c strings to the left). 

In the following we assume that  p has per iodici ty  d. Then G, as defined in 
Propos i t ion  2.1.3 is primitive; this means  that  there exists an n such that  G "a is 
a direct  sum of d block matrices all of which only have posit ive entries (see [ G a ]  
for more details) and  G permutes  these blocks transitively. By the wel l -known 
P e r r o n - F r o b e n i u s  theorem G has an up to scalar  mult iples  unique eigenvector 
b with only posit ive entries. I t  can be ob ta ined  as l i m . ~ ( O - ~ G ) " f i  for any 
nonzero  vector fi with nonegat ive coefficients, where O is the largest  eigenvalue 
of G. Moreover ,  

= ~ ~ (2.4.1) 

where bl is the P e r r o n - F r o b e n i u s  vector of the i-th b lock of G a and Gf;i = Obi+ i. In 
the following we also assume that  G T commutes with G; so, in part icular ,  G T has the 
same Pe r ronFroben ius  vector as G and we have II GI[ = I1G T 1[ = O, where II 11 is 
the opera to r  no rm with respect to the 12 norm of vectors. We list several well- 
known consequences of P e r r o n - F r o b e n i u s  theory in the following lemma.  

L e m m a  2.4.2. With the just introduced notations, we have 
(a) There exists exactly one positive trace functional tr  on the algebra p(C RB~o) 

with tr(1) = 1. 
(b) Let p be as in Sect. 2.3. Then tr(p) = 1 / 0  n. 
(c) Let 2 c A , .  Define vx = t r (pa)O",  where p~ is a minimal idempotent in 

p(CB,)~.  Then b = ( v ~ )  is the Perron-Frobenius eigenvector o f  G and 
(fit,), t - " f t , )  = i for all n > no, where b, = ~;i i f  i = n m o d d  and f;i is as in Eq. 
(2.4.3). 

(d) Ilb~l[ z = ll~;][2/dfor all i = 1,2 . . . . .  d 
(e) lim,-+~o O-"a-~f i  ("n+0 = ~dll~,ll 2, where [l~l]l 2 = (b l ,  ~i). 
(f) Let ~ be the vector with 1 at the coordinate labelled by 2 and 0 otherwise. 

Then 

l im O-"nG"a~ dv~ 

where i - 121 rood d. 

Proof. Statement  (a) is a wel l -known result in the s tudy of AF-algebras .  Let  f t .  be 
the weight vector  of tr for p(C B.). By posi t ivi ty of tr all entries of ft., are posit ive for 
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all m ~ N and ft.  = (GT) ' -" f fm if m -- n is divisible by d by (2.4.1). So for m ~ ~ ,  
we see that  ft,  has to be a mult iple  of b, (as in Eq. (2.4.3)) by the P e r r o n - F r o b e n i u s  
theorem. The mult ip le  is uniquely determined by tr(1) = 1 (see also s ta tement  (c)). 

If p has the cont rac t ion  proper ty  and p~ is a minimal  idempotent  in p(CB.)~,  
then p | p~ is a minimal  idempotent  in p(CB,+a). As ~v,+a is a mult iple of ~, by the 
last paragraph ,  we have ft.  = Oa;v,+a. Hence 

w,+a,x = t r (p  | px) = tr(p)tr(px) = tr(p)w.,x 

which shows s ta tement  (b). Sta tement  (c) is an immedia te  consequence of tr(1) = 1 
and of the fact tha t  ft, = O - "  ~. for all n e N. Sta tement  (c) follows easily from 
GJb~ = OJb~+j and the fact that  G T commutes  with G and s ta tement  (e) is a s traight-  
forward consequence of the P e r r o n - F r o b e n i u s  theorem (see e.g. [ W 1, after (1.10)] ). 

The limit in (f) obviously has to be a mult iple  of ~ by the P e r r o n - F r o b e n i u s  
theorem. On the other  hand,  ~ is also the P e r r o n - F r o b e n i u s  vector for (GT) a. 
Hence this mult iple  is given by 

( l im O - .a  G.a~z, vll ]1 t'~ ]l z ) = (ez, v,/II ~ II 2 > = vx/II ~, II 2 = dye~ II ~ II 2. 

Corollary.  Let b be as in Lemma 2.4.2 (c) and let ctz be the scalar by which p(C)(zl) acts 
in p(CBc)a (see the corollary of Lemma 2.4.1). I f  p has contraction property, 
s - unknot)  = 1. In general, if 2 ~ Ac, we have 

5ez(0 - unknot)  = v~ and s - unknot)  = cqv~. 

In particular, ~ is the framin9 anomaly of ~ z .  

Proof By definit ion of ~ we have s - unknot)  = OCtr(p~ 1) = vz (by L e m m a  
2.4.2(c)). The first claim follows from Lemma 2.4.2(b). As A~ z is in the center of B~, 
p('J(zx) acts as a scalar  ~ in p(CB~)z (see Corol la ry  of L e m m a  2.4.1) and  

~ a ( l  --  unknot)  = O~tr(p~p(~ = O~tr(~ap~) = ~ v ~ .  

In the following the symbol  l i m ~ f . ~  __-~ means  tha t  we take the l imit  with 
respect to a sequence of vectors ~e such that  all their  coordinates  go to ~ and 
such that  O,y =- ~ m o d  d for a given vector ~ ~ N ~. As a first appl ica t ion  of the 
P e r r o n - F r o b e n i u s  theory we obta in  

Proposition 2.4.3. Let s be a periodic invariant with framing anomaly ~ and 
with period d. Then one has for any link L with s components that 
l im~_.~  __- ~ 0 -I01 ~ ( L ~ )  exists. Moreover, we also have for the average of all 
cablings, defined by 

av l im O-I~l  s ) = 1 lim 1 ~ O-I~l  ~ ( L )  

= .E  (L). 
Z ~ A  s 

In particular, one can define the quantity C, provided the following limit is not equal 
to O, by 

~ 2 V  2 

~ C = av l im O - ' ~ ( ~  = av - lira 0 ~tr(a~ c)) = 
. . . . . .  ~ IIvH 2 '  
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where ct~ is the scalar by which p(C)(zl) acts in the irreducible representation o f  
Bc labelled by 2. 

Proof. The existence statement follows from Lemma 2.4.2 (e) and Theorem 2.2. For 
the second statement, one groups together the summands belonging to the ~ s in the 
same coset of N ~ mod d. The limit of the averages of these partial sums does exist by 
the first statement. The explicit expression of the limit follows from Lemma 2.4.2(f) 
and the first statement of this Proposition. 

The formula for C - 1 follows from the just proven formula and the corollary of 
Lemma 2.4.2. (recall that (t~l, 2) = (~1, 1)). 

To prove invariance under Kirby moves we will also need the following 
well-known consequence of the Perron-Frobenius theorem (where (a) and (b) hold 
for any C* algebra coming from a periodic Bratteli diagram). 

Lemma 2.4.4. Let p be a unitary braid representation with period d. Let zt~ ~) be the 
central idempotent o f  the simple component of  p(CBc) which is labelled by 2. 
Moreover, let (cf) be an increasing sequence o f  integers such that c f =- c mod d for all 
f E N, where c is a f ixed integer and let (n f )  be a sequence such that 0 < nf  < Cs and 
both n s --* c~ and c s - n S -* ~ for f -~ oo. 

(a) l ims~ ~ tr(z~ cs)) -- v2/I[ ~ II 2 
(b) l i m f ~  e,s(z~ c~) = v2/[I ~)c [[2, where convergence can be assumed to be uni- 

formly (i.e. with respect to the operator norm on a Hilbert space). 
(c) Assume l ims~ ~ OCltr(atl~s) ) = a exists. Then lims~oo Or e,I(a[ ~ )  = al,  with 

convergence in operator norm. 

