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Summary. For unimodal maps with negative Schwarzian derivative a sufficient 
condition for the existence of an invariant measure, absolutely continuous with 
respect to Lebesgue measure, is given. Namely the derivatives of the iterations of 
the map in the (unique) critical value must be so large that the sum of(some root of) 
the inverses is finite. 

1 Introduction and statement of  results 

The aim of this paper is to introduce a new, very weak, condition which guarantees 
the existence of an invariant probability measure, which is absolutely continuous 
with respect to the Lebesgue measure (acim in short), for unimodal maps of the 
interval. We believe this condition is so weak that it is even equivalent to the 
existence of acim's. 

It is well known that there are three possibilities for such a map; 

�9 f has a periodic attractor; 
�9 there exist arbitrarily small intervals which are mapped into themselves by some 

iterate o f f ;  
�9 the non-wandering set of f contains intervals. 

In the last case such a map may have an acim. The purpose of such a measure is to 
describe the statistical properties of orbits: the frequency with which a trajectory 
falls into a set is given by the measure of this set. For several years it was believed 
that such maps have automatically an acim, but as was shown by Johnson [Jo] this 
is not true. 

In general, the existence of an absolutely continuous measure of some interval 
map is related to the amount of expansion this map has. Indeed, if a map 
f :  [0, 1] --* [0, 1] is everywhere expanding (and therefore not smooth) then it has 
an acim [L-Y]. However, if the map has a critical point there is no universal 

* Partially supported by the NWO grant. 
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expansion. Nevertheless by some analytical means one can estimate the counter- 
play between the contraction ruled by the derivative near the critical point and the 
expansion ruled by the derivative near the critical value [Ja, M, Sz, C-E, N1, N2, 
Kl ,  K2, N-S, Str2]. In these results the expansion near the critical value was 
assumed to be exponential. 

In what follows we prove that some weaker expansion is sufficient, and we 
conjecture that a condition similar in nature to ours is also necessary. 

We shall deal with C 3 maps f of the interval [0, 1] into itself with negative 
Schwarzian derivative, i.e., S f = f " / f '  - 3 /2( f" / f ' )  ~ < 0. The maps f we deal 
with are unimodal. By this we mean that there is a unique c~[0 ,  1] such that 
D f >  0 on [0, c) and D f <  0 on (c, 1], where Dfdeno te s  the derivative of f This 
point c is called the critical point o f f  We say that the critical point c has order / if 
there are constants O1,02 so that  

OlIX - -  C[ l - 1  ~ IOf(x)l  < 02Ix -- cl I 1 (NF) 

As usual let f "  be the n-th iterate of f and let ct = f ( c ) .  Furthermore denote the 
Lebesgue measure of a measurable set 1 by 1I[. 

Main Theorem Suppose that f is unimodal, C 3, has negative Schwarzian derivative 
and that the critical point o f f  is o f  order l >_ 1. Moreover assume that the growth- 
rate o f lDf" (c l ) [  is so fast that 

IDf"(c,) l -1/ l  < CC 
n- -O  

holds. Then f has a unique absolutely continuous invariant probability measure 
It which is eryodic and of positive entropy. Furthermore there exists a positive 
constant K such that 

I~(A) < K JA] a/' , 

for any measurable set A ~ (0, 1). Finally, the density p of  the measure It with respect 
to the Lebesgue measure is a L ~-.function where z = l/(l - 1), U = ~ 1 _<t<~ U and 
L t = {p ~ t l ;  ~ Ip['dx < oo }. 

It is not hard to show that there exist many parameters a for which the quadratic 
m a p f ( x )  = ax(1 - x) satisfies the assumption of this theorem and not the condi- 
tion that ]Df ' (c i ) l  grows exponentially (which was introduced in [C-E]). So the 
condition from this paper is much weaker than the well-known Collet-Eckmann 
condition. Benedicks and Young [B-Y] proved the existence of acim's for maps 

with a non-flat critical point for which IDf"(cl) l  is at least e ~'~ and for which 
moreover the distance o f f " ( c l )  to c is at least of the form e-~". Clearly our result 
implies theirs. Moreover,  we think that our  proof is simpler than theirs. 

