
Invent. math. 112, 377411 (1993) 
///ven~/one$ 
mathematicae 
�9 Springer-Verlag 1993 

l-adic representations associated to modular forms 
over imaginary quadratic fields 

I. Lift ing to GSp4 (~) 

Michael Harris 1, David Soudry 2, and Richard Taylor 3 

1 Department of Mathematics, Brandeis University, Waltham, MA 02254, USA 
2 Department of Mathematics, Tel Aviv University, Tel Aviv 69978, Israel 
3 D.P.M.M.S., Cambridge University, 16 Mill Lane, Cambridge, CB21SB, UK 

Oblatuml4-X-1992 

Introduction 

It is now well known that if f is a holomorphic elliptic modular  newform then 
one can associate to f a compatible system of 2-adic representations. These 
occur naturally in the l-adic cohomology of certain sheaves on modular  curves. 
In the case of weight 2, trivial character and q-expansion with rational coeffi- 
cients there is an elliptic curve A/II~ such that the/-adic representations associated 
to f are the dual  of the Tate modules of A. Fo r  the most part  these results 
have been generalised to the case of holomorphic Hilbert  modular  newforms 
(except that one does not know how to construct the elliptic curve A in all 
cases where it should exist). 

It has been suggested for some time that similar results hold for certain 
modular forms over an imaginary quadratic field K. One way to think of these 
is as classes in the first homology of certain compactifications of F \ ~  e, where 
.~ is hyperbolic three space and F is a congruence subgroup of SL2(OK). These 
can be effectively computed and there is a lot of numerical evidence for such 
conjectures (see for instance [ E G M ]  and [Cr]). The first difficulty in at tacking 
this problem is that there is no obvious link to algebraic geometry and hence 
to arithmetic. The locally symmetric spaces are three manifolds and hence not  
varieties. 

It is with this difficulty that this paper  is concerned. We shall think of modu-  
lar forms over K as cuspidal automorphic representations of G L  2(AK). If the 
central character of n factors through the norm map A ~  ~ A x then Langlands '  
philosophy implies that there should be two near equivalence classes of 
automorphic representations of GSp4(A ) derived from n. On the Galois side 
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one induces to Q and notes that this four dimensional representation can be 
polarised in two distinct ways. The two classes correspond to the two grossen- 
characters of & • • through which the central character of n factors. A closer 
analysis shows that one of the near equivalence classes should contain holo- 
morphic elements, i.e. elements that contribute to H ~ of certain automorphic 
coherent sheaves on Siegel threefolds or equivalently to classical holomorphic 
Siegel modular  forms. 

The main aim of this paper is to construct such holomorphic automorphic 
representations of GSp4(&). Combining these results with an analysis of the 
I-adic cohomology of Siegel threefolds (see [Ta 2]), certain congruence arguments 
using pseudo-representations (see [ T a l l  and [-Ta2]) can be used to associate 
2-adic representations to many modular  forms over K (see [-Ta3]). Precise state- 
ments are given in Sect. 5 of this paper. In specific cases where a suitable elliptic 
curve A / K  can be found by some means one can use our results and the Faltings- 
Serre method to prove that A corresponds to a given modular  form over K 
(see Sect. 5 for an example). As an example of the sort of results so obtained 
we give the following rather concrete special case. 

Theorem A Assume that K has class number 1. Let n be an ideal of  (9 K, let 
F0(n ) denote those elements o f  GLz((gK) which reduce to an upper triangular matrix 
modulo n and let X* = F0(n) \ (~  • ]p1 (K)). Also let 0 be a system of  eigenvalues 
o f  the Hecke operators Tv(v,~n ) on H 1 (X*, t1~) (see [Cr] .for the definition). Then 
the field Fo=~(O(T~)l(v,~n)) is a number field. Let c(O) be the largest ideal of  
(9 K for which the same system 0 o f  eigenvalues occurs on H 1 ( X*to), I~) and suppose 
moreover that for some prime v of  K we have v(c(O))= 1. Then there is an extension 
E/F o of  degree at most four and for  every prime 2 of  E there is a continuous 
irreducible representation 

p: Ga l ( / ( /K) -~  GLz(E~) 

such that i f  v is an unramified prime of  K which does not divide n l  (where 
l is the residue characteristic of  2) then p is unramified at v and either p(Frobv) 
has characteristic polynomial 

X 2 - O ( T ~ ) X  + N v 

or 0(T~v)=0 and p(Frobv) has characteristic polynomial X 2 +  N v. The f irst  possi- 
bility occurs outside a set of  Dirichlet density zero. This completely determines 
p. 

The main method of this paper is the theory of theta series. GL2/K is closely 
related to a four variable orthogonal  similitude group GO/~.  There is a theta 
lifting from cuspidal automorphic representations of GO(&) to automorphic 
representations of GSp4(& ). However it was not clear that this lifting could 
produce holomorphic automorphic representations of GSp4(&), because such 
representations are not generic. The results of [KRS]  convinced us that it must 
be possible to get non-generic theta lifts and our main discovery is that this 
is the case. It is closely related to the disconnectedness of GO. In fact our 
results are very suggestive that the ways of extending a cuspidal automorphic 
representation from GO ~ to GO exactly reflect the structure of certain L-packets 
on GSp4. 
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In the first section we explain the relation between GLz/K and G O / ~  and 
the structure of cuspidal automorphic representations of GO(A). In the second 
we discuss some generalities on similitude theta liftings. The literature on these 
seems somewhat incomplete as most authors work with symmetry groups, how- 
ever the same methods usually work. In the third section we calculate explicitly 
the local unramified theta liftings from GO to GSp4. It results from this that 
the unramified lifting is unique in the similitude case. Is this a general phenome- 
non? In this section we also make the crucial calculation of the local theta 
lift at infinity. 

In the fourth section we consider the global theta lift from GO to GSp4. 
In particular we obtain a non-vanishing condition by evaluating a Fourier  coeffi- 
cient. We also discuss when this non-vanishing condition can be fulfilled. In 
section five we discuss the case of interest for attaching 2-adic representations 
to regular algebraic ~ (whose central character factors through the norm) and 
state the main theorems from [Ta3]  for which this paper  is one of the crucial 
ingredients. In section six we discuss the relationship of our results to Langlands'  
philosophy. 

I Lifting from GLz(K) to GO(3, 1) 

Before starting on the subject of this section it is convenient to fix once and 
for all some additive characters. For  a rational prime p let ~bp: Q p / Z p ~ r  • 
be the standard character. Also let 4~  : ~,/7Z ~ ~U • be the standard continuous 
character (x~--~e2~ix). If F is a number field and v a place of F above a rational 
place w let ~b,.: F - ~ C  • denote ~wotrvw/~. Let ~e: ~ v / F ~ •  denote 1-I~O~. 

v 

We write ~ for 0R. The choice of ~ probably makes no real difference, but 
it is important  that ~v = ~O o tr. 

Fix an imaginary quadrat ic  field K. Let c denote the non-trivial element 
of Gal(K/Q) and let e, K denote its non-trivial character. Let G denote the restric- 
tion of scalars of GL 2 from K to Q. Let W~ denote the space of hermitian 
( x = " x )  matrices in M2(K). Then - d e t :  W~ ~ Q  is a quadratic form. Let GO 
denote the group of orthogonal  similitudes of Wa and let v: G O ~ , ,  denote 
the multiplier character. Also let det: GO--*r denote the determinant of the 
action on WI and set s g = d e t  v-Z: GO ~ {_+ 1}. Then s g is surjective and its 
kernel is the identity component of GO, which we shall denote GO ~ We shall 
also let t denote the element of GO with action x~-~tx. Then GO= GO~ t}. 

We have a commutative diagram: 

0 , A  , G  ~ , G O  ~ , 0  

0 ~A ~C N ~ ~ , .  ~0 

where C is the restriction of scalars from K to Q of ~m, N is the norm map 
and A its kernel. Moreover  the vertical maps are the natural  inclusions of the 
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centres and the map a arises from the action of G on W~ via g: xt--*gx"g. 
If F is a field of characteristic zero then HI(Gal (F/F) ,GL2(F|  and 
H 1 (Gal (F/F), (F |162215 vanish so we have a commutative diagram: 

0 ,A(F) , G(F) '~ ,GO~ ,HI(Gal(ff/F),A(F)) ,0 

l l l l 
0 ,A(F) , (F |215  N F • ,HI(GaI(F/F),A(F)) ,0. 

We see that GO~ • (aG(F)). 
For any place v of I1~, we have H ~ (Gal(II~,/Q~), A(Q~))=(0) or Cz depending 

on whether v splits in K or not. We also have an exact sequence: 

0 -* H 1 (Gal ((I)_j(l)), A ((1)~)) --) @ H  ~ (Gal(~/(l)~), A (~ ) )  ---, C2 --* 0 
v 

where the last map is the product map. All the groups considered come with 
structures over Z defined by taking the lattices C ~ i n  K 2 and M2(CK)c~ W~ 
in W1. If p does not ramify in K then Hl(Gal(Qffli~p),A(2gp))=(O) and so 
G ( Z p ) ~  GO ~ (7/p). Thus we see that: 

�9 G O ~  • (aG(&)) ,  

0 

l 
0 , A ((I)) , (I). • I N K  • ~ 0 , 6 ( Q )  ~ , G o ~  

,a ( t~ )  ~ , 6 o o ( ~ )  0 , A(_~k) , ~k•  • , 0  

l 
Gal(K/Q) 

1 
0 

�9 and  0 ---, G O ~ (ll~) (a G (A))  ~ G O ~ (A)  --* Gal ( K / Q )  ~ O. 

Proposition 1 There is a bijection between cuspidal automorphic representations 
of  GO~ and pairs (n, ;~) of  a cuspidal automorphic representation n o f  G(A) 

and a grossencharacter ~: (1~ • \ A  • ~ IF. • such that ~oN is the central character 
o fn .  

Proof  This follows easily from the above remarks. The bijection sends ~ to 
({focr[f~r?}, Xn), where Xn denotes the central character of 7/. In the other direc- 
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tion it sends the pair (re,)~) to the set of functions from GO~176 to 
t12 such that: 

�9 f o  (7 E re~ 
�9 f ( z g ) = ~ ( z ) f ( g )  for all z e A  • and all geGO~ 

Note that the second set in the proposition maps 2-1 to the set of cuspidal 
automorphic representations of G(A) whose central character factors through 
the norm map. Also note that the proposition implies that GO~ satisfies 
strong multiplicity one: 

Corollary 1 If'if1 and ~2 are two cuspidal automorphic representations of GO~ 
and if n l ~ -~ n2 ~ for all but finitely many places v then n l = n 2 . 

GO ( ~ ) = ~  (~rG(Q~)). see The same considerations apply locally because o • We 
that: 

Lemma 1 There is a bijection between irreducible admissible representations ~ 
of GO~ and pairs (re~,, ~ )  of an irreducible admissible representation re~ of  
G(Q,,) and a character ~:  ff).~ ~112 • such that ~,oN is the central character 
of re,. This correspondence is compatible with the global correspondence. 

We now compare GO ~ and GO. Let c denote the automorphism of GO ~ induced 
by conjugation by t. It extends the action of ceGal(K/Q)  on aG, and so no 
confusion should arise. Let ~, be an irreducible admissible representation of 
GO~ Then either: 

G O ( Q ~ )  ~ ~ l. r~,~ ~ :  in this case IndGoo(o~)(n,,) is irreducible and we shall denote it re,+. 
G O ( ~ )  ~ ^ +  2. re~,~c~z~:= in this case Ind~oo(Q~(re~,)=n ~ G ~ j  is the sum of two irreducible 

representations, r~ + may be realised as ~ with the action extended to G O ( ~ )  
by letting t act by 0 +-, where 0 + are the two linear maps from ff~ to itself 
satisfying (0-+)2 = Id and 0 o g = Cg o 0 for all g e GO ~ (Q~). "~ corresponds to some 
pair (reo, 2~) and re~ has a unique Whittaker model ~/r i.e. a unique realisation 
in the space of functions f :  G((I)~) ~ (U such that: 

for all aeK,, and all geG(Q~). Then the action of 0 -+ on ~W=~ is by fw-~+_foc. 
Let 0 + be chosen so as to correspond to f~--~foc. 