Proof. Let notations be as above and let 2, p e A. Moreover, let z~ ~s) and z~ "~) be the 
corresponding minimal central idempotents in p(CRB~y) and p ( C R B ,  s) respect- 
ively. Observe that 

lim tr(z~ ~I~) = lim fi~s)O-Clv~ = v~ ( . )  
s - ~  s - ~  I I ~ l l  2"  

By Sect. 2.1, the multiplicity of (ztu"s~) in (ztx ~s)) is equal to ( G ~ f - " ~ , ~ ) a n d  the 
(ns) (nD dimension of z, is equal to a u . Let us assume for the moment also that all the 

ns's are congruent to a fixed n mod d. Then 

s~olim ~,,,xt~t~<~ -u'~"~)~, = s~oolim (G ~I-"~ eu, ex) a~ "~ O -~Ivx = II v. II 2ray u II ~ 112vavu (**) 

where the last equality follows from Lemma 2.4.2 (e) and (f). As ~.s(z] el)) is in the 
center of p(CRB.s) ,  it follows from the definition of the conditional expectation 
that 

tr[~(c$)~(nf)]  
13ns(Z(2cS)) = Z.~ - - ~  Z~ . 

u tr (z .  ) 

Hence it follows from (*)  (also applied to z~ "f)) and (**) that 

lime,,(zta~))= v2 1 
s -~o  II ~112 "" 

Moreover, one sees from the spectral decomposition of ~,~(z~ ~)) that the 
convergence is uniformly (i.e. with respect to the operator norm topology). As the 
limit does not depend on the choice of the coset n of d, the same statement can be 
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shown for arbitrary ns's by splitting it up into appropriate subsequences which are 
in the same coset modd.  As {zta cs), 2 e Acf} spans the center of p(CRBc:) linearly, it 
follows from (b) that 

lim e,:(by)= lim tr(be). 
f ~  f ~ o  

for any bounded sequence (bs), with by in the center of p(CRBc:) such that tr(by) 
converges. By Proposit ion 2.4.3 (tgStr(i~s))) s converges, hence so does 

(tr(OSes(i~s)))s = (tr(~ s A}))s 

where ~ = t r (a l )O.  This shows that l ims~o  ~,:(itl c:)) = a. 
We shall need the statements of the last lemma also when the central idem- 

potents are shifted i.e. we also want that ~r ~:+,:(L: | z ~ ) converges to a scalar. 
For  this it would suffice to prove that the conditional expectation is compatible 
with the shift. This is easy to check directly for the examples of the H O M F L Y  and 
Kauffman polynomials. For  the sake of completeness (or generality) we also 
include the following simple general proof, which uses the theory of von Neumann 
algebras. As usual, we denote, for any algebra A of bounded operators on a Hilbert 
space, its commutant  by A'. If A is a * algebra, then its double commutant  A" 
coincides with its weak closure by yon Neumann's  bicommutant  theorem. 

Proposition 2.4.5. Let tr be a trace on Boo such that the corresponding representation 
p is periodic and unitarizable. Then p(CB~)" is a II1 factor such that 
p(CB,,+I, |  c~ p(CB~)" = p(CB,.). 

Proof. It is a well-known consequence of the Perron-Frobenius  theorem that 
p(CB| allows exactly one normalized trace tr, hence its weak closure has to be 
a factor. It follows from the braid relations that p(CBm)=p(CBm+l,oo)'c~ 
p(CB| On the other hand, choose fe  N such that p(CBya) is in the periodic part 
of the Bratteli diagram of p. Now observe that if 15 e p(CBa) has the contraction 
property, then so has p = p @ . . .  | p ( f t imes)  with d replaced byfd. Hence 

pp(CBm+ sa)p ~ p(CBm). 

Observe that p(CBya ) is mapped onto p(CBm+l,y+,,n) by conjugation by 
A,,+yn, the so-called halftwist. Hence there exists p e p(CBm+ a,m+:a) such that 

dim pp (CB,.+:a)p < dim p(CB,, ), 

hence, by [ W l ,  Theorem 1.6] one also has that 

dim p (C B,, + L ~ )' c~ p (C B~ )" < dim p (C B,,). 

This shows the claim. 

Corollary. Assume notations and hypotheses of Propositions 2.4.3 and 2.4.5 Then 

lim OcIF, rs+ns(lr$ | i f (c / ' ) )  __. al ,  
f ~ o o  

with convergence in trace norm. 

Proof. Let A = p(B-o~,,s), B = P(B-oo,,s+.:) and let C = p(B_~.,~+~:), where 
B-~o,. is the group generated by a._~,  i . - 2 . . ,  i a , i o ,  i - a , . . . .  It follows 
from yon Neumann algebra theory that one can also define the conditional 
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expectation in this setting as before. Hence, by Lemma 2.4.1(d) one has 
e~, +., (1,s | a ~,)) = 1, s | e.s( a ]~s)). The claim follows now from Proposition 2.4.4. 

2.5. Invariants o f  3-manifolds. A braid representation p corresponding to an in- 
variant of framed links ~ is called positive - rational if 

(a) p is unitary, 
(b) There exists d ~ N and an idempotent p E p(CBd) with contraction property 

such tha t / ( (p)  = K(p)/(1 - K(p)) has finite Z-rank, 
(c) The Perron-Frobenius eigenvalue of the matrix G (as in Proposition 2.1.3) 

is equal to 0 = ]tr(al)1-1, 
(d) 2~' is nonsingular, i.e. av lim~oo O~tr(a ]~)) = C-~ * 0 (for an explicit ex- 

pression of C - ~ see Proposition 2.4.3). 
We call 2~o positive - rational if p is positive-rational and if &a is rational. It has 

been shown in Sect. 2.3 that 5e can always be made rational by adjusting the 
framing anomaly if p is rational. 

Theorem 2.5.1. Let =LP be a positive rational nonsingular invariant of framed links 
with periodicity d and such that ~(' (0 - unknot) = O. Then there exists an invariant 
=LP (~ of framed links which is invariant under the Kirby move (K1). It is defined for 
a framed link L with s components by the formula (see also Proposition 2.4.3 for 
notation) 

~t~176 = av ~lim, C~O- t~t Ae(L~) = ~A" "~  C~ ~ V X  ~aX(L) 

$ 

where the summation goes over all possible s-tuples ~ with v2 = ~-li= l v~, and where 
is the Perron-Frobenius vector as in Lemma 2.4.2 (c). 

Proof. It follows from the Perron-Frobenius theorem and the discussion above 
that the limit for A ac~~ exists and it is easy to see that it defines a multiplicative 
invariant of framed links. Observe that the c-cabling of the 0-unlink produces c 
0-unlinks. As Sf(0-unlink) = O and as ~ is multiplicative, we have 

Aa(*~(0 - unlink) = C. 

We prove now that Ae t~~ is invariant under the first Kirby-Fenn-Rourke 
move, as described in Sect. 1. If the closure of fl has s components, then the closure 
of fla (~) (a braid as in Proposition 1.3) has s + 1 components. So their correspond- 
ing cabling vectors will be described by ~f and (b r, cy) correspondingly. Moreover, 
let tf be the number of cables of tics and let r s be the number of cables of 

(m) (cy cy) , (m) (fie )" ' . Let n and n be the number of strings of fla resp. ft. Using notation 
of Proposition 2.4.2, one has 

.Yt~)(fla ~m1"3, n') = av lira C~+I O, s-I~sl-cs tr((fla~m))t~s,cs)). 
(~f, cs)~oo 

By definition of the conditional expectation and of tf we have 
tr((fl*~m~) ~s'cs>) = tr(fl ~s ets ((a ~m)) ~s,~s~). It follows from the limit formula of Lemma 
2.4.4 resp. the corollary of Proposition 2.4.5 that the expression above is equal to 

av lim C~Ot'-izsitr(fl~S))x(av lim C O ' S - ' r ~ X t r ( a " s - ' r c s ' ) ) .  
~f~oo cf~oO 
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Observe that the second factor becomes 1 by definition of C, while the first is equal 
to -s t~176 (/~, n). This shows that Za(| is invariant under the first Kirby move. The 
second expression for the limit is a consequence of the Perron-Frobenius theorem. 

The same proof also works if one takes for any divisor d' of d the limit only over 
cablings where the number of cables is divisible by d'. 

Corollary. Let ~ be as in the theorem, not necessarily nonsingular and let d' ~ N be 
such that d'ld. Assume that 

av lim (ga'~tr(a~d'~)) =~ 0 
c~oo 

and denote the inverse of this limit by C. Then one obtains an invariant offramed links, 
invariant under (K1), by 

~(~)(L) = av lim C~O-kd'~sl AO(Ld'~Q. 

It can be shown, using the last proposition and the discussion in the first 
chapter that ~(~) defines an invariant of framed 3-manifolds. From this one can 
obtain an invariant of 3-manifolds by an easy renormalization procedure in the 
following way (see e.g. [RT2],  [ W a ]  and [Li2]): 

Let D be the linking matrix for the link L (where the linking number of 
a component with itself is the framing number). Let n• (resp. no) be the numbers 
(with multiplicities) of positive/negative eigenvalues (resp. the multiplicity of the 
eigenvalue 0) of D and let a(D) = n+ - n_ be the signature of D. Moreover, let 
x = c/Icr. 

