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Summary. For unimodal maps with negative Schwarzian derivative a sufficient
condition for the existence of an invariant measure, absolutely continuous with
respect to Lebesgue measure, is given. Namely the derivatives of the iterations of
the map in the (unique) critical value must be so large that the sum of (some root of)
the inverses is finite.

1 Introduction and statement of results

The aim of this paper is to introduce a new, very weak, condition which guarantees
the existence of an invariant probability measure, which is absolutely continuous
with respect to the Lebesgue measure (acim in short), for unimodal maps of the
interval. We believe this condition is so weak that it is even equivalent to the
existence of acim’s.

It is well known that there are three possibilities for such a map;

e f has a periodic attractor;

o there exist arbitrarily small intervals which are mapped into themselves by some
iterate of f;

e the non-wandering set of f contains intervals.

In the last case such a map may have an acim. The purpose of such a measure is to
describe the statistical properties of orbits: the frequency with which a trajectory
falls into a set is given by the measure of this set. For several years it was believed
that such maps have automatically an acim, but as was shown by Johnson [Jo] this
is not true.

In general, the existence of an absolutely continuous measure of some interval
map is related to the amount of expansion this map has. Indeed, if a map
f:10,1] - [0, 1] is everywhere expanding (and therefore not smooth) then it has
an acim [L-Y]. However, if the map has a critical point there is no universal
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expansion. Nevertheless by some analytical means one can estimate the counter-
play between the contraction ruled by the derivative near the critical point and the
expansion ruled by the derivative near the critical value [Ja, M, Sz, C-E, N1, N2,
K1, K2, N-S, Str2]. In these results the expansion near the critical value was
assumed to be exponential.

In what follows we prove that some weaker expansion is sufficient, and we
conjecture that a condition similar in nature to ours is also necessary.

We shall deal with C? maps f of the interval [0, 1] into itself with negative
Schwarzian derivative, ie., Sf=f"/f — 3/2(f"/f")? < 0. The maps f we deal
with are unimodal. By this we mean that there is a unique ce[0, 1] such that
Df>0on{0,c)and Df<0on (c, 1], where D f denotes the derivative of f. This
point ¢ is called the critical point of . We say that the critical point ¢ has order [ if
there are constants 0., O, so that

Oqlx — '™ D) £ O5lx — ¢! (NF)

As usual let /" be the n-th iterate of f and let ¢; = f(¢). Furthermore denote the
Lebesgue measure of a measurable set by |I|.

Main Theorem Suppose that f is unimodal, C3, has negative Schwarzian derivative
and that the critical point of f is of order | = 1. Moreover assume that the growth-
rate of |[Df"(cy)] is so fast that

M8

IDf*en)] "M < o

n=0

holds. Then f has a unique absolutely continuous invariant probability measure
u which is ergodic and of positive entropy. Furthermore there exists a positive
constant K such that

1(A) < KA,

for any measurable set A = (0, 1). Finally, the density p of the measure p with respect
to the Lebesgue measure is a L™~ function wheret=1/(1 — 1),L*™ = U15t<tL’ and
L'={peL':flpl'dx <0} -

It is not hard to show that there exist many parameters a for which the quadratic
map f(x) = ax(l — x) satisfies the assumption of this theorem and not the condi-
tion that |D f"(c,)| grows exponentially (which was introduced in [C-E]). So the
condition from this paper is much weaker than the well-known Collet-Eckmann
condition. Benedicks and Young [B-Y] proved the existence of acim’s for maps
with a non-flat critical point for which [Df"(c;)| is at least e*¥» and for which
moreover the distance of f"(c,) to ¢ is at least of the form e ™. Clearly our result
implies theirs. Moreover, we think that our proof is simpler than theirs.

Since the measure pu from this theorem is absolutely continuous,
A= [log|Df|du is strictly positive and since u is ergodic this implies

1
lim Elog|Df"(x)| =4, >0 for u— almost all x .