Note that if ~ is unramified then so is ~t + but not z~-. Any irreducible admissible 
representation of GO(q)~) arises in this way. 

We now consider the global problem. If r~ is a cuspidal automorphic represen- 
tation of GO(A) we shall denote by r~ ~ the space of functions f[6oo(A) with 
fEnh. It is contained in the space of cuspidal automorphic forms on GO~ 
(of the same central character) and so is a direct sum of cuspidal automorphic 
representations of GO~ We have: 

Lemma 2 I f  "~ is a cuspidal automorphic representation of  GO(A) then either 
? c ~  with fc='U irreducible or ~ ~  n': with ft irreducible. 7bus we obtain 
a map from cuspidal automorphic representations of GO (A) to cuspidal automorph- 
ic representations of GO~ modulo the action of {1, c}. 
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Proof First  note that 72~ 72oc because: 

f (Cg) = f  (t g t) = f  (g t) = ( f t  t) (g) 

for f~72 and g~ G O~ Also all constituents of 720 have the same central charac- 
ter. So what we must show is that if ffa and 77 2 are two irreducible constituents 
of 72~ and if if, and ~2 give rise to representations 7r, and ~r 2 of G(~)  then 
either ~1=~2 or ~ 1 = ~ .  For  any place v ~l~ and 7~2v a r e  irreducible GO~ 
submodules of 72~, and so ~1,,=772~ or rTl , ,=~v.  Thus ( ~ 1 0 ~ ) v = ( ~ r 2 0 ~ ) ~  
and so by [JS, II, Theorem 4.2] we see that 7r, =7r 2 or n, =Tr~ as desired. 

We now describe the fibres of the above map. Let ~ be a cuspidal automorph-  
ic representation of GO~ Let T denote the set of places for which ff,,~rT;. 
Let 72 now denote the sum of the cuspidal automorphic representations of GO(&) 
lying above 77. Fix a finite set S of places containing at least oo, the primes 
which ramify in K and the primes for which ff~ is ramified. Set: 

�9 u s =  [IGo~ 
yes 

�9 ~ = H co~ 
yes 

�9 ~7~ = H co(zo) ,  
yes 

�9 6~= Hoo(Q~) .  
YES 

We shall describe 72~ Note that In "~c~ .~v~'~ ^~(,) " ~  '~ = @ ~I n~, where 6(v) = + 
&Sc~ T~{_+ 1} yeS 

if y e S -  T Let (Ind~ffv~) + denote ( ~  H ~ ,  (~) where the sum is restricted 
,O:Sc~ T~{  • 1} yes 

to those 6 such that I]6(v)= +. We shall prove: 
yES 

Lemma 3 1. I f  ~ + "U then 72o~ ~ I n d ~  ffv,~, 
^U s ~. ~Os ~USi+ 2. if  ff =ff~ then ~ ~-(moos ~ ~ �9 

Proof For  any set R of places let tnr  be defined by (tg)~=l if vCR 
and = t  if veR.  If p is a representation of G s we shall identify I n d ~ p  with 
p~,,(s) by: 

�9 ( fR)R=SIg-=(fRItRgtR)R=S i f g e G s ,  
�9 ( f e ) .  = s [ t~ = ( A  a l .~).  = s .  

In the case that ~ =  r7 ~ we check that ( I n d ~  ~v~)+ corresponds to those elements 
satisfying f s - g  =f~ o C. We introduce 72~ as above, so that 72~ r7 if ff-~ ff~ and 
72o=ff ~ ff~ otherwise. We define (Ind~72~ + to be those (fe)g=s which satis~ 
f s - e  =f~ o c. This coincides with our previous definition if r7 = ff~. In the case 
r?4=ff ~ we have Ind~g ffv~_-__(Ind~72ov~) + via the map (fR)RcSb-~(fR'k-JS_ROC)RcS. 
Thus in either case what we must prove is: 

72t~ ~ ( I n d ~  72ov~) + 

Now we have maps between ~t~ and ( I n d ~  72ov~)+ given by: 

�9 f~-~(g~-~f(g t~))~=s, 
�9 (fe)~=s~--~(f: g tg~-*fg~s(g)) for geGO~ 
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These maps are mutually inverse because elements of 7t t~ are right invariant 
by tR for R c~ S=0.  The second is well defined because: 

f (t g tR) = f  (~g tR~ ) =fs,~ n~ (~g) = f s -  n (~g) =Js,~ n (g) = f  (g tR) 

for ge GO~ These maps are easily checked to be (~s equivariant. 
On taking a direct limit over S we deduce: 

Proposition 2 There is a bijection between cuspidal automorphic representations 
of GO(A) and triples (n, ~, 6) modulo the action of {1, c}. Here: 

�9 n is a cuspidal automorphic representation of G(A), 
�9 fC is a grossencharacter of ff~ •  • such that ~oN is the central character 
of n, 
�9 8 is a map from the places of Q to { + i} which is 1 at all but finitely many 
places, 1 at v ~ n ~ n ~  and in the case n ~ n  ~ satisfies [ I  8(v)= 1. 

v 

Also c maps (n, ~, 8) to (n ~, ~, 8). 

We remark that all lifts of (n, 2) are twists of each other by characters ~osg 
where ~: C 2 \ @ C 2 ~ { + 1 } .  If 7~ is one such lift so is 7~| for any e of 

v 

the above form. We also remark that GO(A) has the weak multiplicity one 
property: 

Corollary 2 I f  ~1 and 7~ a are two cuspidal automorphic representations of GO(A) 
with nl -~ 7~2 then 7~ =n2. 

However the strong multiplicity one theorem will fail for GO(A). 
We now look at the local behaviour. For  the rest of this section induction 

will mean unitary induction. Let B~ denote the Borel subgroup of upper triangu- 
lar matrices in G. Two characters ~ ,  )~2 of (K|  • give rise to a character 
(Zl, Z2) of BG(tl)~) by: 

(Z~, Z2)(do d~)=zl(d~.) z2(d2) �9 

We let TG denote the torus of diagonal matrices. Consider the flag: 

Let B~o denote the Borel subgroup of GO consisting of elements preserving 
this flag. Let T~o denote the Levi component consisting of elements preserving 
the decomposition: 

o | 
o, ,, : )  

We identify T~o with C•  ~,,  by letting (x, r) act by diag(r, x, r - I N x ) .  Then 

e B ~ B ~  ~ TG~ T~o and t~ =(dl Cd2, N dl). Note that TGo-- T~o>~{1, t} 

where t2= 1 and t(x, r) t=(Cx, r). 
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Let (n, ;~, 6) be a triple as above corresponding to 7t. Suppose that ~ is 
principal series corresponding to a character (;gt, Z2) of Ba(Q~). Then Zt ~2 
=)~oN. If n ~ n c  (i.e. {Z~, Z2} +{Z], Z~}) then lt~, is the representation induced 
from the character of B~ which is trivial on the unipotent radical and which 
sends (x, r)~--~(Zt/~)(r);~2(~x)- Suppose on the other hand that n~lr~,. Consider 
first the case that v+  oe and )~=X~. for i=  1, 2. Then using the isomorphism 

G (Q~) IndB~(~o(;(~, Zz)~f '~ described in Proposition 3.2 of Chap. 1 of [JL] we see 

"ndG(~") ~"- X2) by f~-~6(v)foc. Thus r2, is induced from the that t acts on 1 ~(o,)l,t,, 
character of B~o which is trivial on the unipotent radical and which sends 
(x, r)~--,(Zt/~,)(r) Z2(~x) and t~-~f(v). If v is split or if v is inert and (Zl, ;(2) is 
unramified this will be the case. 

Suppose now that v=  ov and that Zt =;(~. To describe 7to~ we shall describe 
the K-types occurring in it. Let WI(IR)= W~(~)| W~ (~ where W~ (a) consists of 

matrices of the form (x Zx)  and W~ ~) consists of matrices of the form (Y 0y). 

Using this decomposition we identify the maximal compact subgroup of GO(N) 
with 03 x O~. Let s3 (resp. st) denote - l e O 3  (resp. cO0.  Then 03 x O1 ~S03 
x (s3) x (s~). We shall denote the irreducible representations of 03 x 01 by 

triples (n, +__, +), where (n, e3, el) is the irreducible 2 n +  1 dimensional represen- 
tation, ~r,, of S03 on which s3 acts by e3 and sl acts by e~. Suppose that 
~ has Langlands parameter: 

with Ne7/> o. Then ~lso3"~ Z c%, and so lt~[o~• E (n, d3"), e? ') and we 

(010) have e(3 ") all")= )~  (--1) for all n. We also have that t = a(w)s3 where w = _ 1 ' 

The map from "/r to itself given by W~--~a(w)(W,,c) is S03 equivariant and 
so acts as r , =  + 1 on a .c 'W~ . With this notation the 03 x Or-types occurring 
in ff~ are (n, 6(oe) r,, ~ ( -  1) 5(~) r , )  for n>-N. 

It remains to calculate r,. We use the notation of paragraphs 1 and 6 of 
Chap. 1 of [JL]. ~q:~ is spanned by functions W, where 

W~(g)= Pt (g)Jdetgl S (r(g) @)(t, t- t)(#t/l~z)(t)d• t, 
c x  

q~ runs over certain SU(2) finite functions in 5:(~;2), r is the representation 
of GL2(~) on 5:(1122) described in Propositions 1.3 and 1.6 of [JL], and #l(t) 
=[tIs t  N and #2(t)=ltl'ct u. For such a (0 set 

~(a, b)= ~ ~(a, y) ~o~(by)dyd~ 

so by Proposition 1.6 of [JL] we have (r(g)~)(x)=~(xg). Using this we see 
that r(Cg)~=(r(g)fboc)oc. Also if i(x, y)=(y, x) we see from Proposition 1.3 
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of [JL] that for g~SL2(~) we have r(g)(~oi)=(r(g)~)oi .  Thus letting 

, / d e t g - I  01) g =~ 0 g, we have 

W, (Cg) = p 1 (det Cg) I det g l ~ (r(g) 4o c)(Ct, ct- 1)(/~/tt2)(t) d • t 

=/~2 (det g) Idet g l ~ (r(g') �9 o c)((det g)% ~t- a)(la~/l~2)(t) d • t 
C• 

= # 2  (det g) [det g [ ~ (r (g') �9 o c) (s- 1, s det g) (# a/#2) (s det g) d • s 

= kq (det g) I det g{ ~ (r(g') �9 o c o i)(s det g, s -  1)(/~J#2)(s ) d • s 

= w~o~o,(g) .  

We deduce that W,(r w) = Wo,+~,i(g) = Wr (Here ' is as on p. 3 of [JL], 

i.e. 4 '  (a, b) = ~ �9 (x, y) ~ ~ (a x + b y) d x d Y d y d 9.) We see easily that q)' o c 

=((boc)'. Thus if we can find ( ~ 5 ~ ( C  2) with: 

�9 f~:#0 (see p. 233 of [JL], this implies that W o ~ |  {0}), 
�9 (b transforms under pSU(2)  by a,, and 
�9 (~oc)'= +~, 
then we see that r, = ___ respectively. For instance take: 

~(x, y) = e-  2x(lx12 + lYl2)c y2N. 

This satisfies the first two conditions for n =  N (pp. 233, 234 of [JL]) and (~oc)' 
= ( -  1) N ~. Thus ~o~ has lowest 0 3 • Ol-type: 

(N, ( -  1) N 6(oo), ( -  1) N 6(oo) )~o~ (-- 1)). 

2 Generalities on similitude theta liftings 

In this section we shall describe some generalities about theta liftings from 
general orthogonal groups to general symplectic groups. The analogous results 
for orthogonal and symplectic groups are well known. In some cases where 
the proofs are identical but the similitude case does not seem to be implied 
by the symmetry case, we refer the reader to the symmetry case rather than 
repeating arguments that need a lot of notation. To treat similitude groups 
we have followed the approach of Harris and Kudla [HK]  rather than that 
of introducing an extra variable. 

