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Abstract. The straight-line collision solution in the anisotropic Kepler problem is extended to a periodic 
solution by means of Sundman's analytic continuation. It is shown that this collision periodic solution 
is always exponentially unstable. 

1. Introduction 

The anisotropic Kepler problem (in two 
Hamiltonian system 

dimension) is a two degrees of freedom 

dq OH dp OH 
dt c~p dt t?q' (1.1) 

with the Hamiltonian 

1 2 
H = + - 

x/#lq 2 + #2q 2"2 
(1.2) 

This system was first introduced by Gutzwiller [7]. The essential parameter of this 
system is the ratio #1/#2, and when #1 = #2, this system reduces to usual integrable 
Kepler problem. 

Among the topics studied on this system previously are, for example, 

(i) Non-regularizability of collision orbit (Devaney [3], [4] )and 
(ii) Heteroclinic and chaotic behaviors. (Gutzwiller [7], [8]). 

Almost complete fists of references of the investigations on this system are found in 
Casasayas and Llibre [2] and a review paper by Devaney [5]. 

In the present paper, we adopt a complex-analytic approach, and we regard the 
solution of Equation (1.1) as a complex analytic function defined in the complex t-plane. 
The straight-line orbit on the ql-axis or qz-axis is obviously a solution of (1.1), 
which begins and ends at collision q 1 = q z = 0, when the value of energy is negative. 
By the so-called Sundman's analytic continuation ([9], [11], [14], 1-15]), this 
solution can be extended beyond the instance of collision and can be considered a 
periodic solution defined for entire real t, - ~ < t < + oe. Stability of this periodic 
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solution is determined by the momodromy matrix M [ T ]  of the associated var- 
iational equations (Hill's equation [10], [12]). The solution is exponentially 
unstable if and only if Itrace M [ T ] I  > 2. Our main result of this paper is 

T H E O R E M  

In the anisotropic Kepler problem (1.1), the analytically continued collisional periodic 

solution is exponentially unstable whenever #x :/: 122. 

The crucial point which makes the Theorem hold, is the fact that the variational 
equation can be transformed, by a change of independent variable, to Gauss 
hypergeometric equation, as in Yoshida [17] and [19]. There must be a close 
relation between our complex-analytic instability and previous studies on real insta- 
bility of collision solution or its heteroclinic behaviors, which entirely rely on the 
blowing up of the so-called collision manifold. ([2], [3], [4], [5], [11]). To make 
this relation clear, is beyond the reach of present paper. 

2. Collision Orbit and its Analytic Continuation 

By the form of equations for qi, 

d 2 q i / d t  2 - -  - # i q i ( p l q  2 + #2q2) -3/2 (i = 1, 2), 

it is obvious that straight-line orbit q 
More precisely, let 

= 0 and q 2 - - 0  are 

(2.1) 

solutions of (1.1) or (2.1). 

q l = cxdp(t), q2 = c2dp(t), (2.2) 

be a particular solution of (2.1). This is possible when constants cl and c2 satisfy the 
algebraic equations 

c ,=  12ici(#,c 2 + #2c2) -3/2, (i = 1,2), (2.3) 

and the function r satisfies the differential equation 

d 2 dp/dt 2 + ~b- 2 = 0. (2.4) 

When 12~ r we have two particular solutions (2.2) with 

(i) cl = 1211/6, C2 =0 .  (2.5) 

(ii) r 1 = 0 ,  C 2 = / 2 2  1/6. (2 .6)  

Particular solution (2.5) is a straight-line solution on the q ~-axis, and (2.6) on the q 2- 

axis. 
The function ~b(t), which is a solution of Equation (2.4) represents a solution of 

one-dimensional Kepler problem. If we fix the initial condition at t = 0 as 

dp = 1, ddp/dt = O, (2.7) 
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then, integrating (2.4) once, we find that ok(t) is the inverse function of 

1 

If t -  x ~  x/u~(1 - u) du 

4~ 

m /~ + x/4(1 - 4)) - arctan[x/4)/(1 - 4)]  . 
N/ 

(2.8) 

Figure 1 shows 
where 

the function 4)(t), which begins at t =  --to and terminates at t -- to, 

1 

to - x~ ~1 . x/u~(1 - u) du 2x ~ .  (2.9) 

0 

We now extend the function ~b(t), or the straight-line solution (2.2), beyond the 

instance of collision at t = t o ( -  to) so that  the solution can be defined in the interval 
--CX3 < t <  + o o .  

