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Abstract. A class of associative algebras ("cellular") is defined by means of 
multiplicative properties of a basis. They are shown to have cell representations 
whose structure depends on certain invariant bilinear forms. One thus obtains a 
general description of their irreducible representations and block theory as well 
as criteria for semisimplicity. These concepts are used to discuss the Brauer 
centraliser algebras, whose irreducibles are described in full generality, the 
Ariki-Koike algebras, which include the Hecke algebras of type A and B and 
(a generalisation of) the Temperley-Lieb and Jones' recently defined "annular" 
algebras. In particular the latter are shown to be non-semisimple when the 
defining parameter 6 satisfies 7ql , ) (~)  = 1, where 7n is the n-th Tchebychev 
polynomial and g(n) is a quadratic polynomial. 

Introduction 

The importance of the representation theory of Hecke (or "Hecke-lwahori") 
algebras for the representation theory of reductive groups over finite fields 
is well understood and there is a large literature on the subject (see, e.g. 

[Lull, [Cu], [HEll, [HE2], [Ca]). These are algebras A over the ring R = 2~[q�89 
I 

q - r ]  (q an indeterminate) which are generically semisimple, i.e. they are 
semisimple as algebras over the quotient field of R. However they have non- 
semisimple specialisations A ~ = R~| which arise from ring homomorphisms: 
R ---+ R'. While most of the applications of their representation theory have 
hitherto been in the semisimple case, it is now clear that the representation 
theory of non-semisimple specialisations of Hecke algebras is intimately con- 
nected with the modular representation theory of reductive groups over finite 
fields (see [DJ3], [D],[G]). Furthermore, there are intimate connections with 
the representation theory of quantum groups (cf. [Ji], [D], [Lu3], [Dr]), statisti- 
cal mechanics (cf. [J2], [J4]) and knot theory. 
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The principal motivation for this work is a systematic understanding of 
the non-semisimple specialisations of Hecke algebras and of a variety of other 
algebras with geometric connections. Kazhdan and Lusztig [KLI] have intro- 
duced bases for Hecke algebras A which are indexed by a partially ordered 
set (the Weyl group W). Multiplication of these basis elements reflects the 
ideal structure of A and as a result, Kazhdan and Lusztig were able to dis- 
cuss the representation theory of A in the context of various orderings on W. 
In particular, they introduced the terms cells and cell representations in this 
context. 

In this work, we define in Sect. 1 a class of associative algebras over a com- 
mutative ring R by stipulating the existence of a basis with certain combinatorial 
properties which reflect those of the "Robinson Schensted correspondence" in 
Hecke algebras of type An. These are the "cellular algebras" of the title. For 
these, we shall define (in Sect. 1) "cell representations" and give a complete 
parametrisation (in Sect. 3) of their irreducible modules (up to equivalence) in 
terms of the properties of certain invariant bilinear forms on the cell represen- 
tations. A key property of these algebras is that the "cell datum" (see (1.1) 
below) which defines them and the cell representations is unchanged by special- 
isation. Thus questions about their specialisations are distilled into the study of 
these forms. In addition, we shall describe in Sect. 2 "canonical filtrations" for 
projective modules, classify the projective indecomposables over a field and 
show that if D is the "decomposition matrix" relating the cell modules to the 
irreducibles and C is the Cartan matrix, one has the usual relation C = D t D  
(see Theorem (3.7)). The block theory of A is implicitly contained in this 
relation. 

After developing the general theory in Sects. l, 2 and 3, we apply it in 
Sects. 4, 5 and 6 respectively to the Brauer centralizer algebras, the Ariki- 
Koike Hecke algebras and the Temperley-Lieb and Jones algebras, which are 
subalgebras of the Brauer algebra, defined by topological conditions (we actu- 
ally treat a slightly more general class of algebras than the latter). In each case 
the general theory is immediately applicable, and provides more information 
than was hitherto available. In particular, we obtain an explicit parameterisa- 
tion of the irreducible representations of the Brauer centralizer algebra over any 
field (regardless of whether it is semisimple). We also obtain new information 
about the semisimplicity of Jones' algebra Jn(R) by studying one of its cell 
representations carefully (see (6.20) below). 

In somewhat more detail, the contents of this paper are as follows. In 
Sect. 1 we define cellular algebras, give some examples and prove some easy 
consequences of the definitions. In Sect. 2 we begin the study of the represen- 
tation theory with the construction of cell representations and their invariant 
forms (2.4). Projective modules and homomorphisms are also discussed here. 
In Sect. 3 a complete description of the representation theory of a cellular al- 
gebra is given in the case when R is a field. The principal results are Theorem 
(3.4), which gives the irreducibles, Theorem (3.7), which describes the projec- 
tive indecomposables and block theory in terms of the cell representations and 
Theorem (3.8), which gives a criterion for semi-simplicity. 
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In Sect. 4 we analyse the Brauer centraliser algebra in our context, show- 
ing that it is cellular by developing a calculus of pairs of involutions in the 
symmetric group Sym{l,2 . . . . .  n}. The result is an explicit description of the 
irreducible modules which is "characteristic free". In principle, the blocks are 
describable in our setup and the problem of determining the dimensions of 
the irreducibles (which of course are known in the semisimple case) is re- 
duced to questions concerning the rank of certain explicitly defined bilin- 
ear forms. The ideas in this chapter have something in common with those 
of [FG]. 

In Sect. 5 we show that the "Hecke algebra" defined by Ariki and Koike 
([AK]) for the unitary reflection group G(r, 1,n) ~ (7l/r7Z)~ Sym(n) (where 
Sym(S) denotes the symmetric group on the set S and Sym(n) : :  Sym({1,2, 
. . . .  n})) of order rnn! is a cellular algebra and we describe the combinatorial 
data necessary for the discussion of its representation theory in general. This 
includes the case of Hecke algebras of type An-l (the case r = 1) and Bn (the 
case r = 2) where there are two independent parameters. Our work therefore 
systematises that of Dipper and James in the latter cases. We also give some 
results about the block theory of this algebra in the general case. Our cell 
structure is different from the "0-cells" introduced by Lusztig in the case r = 2 
[Lu2] for certain parameter values. 

In Sect. 6 we use the calculus of Sect. 4 to define an algebra TLn(R) which 
is, roughly, "double" the Temperley-Lieb algebra. We describe both its cellular 
structure and that of TLn(R) and point out easy consequences for their represen- 
tation theory (well understood in the case of TLn(R) by [GW]). Jones' "annu- 
lar" algebra Jn(R) (cf. [J3]) is treated similarly in this section, and by studying 
one of the cell representations (the analogue of the "reflection representation" 
of a Hecke algebra) we are able to deduce results about the non-semisimplicity 
of Jn(R) for certain parameter values. 

In [Gr], the first author proves that a wide class of algebras, called "projec- 
tion algebras" are cellular. They are, roughly, the algebra analogues of Coxeter 
groups and they include certain infinite families of "generalised Temperley- 
Lieb" algebras. The latter are defined as quotients of Hecke algebras and may 
be finite dimensional, even when the Hecke algebra is infinite dimensional. 
Examples are the infinite series T(En) (n > 6), T(Fn) (n > 5) and T(Hn) 
(n > 5). 

We shall adopt the following notation. If  X is any (finite) set, Sym(X) 
will be the symmetric group on X. For any positive integer n, we write 
n = {1 . . . . .  n}, so that Sym(n) denotes the symmetric group on {1 . . . . .  n}. 

1 Cellular algebras 

Let R be a commutative ring with identity. 

(1.1) Definition. A cellular algebra over R is an associative (unital) algebra 
A, together with cell datum (A,M, C,*) where 
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(Cl)  A is a partially ordered set (poset) and for each )~ E A,M(2) is a 
finite set (the set o f  "'tableaux o f  type 2") such that C : H).EA M(2)•  
M(2) --+ A is an injective map with image an R-basis of  A. 

(C2) I f 2  E A and S, T EM(2) ,  write C(S,T)  = C~,r E A. Then �9 is an 
R-linear anti-involution of  A such that (C~,r)* = ;~ Cv, s. 

(C3) I f 2  E A and S,T E M(2) then for any element a E A we have 

aC~, r = ~ ro(S',S)C~,.T (m odA (<  2)) 
SIGM(2) 

where ra(S',S) E R is independent o f  T and where A(<  2) is the 
R-submodule of  A generated by {C~,, r,,ll~ < 2 ; S ' , T "  E M(p)}. 

Note that if we apply * to the equation in (C3), we obtain 

(C3)' 
2 * Cr, s a =_- ~ ra(S',S)C~,s, (modA( < 2)) (Va E A and S, T E M(2) ) .  

STEM(;.) 

The axioms above are modelled upon the Robinson-Schensted correspon- 
dence for Sym(n), under which a permutation w E Sym(n) corresponds to a 
pair of  standard tableaux of the same shape 2 (2 being a partition of n). 

(1.2) Example. The Hecke algebra of  type An-~. Let R = 2~[q] (q an in- 
determinate) and let A be the Hecke algebra of  type A,_I over R. Then 
A has a basis {C~lw E Sym(n)} defined in [KL1]. I f  w corresponds to 
the pair (S,T) (let us write w ~ (S,T)) of standard tableaux then it is 
known [KL1, (1.4)], that T corresponds to the left cell of  w and S to the 
right cell. The property w -1 ~ (T,S)  of the Robinson-Schensted correspon- 
dence [Kn] shows that the anti-involution defined by * : T~ ~-+ T~,_~ (where 
{Twlw E Sym(n)} is the usual (defining) basis of A) satisfies (C2). For * 
is easily seen to be an anti-involution and clearly C~. = Cw_~. Hence if 
w ~ (S,T), write Cw = C~, r where 2 is the appropriate partition of n. The 
relation (C3) is implicit in [KL1] (see also [BV] and IV]). It asserts the iso- 
morphism of the left cell representations in a given two-sided cell in the sense 
of [KL1]. 

(1.3) Example. We give the following "banal" example to illustrate the results 
we prove below. It also comes into the cellular structure of  Jones' algebra. Let 
a be a function from a finite set A to a ring R as in (1.1). Let A = R[X] / f (X)  
where f ( X )  = 1-I~EA(X- a()0)). Choose a partial order A such that for 
each pair p, 2 E A, we have p __< 2,2 __< p or a ( / ~ ) -  a(2) is invertible in R 
(e.g. a total order). For 2 E A, let M(2)  = {2} and write 

C; , ;~ , ; .=C;~=[I~ (X-~ (~ ) )  1 ' ~ ; .  

where [g(X)] denotes the image of 9(X)  in A under the natural map. To satisfy 
(C2), take * to be ida (an anti-involution since A is commutative). Observe 



Cellular algebras 5 

that for g(X) E R[X] we have [g(X)]C ;~ =_ g(a(2))C; ( m o d A ( <  2)), which 
proves (C3). Thus A is a cellular algebra. 

(1.4) Example. The Temperh, y-Lieb algebra (oJ" type A). Let R be a com- 
mutative ring with identity and let 6 E R (possibly 6 = 0). Define the algebra 
TL, (=  TL,(R, 6)) as follows: TLn has an R-basis consisting of"planar  Brauer 
diagrams" on 2n points (cf. [GW] or [J4]). These consist of  two rows of  n dots 
in which each dot is joined to just one other dot and none of  the joins intersect 
when drawn in the rectangle defined by the two rows of  n dots. "Planar" refers 
to the intersection condition. 

We illustrate two such diagrams when n = 5. 

/// 
DI D2 

If DI and D2 are two diagrams, Dl oD2 is their concatenation, with interior 
circuits removed. This is illustrated below 

k j  W 
/ ' x  / ' x  

Di o D~ 

W 
/ ' x  

D2 o D1 

k . /  

If  n(Di,D2) is the number of  deleted interior circuits, the multiplication in 
A is defined by DID2 = (6)"(Dj'D2)DI o D2 . 

