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0 Introduction

Let X be a smooth projective complex curve of genus g = 2, let A - X be a line
bundle of degree d > 0, and let (E, ¢) be a pair consisting of a vector bundle E - X
such that A?E = A and a section ¢ € H°(E) — 0. This paper will study the moduli
theory of such pairs. However, it is by no means a routine generalization of the
well-known theory of stable bundles. Rather, it will discuss at least three remark-
able features of the moduli spaces of pairs:

1. Unlike bundles on curves, pairs admit many possible stability conditions. In
fact, stability of a pair depends on an auxiliary parameter ¢ analogous to the
weights of a parabolic bundle. This parameter was first detected by Bradlow [5] in
the study of vortices on Riemann surfaces, and indeed the spaces we shall construct
can also be interpreted as moduli spaces of rank 2 vortices. As ¢ varies, we will see
that the moduli space undergoes a sequence of flips in the sense of Mori theory,
whose locations can be specified quite precisely.

2. For some values of ¢ the moduli space M (a, A)is the blow-up of PH!(A 1)
along X, embedded as a complete linear system. Thus we can use M (o, 4) to study
the projective embeddings of X. In particular, we obtain a very general formula
(7.8) for the dimension of the space of hypersurfaces of degree m + nin PH'(A4™ 1)
with a singularity at X of order n. This formula does not depend on the precise
choice of X and A, only on g and d, which is rather surprising.

3. For other values of g, stability of the pair implies semistability of the bundle,
50 M (o, A) plays the role in rank 2 Brill-Noether theory of the symmetric product
in the usual case, and there is an Abel-Jacobi map from M (s, A) to the moduli
space of semistable bundles. For large d this is generically a fibration, so we can use
moduli spaces of pairs to study moduli spaces of bundles. In particular, we recover
the known formulas for Poincaré polynomials [2, 14] and Picard groups [9]; more
strikingly, we prove, and generalize, the rank 2 Verlinde formula (7.10) for both odd
and even degrees.

We will not fully discuss the many other fascinating aspects of the subject, but
we will briefly touch on one of them —the relation with Cremona transformations
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and Bertram’s work on secant varieties —in an appendix, §8. We hope to treat the
relation with vortices and Yang-Mills-Higgs theory in a later paper.

An outline of the other sections is as follows. In §1 we prove some basic facts
about pairs, in analogy with bundles. Following Gieseker [11], we then use
geometric invariant theory to construct the moduli space M (o, A) of o-semistable
pairs, and a universal family over the stable points of M(o, A). The choice of
o corresponds to a choice of linearization for our group action. In §2 we discuss the
deformation theory of the moduli problem. In §3 we show that the M(o, A) are
reduced, rational, and smooth at the stable points. We then show that as ¢ varies,
Mo, A) undergoes a sequence of flips whose centres are symmetric products of X.
We also define the rank 2 Abel-Jacobi map mentioned above. In §4 we calculate the
Poincaré polynomiat of (5, 4}, and extract from it the Harder-Narasimhan formula
for the Poincaré polynomial of the moduli space of rank 2 bundles of odd degree.

Thereafter we concentrate on studying the line bundles over M (o, A), and their
spaces of sections. In §5 we compute the Picard group of M(s, A), and its ample
cone. We explain how any section of a line bundle on M(q, A) can be interpreted as
a hypersurface in projective space, singular to some order on an embedded X. We
also make the connection with the Verlinde vector spaces. Finally in §§6 and 7 we
use the Riemann-Roch theorem to calculate Euler characteristics of the line
bundles on M(o, A). Combined with the information from §5, Kodaira vanishing,
and some residue calculations which were carried out by Don Zagier, this gives
a formula for the dimensions of the spaces of sections of line bundles on M(a, A),
under some mild hypotheses. We conclude by extracting the Verlinde formula from
this.

For convenience we work over the complex numbers, but much of the paper
should be valid over any algebraically closed field: certainly §§1-3 and 5. Kodaira
vanishing is of course crucial in §6, but the computation of the Euler characteristics
ought to make sense in general, if integral cohomology is replaced with intersection
theory.

A few notational habits should be mentioned: X refers to the ith symmetric
product of X; = denotes any obvious projection, such as projection on one factor,
or down from a blow-up; tensor products of vector bundles are frequently indicated
simply by juxtaposition; and likewise a pullback such as f* L is often called just L.
Also, in §3 and thereafter, M (o, A) is referred to simply as M;, where i depends on
o in a manner explained in §3. These conventions are not meant to be elliptical, but
to clean up what would otherwise be some very messy formulas.

We also make the following assumptions, which are explained in the text but
are repeated here for emphasis. We always assume g = 2. In the geometric invari-
ant theory construction of §1, we assume d is large, an assumption which is justified
by (1.9) and the discussion following it. From §3 to the end we assume 4 = 3.
However, this assumption is implicit in other inequalities—so for example our
main formula (7.8) is valid as it stands.

1 Constructing moduli spaces of s-semistable pairs

Our main objects of study, which we refer to simply as pairs, will be pairs (E, ¢)
consisting of a rank 2 algebraic vector bundle E over our curve X, and a nonzero
section ¢ € H°(E). A careful study of such pairs was made by Bradlow [5]. He
defined a stability condition for pairs and proved a Narasimhan-Seshadri-type
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theorem relating stable pairs to vortices on & Riemann surface. The vortex equa-
tions depend on a positive real parameter 7, and so the stability condition also
depends on 7. Bradlow and Daskalopoulos went on [6] to give a gauge-theoretic
construction of the moduli space of t-stable pairs, under certain conditions on
7 and deg E. Garcia-Prada later showed [10] that there always exists a projective
moduli space, by realizing it as a subvariety of a moduli space of stable bundles on
X x P!, In this section we will give a geometric invariant theory construction of the
moduli space of t-stable pairs for arbitrary t and deg E (though for convenience we
assume rank E = 2). Aaron Bertram has informed me that he has done something
similar [4], and I apologize to him for any overlap.