Let F be a field. Let V.= X, @ X* be 2 n-dimensional symplectic space, i.e. 
((x, x*), (y, y*)) = y* ( x ) -  x* (y). Let J.: V. ~ V* denote the corresponding skew- 
symmetric linear map J,(x, x*)=(x*, -x ) .  We denote by aa . . . . .  ~. the standard 
basis of X,. Let W be an m-dimensional orthogonal space over F. We shall 
assume throughout that m is even. Let Sw: W ~  W* be the corresponding sym- 
metric linear map and let W, denote the m + 2 r dimensional orthogonal space 
in the same Witt class as W. Then W~= Y~G W ~  Y,* with Y~ an r dimensional 
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space over F. Let f~ . . . .  ,f~ denote the standard basis of Yr. We shall let GSp2 . 
(resp. GOwn) denote the group of similitudes of V, (resp. W,). Let /* (resp. v) 
denote their multiplier characters and let Sp2, (resp. Owr) denote their kernels. 
Let R denote the subgroup of GSpz .  X GOw. which is the kernel of/*v. We 
have an isomorphism V, | W , -  V,~,, + 2 ~) given explicitly by: 

gn(~ Wr~_(Xn(~ Wr)@(X,n ~ Wr ) ldq~(ld| (Xn( ~ Wr){~(Xn(~ Wr), ~_ Vn(m+ 2r) " 

Thus we have a map i: R-+ Sp2n(m+2r ), 
Now suppose that F is the reals or a finite extension of the p-adic numbers. 

H~t~(Sp2,(F), @/77) has a unique element of order two. Thus for any even integer 
N we get a non-trivial central extension of Sp2,(F) by the N th roots of unity. 

Fo r  N =  2 denote this Sp2,(F). For  computat ional  purposes it will be convenient 
also to introduce the notat ion Mp2,(F) for the case N = 8 .  Thus 

S'~2~(F)coMp2,i(F) (uniquely as a map over Sp2.) and M p 2 . ( F ) = ( S p z . ( F  ) 
x/*8)/{ + 1}. We can give an explicit co-cycle giving the multiplication in MP2 .. 

Choose a maximal isotropic subspace H of V,, then cn(gl, g2) 
=7(q(H, g-(1H, gzH)) will do. Here q is the Leray invariant and 7 is the Weil 
invariant (see [Pe] or [RR] ,  note that 7 depends on Or). We remark that the 
cohomology class of c H is independent of H as it should be. Explicitly 

CkH(gl, g2) = cn(k- 1 gl k, k- 1 g2 k)= a(g 1 g2) a(gO- 1 a(g2)-  1 c//(gl, g2) 

where a(g)=cn(k -1,gk) en(g,k)=ckn(k -1,(kgk-1)k)ckn(kgk -1,k). If F is 
non-archimedean with residue characteristic greater than two there are unique 

liftings Sp2n((gF) c-~ S-~2n(F ) and Mp2n(F ). In fact if F has residue characteristic 
greater than 2 and if H is a maximal isotropic subspace conjugate to X .  by 
an element of Sp2.((gF) then cn is trivial on Sp2.((gp) 2. Let co. denote the Weil 
representation of Mp2 . (again it depends on the choice of q/v). We will also 
write co .... where v is the prime of F. We consider co. as an admissible representa- 
tion, so in the case F = I R  it is really a (sP2n, K) module, where K is a maximal 
compact  subgroup of Mp2n(~x ). co n consists of the K finite smooth vectors in 
a unitary representation coff and we will let cos denote the representation on 
the smooth vectors of co..H If F is non-archimedean, unramified and of residue 
characteristic greater than two, then 0). has a unique line invariant by Sp2n((gF). 
If H is a maximal isotropic subspace of V. and V. = H �9 H* is a decomposition 

S of V., then co. can be realised on the space of Schwartz functions on H*. Let 
Pn denote the parabolic  subgroup stabilising H, let U ~ H o m  + (H*, H) denote 
its unipotent radical (the + indicates symmetric homomorphisms) and let 
L ~  GLn denote the Levi component  preserving the decomposit ion V. = H | H*. 
If we write Mp2. as pairs in SP2. • with respect to cn then we have the 
following explicit formulae 

�9 if ue Un(F) then ((u, 1) ~)(x)= q/v((u x, x)/2)  4~(x); 
�9 if g~L~(F)  then ((g, 1)q~)(x)=ldetgl ~/2 ~b(g* x); 
�9 if ee/*s then ((1, e)~)(x)=e@(x). 

There are two liftings T: R(F)..-* Mp,,t,,,+2~ ~ of i and they differ by the quadratic 
character of GOw. We fix one which is given with respect to Cx.| by: 

(g, h)~-+(i(g, h),dw(g)), 
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where dw is given as follows. Let el . . . . .  e, be a basis of X.;  let e* . . . . .  e* be 
the dual basis of X*; for S o { l ,  ..., n} let Ws denote the element of Sp,  given 
by wsei=e ~ if ir  and =e* if i t S  and wse*=e* if ir  and = - e  i if i tS ;  
let ( , )  denote the norm-residue for F; and let Dw denote the discriminant of 
W; then 

,) w.(o. 
We shall say that admissible representations /7 and n of GSp,(F) and 

GOwr(F) respectively are associated if there is a non-trivial map of R(F)-modules 
co,~m+ zrl--*/7 | r~. Note that if ~ and /7  are associated then their central charac- 
ters are related by )~n = ) ~  1. 

Assume now that F is a finite extension of Qp for some p. Let (2 denote 
the parabolic subgroup of GOw,. preserving the flag 
( f l ) =  ( f z , f z ) = . . .  = ( f l  . . . . .  fr) and let RQ=Rca(GSpz ,  x Q). Let Nq denote 
the unipotent radical of Q (and Re). Let N~ denote the subgroup H o m -  (Y~*, Y~) 
of NQ, where - denotes the antisymmetric homomorphisms. Let P~ be the para- 
bolic subgroup of GSp2, which is the stabiliser of the flag 
( e l ) = ( e l ,  e2 )= . . .  =@1 . . . . .  ei). Let Rv,,Q=Rc~(P/x Q) and let Np,,Q denote 
its unipotent radical. Then Rp,,q/Np,,e=tF,,, R~xll~,, where R~ is defined in 
the same way as R, but with reference to GSp2t,-o and GOw. We denote a 
typical element of this quotient (~1 . . . . .  ct~, (g, h), fl~ . . . . .  ft,). The following lemma 
follows from the method of [K]. 

Lemma 4 The Jacquet module co,t,,+20,u b has a filtration with steps On(m+2rLi 
Jbr i = 0  . . . . .  r. Let Z=Z1 ... Z, be a continuous character of  (F• r and let 
(~),t,,+ 2,),i,x denote the maximal quotient of the Jacquet module CO, t,.+ 2,},i,NQ on 
which (F• acts by Z. ((F• ~'~ Q(F) so that the jth factor acts on f~ by 
multiplication and acts trivially on the other basis elements.) Then to.t,,+ 20,~,x = (0) 
unless Zj=l I" for j =  1 . . . . .  r - i .  I f  these conditions are met then CO,~,,+2r),i. x is 
the unnormalised induction from Rp, o. of the representation of Rp,,Q/N~,,,o_ given 
by 

(el . . . . .  ~,  (g, h), fll . . . . .  flr)~--~l#(g)l "r/2-"i-"i/4 1al"+"/2(a, ( -  I) aimw/2 Dw) I~I ~ 

�9 ]-[ Z,-~+~(~F I #,_,+j ~(g))~._~i oT(g ' h), 
j=l 

where ~t=~ 1 ... ai, fl=fll ... fir-i, Dw is the discriminant of W and ( , )  is the 
Hilbert symbol. 

Now suppose that F=P~. Let JtSp2,(P~) satisfy j 2 =  _ 12, and ( J  v, v ) > 0  for 
j 0 

all non-ze rov tV, .For ins t ance take  = ( - 1 ,  ~")" Then V, becomesannd imen-  

sional complex vector space isomorphic to H | tU (h~ + ~ - 1  hE ~ h l  + J hE). 
Let ~ denote the space of polynomial functions on the complex vector space 

H* |  112. Write ~,~ = ( ~  where ~ denotes those of degree d. Let U denote 
d = 0  

the centraliser of J, it is a maximal compact subgroup of SpE.(R) isomorphic 
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to U(n). We can also think of UcGLu|162 Let 0 denote the preimage of 

U in ~ Then [7~{(U, 2)eUxCE • Idetu=22}.  (o, can be realised on ~ so 
that /,~ acts by ((u, 2)f)(z)=2f(u*z). If we choose a basis hl . . . . .  h, of H which 
is or thonormal  with respect to the form ( J ,  } then we can associate f e ~  
with a polynomial  in n variables Zl, . . . ,  z,. We can also consider elements of 
the Schwartz space ST(H*) as functions of n real variables x~, . . . ,  x,. There 
is a map ~ ~ 5 ~ ( H  *) given by 

n (H ' 
I-i z~nm-. 2 ~Z)-m,/2 __ (~/2)2x~ 

/ = 1  i ~ X i + I ' g X i  e ' , ' .  

(See for instance [P 1, 1.4.20]. The difference in powers of two from this reference 
is due to the difference between r and e 4~ix. We use exactly the same 
action on o~ as in [P1].) This identifies the admissible (SP2n, ([~ • ,tt8)/{4- 1}) 
module ~- with the (~  x #s)/{ 4- 1} finite vectors of 5~(H *) in the smooth repre- 
sentation described above. The space ~- is called the Fock model for co,. 

Let Ow = O(p, q) (so p +  q is even). Then R has maximal compact subgroup 
U(n) x O(p) x O(q). Let f l  . . . . .  fv, gl . . . . .  gq be an orthogonal  basis of Wfor which 
each f~ has length 1 and each g~ has length - 1 .  Then the following vectors 
form a standard symplectic basis of V, | W: e i | fj, e i | g j, e* | f j  and - e* | g~. 
Thus we get 

i ( ( 2  b ba), (oq B)~=( a |  fl) b| -fl)] 
"1 \ b |  a| ]" 

Thus as a map U(n)xO(p)• we see that i(u,~,fl) 
=(u| Now consider 7"." U(n)xO(p)xO(q)~(U(n(p+q)) 

• its)/{ 4-t }. We see that there is only one possibility for 7": U(n)-o (U(n(p + q)) 
x ff8)/{ 4- 1 }, namely i'(u, lp, lq) =((u ev ~ (tu- 1)eq (det u)~P-q)/2), 1). Take H to be 

the space spanned by the e i |  and eg| Then we see that 7"(1, ~, fl) acts 
- ~ E x ,  ~ 

on the functions zxke , by ((deto~detfl)",(-1)~v-q)/2)(ot~fl)e". Thus 

"{(1,,,fl)=(((,Gfl) e", 1), 1) if ( d e t a d e t f l ) " = l  and = ( ( ( ~ f f ~ f l ) e , , - ~ - 1 ) ,  

( - 1 ,  ( - 1 )  tv-q)/2) ~ - 1 )  if (det ~ det fl)"= - 1 .  Thus U (n)• O(p)• O(q) acts on .~a 
via 

(u, ~, fl)~-+ (((det .  det fl)", ( - 1)) det u) tp-q)/2) Symma(u | ~ ff~ 'u - 1 @ fl). 

Now let F be a number field. There are unique central extensions s~P~z,(~,.) 
and MpE.(F) of Spz,(i~v) of degrees two and eight respectively which are surjec- 

tive images of the restricted products over all places v of Spzn(Fv) and Mp2,(FO. 
The restriction is with respect to the subgroups SP2n(CF,). It is a theorem of 

Weil that there is a unique homomorphism SpE,(F) ~ SPz.(&v) lifting the diago- 
nal embedding into Spz,(&e). We let co, also denote the Well representation 
of Mp2,(~kr), i.e. the restricted tensor product  of the ~o,. v. Again we have a 

s We n and smooth representation (o,. corresponding unitary representation o9, 
will give a description of c0. s below. Moreover  there is a continuous linear form 
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0 on m s such that for geSp2n(F ) w e  have 0omS(g)=0(g). If ~bem, define 0,  
to be the function on Mp2,(Av)  which sends g to 0(mS(g)q~). This gives an 
automorphic form on Mp2.(AF). 

