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A b s t r a c t .  The solution of the two-body problem in the (truncated) PPN theory is presented. It 
is given in two different analytical forms (the Wagoner-Will and Brumberg representation) and by 
the method of osculting elements. 

i .  I n t r o d u c t i o n  

Analyzing gravitational experiments in the solar system is usually done in the socalled PPN - 
framework (e.g. Will 1981), where a number of PPN - parameters designate the corresponding 
post - Newtonian limit of a certain metric theory of gravity. Now, the discovery of the binary 
pulsar PSR1913+16 (e.g. Taylor & Weisberg 1982 ) and subsequent extremely precise tracking of 
its orbital motion by analyzing pulse arrival times lead to the necessity to solve for the full two - 
body problem at least at the post - Newtonian level. For the Einstein pos t -  Newtonian theory one 
solution to the two - body problem has been presented by Wagoner & Will (1976), Epstein (1977) 
and Haugan (1985); a solution with osculting elements for this case was presented by Damour & 
Deruelle (1985). In a series of papers Barker & O'Connell (1975, 1976, 1981) and Barker et al. 
(1982, 1986) dealt with the full post - Newtonian two - body problem even including spin and 
quadrupole moment effects. However, their main interest was lying in the precession and nutations 
of the spins and the secular motions of the classical angular momentum vector, the Runge - Lenz 
vector and the mean anomaly rather than solving for the detailed motions of the bodies. 

This paper presents solutions to the full two-  body problem in the (truncated) PPN - frame- 
work with parameters/3 and ~/. Solutions are given in two different analytical forms (the Wagoner- 
Will and Brumberg representation) and by the method of osculting elements. 

The Lagrangian for tile two - body problem iu the PPN - formalism truncated to the Eddington 
- Robertson parameters/3 and 3' in standard post - Newtonian coordinates ( t ,x)  reads (e.g. Will 
1981): 

with 
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One finds that  the total  momentum P of the system can be obtained in the usual way from 
a s  + 0 s  and is given by: 

1 V 7 2 j  2 1 v l v ~ / c  2 + ~,,,2 2~2/c P = m l v l  + ?/t2V2 "a t- ~ m l  

+ Gmlm22c2r [2(27 + 1)(Vl + v2) - (43' + 3)(vl  + v2) - fi[fi" ( v l  4- v~)]] (2) 

The center of mass X 

with 

x = (.~x~ + m;x~.)/(m; + m~) (3) 

a~ m a =-- ma + l m a v 2 / c 2  1 
2 2 

- - G m l m 2 / r  (4) 

then is not accelerated according to the equations of motion and the center of mass velocity is 
proportional to P .  We can then go to a post - Newtonian center of mass frame where P = X = 0 
and 

Xl [ m 2  # 5 m  = -~ ( v  2 
T 
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t ~ m  = m l  - -  m 2  ; # = m l m 2 / m  

For the relative motion one finds ( e.g. Barker  et al. 1986): 
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and the corresponding Lagrangian takes the form: 

lV2 G m  1 v 4 G m  G m  
= ~ + (1 - 3~) ~ [(2~ + ~ + ~)v  2 + ~ ( ~ .  v)  ~ - (2~ - 1 ) - - ]  (7) 
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This Lagrangian is particularly useful in deriving first integrals of motion. For the (specific) post 
- Newtonian energy s and angular momentum ff one finds: 

0 s  1 m 3 m 
7" g ( -  Yr 

Z T -  

and 

c_.0s 1 
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2. T h e  W a g o n e r -  Wi l l  r e p r e s e n t a t i o n  

In the first approach we will follow the route as taken by Wagoner & Will (19761 to derive 
an expression for the form of the post - Newtonian orbit. The time dependence is then obtained 
in analogy to the t rea tments  by Epstein (1977) and Haugan (19851. 