Now let A = {t E {0, 1 . . . . .  n}]n- t E 2Z}. For 2 E A, define a planar in- 
volution with 2 fixed points as a diagram consisting of  n dots arranged linearly 
with n -  2 o f  them joined in pairs and 2 of  them with an "end" attached. The 
pairs correspond to interchanges of  the involution, while an "end" is a fixed 
point. The condition that the involution be planar is that it can be drawn in a 
�89 defined by the line of  n points with no intersections, if the ends are 
extended arbitrarily. We illustrate some planar involutions below: 

W T 
S1 

l l 
S~ 

W 

$3 
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Now for 2 c A, let M()0 be the set of planar involutions with )~ fixed 
points. If $1 and $2 E M(2), let C~.s 2 be the diagram with $1 on top and $2 
on the bottom, the ends being joined in the unique way which creates a planar 
diagram. Reversing $1 and $2 defines an anti-involution of TL~ which clearly 
satisfies (C2) and the relation in (C3) is clear from the geometry. Note that 
the elements of M(2) are in bijection with standard tableaux with 2 rows of 
size "+;~ " - ;  One takes the right hand dots of the horizontal joins to be the T ,  ~ '  
second row of a tableau. 

We shall meet further examples below. 

To conclude this section, we record some elementary observations about 
the structure of A. If A is as in (1.1) and A' is any subset of A, define 
A(A' )  = (C~,rl;t C A')R. 

(1.5) Lemma. Suppose q~ is an ideal of  A (i.e. (9 E ~ ,2  E A, 2 < ~b ~ Z C ~b). 
Then A(~b) = (C~,rl2 C ~)R is a two-sided ideal o f  A. 

This is clear from (C3) and (C3)'. 

(1.6) Definition. I f  q~' C ~ are two ideals of  A, we define Q(~\cb') as the 
(A,A) bimodule A(~)/A(~') .  

(1.6)' Remark. Clearly Q(q~\~b r) depends only on the set ~\q~', and not on q~ 
and ~b'. This accounts for the notation. 

Observe that we have an obvious R-module monomorphism: Q(~b\~b t) ~ A, 
whose image is A(~b\q~') in the notation above. We shall be making particular 
use of A({2}) and Q({)~}) where 2 c A. 

(1.7) Lemma. Let Z C A and a E A. Then for any elements S1,S2, T1, 
T2 C M(2), we have 

C • l  , a 2 2 r~ C~2,r 2 =- (%(TI,S2)C~,r2 (modA(< 2)) 

where q~a(Tl,S2) E R depends only on a, TI and $2 (i.e. is independent o f  
T2,S~ ) 

Proof  By (C3) and (C3)', the left side of (1.7) is equal to rC~,r 2 modA(< 2) 
(some r E R). By (C3), r is independent of / '2  and by (C3) ~, r is independent 
of $1. [] 

(1.8) Specialisation. I f  a : R ~ R I is a homomorphism of  commutative rings, 
then R ~ becomes an R-module in the obvious way. The R~-algebra A ~ : :  R' 
| A is called the speeialisat!on of  A at a. I f  A is a cellular alyebra with cell 
datum (A,M, . ,  C) then A ~ is a cellular algebra with essentially the same cell 
datum, with �9 and C being modified in the obvious way ((r' | a)* : :  r ~ | a* 
and C(S, T) -= 1R, | C~,v Jor S, T E M(2)). 
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2 Cell representations and projective modules 

Let A be a cellular algebra with cell datum (A,M,*, C) as defined in (1.1). In 
this section we define (and study) a set of  representations of A whose existence 
is a natural consequence of the axioms. 

(2.1) Definition. For each )~ E A define the (left) A-module W(2) as follows: 
W(2) is a .free R-module with basis {CsIS E M(2)} and A-action defined by 

(2.1.1) a C s =  ~ r~(S',S)Cs, ( a ~ A ,  S E M ( 2 ) )  
S~EM(;.) 

where ra(S',S) is the element o f  R defined in (1.1)(C3). It is called the cell 
representation of A correspondin9 to 2 E A. 

It is a consequence of (1.1)(C3) that (2.1.1) does define an action of A on 
W()O. Now W(2) may be thought of as a right A-module via 

(2.1.2) Csa = ~ r~.(S',S)Cs, . 
S~EM(2)  

Once again, (1.1)(C3)' shows that (2.1.2) defines a right action on W(2). 
Of course, the left and right actions do not generally commute. We use the 
notation W()O for the left A-module and W()~)* for the right A-module; we 
shall be making essential use of the following elementary observations later. 

(2.2) Lemma. 
(i) There is a natural isomorphism o f  R-modules C ~ �9 W(2)| W(2)* 

A({2}), defined by (Cs, Cr)  ~ C~r(S,T E M(2)). / fA({2})  is identi- 
f ied with the (A,A) bimodule Q({2}) (see the remarks followin9 (1.6)) 
then C ~ beeomes an isomorphism of (A,A) bimodules. 

(ii) A : @).EAA({)~}) (as R-module). 
(iii) I r a  E A({2}) and S ,T  E M(p),(2,/~ E A)  then ro(S,T) = 0 unless 

2>/~.:  

The proof is easy. 
A key to understanding the structure of W(2) is the R-bilinear form ~b~. 

which we now define. 

(2.3) Definition. For 2 E A, define (a;~ " W(2) • W(2) --+ R by (9;.(Cs, CT) 
: q~l(S, T), S, T C M(2) (in the notation of  (1.7)), extended bilinearly. 

(2.4) Proposition. Keep the notation above and let 2 E A. Then 
(i) The form ffg)~ is symmetric; i.e. for  x,y E W(2), qb~.(x,y) : ~.(y,x) .  

(ii) For x, y E W(2) and a E A, we have 

(a;~(a*x, y )  = ~b~.(x, ay) . 
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(iii) For x ,y , z  E W(2) we have 

c ; ' ( x  | y ) z  = 4~;~(y,z)x 

(where C ; :  W(2)ffgR W(2)* ---~ A({2}) is as in (2.2).) 

Proof The form oh;. is defined by the equation 

(2.4.1) C~,r, C~:2,v2 = ~b;~(Ch,Cs2)C~,r2 modA(<  2)(S,, T, r M(2)) .  

(i) This follows immediately by applying * to (2.4.1). 
(ii) We show that the matrices ~b;, = (~;.(Cs, Cr)) and r, = (r,(S,T)),  

(a E A) satisfy the relation (ra*)t~?;. = (~;r,. Take S, T E M(2) and a E A; 
then 

). 2 2 ,;. C~,saCr, r = C~, s ~ r~(T', T ) C T , , T  
Tt cM(2) 

-- ~ r ~ ( T ' , r ) 4 ; . ( C s ,  Cr , )Cs ,  r . 
T~CM(2) 

Thus the coefficient of C~, r is the (S, T) entry in the matrix O;r,. But evaluating 
2 ). )~ 2 C}.saCr, T as (C~,sa)Cr, T, we find the relation asserted above. 

The statement in (ii) is simply the matrix form of O~,(a*x,y) = 4~.(x, ay) 
with respect to the basis {Csl S E M(2)} of W(2). 

(iii) Since both sides are linear in each variable (i.e. in x,y ,z) ,  it clearly 
suffices to prove (iii) for x = Cs, y = Cr, z = Cv(S, T, U E M(2)). In this 
c a s e ,  w e  h a v e  

C;( Cs | Cr )Cu = C~,rCu 

= ~ rvCv 
VEM().) 

;~ C;" ;" (any U r where rv is the coefficient of Cv, U, in s, rCu, u, r M(2)). By (1.7) 
and (2.3), rv = 6s, vr Cu) (6 = Kronecker delta) whence we have 

C;( Cs | Cv )Cu = 4J;( CT, Cu )Cs 

as required. [] 

(2.$) Corollary. For z E W(2), let R~ be the ideal of  R defined by 

Rz = {c~i,(y,z)ly E W(2)}. 

Then 
(i) I f  a ~ A ,  &z C_Rz. 

(ii) I f  z E W(2), we have Az > R~W(2) = A({2})z. In particular i f  Rz = R, 
W(2) = Az. 

Proof  
(i) Since dp;.(y, az) = (~;.(a*y,z) for y r W()Q, a E A, clearly the image of 

~b;,(-, az) is contained in Rz. 
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(ii) By (2.4)(iii), A({2})z consists of  all elements of  the form ~;~(y,z)x 
( y , x  E W(2)), which is the first assertion. If  Rz = R, then RW(2) 
= W()~), which is the second. [] 

(2.6) Proposition. Let  2,~ E A and suppose 0 : W(2) ~ W ( p ) / W  ~ is a 
homomorphism o f  A-modules where W' is an A-submodule o f  W(I~). Assume 
that W ( g ) / W '  is f ree  as R-module and suppose qS; 4:0. Then 

(i) The ,function 0 = 0 unless 2 > l~. 
(ii) I f 2  = p, then there are elements" ro4:0 and rl in R such that j b r  all 

x E W(2), we have roO(x) -- rlx + W'. 

Proo f  
(i) It follows from (2.2)(iii) that i f2  ~ /~ then O(A({;~})W(2)) = 0, because 

if a E A({2}) and z C W(2),  then O(az) = aO(z) = 0 by (2.2)(iii). Now 
if ~b; 4:0, there is an element z E W(2) such that Rz 4:0 (see (2.5)). Then 
by (2.5)(ii), A({)o})z = RzW(2); hence if ). ~ p then O(R~W(2)) = O. 
But W(t~)/W r is free as R-module by hypothesis, whence 0 = 0. 

(ii) Take )~ = #. Since ~b;.4:0, there are elements y ,z  E W(2) such that 
(~;~(y,z) = r0+0 .  Then for any x E W(2), we have C;~(x | y ) z  = rox. 
Write O(z) = z' + W'(z '  E W(2)). Then O(rox) = C;~(x (~ y)O(z) = 
C)(x  | y)z '  + W r = ~b;.(y,z')x + W'. If  we write rl = ~b;,(y,z'), this 
shows that O(rox) = rlx + W ~ for all x E W(2) as stated. [] 

(2.6) p Corollary. Let 2 E A and suppose ~ 4: O. I f  R ix" an integral domain, 
then HomA(W(2), W(2) )  ~ R. 

Proo f  It follows from the proof  of  (2.6)(ii) that there is an element r04:0 
(r0 E R) such that for any 0 E HomA(W(2), W(2)), there is an element rl(O) 
E R such that 

(2.6.1) roO(x) = rl(O)x (x ~ W()o)).  

Recall that W(2) has R-basis { C s l S  E M(2)}.  If  O(Cs) = ~ s E ~  rsCs, 
we see from (2.6.1) (with x = Cs) that rorr = O ( T + S ) ,  whence rr = 0 since 
R is an integral domain. Thus we see 

(2.6.2) O(Cs) = rsCs (some rs C R, any S E M ( 2 ) ) .  

Using the same argument, we see that 

(2.6.3) rs = rr  (S,T E M ( 2 ) ) .  

It follows that 0 is of  the form O(x) = r(O)x (some r(O) E R)  and the 
map 0 ~ r(O) (well defined by the R-free nature o f  W(2)) yields the desired 
isomorphism. [] 

It is apparent from (2.6) that the axioms in (1.1) provide the combi- 
natorial framework for a detailed study of  the set of  (equivalence classes 
of) irreducible A-modules and we shall carry this out in the case where 
R is a field in the next section. In addition, one obtains natural filtra- 
tions o f  projective A-modules. Recall that if 45, 45~ are ideals of  A such 



10 J.J. Graham, G.l. Lehrer 

that ~ '  C 4~, then we have an (A,A) bimodule Q ( ~ \ ~ ' )  as defined 
in (1.6). 

(2.7) Definition. Let P be any A-module, with ~b, qb' as above. Then P(q~\~b') 
is" the A-module Q(q~\ ~')@A P. 