Theorem 2.5.2. Let M (L) be the 3-manifold obtained from surgery at the framed link 
L and let .~(~) be an invariant offramed links as obtained in the previous Theorem or 
its Corollary. I f  ~(~176 is independent of the orientation of L for any framed link 
L then there exists a well-defined invariant of  3-manifolds ~ given by 

I c I  ~ vA .~(L). J:(M(L)) = x - ( 2 " -  + n o ) f f ( ~ ) ( L )  = x ~w) 
II II ~ 

Proof. Observe that a(D) does not change under the first Kirby move. Hence ~- is 
invariant under this move. For the second one, observe that the linking matrix for 
(a~ 1, 2) is equal to + 1. Hence it is enough to check that 

A~ -1,  2) = x 2. 

As p is unitary and as tr is positive one has tr(a~-1) = tr(al). Hence 

lim COJ'tr(a~-l) (s) = CC -1 = k 2. 
f~oo 

Hence ~- is also invariant under (K2). The expression of ~ in terms of irreducible 
link invariants follows from the one in Theorem 2.5.1 and from the fact that 
s-----n+ - I - n o + n - .  

Remarks 1. To show invariance of orientations for ~(~) in general, one would 
have to extend the ribbon braid group to a more general object, the tangle algebra 
(see e.g. [RTI ,  2]). More on this in the remarks at the end of Sect. 3.3 and the 
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concluding remarks. For  the Kauffman polynomial and the Kauffman bracket, this 
question will not be relevant as already La is independent of orientations. 

2. In all our examples we have ICI = 1t~11 (see Sect. 3.4). 
3. We have not checked whether the framing chosen here coincides with the 

canonical framing as in [At] .  More about this can be found in [Wa] .  

w Examples 

3.1. Braid representations corresponding to the HO M F L Y and the Kauffman poly- 
nomial. The Homily polynomial ~ ,  which depends on 2 parameters r and s is 
defined by the following skein relations: 

(HI) Yfo - r - r -  i 
S _ S  - 1  

(H2) r ~ '  x - r - l ~ x  = (s - s-1)o~)(. 

Here the second line relates the invariants of any links which are the same 
everywhere except in a small square where they look like the indicated pictures. As 
can easily be seen, this is the case for the closures of braids in the formula below, 
where fl e Bn and i < n. 

r~e( ]~ i ,  n) - r -  1 ~ ( / ~  -1, n) = (s - s -  1)~e(/~, n). 

Hence, by definition of tr, one has 

tr(/~(rtri - r - l a ~  -1 - (s - s - 1 ) l ) )  = 0 for all f l eB~.  

It follows now from the definition of Ptr that ~ = rptr(61) satisfies the relation 

~ i - ~ i  - i  = s - s  -1. 

On the other hand, observe that the Iwahori-Hecke algebra H,(q) of type A is 
given by generators 1, g l ,  #2 . . . . .  0 , -1 ,  which satisfy the braid relations (B1) and 
(B2) (with tr~ replaced by #i) and the additional relation 

(H) g 2 = ( q _ l ) a ~ + q ,  i = 1 , 2  . . . .  n - 1 .  

It is easy to check that the elements srptr(tri) satisfy the relations of the Hecke 
algebra H,(q) (with q = s2), hence Ptr(CBn) is a quotient of H,(q). It is well-known 
that H,(q) is semisimple except if q is an l-th root of unity, l = 2, 3 , . . . ,  n and that 
it is isomorphic to the group algebra of the symmetric group in this case (see 
e.g. [W13). 

Recall that a Young diagram 2 = [21, 22 . . . .  2k] is given by an array of boxes 
such that 2~ boxes are in the i-th row and 2~ > 2i + 1, i -- 1, 2 , . . . ,  k - 1. Moreover, 
a standard tableau t of shape 2 is a filling of the diagram A with the numbers 
1, 2 . . . .  , n such that the numbers increase if one goes to the right in a row or one 
goes downwards in a column. Then the Bratteli diagram for the Hecke algebras 
with q not a root  of unity is given by Young's lattice. This is the graph whose 
vertices on the n-th line are labelled by Young diagrams with n boxes. Such a vertex 
is connected with one on the n + 1st line if the corresponding Young diagram is 
contained in the .other one. The crucial theorem for our purposes is the following 
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(where k has nothing to do with the level of a representation of a loop group (which 
will turn out to be l - k in this context)) 

Theorem 3.1.1 (see [W-1]). The braid representation coming from the H O M F L Y  
polynomial is unitarizable if q = e • 2~i/t and r = qk. The Bratteli diagram correspond- 
ing to this representation is the subgraph of  Young's lattice obtained by only allowing 
diagrams with k rows at the most and such that the first and the k-th row differ by 
l - k at the most. This Bratteli diagram has periodicity k. 

A major role in the proof of this theorem is played by certain representations of 
Hecke algebras which can be considered as q-analogous of Young's orthogonal 
representations of the symmetric groups (see [HI ,  [ W l  ] or [W4]). We shall need 
them for the special diagram 2 = [2, 1 ~-2 ] in order to compute the correct framing 
anomaly (see Lemma 2.3.1). This representation is equivalent, up to some renor- 
malization to the reduced Burau representation. We label a basis for the repres- 
entation space by tl, t2 . . . . .  tn- 1, where tl is the unique standard tableau of shape 
1-2, 1 n-2] with the number i + 1 in the second column (which only contains one 
box). Then gl (with i > 1) acts on this vector space via multiplication by - 1 on all 
basis vectors t~ withj  4= i - 1, i and on the subspace spanned by t~_ 1 and ti via the 
matrix 

1 ( - - ( l - - q )  ~ / ( 1 - q ' + l ) ( q - q ' ) )  
1 ql ~/(1 -- qi+l)(q _ qi) q i ( 1  - -  q) " 

In particular, g, and 92 act on the subspace spanned by tl and t2 via the matrices 

1 and ~ x/q + q2 + q3 q2 �9 

A simple computation shows that g2g2g2 is given by the diagonal matrix diag 
(q, q3, 1, 1 , . . .  ). By definition of our representation, all other g~'s with i > 2 
multiply by - 1 the tableau tl. B,_ 1 acts irreducibly on the subspace spanned by 
the tableaux tl,  t2, �9 � 9  t,_ 2 (this representation is equivalent to the one labelled 
by the diagram [ 2, 1 "- 3 ] ). Hence, as ? 1. ~- 1 ~ -  1,1 commutes with Bn - 1, we obtain 

nz(Tt,,- 1 ~-1 .1)  = diag(q,q, . . . q,x). 

To determine x, just observe that the determinant of n~ (71,n - 17~- 1.1 ) has to be 
equal to q2,-2. Hence x = q". We have almost shown 

Lemma 3.1.2. The H O M F L Y  polynomial can be made rational with periodicity 
d = k for s 2 = q an l-th root of  unity and r = s*. Its rational version is obtained via 
rescaling by the framing anomaly q-tk+ 1)/2k 

Proof. It follows directly from the Bratteli diagram that the idempotent corres- 
ponding to [lk-I will also be a minimal idempotent in 7ztr(CBk+l) for the 
H O M F L Y  polynomial at the given parameters, i.e. it satisfies the contraction 
property. Moreover, it projects onto the last basis vector in the representation 
labelled by 1-2, 1 k-1 ], as defined above. It follows now immediately from the 
computation before and Lemma 2.3.1 that the representation 

ai ~ q - (k + 1)/2k g l  

induces a rational link invariant. 
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To show that the periodicity is indeed equal to k one has to rule out the 
possibility of a minus sign in the second equation of Lemma 2.3.1 (a). Observe that 
the representation above depends continuously on ql/2k. Hence the sign is deter- 
mined as soon as one knows it for one value of q. For q = 1, this scalar coincides 
with the action of tz~ k) on the vector 

(vxA v2A . . .  A vk)| v2A . . .  A v~) 

where {v~} is a basis for Vand where the action is given by the symmetric group (i.e. 
by permuting the vectors). It is easy to see that here a~ k) acts as the identity. [] 

Analogous statements also hold for the second important 2-variable link 
invariant, the Kauffman polynomial. It is defined by a renormalization (i.e. by 
multiplication by a power of r) of an invariant • of regular isotopy. By th~s one 
means an invariant of (unoriented) link diagrams (i.e. projections of links into 
a plane without triple points, where at each crossing point it is indicated which 
string goes over the other one). Two such link projections are considered to be 
equivalent with respect to regular isotopy if one of them can be obtained from the 
other one only by moves within the plane (i.e. without the first Reidemeister move; 
see [Ka]  or [ B W ]  for details). We will only deal with this invariant of regular 
isotopy which witl be relevant for the construction of invariants of 3-manifolds. The 
invariant ~ ,  which depends on 2 parameters r and s, is defined inductively by the 
following relations (which are a slight renormalization of Kauffman's Dubrovnik 
version) 

(Kal), 3fr o = x 

where 
F__F  -1  

x-" s - -  S - i + l  

(Ka2) Yfl = r -  1 y f  = rYf,e 

(Ka3) ) r  x - ~ , ~ =  (~ - ~-  1)(~ G - ~ )  

Here, the last 2 lines relate the invariants of link diagrams which are identical 
everywhere except in a small square where they look like the pictures indicated. It 
follows from Kauffman's work that (Kal)-(Ka3) determine a well-defined invariant 
of link diagrams. The corresponding link invariant is obtained by multiplying this 
invariant by r taken to the power of the number of positive crossings minus the 
negative crossings (the first crossing in (Ka3) would be positive, and the second one 
negative). 