If A is a ring let GSp~,(A) denote the elements in GSP2.(A) such that kt(g) 
= v(h) for some he GOw,(A). If f is a cuspidal automorphic  form on GOw,(AF) 
we define a function 04,(f ) on GSp~,(F)\GSp~.(AF) by 

04~(f)(g ) = ~ 0~(r(g, h ho))f(h ho) d h, 
OWr(F)\OWr(~F) 

where h 0 is chosen with v(ho)--#(g ) and the measure dh is as described after 
formula 5.1.11 in [HK] .  The definition is easily checked to be independent 
of h0 and to be left GSp~,(F) invariant. Extend O,(f) to a function on 
GSP2,(F)\GSp2.(Av) by insisting that it is left GSp2,(F) invariant and zero 
outside GSpz,(F)GSp~,(~F). It is an automorphic form o n  GSp2n(~t~v). Now 
let n be a cuspidal automorphic representation of GOw,(AI). Define O,(n) to 
be the admissible GSp2.(AF) module within the space of automorphic  forms 
generated by the 04,(f ) for qSem,(,.+ 2,) and fen. Suppose t h a t / / i s  an irreducible 
quotient of O,(n). Then we get a non-trivial intertwining operator  of R(~ke) 
modules m, ~ / / |  7~. In particular for all places v of F we have that ~ and 
/I v are associated. 

s Let H be a maximal isotropic subspace of V. and let V. We describe m.. 
=HOH* be a decomposit ion of V,. Write elements of Mpzn(~v) a s  pairs 
(g, e)eSPzn(~F)x 1/8 with multiplication defined by the cocycle cn (for all but 
finitely many v, cn(e,) vanishes on S p2.((g F,) 2 and so Cn = [] CH(F,) makes sense). 

v 

The representation space of m s is the space of Schwartz functions on H*(AF). 
Let Pn denote the parabolic  subgroup of Sp2, of elements which stabilise H, 
let Un denote its unipotent radical (it is isomorphic to the space of symmetric 
homomorphisms H*--*H) and let LH denote the Levi component  consisting 
of elements which preserve a decomposit ion V.=HOH*. Then the action of 
the inverse image of Pn in Mp2, is given by 

�9 if ue Un(AF) then ((u, 1) ~b)(x)= ~b((u x, x)/2) qS(x); 
�9 if g e Ln (Av) then ((g, 1) ~b)(x) = I[ det g II ~/2 q~ (g. x); 
�9 if ee#s  then ((1, e)dp)(x)=e(a(x). 

]'he linear form 0 takes q5 to ~ ~(x). 
x~H*(F) 

The following lemma is proved in exactly the same way as Theorem 1.1.1 
in [Ra]. 

Lemma 5 Either 6),(~) is contained in the space of cusp forms or 0._ l (~z) 4: (0). 

If T is a symmetric n x n matrix over F and if f is an automorphic  form on 
GSpz,(AF) we define the T th Fourier  coefficient f r  o f f  by 

fT(g)=v(V)\!~A~.)f(( ~ lU) g) r 

where U denotes the unipotent radical of the Siegel parabolic. Note that g ( f ) r  
~-g(fT). Now let ~ be a cuspidal automorphic  representation of GOw,, let f e ~  
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and q5 e cn.~. + 2,)- We calculate 04,(f)r. We shall assume that T is non-degenerate. 
Let geGSp+.(&F) and let hoeGOwr with v(ho)=#(g ). Let qS'=r(g, ho) qS. Then 

O,(f)r(g)= ~ ~ O(r(ug, hho)c~)f(hho)~ l((trTu)/Z)dhdu 
U(F)\U(~-F) Ow~(F)\Ow~(~r) 

= ~ f (h  ho) ( ~ (r(1, h) qY)(x) 
OwrIF)\OWr(~F) x~(X*n(~) W~)(F) 

~p(((u| l)x,x)/2)~p ~((tr Tu)/2)du)dh 
U(F)\U(~F) 

= ~ f (h  ho) ( ~ (r(l,  h) qY)(x) 
OWr(F)\Owr(~F) x~Hom(Xn, W)(F) 

~b(tr(~xQ x -  T)u/2) du) d h 
UfF)\U(AF) 

= ~ f(hho) ~ (o'(hox)dh. 
OwriF)\Owr(~l~) x~Hom(Xn,W)(F)T 

Here Q denotes a matrix representing the quadrat ic  form on W~ and 
Hom(X, ,  W)(F)T denotes those homomorphisms x such that (Swx(ei),  x(e~)) 
= T~. By Witt 's  theorem this set is either empty, in which case O~,(f)r=O, or 
it forms a single orbit  under Ow~(F). In the latter case VV~ WTG W~, for some 
quadratic space W~ (we have written WT for the n dimensional quadrat ic  space 
corresponding to T). The stabiliser of WT is isomorphic to Ow'~. Let x0: 

X :  , WT such that (Swxo(e~) , xo(ej)) = Tij. In this case we get 

04,(f)r(g ) = ~ (o'(ho Xo) ~ f (h 'h  ho) d h' d h. 
OW~i~(~F)\OWr(~F ) Owu 

In part icular 0o (f)T =- 0 for all q5 e co.(,, + 2 r) and f e  ~z if and only if for all f ~  rr 

f (h)dh=O. 
OW'TIF)\OW'T(~F) 

We also deduce the following lemma. 

Lemma 6 Suppose that W,=A ~ B for non-degenerate quadratic spaces A and 
B with dim A = n. Let ~ be a cuspidal automorphic representation of GOw,(~lkF). 
I f  for some fe7~ we have 

f(h)dh:~O, 
OB(F)\OR(&F) 

then 0.(7~) 4: (0). 

3 The local theta lift 

In this section we specialise the discussion of the last section to the case of 
the orthogonal  similitude group GO of the first section and GSp4. 

First we consider the non-archimedean case. Before considering the liftings 
of interest to us we record two lemmas that will be helpful. The first is a standard 
calculation. The second follows from Rodier 's  classification [-Ro]. 
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Lemma 7 The L-group of GSp4 is GSP4(~ ). If  11 is the unramified sub-quotient 
of the representation of GSp4(~v) unitarily induced from the character of Pz(l~,) 
which is trivial on the unipotent radical and sends." 

diag(a, b, #a -1, #b-1)~--~ xl(a) Zz(b) X3(#), 

then 17 has Langlands parameter (Z3(v), Z3 Zl (v), Z3 Z2 (v), Z3 Z1 )2(v))6GSP4(~) �9 

We remark that we use Z(v) as an abreviation for the value of X at a uniformiser 
of Qv, when X is unramified. 

Lemma 8 Suppose 17 is an irreducible pre-unitary representation of GSp4(ff)~) 
which is a subquotient of an unramified principal series representation with Lang- 
lands parameter diag(~, fl, y, 6)~GSp4(C), then either H is the full induced repre- 
sentation or the absolute values of ct, fl, ~, fi are, up to the action of the Weft 
group, N v to the power (--1/2, --r, r, 1/2) with 0 <_r<_ 1/4, or ( -1 /2 ,  - 1 /2 ,  1/2, 
1/2), or ( -  3/2, - 1/2, I/2, 3/2). 

Now let v be a prime of Q which is inert and unramified in K. Let W denote 
the quadratic space such that W(Qv)--K~ with quadratic form equal to minus 
the norm form. Then GO = GOw,. We start by proving the following result. 

Lemma 9 Let R denote the subgroup of Sp4 associated to GSpe and GOw. 
Then the 0 w (q)~) coinvariants of o) 2 ~ the representation of G S p~ ( ~ )  induced 
(via unnormalised induction) from the character 

(b 0 ab*-~)~-*eM(b)lbl la1-1/2 

of the Borel of upper triangular matrices. 

Proof og2o~'can be realised on the Schwartz space oW(Kv), so that Re,(ll),,) acts 
by: 

As Ow(Qv) is compact and acts transitively on the elements of Kv of given 
norm, the co-invariants can be described as ~(1~ +, IE) (where + denotes the 
elements of even norm) with the action: 

((b ~ " )) 
(b v (h))- ~ ' h (f)  (x) = (b, - D w) I b I I v (h) l ~/2 ~k (b n v (h) (N x)/2)f (b z v (h) x). 

One can see that under the upper triangular matrices the subspace of functions 

that vanish at 0 is irreducible. Looking at the action of ( _ ~ ~) one sees that 

the whole representation is irreducible (see for instance [B] for the action of 
this element). Moreover the Jacquet module with respect to the upper triangular 
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unipotent matrices has a one dimensional quotient (f~-+f(O)) on which elements 
of the form 

-1) 
acts as (b, - D w ) l b l l  v(h)l 1/2. The result follows. 

Lemma l0 Suppose that v is a finite rational prime inert and unramified in K. 
Suppose that ~ is an unramified irreducible pre-unitary principal series representa- 
tion of GL2(K,) with Langlands parameters (~, fl). Suppose that 17 is a pre-unitary 
admissible representation of GSpz(Q~) which is associated to the representation 
(r~, ~,, +) of GO(Q~). Then H is an unramified irreducible principal series represen- 
tation of GSp2(Q~) with Langlands parameter diag( ~ t / ~ ,  - ~ ,  ]Sfl "1, 
- ] / ~ ' ) r G S p 2 ( r  where V~]/fl=~(v).  The same remains true if rt and 17 are 
pre-unitary only up to a twist. 

Proof r~ is unitarily induced from two characters of the form Z1 ~ N, •2 ~ N where 
each Z~ is a character of Q~ and Z1 Z2 =)~. Note that Xl eK, Z2 er is also a possible 
pair. We consider the pair GSp4 and GO=GOwl.  Then Lo(Qo)= T(Qo) acts 
on (~, ~, +)Q so that t acts trivially and T~ acts by: 

(r, x)~-~ z2(N x ) I N xI-1/2(Z1/Z2)(r) [r I 

or the character obtained by swapping Z1 and Z2. Note that ~(x/Z20el I and 
so there must be a non-trivial intertwining operator to H| ~, +)e  from 
the unnormalised induction from Re~,e(Q~) to RQ of the representation which 
is trivial on the unipotent radical and which sends (in the notation of the last 
section): 

(a, (g, h), b ) ~  I/z(g) l- 1/2 (z1/z2)(/. / (g)) l a 12 (eK z2/zO(a) c02 (T(g, h)), 

or of the representation obtained by swapping Z1 and Z2. Let P2+(Q~) 
=P2(Q~)~GSp~(Q~). Using Lemma 9 we see that ( H |  [1/2)ol~)lc, sv:~Qo) 
must contain a non-trivial quotient of the unnormalised induction from B § (@,,) 
of the character which is trivial on the unipotent radical and sends 

diag (a, b,/~-~ a, # -  1 b) ~ [ # 1-1 (Z1/Z2) (#) [ a [2 (g'K Z2/Z1)(a) I b [ er (b), 

or of the character obtained by swapping ZI and X2. Thus 17 must be a quotient 
of the unnormalised induction from B(Q~) to G Sp2 (Q~) of one of the characters: 

diag(a, b, ~-1 a, t~ -1 b)~l/a1-3/2 Z~(U)la[2(e, rZz/Zl)(a) Ibl eK(b), 

diag(a, b, /~ -  1 a , /~ -  ~ b ) ~  I/~ [ - a/z (~K (1~) X ~)(1~) [ a 12 (eK X2/Z1)(a) I b [ er (b), 

or of the same with ;tl and X2 swapped. By Lemma 7 all these four representa- 
tions have unramified subquotients with Langlands parameters: 

diag(x~ (v), X2 eK(v), Z~ eK(v), X2(v)). 

The result now follows from the fact that [Xi (v) l < IN v l 1/2 and Lemma 8. 
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We remark that as GSp]  (Q~) is properly contained in GSP4(ff~) it seems 
not to be obvious that the lift be unique. We wonder in what generality such 
uniqueness statements hold. 

Now suppose that v is a rational prime which splits in K. We fix an identifica- 
tion K~ ~ Q~ ~) Q,. We have G 0 (Q~) ~ G Oto)~ (Q,) and we can take 

�9 

We shall use the basis f l ,  fz ,  f* ,  f *  of (0)2. 

Lemma 11 Suppose that v is a finite rational prime which splits v=wCw in K. 
Suppose that n=n~ | g2 is an unramified irreducible pre-unitary principal series 
representation of GLz(Kv) ~ GL2 (~v) 2 with Langlands parameters (al, fix) and 
(~2, flz). Suppose that Fl is a pre-unitary admissible representation of GSp2(~v) 
which is associated to the representation (g, ~, +). Then II is an unramified irreduc- 
ible principal series representation of GSp2(~v) with Langlands parameter 
diag(~l, ~2, ill, f l2)eGSp2(~) . The same remains true for g and H pre-unitary 
only up to a twist. 

