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Abstract. The solution of the two-body problem in the (truncated) PPN theory is presented. It
1s given in two different analytical forms (the Wagoner-Will and Brumberg representation) and by
the method of osculting elements.

1. Introduction

Analyzing gravitational experiments in the solar system is usually done in the socalled PPN -
framework (e.g. Will 1981), where a number of PPN - parameters designate the corresponding
post - Newtonian limit of a certain metric theory of gravity. Now, the discovery of the binary
pulsar PSR1913+16 (e.g. Taylor & Weisberg 1982 ) and subsequent extremely precise tracking of
1ts orbital motion by analyzing pulse arrival times lead to the necessity to solve for the full two -
body problem at least at the post - Newtonian level. For the Einstein post - Newtonian theory one
solution to the two - body problem has been presented by Wagoner & Will (1976), Epstein (1977)
and Haugan (1985); a solution with osculting elements for this case was presented by Damour &
Deruelle (1985). In a series of papers Barker & O’Connell (1975, 1976, 1981) and Barker et al.
(1982, 1986) dealt with the full post - Newtonian two - body problem even including spin and
quadrupole moment effects. However, their main interest was lying in the precession and nutations
of the spins and the secular motions of the classical angular momentum vector, the Runge - Lenz
vector and the mean anomaly rather than solving for the detailed motions of the bodies.

This paper presents solutions to the full two - body problem in the (truncated) PPN - frame-
work with parameters 3 and 7. Solutions are given in two different analytical forms (the Wagoner-
Will and Brumberg representation) and by the method of osculting elements.

'The Lagrangian for the two - body problem in the PPN - formalism truncated to the Eddington

- Robertson parameters 3 and v in standard post - Newtonian coordinates (¢,x) reads (e.g. Will
1981):

L=—(m +7TL2)02+£N+£PN/62 (1)
1y mo Gmlmg
EN=—§—V¥+TV§+ -
1 Gmyim
Lpn = gmlvi‘ + gmzvg + 2:_ 2 [(27 + 1)(v? +v3)
. R Gimi+m
— (47 +3)v1 vy — (v - B)(v2 - 8) — (26 — 1) ET T ™))
with

N X1 — X2
n= . ;T = |x1 — Xg|
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One finds that the total momentum P of the system can be obtained in the usual way from
OL[/0v, + OL/0vs and is given by:

1

1
P =mivy + mavy + g Mv19] 2/c? + 2m2V2'U2/C
Gmim o
2037' 2 [2(27 + 1)(v1 + v2) — (47 + 3)(vy + v2) —ia[ia- (v; + v2)]] (2)
The center of mass X
= (mix; + mix2)/(m] +m3) (3)
with
. = 1 2,2 1
m, =mg + §mava/c — §Gm1m2/r (4)

then is not accelerated according to the equations of motion and the center of mass velocity is
proportional to P. We can then go to a post - Newtonian center of mass frame where P=X =0
and

_ 2

X, = [m + 52 (v ———T—)]x (5a)
m1  poéom, ., Gm

— [ - b

X2 [ m 2m2 (V r )]x (5)
with
X=X1—X2 ; V=Vi—Vy ; mMm=mi+m

dm=my —ma ; p=mmg/m

For the relative motion one finds ( e.gq. Barker et al. 1986):

dv Gmﬁ Gmn {

:i? - r2 027.2 ﬁ + ’7) + 21/) — v2(,y + 31/) + — V(n v)2}
+ gzﬂl- v(n-v)(2y+ 2 —2v) 6)
C 7‘

MM 7

v = = =
m2 m

and the corresponding Lagrangian takes the form:

1 4 G
c=1ypi M1 (1-3v)— + Gm [y +1+)vi+u(a-v)2—(28-1)2] (7)
2 T 8 C 2¢%r T

This Lagrangian is particularly useful in deriving first integrals of motion. For the (specific) post
- Newtonian energy £ and angular momentum 7 one finds:

S=v—§-€——£- %vz-%'} 3(1—3u)v4+% (@7 +140)v 4@+ 8- DT ©

and

|x/\a—£|—|x/\v| [1+;(1—31/)v2+(27+1+u)-7—:—] (9)
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2. The Wagoner - Will representation

In the first approach we will follow the route as taken by Wagoner & Will (1976) to derive
an expression for the form of the post - Newtonian orbit. The time dependence is then obtained
in analogy to the treatments by Epstein (1977) and Haugan (1985).