Of course the estimate u(A4) < K|A|'" shows that the poles of the invariant
measure g are at most of the form |x ~ x|~ 1. It is not hard to show that any
absolutely continuous invariant probability measure has a pole of this order at the
critical values f”(c), n = 1, and therefore this estimate is optimal. Even for maps for
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which |Df"(c,)| grows exponentially this result is new (the results in [C-E] and
[N-S] only give some bounds for the order of the poles). Notice that the density of
the invariant measure is always a L~ function where © = [/ — 1), independently
of the size of 3. |Df"(c;)| "' <oo. We conjecture that these maps either have
an absolutely contmuous probability invartant measure with a L*~ density or do
not have a finite absolutely continuous invariant measure at all. Finally it is
a pleasure to thank Gerhard Keller, A.O. Lopes and P. Thieullen for some very
useful comments.

2 A reformulation of the Main Theorem and an outline of its proof

In [BL1] and [BL2] it is shown that any unimodal map with negative Schwarzian
derivative is ergodic (w.r.t. to the Lebesgue measure) and that any absoiutely
continuous invariant probability measure y has positive metric entropy. Mare
precisely, as was shown in {BL1] and [BL2] any forward invariant set of positive
Lebesgue measure has the critical point as a density point. From this the ergodicity
of any absolutely continuous invariant measure g follows immediately. Further-
more if the entropy of the measure p were zero, then f would be p-almost
everywhere invertible. But this would imply that the support of u could have at
most density 1/2 at the critical point of f, a contradiction with the previous
statement. Therefore, in order to prove the Main Theorem it is enough to establish
the existence of an absolutely continuous invariant probability measure .

In order to prove the existence of this invariant measure we will use the strategy
of [N-S]. Usually invariant measures are constructed by considering iterations
of the Perron-Frobenius operator. This operator associates to the density of
a measure v the density of f, v. Of course f, v will have poles at the critical values of
f even if v does not. Therefore in order to show that iterations of the Perron-
Frobenius operator (i.e. the densities f, v} have a nice limit density, one has to
choose a good ‘topology’ on a space of densities with infinitely many poles. In some
cases one chooses L* spaces, in other cases spaces with weighted norms.

Rather than to look at the densities of fv, in [N-S] it was proposed io
compare the measures fy v with the Lebesgue measure. More precisely, using
general arguments one can show that f has an absolutely continuous invariant
probability measure provided that for any ¢ > 0 there exists é > Osuch that for any
measurable set A with |4 | < 6 one has that | f ~"(A4)| < ¢ for all n > 0. In fact in this
paper we will prove the following more precise statement: there exists a constant
K such that for every n and every measurable set 4,

If (A < K(AIM. (1)

Let us first explain why (1) implies that f has an absolutely continuous invariant
probability measure with a L*~ density where T = [/({ — 1). For simplicity assume
that {7} =1 and let A be the Lebesgue measure on [. Define 4,{4) = 5f"‘{A)1
(which is nothing but the probability measure fJ'4 from above when 4 is the
Lebesgue measure) and let u, = & Z:’Zol Aivie, ua(A) =1 Z:’ o |/ T/(4)]. Since the
space of probability measures on [ is compact (with respect to the weak topology),
there exists a sequence n; — oo and a probability measure y such that u,, converges
weakly to u. From the definition of pu, it follows easily that u is invariant,
w(f ~1(4)) = u(A), and from (1) one has that u(A4) < K|A|*"* for each measurable
set A. Hence u is absolutely continuous. Let p be the density of 4 with respect to the
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Lebesgue measure, ie., u(A) = j p(x)dx. Informally speaking, the inequality

u(4) < K|A|'" implies that the poles of the densrty can be at worse of the form
x V=1 dy a x V'~ 1dx then integrating gives fox'~tdx =¢'. So one expects

the densrty to be in the space L*~ where © = I/(I — 1). Let us make this argument

precise Take t=1 and Cy={x;kZp'(x)Sk+1} and Dc=|]J

{x: p'(x) 2 k}. Since (4) < K|A|", k**|D| < [, pdx = u(Dy) < K Dy 17' and

therefore
i

Dl < K'+ k@D
Hence

fprdx < Z (k+ DICl =1+ Z 1Dy,

o0 1
Jprdx <1+ Y Kk~ TDi<oo

k=0

whenever ¢t < © = I/(l — 1). This shows that pe L*™.
One of the main results in [N-S] was to show that (1) can be deduced from the
following: there exists a constant K’ such that for any n and every ¢ > 0,

|f ey — & er)l < K'eM! @

where [ is the order of the critical point of f. Because of the non-flatness condition
at the critical point this is equivalent to: there exists a constant K” such that for
every n > 0 and every ¢ > 0