The Bradlow-Daskalopoulos stability condition is in general rather complic-
ated, but in the rank 2 case it simplifies to the following. Let ¢ be a positive rational
number, Tt is related to 7 by ¢ = 7 vol X /d4n — deg E/2, where vol X is the volume
of X with respect to the metric chosen in [6].

(1.1) Definition. The pair (E, ¢) is -semistable if for all line bundles L < E,
degL <4idegE—oif e HO(L) and
degL<idegE+oifl ¢ ¢ H(L).

It is a-stable if both inequalities are strict.

The main result of this section is then the following.

(1.2) Let A — X be a line bundle of degree d. There is a projective moduli space

M(c,A) of o-semistable pairs (E, ¢) such that A2E = A, nonempty if and only if
g <dj2.

Our construction will be modelled on that of Gieseker [11]. We begin with a few
basic facts about g-stable and semistable pairs, parallel to those for bundles. We
write A for A?E, and d for deg E = deg .

(1.3) For o >0, there exists a a-semistable pair of determinant A if and only if
g £ d/2.

Proof. If ¢ > d/2, then o-semistability implies deg L < 0 if ¢ € H°(L), which is
absurd. If ¢ £ d/2,let L — X be a line bundle of degree [d/2 — 6] having a nonzero
section ¢. Let E be a nonsplit extension

0L E-> AL 150,

Then the first inequality in Definition (1.1) is obvious. As for the second, if M < E
and degM >d/2 + o, then there is a nonzero map M — AL™'. Since
deg AL ! < d/2 + ¢ + 1, this is an isomorphism, so the extension is split, which is
a contradiction. [J

(14) Let (E, ¢)be a pair. There is at most one o-destabilizing bundle L < E such that
¢ € H°(L), and at most one a-destabilizing M < E such that ¢ ¢ H°(M). If both
L and M exist, then E = L@ M.

Proof. The first statement is obvious, and the second follows from the uniqueness
of ordinary destabilizing bundles, since degM = d/2 + o > d/2. If both L and
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M exist, then the map M — E— AL~ ! is nonzero since ¢ € H°(L) but ¢ H°(M).
ButdegM > d2+ o 2degAL ', so M = AL ! and E is split. [

(1.5) Let (E,, ¢,) and (E,, ¢,) be o-stable pairs of degree d, and let y: E; — E, be
a map such that Y = ¢,. Then yr is an isomorphism.

Proof. The kernel of i is a subsheaf of a locally free sheaf on a smooth curve, so it is
locally free. If rank kery = 2, then  is generically zero, soyy = 0 and ¢, + ¢, If
rank keryy = 1, then kery is a line subbundle L of E,, since E; /kery is contained
in the torsion-free sheaf E,. Hence i descends to amap AL~ ! — E, (possibly with
zeroes) such that ¢, € H°(AL™1). Since (E,, ¢,) is o-stable, deg AL™! < d/2 — &,
so deglL >d/2 + o, contradicting the o-stability of (E,,¢,). Finally, if
rank ker y = 0, then ker y = 0 and  is injective. Moreover, coker i is a coherent
sheaf on a curve with rank and degree 0, so cokery = 0 and y is an isomor-
phism. O

(1.6) Let (E, @) be a o-stable pair. Then there are no endomorphisms of E annihilating
¢ except 0, and no endomorphisms preserving ¢ except the identity.

Proof. Subtracting from the identity interchanges the two statements, so they are
equivalent. We prove the first. Any endomorphism annihilating ¢ annihilates the
subbundle L generated by ¢, so descends to a map E/L — E. But by g-stability E/L
is a line bundle of degree = d/2 + o, so the image of this map, if it were nonzero,
would generate a line bundle of degree = d/2 + g, which would be destabiliz-
ing. O

(1.7) Let (E,®), (E',®') > Tx X be two families over T parametrizing the same
pairs. Then (E, ®) = (E', ®').

Proof. For any t € T, the subspace of H°(X; Hom(E,, E/)) consisting of homomor-
phisms ¥ such that y®, = A®, for some 1 e € is one-dimensional by (1.6). This
determines an invertible subsheaf of the direct image (R°=) Hom(E,, E/). But this
subsheaf is trivialized by the section 4 = 1, which produces the required isomor-
phism. O

The notion of a Harder-Narasimhan filtration for rank 2 pairs is quite a simple
one. For (E, ¢) stable, define Gr(E, ¢) = (E, ¢). Otherwise, define Gr(E, ¢) to be
a direct sum of line bundles, one of them containing the section ¢, as follows. If L is
the destabilizing bundle and ¢ € H%(L), define Gr(E, ¢) = (L D AL, ¢). If M is
the destabilizing bundle and ¢ ¢ H°(M), project ¢ to a nonzero section
¢’ € H(AM™1) and define Gr(E, ¢) = (M @ AM ™1, ¢'). Note that if there are
destabilizing bundles of both sorts, then by (14) E= L@ AL™! and the two
definitions agree.

(1.8) There exists a degeneration of (E, ¢) to Gr(E, ¢), but Gr(E, ¢) degenerates to
no semistable pair.

Proof. The first statement is vacuous when (E, ¢) is stable. If it is unstable, say with
destabilizing bundle M, we can construct a pair (E,®)— X xC such that
(E., ®,) = (E, ¢) for z + 0, but (E,, ®y) = Gr (E, ¢), as follows. Pull back (E, ¢) to
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X x €, and tensor by ¢(0) when ¢ ¢ H®(M). This gives a pair (E,®') » X xC
such that @’ is annihilated by the natural map E'— AM "1} xx{o}- Let E be the
kernel of this map; then @ descends to ® € H°(E), and it is straightforward to
check that (E, @) has the desired properties.