One can easily see that  near the instance of collision, say t = to, qS(t) has a series 

expansion of the form 

O0 

~) ( t )  = ( t  0 - -  /7) 2/3  ~ a.(to - t )  2n /3 ,  
n=O 

(2.10) 

with real expansion coefficients a,, which are successively determined by a recursion 

formula from ao = (9/2)  x/2. In the expression (2.10), ( t o -  0 2/3 is real when t < to, so 

that  ~b(t) represents the real function in Figure 1 for t < to. Although the point t = to 

m 
1 

0 
m t o 0 t o 

t 
Fig. 1. Graph of function ~b(t) in the interval - t o  ~< t < to. 
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is a singularity (algebraic branch point), we shall continue the function ~b(t) for t < to 

across the point to and make its analytic continuation to to < t. For  this purpose, we 
define the following path, Tar t (or  T_  art) in the complex t-plane. See Figure 2. 

(i) From t = 0 to t - to - fi (6 is a sufficiently small real positive number), on the 
real t-axis. 

(ii) From t = to - 6 to t = to + tS, on a circle C with radius 6 and with center at to, 
where the argument of ( t o -  t) is increased by + 31r (or -37t). 

(iii) From t = to + 6 to t = 2to, on the real t-axis. 

From expression (2.10) we see that when arg(to - t) is increased _ 3re on the circle C, 
the function ~b(t) again becomes real, since [-(to - t)e +i3rt]2/3 = (to - t) 2/3e +iErt = 

(t o - - t )  2/a. Figure 2 and Figure 3 show the path of continuation in the complex t- 
plane and the graph of function ~b(t), thus obtained, in the interval [0,2to]. This 
continuation of solution physically means the elastic bounce of a particle in the one- 
dimensional Kepler problem, and this is also obtained in the limit of elliptic motion, 

e (eccentricity) ~1, in the planer Kepler motion. This real-to-real con t inua t ion  
beyond a singularity, on the basis of series expansion, was first employed by 
Sundman in his research of collision in the restricted three body problem ([15], [9], 
[1 1], [14]), and is now called the Sundman's analytic continuation. 

The path Tan , o r  T_  art, is, strictly speaking, not a period of the function ~b(t), since 
arg(~b) is changed by _+2zr. We shall constitute a periodic function on its Riemann 
surface on which ~b(t) is single valued, so that the function is periodic also in its 

is to define the paths argument. The simplest way to obtain periodic solution 
(periods) T (1) and T <2> by the succession of T3~ and T_3n as 

T (1) = Tan. T_ 3n ,  a n d  T (2)-- T _ 3 n .  T3r c. (2.11) 

(a) 

(b) 

0 to 2to 
Fig. 2. Paths (a): T3~ and (b): T_ 31t in the complex t-plane. 
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1 

0 
0 to 2to 

t 
Fig. 3. Graph of function ~b(t) after collision. 

With these periods, 4~(t) becomes completely periodic, cancelling the change of 
argument. We denote the periodic function with period T <1> by q~<l>(t), and with 
period T (2) by t~(2)(t). Both (])(1) and ~b <2> have the same value 4to as the 'length' of 
period, and are identical in the interval [0, to] and [3to, 4to]. In the interval [to, 3to], 
arg q5 <1>- arg t~<2)=4/Z, and this means that q~<~> and ~b <2> are defined on different 
Riemann sheets. Figure 4 shows the two periods (paths) T <1> and T <2>. Figure 5 
shows the graph of absolute value of periodic functions ~b<l>(t) and ~b<2>(t), both of 
which is identical. Figure 6 represents the change of arguments. 