Since the measure It f rom this theorem is absolutely continuous, 
2 u := ~loglDf/dI t  is strictly positive and since It is ergodic this implies 

lira 1-1oglDf"(x)l = 2 u > 0 for/~ - almost all x . 
n ~  ~ n 

Of course the estimate ~(A) < KIAI m shows that the poles of  the invariant 
measure It are at most of the form Ix - Xol ~/~- 1. It is not hard to show that any 
absolutely continuous invariant probability measure has a pole of this order at the 
critical values f "  (c), n > 1, and therefore this estimate is optimal. Even for maps for 
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which ]D.f" (cl)1 grows exponentially this result is new (the results in [C-El  and 
[N-Sl  only give some bounds  for the order of the poles). Notice that the density of 
the invariant measure is always a U -  function where z = l/(l - 1), independently 
of the size o f~ _ o L Df" (q ) l  ~tL < ~ .  We conjecture that these maps either have 
an absolutely cont inuous  probabil i ty invariant measure with a U -  density or do 
not  have a finite absolutely cont inuous  invar iant  measure at all. Finally it is 
a pleasure to thank  Gerha rd  Keller, A.O. Lopes and P. Thieullen for some very 
useful comments.  

2 A reformulation of the Main Theorem and an outline of its proof 

[n [BLIJ  and [BL2] it is shown that  any unimodal map with negative Schwarzian 
derivative is ergodic (w.r.t. to the Lebesgue measure) and  that any absolutely 
cont inuous  invar iant  probabil i ty measure /1 has positive metric entropy.  More 
precisely, as was shown in [BLI ] and  [BL2] any forward invariant set of positive 
Lebesgue measure has the critical point  as a density point. F rom Ibis the ergodicity 
of any absolutely cont inuous invar iant  measure # follows immediately. Further-  
more  if the entropy of the measure p were zero, then f would be #-almost 
everywhere invertible. But  this would imply that  the suppor t  of # could have at 
most  density 1/2 at the critical point  of f ,  a contradic t ion with the previous 
statement.  Therefore, in order to prove the Main Theorem it is enough to establish 
the existence of an absolutely cont inuous  invar iant  probabil i ty measure ~. 

In order to prove the existence of this invariant  measure we will use the strategy 
of [N-S]. Usually invar iant  measures are constructed by considering iterations 
of the Perron-Frobenius  operator.  This operator  associates to the density of 
a measure v the density of./.  v. Of course f ,  v will have poles at  the critical values of 
f even if v does not. Therefore in order to show that i terations of the Perron- 
Frobenius  operator  (i.e. the densities f ,  v) have a nice limit density, one has to 
choose a good ' topology'  on a space of densities with infinitely many poles. In some 
cases one chooses L" spaces, in o ther  cases spaces with weighted norms.  

Rather t h a n  to look at the densities of .f.' v, in [N-SJ it was proposed to 
compare  the measures f,~'v with the Lebesgue measure. More  precisely, using 
general arguments  one can show that  f has an absolutely cont inuous invariant 
probabil i ty measure provided that for any z > 0 there exists fi > 0 such that  for any 
measurable set A with ]A] < 6 one has  that  [ f  -" (A)I  < c for all n > 0. In fact in this 
paper  we will prove the following more  precise statement: there exists a constant  
K such that for every n and  every measurable set A, 

If -n(A)[ < KIAI'/I (1) 

Let us first explain why (1) implies tha t  f has an  absolutely cont inuous invariant 
probabili ty measure with a L: density where z = l/(I - 1). For  simplicity assume 
lba t  III = 1 and  let 2 be  lhe Lebesgue measure on 1. Define ),,(A) -- If-"(A)l 
(which is no th ing  but the probability, measure J."2 from above when 2 is the 
Lebesgue measure) ' i - ~ and let/~, = ,, Z i = 0  2, i.e., # , (A)  = ~ Z'i']~ If - i(A)I,  Since the 
space of probabil i ty  measures on I is compact (with respect to the weak topology), 
there exists a sequence ni ~ ~ and a probabili ty measure / l  such that p,, converges 
weakly to p. From the definition of p, it follows easily that ~ is invariant, 
l~(f-a(A)) = p(A), and from (1) one has that p (A)  < K]AI la for each measurable 
set A. Hence p is absolutely continuous,  Let p be the density o f p  with respect to the 
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Lebesgue measure i.e. /~ (A)=  S p(x)dx. Informally speaking, the inequality 
�9 ' . ' A , 