In this case, the Hecke algebra Hn is replaced by a q-deformation Dn(r, s) of 
Brauer's centralizer algebra. It is given by generators gl, g 2 , - . . ,  gn- land the 
following relations: The similarity between the crossings on the left hand side of 
(K3) and the standard generators of the braid group suggests the definition of 
elements e~ ~ D~ (r, s) by 

(D) ei = 1 1 -1 (gl - 9i-1). 
8 - - 8  

Then it follows from [BW ] and [W3, w 3] (see also I-M]) 
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Theorem 3.1.3. The braid representation induced by the Markov trace o f  ~ r factors 
through the algebra Dn(r, s) given by generators gl,  g2, �9 �9 �9 g y -  1 satisfying the braid 
relations and 

(R1) eigi = r - l e i ,  
(R2) e~g/~ ~ ei = r • el. 

The structure of  Dn remains unchanged under the following changes of  parameters: 

(r,s)~--~(r, - s-1)~-*( - r, - s)~-~(r -1, s - l ) .  

The main theorems in [W3 ] state the following 

Theorem 3.1.4. (a) For generic values o f t  and s (i.e. if  s is not a root of  unity and i f  
r 4: snfor any n ~ Z ) one has the isomorphism 

Dn(r, s) ~- In(r, s) ~ Hn(s 2) 

where In is the ideal generated by el. 
(b) Its simple components are labelled by the Young diagrams with n (for the 

Hecke algebra part), n - 2, n - 4 , . . . ,  1 resp. 0 boxes. In its Bratteli diagram, 
2 Young diagrams are connected if they differ by exactly one box. 

(c) The Bratteli diagram of  p(CB~o) becomes periodic i f  and only if s is a root of  
unity and r = sin for some m ~ Z with m ~e - 1. In all these cases one has periodicity 
2 o r  1. 

The following table describes all unitary representations of B~ which factor 
over the infinite Hecke algebra (first line) or over D~. The second column lists the 
quantum groups whose R-matrices (for the fundamental representation) provide 
representations of these algebras, where in the BC case it can occur in the Uqso2m + 1 
series as well as in the Uqsp2m, series for suitable choices of m and m' (for more 
details see Sect.3.3 and, e.g. [Re],  IT1]  or [TW]) .  In the column below Pi § we list 
the diagrams occurring in the Bratteli diagrams of the corresponding braid repre- 
sentations (i.e. in the BCD cases, we have the same rule as in the generic case, as 
outlined above, except we are now only allowed to use the diagrams listed under 
Pl+). Observe that although we listed infinitely many diagrams in the Uqslm case, 
the cabling and reduction process only produces finitely many irreducible colors, as 
shown in Lemma 3.1.2. Also observe that the matrices G, as defined in Sect. 2.1 are 
all selfadjoint except for ~ (s m, s) with m > 3; indeed, in the BCD cases, G is just the 
incidence matrix of the part of Young's lattice given by Pt + , while the sl2 matrices 
coincide with the sp2 matrices. This reflects the fact that the corresponding 
representations of Lie algebras are self-conjugate. The transpose of G in the Uqsl,~- 
case with m ~ 3 corresponds to the dual representation of the fundamental repres- 
entation of Uesl,~. Finally, we also mention that in all these cases I tr (al)l = O -1, 
which was shown for our cases in [ W l  ] and [W3, Sect. 3 ]. We can subsume our 
findings in the following 

Theorem 3.1.5. The braid representations p associated to the link invariants in the 
table below satisfy conditions (a), (b) and (c) of  positive rationality, as defined at the 
beginning of  Sect. 2.5. Moreover, the matrix G as defined in Sect. 2.1 commutes with 
its transposed and satisfies the conditions for the Perron-Frobenius theorem. 

3.2 Computation of  the framing anomalies. In this subsection, we compute the 
framing anomaly aa according to Sect. 2.3. Here we already use the correspondence 
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Table 3.1 

Polynomial Uqg s P~ 0 

~ ( s  'n, s) Uqslm e +-~i/I {2, 21 -- 2 m < l -- m sin mn/l 

2'1 < m} sin nil 

z.~/(s 'n-l, s) Uqso m e +~i/l {2,21 +22 <1 - m  +2 
2~ +;r < m} sin(m - 1)nil 

= + 1  
u{[l  -m,  +2, lm-2]} sinn/l 

,)rf( S -  2m-  1, S) Uqsp2,n e • {2, 2~ < 1 -- m -- 1 sin(2m -- 1)n/21 
! 

21 < m} sin n/2l 

~f (s-2'~,s) BC-case -- e -+ 2~//~21+1) {2, ;.1 + 22 < 2m + 1 sin4mn/(21 + 1) 
+ 1  

;q < l -- m} sin 2n/(2l + 1) 

be tween  special values of the  H O M F L Y  resp. K a u f f m a n  po lynomia l s  and  classical 
Lie a lgebras  which  will be descr ibed in more  detai l  in  the  next  subsect ion.  In  
accordance  to n o t a t i o n  in our  previous  work,  k here denotes  the  n u m b e r  of rows of  
a Young  d iagram;  it shou ld  no t  be confused wi th  the  level of a r ep resen ta t ion  of  a n  
affine Lie algebra.  

L e m m a  3.2.1. Let  ~z be the scalar by which the full  twist acts in the irreducible Hecke 
algebra representation labelled by 2. Then 

~. ~- qn(n- l)-Zi<j(Zt+ 1)~q 

Proof. We need  a cha rac t e r  fo rmula  for a simple ref lect ion st in the  symmet r ic  
group,  due  to F r o b e n i u s  (see e.g. [ M ,  1.7 ex.7]) .  I t  s tates  

Zz(si) = ~ , ( a ,  + 1/2) 2 -- (bl + 1/2) 2 

da n ( n -  1) 

where  the s u m m a t i o n  goes over  the  d i agona l  e lements  of 2 and  at resp. bi are the  
lengths  ind ica ted  below. 

Y 

Fig. 11. 
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Let  us assume for the moment  that  2 has k rows and the k-th row has at  least 
k boxes. Then a, = 2, - i and b, = k - i. Plugging this into the formula above,  one 
obta ins  for the numera to r  

k 

~, (2, - i + 1/2) 2 - (k - i + 1/2) 2 = ~, 22 - (2i + 1)2,. 
i=l  

Let r~ (resp. l~) be the rank of the spectral  project ion for - 1 (resp. for q). Using 
n = ~ 2, and r~ = (da - )~(s,))/2, we get 

2 n ( n -  1)r~ =2Z2,2i +2Z(i-1)2i- 
da i<j , 

N o w  observe that  q, t , -1) t ,  is the determinant  of the image ~x(A 2) of the full 
twist. Hence it has to act by a dx-th root  of that  number  on that  i r reducible 
representat ion.  Using lx = dx - rx, we see that  this scalar has to be the number  
given in the s ta tement  up to mult ipl icat ion by a dx-th root  of unity. But for q = 1 
the full twist becomes the identity,  hence the scalar has to be the given number  by 
cont inui ty  (see also the L e m m a  below for a similar a rgument  or [J2]) .  F o r  
d iagrams of other shapes, the claim will be shown in the next proposi t ion.  