Proof ~ is induced from two pairs of characters (Xal, X21) and (Xl2, ;(22) with 
= ;(11 ;(21 = ;(t 2 ;(22. Then T ~ (Qv)= Le(Q~ ) acts on (n, ~, +)  by some of the char- 

acters 

diag(tl, t 2, t 3 t [  1, t3 t2 1)}__} (;(11/;(12)(tl) [ t2 I(Zt 2/;(21)(t2) It3[- l/2 ~21 (t3) 

or one of its conjugates under the group ~ of order eight which is generated 
by the elements crx, which switches Z11 and Z21, and z which switches Zj~ and 
Zj2 for j =  1, 2. Because n is unitary and irreducible principal series we have 
that Z0~Zr~' I[. Thus, for one of the characters ;~ above, H |  must be a 
quotient of the induction from Rp:.e(Q,) to RQ(Q~) of the character which is 
trivial on the unipotent radical and sends 

(diag (a, b, Ira -1, pb-1),  diag(tl, t 2, (//tl) -1, (//t2)- 1)) 
onto: 

[#1-2 [ab[ 2 ~(a -1 tl #, b -a t2#, 1). 

Thus H | ~(1, 1, # -  1) must be a quotient of the un-normalised induction from 
P2 (~v) to G Sp2 (~.) of a character which is trivial on unipotents and sends: 

diag(a, b, H a - t ,  pb- t )~- .]#  1-1/2 lb] ~(a- ' /~,  b -~ #, 1) 

for one of the characters ~. Thus 17 is a quotient of the un-normalised induction 
from P2(~) of the character which sends 

diag(a, b, # a -  ~, # b-  ')v--~ (;(, 2/;(1 ,)(a)(;(2,/;(, 2)(b) ;(1, (//) 

or one of its conjugates by ~ .  The un-normalised induction of all these characters 
have unramified subquotients with Langlands parameters 

diag(;(11 (v), Zx2(v), Z21 (v), X22(v))~GSp2(C). 

The result now follows from Lemma 8 as in the inert case. 
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Finally in this section we turn to the archimedean case. Consider the repre- 
sentation ~=(nN,~, ~ll S, 6) of GO(R), where 5= 1 or sgn, 6=-t-  and ~N..~ has 
Langlands parameter: 

) 
(N~Z> o and s~tE). We label the irreducible representations of U(2) (respectively 
U(1)) by pairs of integers (x, y) with x > y  (respectively by integers x). These 
are the usual highest weights. We will identify the group of characters on the 
diagonal maximal torus in GSp4 with triples (a, b; c)e2g 3 with a + b = c  mod 2 via 

diag(x, y, z x -  1, z y -  1)~__~ x a yb Z(C-a-b)/2. 

Lemma 12 1. I f  e = sgn N+I or if 6 = - 1  then "~ is associated to no representation 
of GSp2OR). 
2. I f  e=sgn  N and 6 = - 1  then "k is associated to no representation of GSp2(~  ) 
or GSp4(~  ). 
3. I f  H is a representation of  GSp4(~  ) associated to fc then 

�9 H contains the U(2) type indicated by the following table 

(e(- 1), J) U(2)-tyv e 

((--1) N, +) (N+I, 1) 
((--1) u+', +) (N+I,0) 
((--1) N+I, --) (N+I,2) 

�9 zu=~l I-e; 
�9 H has infinitesimal character with Harish Chandra parameter (N, 0; - (N + s)). 

Proof We will use Howe's theory of K-types, see [H] for an account of this 

theory. Consider the Fock model .~- = ( ~  for the lift from GO(R) to GSp2(~I). 
0 

Then U(1) • 0(3) • O(1) acts on ~ via the representation 

(1)| Symmd((1)|  + ) (~ ( - -1 ) |  + , - ) )  

d 

~- (~  @ ( 2 a + l - d ) |  
a = 0 0 < = 2 b < = a  

The Howe minimal K-types occurring are then (0)| + , - )  and 
( l + d ) Q ( d ,  (_)d, +)  for deT/>_ o. These have degrees 1 and d respectively. If 
(1 + d)@ (d, (-)d,  +)  corresponds to H | r} then the only other O (3) • O (1)-types 
occurring in k can be (e, (_)e, +)  with e > d  (and (0, + ,  - )  if d=0).  Thus we 
must have d = N ,  6 =  1 and e ( - 1 ) = ( - 1 )  N. The first part follows. 



/-adic representations associated to modular forms over imaginary quadratic fields 395 

Now consider the Fock model ~ = @Wa for the lift from GO(R) to GSp4(F,~ ). 
0 

Then U(2) x 0(3) x O(1) acts on . ~  via the representation 

(1, 1) |  Symmd((1, 0) |  - ,  + ) G ( 0 ,  - 1)@(0, + ,  - ) )  

d 

~_ @(1,  1) | Symm ~ ((1, 0) | (1, - ,  + )) | Symm d-" ((0, - 1)) | (0, + ,  ( - ) a - " ) .  
a = O  

We have 

Symm"((1, 0) | (1, - ,  + ) )= (a ,  0) |  ( - )% + ) @ ( a -  1, 1) | ( a -  1, ( - ) " ,  + ) @  ... 

where the omitted terms only involve (e, ( - )~ ,  + )  for e < a - 1 .  We must omit 
the last term for a = 0 or 1. Thus 

, ~ ( d +  1, 1)| (_)d, +)| 2)|  (-)d, +) 
@((d, 0)@ ( d -  1, 1 ) ) @ ( d -  1, (_)d, - ) @  ... 

where the omitted terms involve (e, (_)a, ( _ ) a - , )  for e < d - 1 .  For  d = 0 we just 
get the first term and for d =  1 we just get the first and third terms. Thus the 
Howe minimal 0(3) • O(1) types are as follows. 

�9 (e, (_)e, + )  for e > 0  which has degree e and occurs in ~e as (e+ 1, 1)|  
(-y, +). 
�9 ( e , ( - ) e , - )  for e>O which has degree e + l  and occurs in .~+1 as 
(e+ 1, O)| (__)e, __). 
�9 ( e , ( - )  e+l, +)  for e=>l which has degree e + l  and occurs in ffe+~ as 
(e+l ,  2)@(e,(-- )  e+l, +). 
�9 (e, (_ )e+ l ,  _ )  does not occur. 
�9 (0, - ,  + )  does not occur. 

(If (0, - ,  + )  did occur then the trivial representation of SO(3) would occur 
in S"(X 2) where a > 0  is an odd integer and Xa denotes the 2 d +  1 dimensional 
representation of S O (3). Thus the trivial representation occurs in S b (X1)|  Sc(XO 
for some non-negative integers b, c with b + c > 0 and odd. Thus it also occurs 
in X a | Xe for non-negative integers d, e of different parity. This is a contradic- 
tion.) 

Suppose that ~ is associated to some H. Then the Howe minimal 0(3) • O(1) 
tType of 7~ must be (N, ( -  1) u 6, ( -  1) u 6 ~ ( -  1)) (all other 0(3) x O(1) types occur- 
ring in r~ have degree ~ N + I ) .  Thus 6 = - 1 ,  e ( - 1 ) = ( - l )  N does not occur. 
In the other cases we see t h a t / 7  must have Howe minimal U(2) type as listed 
in the table. 

The calculation of the infinitesimal character of H follows from the results 
of [p  23. 

Corollary3 Keep the notation of the lemma. Assume that N > I ,  that 
e=sgn u+l and that /7 is unitary. I f  6 = 1  then 11 is a non-holomorphic limit 
oJ" discrete series representation. I f  8 = - 1 then 1I is a holomorphic limit of discrete 
series representation. 
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Proof Combine the lemma with the list of unitary representations for Sp4(N.) 
in [P1]. 

Presumably this corollary remains true for N = 1 but we have not checked 
this. 

4 The global theta lift 

We now consider the global theta lifting from G O (&) to G Sp4(~). Let r~ = (n,)~, 6) 
denote a cuspidal automorphic representation of GO(A). Thus n is a cuspidal 
automorphic representation of GL2(&K) with central character Z with Z"=Z, 
)~ is a grossencharacter over ~ such that Z = )~ ~ N and 6 maps the set of rational 
places to { + 1} and satisfies the conditions described in section one. Let O(~) 
denote the theta lift of ~ to GSp4(&). Ifw is a place of K at which n is unramified 
let nv have Lang!ands parameters {%, flw}. Then we have the following result. 

Proposition 3 1. Let S denote the set of  rational primes which do not ramify 
in K and above which ~ is unramified and 6 = + 1. Suppose that H is an irreducible 
quotient of  0(~)  and v~S. Then H~ is an unramified irreducible principal series 
representation with LangIands parameters 

�9 diag( ~ 1 / ~  1 , - ~ ,  f l ] / ~ , - ~ , 1 ) e G S p 2 ( I I ; )  where ]~ , / f i ;= )~ (v )  if v is 
inert in K; 
�9 diag(e,~ ~, ~[~, fl~ 1, fl[1)eGSp2(iE) if v splits as w~w in K. 

2. Suppose that n~ has Langlands parameter 

,z o)  

with Nr o and se(12. Also suppose that ~ ( - 1 ) = ( - 1 )  N+l. Then 0('~) is con- 
tained in the space of cusp forms. Moreover if H is an irreducible constituent 
of 0(~) then H~ has infinitesimal character with Harish Chandra parameter 
(N, 0; - ( N  + s)) and contains the U(2) type (N + 1, 1 - 6  ~). I f  N >  1 and 6~ = 1 
then H| is a non-holomorphic limit of discrete series representation; if N > I  
and 6~ = - 1 then FI~ is a holomorphic limit of discrete series representation. 
3. I f  there is a grossencharacter 4) of  &[r • whose restriction to ~•  is ~ and 
such that 

�9 for all places v o f  O. with n~-n~ we have: 

0+ 1 +6(v) ~%(- 1) ~(nv| 021, 1/2), 

�9 L(n| -1, 1/2)+0, 

then 0 (it) + (0). 

Proof Parts 1 and 2 follow from the compatibility of the local and global lifts, 
the results of the last section and Lemma 5. 
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Let W denote the two dimensional quadratic space associated to minus 
the norm from K to Q, so that GO= GOw,. W~ ~-W@ H, where H denotes 
the hyperbolic plane. By Lemma 6, 8(~)  is non-zero if for some feT~ we have 

f(h)dh+O. 
OH(Q)\On(A) 

For q~ a character as in the proposit ion and for y e A ~  define 

We must show that for some y, 4) and J; Cy,~(y)+O. We calculate Ci,o(y ). 
Os Let S be a finite set of places so that fEr~ , y is a unit outside S, ooeS and 

primes ramifying in K are in S. Let w = For  a set R of places define 
1 ' 

' = I n  e , s  ^o + w'R~G(A) by wa~=12 if vr and w' if v~R. Let (~R)R=S~( d ~  ) corre- 
spond to f as in section one. Then: 

Cl,4,(Y) =2-tsl-~ Z ~ c~(y)-l~ xtatr w, 0 

(((; = 2 - 1 s l - '  Z ~ ~b(y)-~f x a  ~Y. 
R ~ S  o~((~)\o~(A) 

(Co o) ) ) =2-1s l -*  ~ ~ ~b(y) -a x-l~r ~ w'R tR dx 
R ~ S  Q• 

" o  [ [ x y R  0)w~)dx =2-1s1-1 2 ~ dp(xy)-lJg c*~ 0 ~y. 
R ~ S  ~• • 

= 2 - } s ' - I  Z I d g ( x y ) -  JR o'~ Y R ~  0 W' R d x  
R ~ S  ~• \ik • 

=-2- 's1-1 Y', 5 ffa(xy/Nya)-'a~. ~ ( ( x y ~ y R  01)W'R)dx 
R ~ S  ~ \ A  • 

= 2 - 1 s J - ~ Z  I (O(xY)-~R ~ w, dx. 
R=S Q* \~  1 

So we see that if z e A  • K • then Cs,4,(zy)=Cs,4,(y ). Thus we have to show 
that for some character 2 on K • A • \ A ~  we have: 

04: ~ Cs ) )~(y)dy= ~ Cf,4,a-l(y)(y)dy, 
Kx A • k K~ l~ x\Ak 

i.e. for some choice of ~b: 

R ~ S  K• 
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In the case n = n ~ let fR =fR ~ a e n .  In the case n + n c we have j7 R o a =fn + f s -  n ~ c 
for some f n ~ n .  In the latter case our integral becomes: 

R c S  K~\A'~ 

Thus in either case if we let fR correspond to a function W R in the Whit taker  
model we must show that:  

R ~ S  A~c 

which makes sense for Re s sufficiently large, is non-zero at s =  1/2 (defined 
by analytic continuation). 

