

© Springer-Verlag 1991

On the length of an extremal rational curve*

Yujiro Kawamata

Department of Mathematics, University of Tokyo, Hongo, Bunkyo, Tokyo 113, Japan

Oblatum 20-XI-1990

The purpose of this paper is to supplement the cone theorem ([Ka1]) and prove the following (we refer to [KMM] for the notation):

Theorem 1 Let $g: X \to Y$ be a projective morphism of algebraic varieties over a field of characteristic zero, and Δ a \mathbb{Q} -divisor on X such that the pair (X, Δ) has only log-terminal singularities. Let E be an irreducible component of the degenerate locus $Exc(g) := \{x \in X; g \text{ is not an isomorphism at } x\}$, and let $n = \dim E$ $-\dim g(E)$. Assume that $-(K_x + \Delta)$ is g-ample. Then E is covered by a family of rational curves $\{L_{\lambda}\}_{\lambda \in \Lambda}$ such that the $g(L_{\lambda})$ are points and that $(-(K_{X} + \Delta) \cdot L_{\lambda})$ < 2n (resp. $\leq 2n$) if $E \neq X$ (resp. E = X).

Let $f: X \to S$ be a projective morphism of algebraic varieties such that the pair (X, Δ) is log-terminal for a Q-divisor Δ , and g: $X \to Y$ a contraction morphism associated to an extremal ray R for $f: X \to S$ with respect to the log-canonical divisor $K_x + \Delta$. Then g is an S-morphism which satisfies the conditions of Theorem 1. If X is smooth, S is a point and if $\Delta = 0$, then by Mori [M] and Ionescu [I], E is covered by a family of rational curves $\{L_{\lambda}\}_{\lambda \in A}$ such that $(-K_{X} \cdot L_{\lambda})$ $\leq \dim X + 1 - 2 \operatorname{codim}_X E$. The number $(-K_X \cdot L)$ is called the *length* of L. We note that our theorem is new even in the case where X has only terminal singularities and $\Delta = 0$. As a corollary we obtain an alternative proof of the discreteness of extremal rays:

Corollary ([Ko]). For $f: X \to S$ as above, let H be an f-ample Cartier divisor and ε a positive rational number. Then the number of extremal rays R such that $((K_x + \Delta + \varepsilon H) \cdot R) < 0$ is finite.

Proof. These extremal rays are generated by rational curves L such that $(H \cdot L)$ $<(-(K_x + \Delta) \cdot L)/\varepsilon \leq 2/\varepsilon \cdot \dim X.$ Q.E.D.

The key to the proof of Theorem 1 is the following lemma on the adjunction which is proved similarly as [Ka2, Theorem A.1].

Lemma. Let $f: X \rightarrow Y$ be a projective birational morphism of normal algebraic varieties. H an f-ample Cartier divisor on X, Δ an effective \mathbb{Q} -divisor on X, E

^{*} Dedicated to Professor Heisuke Hironaka on his sixtieth birthday

an irreducible component of the degenerate locus Exc(f) of f, $n = \dim E$, and $v: \overline{E} \to E$ the normalization. Suppose that the pair (X, Δ) has only log-terminal singularities and f(E) is a point. Then

$$(H^{n-1} \cdot (K_{\chi} + \Delta) \cdot E) > ((\nu^* H)^{n-1} \cdot K_{\bar{E}}).$$

Proof. We may assume that Y is affine and H is very ample. We may also assume that n=1. In fact, if n>1, then we replace X, E and \overline{E} by a general member X_1 of |H|, $E_1 = E \cap X_1$ and the normalization \overline{E}_1 of E_1 , respectively. Since we have $K_{X_1} = (K_X + H)|_{X_1}$ and $K_{\overline{E}_1} = (K_{\overline{E}} + \nu^* H)|_{\overline{E}_1}$, the assertion for X follows from that for X_1 .

Suppose that n=1 and $((K_X + \Delta) \cdot E) \le \deg K_{\bar{E}}$. Then there exists a Cartier divisor A_0 on E such that $\deg A_0 \ge ((K_X + \Delta) \cdot E) \in \mathbb{Q}$ and $H^0(\bar{E}, K_{\bar{E}} - v^* A_0) \ne 0$. By the trace map, we have $H^0(E, \omega_E(-A_0)) \ne 0$. We can extend A_0 to a Cartier divisor A on X if we replace X by a small analytic neighborhood of E. Since $A - (K_X + \Delta)$ is f-nef, we have $R^1 f_* \mathcal{O}_X(A) = 0$ by [KMM, 1.2.5] and [N, §3]. Hence $H^1(E, A_0) = 0$, and $H^0(E, \omega_E(-A_0)) = 0$ by the Serre duality, a contradiction. Q.E.D.