Proposition 3.2.2. Let li = 2, + k - i. The framing anomalies in type A k_ 1 are given 
by 

/.,,~,2 ( [ 1  ] - k ( k  2 1) /24))  ~ = , expq ~ (t, - Iy) 2 -- 
i<j  

= ( lal2 exp~ (()~ + 2p, 2)/2) 

where expqn = qn and ~ is a 2k-th (k-th) root of  unity for k even (odd); in the second 
formula, we take the usual scalar product on the weight space of  Ak-1 with p being 
half the sum of  the positive roots and 2 being identified with the image of  the vector 
(21 . . . . .  2k) in the plane orthogonal to (1, 1 . . . . .  1). 

Proof Observe that  with respect to the M a r k o v  trace for r = qk we have 

_ _  qU2 _ q -  1/2 
tr(g/) = qk(1 -- q) = q(k+ 1)/2 

1 - -  qk qk/2 __ q - k , 2  

hence 
qlk 2 -1 ) /2k (q l /2  __ q -  1/2) 

q - ( k +  l ) /2k t r (g  i) = qk/2 _ q - k , 2  

Recall that  cq is the scalar  by which Omem (a~m~) = Omtr(al)mA2 acts in the 
i rreducible representat ion of Bm labelled by 2. Hence its exponent  (with respect to 
basis q) is equal  to (up to mult ipl icat ion by (,2) 

n(k + 1)/2 - n2(k + 1)/2k + n(n - 1) - ~" (21 + 1)2j. 
i<j  

Again  using n = ~ 2,, one shows by a direct computa t ion  that  the quant i ty  
above  is equal  to 

1 ~  ( 2 , -  ~q)2 + k(2, - 2j). (* )  
i < . /  
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It can now be checked by elementary computations that this expression 
coincides with the first expression for ct~ in the statement. To obtain the second one, 
define for any vector b ~ C" the vector av(~) = ((l/k) y '  vi) (1, 1 . . . . .  1). Then it is 
well-known and easy to check that 

IIv - av(v)l[2 = ~ i~<j(vi - vj)2. 

The weight corresponding to 2 + p, where p = ( - (k - 1)/2, - (k - 3)/2 . . . .  
(k - 1)/2), is obtained by projecting the vector (10 into the plane orthogonal to 
(1, 1 . . . . .  1), i.e. it is equal to (li) - av(ll)). Hence, by the previous formulas, the 
quantity in (*)  is equal to 

(2, 2)/2 + (p, 3~) = (2 + 2p, 2)/2. 

Finally, let us prove the previous lemma also for diagrams which do not have at 
least k boxes in the k-th row. First observe that we also know az for such diagrams, 
as it only depends on the differences between the various rows. From this one 
obtains ~ by just reversing the computation above. Nowhere in this computation 
was used the special form of the shape. Hence the exponent of ~z has to be 
n(n - 1) - ~ (2i + 1)2j in general. 

It is now easy to compute az for the Kauffman polynomial. By 2-periodicity (see 
Theorem 3.1.4), it is enough to compute the scalar by which the full twist acts in 
D,,z --- H.,~(s2), where n = 12 I. Observe that the q above is the square of the q in 
the parametrization of [W3] .  Hence the eigenvalues of the gi's in [ W 3 ]  are ql/2 
and - q-1/2 and the full-twist acts in D,,x by q-"("-1)/2 ~., i.e. the q-exponent of 
this scalar is 

n ( n - -  1)/2-- ~.(2i + 1)2j = ~ 2? + (1 - 2/)2, , 

where again we used n = ~ 2~. Moreover, one has tr(0~) = rltr(gl)] in the unitary 
case. Recall that r = qr corresponds to quantizations of O(m) for m > 0 and 
Sp(Iml) for m < - 1, m even. For  this special case of r, the exponent of ~, is equal 
to 

~ , '~?+(l-2i+(n-1-)) '~  =~ ,~,( , l ,+n-20. [] (3.2.2) 

Proposition 3.2.3. Assume the correspondences of specializations of the H O M F L  Y 
and Kauffman polynomials with classical Lie algebras as in Sect. 3.1. Then 

e~ = expq((2 + 2p, p)/2) 

where p is half the sum of the positive roots of  g and (,) is the usual invariant bilinear 
form on the weight space of g (see e.g. [Hu] ,  or for explicit formulas see the proof 
below). 

Proof The claim has already been shown in the previous proposit ion for type .4. 
The other cases follow essentially directly from formula (3.2.2); we include here 
some details about the correspondence between diagrams and weights for the 
reader's convenience. For  the orthogonal groups O(m) where m = 2p + 1 resp 
m = 2p it suffices to show the claim for diagrams 2 with p rows at the most (this will 
be explained in Sect. 3.3 before Proposit ion 3.3.3). In this case, the diagram 2 can be 
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identified with the weight vector ('~i)1 ~ i ~ p ,  which will also be denoted by 2. p is now 
given by the vector (m/2 - i)l __<i-<p (see [Hu]) ,  hence 

(2 + 2p, 2) = ~ 2~(2~ + m - 2i) 
i 

which, together with (3.2.2), shows the claim. For Sp(2p) one has p = (p + 1 - i)~ 
and the weight corresponding to 2 is given by the vector (2~)i, where 2[ is the 
number of boxes in the i-th column of 2. Now observe that the exponent sum of 
~ is also given by the expression ~i< :(2~ + 1)2j. One obtains from this, by 
essentially the same computations as bef(~re formula (3.2.2) 

3.3. Comparison with quantum group approach. Here we shall show that our 
invariants ~ l  coincide with invariants obtained using the theory of quantum 
groups for q not a root of unity (see e.g. IT1] ,  [Re],  [W2, 3]). This will be useful in 
explaining the sets P~+ in terms of Weyl alcoves and for showing that our invariants 
of 3-manifolds coincide with the ones constructed in [RT2]  and I-TW]. 

We shall need some notations about quasitriangular Hopf algebras and quan- 
tum groups (see e.g. [Dr] ,  [Ji],  [KaRl ,  [Lu] ,  [TW]). For any vector space Vwe 
denote by Pv the "flip operator" V |  V ~  V@ V transforming vl | v2 into 
/)2 | Vl �9 

A Hopf algebra A with unity is called quasitriangular if there exists an invertible 
R ~ A | A (referred to as universal R-matrix) satisfying 

(Q1) g(a) = RA(a)R -1 for all a ~ A, 

where z / =  PA ~ A is the opposite comultiplication and 

(Q2a) (A | id)R = R13R23 

(QEb) (id | A)R = Ri3gl2.  

Here A is the comultiplication A ~ A | A and R 0 is the embedding of R into 
the i-th and j-th factor of A | A | A, i.e. 

Rt2 = R | 1, R E a  = 1 | R and R13 = (1 | PA)(R12 ). 

It is easy to show that R satisfies the quantum Yang-Baxter equation (QYBE): 

R12RlaR23 = R23RiaRi2.  (3.3.1) 

Let R be the operator acting on A | A via left multiplication by/~ = PaR. Then 
it is easy to show that (with Rii embedded in End(A | A | A) as above) the Q YBE 
is equivalent to 

R12R23R12 = R23RI2R23. (3.3.2) 

Let V, Wbe A-modules. Then we denote by R r, re resp./~v, re the linear operators in 
E n d ( V |  W) which are given by the action of R on V | W resp. the element 

V W  V W  V W  P �9 R ' zwhereP  ' m a p s v | 1 7 4 1 7 4  I f V =  W, wejust 
V V g V | write R , R etc. The elements R 0 resp R o are defined as linear operators on V 
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accordingly. As an immediate consequence of the Q YBE, Eq. 3.2.1, one obtains for 
each A-module V a representation of the braid group B, in End V ~" via the map 

p V: cri~--~ Rye+ 1 ~ End V | (3.3.3) 

More generally, we can define a representation p(W)  of colored ribbon braids 
with n ribbons on W = @~'= 1 V~, where the Vi's are A-modules, in the same 
fashion: the crossing of 2 ribbons labelled by V~ and Vj is described by the operator  
(kv,.vj) + 1 with the sign depending on the crossing (see [RT1, 2] for more details); 
if V~ = V for all 1 < i ~< n, we get the representation 7tv as defined in (3.3.3). 