,u(A) < KIAI TM tmphes tha t  the poles of the density can be at worse of the form 
e 

x ~/t- 1: if d# .~ x ~/z- ~ dx then integrat ing gives So x l/t- 1 dx = e lit. So one expects 
the density to be in the space L ' -  where z = l/(l - 1). Let us make  this argument  

o o  

precise�9 Take t > l  and  C k = { X ; k < p ' ( x ) < k + l )  and D k = U t = k C t  = 
{x; p'(x) > k }. Since kt(A) =< KIA[ l/z, k l/tlDk] < So~ pdx = ~(Ok ) < K" ]Dk] aft and 
therefore 

l 

IDkl < K "  k - ~ .  
Hence 

i.e., 

~pCdx ~ ~ (k + 1)lCkl = 1 + ~, IDkl, 
k = O  k = O  

~p~dx<=l+ K " k - ( l - ~ < ~  
k = O  

whenever t < z = 1/(l - 1). This shows that  p ~ L  ~-. 
One of the main  results in [N-S] was to show that  (1) can be deduced from the 

following: there exists a cons tant  K '  such that  for any n and  every e > O, 

I f - " ( c ,  - e, c,)[ < K'  e TM (2) 

where I is the order  of the critical point  of f Because of the non-flatness condit ion 
at  the critical poin t  this is equivalent  to: there exists a constant  K" such that  for 
every n > 0 and  every e > 0 

I f - " ( c  - e, c + e)l < K " c .  

F rom all this it follows tha t  the Main  Theorem can be deduced from 

Theorem A Suppose that f is unimodal, C 3, has negative Schwarzian derivative and 
that the critical point o f f  is of order l >= 1. Moreover assume that 

IDf"(cx)1-1/1 <0o 
n=O 

holds. Then there exists a constant K < oo such that for each e > O, 

[ f - " ( c - -  e, c + e)[ < K e .  (3) 

Let us say a few words abou t  the p roof  of inequali ty (3). The main  idea in [N-S] 
was to show tha t  f - " ( c  - e, c + e) is contained in the union of sets of the form 

f - ( , -k~  c - [ D f k ( c l ) [ 1 / t , c  + iDfk(cl)ll/t , 

where k runs over  all integers such tha t  n - k > log(e). In this way it was possible 
to prove inductively that  there exists 6 > 0 such tha t  I f - " ( c  - e, c + e)[ < e~ using 
the exponential  growth of IDff(cl)l.  

In this paper  a more refined version of this strategy is chosen. It is proved that  
each componen t  of f - " ( c -  e, c + ~) is either contained in or at  least can be 
compared  in size (this process we will call 'sliding') with a set of the form 

f - ( . -k~  c - [Df f ( c l ) [1 / l , c - t  iDff(cl)ll/~ . 
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Using this and the summability condition, inequality (3) will then be proved by 
induction. 

3 Some notation and some prerequisites 

Throughout  this paper we will mean by (c(, fl) the interval with endpoints ~ and 
fl irrespective of their ordering. 

In this paper we assume that f has negative Schwarzian derivative, i.e., that 
S f = f " ' / f '  - 3/2 ( f " / f ' ) 2  < 0. From this it easily follows S f "  < 0 and that IOf"l 
has no positive local minima. More generally such maps f have the following 
properties. A proof of the first property can be found in for example [M.S.I]. The 
second property was proved first used in [Strl] ,  but see also [Str2], [MS.2],  
I-M.M.S.]. 

i [The cross-ratio is expanded) For every k and every a < fl < 7 < (3 ifDflk4~.b) t- 0 
then 

Ifk(l)[ ]fk(T)l Ifk(L)l I fk(g) l  
- -  > - -  ( E c )  

III ITI ILl IRI ' 

where L = (c(, fl), I = (fl, T), R = (7, 6), T = (c(, 6). 

ii (Koebe Lemma) For  every r > 0 there exists  a constant  C = C(z, K L  ) > 0 such 
that  f o r  every k and every o~ < x < fl with D f ~ , a )  4 : 0  i f  Ifk(cr x)l > T Ifk(~, fl)t then 

ID f ~ ( x ) l  > (9(~, K t  ) lD fk ( f l ) l  . ( g t )  

In the proof we shall use the following convention. The symbol (9 will describe 
various finite and positive universal constants (i.e., they are independent on the 
iterate off) .  All the estimates in this paper are based on the non-flatness condition, 
the fact that the cross-ratio is expanded or on the Koebe Lemma. (9(NF)  denotes 
a constant which is based on the non-flatness condition and (9(r, K L )  is the 
constant from the Koebe Lemma. 

4 Branches which will be 'slided' later on 

Let f "  be monotone on an interval I and assume that f " ( I )  = (c - e, c + ~). Let 
T be the largest interval containing 1 on which f "  is monotone and lable the 
endpoints a and fl of T so that [ f"(a)  - cl < [f"(fl) - c[. Denote the endpoints of 
I by ~ and (~ so that either a < 7 < 6 < fl or a > ? > 6 > ft. In this section we will 
assume that 

If"(~) - - f"() ' ) l  > 2~. (*) 
Let 

By ( ,)  one has 

Ao = f " ( a ,  "/), Io = f ' ( l ) ,  Ro = f"(6 ,  fl). 