Ca) 

(b )  

0 2to 4to 
Fig. 4. Paths (Periods) (a): T (1) and (b): T (2) in the complex t-plane. 
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14>1 
1 

0 2t 0 4t0 
t 

Fig. 5. Graph of 14~(t)l for one period. 

3. Monodromy Matrices of the Variational Equations 

The (linear) variational equations of (2.1) along the particular periodic solution (2.2) 
have the form 

d 2 ~ , /d t  2 + )~,dp(t) - 3 ~i = O, (i = 1, 2) 

with ~i = (~qi, where (21, 22) --- ( P l / P 2 ,  - - 2 )  for the periodic 

(3.1) 

solution with (2.5), and 

arg(~) 

0 

-2~: 

(a) 

(b) 

0 2to 4to 

Fig. 6. 

t 
Graph of (a): arg ~<l>(t) and (b): arg 4)(2)(0. 
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(21, 22) = ( - 2 ,  ]./2/]./1) for the second one with (2.6). In (3.1), function q~(t) represents 
the periodic function ~b (1)(t) or ~b (2)(t) defined in section 2. Dropping the subscript i, 
we generally consider the equation, called the Hill's equation ([10], [12]), 

d 2~/d t  2 + A( t )~  = O, (3.2) 

with periodic coefficient A(t) of period T. Let ~(1)(t) and ~(2)(t) be two indepen- 
dent solutions of Equation (3.2), and make the fundamental system of solution 
E(t), by E (t) = [r (1) (t), ~(2)(t)]. Since A(t) is periodic with period T, both E(t) and 
E(t + T) can be fundamental systems of solution. Therefore, there must be a linear 
relation of the type, 

E(t + T) = E(t)M[T]. (3.3) 

The 2 by 2 constant matrix M [ T ]  is called the monodromy matrix of Equation (3.2), 
associated with the fundamental system E(t). Since (3.2) is derived by a Hamiltonian, 
it follows that det M [ T ]  = 1. Therefore, eigenvalues of the matrix M[T] ,  called 
characteristic multipliers, always appear as a pair, p and p-1. Solution of Equation 
(3.2) is stable if [trace M[T][ < 2 (i.e. p is a complex number of unit modulus) and is 
exponentially unstable if and only if Itrace M[T]I > 2 (i.e. p is real). ([1], [12]) 

There exists no universal procedure to give the explicit expression of the mono- 
dromy matrix M[T],  though direct numerical integration of Equation (3.2)could give 
the value of M [ T ]  up to any desired degree of precision ([1], p. 116). However, in 
our special case of Hill's equation 

d 2 ~ /d t  2 + 2dp(t)- 3 ~ = O, (3.4) 

we can write down the monodromy matrix, explicitly. This relies on the fact that 
Equation (3.4) is transformed, by a change of independent variable t to z, defined by 

z = 1/q~(t), (3.5) 

to the Gauss hypergeometric equation [6], [13], [16] 

z(1 - z)d 2 r z + [c - (a + b + 1)z]d~/dz - abr = O, (3.6) 

with special values of parameters 

a + b = 3 / 2 ,  ab=2/2 ,  c=2 .  (3.7) 

Transformation of equation from (3.4) to (3.7) is given in Appendix A, in a more 
generalized form. It is noted that Equation (3.4) is discussed also by Nahon [18] 
with its another transformation to Gauss Equation (3.6). 

Let u(1)(z) and u(2)(z) be a set of independent solutions of hypergeometric 
Equation (3.6). Then, by defining U(z)= [u~l)(z), u~2)(z)], we see that E( t )=  U(z)= 
U(1/ck(t)) gives a fundamental system of Equation (3.4). Thus, to evaluate the matrix 
M[T],  we have only to express E(t + T) in terms ofE(t). A path, t , t + T, in the com- 
plex t-plane, with T a period of ~b(t), is mapped by (3.5) to a closed path 7 in the 
complex z-plane. Let the change of the fundamental system U(z) of hypergeometric 
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Equation (3.6) along the closed path 7 be 