To define link invariants, we need a so-called q-trace. In the following we 
assume that A is a q-deformation of a classical Lie algebra, usually referred to as 
"quantum group" (see [ D r ] ,  [ J i ]  or [Lu]).  Let W b e  an A-module and let qO ~ A 
be the element in A which acts on a weight vector w, belonging to the weight/~ by 
qa w, = qCP'u)w,; here 6 is half the sum of all positive roots of the Lie algebra and (,)  
is the usual inner product on the weight lattice of the Lie algebra (see also Sect. 3.2 
or [ Hu] ). Then we define the functional Tr(w) on Enda W, where Enda W is the set 
of elements in End W which commute with the action of A, by 

Tr(w)(b) = Tr(q~b) b ~ Enda W, 

where Tr is the usual trace on End W. In [RT1, 2], invariants of colored links were 
constructed in the following way (adapted to our context): 

Let L be a (framed) link with s components and let ~ be a (ribbon) braid such 
that its closure is equal to L. Choosing a suitable conjugate, if necessary, we can 
assume that y has cycle structure rh, as explained before Observation 1 in Sect. 2.2. 
We choose as "color" of the i-th component of L an A-module Vx,); this means we 
represent ~ on the vector space W = ~ V~i~' by a linear operator  pr = P(w) as 
explained above, where ~'stands for the choice of colors (V~(~)). The invariant L,r p is 
defined by taking the q-trace of this operator, i.e. 

r = Trw(pr (3.3.4) 

In the rest of this subsection we shall relate these invariants to the ones 
constructed in Sect. 2.2. The main observation is that relations (Q2a, b) enable us to 
construct R-matrices for tensor powers of a module V from the one for V by 
cabling. 

Lemma 3.3.1. With notations as above we have ~v|174 = Pv(7.,m), with ?.,m as in 
Fio. 7, and 

R V |  |  v v v v v = (RI,,+mRz,.+ . . . . . . .  R.,.+m)(Rl,.+m-1 Rn,n+m-1) 
v V 

( R l , n + l  � 9  � 9  R n , n +  I ). 

Proof. It is easy to show by induction on n, using (Q2a, b), that 

(A (") | id)(R) = Rl . .+ lR2 , .+ l  �9 �9 �9 Rn.n+ I 
and 

(id | A("))(R) = R I , n +  I R 1 ,  n . . . R1,  2 . 

Let p be the representation of A on V. Then the second claim follows from these 
identities, from (A (") | A (")) = (A (") | id | (id | A (m)) and from 

R v|174 = (p| | p| | a (m)) (R). 
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It  is not hard to derive the first claim from this by induction on n and m. Observe 
that PVi+lRvspvi+ i = RV(r),s,(s), where si is the permutation (i, i + 1). Moreover, 
pV| is the permutation corresponding to the braid ?,,m of Fig�9 7. So then we 
get 

pv|174174174 v v v v v v v v x . . . R . -  2,.+ l (P.,.+ i P.,.+ l )R.,.+ i) �9 . �9 P. , .+I)(RI, .+ = (P1,2Pz,3 
(pV,2 " . v v v v ~v �9 R . -1 , . )R . , .+ I  = Pv(~.,1) = Pn_I,n)(RI,nR2,n . . .  

where the last equality followed from the induction assumption for n - 1. We leave 
it to the reader to work out the induction for m. 

Corollary. Let V, Vz, II. be A-modules such that Vi ~- px V | and V~ ~- p. V| for 
some A-invariant idempotent p~ e End V | resp pu e End V era. Then one can identify 
Vi | V. with (Pl | Pu) V| and R v~'v. resp ~v~,v. with RV|174 (pl | Pu) resp 
with ~V|174 (Pi | Pu)" 

The corollary above allows us to derive the operators R v~. v, and ~v~, v, from 
R v for any choice of submodules Vl, V u of any tensor powers of V. This is 
analogous to our construction of new link invariants from a given one via the 
cabling procedure, as described in Sect�9 2.2.�9 Let V be the fundamental module of 
a classical Lie algebra and let ~ v  be the invariant of framed links, where one 
chooses the color V for all its components. 

Lemma 3.3.2. ~LP v coincides with the specializations of  the HOMFL Y polynomial as 
given in Table 3.1, with framin9 anomaly as in Lemma 3.1.2for Lie type A and with 
specializations of Kauffman's invariant of regular isotopy (as indicated in Table 3.1) 
for Lie types B, C and D. 

Proof. It is well-known that after correcting by the framing anomaly s v is 
a specialization of the H O M F L Y  or the Kauffman polynomial, depending on the 
Lie algebra, as given in Table 3.1 (see e.g. [T1] ,  [Re] ,  [W2, 3]). It only remains to 
check the correct framing anomaly. Observe that if Vo is the trivial 1-dimensional 
A module,vwe have Vo ~ Vo | V0 ~ Vo ~ 3. It follows easily from this and Lemma 
3.3.1 that R has to act as the identity on Vo | I1o. It is well-known that Vo occurs 
as a submodule in V | if V is the fundamental module of Slk. Lemma 3.3.1 tells us 
that ~v|  is obtained from R v via cabling. This determines the framing anomaly, 
as it was done in Lemma 3.1.2 (the fact that this is only unique up to the choice of 
a 2k-th root of q is reflected in the formula for R, where one also obtains 2k in the 
denominator of an exponent of q; this comes from the fact that ( ,)  has values in Z/k  
(see [ K i R ]  or [TW, Sects. 3.4 and 3.5-1)). 

For  Lie types B, C and D, this can be done in the same way or one checks the 
claim by using Jimbo's explicit R-matrices for these cases (this was done, e.g. in 
[W3, Lemma 5.1] for type B). 

We can now easily show that the invariants &pC" coincide with the invariants 
Lal, constructed in Sect. 2.2 up to some minor modifications. To do so let us first 
describe the connection between the set of elements in P ~  (Table 3.1) and the set 
P of irreducible modules occurring in tensor powers of the fundamental representa- 
tion of a classical Lie group (or resp. its Lie algebra) (see [ W y ]  or also e.g. [TW, 
Sect. 5]). Here we use the fact that for q not a root of unity, the representation 
theory of quantized U~g is 'the same' as the one of the classical Lie algebra; this 
means we have a 1-1 correspondence between the irreducible modules of g and the 
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ones of Uqg which induces an isomorphism between their respective representation 
rings. Hence it is enough to do this for the classical Lie algebras (or, respectively, 
the classical compact Lie groups SU(m), Sp(2m) and SO(m)). The correspondence 
comes from associating to a minimal idempotent p~ ~ n(CB.)z the A module 
Zcv(p~) V | . 

(a) For  Lie type Am-1 (corresponding to SU(m)), the set P~ consists of 
all diagrams with m rows at the most. Here a minimal idempotent p~ in 
~(CB,)z corresponds to the irreducible highest weight module V~, where 
2 = [21 - 2,,, 22 - 2 . . . . . .  2r,-1 -- 2,~, 0]. 

(b) For  Lie type Cm we have a 1-1 correspondence between the elements of 
P~ (the set of diagrams with m columns at most) and the elements V~, in P, where 2' 
is the diagram obtained from 2 by interchanging rows with columns (see also proof  
of Proposit ion 3.2.3). 

(c) In case of the orthogonal groups we also have a 1-1 correspondence 
between the elements 2 ~ P~  and the irreducible O(rn) modules Vz occurring in 
tensor powers of the fundamental representation of O(m). It will be more conveni- 
ent, however, to consider the corresponding SO(m) module. Here one has the 
following restriction rules: I fm = 2p + 1 is odd and if2 ~ P~  such that 2~ < p then 
we associate to 2 the module Va labelled by the same diagram; if 2] > p, we 
associate to 2 the module V~, where ~. coincides with ). except in the first column, 
where it only has m - 2] boxes (so the irredicuble SO (m)-modules appearing in 
tensor powers of V are labelled by the diagrams with p rows). Finally, if m = 2p is 
even, we use the same rules except if 2] = p; in this case, the O(m) module 
Pv(Pz) V| (with p~ a minimal idempotent in nv(CB,)) decomposes into the direct 
sum V~,, ~ V~,2, of 2 irreducible SO(m) modules. 