IRol  > 1,4ol > I lo l .  (**) 

Later on we shall show that if IRo] is not too large compared to [Ao] then the set 
Io = f " ( 1 )  can be 'slided'. In this section we will show that i f lo  cannot be 'slided' at 
least some smaller iterate f k ' ( I )  of I can be 'slided'. If [Ao u Io[ > }Rol then set 
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s = 0 a n d  we are  f inished.  O t he rwi se  we shall  def ine  induct ive ly  a finite sequence  of  
in te rva ls  T i = [cq, cq_ x ] a n d  in tegers  ni as follows. Let  no = n, C<o = ~, 7 - 1  = fl and  
T o = [C~o, ~ -  1] = [~, fl]  (i.e. T o = T). By m a x i m a l i t y  o f  T o n e  can  choose  nl  such  
t ha t  0 < nl < n and  f " ( C ~ o ) =  c. N o w  choose  cq such  tha t  T 1 is the  m a x i m a l  
in terval  of  the  form T I =  [cq,~Zo] which c o n t a i n s  T o and  on  which  f " '  is 
m o n o t o n e  (of course  one  m a y  have  T ~ =  T). N o w  a s s u m e  tha t  n i -1  and  
T i - l = [ ~ i _ 2 , o ~ i _ l ]  a r e  defined.  T h e n  s imp ly  define n , < n ~ _ l  such  tha t  

f " ( T i - 1 )  = c, a n d  let T i be the  m a x i m a l  in te rva l  of  the  form [ ~ i , ~ i - 1 ]  which  
c o n t a i n s  T i 1 = [cq-2 ,  cq -1 ]  a n d  on  which  f " '  is m o n o t o n e .  It fol lows tha t  for 
i > 2, T i a n d  T i a have  precisely one  c o m m o n  b o u n d a r y  po in t  a n d  tha t  

I c T ~  ~ . .  . c:7_ T i " 

Let  us n o w  define the  in tegers  ki a n d  in te rva ls  Ii, R~, A~, L~ as follows: 

k i = n i -- rti+ 1, Ii = f " ( 1 ) ,  

Ri = f , ,  (o~i_ l ' 22 ) \ l i ,  Ai  = f , , ,  (cq, 7) \ I i ,  L i = f n ' ( ~  i_ 2,  7 ) \ I i  �9 

In  o the r  w o r d s  R i is the  c o m p o n e n t  o f f " ( T i \ l )  which  c o n t a i n s  c a n d  Ai is the  
o the r  c o m p o n e n t .  F u r t h e r m o r e  L~ is c o n t a i n e d  in A~ a n d  

f k ' ( I i + l )  = l i , f k ' ( R i + l )  = A i , f k ' ( L i + l )  = R i ,  

for all i = 0 . . . . .  s - 1. W e  s top  the  c o n s t r u c t i o n  at i = s, when  

In  pa r t i cu la r  

I A i u l i l  <= I R i l ,  for  i = 0, 1 . . . . .  s - 1 . (***b) 

T h e  m a i n  resul t  o f  this  sec t ion  is the  fo l lowing 

Proposition 4.1 There  ex i s t  co ns ta n t s  K ' ,  K "  su ch  that  

If'(1)l 
ILl _-</<' 

PlT;  K"lor '(c,)l " '  

/~0 I0 4o 

c 

I 

r I 

/ 

LI ll 111 
I I I - - I c '  

R2 L~ 

A3 

Fig. 1. The intervals R,, li, Li and Ai 
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In order to prove this proposition we need some lemmas: 

Lemma 4.2 

ILl ~ Ifll 

Proof. By (EC) we have 

[A1 ~ I~ wRy[ ~(qi [Ri+ l[ 

129 

]fk'(L~+~)l Ifk'(R~+~)] [fk'(l ,+l) ] ]fk'(L~+~ WI,+I W R~+~)I 

ILi+ll IRi+ll Ili+ll ILi+lWli+lwRi+l]  

By definition of the sequences of intervals A, L, I, R this is equivalent to 

IL/+ll I R i u l i w A i [  IRi+ll 
[li+xl < Ihl 

IAil IR i+ lu l i+~uL i+ l  [Ril 

By induction we get 

]ls]<]lll[A1ullk")gll s~l]gi+l] s f i l ( lLi l lRi~li~Ail~ [Lsl 
X X X . 