In particular, i f  ~b t is empty, we have 

p(@) = Q(qb) ~ p = A(4)) ~'A P .  

(2.8) Lemma. Let q~ be an ideal o f  A. 
(i) I f  P is" any projective A-module, there is a natural isomorphism: 

p(eb) ~ A(q~)P defined by a @ p ~-+ ap (a C A(43), p E P). 
(ii) I f  e is an idempotent o f  A, then 

A(qb)Ae = A(~)e  = A(q~) N Ae .  

Proof  
(i) The map a| p ~-+ ap �9 A @A P "---+ P is an isomorphism for any A-module 

P. If  P is projective, A(~) |  P is naturally a submodule o fA GAP and 
the above map clearly takes A(4~)| P into A(eb)P. 

(ii) This is clear, since A(tb) is a two-sided ideal of  A. [] 

We complete this section with two technical results. 

(2.9) Lemma. 
(i) If, in (2.7) and (2.8) P is projective (as A-module), then for  an), two 

ideals 4> C_ qb' o f  A, we have an exact sequence 0 -+ p(qs) ---+ P(cb') --+ 
P( ~ ' \  ~ ) -~ O. 

(ii) For any finitely generated projective A-module P, there is a filtration 
0 = Po < P1 <= P2"'" < Pd = P o f  P by projective modules Pi, such 
that Pi/Pi-1 ~ P({it}) for  some it E A. 

Proof  

(2.10) 
P; by 

(i) 
(ii) 

(i) We clearly have an exact sequence o f  (A,A) bimodules: 0 -+ A(~b') --+ 
A(~)  -+ Q(tit,\cV) -+ 0. Since P is projective, the functor -@AP is 
exact, whence (i). 

(ii) Let (~ = ~0 C ~bl C 42 C . .-  C <ha = A be a maximal chain of  ideals 
of  A. It is elementary that by maximality, ~ i \ ~ i - i  is a single element 
for i C {1 . . . . .  d}. The result now follows from (i). [] 

Lemma. Let P be any A-module and let 2 E A. Define the R-module 
p2 :~_. m(2).@Ap. 
In the notation of  (2.7), P ( { 2 } ) ~  W ( 2 ) |  ;~. 
I f  43;. +0 and R is' an integral domain, then Hom/(P({2}) ,  W(2)) 
HomR(P;~,R) (as R-modules). 

Proof  
(i) By (2.7), P({it})  = Q({)~})~)AP. But by (2.2), Q({2}) = W(2)| 

W(2)*. It follows that P({2})  = (W(2) |  W(2)*)| P and (i) follows 
from the associativity of  tensor products. 
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(ii) We have 

HomA(P( {)~} ), W()~)) ~ HomA(W(,;o)~R P~, W()~)) 

HomR(P ~, HomA(W(it), W(it)) 

HomR(P~,R) 

since HOmA(W(it), W( ,~) )~  R if R is an integral domain and if qS~, 4=0, 
by Corollary (2.6) ~. 

3 Representation theory over a field 

In this section we assume without further comment that R is a .field and that 
all modules are finite dimensional over R. We maintain the notation of  Sects. 1 
and 2. 

(3.1) Definition. Let (A,M,C, . )  be a cell datum (see (1.1)). For 2 E A, d~;fine 
rad (2) : -  {x C W(it) ] ~b~(x, y )  = 0 for all y E W(it)}. 

(3.2) Proposition. Let it E A as above. Then 
(i) rad(it) is an A-submodu# of  W(2). 

(ii) I f  r 4=0, the quotient W(it)/rad(it) is absolutely irreducible. 
(iii) I f  4)~. 4:0, tad(it) is the radical of  the A-module W(2) (i.e. the minimal 

submodule with semisinlple quotient). 

P r o ~  
(i) I f x  E tad(it) and a E A, then by (2.4)(ii), O(ax, y)  = dp(x,a*y) =- 0 

(all y E W(it)), whence ax E rad(it). 
(ii) I f z  E W(it), z ~ tad(it) then (2.5)(ii) shows that W(it) = Az. It follows 

that W(2)/rad(2) is irreducible. Moreover it follows from (2.6)(ii) that 
(as R-modules) EndA(W(it)/rad(it)) ~ R. Hence W(2)/rad(it)  is abso- 
lutely irreducible. 

Off) Let Rad(2) be the radical of  W(2). Since W(;t)/rad(it) is semisimple 
(by (ii)), Rad(it) < rad(2). Consider the short exact sequence 

0 ~ ker(0)  ~ W(it)/Rad(it) --~ W(2)/rad(2) ~ 0 

where 0 : W(it)/Rad(2) --, W(2)/rad(2)  is the natural map. Choose 
a splitting s of  0 (as linear map)  and let m be a non-zero element 
of  W(2)/rad(it). i f  z E W(it) is such that s(m) = z + Rad(2), then 
W(2) = Az whence W(2)/Rad(2)  = As(m). Moreover if O(as(m)) = 0 
for some a E A then a = 0. It follows that ker(0) = 0, whence the 
result. [] 

(3.3) Definition. Denote the (absolutely irreducible) A-module W(it)/rad(2) 
(2 E A, qS;.#0) by L;. 

(3.4) Theorem. Let R be a .field and let (A,M,C,*)  be a cell datum (see 
(1.1)) fi~r the R-algebra A. For each it E A, define the (left) A-module 
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W(2) and bilinear form 0~. on W()~) as in (2.1) and (2.3) respectively. Let  
A0 = {)~ ~ A 14~ 4:0}. 

(i) The set {L;.[2 E A0} is a complete set of(representatives o f  equivalence 
classes of) absolutely irreducible A-modules. 

(ii) I f  P;. is the principal indecomposable A-module with head isomorphic 
to L;~ then P;. ~- P;.( <= 2) in the notation o f  (2.7) (2 E A0). 

Proof  Observe first that if 0 : L;. ~ Ll~ is an isomorphism (fi, kt E Ao) then by 
(2.6), fi > p > fi, whence 2 = #. Thus from (3.2) we see that {L;.lfi ff A0} 
is a set of  non-isomorphic absolutely irreducible A-modules. We complete the 
proof of  (i) by showing that any principal indecomposable A-module is of  the 
form (ii). 

Let P = Ae be a principal indecomposable A-module, where e is a primitive 
idempotent in A. Let 4~ be the ideal of  A generated by {fi E AIP({fi})4:0}. 
Clearly P ~ P(~b) in the notation of  (2.7), because the exact sequence of (2.9) 
provides a filtration of P ( A \ ~ )  with zero quotients. Thus Ae = P = P(~b) = 
A(~)e  = A(q)) NAe ,  whence e E A(~)  (cf. (2.8)). 

Now let fi0 be any maximal element of  (b. Then clearly P({f l0})+0 and 
we claim qS;. 0 4:0. To prove the latter statement, observe that if q~;-0 = 0, 
then a short computation shows that A(~b) annihilates W(fi0). But by (2.10), 
P({fi0}) ~- W(2o)QR P ~'~ where p;.o = W(fl0)* | P TM W(2o)* e ~ e*W(fi0) 
(as R-modules). Moreover e* E A(q~), whence p;~o = 0, a contradiction. Thus 
qS;, 0 4: 0. Hence by (2.10), HOmA(P({fl0} ), W(fio)) ~ HomR(P ;~~ R) 4: 0, whence 
it follows that P({fi0 }) has a quotient isomorphic to L;. o. But P({fi0 } ) is itself a 
quotient of  P, whence P has head L;~ o; it follows that fi0 is the unique maximal 
element of  �9 and that P ~ P ( <  fl0) as stated in (ii). It follows also that any 
irreducible quotient of  a principal indecomposable A-module is isomorphic to 
L;, for some fi E Ao, proving (i). [] 

As a consequence of Theorem (3.4), each A-module W(2) (2 E A) has a 
composition series with quotients isomorphic to Lu (some /~ E A0). Since the 
Jordan-H61der theorem applies here, we may speak of the multiplicity of  L~ 
in W(2). 

(3.5) Definition. For 2 E A and # E Ao, write d;,~ for  the multiplicity o f  
L# in W(2). The matrix (d)~p)),EA, pEA o will be denoted D; it is called the 
decomposition matrix of A. 

(3.6) Proposition. The matr ix  D is upper unitriangular, i.e. d;4, = 0 unless 
2 < p and d;~;~ = 1. 

Proof  If d;~, 4:0, there is a nontrivial homomorphism 0 : W(p)  ---* W ( 2 ) / W  ~, 
where W r is a submodule o f  W(2). Thus d;.~, = 0 unless p > 2 by (2.6)0).  
If 2 = /~ E A0, then by (2.6)(ii), any homomorphism 0 (as above) is of  the 
form O(x) = rx + W' for some r E R. Hence if 04:0, ira(0) = W(2) /W '  and 
it follows from (3.2) that W' = rad(2). Thus W(2) has just one subquotient 
(viz. W(2)/rad(2))  isomorphic to L;o. [] 
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(ii) 

(iii) 

Proof 
(i) 

(3.7) Theorem. Let P;~ be the projective indecomposable A-module correspond- 
ing to 2 E Ao. Then 

(i) P;. ~ Ae ~ Ae* for some (primitive) idempotent e o['A such that 
eA({2}) =# 0. 
I f 2  >_ I~, then direR(P;.)" = dj,;,(2 E Ao, It E A), where PJ' = W(t*)* 
@AP Jbr any A-module P (see (2.10)). 
I f  c;.~ is the multip#city of  Ll, in P;(2,/~ E A0) then writing 
C = (c;4~);.,**EA 0 we have C =DtD. 

i f  e C A is a primitive idempotent, then by the proof  of  (3.4)(ii) we 
have P;. ~ Ae if and only if �9 = {/z C AI/* =< 2} is the smallest ideal 
o f  A with e E A(q~). Clearly if e has this property, so does e*, whence 
P;~ -~ Ae*. 

(ii) The multiplicity d M is the dimension of  HomA(P;., W(/~)). We have 

HOmA(Pb W(J~)) ~ HOmA(Ae*, W (Iz ) ) ~ e* W (tt ) ~- W (,u )*e 

W(I~)* @A Ae = (p;~)l, . 

(iii) Following the proof  of  (3.4)(i), let @ be the ideal of  A generated by 
{2 E ALP({2}):#0}. Take a maximal chain ~ = 4~0 C 4~1 C . . -  C 
4% = ~b of  ideals o f  A. By (2.9)(ii) the set of  subquotients of  the fil- 
tration 0 = P U b o )  c P ( ~ I )  c --- c P(gPm) = P(~)  ~ P is precisely 
{P;.({v})iv < 2}. Now by (2.10)(i), P ; . ( {v} )~  W(v)| whence 
the multiplicity of  L~ in P;.({v}) (for any ii E Ao) is d w �9 (dimR(P;)")  
= d,,~d,4 (by (ii) above). It follows that c;~u = ~ , '< l , , ;  d'u*dv;.' which is 
the statement (iii). [] 

Next we show how the issue of  semisimplicity is dealt with in this context. 

(3.8) Theorem. Let A be an R-algebra ( R afield) with cell datum ( A,M, C, *). 
Then the following are equivalent. 

(i) The algebra A is semisimple. 
(ii) The nonzero cell representations W(2) are irreducible and pairwise 

inequivalent. 
(iii) The form ~b;. (of  (2.3)) is nondegenerate (ie. rad(2) = 0 ) j o r  each 

2 E A .  

Proof We show that each statement is equivalent to 

1 if  p = 2 ,  
(3.8.1) For # E A  a n d 2 E A o ,  d~,;.= 0 i f / ~ + 2 .  