Proposition 3.3.3. Usin9 the identifications between the elements of P~ and the 
irredicuble A modules as described above, we have ~ = ~r 

Proof. We have already shown in Lemma 3.3.2 that ~ v  coincides with ~ ,  where 
5f is the invariant of framed links obtained from the framed version of the 
invariants listed in the first column of Table 3.1 and V is the fundamental module of 
the (quantum) Lie algebra in the second column. The claim is now basically just 
a consequence of the definitions. Let 0 = L,e(0 - unknot). By Theorem 2.2 we have 
for ~ = (~(i))~= ~ an invariant ~ of colored s-component links defined by 

s n) = 0 <~'~> tr(7~p ~'a) 

where p~ is a minimal idempotent in p(CBJzr and peru = | p~,,~ and where we 
assume for ? a cycle structure as in Sect. 2.2. Let V~ = P(Pi)V| Then 

w =  ~) vp  ' '  ~- pv(p| | ( . )  
/ = 1  

By Lemma 3.3.1 and its corollary, the operators R v''vj are obtained by the 
cabling and reduction procedure as used in Sect. 2.2. Hence, using the identification 
(*) of Wwith a submodule of V | <~''a>, we obtain pf.(y) = pv(?~ib| Now observe 
that Trey |  0"trlB ., by Lemma 3.3.2, (3.3.4) and Proposit ion 1.2. Combining 
these last 2 observations, we obtain Trew)(~) = 0 <~'~'> tr(~'~ib | ), which implies the 
claim. 

Corollary. If q i s a  primitive l-th root  of unity, Proposit ion 3.3.3 still holds if all the 
components of ] are in pt+. The corresponding set P(1) of irreducible modules 
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consists of all highest weight modules Vx such that (4, 0) < l - h, where h is the 
dual Coxeter number of the Lie algebra g (see [Kc]  or the beginning of Sect. 3.4), 
0 is its highest root and (,) is as in Sect. 3.2. 

Proof. The first statement was shown in [TW] (where the nontrivial part is 
to show the existence of the modules Va) and in greater generality and with 
additional results by Andersen [An].  The second statement is just a restatement 
of the inequality involving l in the 4-th column of Table 3.1 (see e.g. [Hu-I or 
[V]). 

Remarks 1. We defined the invariants of colored framed links only by using the 
operators R v~. v,. This is sufficient for the definition and for showing that they are 
identical to the ones obtained from our cabling process. A more general framework 
has been used in [RT1, 2], with parts of ribbons as described in [RT2, Fig. 3 and 

V V* V* V 

V* V V V* 

Fig. 12]. The additional ribbons, notably the ones in the second line of [RT, 
Fig. 3] can be interpreted as contraction operations V | V* --, 1 resp. V* | V---, 1 
and as inclusion operations 1 ~ V* | V resp. 1 ~ V | V*, where 1 denotes the 
module corresponding to the trivial representation of A. In this context the trace 
appears as a contraction operation, i.e. we can define for b E End V the trace Trtv~ 
as concatenation of the maps 

1 ~  V |  V * ~  V |  V * ~  V* |  V-* I .  

For  more on this see [RT2],  [JS], [KaR] ,  [T3]. 
2. The more general frameWork in [RT2]  is needed there to show the change of 

orientation of a component of a link does not change the value of ~ ~ provided one 
replaces the color V~(i~ for that component by V~',~; this in turn shows that the 
resulting invariant of 3-manifolds is indeed independent of the choice of orienta- 
tions of the components of the link. 

3. The additional tangles in the figure above can be understood in our context 
using projections with the contraction property. Indeed, let p~ and pa. be idem- 
potents corresponding to the modules Va and V* -~ Vz., as explained before 
Proposition 3.3.3. Then pz | Px. contains a unique subprojection p with con- 
traction property (see Sect. 2.1). Using results of this section, the morphisms in 
Remark 1 can be translated into our setting by ~ ~ C ~ ap and by projecting down 
by p (where C is identified with Cp and where one needs to keep track of the 
orientations). 

3.4. Examples ofinvariants. The computation of C follows now easily from impor- 
tant representations of SL2 (Z) on characters of affine Kac-Moody algebras, found 
by Kac and Peters on l-KP] (see also [ KW ] and I-K, w 13.8]); more recently, these 
representations (at least on the projective level) were also found in the context of 
link diagrams and quantum groups (see e.g. [ M S ]  and [TW, Sect. 3.5]). Recall that 
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SL2(Z), the group of all 2 x 2 matrices with integer entries and determinant equal 
to 1, is generated by the matrices 

T=(10  1 1 ) a n d  S = ( ~  

It is easy to check that 
STS -1 = T - 1 S - 1 T  -x. (3.4.1) 

Let now for a classical Lie algebra g the vector space V t be given by an ortho- 
normal basis {ea, 2 e P(l)}, where P(l) is as in the corollary of Proposition 3.3.3. 
Moreover, let h be the dual Coxeter number of the corresponding untwisted affine 
Lie algebra. So we have h = m for g = sire,/~ = m - 2 for g = sore and h = m/2 + 1 
for g = sp,,. In our notations, the representations are defined as follows (see [Kc, 
12.8.10-12 and Theorem 13.8]): 

T = diag(ot~e -ctt)2~i/t) 

where c(1) = (l - h) dim g/24. The entries of the so-called S-matrix (i.e. the image of 
S under this representation) are given by 

--  P E w e W l : ( w ) e  -(~'+&w(t~+6))zni/t 

s~ - ~ y, v~rve(w)e_t~.w(~))z,i/~ (3.4.2) 

where Wis the Weyl group of the Lie algebra, e(w) is the sign of w, p the rank of the 
root lattice of g and fi is half the sum of all positive roots of g. This representation 
has the following properties: 

(a) S is a unitary matrix (we denote the image of S also by S following usual 
conventions) such that S = S r and S 2 = 6~,~, where 6 is (only in this sentence!) the 
Kronecker delta and 2* labels the module dual to V~. 

(b) The first row vector (corresponding to the trivial representation) is equal to 
the vector 8/11 a II, where ~ = (dimq V~)a = ()C a(q~ with Z z the classical character 
of V~ and q = e • 2~m. Hence it follows from this and (3.4.1), with q = e 2"m that 

x? ct~d~ 
x~'<l) [l~ll 2 = q C f l ) ( S T S - X ) ~ 1 7 6  = q C ( t ) ( T - x S - t  T- l )~176  = qSCO)S~176 (3.4.3) 

where one observes that the first row and the first column of both S and S -  ~ are 
given by the vector ~/11 a II and that too = q-~(l). 

Theorem 3.4. The invariants 5Y constructed fiom unitarizable specializations of the 
HOMFL Y and Kauffman polynomials satisfy the nonsingularity condition (d) of Sect. 
2.5. In particular, after renormaIization by the constant rc = q-3~(~), one obtains an 
invariant ~ of 3-manifolds. It satisfies 

o~ (M(L)) = q-3o(o)c(l) E di ~Lpi(L ) 

where tr(D) is the signature of the linking matrix, as defined before Theorem 2.5.2, s is 
the number of components of L, where P(l) is as in the Corollary of Proposition 3.3.3 

s and where d2 = 1--Ii= 1 da(i). In particular, one has 

p sin((6, 7)re/h) (3.4.4) 
= 1 I7 

S 0 ,  0 ~ e d  -*- 
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Proof. We have already checked in Theorem 3.1.4 that if Sr is one of the link 
invariants listed in Table 3.1, it satisfies properties (a), (b) and (c) of a positive 
rational invariant, as listed at the beginning of Sect. 2.5. To check property (d), first 
observe that Soo can be written as in (3.4.4) (which follows from (3.4.2) by the Weyl 
denominator identity); from this it is easy to see that Soo * 0. For Lie types A and 
C, P(l) and pt+ coincide (see discussion before Proposition 3.3.3) and its corollary); 
hence C -  1 is equal to the expressions in (3.4.3). In the odd dimensional orthogonal 
case, P~+ is just twice P(l), with d~ = di and with ~ = c~ by Proposition 3.3.3; this 
shows again that C -  i coincides with (3.4.3). We leave it to the reader to check the 
2p dimensional case, using da = d~,, + d~,2, if 2 has p rows. In all these cases, Soo is 
real, hence r = q-3ct~). 