= IZll i:1 IRil i=z \lAil R i u l i u t i l  J IL~uLcJR~I 

The last factor is clearly less than 1, and we can say the same about the last but one 
l(a + w) 

factor because these terms are of the form and because 
a(l + w) 

l(a + w) < a(l + w) for positive l, a, w and l < a. [] 

Lemma 4.3 Assume that f k is a diffeomorphism on (c, w) and that for some z E(c, w) 
one has f k ( z )  = c and Ifk(c, z)l < zlfk(z,  w)lfor some ze(0, 1). Then 

If~(c, z)l > (~(QiDfk(cl) 11/, 
I(c, z)l 

Proof. Using the chain-rule, the non-flatness condition, (KL) andfk(z)  = c one has 

IDf.k(cl)l = IDf(f .  ~- l(ct))llDf~-~(c~)l 

< (9(NF)I f  ~- 1(cl) - ct~- l lD fk - l ( e l )  I 

< Cg(NF)O(KL, r ) l fk -~(c l )  -- c[ '-~ t f k -~ ( f ( e '  Z))] 
If(c, Z)I 

If~(e, z)l t 
= C(NF)gJ(KL, z) ] - ~ , ~  . 

Using again the non-flatness condition gives the required estimate. [] 

Lemma 4.4 Assume that f k is a diffeornorphism on (c, z), that fk (z)  = c and that for 
some ye(c,  z) one has [fk(c, y)[ < r[fk(y, z)[for some z~(0, 1). Then 

Ifk(y, z ) l >  O(QIDfk(cl)] 1/~ 
[(c, Y)I = 

Proof. From the non-flatness condition and since [fk(y, Z)I > l l f k (c ,  Y)I one has 
T 

( i  fk(y,  _z)l,]t [f~(y, z)l,-~ [fk(y, Z)I (9(NF) [fk(c, y)] > (9(NF) > ]fk(y, Z)I t-t 
Ic, yl J = [f(c,y)J = z I f (c ,y) /  
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Since I f f ( c , y ) l  < r l f * ( y , z ) l  one gets from (KL)  that the last factor is at least 

C(r, K L ) I D f * - 1  (cl)1. Moreover one has If*(Y, z)t >= l ~ l f * ( c ,  z)l 

1 
= 1 + ~ l f * ( c )  - cl. From all this 

( I f*(Y'  z )l ~ Z > cIfK(c)  - cll-  l[ O f * -  l(Cl )[ . 

By the non-flatness condition Ifa(c) - cl I l > (9 (NF) lDf ( f* (c ) ) l ,  and therefore 
the lemma follows. [3 

Lemma 4.5 l f  s > 0 then there exists a constant K < oo such that 

IAi u l l  u Rl l  If"(I) l  
I l l l  < K  

I A 11 Iofk~ )l 1/t, 

[ fk~ I > 1 
IRll = K IDfk~ ' 

IR, P 
> ! . lD fk ' ( c l ) l l / t f o r  i =  l . . . . .  s - -  1 

IRi+ll 

Proof  By (EC) we have 

IA1 ~ I 1 ~  R11 
Iill 

IA~I 

By (**) this gives 

< l f ,O( lx )  [ [Rll [ f k ~  
= [f*O(R1) [ Ifk~ 

IRll ( I l o ~ Z o l ' ~  
< l f " ( 1 ) l ~  1 + l f k O ( t l ) l ,  ] 

,RII( Ilo Ao,) 
< l f " ( I ) l ~  1 +  IRol / "  

< 

i l l l l A I u l l U R l [ < l f , ( l ) l  [Rll 3 
IAll = tfk~ " 

It is therefore enough to prove that I fk~  > ClOfk~ i/t So let us prove 
this. One hasf f~  = Ao. Let R~ c R1 u 11 be the smallest interval containing 
R1 such tha t fk~ contains c. We want to apply Lemma 4.3 by taking (z, w) to be 
the interval T~ and (c, z) the interval R[.  S i n c e f k ~ 1 7 6  Ro and 
since s > 0 we get from (***b), 

I f k ~  >= [Rol > L a o u l o l  > lfk~ �9 

From all this it follows that  we can apply Lemma 4.3 and get that 

Ifk~ > (91Dfk~ TM . 