First assume (3.8.1) holds. Then by (3.7)(iii), if  p E A0, we have P~, = 
W(p) ~- LF, , while if p ~A0,  W(p)  = 0, Statements (ii) and (iii) follow im- 
mediately; for (i), recall that A is a sum of  principal indecomposable modules, 
each of  which is isomorphic to P~ for some p E A (o f  course for a given 
p E A, P~, "occurs" with a multiplicity, which may be zero). By (3.8.1), each 
Pu is either zero or irreducible, whence A is semisimple. 
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Conversely, if A is semisimple and 2 E A0, then P~ = L~, whence (3.8.1) 
follows from (3.7)(iii). Thus (i) implies (3.8.1). It is clear that (3.8.1) is also 
a consequence of (ii). Finally, assume rad(/~) = 0 for any /~ E A. i f  kt E A0, 
then by (3.2), L~, = W(/~) is irreducible; if Ft ~ Ao, then W(#) = 0, whence 
(3.8.1). This completes the proof of (3.8). [] 

(3.9) Remarks. Consider the following questions concerning the R-algebra A. 

(3.9. I) Determine the (equivalence classes of) in'educible left A-modules. 

(3.9.2) Determine the dimensions of the irreducible left A-modules. 

(3.9.3) Two irreducible A-modules L and M are said to be linked if M is 
a composition factor of the projective indecomposable module corre- 
sponding to L. Determine the classes of the equivalence relation gen- 
erated by linkage, i.e. the blocks of A. 

(3.9.4) Determine the Cartan matrix of A (in the usual sense of representation 
theory). 

(3.9.5) Is A semisimple? 

When A is a cellular algebra and R is a field, these equations are reduced by 
the foregoing development to standard questions in linear algebra. In somewhat 
more detail we have: 

(3.9.6) The irreducible modules are parametrised by 

A0 := {2 E A lq~.=t=0}. 

(3.9.7) The dimensions are given by 

direR(L;.) = ]M(2)] - dimR(rad(2)). 

(3.9.8) Let 2, kt E A. Say 2,/~ are cell-linked if 2 E A0 and Li, is a composition 
factor of W(#). The classes of the equivalence relation of A generated 
by this relation are called cell-blocks. The intersection of a cell-block 
with A0 corresponds to a block in the sense of  (3.9.3). Thus the 
solution of (3.9.3) reduces to 

(3.9.9) Determine the set {(/~,2)t/~ E A, 2 E Ao, d~,~ 40} .  

(3.9.10) The Caftan matrix C is given by (3.7)(iii) and D is computed as 
indicated in the proof of (3.7)(ii). 

(3.9. l l)  By (3.8), the problem of semisimplicity reduces to the computation 
of the discriminants A;. of the forms {qb~ 12 E A}. 

In the examples below we generally have only incomplete answers to the 
first three questions above. 

(3.10) Remark. It is clear from the definition (see, e.g. [CPS]) that A is quasi- 
hereditary if ~b~o is nonzero for each 2 E A (i.e. if  in the notation of (3.4), we 
have A = A0). 
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4 The Brauer algebra 

In this section we show that Brauer's centraliser algebra has the structure of  
a cellular algebra and we give a complete parametrisation of its irreducible 
representations over any field. Let R be a commutative ring with identity and 
let/5 C R. The Brauer algebra B(n) = B(n,/5) (cf. [B], [HW], [W]) has R-basis 
consisting of diagrams D, which consist of two rows of n points, labelled 
{1 . . . . .  n}, with each dot joined to precisely one other dot (distinct from itself) 
(see, e.g. Fig. (4.1)). 

t 2 3 4 5 6 
Row 1 

Row 2 
1 2 3 4 5 6 

Fig. 4.1 

Two diagrams D1,Dz may be "composed" as in example (1.4) above, to 
get D1 oD2 by placing D1 above Dz and joining corresponding points; interior 
loops are deleted. The multiplication in B(n) is then defined by 

(4.2) D1 o D 2 = ~n(DI'D2)D I 0 D2 

where n(D1,D2) is the number of deleted interior loops. 

(4.3) Now to discuss the cellular structure of B(n), observe that given a dia- 
gram D, we may associate with it the following data 

(4.3.1) t (D):= the number of "through strings", where a through string is a 
join between dots in different rows. 

(4.3.2) Two involutions SI(D),&(D) in Sym(n), where S/(D) is the involution 
interchanging the ends of the joins between points in row i(i = 1,2). 

(4.3.3) Sets Fix(S,(D)) C n, which are the fixed points of the involutions 
&(D). 

(4.3.4) w(D) E Sym(t),t = t(D); this is the permutation of Fix(&(D)) de- 
termined by taking the end points of the through strings (regarded as 
joining from row 2 to row 1 ) in the order determined by taking their 
starting points in row 2 in increasing order. 

The permutation w(D) may be thought of as an "attaching map": Fix(S2(D)) 
Fix(& (D)), which corresponds to the through strings of D. It is clear that 

conversely, D is determined by the triple [&(D), S2(D), w(D)]. We have there- 
fore shown 
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(4.4) Lemma.  Given an integer n > 2, let J - (n )  = {t E n tO {0}In - t E 27Z}. 
For any t E J ( n ) ,  let l ( t )  be the set o f  involutions S in Sym(n) such that 
[Fix(S)I = t. (I(n)  = {id)). Then B(n)  has basis' [I,Ey(,){[S1,S2,w]ISi E I( t) ,  
w E Sym(t)}.  

The proof  is clear from (4.3). 

(4.4.1) Remark. We shall abuse notation by using w to denote the element 
of  Sym(t)  which corresponds to a bijection: Fix(S2) ~ Fix(Si ), taking the 
canonical order on Fix(S,) to be the one inherited from n. 

We now describe the multiplication in B(n) in terms of  this basis. To 
compute the product [$1, $2, w] [S~, S~, w 1] the key is to investigate what happens 
when the second row of the first diagram is identified with the first row of  the 
second. This turns out to be equivalent to analysing the orbits of  the group H 
generated by $2,S~ on n. 

(4.5) Proposition. Let S ,S '  be involutions in Sym(n) and write H = (S,S'). 
The H-orbits C on n fal l  into the followin9 mutually exclusive classes. 

(i) (9 contains no point o f  Fix (S )U  Fix(S').  In this case (9 is called a 
loop. 

(ii) C contains 2 points o f  Fix(S) (resp. Fix(S~)) and no points o f  
Fix(S ' )  (resp. Fix(S)). In this case we say (9 is an S-arc (resp. S~-arc). 

(iii) (9 contains precisely one point o f  Fix(S)  and one point o f  Fix(S'). In 
this case we say that C is a through arc. 

Proof  I f  9,h E H and i = 0,1,2 . . . .  write (,qh), = - . . h g h  (i factors). Thus 
if i ( >  0) is even (yh), commences with 9, otherwise with h;(gh)0 = 1 by 
definition. 

Suppose C contains a point fixed by S, viz. i(E n). Then clearly 
C = {(SS ' ) i i l j  = 0, 1 . . . .  } since the latter set is clearly invariant under S 
and S'. Let j be minimal such that (SS') j i  -= (SS')j , i  (some j '  < j ) .  Since 
(SSI) j_l i  = (SS~)i,+li, we must have (by minimality) j -  1 < f +  1, i.e. j < j '  
+ 2 ( <  j + 2), so that j --- j '  + 1. Thus C = {(SS')ki, k = 0, 1 . . . . .  j ' }  and the 
elements (SS~)ki are distinct for k = 0, 1 . . . . .  f .  I f f  is odd, the above argu- 
ment shows that (SS~)j,i is fixed by S, so that we are in case (ii). Otherwise 
f is even and (iii) applies. [~ 

(4.6) Remarks. 
(i) Note that in (4.5) the cardinality of  (9 in cases (i), (ii) and (iii) is 

(respectively) even, even and odd. 
(ii) In case C is an arc or through arc we may speak of  its end points (its 

intersection with F ix (S)U Fix(S')) .  More precisely, we may speak of  
S-ends and S~-ends of  arcs. A through arc has one of  each, while an S 
arc has two S-ends and no S~-ends, etc. Write Ts(S,S ~) for the S-ends 
of  the through arcs and T~(S,S') for the S'-ends of  the through arcs. 

(iii) We denote by t (S ,S ' )  the number of  through arcs of  (S,S').  I f  
t = t (S ,S ' )  we have a map: {S'-ends of  through arcs) ~ {S-ends 
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of through arcs} defined by following arcs. This defines an element 
w(S,S')  E Sym(t) in analogy with (4.3.4). Observe that w(S,S')  is not 
symmetric in S,S ~, in fact w(S,S ~) = w(S,S~) -~. 

(iv) Define the involution is(S,S') in Sym(Fix(S)) as the permutation of 
Fix(S) whose cycles are the end points of the S-arcs. Similarly, define 
is,(S, S')  E Sym(Fix(S')). 

Clearly we have 

(4.6.1) IFix(is(S,S'))l = t(s,  s ' )  = IFix(is,(S, S '))  I 

With these notations, we now have 

(4.7) Proposition. Let [S1,Sz, w],[S~,S~,w'] be basis elements of  B(n) as in 
(4.4). Then [ S 1 , S 2 , w ] [ S ~ , S ~ , w  ! = on(S2 'S I ) [S~  ' 2 ,  w''lj where n ( S 2 ,  S ~ )  i s  t h e  

number of  (S2,S~)-loops in n (see (4.5)(i)) and 

S i t  �9 t - i = SiwOs2(S2,S1 ))w 

S~' = S~(w' ) -~ is l (S2 ,S l )w '  

w"  = w I ~ s ~ ,  sl lW( S~-, Sl )w'l~w,~-, v~, ~s~, si ~ 

and wls (S a subset of  Fix(S2)) denotes the element o f  Sym(S) obtained 
by restricting w to S in a way analogous to (4.3.4). (Recall that Ts2(S2,S~) 
denotes the set o f  S2-ends oJ" through arcs etc). 

Proof It is straightforward to check, using (4.3), (4.4), (4.5) and (4.6) that 
composition of diagrams amounts to the statement of (4.7). Observe that since 
ise(S2, S I ) is an involution in Sym(Fix(S2)), wis2(S2, S~ )w -1 is an involution in 
Sym(Fix(S1)), so that S~w(is2(S2,S~))w -1 is an involution in Sym(n). [] 

We are now in a position to describe the cellular structure of B(n). Recall 
(cf. example (1.2) above) that 2~ Sym(t) has a cellular basis {CwIw C Sym(t)} 
(the Kazhdan-Lusztig basis), where, in the notation of the cell datum, 
Cw = C~l,r 2, where 2 E g.A(t) (the poset of partitions of t) and the pair (Tl, T2) 
(E M(2), the set of standard tableaux of shape )~) corresponds to w under the 
Robinson Schensted correspondence. 

(4.8) Definition. Let t E 2~>=o. For 2 E ~ ( t )  and tableaux Ti, T2 E M(2), 
define P'ii r2 (w) E • for each w E Sym(t) by 

T,,T2 = E PT,,T2(W) w .  
wESym(t) 

Next, given n > 2 define the poset A as follows. For t E iT(n) = {0 < t 
< n I n -  t E 27/}, let J)(t) be the set of partitions of t, ordered by domi- 
nance. Then A = {(t, 2)it E Y(n) ,  2 E .~(t)} with lexicographic ordering: (t,2) 
< (t ' ,2 ')  if  t < t' or if t = t' and 2 < 2'. 
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(4.9) Definition. For (t, Z) E A (see above), define M(t, 2 ) : =  {(S, T)IS E l(t) ,  
T E M(2)} where I( t )  is the set of involutions S of  Sym(n) such that 
IFix(S){ = t and M(2) is the set o f  standard tableaux of  shape 2. 