Write S = S ~ u S 2  where for v~S~ n ~ n ~ ,  and for w S a  n~n~, .  Recall that 
the only constraint on the choice of Wn is that WRA~}= 0~ ~) Wn for w S 1 .  Thus 
we must show that for some W in the Whit taker  model of n we have: 

R ~ S t  A~: veR 

does not vanish at s =  1/2. We lose no generality in assuming that W - I ]  W~. 

Then for Re s sufficiently large the integral becomes: 

Fr x 01) {~-a/Z)dx FI s ~ ( x )  -1 Ixl~ 
vCs~ K,y v 0 

~, ~ ~{~}-~ (~ (o o)+~{~} ~ ((o ~ lo) w,)),~,~-,~, ~ 
= IJ ~ ~ ( x )  -1 w~ 

~r K# 

vr K~ 

(0 ~),x,~-lJ~,dx 

~/+~( ~, ~,-~, ~{~, ~ ~ ((0 ~ ~ ,~,~-1~' ~, 
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0 ~) N o w  let n'  denote  n |  -x and let W'  denote  W~b -~ Let:  where w =  - 1 " 

K~ 

We may choose  W~ so that  ~(1, 1, W~', s)=L(rc'~, s). N o t e  that  To' has central  char-  
acter  ~b ~ ~b- i. Then our  integral  is: 

[ I  L(Tt'~, s) H (L(rc'~, s) + 6(v) d?~( - 1) ((w, (q5 ~ q~- 1)- 1, W', s)) 
vr w S 1  

= I]  L(rt'v, s) [ I  (L(rc', sl+b(v) dp,,(- 1) e(n;, 1 - s )  L((n~,) r s)) 
v4-$1 v~Sl 

= L(~z', s) H (1 +6(v) ~9~(- 1) ~(n;, 1 - s ) )  
veSl  

where we have used the local funct ional  equa t ion  and  the fact tha t  L((~'~) ~, s) 
-- L(7r s). So what  we require is: 

04:L(~', 1/2) [ I  (1 +6(v) ~b,,(-- l) e(~z~, 1/2)). 
VeSl 

Not ing  that  qS~(- 1)= 2~ ( -  1) we see that  the final pa r t  of the p ropos i t ion  follows. 
W e  will finish this section by m a k i n g  some remarks  abou t  the condi t ions  

in par t  three of the lemma.  Our  guess is that  one can remove the condi t ion  
of the L-function not  vanishing,  it is p r o b a b l y  an art ifact  of the par t icu la r  Four i e r  
coefficient we have decided to evaluate.  We  also guess tha t  the local condi t ions  
are exact ly the condi t ions  for a local theta  lift to exist (and hence are necessary 
conditions).  

Let  n be a cuspidal  au tomorph i c  representa t ion  of GL2(&K7 with centra l  
character  Z satisfying 7 f=  Z. Let  ~ be a grossencharac ter  over  Q with Z = :~ ~ N. 
Then we have the fol lowing observat ions.  

Lemma 13 Suppose that ~ has Langlands parameter 

(U • ~ G L  2 (rE) 

/ I z t S z  N z~ 0 jzj,Oz N) 

with s, t~tU, NE7Z>=o. Let 95o~ denote a character of ~• with ~ [ R x  =~. Then 
we have. 

I. I f  N = 0  or if ~o~(- 1 ) = ( -  1) N then e(no~ dpL l, 1 / 2 ) = ~ ( -  1). 
2. I f  N > 0  and ~ ( - 1 ) = ( - 1 )  N+I then the set of such characters dp~ with 
~(~zo~ ~b~ 1, 1 /2)= - ~ o ~ ( - 1 )  is non-empty but finite. In fact it consists of the char- 
acters z~-,[ z[N +~(z/[z[)M for [ M [ < N and M = N - 1 m o d 2 .  
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Proof Let 2 |  r with f l=0  or 1. Then ~b| T M  ]zl u+~+~'+~ for 
some M ~Z with M-- f l  mod 2. Then we have 

e(g~ qb ~ ~, 1/2)=~(]zllS-t)/2-~-M ZN+M, 1/2)dlzl"  ~)/z+~ ~z~ -~ ,  1/2) 

=r IIN+MI+IN-MI 
_ y ~ ( -  1) if N<=IMI 

- ~ ( - 1 )  ~ if N > I M I ,  

and the lemma follows. 
Notice that this lemma is consistent with the guesses made above and the 

calculations on the local lifting at infinity made in section three. 

Lemma 14 Let v be a place such that nv~-n~. Let dp~ be a character of K {  
with d2v ]~r = ~ .  Then we have. 

1. For all places v, e(Tr~| ~b~ -1, 1/2) does not depend on the choice of additive 
character r as long as r = ~ .  
2. e(rc~ @ ~b( *, 1/2) = + 1. 
3. e(rr~ | ~b U 1, 1/2) = ~v ( -  1) in the following cases. 

�9 n, unramified; 
�9 v split; 
�9 n~ principal series corresponding to two characters Zl, Z2 with Z~= Z~; 
�9 d~ is sufficiently ramified. 

The first and last assertions do not require that ~ ~- 7r~. 

4. Suppose that v is not split and that n~ is the base change of a discrete series 
representation er of GL2(~v) with central character Z~ (note that this depends 
only on n~). Let D~ denote the non-split quaternion algebra with centre ~ so 
that Kv ~ D,. Let er D denote the representation of  D • corresponding to er by 
the Jacquet-Langlands correspondence. I f  ~,4:Z, and v,~2 then e(n, | ~b( ~, 1/2) 
= ~ ( - 1 ) . / f  ;~=  Z~ then the set of ~ as above with e(n~ | dp~ ~, 1/2)= - ~ ( - 1 )  
is equal to the set of  characters of K~ occurring in cr ~ [~.  In particular it is 
non-empty but finite. 

Proof (1) I f a e Q ~  we have 

e0rv| ~b~ -1, 1/2. ~va)=(~voN) d?~2(a) e(n~| (~v "-1, 1/2, r 

= (4)~/Ov)(a) ~(n. | 4)~ ~, i/2, Cv) 
=e(n~| ~b2 ~, 1/2, r 

For the subsequent parts of this lemma we assume that v is finite, the case 
v infinite following from the last lemma. 
(2) 

e(nv | ~b~ 1, 1/2)2 = e(nv | ~b~ -1, 1/2)~(nv | ~b~ -c, 1/2) 

=~(nv |  ~b~-', 1/2)~,(~v | q~, 1/2) 

= ((2~ o N)  4,;- 2 ) ( _  1) 

~ 1 .  
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(3) For the first assertion note that as nv is unramified so is )~voN and hence 
Z~ (as K~ is non-ramified). Thus )~( -1)=  1. Now let f denote the conductor 
of 95~. Then we have 

e.(rc~ | 95~- 1, 1/2)= g,,(f) e(95s 1, 1/2)2 

---zv(f) e(95 -1, 1/2) e(Zs 1 95~, 1/2) 

=e.(95s 1/2) ~(95v, 1/2) 

= 95~( -  1) 

=L(-1)  

For the second assertion let v = w Cw. Then 

e(Tz~ | 95s x, t /2)= e(TLv 95s 1, 1/2)e(rc~, 95w ~ -l, 1/2) 

=e(Tt w 95~ ', 1/2) ~(r~, 95w, 1/2) 

=(L ~,~)(- 1) 
=2(-1). 

For the third assertion 

~(~| t/2)=e(Z~ 95s 1/2) e(~2 95s ~, 1/2) 

=e(Z1 ~s 1/2)e(Z2 95~ -~, 1/2) 

=~(;~1 q57 1, 1/2) e(Z2(,~oN) -1 95~, 1/2) 

=e(Zl 95~- 1, 1/2) e(Z[ ~ 95v, 1/2) 

=(z~ 952~)(- 1) 
= ~ ( -  1), 

because Xt =~l  oN and N ( -  1)= 1. 
For the fourth assertion note that (for 95~ sufficiently ramified) there exists 

y~K{ such that 

~(~v @ 952 1 1/2) = Z,(Y) e(95~ ~, 1/2) 2 

--Z,(Y) e(95,~ -1, 1/2) e(Z~ -~ 95~, 1/2) 

=e(95s 1/2)~(95~, 1/2) 

=95~(-1) 
= ~ ( -  1). 

(4) In the case ~ = Z ,  this follows from the main theorem of [Tu] plus the 
remarks on p. 1297 of that paper if v,~2 and from [Sa] if v[2. Thus we suppose 
that ~,#: Z,. We first consider the case a is special. Then a is a subquotient 
of the induction to GL 2 of the character of the Borel of upper triangular matrices 
defined by a pair (~.[ j-1/2, 2111/2) of characters of Q~. Let 95'~=95~1(2oN), so 
that 95' [Q~ is the quadratic character corresponding to K~/Q,. Then 

e(~o95~ 1, 1/2)=~([ I-~/2 95,, 1/2) e(I I ~/2 95'~, 1/2) a, 
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where e =  1 if 49; is ramified and = - 4 9 ; ( m ~ ) - ~  if 49; is unramified.  If  49" is 
unramif ied then K,/II~ is unramif ied and so 49'~ is the unramif ied quadra t ic  
charac te r  and  in any case ~ = 1. Thus 

~(7~ v o 492 1 I /2 )  = ~(I l -  */z 49;,  1/2) e(l I~/2(49;) ~, I/2) 
=e(l I-I/249'~, 112)e.([ 11/2(49'~) -~, I12) 
=49'o(- l) 
=L(-1). 

Next  suppose  tha t  n~ is pr inc ipal  series cor responding  to a pa i r  of characters  
(2, 2 ~) with 2 + 2q Set 49'~ = 2 49;- ~ so that  49'~ I ~  = 1. Then 

e(n~ o 49;- ~, 1/2) = e(49'~, 1/2) e((2c/2) 49", 1/2) 

= k ~ ((49;)~(;,~/,~))(A) 

= k 2 ; ~ ( -  1), 

where CA = - A  and k are independen t  of 49v (see Theorem 3.2 of I-D]). Passing 
to a very ramified 49v we get the result. 

F ina l ly  suppose  that  there is a quadra t ic  extension L/ll~v different f rom Kv 
and a charac ter  2 of L • such tha t  % is the a u t o m o r p h i c  induct ion f rom LK~ 
of ,ZONLK~/L and nv is supercuspidal .  Let M denote  the third quadra t ic  extension 
of 1I~ in L Kv. Given  49v set/~0~ = (2 o NLK~/L)(49U, 1,, NLr~/Kv ). Then 

#4or [M • = (0  IQ,f 49v 1 Iff)~, ) o NM/~ = 6M o NM/~ = 1, 

where 6M is the quadra t ic  charac ter  cor responding  to M/II~.  Thus we can find 
k and A e L K v  which are independen t  of 49~ and with ~A = - - A ,  w h e r e  z is the 
non- t r iv ia l  a u t o m o r p h i s m  of LK~ fixing M, such tha t  

e(n~ | 49U 1, 1 /2)= e.(/t,., 1/2) 

=k~,o(3) 
=k O(-- A') 492 ~ (A ') 

-- k 6 L ( -  1) (~M(A') 2~( -- 1) 

where A'=NLKo/K.A~Q{ .  Thus  e(n,|  -1, 1/2) is independen t  of qS~ and  so 
ident ical ly  1. This completes  the p r o o f  of the lemma.  