U(zT) = U(z)M[7], (3.8) 

with a 2 by 2 constant matrix M[r] ,  also called the monodromy matrix or circuit 
matrix of hypergeometric Equation. ([6], [13]) In (3.8), U(z7) means the result of 
analytic continuation of U(z) along the closed path 7 which begins and ends at z. 
Since U(z)= _v(t) and U(zT)= ~(t + T) by the definition of closed path 7, (3.3) and 
(3.8) give M[T]  =M[7] .  The closed path 7 is, in generally, not 0-contractable, 
because of the presence of singularities at z = 0, 1, and oo. We shall denote by 7o and 
71 two closed paths in the complex z-plane with a common fixed base point on the 
real z-axis (0 < z < 1), which make circuit the singularities z = 0 and z = 1, once in 
the positive direction (anti-clockwise), respectively. See Figure 7. Then any closed 

path in the complex z-plane with the same base point is expressed as a non- 
- 1  commutative product of 70, 71 and their inverse (inverse circuit), 70 1 and 71 �9 

A possible choice of two independent solutions of hypergeometric Equation (3.6) 
is to take 

u (~)(z) = F(c - b)F(b) F(a, b; c; z), (3.9) 
r(c) 

u(Z)(z) = e  
-,~ib F(a + 1 -c )F(b)  

F(a + b + l - c )  
F(a, b; a + b + 1 - c; 1 - z), (3.10) 

where F(a,b;c;z) represents the Gauss hypergeometric function defined by the 
Gauss hypergeometric series 

V(a, b; c; z) 
a -  b a ( a  + 1)b(b + 1) 2 

= 1 q - -  z + z + . - -  ( 3 . 1 1 )  
c. 1 c(c + 1)1.2 

and its analytic continuation beyond the circle of convergence Izl = 1 ([6], [16]). 
The scalar factors involving gamma function F(x) in (3.9) and (3.10) are added to 
make later manipulations simple. In what follows, we assume that none of para- 
meters a, b and c is zero or negative integer. With this assumption, (3.9) and (3.10) 
become, in fact, independent. To see this, let there be a linear relation 

e - .  . . . . .  -t[ I - - -  . . . . . . . . . .  - e  

0 ] z \ 
" T 

1 

Fig. 7. Closed paths Yo and ~1 in the complex z-plane. 
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U(1)(Z)--" 0~U(2)(Z) with some constant ~. Then, the function u(1)(z), which is holomor- 
phic at z - 0 ,  also becomes holomorphic at z = 1. Thus, function u(1)(z) becomes 
holomorphic for entire finite z, [z[ < oo. This implies that the hypergeometric series 
(3.11) terminates at some finite term, and becomes a polynomial. This occurs only 
when one of a and b is a negative integer or zero. 

With these independent solutions, the changes of fundamental system U(z)  along 
the closed paths 70 and 71 are expressed as 

U(zyo)  = U ( z ) M [ 7 o ] ,  (3.12) 

and 

U(zTx) = U(z)M[71], (3.13) 

where, 

M[),0]=I 0, e-2rab--e-2rac} 
, e _ 2 r c i  c (3.14) 

F e2ni(c-a-b) , OJ 

M[71] = L1- e2ni(c-a), 1 " (3.15) 

Derivation of (3.13) and (3.14) from the 'connection formula' of hypergeometric 
function is given in Appendix B, for generic values of parameters a, b and c. In our 
case of special value of parameter (c = 2), we need a direct proof which makes use of 
the Euler integral representation of (3.9) and (3.10) as seen, for example, in Plemelj 
[13], though both of which give the same expressions (3.13) and (3.14). 

The images of paths T (1) and 
mapping (3.5), are closed paths 

7<1>= 70 1 

for T <I>, and 

,~<2> = -1  
Vl~/oVxVo , 

for T <2>. Proof is given in 

and 

4. Proof of Theorem 

T <2> of (2.11) in the complex t-plane by the conformal 
in the complex z-plane, which are expressed as 

(4-.!) 