But since Ifk~ = Iaol + ~ < 21Aol = 2lfk~ this implies 

Iff~ > 1 Ifk~ > ~ iofko(cl)[  1/, 
1811 = 2  IR~l 2 

So the first two statements of the lemma follow. 
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To prove the third statement let as before R[+ i ~ R~+ 1 k.) I~+ ~ be the smallest 
interval containing R~+~ such that  fk ' (Ri+~) contains c. Because the construct ion 
did not  stop at i, I,fk'(Li+l) I = [Ri] > IAiwlil  > Ifk'(R;+~)[. Therefore one can 
apply Lemma 4.4 and we get 

IRi[ IR~[ [f~'(Li+~)l - -  > -- >= (glDfk'(c~)[ TM 
IR~+~I = IR[+~l IR/+~[ 

This proves the third statement of the lemma. [] 

Proof of  Proposition 4.1 This follows immediately from Lemmas 4.2, 4.5. [] 

5 Estimates 

In this section we shall prepare the estimates for the preimages of the intervals 
a round  the critical point  c. So consider the set E(6)= ( c -  6, c + 6) and its 
preimages E,(6) =f-"(E(3)) .  For  a given e > 0 we shall subdivide the collection of 
components  of E,(e) into three subcollections. 

Let a be some positive number  and let e~(0 ,1~) .  We define v(~) as 
inf{k > 0: Ilk(c) -- C] < ~}. Clearly v(a) is mono tone  and v(g) tends to infinity as 
(r ~ 0. Later on we shall choose ~r appropriately.  

Let I be a componen t  of E.(e). Suppose that  I = I '  = I", where I '  is a compon-  
ent of E,(2e) and I" is a component  of E,(a).  If DfT,, :# 0 then I belongs to the 
collection ~ . .  If I ~ .  but  Of'], ~ 0 then I belongs to the collection ,9~ All the 
other components  form the collection J-,. 

5.1 The collection ~ , ,  the reoular case 

I f l ~ . ,  then f "  is a diffeomorphism on I and  there exists 7 e l  such t h a t f " ( 7 )  -- c. 
Let (~, fl) be the maximal  interval containing I on which f "  is a diffeomorphism. By 
definition of ~ .  we have [f"(~, 7)[, If"(fl, ~')[ > ~. Therefore we can use (KL) on 
1 and obtain: 

Proposition 5.1 There exists a constant KR such that for e < a/2 and any regular 
component I as above, one has 

< KR~. 
i(~, P)i = 

Proof By (KL) one has [Df"(x)l < C(KL)[Df"(y)[ for any x~(~,/~) and y~l .  
Therefore 

< If"(~'/~)[ < (9 [ /"( I ) [  < e ( 9 - - .  [] 
I ( ~ , f l ) l =  I(~,fl)l = ~ =  III 

Corollary. For I ~ .  let A.(I) be the maximal interval on which f "  is a diffeomor- 
phism. By the previous proposition we obtain 

II[ 
Ill < ~ ~ ] A n ( 1 ) I  < K ,  e- ~ [A.(1)[ < KR e-. 

IE~n IE~n (~ Ie~n 
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5.2 The collection be., the case to slide 

Let I e be.. Then  there exists s > 0 and a sequence ns < ns 1 < �9 �9 - < no = n as in 
section 4 such that (in the terminology of that  section) [As w l~l > IR~I. Since for 
each i = 0 . . . . .  s, f " '  is a diffeomorphism on T i ~ I, s ince f" ' (T  i) ~ Ri and since 
Ri contains c, there exists an interval J i c T ~ such that G1 = f " ' ( J  i) contains c and 
such that  

I/l = I J q .  

In other words  by choosing an  appropriate x1 ~ [xl, c] = R~ w 1i one can assure 
that  the preimage j1 of G~ = [x~, c] has the same size as I. Let G = Gs and J = J ' .  
This process we call sliding. No te  that f " ' ( J  ~) contains c. Because I As w 1sl > I Rsl 
we can use (KL)  and obtain 

I f"s(J) l  If"~(I)l 
- -  <= ( 9 ( K L ) -  

JJI II] 

and therefore IG] =< (9 ]Is]. Therefore by Proposi t ion 4.1 

(9K' l f"( l ) l  < (~K'2~ 
IGI < ~-1 s - 1  . k 1 / 1 "  

= I-[j=oK"IDfk~(cl)I TM [ I j = 0  K IDT '(cl)l 

So for each such component  I of E.(e), there exists an interval J as above such 
that  IIJ = IJI and therefore such that Ill is at most the size of the  part of the 
f " ' -p re image  of 