[fMc—¢c+e)]<K'e.
From all this it follows that the Main Theorem can be deduced from

Theorem A Suppose that f is unimodal, C3, has negative Schwarzian derivative and
that the critical point of f is of order | = 1. Moreover assume that

2 IDfMe)l ™ <0
n=0
holds. Then there exists a constant K < oo such that for each ¢ > 0,
Hf Mc—¢gc+e) <Ke. 3)

Let us say a few words about the proof of inequality (3). The main idea in [N-S]
was to show that f ™"(c — ¢, ¢ + ¢) is contained in the union of sets of the form

e € &
frome (C B IDf"(Cr)I”"C - |Df“(c1)|”‘> |

where k runs over all integers such that n — k > log(¢). In this way it was possible
to prove inductively that there exists & > 0 such that | f ""(c — g, ¢ + )| < ¢° using
the exponential growth of |Df*(c,)I.

In this paper a more refined version of this strategy is chosen. It is proved that
each component of f ~"(c — ¢, ¢ + &) is either contained in or at least can be
compared in size (this process we will call ‘sliding’) with a set of the form

- € ¢
- (C lDf"(Cr)l’”’c+IDf"(q)I”')'
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Using this and the summability condition, inequality (3) will then be proved by
induction.

3 Some notation and some prerequisites

Throughout this paper we will mean by («, §) the interval with endpoints a and
B irrespective of their ordering.

In this paper we assume that f has negative Schwarzian derivative, i.e., that
Sr=f"f"—3/2(f"/f)? < 0. From this it easily follows Sf" < 0 and that |Df"|
has no positive local minima. More generally such maps f have the following
properties. A proof of the first property can be found in for example [M.S.1]. The
second property was proved first used in [Strl], but see also [Str2], [M.S.2],
{MM.S].

i {The cross-ratio is expanded) For every k and every a < <y <5 if Dfitsy +0
then

if"(l)l!f*(T)|>|f( |LS4R)
17| IL{  IR|

where L = (o, B), I = (B,7), R=(7,6), T = (&, 9).

ii (Koebe Lemma) For every T > 0 there exists a constant ¢ = O(t, KL) > 0 such
that for every k and every o < x < B with Df¥, g, # 0if | f¥(2, x)} > 7| f*(«, B) then

IDf*(x)| > O(x, KL)IDF“(B)] . (KL)

In the proof we shall use the following convention. The symbol ¢ will describe
various finite and positive universal constants (i.c., they are independent on the
iterate of f). All the estimates in this paper are based on the non-flatness condition,
the fact that the cross-ratio is expanded or on the Koebe Lemma. O(NF) denotes
a constant which is based on the non-flatness condition and @(r, KL) is the
constant from the Koebe Lemma.

(EC)

4 Branches which will be ‘slided’ later on

Let /" be monotone on an interval I and assume that f"(I) ={c — ¢, ¢ + &). Let
T be the largest interval containing I on which f* is monotone and lable the
endpoints o and § of T so that | f"(«x) — ¢| < 1 f"(8) — ¢]. Denote the endpoints of
I by y and & so that either x < y < d < fora >y > > f. In this section we will
assume that

Lf () —f" ()l 2 2¢. (+)
Ao =f"a, v} Io =f"(]), Ro = f"(8, ) .

Let

By () one has
[Ro| = 140l 2 |Lo] - (x*)

Later on we shall show that if | R, | is not too large compared to |4, | then the set
Iy = f*(I) can be ‘slided’. In this section we will show that if I, cannot be ‘slided’ at
least some smaller iterate f*(I) of I can be ‘slided’. If |4 L Io} 2 |Ro| then set
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s = 0 and we are finished. Otherwise we shall define inductively a finite sequence of
intervals T* = [a;, ;- ] and integers n; as follows. Let no = n, 9 = ¢, «_; = fand
T° = [{ay, 1] = (e T° = T). By maximality of T one can choose r; such
that 0 <n, <n and f* (%) = ¢. Now choose a; such that T! is the maximal
interval of the form T! = [a,,a,] which contains T° and on which f™ is
monotone (of course one may have 7!= T). Now assume that n,_, and
T ' =[o;-4, ;] are defined. Then simply define n, <n;., such that
f™(a;—1)=c, and let T' be the maximal interval of the form [a;, ;- ;] which
contains T~ = [a;_,, ®;_ ;] and on which /™ is monotone. It follows that for
i22, T'and T'~! have precisely one common boundary point and that