In the Newtonian limit the solution of (6) is given by t 

x = r (cos r sin r 0) 

r = P (10)  
1 + e c o s ( r  - ~vo) 

r2dr = n ~  (11) 
dt 

The post - Newtonian solution can then be obtained with the ansatz: 

r2 de = Ix A v I = ~ (1 + bh) (12) 
dt 

dx ( p  1/2 (13) 
v = dt = ) ( - s i n  r e + cos r 0) + VfN = ~rN + VpN 

We obtain (r = r - w 0 ) :  

r2 de me 
dt = ~ [1 - - ( 2 " / +  2 - 2r,) cosr (14/ 

P 
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21 r 
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8 

1 t~e2 sin 3r + ~ ( ~ -  2~)e si~ 2 r  
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1 /JC2 p] - ~ ( f l -  2 t~)ecos2r  ~ cos3r (155) 

An expression for r ( r  is obtained if the last two relations are subst i tuted into the identity: 

d 1 1 

dr ~r - - ( x .  v / r )  (16) 

and one integrates w.r.t. r The integration constant is fixed by the requirement that  the resulting 
formula for x yields expression (15) for the post - Newtonian velocity. One finds: 

9 1 
Pv "- 1 + e cos r  [-(2/3 + 3' - t,) + (3' + ~t,)e 2 + ~(43' + 4 - / 3  - 2v)e cos r 

+ (23' + 2 - / 31e r  sin r - ~e  2 cos 2r 
4 

From this we see tha t  the secular drift in the periastron motion is given by 

t We usually set G = c = 1 in the following 
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Ar  = 27r (27 + 2 - /3 )  
P 

suggesting that  we introduce as new angular variable the "true anomaly" 7/(Epstein (1977), Haugan 
(1985) with 

m 
-- (1 - (2"), + 2 - / 3 ) p ) r  - Wo (19) 

With this eqs. (14) and (17) take the form- 

r2 de 
dt 
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me 
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Introducing the eccentric anomaly E'  instead of the "true anomaly 7" in the usual way by 

(1 - e 2 ) 1/2 s in  E '  
sin ~7 = �9 cos y = 

1 - e cos E'  

cos E '  - e 
1 - e cos E ~ 

we can rewrite the last expression in the form (p = a(1 - e 2))" 

(22) 

r = a ( 1  - e c o s  E ' )  

m 

c2(1 _ e2)2 { - ( 2 ~  + ~/) + 
(10'7 + 3 + 12) e2 + 

4 
1 17e2 3e4)t ' ~7e4 + ( 1 +  - T + ~  

+ e c~ E ' [ ( 8 7  + 7/~ + 4 2  + 4 -  3e2 ) 2  - ( 3  + 5e2) v] 

+ e2 c~ 2E'  [ ( -  67 + 3/~ + 4 4  + 21 "ye2) + (34 + ~ e2)t~ ] 5  } (23) 

The time dependence of the post - Newtonian relative two - body orbit can then be put into 
a generalized Kepler equation. Using (20) and the relations: 

= (1 + (27 + 2 - /3 )  m )  i! ; ~ = (1 - e2) 1/2 /~, (24) 
p 1 - e cos E '  

one finds that  

(1 - (27 + 2 - / 3 ) p )  
me cos E t - e 

~ =  [1 + - - ( 2 3 '  + 2 - 2v)( E,)]  r2(E')~ (25) 
p 1 + e cos 

where r(E') is given by (23). Integrating this expression w.r.t, the time coordinate t finally gives 
the desired Kepler equation in the form: 

2r, E '  E'  t(~-2~ ) + a =  - ge si~, - hsin 2E' (26) 

where the E '  period TE, is given by: 

a 3 m 

- - +  e2): {(83 + Ts, + + 2 /3) 
p 2a(1 - 

+ (67 + fl + 8)e e + (27 + 4)e 4 - (4 + 13e 2 + 7e4)v}] (27) 
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and 

m 
g = 1 + 2a(1 - e2) 2 [80, + 6/3 + 4 - (20, + 3/3 - 4)e 2 - (20, + 4)e 4 - (4 + l l e  ~ - 7e4)u] (28) 

~ 2 m  

h = 4a(1 . -  e2) 2 [ - ( 6 7  + 3/3 + 4) + 27e 2 + (3 + 5e2)t'] (29) 