( I] j=o 6JK'2e (~K'2e ) 
c , , , ,c  + H?ioK, , iDy~, tc , ) l  ~,, 

d ~ 

that  is conta ined in T ~. Now even for a given sequence ofn~ < n~_ ~ < . . .  < no = n, 
there may be several such components  I in T ~. Even worse, some of these may give 
the same interval  d (or at  least over lapping intervals). But for  every given sequence 
of n~ < ns_ ~ < . . .  < no = n, there  exist at  most 2 s different components  I of E,(~) 
of type be,, such that the  corresponding intervals J overlap. Indeed, a t  the first step 
of the construct ion two intervals I and I can only  slide o n t o  overlapping intervals 
J ~ and a 7~ if there is precisely one  turning point o f f " '  between these two intervals. 
Similarly at the  i-th s tep two intervals J ~- ~ and a 7~- a can only slide onto overlap- 

ping intervals J i and j7i if there is precisely one turning po in t  of f"~ between these 
two intervals. So at each  step the  number  of intervals I e 6P, which correspond to 
overlapping intervals J can at mos t  double. Thus  we get 

~, III < ~ 2~l f - " ' ( c - - IGI ,  c+lGI) l .  (*) 

Lemma 5.2 There exists ao > 0 such that ko . . . . .  k,- i >= v(a) for each a ~(O, ao). 

Proof Choose  a0 > 0 so small tha t  for each a ~ ( 0 ,  a0) a n d  each k > v(a) one has 
iDfk(ci)l i/t > 2K where K is the  constant  from Lemma 4.5. Because v(a) ~ as 
a ~ 0 and I Dfk(cl) l  ~ ~ as k ~ ov this is possible. 

By definition of ko,fk~ is conta ined in the closure of  A0. Since I ~ be., at  least 
one critical value o f f " I T 0  is eotained in ( c -  a , c  + a). As To = [~,f l ]  and  as 
I f " ( ~ ) - c l  _-< [ f " ( f l ) -  cl, this implies f"(cx) = f k ~  .+ a). Hence 
ko > v(a) and,  observing the definition of A0, Ao c (c - a ,  c + a). 
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Next  notice that  if for some i = 1 . . . . .  s - 1 one has 

[ R i w l i w  Ail < ~r implies ki > v(a) . (**) 

Indeed, c is contained in the closure of Ri w li w A~, this interval has at most  length 
a and  fk'(c) is contained in Ai. Therefore ki > v(a) follows from the definition of 
v(~). 

So let us show by induction that  for ae(O, ao), [ R ~ w l i w A ~ l < a  for 
i = 1 . . . . .  s - 1. So assume s > 2 and let us first prove that  this inequality holds 
for i = 1. From Lemma 4.5, Ifk~ > K [Dfk~ 1/IIR11" Therefore 

Ifk~ 
tR1 w l l  • All  < 2fRll  < 2K ]Dfko(cl)[ 1/z 

IAol 
= 2K [Dfko(cl)[1/~<= [Ao[, 

where the last inequality holds  provided ae (0 ,  ao) because ko > v(a), and 
[Dfk(cl)[ > 2K for k >= v(a). Since [Ao[ =< a, the induct ion assertion is proved for 
i = 1. Similarly, we get for i < s, using the third inequality of Lemma 4.5, tha t  

[Ri-l[ 
l R i w l i w A i l  < 2IR~I < 2K 

IOf k'- ~(ct)l 1/1' 

From the inductive assumption we know that  IR~- 1 w I/_ 1 w Ai_ 11 < a and  from 
(**) this implies k/-1 > v(a) and  so we get again tha t  for a e ( 0 ,  ao) sufficiently 
small tha t  

IRiw l i w  Ail < IRi-ll  < JRi-1 u l i-1 u Ai - l l  < a . [] 

Therefore one has kj > v(a). Using this, (*) and the estimate for [G[ one gets the 
following 

Proposition 5.3 There exists a constant Ks such that for a e(O, ao), 

(( )) ~, Ill < ~ 2 5 f - " ~  E Ks s-1 
,~.~, (t,>=v(,)t l-lj=, K"lDf*'(cx)l TM [] 

5.3 The collection J , ,  the case to transport 

We shall  use the idea from I-N-S], which is to reduce the est imation of the n-th 
preimage I e g ,  to the est imation of some k-th preimage, with k < n. 

Let  ICY-, and let I '  (resp. I") be the component  of E,(2e) (resp. E,(a))  
containing I. By definition f "  has  at least one critical point  in I '  = I. 

Since f "  has a critical point in I '  there exists an integer k < n such that c efk( l ' ) .  
Let k be the largest such integer. For  simplicity we say that  I belongs to the 
subcollection j - k  of 3-,. F rom the properties just  stated one has 

f " - k ( c )e (c  -- 2C, C + 2~) . 