IcT<c ...cTt.
Let us now define the integers k; and intervals I;, R;, 4;, L; as follows:
ki=n —n, I ="},
Ry =f"(otie s PNty Ai = " (0, YLy, Ly = ™ (@i= 2, YN

In other words R; is the component of f™ (T'\I) which contains c¢ and A; is the
other component. Furthermore L; is contained in 4; and

foUie) = Lo f*(Ris1) = A fY(Lic ) = Ry,
foralli=0,...,s— 1. We stop the construction at i = s, when
tA, v I 2 IR, . (*%xa)

In particular

A, 0l IRy, fori=0,1,...,s—1. (#*xb)

The main result of this section is the following
Proposition 4.1 There exist constants K', K" such that
)l

[1;2o KRS (e

HESS

Ry Io 40
[
T ]
¢
fho
Ly Iy i3
F + + e
Ay
I
R Ly
e} + + —+
A

Fig. 1. The intervals R,, I;, L; and A4;



Invariant measures 129

In order to prove this proposition we need some lemmas:
Lemma 4.2
(A1 UL OR [ [Ris ]

=il =4I Tx,

Proof. By (EC) we have
L Lis DN (R ) 15U N (L0 L W R )
[Liv1l [R; 41l vl ILisi Ol URy]
By definition of the sequences of intervals A, L, I, R this is equivalent to
IL; | IR; U ;L A IR; 11|
[A:l [Riv W livi U Liv,] IR

Hiv il S 11

By induction we get

[Ay I URy TV Risgl s2HOL IR v L v Ay | Lyl
Li<iI :
= == ey < I ko0 ) oL o Rl
The last factor is clearly less than 1, and we can say the same about the last but one
la +w)

factor because these terms are of the form and because

a(l + w)

I(a +w) <a(l +w)for positive , a, wand I < a. [J
Lemma 4.3 Assume that f* is a diffeomorphism on (¢, w) and that for some z (¢, w)
one has f*(z) = c and | f*(c, z)| < t|f*(2, w)| for some 1€(0, 1). Then

|fk(c5 Z)l k 1/1
Wz@(r)wf (c1)l ",

Proof. Using the chain-rule, the non-flatness condition, (K L) and f*(z) = c one has

IDf ()l = (DS He DD el
SONF)Sf* ey —cl DS eyl
1 S (e )
S O(NF)OKL, o) f* ' (e;) — ¢ I—W

- ovF)oKL 1) e

[fe, 2)}
Using again the non-flatness condition gives the required estimate. O

Lemma 4.4 Assume that f* is a diffeomorphism on (c, z), that {*(z} = ¢ and that for
some ye(c, z) one has | f*(c, y)| < Tl f*(3, z)| for some 1€(0, 1). Then
k
V2N o@ipsieni.
(e, y)I

. 1
Proof. From the non-flatness condition and since | f*(y, z)| = ;l f*(c, y)| one has

' 50, 2) 4, ) O(NF) e )
>;@(NF) T 27 AT RS

<|f"(y, z)]
e, ¥l
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Since | f*(c, y)] < t|f*(y, z)| one gets from (KL) that the last factor is at least
1
O(t, KL)IDf* '(c;)]. Moreover one has |f*(y,2)| 2 mlf"(c, z)}

=1__T_—ff (¢) — c|. From all this

AR Koy — o= 1 k-1
(t(c,yn > 2 O1f*e) = el IDf* el -

By the non-flatness condition | f*(c) — ¢|'"' = O(NF)|Df(f*(c))|, and therefore
the lemma follows. [