As for the second statement, suppose first that (E, ¢) is stable. If C is a curve,
peC, and (E,®)— X x C is a flat family of pairs such that (E_, ®,) = (E, ¢) for
z % p, then ®, has the same zero-set D as ¢, so E and E, are both extensions of
L = O(D) by A( — D); indeed, E is a family of such extensions. The extension class
varies continuously, so the extension class of E, is in the same ray as that of E. If it
is nonzero, (E, ¢) = (E,, ®,), and if it is zero, (E,, ®,) is destabilized by AL

Now suppose that (E,¢) is not stable, so that for some L,
Gr(E, ¢)= L@ AL "' and ¢ € H®(L). Then as above E, is an extension of L by
AL™!, but now by continuity the extension class must be zero, so
Gr(E, ¢) = (E,, ®,). [

(1.9) If (E, ¢) is o-(semi)stable, then so is (E(D), (D)) for any effective divisor D.
Likewise, if ¢ vanishes on an effective divisor D and (E, ¢) is o-(semi)stable, then so is

(E( = D), ¢(— D)).

Proof. If L < E is any line bundle, ¢(D) € H°(L(D)) if and only if ¢ € H°(L), and
deg L(D) = degL + degD. But $degE(D) = +degE + deg D also, so both in-
equalities are preserved by tensoring with D. The second statement is proved
similarly. [

Hence if the moduli spaces M(o, A) exist for large enough d, then the moduli
spaces for smaller d will be contained inside them as the locus of pairs (E, ¢) such
that ¢ vanishes on some effective D. So to prove our existence theorem (1.2} it
suffices to construct M(o, A) for d large relative to g and o, and we will assume for
the remainder of §1 that d is large in this sense. For such a large d, we then have the
following useful fact.

(1.10) For fixed g and o and large d, (E, ¢) o-semistable implies that H'(E) = 0 and
E is globally generated.

Proof. Suppose that H!(E) &+ 0. Then H°(KE*) # 0, so there is an injection
0—» K Y(D)—» E* for some effective D. Hence there is an injection
0— K~'A(D)— E. Since deg K~ ' A(D) = 2 — 2g + d, the o-semistability condi-
tion implies that 2 — 2g + d < d/2 + o, so that d < 4g — 4 + 20. So for d larger
than this, H'(E) = 0.

Similarly, if d >4g — 2 + 20, then H'(E(— x))=0 for all xe X, so E is
globally generated. O

Since we are assuming that d is large, the above lemma implies that for (E, ¢)
o-stable, dim H®(E) = y(E) = d + 2 — 2g. Call this number . If we fix an isomor-
phism s: €C* —» H°(E), we obtain a map A2C* =, A2H°(E)—2, H°(A), which is
nonzero because E is globally generated. Thus to any bundle E appearing in
a g-semistable pair, and any isomorphism s, we associate a point T(E,s)€
PHom(A2C* H%(A)). We will consider the pair (T(E, s), s ! ¢) € IPHom x PC?,
where IP Hom is short for IP Hom(A2C*, H°(4)). Roughly speaking, M(s, A) will
be a geometric invariant theory quotient of the set of such pairs. The quotient is
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necessary to remove the dependence on the choice of s. Since two such isomor-
phisms are related by an element of SL(y), the group action will be the obvious
diagonal action of SL{y) on IP Hom x PC*. As usual in geometric invariant theory,
we must linearize the action by choosing an ample line bundle and lifting the action
of SL(y) to its dual. So let the ample bundle be any power of @(y + 20, 40), with the
obvious lifting. (Of course y + 26 and 40 may not be integers, but by abuse of
notation we will refrain from clearing denominators, since the choice of power does
not matter.) We can then define stable and semistable points in the sense of
geometric invariant theory with respect to this linearization.

(L.11) If (E, ¢} is o-(semi)stable, then (I(E, s),s ' ) is a (semi)stable point with
respect to the linearization above.

Proof. Suppose T = (T(E, 5), s~ ¢) is not semistable, Then by Mumford’s numer-
ical criterion [19,21] there _exists a nontrivial 1-parameter subgroup
A:€C* — SL{y) such that for any T'in the fibre of the dual of our ample bundle over
T, lim, .o A(t): T = 0. We interpret this limit concretely as follows. Any 1-parameter
subgroup of SL (¥) can be diagonalized, so there exists a basis ¢; of €* such that
Alt)-e; = t"e;, where r; € Z are not all zero and satisfy Zi rp=0andr, Srifori £j.
Then lim,.,A(f)*T=0 means that any basis eclement (¢f A ef ®v,e)e€
Hom(A2C* H®(A) & €* which is acted on with weight =< 0 has coeflicient zero
in the basis expansion of T. Because of our choice of linearization, this means that
T(E, s){e;, e;) = 0 whenever

g
(1'12) ri+rj§W2——+—O_r,,
where £ = max {i:coefficient of ¢; in s™' ¢ is + 0}. Let L < E be the line bundle

generated by s(e;). We distinguish between two cases, according to whether
¢ e HY(L).

First case. ¢ € HP(L). For i £ 3/2 — 6 + 1, note that

(2 = o)y + (12 + M T 1=,

since the left-hand side can be regarded as the integral over [0, y) of a (two-step)
step function whose value on [j — 1,j)is <r; Hencefor i< y/2—o + 1,

o 20

r 7
x2+0 12+ o

so T(E, s){ey, e;) = s(ey) A s{e) = 0. Hence s{¢;) is a section of the same line

bundle as s(e, ), namely L. So dim H®(L) > y/2 — o; since d is large relative to g and
o, this implies that deg L > d/2 — g, so (E, ¢) is not g-semistable.

rn+n=s

IIA

1 (2]

Second case. pEH LY. Fori<y/2+ 0+ 1,
W2+oar +@2—or =0,
for the same reason as above. Hence

20

n+rsSs——r
R YN

i
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We claim that £ > y/2 + ¢ + 1. If not, then for all i £ ¢,

so that s(e;) would be in the same line bundle as s(e;). Since ¢ is a linear
combination of ¢; for i £ 7, we would conclude ¢ € H%(L), a contradiction. This
proves the claim.