We finally note  t h a t  in this r epresen ta t ion  e and p are re la ted  to $ and f f  by 

m m 
- (~pp)  {(1 - e 2) - (~p)  [(80' + 8/3 + 3) - 5u + 2((40, + 2/3 + 5) - 9u)e 2 + 3(1 - 3t')e41} (30) 

m 
,7 = vrm-p (1 + (~--pp) [(40' + 3 -  u ) +  (1 - 3ule2]} (31) 

3. The Brumberg representation 

The  express ions  for the post  - Newton ian  specific energy $ (8) and absolu te  value of the angu la r  
m o m e n t u m  f f  (9) can be wr i t t en  as: 

1 T2q~ 2 m 

g =  + ) r 

3 
-- - - + ~ ( 1  -- 3t')(r 2 + 4- ~rr [(27 + I + 2u)§ 2 
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T 

1 
f f  = r2r  [1 + ~(1 - 3t ')(r 2 + r2r  2) + (23' + 1 + t ' ) m ]  

T 

leading to first order  eqs. of mot ion  in the form" 
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El imina t ing  the r t e rm  the last equat iou can also be wr i t t en  as 

B C D 
§  + - -  

r ~ T 3 

with  

5 

2 " ) }  
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3 
A = 28 (1 + ~ ( 3 t ' -  1)8) 

B = 2m (1 + (7t" - 2"y - 4)s  
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Using 

/,2 = (dr(r 2 `72(d(1/?') 2 
, ) =  (1 - 2[(23' + 2 - 2u)m + (1 - 3u)$]) 

r 

the radial equation can be written in the form: 

d(1/r) 2 A' B' ( ) = C' D'  
i ?'2 ?.3 

with 

(37) 

(38) 

1 
A ' =  ~$2 (1 + ~(1 - 3u)$) 

B'  2m = .--~(i  + (27 + 2 - 3~,)E) 

m 2 
C' -- -i + (4"), + 4 - 2/3 - 3 u ) - .  2 

D I ~ PT/'b 

Notice that  the right hand side of (38) is a third order polynomial in r -1. 
(38) in the form: 

This suggests to write 

(d(1/r))2 i 

de = (r 
+ a(l+e))(a(l-e) -r (39) 

where a comparison of coefficients yields: 

C 1 =  1 - ( 4 " } , + 4 - 2 # - u )  

C2 ~. - p r o  

m 

a ( 1 - e  2) 

From the form of (39) we see that  r•  = a(1 -4- e) represent the minimal and maximal value for r 
and hence a and e play the role as semimajor axis and eccentricity of the post - Newtonian orbit. 
a and e can be considered as integration constants alternatively to $ and .7. Solving for $ and .7 
in terms of a and e one finds: 

$ _  m [ 1 _  ( 4 ~ + 3  u m 
2a 4 4 ) a  ] (40) 

`72 = ma(1 - e2)[1 + ( - 7  - 1 -4- u + 
40,+ 4 -  2 /~ -  u m] 

1 - ~  )a (41) 

The solution of (39) can then be written as" 

a( i - e 2) 
r = (42) 

1 + e cos f 

with the true anomaly f obeying 

(~)~= A + C?~ (43) 
o r  

d f  /] m 

dr  = F .  [1 2 a(1 - e ~-) cos I ]  (44)  

F = i - (2-), + 2 - / 3 )  
rn~ 

a(Z - e 2) 
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Hence 

m 
f = F .  (r - w0) - ~ a(1 - 7  I) e s in[F.  (r - w0)] (45) 

leading again to expression (18) for the secular drift in the perihelion motion. 
f l  from (34) we get 

Eliminating $ and 

1 
(3' + 2v) + 

(2z+ 2 -  # -  ~,/2) 
(1-e 2) 

a m 

- + - ,,);] 7 }  

or using (44) 

3v) m 
v/ma(1 - e 2) dt = r2df [1 + (27 + 2 - ~ r 

Now, for a circular orbit r = a , e = 0 and 

m 

1 m 
+ (46) 