Lemma 4.5 If's > O then there exists a constant K < oo such that

¥ |!Alulqu1|< [/"()]
Yo l4d T DR
fR) 1 o
TRTEEIDJM (Cl)|1/l,
|R;] 1 _
|RMI§EIDf"(C D for i =1, s—1
Proof. By (EC) we have
Ay 0l U R, |R| lka(A1U11UR1)|
I | —————— < |f*(I <
g =Ry e =
[R,] [Tou Aol
<|f"d 1
=17 )llf""(Rx)I( * |f"°(L1)I>
< 1f(1)] lf’!i;%lm <1 4 "‘]Ej(") .
By (*x) this gives
|4, Ul UR,| [Ry]
L|——=< I ——.3.
SRR VT

It is therefore enough to prove that | f*(R,)|/|R,| > @|Df*(cy)|'". So let us prove
this. One has f*(R;) = 4o. Let Ry = Ry U I, be the smallest interval containing
R, such that f*(R}) contains c. We want to apply Lemma 4.3 by taking (z, w) to be
the interval T, and (c, z) the interval R}. Since f*(T,;\R}) = f*(L,) = R, and
since s > 0 we get from (**xb),

[f*(T\RD| Z [Rol Z [Ao U Lol Z [f*(R)] .
From all this it follows that we can apply Lemma 4.3 and get that
IfR(RDI/IRT] > OIDf*(cq) !
But since | f*(R{)| = |4o| + & < 2|4o| = 2|f"°(R1)|, this implies

If9RY) LR I
IRy 23 IR1]

So the first two statements of the lemma follow.

3 IDf"“(C N
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To prove the third statement let as before R}, € Riy, vl be the smallest
interval containing R,H such that f*(R/, ) contains c. Because the construction
did not stop at i, | f*(L;s )l = |Ri| Z |4; w ;] = | f*(R}4+)]. Therefore one can
apply Lemma 4.4 and we get

Rl IRy _ (L)
[Rl‘f’ll |R1+1| ‘R+1l

2 OIDf ()|

This proves the third statement of the lemma. O

Proof of Proposition 4.1 This follows immediately from Lemmas 4.2, 4.5. (]

5 Estimates

In this section we shall prepare the estimates for the preimages of the intervals
around the critical point ¢. So consider the set E(J) =(c — d,c + ) and its
preimages E,(3) = f “"(E(J)). For a given ¢ > 0 we shall subdivide the collection of
components of E,(¢) into three subcollections.

Let 6 be some positive number and let ¢€(0,10). We define v(s) as
inf{k > 0:]f*(c) — ¢| < g}. Clearly v(s) is monotone and v(s) tends to infinity as
o — 0. Later on we shall choose ¢ appropriately.

Letibea component of E,(¢). Suppose that I I'=I" where I'is a compon-
ent of E,(2¢) and I" is a component of E,(c). If Df|}-- # 0 then I belongs to the
collection &,. If I¢4, but Df|j- # 0 then I belongs to the collection %,. All the
other components form the collection 7.

5.1 The collection R,, the regular case

IfIe#,, then f" is a diffeomorphism on I and there exists y € I such that f"(y) = c.
Let (a, ) be the maximal interval containing I on which " is a diffeomorphism. By
definition of #, we have |f*(«, 7)|, | f*(B, 7)| Z 6. Therefore we can use (KL) on
I and obtain:

Proposition 5.1 There exists a constant Ky such that for ¢ < 6/2 and any regular
component I as above, one has

H 8
(o B

Proof. By (KL) one has |[Df"(x)| < O(KL)|Df"(y)| for any xe(x, f) and yel.
Therefore

ALY ) VAT By -

[E IR (G| R I Vi

Corollary. For 1€, let A,(I) be the maximal interval on which f" is a diffeomor-
phism. By the previous proposition we obtain

A

TS Y o 14D S Kl T 10 S Ke

Tedy, led, |A,,(I)| ledk,
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5.2 The collection &,, the case to slide

Let I€.%,. Then there exists s = 0 and a sequence n,<n,_,; <...<ny=mnasin
section 4 such that (in the terminology of that section) | A, uI;| = |R,]. Since for
eachi=0,...,s f™is a difeomorphism on 7* = [, since f™(T") o R, and since
R, contains c, there exists an interval J* < 7" such that G; = f™(J*) contains ¢ and
such that