Hav ing  analysed  the local condi t ions  we turn to the g lobal  condi t ion.  Despi te  
the fact tha t  we expect  no global  obs t ruc t ion  to the lifting our  results are much 
less complete.  We  shall  say that  a pa i r  (n,)~) as above  admi ts  6 if for all places 
v such tha t  n~=n,~ ~ there exists a charac ter  49~ of K~ such that  49~1~ =;(~ and 
e(rc ~ | 49~- 1, 1/2) ~ ( -  1) = 6~. If n ~ rt ~ we also insist tha t  I J  6~ = 1. 

v 

Proposi t ion 4 Let  ~ = (re, ~) be a cuspidal automorphic representation o f  GO~ 
Suppose moreover that 

�9 there is a grossencharacter 0 o f  ~ •  • with 492=)~; 
�9 either e(n | 49 - 1 o N) = 1 or 7t~ is special for  some f ini te  place v and 7t ~ 7z ~. 
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I f  t l is a quadratic character o f  ~ { ( / K  • and if v is a rational place with zrv=~ c 
set 6~l,v=c.(rcv(~q(d~voN) -1, 1/2) (then ( n |  admits 6). Then there is a set 
:g~ of  quadratic characters of  &;; /K  • with the following properties. 
1. I f  R is a finite set of  finite places of  K disjoint from the primes where n, 
n ~ or K are ramified and if for veR ,  q~ is an unramified character of  K~ with 
q2 = i, then there is a character tlE.;~f which localises to tlv for v~R. 
2. O(~ |  )~, 6,)+(0). 

Proof By the previous proposi t ion it is enough to prove the proposi t ion with 
the second condition replaced by L(~|  -x,  1/2)+0. By Theorem 4 of 
r w ]  it is enough to prove it with the third condition replaced by 
e(~| -1, 1/2)= 1. Now let ~ f  denote the set of quadratic characters .,i 
of A ~ / K  ~ for which e(~| -1, 1/2)=1. We show that this set has the 
first property of the proposition. For  v above a prime of S define quadrat ic  
characters of K~ as follows. If e ( n |  then set q~= l  for all such 
v. If not choose one such place Vo such that ~o is special. Set q , =  1 if v + Vo. 
n,, o | (q~vooN) - ~ is associated to two characters )~{ [l/2 and 2[[-1/2 with 2z=  1. 
We have that  e(n~o| -1, 1 / 2 ) = 2 ( - 1 )  if 2 is non-trivial and - 1  if 2 
is trivial. If e(n,o | (c~ o o N) -  1, 1/2) = 1 take q~o = 2. If e(nvo | (~b~o o N) -  ~, 1/2) = 
- 1  take tbo to be the product  of 2 and the non-trivial unramified quadratic 
character of K ~o. Now choose a quadratic character q of & ~ / K  • which localises 

to % for all v~R  or above an element of S. (If t/, corresponds to K,, (V~) ,  
choose x r  sufficiently close to x,  v-adically for all such v and let t /correspond 

to K (~x).) Then it is easy to check that t/will do. 
We can do somewhat better if we assume the following result which has 

been announced by Bump et al. [BFH] ,  but not written. 

Conjeeture/Theorem 1 Let n be a unitary cuspidal automorphic representation 
of GL/(A~)  such that e(n, 1/2)= 1. Let S' denote the set o f  primes o f  K which 
are ramified or for which n~ is ramified. Let R be a disjoint set of  K and for 
v~R let ~ be an unramified quadratic character of  K~.  Then there is a quadratic 
character ~l o f  ~ / K  • such that 
�9 ~ restricts to q~ on K~ ; 
�9 q~ = 1 for v~S'; 
�9 L(z~ @ q, 1/2) + 0. 
Granted this we have the following result. 

Preposition $ Let ~=(~,  )~) be a cuspidal automorphic representation o f  GO~ 
which admits ,5. Suppose moreover that the above conjecture/theorem is true. Then 
there is a set ~ of  quadratic characters of  ~ / K  • with the following properties. 
1. 1.1" ~?~ovg ~ and v is a place with K, ~ or ~ ramified at v then q~= 1. 
2. I f  R is a finite set of  finite places of  K disjoint from the primes where ~, 
~ or K are ramified and i f  for v6R,  t b is an unramified quadratic character 
of K{  with q2 = 1, then there is a character t l ~ f "  which localises to q~ for  v~R. 
3. 0 (~ | ~1, Z, 6) + (0). 

Proof Suppose we are given R and ~/. for veR.  We will construct t/ with the 
desired properties. Note that by enlarging R if necessary we may ensure that 
~ | 1 7 4  ~. Also note that it is sufficient to find a quadrat ic  character t/~ 
and a grossencharacter 6 such that 

�9 t / t , =  1 for v~R or for x, ~ or K ramified at v; 
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�9 4)1..=2,; 
�9 ~ c �9 if n , = n v  then 6 v = ) ~ ( -  1) e (nv |  4)~ 1, 1/2); 

�9 e (n |  -1, 1/2)=1.  
Let S denote  the set of ra t iona l  places for which n or K are ramified. F o r  
v~S, v not  split in K and n~=~r~ vc choose 4)~ a charac te r  of K{  such tha t  
e(~. | 4);- ~, 1/2) = 6~ )~v(- 1) and  4).1~ = )~. F o r  the other  w S  choose  4)~ a charac-  
ter of K~ such that  4)~]Q~ = ) ~  and  4)~ is sufficiently ramified that  we must  
have e.(~ |  -1, 1 / 2 ) ) ~ ( - 1 ) = 1 .  If ~ o ~ ; ~ 2  choose  4)~ so tha t  
~(n~ | 4)~t, 1 /2)=  1. Let  A = ~ • ( I ]  (9~,~) ~ • ~ ~ .  Then there is a char-  

v e S u  R-{ao}  

acter  4) of A which restricts to ~, on ~ •  to 4)~ on l l ~  (gK, , if v e S - { o e } ,  to 
4)~ on tl; • and to 1 on (9~,. if veR. Choose  an open subgroup  W of I~  (9~,~ 

v4.SwR 

such that  Ww(9~ ={1}.  Extend 4) to A W  by mak ing  it tr ivial  on W. Then 
extend 4) to a charac te r  on K • which is tr ivial  on K•  This charac te r  
is cont inuous  because A W is open�9 Fina l ly  extend it to a charac ter  4) on ~ / K  • 
Then 4 ) ] , ~ = 2 ;  4)~ is unramif ied for veR; if yeS and ~ then 
e(n~ | 4)~ 1, 1/2) ;~ ( -  1) = 6~; and  for all o ther  v, e (nv | 4);- 1, 1/2) )~( -  1) = 1. Thus 
we have tha t  e (~ |  -1,  1 / 2 ) = ~ 6 ~  (where the p roduc t  is over  those v with 

v 

n~ = n~). If I ]  6~ = 1 then we are done.  
v 

Thus assume tha t  1-[ 6~= - 1 .  N o w  choose  a ra t ional  pr ime w which splits 
v 

in K and such that  wr w 4 = 2 and 4)~ is unramified.  Choose  a quadra t ic  charac-  
ter q~ with qx,~= 1 if v e S w R ,  t h unramif ied at  one prime, w~, above  w and 
ramified at  the other,  w2. N o w  choose a grossencharac ter  2 of &[~/K • such 
that  

�9 21~,. = 1; 
�9 2 ~ = l f o r v e S u R ;  
�9 if v~St~ {w} and ~h,~ is r a m i f e d  then 2, is very ramif ied;  
�9 *~l ,w is unramif ied a n d  21 ,w2(~O'w2)  2 = - q l , w 2 ( -  1) 4)2 2 ;~,~ X(Ww2 ). 
W e  have the fol lowing values for ~(~r~ | q~,o(4)~ 2~)- ~, 1/2) 2 v ( -  1). 

�9 6~ if yeS and  rc~---n~. 
�9 1 for all o ther  yeS  with n ~ ; ~ .  
�9 1 forvr  
�9 - 1 for v = w, for in this case 

e (n~ | th.~ (4), 2~)- ' ,  1/2) )~, ( - 1) = ~ (q, . . . .  1/2) 2 (2w 4 ) ~  2~)(Ww~) = - 1. 

Thus e(~ | t/x 4)- ~ 2 -  ], i /2)  = 1 and  again  we are done.  

5 An arithmetic application 

In this section let n be a cuspidal  au tomorph i c  representa t ion  of GL2(AI~.K) with 
central  charac te r  Z satisfying ) ( =  ;~. W e  shall suppose  tha t  n ~ no. We shall also 
suppose  tha t  n~ has Langlands  pa rame te r  

We = I12 • --. GL2 (IE) 
Z - k  

, 
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where k~Z>_2. Let 2 be the grossencharacter of &• • such that )~=2oN and 
2 o o ( - 1 ) = ( - 1 )  k. Let S denote the set of rational primes which ramify in K 
or for which ~, is ramified. For  w a prime of K above no prime of S, let 
{ct~, flw} denote the Langlands parameters of lr~. Then we have the following 
result. 

Theorem 1 Keep the above notations and assumptions. Suppose moreover that 

�9 k is even; 
�9 there is a grossencharacter 4) of  ~ • • with 0 2= 2; 
�9 and either e(~ | c~- l) = 1 or ~ is special for some finite place v. 

~ x  x 7hen there is a set ~" of quadratic characters of K/K with the following 
properties. 

1. I f  R is a finite set of finite places of K disjoint from the primes above S 
q ~  - 1, then and if for veR,  tl~ is an unramified quadratic character of  K{  with 2 _  

there is a character tle,~, which Iocalises to q~ for veR.  
2. I f  qeoct ~ then there is a cuspidal automorphic representation FI, of  G S p 4 ( ~  ) 
with the following properties. 

�9 I1~ has central character 2 II 113 
�9 I1,,oo has infinitesimal character ( k - l ,  O; 4 - k )  and contains the U(2)-type 
(k, 2). 
�9 I f  pq~S is a rational prime lying over a split prime v of K with tl~ and tlr ~ 
unramified then H,,~ is unramified with Langlands" parameter 

diag(p- 3/2 ~ tl (v), p -  3/2 ~ tl (~v), p-3/2 fl~ q (v), p -  3z2 fl~ rl (~v))e G S P4 (t12). 

�9 I f  p~S is a rational prime lying over an inert prime v of K with q,, and qc, 
unramified then II~,~ is unramified with Langlands' parameter 

diag (I /p-3 ~ q (v), - ]//p-3 ev q (v), ~p  -3 fl~ t/(v), - VP - 3  fly ~ (V))C-- G S P4 (1~), 

where the square roots are chosen so that ~ 1 / ~ ) ) ~  q(v)= 2(v)p-3. 

Proof For 6 as described in Proposition 4 we see that O(~, )~, 5) is non-trivial. 
We can check using the calculation in the proof of Lemma 13 that 60o = - 1 .  
Let/7 be an irreducible constituent of II }13/22 O (~, 2, 6). Then this result follows 
from Proposition 3. 

We remark that it would follow from the result announced by Bump, Fried- 
berg and Hoffstein (see Conjecture/Theorem 1) that we can remove the three 
additional assumptions of this theorem (by using Proposition 5). 

The crucial point in this theorem is that the lift H is holomorphic, i.e. it 
corresponds to a classical holomorphic Siegel modular form. In the case k =  2 
the classical Siegel modular form is scalar valued of weight 2. To achieve this 
holomorphicity it is essential that 6 ~ = -  1, i.e. we are making essential use 
of the disconnectedness of GO. Because H is holomorphic it can not have a 
Whittaker model. Of course ~z does have a Whittaker model and it is a general 
principle that theta lifts preserve the property of having a Whittaker model. 
However again it is the disconnectedness of GO which accounts for this. 
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Because H is holomorphic one can start to apply methods of algebraic geom- 
etry to it. In fact combining this result with the results of [ T a l ]  and [Ta2]  
it is shown in [-Ta3] how to attach compatible systems of l-adic representations 
to n. We have the following result (see [Ta3]). 

Theorem 2 Let K be an imaginary quadratic field, let c denote its non-trivial 
automorphism and let n be a cuspidal automorphic representation of  GL2(&~) 
such that n~ has Langlands parameter 

W~=tE • --. G L 2 ( ~  ) 

Z - k  

o 

where k e Z e  2 (i.e. n is any regular algebraic cuspidal automorphic representation 
up to twist, i.e. any cuspidal automorphic representation contributing to cohomology 
of  the standard local systems on the corresponding three-manifolds). Let 7. denote 
the central character of re, let S denote the set of places of K where K /Q is 
ramified or n or n c is ramified, and for v~S let {ev, fl~} denote the Langlands 
parameters of n~. Let F~ denote the field generated by the e~+fl~ and e,,fl~ for 
v~S, it is a number field. 