So for i £ x/2 + ¢ + 1, actually

20
—r
¥2+ 0

rtrn s ’5
hence s(e;) € H°(L) as in the first case. So dim H%(L) > x/2 + o, and again (E, ¢) is
not o-semistable.

The proof for stability is similar: the numerical criterion now just says
lim, o A(t)* T %+ o0, so we replace the < in(1.12) by < . We just need to note that
ifi < y/2—o0+1, then

W2—or + 2+ a)r,<0

strictly, because either the two step functions are different just to the left of y/2 — o,
or the smaller one is identically r; < 0. O

(1.13) Let (E, ¢) be a pair, let s :€* - H°(E) be a linear map, and let v e C* satisfy
s(v) = ¢. Write T, for the composition A*C* 3, A> H°(E)—2 H(A). If (T, v) is
semistable, then s is an isomorphism and (E, ¢) is o-semistable.

Proof. First of all, note that if s is not injective, then (T, v) is certainly not
semistable. Indeed, if s(w) = O for some w, put e, = w, e, = v, extend to a basis {e;}

of €%, and then take the 1-parameter subgroup defined by r; = — y + 2,7, =0,
ry= - =r,=1Then ¢/ =2, s0
tr< 20
S r
T yn4e f

means just r; + 7; £ 0. Hence eitheri = 1,0rj = 1, or i = j = 2; in any case, clearly
Ti(e;, e;)=0.

Suppose then that s is injective and (E, ¢) is o-unstable. We will prove (T, v) is
unstable. Let L < E be the destabilizing bundle. We distinguish two cases, depend-
ing on the sign of d — deg L — 2g + 2.

First case. d — deg L > 2g — 2. Then HY(AL™')=0, but H'(L) = 0 also since
deg L > d/2 — o which is large relative to g. Hence from the long exact sequence of

(1.14) 0> L->E->AL '>0

we find that H'(E) = 0, so dim H°(E) = y and s is an isomorphism. Choose a basis
er,...,e, for sT'(H°(L)) and extend to a basis ey,...,e, for €% Take the
L-parameter subgroup defined by r;, = p — yfori < p,pfori > p Thenr,=p— x
if e HO(L), p if ¢ ¢ H(L). Since L is destabilizing, p > y/2 — o if ¢p € H*(L),
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p > /2 + o if ¢ ¢ H°(L). Either way,

< 20
S ———r
TR +et

implies i,j < p; if ¢ € H°(L), and say i > p, then

20 20 ¥ 2—o
B A S Y () [ -
x/2+0r/“p (p X)< x/2+a> px/2+a Xx/2+a

_L_Xx/2—0=0
2+ o ¥2+o ’

whereas if ¢ ¢ H°(L), and say j > p, then

rir - 20 rpZp—x+p 1———2L =p—x——x>x——y=0.
77 A Y2+ o W2+ o ”

But if ;, j < p, then s(e)), sle; e H %(L), so Tile;, ¢;) = 0. Hence (T, v) is unstable.

ri+r;

>(x/2 - o)

Second case. d — deg L < 2g — 2. Thendim H°(AL™') < g, so from the long exact
sequence of (1.14) we deduce that the codimension of H%(L)in H°(E)is < g. Hence
the codimension of s™*(H®(L)) in €* is <g. Choose a basis ej,...,e, for
sT1(HO(L)) and extend to a basis ey, ..., e, for C*. Take the 1-parameter sub-
group defined by r,=p—y for i<p, p for i>p. Since p=y—g and
x =d + 2 ~ 2gis large relative to ¢ and g, certainly p > 3/2 + ¢. The remainder of
the proof proceeds as in the first case.

So far we have proved that if (T}, v) is semistable, then s is injective and (E, ¢) is
a-semistable. But then by (1.10), dim H°(E) = y, so s is an isomorphism. O

(1.15) Suppose (E,, ¢1) and (E;, ¢,) are o-semistable, and there exist sy, s, such
that (T(E,,s;), s;l¢y)=(T(E,,s,), 55" d,). Then there is an isomorphism
(Eq, ¢1) 2A{E,, &3) under which sy, = s,.

Proof. By (1.10) each E; is globally generated, so the components s;(e;) A s;(e,) of
T(E,, s;) give a map from X to the Grassmannian of (3 — 2)-planes in €* such that
E, is the pullback of the tautological rank 2 bundle, ¢; is the pullback of the section
defined by s; !(¢;), and s; is the natural map from €?* to the space of sections of the
tautological bundle. So we can recover (E;, ¢;) and s;, up to isomorphism, from
(T(E;, s) 87 '¢s). O

(1.16) Let C be a smooth affine curve and p € C. Let (E, ®) be a locally free family of
pairs on X x C — {p}, and suppose E is generated by finitely many sections s;. Then
after possibly rescaling ® by a function on C — {p},(E, ®) and the s; extend over p so
that E is still locally free, ®, + 0, and the s; generate E, at the generic point.

The reason for proving the last fact is to ensure that T(E, s) is nonzero at p, so
defines an element of P Hom.