(4.10) Theorem. Let (t, 2) E A and take (Si, T,) C M(t, 2)(i = 1,2) (see 
(4.9)). Define t,~. ._ C(SI,T I ),($2,T2) "--  ~ w E S y m ( t )  P~I,T2(W)[ SI '  $2' w] (where [$1,$2, w] 

2 W is as in (4.4) and Prbr2( ) is defined in (4.8), interpreted as an element of  
2gl c_ R). Define �9 " B(n) --+ B(n) by the linear extension of  [S1,S2,w]* = 
[S2,Si,w -1 ] (this corresponds to reflecting diagrams in a horizontal axis). 
Then (A,M,C, *) is a cell datum for  B(n). 

Proof. We check the axioms (e l ) ,  (c2) and (C3) of (1.1). First, note that 
{C ' lw  E Sym(t)} is a basis ofR Sym(t) for any R, since the matrix (pr,,~?(w)) 
is upper unitriangular with respect to the Bruhat order on Sym(t). Hence 
{C[~,rx),(s2,r2) } has the same R-linear span as {[S,,S2,w]}, proving (C1). 

Next, observe that 

(U ' ;  * (s~, rl ),(S2, T2)) = 

";" MY--1 __ /. 1a,' since Pro,r2( ) -Pr2 . r l (  ) 
proving (C2). 

)" W 1] PV,,T2( ) [ S 2 , & , w -  
wESym(/) 

2 
= PT2, T1 ( w ) [ S 2 ,  S I ,  w]  , 

wESym(l) 

t, fi . ct,z 
(cf. (1.2)). Thus (C(sj,T~),(S2,T2)) = (S2,7:2)(SI,T1), 

Finally, to prove (C3), it suffices to prove that for any [U1, U2,wo] with 
E I(to),Wo E Sym(t0), the product [U1,U2,wo]C{~r~)is2,7) ) is a u, s u m  o f  

r(SI, T()Cir~,v;),(s2,r2)__ (modulo terms with smaller (t,)~)) where r(S(,T() de- 

pends only on [UI, U2, Wo] and (S1, T1). 
We have 

(4.10.1) [U1,U2, Wo]C['A~,T1),(S2, T2) = ~ p~,,T2(w)[UI,Uz, wo][S1,S2, w].  
wESym(t) 

Now [U,, U2, w0][SL, $2, w] = 6 "(c~2's~ )[S~, S t, w'], where, by (4.7), if ]Fix(Sf )] 
= t (these are the terms which are of interest in the product), we have 
S t = $2,S I = Ulwo(iuz(U2,Sl))Wo l, and w' = x(U2,Sl,wo)w for some ele- 
ment x(Uz,Sl,wo) of Sym(t), which depends only on w0, U2 and $1. This is 
because if I Fix(Sl)l = t, then is~ (U2,$1) = i (in the notation of (4.7)), and by 
(4.7) 

w r = wolr2w2,sl)w(U2,Sj  )w 

= x ( U 2 , & , w o ) w ,  

where x(U2,S~,wo) E Sym(t) depends only on U2,$1 and w0. 
Hence the right side of (4.10.1) becomes 

(4.10.2) ~ p~,,Tz(w)~n(U2'Sl)[S~,S2,x(U2,SI,wo)w] 
wESym(t) 

(modulo terms with smaller t). 
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But the cellular property for the basis {C(~lw E Sym(t)} may easily be 
shown to imply that for any w, wj r Sym(i) ,  we have 

(4.10.3) ;. -1 ~ r~(w ) pr~.T2(W, w ) =  E r w , ( r ( , T l ) P r .  
T(EM(2) 

+ E r(r(',r;')pr 
It i t  I t  T{ ,r~ CM(z 

~,tt < )  

r ' /7 ' )  where .... 1 (Tl, T1),r(T( I, 2 E R. 
Substituting (4.10.3) into (4.10.2), we see that modulo the R-linear span 

tl Jq  
of  {C(s ,T),(s,,T,)l(tl,).l ) < (t,.~)}, the product in (4.10.1) is equal to (writing 
W 1 = w ( U 2 , S I , w o )  ) 

(4.10�9 ~ r,,j(T(,Ti)6"(u2's~)c t'; 
'r I, z'( ),Is2, r2 ) �9 

T~r 

This completes the proof of  (C3), and hence of  (4.10)�9 [] 

It now follows that all the results o f  Sects 2,3 above apply to B(n). We 
shall give a parametrisation of  its irreducible modules when R is a field us- 
ing a result of  Dipper and James. We begin by computing the bilinear form 
~u,;)((t,).) ~ A), (see (2.3) above). 

In order to formulate our expression for ~bu,;.), we require the following 
notation from the cellular structure of  the group ring R Sym(t)  (t E ;~>__o). I f  
2 r ,~(t) and TL, 7"2 E M(2)  (i.e. the T, are standard tableaux of  shape 2) then 
for w E Sym(t)  we have 

r Wt~,;. �9 (4.11 ) '~r,, r2 '~q, T2 = r TI, T2)C~,, T2 

+ lower terms (for some ~(w,  T1, T2) E R). 
Note that ~(1, T1, T2) = O;~(Cr~, CT:) where @. is the bilinear form of  (2.3) 

on the cell module W(2) for R Sym(t).  

(4.12) Lemma.  With the above notation, ~b:~ = 0 i f  and only i f  r  Ti, 7"2) = 0 
for  all w E Sym(t)  and TI, T2 E M(}~). 

). 2 
�9 = C . C ,  , = - 0  Proof. The "if"  statement is trivial. Conversely, if  @. 0 then T~.h r,, 7:~ 

(mod lower terms) for all Ti,/ '2, T(, T~ r M(2).  Hence 

C~,,T2wC~I,r 2 =- C; ; - ;~ ; TI ' T2 rT; CT( ' 1.2 rT~ CT1 ' T2 CT( ' 1.2 ~- 0 

(rood lower terms). Hence ~9(w, Tb T2) = 0. [] 

(4.13) Proposition. Let (t, 2 ) E A  (i.e. tE~-- (n) ,2E~~ and let cq = (Sj, T1) 
and a2 = ($2, T2) E M(t, 2) (so that Si E I( t ) ,Ti  E M()o),i = 1,2). Then the 
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bilinear form qS(t,;.) on W(t,2)  is given by 

~b(t, ) , ) (Ca I , 60" 2 ) 

6"(&'s2)O(w(&,Sz),rl,T2) if {&,S2) has t through arcs 

l 0 otherwise 

where ~ is as in (4.11). 

(( , t ,  2 ~ 2 
Proof We have ~(SI ,TI ) , (S2 ,  T2) ] ~ ~)tz(CcrI,Ct72)C['s/;,TI),(S2,T2 ) (mod lower 

terms). Now C t';~ ;' (SI, T I ),($2, T 2 ) = ~ w E S y m ( t )  PT 1 , T 2 ( w ) [ S l ,  82,  w] .  Moreover if w~, w2 
E Sym(t)  we have by (4.7), 

(4.13.1) IS1, $2,  w1 ] IS1 ,32 ,  w2 ] ~-- a n(Sl' $2 ) IS  I, S~, w t ] 

! ! where S~,S~,w are as given in (4.7). 
From the formulae in (4.7), if  ]Fix(S~)[ = t, then isl(Sl,S2) = is2(Si,S2) 

= 1, whence S~ = Si and 5~ = $2; moreover w' = WlW(S1,Sz)w2. Hence 

t,2 )2 ~n(Si,S2 ) ;" w 2 
(C~sI,TI),(S2, T2) ~ ~ Prt,r2( 1)Prl,r2(w2) 

Wl ,w2 ESym(I) 

X IS1 ,82 ,  w 1 w ( S 1 , 8 2 ) w 2 ] .  

But by (4.11), 

w I , w 2 

w I ww 2 =x 

2 W 2 W PT,,r2( 1)PT, ,T2(2)  = t~(w, T1,T2)p~,,v2(x) 

+ 
2t<). 

T;, T~ EM(2' ) 

(for some coefficients r;/(T(, T~) E M(2 ' ) ) .  Therefore 

c t , ) .  ]2 t, 2 
~(S1, rl  ),($2, 7-2 ) ! ~ 6 n(Sl '$2 ) [ ] / (W(Sl ,  S 2 ), T l ,  T2 )C(&, TI ),($2, T2 ) 

(mod lower terms). 
This completes the proof  of  (4.13). [] 

(4.14) Corollary.  If64=0 then q~t,;. = 0 i f  and only if d?;. = O. 

Proof For any t E .Y-(n), i f  we take $1 = 5'2 then (&,S2) has t through strings 
and w(&,S2) = 1, so that the matrix of  ~bt,;. has a submatrix equal to 6 n(sl'&) 
times the matrix of  4;.- Thus if  qS;~ 4=0, ~b(t,;3 4=0. Conversely, i f  q~;~ = 0, then 
~O(w, TI,T2) = 0 for all w E Sym(t )  and TI,T2 E M ( 2 )  (by (4.12)). Hence 
4~(,,;.) = O. [] 
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(4.16) 
(i) 

(ii) 

Proof  

To deal with the case 6 = 0, we require 

(4.15) Lemma.  For any t E Y ( n ) \ { 0 } ,  there are involutions $1,$2 E l ( t )  
such that w(S1,S2) = 1 and n(S1,S2) = O. I f  t = O, n(Si,S2) > 0 for  any 
SI,S2 E l( t) ,  provided n > 2. 

Proof  Since all elements of  l ( t )  are conjugate in Sym(n), we may (w.l.o.g.) 
assume that Sl = (12) (34) . - .  (2k - 1,2k), where t = n - 2k. Let $2 = (23) (45) 
�9 .. (2k,2k + 1) (here we use t > 0). Then n(SI,S2)= 0 and w(Si ,S2)= 1. I f  
t = 0, then clearly each (SI,$2) orbit on n is a loop, since there are no fixed 
points. Hence rI(S1,S2) > 0. [~ 

Corollary.  Suppose 6 = 0 
I f  t > O, then (bf,; : 0 i f  and only i f  (a: = O. 
We have ~b0, ;~ = 0. 

(i) By (4.15) and (4.13) all values of  ~b;~ occur as values of  q~t,;~, so if  the 
latter is 0, so is the former. Conversely, if  ~b; = 0, (4.12) and (4.13) 
show that qS(t,;~)= 0. 

(ii) is clear from (4.15). D 

We now have complete information about the set of  irreducible B(n) mod- 
ules in case R is a field. 

(4.17) Theorem. Let B(n) (n > 2) be the Brauer alyebra over R, assumed 
to be a field of  characteristic: p (possibly p = 0), correspondin9 to the 
parameter 6 E R. The set of(equivalence classes o f )  irreducible B(n )-modules 
is parametrised by {(t, 2)lt ~ ,Y-(n), 2 E ;~(t), )~ is p-regular} (a partition is 
p-re,qular i f  it does not have p equal parts (p4=0); i f  p = 0 all partitions 
are p-reyular) where J - (n )  = {t E nU { 0 } I n -  t E 22g} and :~(t) is the set o f  
partitions o f  t, except i f  6 = O, in which case one removes f rom the parameter 
set above the element (0, 2), where 2 is the empty partition. 

Proof  It follows from Theorems (3.4) and (4.10) that the irreducible B(n)- 
modules are parametrised by {(t, 2) E AlqS(~,;.)+0 }. But for t=t=0, it follows 
from (4.14) and (4.16) that ~bit,;.)#:0 if  and only if ~b; =t=0. Moreover it is a 
result of  Dipper and James [DJ 1, (7.6)] that q~;. + 0 if  and only if 2 is p-regular. 
Finally ~b0,;. is nonzero precisely when 6 4=0. This completes the proof of  the 
Theorem. [] 

5 The Ariki-Koike Hecke algebras 

In [AK], Ariki and Koike defined a "Hecke algebra" corresponding to the 
group G(r, 1, n) = (2g/rTZ)/Sym(n). This is an associative algebra over the ring 

I 1 
R := 7Z[q~,q-~,ul,u2 . . . . .  ur] where q�89 and the ui are indeterminants over 7/. 
This algebra, which we denote (following [AK]) by Hn,,(R) includes the usual 
Hecke algebras of  type An-1 (the case r = 1) and Bn and C, (the case r = 2). 
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In this section we shall show that Hn, r(R) has a cellular structure (as in (1.1)) 
and its representations may therefore be studied as in Sect. 3. We follow the 
notation o f  [AK] as far as possible. 

