Inventiones mathematicae © Springer-Verlag 1994

Relations among the squares of the generators of the braid group

Donald J. Collins

School of Mathematical Sciences, Queen Mary and Westfield College, Mile End Road, London E1 4NS, UK E-mail: d.j.collins@gmw.ac.uk

Oblatum 17-XI-1992 & 16-XI-1993

The classical braid group \mathcal{B}_n has presentation

$$\mathscr{B}_{n} = \langle \sigma_{1}, \sigma_{2}, \dots, \sigma_{n-1} : \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i} \quad (|i-j| \ge 2),$$

$$\sigma_{i}\sigma_{i+1}\sigma_{i} = \sigma_{i+1}\sigma_{i}\sigma_{i+1} \quad (1 \le i \le n-2) \rangle$$

see ([B, H] for general background and references). This presentation is also a particular case of the type of presentation used to define what have come to be called Artin groups although they seem first to have been explicitly considered in [T]. Such presentations are described in the following way.

Let $\{x_1, x_2, ..., x_n\}$ be an alphabet and let M be a symmetric $n \times n$ matrix of non-negative integers whose diagonal entries are all 0. For each pair (i, j) let u_{ij} be the word of length m_{ij} which begins with x_i and whose successive letters are alternatively x_i and x_j . The associated **Artin group** is the group G given by the presentation

$$G = \langle x_1, x_2, \dots, x_n : u_{ij} = u_{ji}, \quad 1 \leq i, j \leq n \rangle.$$

According to Pride (see [P]) Tits has conjectured that in an Artin group G the subgroup $\langle x_i^2, 1 \le i \le n \rangle$ generated by the squares of the given generators of G has no relations other than those which are consequences of the relations $x_i x_j = x_j x_i$ corresponding to those $m_{ij} = m_{ji} = 2$. This conjecture has been verified under a variety of general hypotheses by Pride in [P], and for the braid groups \mathscr{B}_n , for $n \ge 5$ by Droms et al. in [D-L-S]. The purpose of this note is to establish the Tits conjecture for arbitrary braid groups.

Let \mathcal{H}_n be the *pure* braid group, that is the normal closure of the squares σ_i^2 of the generators of \mathcal{B}_n . The group \mathcal{H}_n has a well-understood presentation-details and verification can be found in Appendix 1 by L. Gaede in [H]-in terms of the generators

$$a_{ij} = \sigma_{j-1} \dots \sigma_{i+1} \sigma_i^2 \sigma_{i+1}^{-1} \dots \sigma_{j-1}^{-1}, \quad 1 \le i < j \le n.$$

Let $\mathscr{L}_n = \langle \sigma_1^2, \sigma_2^2, ..., \sigma_{n-1}^2 \rangle = \langle a_{12}, a_{23}, ..., a_{(n-1)n} \rangle$ -our aim is to obtain defining relations for \mathscr{L}_n . Further let \mathscr{A}_n be the subgroup generated by $x_1, ..., x_{n-1}$ where $x_i = a_{in}$. It well-known that \mathscr{A}_n is free on the given generators.

There is a standard action of \mathscr{B}_{n-1} , and hence \mathscr{H}_{n-1} on the free group of rank n-1 and so one may form the semidirect product $\mathscr{A}_n \supset \mathscr{H}_{n-1}$. This is, in fact, isomorphic to \mathscr{H}_n -see Appendix 1 by L. Gaede in [H]. Hence $\mathscr{H}_n = \langle \mathscr{A}_n, \mathscr{L}_{n-1} \rangle = \mathscr{A}_n \supset \mathscr{L}_{n-1}$. The relations giving the action of \mathscr{L}_{n-1} on \mathscr{A}_n are obtained from those giving the action of \mathscr{H}_{n-1} and, writing $y_r = a_{r(r+1)}$, $1 \leq r \leq n-2$, are as follows:

(1)
$$y_r^{-1} x_i y_r = x_i \quad i < r \text{ or } 1 < r < i - 1 < n - 2$$

(2)
$$y_i^{-1} x_{i+1} y_i = x_i x_{i+1} x_i^{-1} \quad 1 \le i \le n-2$$

(3)
$$y_i^{-1}x_iy_i = x_ix_{i+1}x_ix_{i+1}^{-1}x_i^{-1} \quad 1 \leq i \leq n-2.$$

In the presence of (2), (3) is equivalent to

(3')
$$y_i x_{i+1} y_i^{-1} = x_i^{-1} x_{i+1} x_i \quad 1 \leq i \leq n-2.$$

It should be noted that the final type of relation on [H, p. 170] does not contribute since the inequality conditions on the subscripts are not consistent with the generators we consider.

The above shows that we obtain a presentation for the group \mathscr{H}_n in terms of the generators $x_1, \ldots, x_{n-1}, y_1, \ldots, y_{n-2}$ by writing down relations among y_1, \ldots, y_{n-2} , which are assumed to be known inductively, together with the relations (1), (2) and (3'). Sometimes we express (1), (2) and (3') as

(1) $[y_r, x_i] = 1$ where $1 \le i < r \le n-2$ or $1 < r < i-1 \le n-2$

(2)
$$[x_{i+1}, y_i x_i] = 1$$
 $1 \le i \le n-2$

(3')
$$[x_i, x_{i+1}y_i] = 1$$
 $1 \le i \le n-2$.