Proof. Choose an ample line bundle L on X xC — {p} such that E*® L is
globally generated. Then E embeds in a direct sum of copies of L, and @;L can be
extended over p as a sum of line bundles in such a way that the s; extend too.
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Consider the subsheaf of the extended @ ;L generated by the s;. This is a subsheaf
of a locally free sheaf, so it is torsion-free, and hence [22] has singular set S of
codimension = 2. Furthermore, it injects into its double dual, whose singular set
has codimension = 3 [22], hence is empty. Hence the double dual is a locally free
extension of E over p, and is generated by s; away from S. As for ®, it certainly
extends with a possible pole at p, so it is just necessary to multiply it by a function
on C vanishing to some order at p. [l

We can finally proceed to construct the geometric invariant theory quotient.
Consider the Grothendieck Quot scheme [13] parametrizing flat quotients of
0% with degree d, let Quot(A) < Quot be the locally closed subset consisting of
locally free quotients E with A2E = A, and let U < Quot(4) be the open set where
the quotient induces an isomorphism s: C* — H(E). Then the pair E, s specifies
a point in U. By (1.10), if (E,, ¢) is g-semistable for any section ¢, then pe U.

Now U is acted upon by SL(y) in the obvious way, and the map

Tx1:UxPC*— PHom x PC*

intertwines the group actions on the two sets. By (1.11) and (1.13), the ¢-semistable
set V(o) c UxPC* is the inverse image of the semistable set
V'(6) = PHom x PC* with respect to the linearization O(y + 20, 40). In future,
we restrict Tx 1 to a map V(o) - V'(0).

Now Gieseker proves the following.

(1.17) Let G be a reductive group and M, and M, be two G-spaces. Suppose that
fS:M{ > M, is a finite G-morphism and that a good quotient M,//G exists. Then
a good quotient M ,//G exists, and the induced morphism M ,//G — M, //G is finite.

So to show that V(o) has a good quotient it suffices to prove:
(1.18) On V(c), Tx 1 is finite.

Proof. By (1.15), T'x 1 is injective. We use the valuative criterion to check that Tx 1
is proper. Let C be a smooth curve, p e C, and let ¥:C — {p} — V(o) be a map such
that (Tx 1) ¥ extends to a map C— V'(5). On C — {p}, we then have a family
(E, @) of pairs such that E is generated by the sections s(ey), . . ., s(e,). By (1.16), on
an open affine of C containing p, (E, @) extends over p in such a way that ®, =+ 0
and the s(e;) generically generate E,. Thus T(E,, s) is defined, and so by continuity
(T(E,, s),s"1®,) = (Tx1)¥)p). Hence by (1.13) s:C*—> H°(E,) is an isomor-
phism and (E,, ®,) is o-semistable. So (E,, s ' ®,) € ¥(0) and ¥ extends to a map
C-V). O

Hence V(o) has a good projective quotient. By (1.8), the closure of the orbit of
(E, ¢) contains the orbit of Gr(E, ¢), which is closed in the g-semistable set. But the
closure of any orbit in the y-semistable set contains only one closed orbit [21,3.14
(ii1)]. Hence if two pairs are o-semistable, then the closures of their orbits intersect if
and only if they have the same Gr. This completes the proof of our main theorem
(12). O

The stable subsets of these moduli spaces are actually fine:
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(1.19) There exists a universal pair over the a-stable set M (o, A).

Proof. There is a universal bundle E — Quot(4) x X and a surjective map ¢* — E.
Hence there is a natural SL(y)-invariant section ® € H°(Quot(A)x PC* x
X; E(1)), and (E(1), D) is a universal pair. By (1.6} the only stabilizers of elements of
the g-stable subset of V(o) are the yth roots of unity. These act oppositely on E and
on O(1), hence trivially on E(1), so on the g-stable set E(1) is invariant under
stabilizers. Hence by Kempf’s descent lemma [9] E(1) descends to a bundle on
Mo, A)x X, and the section @, being invariant, also descends. This pair over
M(0, A) x X then has the desired universal property. [

(1.20) Remark. If D is any effective divisor, by (1.9) there is an inclusion
ip:M(o, A) & M(a, A(2D)) given by (E, ¢) — (E(D), ¢(D)). Indeed, if (E*, ®*) and
(EA@P), ®*@P)y gre the corresponding universal pairs, there is a sequence

0 E1 2, 5 E' 5 0 (1FE) - 0

such that 1,(@4) = @),

2 Their tangent spaces

We now turn to the deformation theory of our pairs. By semicontinuity g-stability
is an open condition, so the Zariski tangent spaces to our moduli spaces at the
g-stable points will just be deformation spaces. Hence we may refer to
T5,9yM(o, A) simply as Tz 4)-

(2.1) If (E, ¢) e M (o, A) is o-stable, then
(i) (cf. [6]) T(e.4), is canonically isomorphic to H' of the complex

C°(EndoE) ® €~ C!(End, E) ® C°(E)—- CY(E),

where plg, ¢} = (dg,{g + c)¢) and q(f, ¥} =f ¢ — d;
(i) H® and H? of this complex vanish;
(ili) there is a natural exact sequence

0— H(End E)—%> H°(E) » T4y H' (EndgE)—2 H! (E) - 0.

Proof. Let R = C[¢]/(c%). By a well-known result [15, II Ex. 2.8] Ty, 4, is the set of
isomorphism classes of maps Spec R— M (o, A) such that (¢) — (E, ¢). Since
o-stability is an open condition, T 4 is just the set of isomorphism classes of
families (E, @) of pairs on X with base Spec R, such that (E, ®),,, = (E, ¢) and A*E
is the pullback of A. We will explain how to construct any such family.