Appendix C. Thus we have 

M[T <I>-] = M[,y <~>] 

= M [ 7 o ] - ' M [ ~ , ] M [ 7 o ] M [ ~ , ] ,  

(4-.2) 

(4~3) 

M [ T  <2>] = M[) ,  <2>] 

= M [ ) , , ] M [ V o ] M [ ) ,  ~]M[?o] - 1. (4-.4) 

In our case of hypergeometric equation with special values of parameters (3.7), 
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expressions (3.13) and (3.14) reduce to 

with 

E0 [1 = , M [ 7 1 3 =  A,  (4:5) 

A = 1 - e -  2xia, B = 1 -- e -  2~ib. (4,6) 

Note that (4,5) with (4,6) is valid at least when none of a and b is integer. Thus, from 
(4:3), (4:4) and (4.5), we find that, common to T <1> and T <2>, the value of trace of 
monodromy matrix has the explicit expression 

trace M [ T ]  = 2 -  A 2 B  2 

= 2 + 4 cosZ{x/9 - 82 g/2}. (4:7) 

Figure 8 shows the graph of trace M [ T ]  as a function of 2. From (4:7), we see that 
trace M [ T ]  > 2, except for the set of distinct values of 2, i.e. 

2 = 1, 0, - 2 ,  - 5 ,  - 9 , . . . ,  (4:8) 

Therefore, except for the value of parameter 2 in (4:8), solution of Equation (3.4) is 

known to be exponentially unstable. One comment is necessary here. We have 
derived the expression (4~7) on the assumption that none of a and b is an integer. In 
the case when a or b is an integer, or from (4~6) and (4~7), the case trace M [ T ]  = 2, 

our assumption becomes false. Nevertheless, expression (4:7) becomes valid for all 
values of 2, since trace M[-T] must be a continuous function of a parameter 2, which 
enters Equation (3.4) as a coefficient. 

traceMlTI  

6 

2 

0 I I ! 

- 5  -2  0 1 

Fig. 8. Graph of trace M[T] as a function of L 
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In our original x/anational Equations (3.1), we find that when #1 4:~2 (i.e. ] . /1/i t /2 is 
a positive integer not equal to one), one of 2i in (3.1) is always out of values (4~8) for 
both collision periodic solutions on the q 1-axis and on the q z-axis. This completes 
the proof of THEOREM.  

Let 

Appendix A. Derivation of Hypergeometric Equation (3.6). [17] 

qS(t) be the solution of the differential equation 

d 2 dp/dt 2 4- dp k -  1 __. O .  

with an integer k (k =0 ,  __+1, + 2 , . . . ) ,  and the fixed 
d dp/dt = 0 at t = 0. Then consider the linear equation 

d 2 ~ /d t  2 4- } t~( t )k -  2 ~ _ O. 

initial condition, 

(A.1) 

q~=l  and 

(A.2) 

Equation (A.2) arises, as in (3.1), as a component of variational equations along 
Hamiltonian system homothetic straight-line solution of a 

H = lp2 4- V(q), (A.3) 

with potential V(q), a homogeneous function of degree k. Integrating (A.1) once, we 
have 

inverse function of 4~(t) as the 

variable, from t to z by 

1 1 
12( d (])/dt)2 4- k ~k _ k' 

which determines 

du 
t =  x// ; __ uk. 

We make the change of independent 

z = [4 t)]L 

Then, in (A.2), 

d a ~ /d t  2 = ( d z / d t ) : .  d 2 ~ /dz  2 + d 2 z / d t  2. d~ /dz .  

Differentiating (A.6) with use of (A.1), (A.4t and (A.6) itself, we find that 

(dz /d t )  2 = 2kq~t) k- 2z(1 - z), 

d 2 z / d t  2 = 2~t)k-2{(1 -- 3k /2)z  + k -  1}, 

(A.4) 

(A.5) 

(A.6) 

(A.7) 

(A.8) 

(A.9) 

and finally that Equation (A.2) is transformed to Gauss hypergeometric Equation 
(3.6) with values of parameters 

a + b = (k - 2)/2k, ab = - 2/2k,  c = (k - 1)/k. 

When k = -  1, that is our case, (A.1), (A.2), (A.6) and 
(3.5) and (3.7), respectively. 