(47) 

defines the mean motion of the post - Newtonian orbit. Defining the mean anomaly M and eccentric 
anomaly E by relations (22) and 

M = n t §  

an integration of (46) leads to the corresponding Kepler equation in the form: 

m 3 m 
M = [1 + (27 + 2 - /3 )  a l E  - (1 + ( ~ u -  f l ) a )  e s i n E  

The siderial period Tr of the orbit (r changes by 2~r) is finally found to be 

(48) 

(49) 

~/a 3 
T~=2~ u  1 

m { ~ ( 5 7 + 4 -  u) - 
a 

= T / - 2  (27 + 2 - / 3 ) ~ / 1 - e  2 

(1 + ecos fo) 2 

(2"7 + 2 -- #)~/1 - -  e 2 
(1 + ecos fo) 2 

}] (50) 

where the anomaleous period 

denotes the orbital period w.r.t. 

a~ 1 m 
Tf = 2~r [1 + ~(5~, + 4 - U ) a  ] 

axes that  precess with the secular perihelion motion. 

(51) 

4. The solution with osculting elements 

Brumberg (1972) in his monography treats the restricted post - Newtonian (u = 0) two - body 
problem for a broad class of metric theories of gravity using parameters a',fl ' ,a' and A' T. It now 
turns out that  his perturbing function is general enough to cover our case of the PPN two body 
problem. A comparison of his perturbing function with eq. (6) shows that  for 

t We added the primes to distinguish them fi'om the usual PPN - parameters. 
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a '  = 3 + 3 , + v  
1 

fl' = - ( 7  + 3v) 
2 
1 

2 
A ' = 7 + I - v  

(52) 

Brumberg's results for the osculting elements apply for our PPN two body problem. Hence, the 
post Newtonian acceleration a p N  can be written as: 

a p N  - "  S n + T (k A n) + W k 

with 

sin I sin ft ) 
k = - sin I cos ~t 

cos I 

m 

S = r2 [2(/3 + 3' + v ) - -  - 

m 
T = r2 (23" + 2 - 2 v ) ~  

W = 0  

m 

7" 
n 2 a  3 

r 

Iv)/"2] (3' + 3v) v2 + (2'7 + 2 - 

esin f 

(53a) 

(53b) 

(53c) 

The solution of Lagrange's planetary equations is then given by: 

I = c o n s t .  : ~ = c o n s t .  ( 5 4 a )  

31 
v - (4 + 29'))] cos f A a  - -  c 2 ( 1  _ e 2 ) 2  {[(6v - (63' + 4fl + 4)) + e2( 4 

ve 2 3f}[  ~ + ( 4 u -  (2'7 + 2 + # ) ) e c o s 2 f  + ~ cos 

Ae = m 47 
c 2 a (  1 _ e2 ) { [ ( v  - 2/3 - 3') + e2(---~ u - 4 - 33 ' ) ]  c o s  f 

1 v 2 
+ ( 2 u -  3 ' -  1 -  ~/3)ecos 2 / +  ge  cos3f}l~ o 

Aw = c2a( 1 _ e2 ) {(2'7 + 2 - / 3 ) f  + e + ('7 + ~ v ) e ]  sin f 

1 
+ (2u - 3, - i - ~/3) sin 2f  + gesin3f}[~ o 

?-/'~ 

Ae = (1 - V/1 - e 21Aw + c2a~/1  _ e2 [(2'7 + 4 - 7v) V/1 - e 2 E  

+ ( - 4 7  - 4/3 - 4 + 9 v ) f  + (43' + 4 - v ) e  sin f]l  t to 

(54b) 

(54c) 

(54d) 

(54e) 

3m {-(3 '  + 2 7v) E + (23 +/3 + 2 - 3u) v e sin f 
c2a - -2 v /1  - e 2 f 2 v /1  - e 2 

7 a ]M}[~o  v ( a ) 3  + ( - 2 3 ' - / 3  + 2 + 2 ro + [~( i  - e 21 TO (55) 

A M  = A e -  A w  + A n  d t  
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