The only open set in Spec R containing (¢) is Spec R itself, so any bundle E over
Spec R x X can be trivialized on Spec R x U, for some open cover {U,} of X. Thus
if E(,, = E, the transition functions give a Cech cochain of the form 1 + ¢ f,, where
feC' (EndE). In order for A*E to be isomorphic to the pullback of A, the
transition functions of A2E must be conjugate to 1 € C°(¢). But the transition
functions are det(l + ef,5) = 1 + etr f,4, so we are asking that

(1 + eg )(1 + etrfp)(1 —egg) = 1
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for some g € C°(0), that is, tr f = — dg. But if such a g exists, thenf=f+ dg/2 is
trace-free, and 1 + ¢ f is obviously conjugate to 1 + ¢f, so determines the same
bundle E. Hence up to isomorphism we can obtain any E even if we consider only
trace-free f € C! (End, E).

Now if there is a section ® € H °(E) such that ®,, = ¢, then with respect to the
local trivializations of E described above, ® = ¢ + &y, for some Cech cochain
¥ € C°(E). Of course, ¥ must be compatible with the transition functions; this
means that

(I + efup) (@ + &p) = (& + epa),

that is, f¢ = diy. Hence any pair (E, ®) having the desired properties can be
obtained from some (f, ¥) € C'(EndoE) @ C°(E) satisfying f ¢ — dir = 0 € C1(E).

We now need only check which ( f; ¥) give us isomorphic (E, ®). Of course the
two choices will be related by a change of trivialization on Spec R x U, but we may
assume that the change of trivialization is of the form 1 + &g, on U, since (E, ¢)
itself has no automorphisms (1.6). Furthermore, g must belong to C°(EndoE) @ C
in order to keep f trace-free, since the action of g is given by

1+ efypr= (1 + eg,)(1 + & fop)(1 — £gp),

that is, f > f + dg, and dg is trace-free if and only if g € C°(End E) is the sum of
a trace-free cocycle and a constant. Similarly the action of g on  is

¢+ e (1 + £9.)(d + ),

that is, ¥ — ¥ + g¢. Hence two pairs (f, ) and ( ﬁ l/~/) determine isomorphic pairs
(E, ®) if and only if they are in the same coset of the image of the map
C°(Endy E)Y® C— C'(End, E)® C°(E) given by g+ cr(dg, (g + c)¢). This
completes the proof of (i).

As for (ii) and (iii), substituting H°(EndqE) ® € = H%(End E) into the long
exact sequence of the double complex with exact rows

0 - 0 - CEndE)®€ - C°EndiE)@C - 0

! ! !

0 » C°%E) » C'EndoE)® C°E) » C!'(EndgE) — 0
! ! {

0 - CYE) —» C(E) - 0 - 0

gives
0> H®°> H®(EndE)-> HE)> H' - H'(End, E)—» HY(E)—» H? - 0,

where H' is the cohomology of the complex from (i}. But the map
H°(End E)—¢, H®(E) is injective for (E,¢) o-stable by (1.6), and the map
H'(End, E)—% H'(E) is always surjective: indeed this is equivalent to the Serre
dual map H%(KE*)—¢, H°(K End, E*) being injective, which is obvious since the
map KE* 2, K End, E* is an injection of sheaves. Hence H® and H? vanish, and
we get the exact sequence in (iii). [

As a corollary, we obtain the following.
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(2.2) If (E, ¢) e M (0, A) is o-stable, then dim T 4y =d + g — 2.

Proof. By (2.1(1ii)
dim T 4= (E) — x(EndgE) -1 =(d+2—-29)—(3—-39)—1=d+g—-20

We will see in the next section that dim M(o, A) = d + g — 2; hence M (g, A) will be
smooth at the stable points.

3 How they vary with ¢

For obvious numerical reasons the o-semistability condition remains the same, and

implies g-stability, for any ¢ € (max (0, d/2 — i — 1), d/2 — i), where i is an integer

between 0 and (d — 1)/2. Hence for ¢ in that interval we get a fixed projective

moduli space M (a, A), which we will henceforth denote M;(A) or just M;. The

remainder of this paper will concentrate on these moduli spaces M;, ignoring the

special values of g for which there exist g-semistable pairs which are not g-stable.
In the extreme case i = 0, it is then easy to construct the moduli space:

a1 Mo(A) = PH(A™Y).

Proof. The first inequality in the g-stability condition (1.1) says that ¢ € H°(L)
implies deg L < 0. Hence L = ¢, E is an extension of @ by A, and ¢ € H°(0) is
a constant section. The second inequality says that E has no subbundles of degree
= d: this is equivalent to not being split, since M — E— A nonzero and
deg M = d = deg A implies M = A. Hence My(A) is simply the moduli space of
nonsplit extensions of @ by A, which is of course just PH!(A4™1). O

We will not attempt such a direct construction of M;(A) for { > 0. Rather, we
will carefully study the relationship between M;_, and M;. Of course, this will only
be of interest if there exists an M, for i > 0, so we will assume for the remainder of the
paper that [(d — 1)/2] > 0, that is, d = 3. Anyhow, the first step is to construct
families parametrizing those pairs which appear in M; but not M;_,, or M;..; but
not M;. To do this, we first define two vector bundles over the ith symmetric
product X;.

Let m:X;x X - X; be the projection and let 4 < X;x X be the universal
divisor. Then define W = (R°x) O,A( — 4)and W," = (R'n) A~ (24). These are
locally free sheaves of rank i and d + g — 1 — 2i, respectively.

(3.2) Fori < (d — 1)/2, there is afamily over PW;* parametrizing exactly those pairs
which are represented in M; but not M;_ .

Proof. As we pass from i to i — 1, the first inequality in the stability condition (1.1)
gets stronger and the second gets weaker. So we look for pairs which almost violate
the first inequality. That is, E must be an extension

0 O(D)> E— A(— D)— 0,

where deg D = i, and ¢ is the section of @(D) vanishing on D. Conversely, any such
pair is stable unless it splits E = 0(D) @ A( — D). Indeed, if L < E and ¢ ¢ H°(L),
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then the map L — A( — D) is nonzero, so deg L < deg A( — D) = d — i, with equal-
ity only if L = A(— D).