(A.10) 

(A.10) reduce to (2.4), (3.2), 
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A p p e n d i x  B. D e r i v a t i o n  o f  (3 .14)  and (3.15)  

Among the 
take the following 4 ones, 

F(o 1)(z) = F (a ,  b; c; z),  

Kummer's 24 solutions ([6], [16])of hypergeometric 

F(o2)(z) 

F ? ) ( z )  

Ft2)(z) 

Since the order of 

= z 1 -CF(a  + 1 - c, b + 1 - c; 2 - c; z), 

= F ( a ,  b; a + b + 1 - c; 1 - z), 

Equation (3.6), we 

exists a linear relation, called the connection 
One of them is ([6], p. 107, formula (33)) 

V(1)(z) = C l l  F(1)(z) + C12F]2)(z), 

with  - n < arg  (1 - z) < 7t, a n d  

F(c)F(c-  a -  b) 
. . -  _ _ .  

Cll F ( c -  a )F (c -  b)' c12 

Another one is ([6], p. 107, formula (35)) 

F / 1 ) ( z ) -  D11F(ol )(z) + D , 2F(o2)(z), 

w i t h  - n < arg  (z) < n, a n d  

F(a + b + 1 - c)F(1 - c) 
DXl = F ( a +  1 - c ) F ( b +  l - c ) '  D12= 

which is also 
c - - . a + b +  l - c .  

(B.1)  

(B.2) 

(B.3) 

= (1 - z ) c - a - b F ( c  - -  a, c - b; c + 1 - a - b; 1 - z). (B.4) 

differential equation is two, among any three solution above, there 
formula of hypergeometric function. 

(B.5) 

F(c)F(a + b -  c) 

r(a)F(b) 
(B.6) 

(B.7) 

F(a + b + 1 - c)F(c - 1) 

r(a)r(b) 
(B.8) 

obtained from (B.5) by the substitutions, z , 1 - z and 
A comment is that formula (B.5) and (B.7) indeed hold for all 

values of parameters a, b and c, for which the gamma factors in (B.6) and (B.8) are 
finite. We shall assume this below. 

F(ol)(z) is holomorphic and single-value in the domain I z l< l .  This implies 
F(ol )(ZTo) = F(ol )(z), and consequently 

u (x)(z~o) = u")(z) ,  (B.9)  

since, u (~)(z) is only a scalar multiple of F(o 1)(z). Similarly, by the single-valuedness of 
F]X)(z) in the domain [ z -  11< 1, we have the identity 

u(2)(z~'l) = u(2)(z). (B.10) 

We have to take care, when we evaluate F]~(Z~o), for example. In the c o m m o n  
regions of Izl < 1 and I z - 1 1  < 1, where the base point of ~'o exists, we can express 
F~o ~(z) uniquely as the right hand side of (B.7). Then, make a circuit z , Z~,o. Because 
F~oZ~(z) is multiplied e -2"~ by this circuit, we have 

F(x~)(Zyo) = D1 x F~I)(z) -k- D12F(02)(z)e -2nic. (B.11) 
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Elimination of F~o2)(z) in (B.11) with re-use of (B.7), expresses the right hand side of 

(B.11) in terms of F~o~)(z) and F]~)(z). Then, multiply the scalar factor in (3.10), and 
use the formula of gamma function 

F(x)F(1 - x ) =  n/sin (nx). (B.12) 

Thus, we have finally 

/ , / (2)(Z])o)  "-- U ( 1 ) ( Z ) [ e -  2 r c i b  _ _  e -  2rcic] "JI- u(2 ) (z )e  - 2 r c i c .  (B.13) 

Next, expressing Fro 1)(z) in the right hand side of (B.5) and making the circuit z ~ z71, 
we have 

F~o 1 )(z71) = C x~ F] ~ )(z) + C x 2 Ftz)(z) e2nitc - a  - b ) .  (B.14) 

Similar manipulation as above gives 

U (1)(Z~) 1) - -  u(1 )(Z) ezni(c -a  - b) -Jr- U (2)(z)[ 1 - e 2~itc -a)].  (B.15) 

Combinat ion of (B.9) and (B.13) proves the expression of M[7o] in (3.14), and 
combination of (B.10) and (B.15), proves that of M[? I ]  in (3.15). 