It follows from [Wl,  Theorem 3.6] and [W3, Theorem 6.4] that the vector ~'in 
Section 2 is equal to a in this setting. To get the formula for ~- (Theorem 2.5.2), it 
suffices to show that I! ~ II = I CI, by remark (b) before (3.4.3). An elementary proof 
for that can be found in the thesis of Erlijman [E ], where it was obtained in order 
to compute the indices of certain subfactors. Using the S-matrix, one just needs to 
observe, by Weyl's character formula, that da = So~/Soo; hence 

II ~ II 2 = ~ (Sox/Soo)2 = 1/s20 

using remark (a) before (3.4.3). 
By Theorems 2.5.1 and 2.5.2, ~ is an invariant of 3-manifolds provided that 

Sa~~176 does not depend on the choice of orientations of L for any link L. In the 
case of the Kauffman polynomial and the Kauffman bracket polynomial (the sl2 
case) we started with an invariant ~ '  of unoriented links, hence so is the limit Sa~o~). 
To prove the~ame fact for Lie type A,, , m > 2, observe that d~ = dx. for all 2 ~ pZ+. 
Moreover, ~X(L) does not change if one changes the orientation of the i-th 
component of L provided one replaces its color 2 (i) by 2 (i)*; this follows for L/' ~" (L) 
from results in [ RT2, Sect. 5 ] and [TW ] and for ~ x (L) from this and Proposition 
3.3.3. The last 2 observations together with (3.4.4) imply that ~-(L) does not depend 
on the choice of orientations of L. This finishes the proof of the Theorem. 
Comparison of (3.4.4) with [RT2 ] and [TW, 1.5 and Theorem 5.4 ], using Proposi- 
tion 3.3.3 also yields 

Corollary 1. The invariants constructed here coincide with the ones constructed in 
[RT2] and [ T W  ]. 

Corollary 2. Let p~) be the representation of RB~o coming from .~| 
(a) p~)(z i )  has the spectral decomposition p~J(T1) = ~ l ~izx, where the z x' s are 

mutually orthogonal .idempotents with tr(zl) = So2i. 
(b) A change offraming by m in the j-th component in a framed link ~ corresponds 

to multiplication by p<~)(zi) =, where i is the number of a ribbon which is in the j-th 
component of ~. 

(c) L~'r unkno t )=  ( ~ i  ~ v ~ ) / d  where m -  unknot is the unknot with 
framing m. 

(d) Sa~o) has the same values for 3-manifolds obtained from identical links, whose 
framings differ only by multiples of 2kl, where k is the index of the root lattice in the 
weight lattice of g. 

Proof. The first statement follows from the definition of L# r176 Statement (b) just is 
a consequence of the definition ofp  ~). For (c) observe that II a It = I CI by the proof 
of the last theorem; hence d = ~ ~id~ from which one can easily deduce the claim. 
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Finally ~2u = 1 for all 2 e P~+ by the formula in Proposition 3.2.3; this together 
with (a) shows (d). 

3.5. The example sl  2 in detail. The image of the braid representation coming from 
the Jones polynomial has been completely determined by Vaughan Jones already 
before the discovery of his invariant. If q is not a root of unity, its Bratteli diagram 
is essentially one half of Pascal's triangle (see e.g. [J1]). So it does not satisfy the 
periodicity assumption of Theorem 2.5.1. However, ifq = s 2 is a primitive l-th root 
of unity, it does become periodic with periodicity 2. The rule is that one does not 
add any more vertices on the right hand side of the Bratteli diagram as soon as the 
number of vertices in 2 consecutive lines is equal to l - 1. We give below the 
diagrams for q a primitive 5-th and 6-th root of unity. 

Fig. 12. 

The matrix G, as defined in Sect. 2.1, can be written in the following form (with 
respect to the basis [0] ,  [ 1 ]  . . . . .  [ l -  1]) 

l 
0 

1 

To get the block structure as in Sect. 2.1, one would have to write the diagrams with 
an even number of boxes first and then the ones with an odd number of boxes (or 
vice versa). The braid representations are unitary if and only if q = e • z~/t. In this 
case, the Perron-Frobenius vector is equal to 

(sin (jzt/l) )j. 

Using this and Lemma 3.2.1 and Proposition 3.2.2, (with j = 11), one has 

1 q-~J2-1)/4 sin2(jn/l) 

X ; - x  sin2 (jn//) 

The computation of C - ~ follows now easily from the computations in [ RT2, Sect. 
8.3] (see also [-Ko]); it can also be easily done using the Poisson summation 

1 

0 1 

1 0 1 

1 0 
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formula following Dirichlets method of computing Gauss sums (see [D, p. 13 if]). 
We leave it to the reader to check (or look up the publications just quoted ) that 

C -  t = q 3/4 e-a'a/4 sin(n/l)  

w Connections to other approaches and further remarks 

In the following remarks we discuss connections of our approach to some other 
approaches; at the current level of activity in this field it would be impossible to 
discuss all of them. In particular, Witten's paper itself and several other important 
papers which are closer to his approach are not mentioned here. 

1. (a) Our method here was inspired by the approach of Reshetikhin and 
Turaev [RT ] and its generalization in [TW ]. There, a system of linear equations 
was derived from the Kirby moves from which the authors obtained a linear 
combination of invariants which coincides with (3.4.4) for our examples. 

(b) It seems to be impossible (or at least very hard) to prove independence of 
orientations for the limiting invariant s for Lie type Am, m > 2 by just using 
ribbon braids for the construction of framed links. This was the reason for 
Reshetikhin and Turaev to introduce the more general tangle algebra (see 
[RT1, 2]). It seems to be possible to carry over our approach to cablings of tangle 
algebras; this is discussed in the remarks at the end of Sect. 3.3. Further approaches 
in this direction can be found in category theoretic formulations (see [FY ], [JS ], 
[ K a R ]  and IT3]). 

(c) There are several papers on the surgery approach in the sl2 case, among 
them [Li2], [MS2], [KM] and [B1]. Moreover, after hearing a talk on the 
contents of this paper, a simple proof of our limit formula for the special case 
g = sl2 was found by Blanchet et al. in [B2]. 

(d) Connections between the surgery approach (and also the one discussed in 
remark 3) and the notion of a topological quantum field theory, as axiomatized by 
Atiyah and Segal, are discussed in [B1 ] for the sl2 case, in [Wa] and in the recent 
preprint IT3], among others. 

2. It is also possible to formulate our algebraic approach in the language of 
braid type factor extensions of hyperfinite II 1 factors (see [W5]). Here tensoring by 
the same representation would correspond to a new extension by the shift 
cri ~ a~+ 1, while tensoring with the dual representation would be implemented by 
Jones' extension. Although our presentation here uses von Neumann algebras only 
occasionally (where one could also find different proofs, at least for our examples) 
its most natural framework would seem to be in this category of braid type factor 
extensions. 

3. A different approach to invariants of 3-manifolds can be found in the paper 
[TV]  by Turaev and Viro. Here surgery and representations of braid groups are 
replaced by triangulations and assignments of numbers to the simplices of the 
triangulations which satisfy certain conditions. They then show that the quantum 
6j symbols of U~sl2 satisfy these conditions. It has been shown by Walker and by 
Turaev that the Turaev-Viro invariant gives the square of the absolute value of the 
invariant of Reshetikhin and Turaev in [RT ]. One can find a generalization of this 
approach, using the 6j symbols for representation rings K(p)  as studied here (i.e. 
the Verlinde algebras associated to W Z  W models of loops over classical compact 
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Lie groups) in work by Duurhus, Jakobsen and Nest [DJN]). Work in that 
direction has also been done by several other researchers, among them Karowski, 
Miiller and Schrader (e.g. [KS]). 

In another interesting development, Ocneanu has announced that his analogue 
of 6j-symbols (called 'cells' in his terminology) by which he characterizes finite 
depth subfactors also satisfy the conditions in [TV ] hence give rise to an invariant 
of 3-manifold. It would be interesting to understand the connection between his 
and our approach. 

4. A third approach uses the presentation of 3-manifolds via Heegard de- 
composition and representations of mapping class groups of orientable surfaces 
which again depend on a Lie algebra and a level. This approach was studied in the 
paper by Kohno [Ko]  for the Lie algebra sl2. 

5. Our invariants appear to have various symmetry properties corresponding 
to symmetries of the various Weyl alcoves, which generalize the Kirby-Melvin 
symmetry principle. It should be possible to prove this essentially only by using 
properties of the fusions rings. Using the structure coefficients of these rings, it is 
also possible to compute the invariants of 3-manifolds in terms of cablings. This 
has been done by Kirby and Melvin for the sl2 case. To generalize this, one only 
needs to write down the formula of Theorem 2.2 for sufficiently many different 
cablings so that one has enough linearly independent equations to solve for the 
irreducible invariants. The resulting formulas would of course be simplified by the 
generalized symmetry principle. Very recently (December 1992), the author re- 
ceived a preprint [KT]  where some or all of this program was carried out for sl,. 

6. Examples of manifolds have been produced by Kania-Bartoszynska and by 
Lickorish which can not be distinguished by the Uqsl2 invariants. The idea was to 
find pairs of links for which the Kauffman bracket polynomial coincides also for 
some of their cablings (see [ KB ] and [ Li3]). It would be interesting to see whether 
they can be distinguished by the invariants in this paper. 
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