=17
In other words by (;hoosing an appropriate x;e[x/,c] = R;ul; one can assure
that the preimage J ' of G; = [x;, c] has the same sizeas I. Let G = Gyand J = J %

This process we call sliding. Note that f™(J*) contains ¢. Because |4,u [| = |R,|
we can use (K L) and obtain

Lf™(IH |f()]
< O(KL

7 T

and therefore |G| £ @|1,]. Therefore by Proposition 4.1

Gl < (OK | ()| < OK'2¢

T ILCo KD S T [T K DS S e

So for each such component I of E,(¢), there exists an interval J as above such

that |1} =]J| and therefore such that |I| is at most the size of the part of the

f"-preimage of

( . 0K 2 OK'2e )
[T, K'IDf*(ey) ™ H oK IDfRs(cy)
that is contained in 7°. Now even for a given sequence of ny <n,_; <...<ny=n,
there may be several such components I in 7°. Even worse, some of these may give
the same interval J (or at least overlapping intervals). But for every given sequence
of ny <ng_y <...<ng = n, there exist at most 2° different components I of E,(¢)
of type #,, such that the corresponding intervals J overlap. Indeed, at the first step
of the construction two intervals I and I can only slide onto overlapping intervals
J ' and J ! if there is precisely one turning point of f™ between these two intervals.
Similarly at the i-th step two intervals J '~ ! and J ! can only slide onto overlap-
ping intervals J '’ and Jif there is precisely one turning point of f™ between these
two intervals. So at each step the number of intervals I € &, which correspond to
overlapping intervals J can at most double. Thus we get

s X 21f e~ |G+ (Gl (*)
IeSyn Z] Ok <n
Lemma 5.2 There exists 6, > O such that kg, . . . , k,_, = v(0) for each a€(0, 0y).

Proof. Choose o, > 0 so small that for each o€ (0, 5o) and each k > v(g) one has
|Df*(c,)|Y" > 2K where K is the constant from Lemma 4.5. Because v(s) > o0 as
o -0 and |Df*(c;)| = oo as k — oo this is possible.

By definition of ko, £*(c) is contained in the closure of A,. Since I € ¥,, at least
one critical value of f*|T, is cotained in (¢ — o,¢ + a). As Tp = [a, f] and as
[f™(a) —c| < |f"(B) — c|, this implies f["(x)=f*(c)e(c—0,¢ + o). Hence
ko = v(0) and, observing the definition of Ay, 4g = (¢ — o, ¢ + 7).
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Next notice that if for some i=1,...,s— 1 one has
IRyul;u A <0 implies k; = v(o) . (%)

Indeed, c is contained in the closure of R; U I; U A4, this interval has at most length
o and f*(c) is contained in A;. Therefore k; Z v(o) follows from the definition of
v(a).

So let us show by induction that for 6e€(0,0,), |[RiVI;UA4]| L0 for

i=1,...,5s— 1. Soassume s = 2 and let us first prove that this inequality holds
for i = 1. From Lemma 4.5, | f*(R,)| = K|{Df*(c,)|'"|R,|. Therefore
Lf*(Ry)I
RivlLUA||22{R| 22K 13
i 1V v 1|_ l 1|_ Ikao(Cl)ll/l
14|
=2K—————=<14
D7 = Aol

where the last inequality holds provided ¢e(0, g,) because kg = v(c), and
[Df*(c1)| > 2K for k = v(s). Since |4,| < 6, the induction assertion is proved for
i = 1. Similarly, we get for i < s, using the third inequality of Lemma 4.5, that

|R;-1]
IDf*=t(e )™

From the inductive assumption we know that |R;_, U I;~; UA,; ;| £ ¢ and from
(xx) this implies k;—, > v(c) and so we get again that for a€(0, 0,) sufficiently
small that

IRiv ;U Al S2IR)| £2K

[Rev;uA] £ |Ri- | SIRi- v vdisi| S0 O

Therefore one has k; > v(a). Using this, () and the estimate for |G| one gets the
following

Proposition 5.3 There exists a constant K such that for 6 €(0, a,),

—ns €
! <E<Ksﬂi;iK"inkJ(cl)P“))"

s oy o2

Ien k;zv(0)}
s-1
Z,:o kgn

5.3 The collection 7, the case to transport

We shall use the idea from [N-S], which is to reduce the estimation of the n-th
preimage Ie€ 7, to the estimation of some k-th preimage, with k < n.