We shall show that the full subpresentation determined by the generators $x_{n-1}, y_1, \ldots, y_{n-2}$ defines \mathcal{L}_n . The idea of our argument is that instead of thinking of the generators of \mathcal{A}_n as lying "underneath" \mathcal{L}_{n-1} waiting to be acted on so as to construct \mathcal{K}_n , one can "turn the process upside down" and start with \mathcal{L}_{n-1} as a base group to which the free generators of \mathcal{A}_n can be added one at a time as stable letters in a chain of HNN extensions.

We shall also use the following notation and terminology. If $\mathcal{M}_1, \mathcal{M}_2$ are group presentations such that

(i) The generators of \mathcal{M}_2 consist of the generators of \mathcal{M}_1 and an additional generator, say, x;

(ii) the relations of \mathcal{M}_2 are just those of \mathcal{M}_1 together with a set of relations (equivalent to) $x^{-1}u_{\lambda}x = v_{\lambda}, \lambda \in \Lambda$ where u_{λ}, v_{λ} are words of \mathcal{M}_1 ;

(iii) the subgroups $\mathcal{N}^{\alpha} = \langle u_{\lambda}, \lambda \in A \rangle$ and $\mathcal{N}^{\omega} = \langle v_{\lambda}, \lambda \in A \rangle$ of \mathcal{M}_{1} are isomorphic via a map sending $u_{\lambda} \mapsto v_{\lambda}$;

then we say $\mathcal{M}_1 \leq \mathcal{M}_2$ is an **HNN-extension** (with stable letter x). We refer to \mathcal{N}^{α} and \mathcal{N}^{ω} as the edge groups. As is well-known the group (defined by) \mathcal{M}_1 is embedded in the group (defined by) \mathcal{M}_2 . Finally let $\mathcal{M}_{i,j}$ denote the full subpresentation of (the presentation obtained for) \mathcal{K}_n on the generators $y_1, \ldots, y_{n-2}, x_i, \ldots, x_j$, where $i \leq j$.

Proposition. The following are chains of HNN-extensions with the indicated stable letters:

$$\mathcal{L}_{n-1} \leq \mathcal{M}_{i, i} \leq \mathcal{M}_{i, i+1} \leq \dots \leq \mathcal{M}_{i, j}$$
$$\mathcal{L}_{n-1} \leq \mathcal{M}_{j, j} \leq \mathcal{M}_{j, j-1} \leq \dots \leq \mathcal{M}_{i, j}.$$

Having established the proposition, the result is essentially immediate. Since the group defined by $\mathcal{M}_{n-1,n-1}$ is embedded in $\mathcal{K}_n = \mathcal{M}_{1,n-1}$ it follows that the required presentation of the subgroup \mathcal{L}_n is just $\mathcal{M}_{n-1,n-1}$; thus (inductively)

$$\mathcal{L}_n = \langle y_1, y_2, \dots, y_{(n-2)}, x_{n-1} |$$

[y_r, y_s] = 1 ($|r-s| \ge 2$), [x_{n-1}, y_s] = 1 ($n-1-s \ge 2$)>.

In terms of the original notation this gives:

Corollary. The subgroup $\langle \sigma_1^2, \sigma_2^2, ..., \sigma_{n-1}^2 \rangle$ of the braid group

$$\mathscr{B}_{n} = \langle \sigma_{1}, \sigma_{2}, \dots, \sigma_{n-1} : \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i} \ (|i-j| \ge 2, \\ \sigma_{i}\sigma_{i+1}\sigma_{i} = \sigma_{i+1}\sigma_{i}\sigma_{i+1} \ (1 \le i \le n-2) \rangle$$

has presentation

$$\left\langle \sigma_1^2, \sigma_2^2, \dots, \sigma_{n-1}^2 \middle| \left[\sigma_r^2, \sigma_s^2 \right] = 1 \quad (|r-s| \ge 2).$$

It remains only to give the proof of the proposition.

Proof. We proceed by induction on j-i, proving both statements at once. If j=i then we have $\mathcal{M}_{i,i}$ with base group \mathcal{L}_{n-1} and the identity map between the coinciding edge groups so the result is immediate.