1 
(5.1) Definition. Fix R = Z[q �89  . . . . .  ur] as above and define the as- 
sociative R-al#ebra Hn,~ : Hn,,.(R) as follows: H,~,r is ,qenerated by 
{t : al,a2 . . . . .  a,}  subject to relations. 

(n l )  ( t  - u ~ ) ( t  - u2) . . . ( t  - Ur) = 0 
(H2) a 2 = ( q - l ) a / + q  ( i - - 2  . . . . .  n) 

(H3) ta2ta2 = aztaet 
(H4) aiaj = ajai ( l i - j l  => 2) 
(H5) aiai+lai = a,+la, a,+l (i = 2 , . . . , n  - 1) 
Note that these are deJormations o f  a well known set o f  definin9 relations 

f o r  the unitary reflection group G(r, l,n). 

Following [AK], define elements sl,s2 . . . . .  sn C H,,,,. inductively by sl = t 
and s, = q-lais i_lai  if i > 1. These elements generate an abelian subalgebra 
U,,~ [AK, Lemma (3.3)]. I f  z : n---~r is any function, define 

(5.11) sr :=  1-[ s~ (')-1 - 
i E n  

Next, observe that {a2,a3 . . . . .  an} generates a quotient H~ of  the Hecke alge- 
bra of  type An-j .  Hence for w in Sym(n), we may speak of  the corresponding 
element aw E Hn,,. (defined in terms of  a reduced expression for w as a product 
o f  simple reflections in Sym(n)). 

(5.2) Theorem. [AK, Theorem (3.10)]. 
The algebra Hn,~ is R-free with basis 

{S~aw]Z is a Junction: n ~ r,w E Sym(n)} . 

We may therefore identify H~  with the Hecke algebra o f  type A,,-1. 
We shall define a cellular structure for H,,,~ with only sketches of  the com- 

putations necessary to justify the statements because these are straightforward 
and in any case similar ones may be found in [AK]. 

The symmetric group Sym(n) acts on the set o f  functions z : n ~ r by 
composition: rw :=  z o w. Each orbit of  this action contains a unique function 
z" n ~ r which is nonincreasing; that is, if i < j ,  ~(i) > z( j ) .  The set An+,, 
o f  such orbit representatives is partially ordered as follows: ~ < z ~ iff 

(i) ~ z(i) < ~ z'(i)  or 
i i 

(ii) ~ ~(i) = ~ r'(i) and ~ (r(i) - "c ( j ) )  2 < ~ ( z ' ( i )  - z ' ( j ) )  2 . 
i t i < j  i < j  

We then say z < z ' i f f z  < ~' o r z = z ' .  
+ Let z E An, r. The stabitiser S(z)  := {w r Sym(n)]zw = z} is a standard par- 

abolic subgroup of  Sym(n). Noting that S(z )  = S y m ( z - l ( 1 ) )  x Sym(z - l (2 ) )  
x - . .  x Sym(z - l ( r ) ) ,  we define the set A ~ of  r-tuples ~ = (~(J),~(2) . . . . .  a~)) 
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where e(i) is a partition of  ] r - l ( i ) l .  This set is partially ordered by the com- 
ponentwise dominance order, that is, ~ __< 13 iff ~(i) __< 130) for i in r. 

(5.3) Definition. The partially ordered set A is defined by A := {(r ,e)l  
+ r E A,,~, :~ E A ~} with the order given by ( r ,~)  > (~r, 13) i f f ( i )  z < ~r 

(see above) or (ii) r = cr and ~ > 13. 

Next we construct the sets M(r ,  ~) required by (1.1). Let (z, ~) E ,~. Recall 
that there exists a set D( r )  of  distinguished (shortest, left) coset representatives 
for S( r )  in Sym(n). Explicitly, D( r )  = {w r Sym(n)lw(i)  < w ( j )  for i , j  in n 
such that i < j and ~(i) = c~(j)}. A multi-tableau S of shape ~ is an r-tuple 
(S(1),S (2~ . . . .  ,S (~)) of  standard tableaux, where S ~i) has shape e(~) and entries 
Z'-I(i). 

(5.4) Definition. For (v,~) E A (see (5.3)), the set M(z ,~ )  is defined to be 
{(d ,S) ld  E D(z ) ,S  is a multi-tableau o f  shape ~}. 

Let ( r ,~)  E A. I f  (d l ,S l ) ,  (d2,$2) C M('c,~), definition (1.1) calls for a 
basis element -~d~,Sl)(dz,S2) o f  H,,r. Define 

p~:=I-[ I] (si-uj). 
iEn l=<j<r(i) 

By [AK, Lemma (3.3)], this element commutes with aw if w E S(v). The R- 
span H ~ of  {aw]W E S(z)} is a subalgebra of  H~,,. which is isomorphic to the 
Hecke algebra of  S(v) over R. We therefore have the Kazhdan-Lusztig basis 
elements C~,(w E S(z ) )  of this subalgebra. Clearly w in S(z) corresponds to a 
pair (SI, $2) of  multi-tableaux of  the same shape (c~, say). Thus we may write 
C~.,s 2 := (7I w (for w e S(z)).  

(5.5) Theorem. Let H,,~ be the R-algebra defined in (5.1). Then H,,r has a 
cell datum ( F,M, C, *) given as follows: A is the partially ordered set defined 
in (5 .3) ; for  (z,c~) E A, the set M(z,  ct) is defined in (5.4); i f  (z,~) E A and 
(dl ,S~),  (d2,82) ~ M(z,  ct), then c ~ e ' ~ )  . . . .  C ~ a Finally �9 ~(dl,Sl),(d2,S2) ' - -  ad~-llJ S~,$2 d2- 
is the unique anti-involution o f  H~,r such that a[ = ai i f  i ~ n. 

Proof  (Sketch) .  The partial order defined above on A~,,. extends readily to 
the set o f  all functions z '  n ~ r. I f  z E A,+,. and d E D(z),  elaborating [AK, 
Lemma (3.3)] yields 

(5.5.1) �9 r �9 ~ q/(d)srd(ad)--I adp = adS = 

modulo the R-span of  {Sawicr: n ~ r,~r < T, w E Sym(n)}. 
It follows Theorem (5.2), that the set 

(r,~) 
{C(d  ! ,S 1 ),(d2,$2)1(l 7, ~) E A; (d2, S I ), (d2 ,  82 ) E M(~, 00} 

is a basis o f  H~,r, whence (C1) of  (1.1). (C3) is a consequence of the following 
computation: if i E n and z r An+r, we have 

(5.5.2) s i p  ~ = u~(i) Ui p ~ 
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modulo the R-linear span of  {H~,~p~ ~H~,rjao E A+ a > z}, where L, ~ := q-/(x) 
axax, x = ( j , j §  1 . . . . .  i) and j is the least element of  n such that ~ ( j )  = ~(i). 
(We use the notation L~ to indicate the close relationship between this element 
and the Murphy operators of  [M].) [] 

To study the irreducible representations and block theory of H,,r,  we 
consider the action of  the abelian subalgebra U,,~ on the cell representation 
W(z, cQ. In order to describe this it is convenient to order the indexing set 
M(z ,~) .  Let (~,c~) E A. I f  i E n and S is a multi-tableau of shape c~, then those 
nodes of  s ~(i) which are labelled by { j  E n[~(i) = ~(j),  j =< i} form a tableau 
whose shape defines a partition which we call Sh,(S). Restrict the Bruhat order 
on Sym(n)  to D(r) .  

(5.6) Definition. I f  (d 1, $1 ), (d2, 82 ) C M (~, ~), we say that (d t, S1 ) < (d2, 82 ), 
i 0  o 

(i) dl < d2 or 
(ii) dl = d 2  and Shi(S1) -< Shi(S2) for  each i in n. 

Next, i f  i E n and S is a multi-tableau of  shape c~, recall that the content 
c(S, i) is m - { where the node of  S ~ ) )  labelled by i is located in the mth 
column and the Eth row. I f  (d, S) E M(z,  ~), define the function 

za, s : n ---* R: i ~-~ Urd( i )q  c(S 'd( i ) )  . 

Note that the multiset of  values z(z ,~)  := {zd, s(i)]i E n} depends only on 
(z,c~) since zd,s(i) depends only on the position which d(i)  occupies in S. 

(5.7) Lemma.  I f  (z, ~) E A and M(T, ~) is ordered as above, the abelian 
subalgebra Un,~ acts on the cell representation W(z ,~)  in triangular fashion: 
i f  i E n and ( d , S )  C M(~,cQ we have s,C(~'~)(d,S) =- zd,s(i)C(~'~)(d,S) 
modulo the span o f  {C~'~)(x, T)I (x ,T  ) E m(v ,  ~) and (x ,T)  < (d,S)}.  

Proof  (Sketch) .  Recall the cellular structure of  the Hecke algebra of  type 
A~-I defined in example (1.2). I f  2 is a partition of  n, the cell representation 
W(2) is isomorphic to the Specht module S;. defined in [M]. Furthermore, with 

the notation of  [M, (3.5)], the basis {q�89 E M(~)} is related to 
the "standard basis" by a unitriangular matrix by [KL1, (2.3)]. Hence [M, 
Theorem 4.6] may be reformulated in the notation of  the statement as follows: 
if  S is a multi-tableau of  shape ~ and i E n, we have L~C~(S) = qc(s'i)c~(s) 
modulo the R-span of  {C~(T)IT < S}. On the other hand, [AK, Lemma (3.3)] 
ensures that if  w E Sym(n),  we have awSi = Sw~,)aw modulo the R-span of  

{sjaxlj C n, x E Sym(n), x < w) . 

Hence the computation in the proof  of  (5.5) may  be sharpened to yield 

(5.7.1) * ~ * ~ * ~ ~ siadp = adSd(i) p -~ Urd(i)adP Ld(i) 

modulo the sum of  H,,~p~H,,r for a > r and the R-span of  {a~p~H~ I 
x E D~,x < d}. Combining these facts yields the lemma. [] 
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Comparing this lemma with [AK, Proposition (3.16)] we obtain 

(5.8) Corollary. In the notation of [AK], the irreducible module V~ of H,,,.(K) 
is' isomorphic to the cell representation W(z, ~) where K is the field of frac- 
tions of R. 

(5.9) Proposition. Let F be a Jield, ~: R --+ F be a ring homomorphism, and 
consider the specialisation H,,r(F) = F @R Hn,,-(R). 

(i) Let (~,~) E A. Suppose there exists (d,S) E M(v,z~) such that 
the Junction zd, s4=zx:r jor any pair (x,T) E M(a,/~) such that 
(a,[t) > (~,~). Then L(~,~) is" nonzero. 

(ii) I f  the irreducible modules L(~,~) and L(~,~) lie in the same block, then 
the multisets z(T,c~) and z(6,fl) are equal. 

Proof (i) Lemma (5.7) provides a filtration of W(r, ~) as a U,,,,.-module with 
irreducible quotients indexed by M(z,~). By way of contradiction, suppose 
L(~,~) : 0. 

In the Grothendieck group spanned by irreducible Hn,~ modules, we then 
have, using (3.6) that 

(5.9.1) W(z,~) = ~ n[~,~W(a, fi) 

where n[~,~ E ~. Restricting the action to U,,, the assumption in the statement 
of part (i) implies that the irreducible U~,~-module R with action sir = zd, s(i)r 
(r E R) appears in W(z,c~), but not in any term on the right hand side. This 
contradiction proves (i). 