But P W;* is the base of a family parametrizing all such nonsplit pairs: indeed
E is the tautological extension

0> O0UM)>E—-A(—A(—-1)-0,
and ® is the section of ¢(4) vanishing on 4. O

(3.3) For i <(d — 1)/2, there is a family over PW,” parametrizing exactly those
pairs which are represented in M;_, but not M,.

Proof. This time the first inequality in (1.1} gets weaker and the second gets
stronger. So we look for pairs which almost violate the second inequality. That is,
E is an extension

0O-M—-E->AM 150

where deg M = d — i, and ¢ ¢ H°(M). Hence projecting ¢ in the exact sequence,
we get a nonzero y € H°(AM™1) vanishing on a divisor D of degree i such that
AM ™' = @(D). Then at D, ¢ lifts to M = A(— D), so we get an element
p(E, ¢) e H®°(O, A( — D)), defined up to a scalar as usual. .

On the other hand, we can recover (E, ¢) from D and p. Indeed, choose a Cech
cochain y € C®(A( — D)) such that |, = p. Then dy|, = dp = 0, so dys vanishes
on D and descends to a closed cochain f = dyi/y € C1(A( — 2D)). This determines
an extension

0— A(— D)— E'— 0(D)- 0.

The compatibility condition for y +  to define a section ¢’ € H*(E') is yf = dy,
which is automatic. Thus we get a new pair (E’, ¢') satisfying p(E’, ¢') = p.

Up to isomorphism, (E’, ¢") is independent of the choice of ¥, since adding
&e C™A( — 2D)) to y is simply equivalent to acting by ({ %) on the local splittings
of E’ with which the extension is defined. In particular, we can choose local
splittings of the old E and let i be the projection of the old ¢ on M = A( — D) with
respect to these splittings. Then the construction of the previous paragraph re-
covers (E, ¢), so (E', ¢') = (E, ¢).

The construction above can be generalized to produce a family
(E,®)-> PW;” x X, as follows. Let p:IPW;” — X; be the projection, and choose
a cochain ¥ € C%(A( — A)(1)) such that ¥,-141s the tautological section. Then d¥
vanishes on p~ ! 4, so descends to C{A( — 24)(1)). This determines an extension

00— A(—4)1)>E- ¢(4)- 0,

and if y € H%(@(4)) is the section vanishing on 4, then y + ¥ defines the desired
section ® e H(E). O

By the universal properties of M;_; and M;, we thus get injections PW," s M;
and PW, o M;_;. As an example, consider the case i=1 By (3.1),
My =IPH'(A™!). Moreover, W is a line bundle and hence PW; = X, = X.
Hence the inclusion of (3.3} is a map X g PH!(A~!); it can be identified explicitly
as follows.
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(3.4) The inclusion X cIPH'(A™") is given by the complete linear system | Ky A|.

Proof. There is an alternative way to see what pairs are represented in M, but not
M,. Any pair (E, ¢) € M, is an extension

3.5) 0->0->E->A-0,

say with extension class s € H' (4™ '), and with ¢ € H°(®). Such a pair is the image
of x € X under the injection of (3.3} if there is an inclusion 0 - A( — x)— E such
that the composition 7,:4( — x)—» E — A vanishes at x. Hence we ask for what
extension classes s € H'(A 1) the map y,:4( — x) - A lifts to E.

Twisting (3.5) by 4~ !(x) and taking the long exact sequence yields

HYE®A™'(x)) > HO(0(x)) —2 H' (471 (x)),

where the second map is the cup product with s. Hence y,e H®(O(x)) lifts
to HY(E® A (x)) as desired if and only if y,s = 0. That is, s must be in the
kernel of the map Y HY (A Y- HY A (x)), or Serre dually,
Vet HO(KxA)y* = HY(KxA(— x))*. Since 1y, is dual to the injection
HO(KyA(— x))— H®(KxA), it is surjective, so

dimkery, = dim H°(Ky A( — x)) — dim H°(Kx 7).

But since deg Ky A( — x) > 2g — 2, thisis 1. Hence for each x € X, there is a unique
sePH'(A™!) such that y,5 = 0.

What is this s? Regarded as a linear functional on H°(KxA), s € kery, if it
annihilates all sections vanishing at x. Certainly evaluation at x does this, so this is
the s generating ker y,.. But it is also the image of x in the map X cIPH(A~!) given
by | KxAl. Hence the two maps are identical. [

(3.6) The M; are all smooth rational integral projective varieties of dimension
d + g — 2, and for i > 0, there is a birational map M~ M |, which is an isomorphism
except on sets of codimension = 2.

Proof. By (3.1) and Riemann-Roch, the first statement is certainly true of M,. For
i > 0, suppose by induction on i that it is true of M;_ ;. By (3.2) and (3.3) there is an
isomorphism M;_; — PW, <M, — PW;". But dmPW, =2i—1<d—-1<
d+g—-2,anddimPW  =d+g—-2—i<d+g—2,s0dimM,;=dimM,;_ =
d + g — 2 and M; is birational to M;_, hence to My. Moreover by (2.2), the
Zariski tangent space to M; has constant dimension d + g — 2, so M, is a smooth
reduced variety. The second statement is also proved by induction: just note
that for i > 1, codimPW;” /M, =d+g—2i—12=2 and codimPW;"/M; =
i=2 O

(3.7) Let (E, ¢)e PW ', let D be the zero-set of ¢, and let y be the map
EQA Y D)» A(- D)@ A" D)= 0.
Then Tz, 4 PW [ is canonically isomorphic to H* of the complex
CUAER@AT'(D) @ T2 CHE® A™1(D) ® C°(O(D))— CH(O(D)),

where p(g, ¢) = (dg, (yg + ¢)$) and q(f, ) = v f ¢ — dy. Moreover, H® and H* of
this complex vanish.
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Proof. The proofis modelled on that of (2.1). We regard PW ;" as a moduli space of
triples (L, E, ¢), where L is a line bundle of degree i, E is an extension of L by AL™?,
and ¢ € H°(L), and consider the deformation theory of this moduli problem.