Proof of Theorem 1. Let Y_1 be an affine open subset of Y which intersects g(E)and Y_0 a generic linear space section of Y_1 whose codimension is equal to dim g(E). We set $X_0 = g^{-1}(Y_0)$, $g_0 = g|_{X_0}$, $\Delta_0 = \Delta \cap X_0$, and $E_0 = E \cap X_0$. Let H be a g_0 -ample Cartier divisor on X_0 , $v: \overline{E}_0 \to E_0$ the normalization, and C the intersection curve of n-1 general elements of $|v^*H|$. We also let $M = -v^*(K_X + \Delta)$, which is an ample Q-Cartier divisor on \overline{E}_0 .

First, we assume that $E \neq X$. Then by Lemma, we have $\deg_C(K_{E_0}|_C) < (-M \cdot C) < 0$. In the case where n=1, since $R^1 g_{0*} \mathcal{O}_{X_0} = 0$ by [KMM, 1.2.5], we have $C = \overline{E}_0 \simeq \mathbb{P}^1$, and $(-(K_X + \Delta) \cdot C) < 2$. If n > 1, then by replacing H by its multiple if necessary, we may assume that C is not a rational curve. By [MM], for an arbitrary point x on C, there exists a rational curve L on \overline{E}_0 passing through x such that $(M \cdot L) \leq 2n(M \cdot C)/(-K_{E_0} \cdot C) < 2n$.

In the case where E = X, if n = 1, then $X_0 \simeq \mathbb{P}^1$, while if n > 1, then there exists a rational curve L through a general point of X_0 such that $(M \cdot L) \leq 2n(M \cdot C)/(-K_{X_0} \cdot C) \leq 2n$, since $(\Delta_0 \cdot C) \geq 0$. Q.E.D.

We have another application of Lemma.

Theorem 2 Let $f: X \to Y$ be a projective surjective morphism, Δ an effective \mathbb{Q} -divisor on X, and E an irreducible component of $\{x \in X; \dim_x f^{-1}f(x) > \dim X - \dim Y\}$. Suppose that the pair (X, Δ) has only log-terminal singularities and that $-(K_X + \Delta)$ is f-nef. Then E is covered by a family of rational curves.

Proof. We may assume that Y is affine and f(E) is a point. Let $v: \overline{E} \to E$ be the normalization, H a very ample divisor on X, X_1 the intersection of d general members of |H| for $d = \dim X - \dim Y$, $\Delta_1 = \Delta \cap X_1$, $E_1 = E \cap X_1$, and $\overline{E}_1 = v^{-1}(E_1)$. If d=0 and dim E=1, then $E \simeq \mathbb{P}^1$ as before. Otherwise, by Lemma \overline{E}_1 is covered by a family of curves C such that $(K_{\overline{E}_1} \cdot C) < ((K_{X_1} + \Delta_1) \cdot v_* C) \le d(v^* H \cdot C)$. Hence $(K_{\overline{E}} \cdot C) < 0$ and E is covered by rational curves by [MM]. Q.E.D.

References

 [I] Ionescu, P.: Generalized adjunction and applications. Math. Proc. Camb. Philos. Soc. 99, 457–472 (1986)

- [Ka1] Kawamata, Y.: The cone of curves of algebraic varieties. Ann. Math. 119, 603–633 (1984)
- [Ka2] Kawamata, Y.: Moderate degenerations of algebraic surfaces. Proc. Symp. Bayreuth 1990 (to appear)
- [KMM] Kawamata, Y., Matsuda, K., Matsuki, K.: Introduction to the minimal model problem. In: Oda, T. (ed.) Algebraic Geometry. Proc. Symp., Sendai 1985. (Adv. Stud. Pure Math. vol. 10, pp. 283–360) Tokyo: Kinokuniyo 1987
- [Ko] Kollár, J.: The cone theorem: Note to [Ka1]. Ann. Math. 120, 1-5 (1984)
- [MM] Miyaoka, Y., Mori, S.: A numerical criterion of uniruledness. Ann. Math. 124, 65–69 (1986)
- [M] Mori, S.: Threefolds whose canonical bundles are not numerically effective. Ann. Math. 116, 133-176 (1982)
- [N] Nakayama, N.: The lower semi-continuity of the plurigenera of complex varieties. In: Oda, T. (ed.) Algebraic Geometry. Proc. Symp., Sendai 1985. (Adv. Stud. Pure Math. vol. 10, pp. 551–590) Tokyo: Kinokuniya 1987