(ii) By [AK, Lemma (3.3)], the elementary symmetric polynomial 

e , =  1-I s, 
JCn  iCJ 

is central in H,,r(R). The algebra H,,,. is generically (i.e. over K) semisimple 
and W(v, cQ is irreducible [AK, Theorem (3.10)]. Therefore ei acts via a scalar 
2i(~, ~) on this module. The same thing applies over R via restriction, and over 
F via specialisation. 

Using (5.7), it is apparent that if (d ,S)  E M(r,c~) the scalar 21(~,~ ) is 
the coefficient of XJ in the polynomial 1-[iE.(X- zj, s(i)), which we shall call 
f(~,~)(X) (cf. remarks following (5.6)). Now clearly if L(~,~) and L(~,i~ ) are in 
the same block, ej acts via the same scalar on both of these modules (for all 
j E n). Thus f(~,~)(Y) = f(~,~)(X), as stated. [] 

When r = I and q 4 = l, Dipper and James have obtained both (5.9) and its 
converse [DJI ], [DJ2]. When r = 2 and q 4 = 1, Dipper, James and Murphy have 
proved (5.9) and conjectured its converse [DJM]. Hence it seems reasonable 
to ask 

(5.10) Question. With notation as above, suppose q 4= 1. 
(i) Is the condition of (5.9) (i) necessary in order for L(~,~) to be nonzero? 
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(ii) Is the condition z(z, ~) = z(a, fl) sufficient in order that L(,,=) and L(~,/~) 
lie in the same block? 

6. The Temperley-Lieb and Jones algebras 

These are subalgebras of  Bn(R, 6) (see Sect. 4) defined as follows. 

(6.1) Definitions. 
(i) The Temperley-Lieb algebra TEn(R) is the subalgebra of B,(R) span- 

ned by the planar dia,qrams of the form (1.4) (i.e. those which may 
be drawn in the plane without any intersections (in the convex hull 
of  the 2n points). 

(ii) The Jones algebra Jn(R) (cf. [J3]) is the subalgebra of  B,~(R) spanned 
by diagrams which are planar when the 2n points are on the inner 
and outer circles of a plane annulus. 

The key to understanding the cellular structure of these algebras is to 
describe them according to the setup of  Sect. 4. 

Let us call an involution S o f  Sym(n) planar if  [S, 7", w] is a basis element 
of  TLn for some T,w (see (4.4)). 

(6.2) Lemma. 
(i) An involution S E Sym(n)  is planar if and only iJ~ for any pair i,j  

interchanged by S(i < j ) ,  we have 
(a) S[i,j] = [i, j]  and 
(b) [i, j ]  A Fix S = 0 

(where [i,j] = {k E n[i < k < j } ) .  
(ii) I f  S is a planar involution of n and T is a planar involution o f  F ixS 

(naturally linearly ordered), then S T  is a planar involution of n. 

The proof is easy. 
For any linearly ordered set X, denote by Plan(X) the set of planar invo- 

lutions in Sym(X). 

(6.3) Lemma.  There is" a canonical bijection between Plan(n) and standard 
tableaux of size n, which have 1 or 2 rows. 

Proof Given S E Plan(n), we take the second row of  a standard tableau to be 
{jlSi = j,  i < j} .  A little reflection shows this is a bijection. [] 

(6.4) Lemma.  Suppose S,S' are planar involutions o f  n. Then (in the notation 
o f  (4.6)) 

(i) is(S,S') and is,(S,S' ) are planar involutions of Fix S and FixS'  re- 
spectively. 

(ii) w(S,S') = id. 

The proof is straightforward, given the characterisation o f  planar involutions 
in (6.2). 
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Recall (4.9) that J - ( n )  = {t E n U {0}In - t ~ 27/}. For any t �9 7l=>0, 
define w(t) as the "longest element" in Sym(t),  i.e. w(t)i = t - i + 1 ( i f  t = 0 
or 1, w(t) = id). For any X C t, write w(X) for the corresponding element o f  
Sym(X),  X being naturally linearly ordered as a subset of  t. 

l f X  is any subset of  t, then in the notation o f  (4.7), we have w(t)lx = w(X). 
Moreover, i f  r E Plan(t)  then w(t)r(w(t)) -1 r Plan(t).  

( 6 . 5 )  P r o p o s i t i o n .  

(i)  The set {[&,S2, w]IS, �9 Plan(t),  w = w(t) or id, t �9 ,Y-(n)} is an 
R-basis of a subal,qebra TL,,(R) of B,(R). 

(ii) The subset of the basis" in (i) consistinq of  elements with w = id is a 
basis of the Temperley Lieb alyebra TL~(R). 

Proof Both statements follow from the multiplication formula (4.7) and the 
results above, given the restriction and conjugation properties o f  w(t) mentioned 
above. [] 

2 where xn is the number of  Notice that dimRYL,(R) = 2 d i m T L n ( R ) -  xn, 
I (2ak) i f n  = 2k planar involutions with at most 1 fixed point. Thus xn = FTT 

is even, and x, = xn+l if  n is odd; i.e. x,, is the kth Catalan number, where 
k = [,,+1] This is because for each t ~ .Y-(n), there are twice as many basis T -  
elements as there are for TL,(R) ,  except when t = 0 or I. In the latter case, 
the number of  basis elements of  TL,(R)  is xn (cf. (4.2)). 

(6.6) Corol lary .  Multiplication of basis elements in TL,(R)  is (liven by 

[SI,S2,w][SI,'S2, w]' = 6n(s2"si)rS"t I , S'5, w i t  t,] 

where Si E Plan(n) N I(t), S[r  Plan(n) A l(t') and S[', (i = 1,2) are yiven by 
(4.7) and w" is #iven by the followiny table 

w'\w id w(t) 
id id w(t"  ) 

w( t' ) w( t" ) id 

This follows immediately from (6.3) and (6.4). A cellular structure may now 
be identified in TL, (R)  using the "banal" example (1.3) with f (x )  = x 2 - 1. Let 
A2 = {(t, cr)lt E ,Y-(n),a r ~ ( t ) } ,  where J ( n )  = {t E {0,1 . . . . .  n} ln - t  E 27l} 
and for t E J ( n ) ,  

S { l }  i f t = o  or 1 
~s(t) / {0,1} i f t  > 1. 

The partial order on A2 is given by  (t,~r) < (t',a') i f  t < t '  or t = t '  and 
~r < a ' .  For (t,~r) E A2, let M z ( t , a ) : =  Plan(n) A l ( t ) .  

(6.7) Theorem. With the above notation, the alyebras TEn(R) and TEn(R) 
have cell data (A1,M1,C,*) and (Az,M2,C,*) respectively, where AI = 
.Y-(n),Ml(t) = Plan(n)  h i ( t ) ,  C ~ = [&,S2,1] and [&,S2,1]* = [S2 ,&, I ]  St, $2 
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and where A2 and M2 are as above and 

,,~ { [&,&, l] + [&,&,w(t)] (~ = o) 
c~,s2 :=  [&, $2,1] (a  = 1 ) 

(where &,S2 E P l a n ( n ) N I ( t ) ) .  The map * on TLn(R) is given by (Cts:~Sz)* 

C l , a  
$ 2 , S i .  

Proof The result for TL,  IS easy. For TL,(R) ,  the statements (C1), (C2) 
and (C3) of  (1.1) need to be checked. Since (CI )  and (C2) are clear, 
we check only (C3). It is sufficient to take any basis element Ct'~&,s2~tS~ E 

' ' i d  or Plan(n)AI( t )}  and a = [S1,S~,w' ], (S~ E l(t ') ,  w' = w(t ' ) )  and prove the 
relation (C3). 

Now by (4.7), ' ' ' [S1,S~,w][SI,S2,w ] is an Rqinear combination of lower 
S I  I t I II terms unless isL(Si, 2 ) =  id, in which case [SI,S~,w ][SI,S2,w ] = IS I ,S2, w"] 

where S{' depends on S~,S~ and &.  Moreover w" is given by the table in (6.5). 
One therefore sees easily that in the above notation, 

f 
! ! I t, er [&,Sz, w ]C'i~,s~ - 

si',s2 ( a =  1 or w ~ = i d )  

(~ = O, w 1 4:id) 

t! ci ! where -z denotes equivalence modulo terms C's2,s 4 with (t ' ,a') < (t,a). 
This proves the desired relation. [] 

(6.8) Corollary.  I f  R is any .field, the (equivalence classes oJ) irreducible 
representations of  TL, are parametrised by ~ ( n )  unless n is even and ~ = O, 
in which case the set of  irreducibles is parametrised by J ( n ) \ { 0 } .  ( We refer 
to this set as A1,0(6)). 

Proof The value of the bilinear form qSt may be computed using the equation 
(C~l,sz)2 -- d?l(&,Sz)C'sl,s 2 (modulo lower terms). This shows that (or(&, $2) 

= fin(&,&) for all &,S2 E l ( t ) A  Plan(n). But for t > 0, it is possible to 
find &,S2 E Plan(n)f~ I ( t )  such that n(&,S2) = 0 (see Sect. 4), whence the 
result. [] 

(6.9) Corollary.  The dimension d(t) of  the irreducible, representation of  
TL,,(R) (R a field) correspondin9 to t E ~-(n) is equal to the rank of the 
matrix (3n(sl,s2)) (S, E Plan(n)Ml(t)) ,  where n(&,Sz) = number of  loop orbits 
of  (&,S2)  on n and the nonzero entries o f  the matrix occur only Jor pairs 
(&, $2) such that t(&, $2) = t. 

(6.10) Corollary.  The irreducible representations of TLn(R) are parametrised 
as Jbllows. I f  the characteristic of R is 2, then the representations are 
parametrised by Al,o(6) (i.e. by the same set as those of TLn(R)). I f  the 
characteristic of  R is not 2, then a parameter set is A2,0(6) = {(t ,a)  E A21 
t E Ai,0(~)} 
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Proof It is straightforward to show that 

{ ,~n(s~,s2)r~t,~ if a = 1 
(6.10.1) t,~ )2 v ,~si , s  2 

(Csl.s2 :- 26~st,s2)c~s:~s2 if  cr = 0.  

The result follows. It is furthermore clear that the dimension of  the irreducible 
representation corresponding to (to, a0) is equal to that of  TLn which corre- 
sponds to to. [] 

To discuss the Jones algebra J~(R) we use the notation of  an annular 
involution. For a definition of the algebra see [J3]. 

(6.11) Definition. An involution S E Sym(n)  is annular tf  there exists an 
element [S, Sr, w] in the Jones algebra J~(R). 

(6.12) Lemma. 
(i) The involution S E Sym(n) is annular if  and only i f  for each pair i , j  

interchanged by S(i < j ) ,  we have (cf. (6.2)). 
(a) S[i,j] = [i,j] 
(b) [i,j] f3 F ixS  = I~ or FixS C_ [i,j] 

(ii) For k E n, let ~k be the permutation o f  n given by ~ = i + k  (mod n). 
Then the set Ann(n) is invariant under conjugation by rk. 

Proof  The proof  of  (i) is straightforward and is omitted. I f  ~ = z~ (some k E n) 
and i , j  E n(i < j )  then ~[i,j] = [zi, zj] if zi < ~j or ~[i,j] = n\[~j,~i] t3 
{ri, zj} if ri > ~j. Since both conditions (a) and (b) of  (i) are symmetric with 
respect to [i, j] and its complement, (ii) follows. [] 

As in the case of  planar involutions, if  X is any totally ordered set, we 
may speak of  Ann(X) as the set o f  involutions in Sym(X)  which satisfy the 
conditions of  (6.12)(i). 

(6.13) Lemma. 
(i) I f S  E Ann(n) and w E Ann(FixS) ,  then Sw E Ann(n). 

(ii) S,S' E Ann(n) then (cf (4.6)) 
(a) is (S,S') E Ann(FixS)  
(b)  w(S,S') E Sym(t(S,S'))  = rk for some k. 