Assume moreover 
1. that Z C = X, 
2. that k is even, 
3. that )~=~2 for some grossencharacter ~ with ~)~=~ and that either 
~(n | ~b- 1, 1/2) = 1 or n~ is special for some finite place v. 

Then there is an extension E/F~ of degree at most four and for each prime 
2 of F~ there is a continuous irreducible representation 

p: Gal ( / ( /K)  ~ GL2(E~, ) 

(2' a prime of E above 2) such that if v is a prime of K which is outside S~ 
and does not divide the residue characteristic l of 2, then p is unramified at v 
and either p(Frob~) has characteristic polynomial 

( x  - ~ ) ( x  - fl~) 

or ar +fl~ = 0  and p(Frob,,) has characteristic polynomial (X2+a~fl , )=(X 
- a J ( X -  f lJ.  The first possibility occurs outside a set of Dirichlet density zero. 

The assumption that ~ = ;~ is essential to the method. However the assumption 
that k be even is of a technical nature and one might hope to remove it. The 
third assumption is only needed to ensure the non-vanishing of the theta lift 
of this paper. If we assume the result of Bump, Friedberg and Hoffstein (Conjec- 
ture/Theorem l) then this condition is not needed. 

A weakness of this theorem is that one can only calculate the trace of Froben- 
ius outside a set of Dirichlet density zero, though this set does have an explicit 
description. This is enough to determine the l-adic representations completely. 

The theorem covers most of the cases where explicit computat ions have 
been made. These calculations compute cohomology classes on certain hyperbol- 
ic three-manifolds which are known to correspond to the n considered here. 
When the elliptic curve corresponding to a suitable n (at least k = 2, X trivial 
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and F~ = Q, but such a n might correspond to an abelian surface with quaternion- 
ic multiplication) can be found by some method, one can use the Faltings-Serre 
method to check that the dual of the Tate module is isomorphic to the l-adic 
representations we attach to n. This allows one to check the Ramanujan conjec- 
ture for n and to prove results about the L-function of the elliptic curve. In 
[Ta3] we carry this out for a specific example. In fact we prove the following. 

Theorem 3 Let K - - ~ ( I ~ - 3  ) and let n denote the prime ideal generated by (17 
+~- -3 ) /2 .  Let ~. denote hyperbolic three space, let fro(n) denote the matrices 
in GL2(C~) which are congruent to an upper triangular matrix modulo n and 
let X* denote Fo(n) \ (~u~l (K) ) .  Then H I ( X * , ~ )  is one dimensional. For v a 

X* prime of K let O(T~) denote the eigenvalue of  the Hecke operator T~ on H 1 ( ~, ~ )  
(see [Cr] or [Ta 3] for definitions). Let A denote the elliptic curve y2+ x y =  x 3 
+ (3 + 1/--3) x2/2 + (1 + / ~  3) x/2. 

1. For all places v of  K outside a set o f  Dirichlet density zero we have that 

10(7;)[_<_ 2 ] / N v . / f  this inequality Jails (.for vX6 n)  then v is split and O(T~,) = O. 
2. There is an L-function L(n, s)= l-I L(n~, s) with analytic continuation to all of  

C such that for all v outside a set of  Dirichlet density zero we have L(n~, s)=(1 
- -  (1 ~- N v - -  =~: A (]Fv))(N v ) -S  + ( N  v) 1 - 2s) 1 (and .for all v, L(n~, s) is the inverse 
of  a polynomial in (N v)-~). Moreover if we set A(s)= n-~(73) ~/2 F(s) 2 L(n, s) then 
A (s) = A (2-- s). 

Such results have been conjectured and much numerical evidence obtained for 
them by many authors. We mention [EGM]  and [Cr] as examples. The example 
above is based on computations of Cremona. 

6 Philosophy 

Finally it might be useful to try to explain in a more conceptual way some 
of our results. 

Let n be a cuspidal automorphic representation of GL/(&~). Then n should 
correspond to a two dimensional representation of the Langtands group of 
K. For simplicity assume that n is algebraic so that this representation of the 
Langlands group should give rise to a system of l-adic representations of Gal(/(/  
K). Fix a prime 2 of the algebraic closure of Q in ~. Let p be the 2-adic 
representation corresponding to n. Let Z denote the central character of n and 
assume that Z c= Z. Thus there are two grossencharacters over ~ ,  ~+ such that 
Z=2•  oN. Let ~ be the corresponding 2-adic characters. Choose the notation 
so that ~ (e)= +__ 1. Note that ~+/~_ is the quadratic character e corresponding 
to K/Q. 

We can form the four dimensional representation R of Gal(/~/(l~) induced 
from p. Then A2R is the sum of a four dimensional representation, ~+ and 
~c,. The four dimensional representation will be irreducible unless p is in some 
way degenerate. Thus one obtains (at least) two representations R• Gal(K/~)  
~GSp4(((~t) ) such that / z o R •  and ioR• =R,  where i denotes the natural 
embedding of GSp4 into GL 4. Explicitly, if Vp denotes the underlying space 
of p and ( , ) p  denotes its usual alternating form, then R is realised on Vp if) Vp 
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where R(c): (v, w)~-~(w,v) and if aeGal(K../K) then R(a): (v, w)~--~ 
(p(a) v,p(cac)w).  R• are obtained by taking the alternating forms 
((v, w), (v', w ' ) )= (v, v')p +_ (w, w')p. In terms of matrices, if p is given by: 

Gal (K/K) ~ GL 2 (ll~l) 

then R + is given by: 

Gal (K/K) ~ G S P2 (~t) 

/o o o ) 
a ~  0 b ~  

o 
c ~  0 d ~  ( oo) 

0 0 0 
c~-~ 0 0 1 

0 1 0 

and R_ is given by: 

Gal (K/K) ---,. G S p 2 (~l) 

ac~ 0 -- b ~  
a ~--~;~ 0 d~ 

- - c ~  0 d ~  

1 0 0 
c~--, 0 0 " 

0 1 

As homomorphisms into GSp4, R• are not related in any simple way. They 
have the same degree four L-functions but different degree one L-functions. 
They are not (in general) twists of each other by a character. If n corresponds 
to an elliptic curve A (i.e. p is the dual of the /-adic Tate module of A) then 
R_ corresponds to the dual of the Tate module of the abelian surface A O) CA/Q 
with its natural polarisation. 

Suppose that n is a base change from ~ .  Then p is the restriction of two 
dimensional l-adic representations, Pl and P2, of Gal(/(fll)). In this case R+ 
is conjugate in GSp4 to the representation: 
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In particular it lands inside a Levi subgroup of a Siegel parabolic. One can 
also see this by noting that the vectors of the form (v, p ~ (c) v) form an invariant 
isotropic sub-plane. However R_ does not map to any parabolic subgroup. 
(If it did it would have to have an invariant proper  subspace. This would have 
to be a plane as p is irreducible. Thus it would have to land in a Siegel parabolic  
and have an invariant isotropic plane. This would consist of all vectors of the 
form (v, av) for some aeEnd(Vp) with d e t a = l ,  ~2=12 and p(cac)a=~p(a) 
for all a eGal ( / ( /K) .  Then a = 2 p l(c) for some scalar 2 with det 212 = -  1 and 
22=1,  a contradiction.) In fact R_ factors through the cuspidal subgroup 
isomorphic to {(a, b)~ GLzZ ]det a = det b}, and is given explicitly as P l • P2- 

One would expect some sort of packets H • of automorphic representations 
of GSpg(&) corresponding to R+. Then for any 6 we can form ~• O((n, ~+, 6)). 
The irreducible quotients of this representation will correspond to R e by the 
calculations of section two. We would thus expect ~_ O((n, 2 - ,  6)) to be always 
cuspidal, which indeed we checked (in many cases) in section three. On the 
other hand we would expect ~+ O((n, ~+, 6)) to be cuspidal except when n is 
a base change from Q. If n is a base change we would expect 2 + O ((n, 2 +, fi)) 
not to meet the space of cusp forms (because of the results of [PS] and [So] 
on CAP representations). 

If for some choices 6-+ neither ~+ O((n, ~+, 6+)) nor  ~_ O((n, ~_, 6-)) vanish 
then we get two automorphic  representations in different near equivalence class- 
es, but with the same degree four L-function, i.e. the same lift to GL4. If n 
is not a base change this lift will be cuspidal. If however n is a base change 
then we would get an Eisenstein and a non-CAP cuspidal representation with 
the same degree four L-function. We have not proved that for some choices 
6 -+ neither ~+ O((n, ~+, 6+)) nor ~_ O((n, ~_, 6-)) vanish. 

Similar comments apply locally. Let v be a place of Q which does not split 
in K. Let a be a supercuspidal representation of GL2 (Q~.) with central character 
~. Let n~ be its base change to Kv. Suppose that v.~'2. Then we have the following 
result. 

Lemma 15 Assume Conjecture/Theorem 1. Then there are admissible representa- 
tions O(nv, ~0, +) and O(n~,, ~ve~, +) of GSP4((]~,, ) which are associated to the 
representations (nv, ~,, +_-) and (n~, 2~e.v, +) of GO(&). 

Proof. There is a cuspidal automorphic representation a of GL2(& ) whose local 
component at v is a~ and whose base change to K remains cuspidal (either 
use [C11] or explicitly construct a as an automorphic  induction from a quadrat ic  
extension). Let n be the base change of a to K and let ~ be the central character 
ofo. Define fi + by + -  6w - 1  i f v + w  and 6~ = +_1. 

By Proposit ion 5 and Lemma 14 we can find a quadrat ic  character t/-+ of 
&f~/K • such that q f = l  and 6)(n|177 6-+):#(0). Similarly we can find a 
quadratic character t/' with t/'~ = 1 and 6~ (n | t/', ~ e, 6 +):# (0). The lemma follows. 

The restriction vX2 is not needed for the existence of 0(n,, ~ ,  ___) (see Lem- 
ma 14). The existence of the (non-supercuspidal) representation 0(~,, ~ , ~ ,  + )  
probably follows from the methods of Kudla  [K] ,  even if v[2. 

Keeping the notat ion of the theorem we would expect O(n,, ~e~, + )  not 
to be supercuspidal (this presumably follows from the work of Cognet [Co]). 
On the other hand we would expect that O(n~, ~v, +-) are both supercuspidal 
and form the two elements of a non-stable local L-packet on GSp4(Q,) (this 
presumably follows from Kudla 's  method, cf. Lemma 4). The centraliser of the 
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image of this representation modulo ~ • has two elements, which is consistent 
with Langlands conjectures. These representations appear to have been missed 
by Vigneras FV] as have the corresponding representations W~ --* GSp4(ff~). 

Returning to the global situation one might expect that the map from cusp- 
idal automorphic representations (Tz, ~) of GO~ to near equivalence classes 
of automorphic representations of GSP4(~), (/r, ~)~---* [~ O(Tr, ~r 6)] is an injection, 
and that as 6 varies the near equivalence class is exactly exhausted. This would 
appear to be suggested by the results of [KRS]. Indeed it was their theorem 
that convinced us that we must be able to get non-generic representations of 
GSp4(~) from this theta lift and led to this paper. Taking 6-= 1 would presum- 
ably give the unique globally generic element of this near equivalence class. 
If (~v,;~) does not admit - 1  then presumably {~'v0(zv, Zv, +)} is a local L- 
packet. If it does admit - 1  then presumably {~% 0(Tt,, ~,~, +_)} is a two element 
local L-packet. If ~ is not a base change then [~O(~, ~, 6)] is stable and one 
expects no global obstruction to products of elements of the local L-packets 
being stable. That this is the case is suggested by our results. If however 
is a base change from Q from a cusp form of central character ;~ then 
[~ O (~, ~, 6)] is not stable and one would expect a sign condition for products 
of elements of the local L-packets to be automorphic. This plausibly corresponds 
to the condition that 1-16v= 1 which in this case we have for (~, ;,, 6) to be 

v 

a cuspidal automorphic representation of GO(&). If ~r is a base change from 
Q from a cusp form of central character other than ~, then presumably ~ O0t, ;~, 6) 
is not cuspidal. It would be interesting to check some of these assertions. Some 
are probably not very difficult, others may be more subtle. 
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