Let IeZ, and let I' (resp. 1") be the component of E,(2¢) (resp. E,(0))
containing I. By definition f" has at least one critical pointin I’ = I.

Since /" has a critical point in I there exists an integer k < n such that cef*(1').
Let k be the largest such integer. For simplicity we say that I belongs to the
subcollection F F of ,,. From the properties just stated one has

P c)e(c — 2¢,¢ + 2) .

Since c¢fi(l’) fori=k+1,...,n—1, f*7*1 is clearly a diffeomorphism on

fk+ 1 (I/)
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Proposition 5.4 There exists a constant K such that for every n

_ % Kre
5 =3 3 szl (s(pagm))

I T Kk IeTk
Proof. Let f**Y(I') = (x, ¢, ] = f**1(I). As we saw f"~*~ ! is a diffeomorphism in
(x,c;). Moreover f"(I)c(c—gc+e), f"*Yx)=c+2 and f*(I')c
(¢ — 2¢, ¢ + 2¢). Therefore one gets from the Koebe Lemma immediately that

L/ ke
WEQ(KLNDf el

Hence

k+1 _(0—6___
D= Oy e

From the non-flatness condition this gives

1t
k D<o F k+1 I YL < —8v___> .
S5 = ONF) D) 5(9<[Dfn—k—l(c1)l

Since f" ¥ (c,)e(c — 2¢, ¢ + 2¢), the non-flatness condition implies that

e 17 el 171 p S
S = —— <O
(IDf"_"”‘(Cl)|> (le'"lDf""‘"l(cl)l> = DS MM

&
|f"(1)§(9w-

Since f*(I) = (c — &, c + ¢) it follows that there exists a constant K such that

—k( £k ok Kre
Lef ™M)y ef E(Iwn_k(cl)i,ﬁ).

The proposition follows. O

6 The proof of the Main Theorem

Let ¢ be fixed so small that for every n,

s—1
> 3Ks [TIK'Df*(c)f217 <1,
{kyzv(e)}, 1<j<s j=0

Ykysn
and
Y 3KpIDffe)lmM ST
k>v(o)
This is possible by the summability condition, since v(a) tends to infinity as
¢ — 0 and because of the following

Lemma 6.1 Suppose that d, = 0 and Z::o d, <co. Then for any y, Y > O there
exists a vy such that

P=3 I1 (nd} <y .
n  {kj2vo}

-1
Y ksn
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Proof. Consider Sy, =) .. ndy. Then both §,, and S = Y505k tend to zero
when kg tends to infinity. Clearly P < S which proves the assertion. [J
We shall now prove Theorem A in the following formulation:

Theorem B For any n and ¢ £ ¢/2
&
f e =t c+2) S3Ka s

Proof. With the notations from the previous section we have

fMe—get+e)=JivJiv U1,

led, 1e¥, Ied,
and
f Me—ec+e) Sy U+ X W+ 3.
Ie A, ie¥, led,
Therefore

. &
f e = e+ o) S Kp=+

&
+ 2~ (5( % )+
(kavw»%;jgs—l H JK"IDf* (e

Tky<n

" kg;(a) o <E<KT |Df"_k(c1)|”l)>l .

We shall apply the induction. For n small only the first term is non-zero and the
assertion of the theorem is true. Suppose that it is true for any € < ¢/2 and any
n < N. Then by the choice of o, the above formula and the induction assumption
we have

&
|f‘”(c—s,c+s)|§KR;+

3Kge/o
+ > 2°Ks ==
(k2 v(@)), 05551 [T K" IDf S (e )™
TSN

3Kge/o £
+ K =57 = 3Kz,
v(o)g@v TIDf ey Ko

which completes the proof. 0
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Note added in proof

It is not hard to show that if a map fas above has an absolutely continuous invariant probability
measure u with u(4) < k. |A|"" for all measurable sets A then the summability condition is also
satisfied. We conjecture that a weighted summability condition (where the weights are related to
the position of f’(c,)) is necessary for the existence of absolutely continuous invariant probability
measures.