(iii) Suppose k E n. I f  X = FixS C_ n, Jor some S E Ann(n), then 
zklx = rk' E S y m ( X ) f o r  some U (see (4.7)). 

Proof (i) and (ii) are clear from the diagrammatic viewpoint, since the annular 
composition process leads to no self intersections. Alternatively, they may be 
proved directly from the definitions, using (6.12). 

For (iii), observe that by downward induction on the number o f  fixed points 
of  S, it is sufficient to take X = n\{i,  i + 1}, some i E n (if  i = n, then {i, 
i +  1} = {1,n}).  In this case, the statement is clear. [] 

(6.14) Proposition. The set {[SI,S2,w][Si c A n n ( n ) N I ( t ) , t  E J-(n) ,w = zk 
for k E t} is the basis o f  a subalgebra J~(R) oJ'B~(R). This algebra coincides 
with the algebra defined by Jones in [J3]. 
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Proo f  We need to show only that the R-linear span of the set of  basis elements 
mentioned is closed under multiplication. Recall the formula of  (4.7): 

(6.14.1) [&,S2, , , , 6n(s2,s~)rS, 11 , w][&,S2,w ] = L ~ ,S t ,w ] 

where " " 11 Sj ,S t ,w are as given in (4.7). Thus S~ / = Slw(is2(Sz ,Si ) )w -I  But by 
(6.13) (iX), i 1 s2(S2,Sj) C Ann(FixS2) and by (6.12) (ii), since w = 7/, (some 
k), w(is2(Sz, S~))w -1 E Ann(FixS) .  Hence by (6.13) (i), S I' E Ann(n) and 
similarly S~' E Ann(n). Since restriction to Fix(S) (S annular) and composition 
leave the set {~klk 1,2 . . . .  } invariant, w '/ k" = = rk", some and the proof  is 
complete. [] 

To state our next result, we introduce the following notation. Recall that 
w(n)  is the "longest" element of  Sym(n); for any involution S E I(n), write 
w ( n ) - l S w ( n )  = S*. If  t = 0, write t = {0}. 

(6.15) Theorem. Fix a positive integer n > 1 and assume that Jor each 
t E J ( n )  ( =  {i E n U  { 0 } t n - - i  C 2~}) ,  the polynomial x t -  1 ~ R[x] 
splits over the field R (into not necessarily distinct linear factors). For 

t t E J-(n) ,  t+O, write x t - 1 = [I,=~(x - r,( t))  and .li(x) = [I i>j(x  - r,(t))  

= ~I f -oro( t )  xi (J = 1 . . . . .  t). Write f 0 ( x )  = 1, so that r00(0) = 1. Then 
J~(R) has a cell datum ( A , M , C , * )  (see (1.1)) defined as Jbllows: A = 
{( t , j ) i t  C J - ( n ) , j  E t}  ordered lexicographically; Jor ( t , j )  E A , m ( t , j )  = 

t , j  t - - j  r * Ann(o) N I ( t ) ;  i f  &,S2 C M ( t , j )  then C'3:l,s2 = ~ ,=0  ij(t)[&,S2,z,]" Finally, 
[&, s2, w]* = [sL s~, w]. 

P r o o f  Since (CI )  and (C2) are clear, we have only to verify the relation 
/ / 

(C3) of  (1.1). Take a = [Sl,St,  z,, ] ~ J~(R), S[ E A n n ( n ) A  l ( t ' ) , U  C t' 
t,J ! I , I 

[&, St, ~.,][S1, S2, ~,1 = ,~q, ~2, and compute aCsi,s 2. The product an(s2,& )rv" ~r, ra-"] 
II where S[',S~/,rk are given by (6.14) (see also (4.7)). 

I f  }FixS~' 1 = t, then S~' = S~; moreover Tk,, = zk' ]Vi~,s~{S~.S, lw(S~,& )ri = 

w'ri ,  where w I = ~, for some r E t which depends only on S~, S1 and k'.  We 
therefore see that if i& (S~', SI ) = id, we have 

! l--J 
(6.15.1) , , t,j cS,,(s2.&) ,, . = rij(t)[S 1 , S~, "c/+i] [&, S2, ~k,]C~,,s~ ~ 

i = 0  

But by construction, ~ i  rij(t) x'+l = rj(t)  ~ i  ro(t)  xi mod (J](x) . . . . . .  ~ - i ( x ) )R .  
Hence ~ i  rij(t) xi+/ = r j ( t )  / ~ i  rij(t) xi + ~ k < j  ukfk(x)  (for appropriate coef- 
ficients uk E R). It follows that 

(6.15.2) , I t , j  " " C~(I  + -(~n(S~'SI ~ u k C a ~ l , s  2 [Sl,St,,Ck,]C~,,s2 = 6n(S~ S,)rj(t)/ ' ) t,k 
,S2 

k < j  

where ( depends only on S~, S~ and k'  and S~' depends only on SI,&' and &. 
This proves the relation (C3) and completes the proof  of  (6.15). [] 

We may now apply (3.4) to describe the irreducible representations of  
Jn(R). 
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(6.16) Seholium. The bilinear Jorm dpt,j on the cell representation W ( t , j )  

is given by ~bt, j(Csl,Cs2) =- 3 n ( S ~ ' S 2 ) l ~ l ( t ) / ( S ~ ' $ 2 )  1 - I i < j ( r j ( t )  - -  r,(t)) (.['or Sl, 
$2 E Ann(n)AI( t ) ) ,  where { = #(S~,$2) is defined by w(S{ ,S2)  = r/, provided 
t (S?,S:)  = t. Otherwise (gt,/(Cs,, Cs2 ) = O. 

t,/ tct,J ~2 Proo f  The desired value is the coefficient of  C'~',t~s2 in ~st ,s2  ~ �9 This may 
be calculated using the relation (6.15.2) and the result is the stated 
formula. [] 

(6.17) Corollary.  I f  R is af ield,  then the irreducible representations o f  J , (R )  
are parametrised by the set A0(R), defined as follows. 

(a) 1f34=0, Ao(R) = {(t,~o)lt ~ J-(n),~o CR,(o  t -~ 1} 

(b) I f 6  = O, Ao(R) = {(t, co)lt ~ ,Y-(n)\{0}, co r R, u9 t = 1}. 

Proo f  The required parameter set is {(t,j)l~bt, j 4:0} by (3.4). From (6.16) it 
is easily checked that Ao(R) is this set. [] 

Although it is beyond the scope of this work to enter the details o f  the 
representations of  J , (R)  or the other algebras treated here, we show by means 
of  an example how our approach may be used to discuss the issue of semisim- 
plicity. 

(6.18) Proposition. Let R be a ,fieM sati,sfving the conditions o f  (6.15) and 
suppose n > 2 and 09 E R satLsJies ~o n-2 = 1. Then the discriminant o f  
the .)Corm ~n-2,,,~ is given by An_2,,, ~ = c{u n + u -n + ( -1)n-J (~o  2 + c0-2)} 
where the element u E R is related to 6 by b = u + u -1 and where the 
constant c is non-zero, provided that the (n - 2)-nd roots o f  1 are distinct 
i nR .  

P r o o f  The cell representation W ( n -  2,~o) has basis {Cs]S E Ann(n)~  
I ( n - 2 ) } .  Now Ann(n) N I ( n -  2) = { ( i , i +  1) , ( l ,n) [ i  = 1,2 . . . . .  n -  1}, 
and the value of  qS,-2,,,(Cs, Cs,) is given by (6.16). Using this, it becomes 
clear that ~bn-2,,, has matrix (with respect to the bases {Cs} and {Cs* }) equal 
to a nonzero constant times M~-2(~o), where 

M n _ 2  ((D) = 

1 6 

1 

l~  ~ 0 

. . . . . . . . . . . .  0 

1 0 . . . . . . . .  
b 1 0 0 
1 6 1 0 .. 

"..  " .  " . .  " . .  ". 

0 . . . . . . . . .  l 

 )00 
0 

1 

To compute the determinant o f  M,-2(e) )  one uses the formula 

(6.18.1) det M._2(o2) = 3dn_~ - ( -  1)n(~o 2 + co -2)  - 2d~_2 
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where dn is the determinant of  the n • n matrix 

6 1 0 . . . . . .  \ ) 1 6 1 . - .  0 

D n =  1 "'. . 

" ' .  ' ' -  1 

0 1 6 

Further, since d n =  6dn_l - dn-2, it follows easily by induction that 

(6.18.2) d ,  = u" + u "-2 + - . -  + u 2-~ + u - " .  

The stated formula for An-2,o follows directly. 

(6.19) Corollary. Jn(R) is' not semisimpIe i f  6 = u + u - j ,  where u is a zero 
o f  the Laurent polynomial A,_2,~(u) of  (6.18). 

Proof This is a straightforward consequence of  (3.8), which implies that if 
Jn(R) is semisimple then @n--2,o) is nondegenerate, whence An-2,~,~ =t=0. [] 

This may be used to determine cases where Jn(R) is not semisimple. 

(6.20) Corollary. The al,qebra Jn(C) is not semisimple in the followin,q cases 
4 kTr ( k (i) l f n  is even and 6 = 2cos  ,(,-2)~- E 2g). 

2 krc ( k (ii) I f n  is odd and 6 = - 2 c o s  (-Z~2),.~ E 2g). 

Proof By (6.18), the roots o f  the polynomial equation A,-2,(,) = 0 are given 
by ( - u )  ~ = w • By (3.8), these values o f  u correspond to parameter values 
6 at which Jn(R) is non-semisimple. The statement follows easily. [] 

(6.21) Remarks. 

(i) Jones 03] showed that if 6 = - 2  then J , ( ~ )  is not semisimple, which 
is an immediate consequence o f  (6.20) (take k = 0 if n odd, and 
k = n(n - 2)/4 if n even). 

(ii) It is an easy consequence of  (6.20) that if a is any odd divisor of  n 
then J,(il?) is not semisimple if 6 = 2cos -~ Thus (e.g.) if 3In, then a" 

6 = 1 is such a value. 
(iii) Since cos(~t 2k~) c o s ( @ ~ )  s 2kg - -  , . = = --CO -iV, it follows that if  n is 

even and J,(lI;, 6) is not semisimple, the same is true of  J n ( C , - 6 ) .  
Thus (e.g) from (i) and (ii), if n is even, J~(112,2) is not semisimple, 
while if 6In then J,(l12, - 1 ) is not semisimple. 

(iv) The "change of  variable" 6 = u + u -1 is suggested by the Hecke 
algebra context, where the Kazhdan-Lusztig elements Cr t (r a simple 

--• t reflection) satisfy C~ 2 = (q�89 + q 2 )C~. The same change o f  vari- 
ables simplifies Jones' discussion of  his trace in terms of  Tchebychev 
polynomials. 

(6.20)' Corollary. The algebra J~(IE,6) is not semisimple if  6 satisfies' 
7,u(,)(-~) -- 1, where 7, is" the n-th Tchebychev polynomial and #(n) = n ( n - 2 )  
i f  n is odd, and 9(n) = n ( n -  2)/2 if  n is even. 
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If  R has characteristic zero, our techniques provide a method for the deter~ 
minat ion o f  the decomposi t ion matrix D for the algebras TL, (R) ,  TL~(R) and 
Jn(R). In the first case, the results of  [GW] may be recovered. 

We conclude by ment ion ing  that one also has an algebra in(R) analo- 
gous to TLn(R).  This has basis {[SI,S2, w]]Si C A n n ( n ) N  l(t), t E ,Y-(n), 
w C {z l ,w( t ) )}  where rl is the cyclic permutat ion i H i + 1 of  t and w(t) is 
the permutat ion i ~ t + 1 - i. This also has a cellular  structure, which arises 
from the cellular  structure of  the group r ing of  a dihedral group. 
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