In the Newtonian limit the solution of (6) is given by {

x = r(cos ¢, sin ¢, 0)
p

= 10
r 14 ecos(¢ — wy) (10)
d¢
2770 = 11
e mp (11)
The post - Newtonian solution can then be obtained with the ansatz:
2d¢
i lx Av|=/mp (1+dh) (12)
dx m
Ve = (—1;)1/2(—sin¢,e+cos¢,0)+vPN=vN+vPN (13)
We obtain (¢’ = ¢ — wy):
2 d¢ me '
T Ei—:\/mp [1——p—(27+2"2V)COS¢] (14)
and
z m3 ! . ! 21 2,4 !
VEy = ) [F2v+2-8Bed' + 28+ —v)sing' — (v + —8—-u)e sin ¢
+ -21-([3 — 2v)esin 2¢' — -2-62 sin 3¢'] (15a)
m3 31
vy =1/'I,T [-(28+ 9 —v)cos¢' — (v +2 — ~8—1/)e2cos¢'
- %(,@ — 2v)ecos 2¢’ + §e2 cos 3¢’] (15b)
vpy =0 (15¢)
An expression for r(¢) is obtained if the last two relations are substituted into the identity:
d 1 1
—_——= - . 16
7 7~2(}S(x v/r) (16)

and one integrates w.r.t. ¢. The integration constant is fixed by the requirement that the resulting
formula for x yields expression (15) for the post - Newtonian velocity. One finds:

S IS

9 1
=1 +ecos¢'+(%)[——(2ﬁ +y-v)+ v+ ZV)62 + -—2-(4'y+4 — B —2v)ecos ¢’

+ (27 +2 — B)ed’ sin ¢’ — %62 cos 2] (17)

From this we see that the secular drift in the periastron motion is given by

t We usually set G = ¢ =1 in the following
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Ad =21 (2y+2— ﬁ)% (18)

suggesting that we introduce as new angular variable the ”true anomaly” n (Epstein (1977), Haugan
(1985) with

m
nE(l—(27+2—/3)};)¢-wo (19)
With this eqs. (14) and (17) take the form:
d
rzig = mp [1 - —n;—e(% + 2 — 2v) cos 7] (20)

9
g =1 +ecosn+(:r—;—)[-—(2ﬁ+'y -v)+(y+ Zu)ez

1
+ 547+ 4B —2v)ecosn — gez cos 27 (21)

Introducing the eccentric anomaly E' instead of the "true anomaly 7” in the usual way by

. (1 - e?)/2gin E' cos E' —e
= . = 22
S 1—-ecosE’ O T T s B (22)
we can rewrite the last expression in the form (p = a(1 — €2)):
r=a(l—ecos E')
m 10y +8+12) , 1 , 17, 3,
- - - 1+ — e
02(1_62)2{ (268 +7) + . e +57e + ( + e +4e)1/
tecos B[(IFTEEE L 4200y (34 500)
6 3 4 1 )
+ e? cos 2E' [ (- i f + + —2-’)’62) + (% + Zez)v]} (23)

The time dependence of the post - Newtonian relative two - body orbit can then be put into
a generalized Kepler equation. Using (20) and the relations:

, m. . . (1-e)2
_ L S, 24
¢=(14+(2v+2 ﬁ)p)?} S/ l—ecosE’E (24)
one finds that
m me cosE' —e \y 5, ..
(1—(27+2—/3)—p—),/__m = [1+?(27+2—2u)(1+eCOSE,)]r (E")5 (25)

where 7(E’) is given by (23). Integrating this expression w.r.t. the time coordinate ¢ finally gives
the desired Kepler equation in the form:

2
t(T—;r-,-) +0=E'—gesinE' ~ hsin2E' (26)

where the E’ period T is given by:

CL3

Tg: :2%(—)1/2[1+(27+2—/3)7—§+ =

20l = &2 {(88 + 4v)

+ (674 B+ 8)e? + (27 + 4)e* — (4 + 13e® + Te*)v}] (27)

m
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and
g=1+ ik [87 + 68 +4 — (27 + 38 — 4)e® — (27 + 4)e* — (4 + 11e? — Te* )]
2a(1 — e2)2
P [—(67 + 38 + 4) + 272 + (3 + 5e2)v]
~ 4a(l — e2)2 7 7 ¢

We finally note that in this representation e and p are related to £ and J by

81

(28)

(29)

£ = —(—2"%) {(1-¢?) - (Z—;)[(Sy + 88+ 3) — 5v + 2((47 + 28 + 5) — 9)e? + 3(1 — 3v)e*]} (30)

T = i {1+ (3) (4 +3 =) + (1= 30)el])

3. The Brumberg representation

(31)

The expressions for the post - Newtonian specific energy £ (8) and absolute value of the angular

momentum J (9) can be written as:

= %(fz +779%) -~ +8(1 — 3v)(#? + r?¢?)? [(27+ 1+ 20)7

+ 27+ 1 +v)r?g? + (2[3 — 1)7—]
T =r¥¢[1+ %(1 — 3 (P + 72 + (27 + 1+ u)%]
leading to first order eqgs. of motion in the form:
r2p = J[1 + (3v — 1)€ + %(21/ — 2y —2)]

and

2
P = —r2 26+ S =S B)E 4 L
£ 2 5
——;’1(274—4—71/)-——2(2 +B+2-v))

Eliminating the ¢2 term the last equation can also be written as

B C D
P=A+ = +—2+—
T

with
A=201+ g(?w - 1)¢)
B=2m 1+ (Tv — 2y — 4)€)
C=-J°(1+2@v—-1)E&)+ (v —4y—-28 - 4)7—22
D= (4y+4-3v)T*m

(32)

(33)

(34)

(35)

(36)
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Using

i = (dr((‘ft(t)))? e (—_—_d(;é )21 =22y +2 - ) + (1= 30)E)) (37)

the radial equation can be written in the form:

(4(1/7))2=A,+B' c' D

d¢ T t T2 + r3 (38)

with

. 2€ 1
A = :—7—2"(1 + 5(1 - 31/)8)

_2m

B’—t7—2
2

™m
C'=—1+(47+4—2ﬂ—3u)37

(1+@2y+2-3v))

D' =vm

Notice that the right hand side of (38) is a third order polynomial in 7~1. This suggests to write
(38) in the form:

d(l/r)\2 _ 1 1 1 1 Cs
( do ) —(r a(1+e))(a(1—e) 'r)(Cl+ T ) (39)
where a comparison of coeflicients yields:
m
Cl —1—(4’)’+4—2ﬂ—l/)m

Cz = —-vvm

From the form of (39) we see that r4+ = a(1 £ €) represent the minimal and maximal value for 7
and hence a and e play the role as semimajor axis and eccentricity of the post - Newtonian orbit.
a and e can be considered as integration constants alternatively to £ and J. Solving for £ and J
in terms of a and e one finds:

m 4v+3 vim
__m_ _rym 4
4 4 — 206 —
T =ma(l- )1+ (—y—1+v+ 7+1_e2ﬂ =)= (41)
The solution of (39) can then be written as:
a(l —e?)
L= 42
' 1+ecosf (42)
with the true anomaly f obeying
df \2 C
(d¢) =01+~ (43)
or
df v o om
2 _—p. 1 - —"" 44
i¢ F-[1 2@(1_62)ecosf] (44)