Now consider $\mathcal{M}_{i,j-1} \leq \mathcal{M}_{i,j}$ where i < j. The argument requires a slight variation in the case when j = n-1 and so for the moment we shall assume that $j \neq n-1$. The map $\varphi_{i,j}$ between the edge groups is given by

$$y_r \mapsto y_r, \quad (r = 1, \dots, j - 2, j + 1, \dots, n - 2),$$

 $y_{j-1}x_{j-1} \mapsto y_{j-1}x_{j-1}, \quad x_{j-1} \mapsto y_{j-1}x_{j-1}y_{j-1}^{-1}$

In fact the edge groups coincide and we have to check that the map induces a well-defined automorphism of this common edge group

$$\mathcal{N}_{i,j} = \langle y_1, \dots, y_{j-2}, y_{j+1}, \dots, y_{n-2}, y_{j-1}, x_{j-1} \rangle.$$

In terms of the generators just displayed $\varphi_{i,j}$ is given by

$$y_r \mapsto y_r, \quad (r=1,...,j-2,j+1,...,n-2),$$

 $y_{j-1} \mapsto y_{j-1} x_{j-1} y_{j-1} x_{j-1}^{-1} y_{j-1}^{-1}, \quad x_{j-1} \mapsto y_{j-1} x_{j-1} y_{j-1}^{-1}$

and we shall show that $\varphi_{i,j}$ preserves all relations among these displayed generators. To do so we shall obtain a presentation of $\mathcal{N}_{i,j}$. By induction,

$$\mathscr{L}_{n-1} \underset{x_{j-1}}{\leq} \mathscr{M}_{j-1, j-1} \underset{x_{j-2}}{\leq} \mathscr{M}_{j-2, j-1} \underset{x_{j-3}}{\leq} \cdots \underset{x_{i}}{\leq} \mathscr{M}_{i, j-1}$$

is a chain of HNN-extensions. Thus

$$\mathcal{N}_{i,j} \leq \mathcal{M}_{j-1,j-1} = \langle \mathcal{L}_{n-1}, x_{j-1} | [x_{j-1}, y_r] = 1, \quad (r=1,...,j-3,j,...,n-2) \rangle$$
$$= \langle y_r, 1 \leq r \leq n-2, x_{j-1} | [y_r, y_s] = 1 \quad (|r-s| \geq 2)$$
$$[x_{j-1}, y_r] = 1, \quad (r=1,...,j-3,j,...,n-2) \rangle.$$

From the relations which involve y_j it is immediate that $\mathcal{N}_{i, j-1} \leq \mathcal{M}_{j-1, j-1}$ is an HNN-extension with the identity map between the edge groups. It follows therefore that $\mathcal{N}_{i, j}$ has defining relations

$$[y_r, y_s] = 1$$
 $(|r-s| \ge 2, r, s \ne j), [x_{j-1}, y_r] = 1$ $(r \ne j-2, j-1, j).$

To check that $\varphi_{i, j}$ preserves these relations, the only non-trivial cases to be considered are those which involve y_{j-1} and x_{j-1} . However inspection shows that in each of the two cases, the defining relations concerned specify that the generator in question commutes with

$$y_1, \ldots, y_{j-3}, y_{j+1}, \ldots, y_{n-2}$$

Since the images of y_{j-1} and x_{j-1} under $\varphi_{i,j}$ only involve y_{j-1} and x_{j-1} the desired conclusion is immediate.

The above shows that $\varphi_{i,j}$ induces an endomorphism of $\mathcal{N}_{i,j}$. Similarly the map $\psi_{i,j}$ given by

$$y_{r} \mapsto y_{r}, \quad (r = 1, ..., j - 2, j + 1, ..., n - 2),$$

$$y_{j-1} \mapsto x_{j-1}^{-1} y_{j-1} x_{j-1}, \quad x_{j-1} \mapsto x_{j-1}^{-1} y_{j-1}^{-1} x_{j-1} y_{j-1} x_{j-1}$$

induces a well-defined endomorphism of $\mathcal{N}_{i,j}$ which is easily seen to be inverse to $\varphi_{i,j}$.

We now turn to the extremal case, i.e. j = n - 1. The difference between this and the previous case is that there is no generator y_i and so the edge group $\mathcal{N}_{i,j}$ coincides with the group $\mathcal{M}_{j-1,j-1} = \mathcal{M}_{n-2,n-2}$. But again the defining relations of $\mathcal{N}_{i,j}$ which involve y_{j-1} and x_{j-1} say that these commute with exactly the same set of generators and the argument proceeds as before. (It should be noted that when j=n-2, the general argument applies, even although there are no generators $y_r, r \ge j+1$; the same goes for the case j=2when there are no generators $y_r, r \le j-2$. Squares of braid group generators

We also have to establish that $\mathcal{M}_{i+1,j} \leq \mathcal{M}_{i,j}$ is an HNN-extension. The argument required is the dual of that given above. \Box

References

- [B] Birman, J.S.: Braids, Links and Mapping Class Groups. (Ann. Math. Stud., vol. 72) Princeton, NJ: Princeton University Press 1974
- [D-L-S] Droms, C., Lewin, J., Servatius, H.: The Tits conjecture and the five string braid group. In: Latiolois, P. (ed.) Topology and Combinatorial Group Theory. (Lect. Notes. Math., vol. 1440, pp. 48-51) Berlin Heidelberg New York: Springer 1990
- [H] Hansen, V.L.: Braid and Coverings: Selected Topics. (Lond. Math. Soc. Student Texts, vol. 18) Cambridge: Cambridge University Press 1989
- [P] Pride, S.J.: On Tits' conjecture and other questions concerning Artin and generalized Artin groups. Invent. Math. 4, 347–356 (1986)
- [T] Tits, J.: Normalisateurs de tores. I. Groupes de Coxeter étendus. J. Algebra 4, 96-116 (1966)