Since c#fi(1 ') for i =  k + 1 . . . . .  n -  1, f , - t - 1  is clearly a diffeomorphism on 
fk+ X (I'). 
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Proposition 5.4 There exists a constant KT such that for every n 

f _ , ~ [ [  KTe ) )  
Z ISl = } Z ISl ~ ~ t E t l D i : ~ - ~ , ) l ' "  " 

Proof Let f k  + 1 (I') = (X, Cl ] o f k  + 1 (1). AS we saw f " -  k- 1 is a diffeomorphism in 
(x, cl). Moreover f " ( I )  c _ ( c - - e , c + e ) ,  f " - k - l ( x ) = c + _ 2 e  and f " ( l ' ) c  
(e - 2e, c + 2e). Therefore one gets from the Koebe Lemma immediately that 

If"(/)]  > (9(KL)IDf,_k_i(c~)I .  
i fk+l(l) l  = 

Hence 

Ifk+ l(1)l < (r 
IDf"-~- l (c l ) l  " 

From the non-flatness condition this gives 

[f*(1)l __< (9(NF)lfk+l(l)l~l~ < (9 [Df,_~- ~(c~)l . 

Since f " - k - l ( c i ) E ( c  -- 2e, C + 2e), the non-flatness condition implies that 

\ l D f " - k - l ( c l ) l J  I e l - l D f ~ - l ( c l ) l  = iDf , -k(cl) l l l i  , 

i.e., 
Ifk(I) < (9 

IDf"-k(el) l l l  t" 

Since f"(1)  c (e -- ~, c + ~) it follows that there exists a constant Kr  such that 

i ~ f _ k ( f k ( l ) )  c f _ k E  ( Kre ), l / t)  
iDf , -k(c l  

The proposition follows. [] 

6 The proof of the Main Theorem 

Let cr be fixed so small that for every n, 

S - I  

~,, 3Ks l-] IK"Df~'(cl) /21-1/ '< 1, 
{kj>vOr)}, l <j<s j = 0  

~kj~_n 
and 

3KTIDfk(cl)I- l l l  <= 1 . 
k>v(tr) 

This is possible by the summability condition, since v(a) tends to infinity as 
tr ~ 0 and because of the following 

Lemma 6.1 Suppose that dk > 0 and ~k=o dk < ~ .  Then for any r l, ~ > 0 there 
exists a Vo sttch that 

P =  Z H (,Td~,) < ~, . 
n {kj>_-vo} 
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Proof Consider Sko = Y"k>ko rldk" Then both  Sko and S = ~ > o S ~ o  tend to zero 
when ko tends to infinity. Clearly P < S which proves the assertion. [] 

We shall now prove Theorem A in the following formulation: 

Theorem B For any n and e < a/2 

I f - " ( c -  e,c + e)l < 3 K R -  . 
(7 

Proof With the nota t ions  from the previous section we have 

f - " ( c - - e , c + e ) =  U l w  U l w  ~ I ,  

and 
I f - " ( c - e , c + e ) l <  Z I l l +  Z I l l +  Z I l l .  

Therefore 

s 

I f  -"(c - e, c + e)l ~ KR -- + 
ff 

(( ))1 + ~ 2~[f -"~ E Ks + 137_-; K"lor Ic,)l TM 
~ kj <=n 

(( )) + 2 I f  -~ g Krlo f ,_~cx) lX/~  . 
k=>v(a) 

We shall apply the induction. For  n small only the first term is non-zero and  the 
assert ion of the theorem is true. Suppose that  it is true for any e < a/2 and any 
n < N. Then by the choice of a, the above formula and  the induction assumption 
we have 

g 
I f -N(c  -- ~, C + ~)1 ~ KR-- + 

3KRUa 
L~ 2~Ks " ~-~ ,, + 

{k~>~W)},o<j<~-t I~j=o K [Dfk~(Cl)l TM 
Zkj-<lv 

K 3KRe/a - < 3KR~,  
+ ~ r IDfU_k(C 1)1 l/t = o v(o)<k<N 

which completes the proof. [] 
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Note added in proof 

It is not hard to show that if a m a p f a s  above has an absolutely continuous invariant probability 
measure/a with/z(A) <~ k. [A[ 1/~ for all measurable sets A then the summability condition is also 
satisfied. We conjecture that a weighted summability condition (where the weights are related to 
the position of f '  (cl)) is necessary for the existence of absolutely continuous invariant probability 
measures. 