F=1—(27+2—/3)m
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Hence

v m
=F.(¢ - — ——————=—¢sgin[F : (¢ — 4
f (¢ wO) 9 a(l _ ég) BSIR[ (¢ wO)] ( 5)
leading again to expression (18) for the secular drift in the perihelion motion. Eliminating £ and
J from (34) we get

(2y+2-p-v/[2)

g = v/ma(l = ) {1+ [~ (v + 20) + 2(7+1-4)%] 7}

(1—e?)
or using (44)
Va1l —e2)dt = r2df [L+ (27 +2 - gu)"-;‘— + %('y +2v) =] (46)
Now, for a circular orbit r =a , e =0 and
¢25n2=%[1—(25+7—u)%] (47)

defines the mean motion of the post - Newtonian orbit. Defining the mean anomaly M and eccentric
anomaly E by relations (22) and

M =nt+ M, (48)
an integration of (46) leads to the corresponding Kepler equation in the form:

M=[1+(27+2—ﬁ)%]E—(1+(gu—ﬁ)%’-)esinE (49)

The siderial period Ty of the orbit (¢ changes by 2«) is finally found to be

2y +2-BVI=&

a3
gl (1 4+ ecos fj)2

m

@y +2-BVI= [a

(1+ecos fy)?

T¢=27l’

1+ 2S5y +4-v) - ] (50)

where the anomaleous period

a3

Ty = 2] —
! 7rm

143Gy +4-1)7] (51)

denotes the orbital period w.r.t. axes that precess with the secular perihelion motion.

4. The solution with osculting elements

Brumberg (1972) in his monography treats the restricted post - Newtonian (v = 0) two - body
problem for a broad class of metric theories of gravity using parameters o’,8',a’ and X' { . It now
turns out that his perturbing function is general enough to cover our case of the PPN two body
problem. A comparison of his perturbing function with eq. (6) shows that for

T We added the primes to distinguish them from the usual PPN - parameters.
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o=B+v+v (52)
, 1
B =5(y+3v)

Brumberg’s results for the osculting elements apply for our PPN two body problem. Hence, the
post Newtonian acceleration apy can be written as:

apy =8Sn+T(kAn)+ Wk

sin I sin 2
k= | —sinlcosf2
cos I

with

= % 208+ 7+ V)% (Y3 + 2y +2- %V)?‘zl (53a)

2.3
T:%(27+2—2u)”“ esin f (53b)

The solution of Lagrange’s planetary equations is then given by:

I = const. ; €2 = const. (54a)
Aa = {[(6v — 67+4,B+4))+62(EV— (4 4+ 27))] cos f
02(1 )2 4
+ (4 — (27 + 2+ B)) ecos2f + Ze2 cos 3f}E (54)
__m 03— 2 47 4 _
Ae—cza(l-—ez){[(y 23 —7)+e (81/ 4 — 34)] cos f
+R2u—y—-1- %[3)6(:0321"4-%/62 cos3f}E (54c)
_ m v—y—23 21 .
Aw—cza(l_ez){(27+2—5)f+[ - +('y+81/)e] sin f
+ (2v -y — 1—-_%/5’)si112f+Kesin?:f}[:0 (54d)
A.e:(l—\/l—ez)Aw—i-c2 \/___65[27+4 w)V1—-e2E
+(—47— 48 -4+ W) f + (47 + 4 — v)esin f]|;, (54e)
t 3m 7 2y+08+2-3v) v esin f

Andt =——— 2—--v)E
, n cza{ (v + 21/) +

V1—e2 f_fi\/1—e2
7

B )+ (2= B2+ ) () 4 (42— ) MY, (5)

t
AM=A6—Aw+/ Andt

to
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