Appendix C. Proof of (4.1) and (4.2) 

Points t = 0, 2t o, 4 to , . . . ,  in the complex t-plane are mapped by (3.5)to z = 1, which is 
a singularity of hypergeometric Equation (3.6), and this makes some difficulty in 
evaluating the images of mapping. To avoid this difficulty, we re-define the path T3~ 
as a composition of the following five parts, with introduction of a sufficiently small 
real positive number e. (The limit e --.0 will be taken finally.) [Figure 9] 

(a) : Path on the circle t = eei~ where 0 increases from -re/2 to 0. 
(b) : Path  on the real t-axis, from t = e to t = t o -  ~. 

(c) : Path on the circle t = t o -  6e ~~ where ~ increases from 0 to 3re. 
(d) : Path on the real t-axis, from t = to + 6 to t = 2 t o -  e. 
(e) : Path on the circle t = 2 t o -  eei~ where 0 increases from 0 to re/2. 

(b) 

Fig. 9. Modification of paths T3n and T_ 3re in the complex t-plane. 
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! 

! 

O' 1 

Fig. 10. Image of Tan by the mapping w = ~t)  in the complex w-plane. 

Definition of T 3~ is made only by replacing - 3 r t  instead of 3rt in (c). First we 
examine the image of above path T3", by the mapping w = 4)(t) in the complex w- 
plane. For the images of (a) and (e), we need the expansion of the function ~b(t), 

~b(t) = 1 -- (1/2)z 2 + O(z4), z = t -  t , ,  (C.1) 

around the points t ,  = 0 ,  2to, 4to, . . .  O For  the image of (c), we make use of the 
expansion (2.10). These tell us that the image of path T3~ in the complex w-plane 
becomes as follows. [Figure 10] 

~b(a) : Path on the circle w =  i + e, l e i~ where 0 increases from 0 to n, and 
el = (1/2)e 2 + O(e4). 

~b(b) : P a t h  on the real w-axis from w =  1 - e l  to w = 6 1 ,  where 61 =x//-2/962/3 
{1 + 0(62/3)}. 

(h(c) : Path on the circle w =  61 ei~, where q/increases from 0 to 2re. 

~b(d) : Path on the real w-axis from w = 61 to w = 1 -  el. 

! 

I 
0 

I 
! 

I 
! 

I 
| 

~ U l U O U l m ~ I I I D  I 

0i 

Fig. 11. Image of T3n , by the mapping z = 1/~t), in the complex z-plane. 
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0 i 
, 1 
I 
! 

I 
! 

I 
| 

Fig. 12. Image of T_3n  , by the mapping z = 1/~t), in the complex z-plane. 

~b(e) : Pa th  on the circle w = 1 + e, l e i~ where 0 increases from n to 2n. 

Finally, by the mapping  z = l/w, we have the 
plane. [Figure 1 1] 

following image in the complex z- 

~b(a)-1 : Pa th  on the 'small '  circle z = 1 + e2 el~ where 0 increases from - n  to 0, 
and e2 = el + 0(e2). 

~b(b)-1 : Pa th  on the real z-axis from z = 1 + ~2 t o  Z = 6 1  1. 

~b(c)-1 : Pa th  on the 'large' circle z =(1/61)e i~, where ~ decreases from 0 to - 2 n .  

q~(d)-1 : Pa th  on the real z-axis from z = 6 (  1 to z = 1 + e2. 

~b(e)-1 : Pa th  on the 'small '  circle z = 1 + e,2 el~ where 0 increases from 0 to n. 

The closed path, thus obtained, has the base point at z = 1 - •2, and makes  a circuit 

z -  0 only once, in the negative direction. Therefore, the image can be written as 
701. Similar consideration,  which only needs the change of qS(c) and th(c) -1, shows 

that  the image of T-3~ is expressed as 71 ?071. [Figure 12] Thus, the definition of T <1> 
and T <2~ in (2.11) proves the expressions (4-.1) and (4:2). 
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