Let R = C[e]/(e?) as before. Then T,y g ) PW /" is the set of isomorphism
classes of families (L, E, ®) of triples on X with base SpecR, such that
(L,E, ®),, = (L, E, ¢). We will explain how to construct any such family.

Any bundle over Spec R x X can be trivialized on Spec R x U, for some open
cover {U,} of X. Thusif L) = 0(D) and E, = E, then the transition functions for
E give a Cech cochain of the form 1 + ¢ f,; where f € C*(End E). Since E is to be
a family of extensions of L by AL ™!, it must have A?E = A, so as explained in the
proof of (2.1) we may take f € C!{End, E). Furthermore, the transition functions
must preserve L, so if / is the projection of fto C!(A( — 2D)) in the natural exact
sequence

0-E®A "D)»EndyE—~ A(—2D)- 0,
then 1 + ¢f,; must be conjugate to 1. Hence
(1 — &g )1 +efp)(l —egg) =1

for some g e CO(A( — 2D)), thatis,f’ = dg. But if such a g exists, then for any lifting
G of g to C°(End,E f f—dg projects to 0e C*(A( — 2D)), and 1 + ef is
obviously conjugate to 1 + ¢f; so determines the same bundle E. Hence up to
isomorphism we can obtain any E that is an extension of some L by AL ! even if
we consider only those fin the kernel of C!(Endy E)— C*(A( — 2D)), that is, in
CHE® A! (D)). The transition functions for L are then just 1 + &y fo5.

Now if there is a section ® € H(L) such that @, = ¢, then with respect to the

local trivializations of E, ® = ¢ + ey, for some Cech cochain ¢ € C°(O(D)). Of
course, iy must be compatible with the transition functions; this means that

(1 + ey fap) (b + &) = (& + era);

that is, y f ¢ = dy. Hence any triple (L, E, @) having the desired properties can be
obtained from some (fiYy)e CHE® A (D) D CYO(D)) satisfying
vf¢ —dy =0eCH(OD)).

We now need only check which ( £, ) give us isomorphic (L, E, ®). This part of
the argument follows that of (2.1) exactly, except that g ends up being in
CYE® A~ (D)) ® €, and acts on by i = + yg¢. This completes the proof of
the first statement.

As for the second, taking the long exact sequence of the double complex
0> 0 SCERAIDNDC > CUERA (DHST >0

l ! !
0-COD)~» CHE®A'(D) - CHE®AT'(D) -0
® C°(0(D))
! l l
0 - CHO(D)) - C(oD)) - 0 -0

gives
0- H°— HY(E® A~ (D)) ® C— H°(O(D))—» H'
- HYE® A~ (D))» H' (0(D))»> H? > 0,
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where H' is the cohomology of the complex in the statement. Now
H®(A™'(2D)) = 0 since deg A~ '(2D) < 0, and E is a nonsplit extension of @(D) by
A(— D), so

H°(E® A~ (D)) = H°(Hom (A( — D), E)) = 0.

But the map € —» H°(0(D)) is injective: indeed, it is multiplication by ¢. Hence
H® = 0. Likewise, the map H'(E ® A~ (D)) - H'(¢(D)) is surjective: indeed this
is equivalent to the Serre dual map H°(K( — D)) —» H°(E* ® K A( — D)) being
injective, which is obvious since the map K(— D)—» K- E*® KA(— D) is an
injection of sheaves. Hence H> =0. [

The following proposition is proved similarly.

(38) Let (E,¢)ePW;, and let D =p(E, ¢). Then Ty 4\ PW; is canonically
isomorphic to H' of the complex

CYUE(- D)@ C— C'(E(— D))® C%E)— C'(E).
Moreover, H® and H? of this complex vanish.
(39) The injection P W g M; induces an exact sequence on PW;
0— TPW; - TM,v|]pW‘+ W (~1)-0.
Proof. The complex
COoA(~ 24)) > CHA(— 24)) @ Co(A(—~ 4)) = CH{A(— 4))

with the obvious maps has R%z = 0, R'z = W/ from the long exact sequence of
the double complex

0 CYA(—24)) - C%A(-24)) - 0 -0
o } !
CoA(—24)) CoA(— 4))
0— @CHA(—-24)) » @ CHA(—24)) » CHOHA(—4)) > 0
Loy ! !

0> CHA(=24)) » CHA(—4)) - CHO4A(— 4)) - 0.

Hence the result follows from the long exact sequence of the double complex

0- COHEA ' (UNDC > C(EndgE)@ C —» Co%A(—24)(—1) > 0

Lo 1) l
CHEA(4)) C!(Endy E) CHA(=2M))(—1)
0> @C0M) - BCE) - @CA(—-H-1)~ 0
) la }

0- Cl(0(1) - CHE) = CH{A(=M)(-1) -0,

together with (2.1) and (3.7). O
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(3.10) The map PW;* o M, is an embedding.

Proof. By (3.7), it is an injection, and by (3.9), so is its derivative. O

The following proposition and corollary are proved similarly, using (2.1) and (3.8).

(3.11) The injection PW; M, _, induces an exact sequence on PW
0 TPW; — TM;_lpw-— Wi (—1)-0.

(3.12) The map PW o M, is an embedding.

By (3.2) and (3.3) every pair in M; — PW; isalso in M;_, — PW; , and vice-versa.
Hence there is a natural isomorphism M; — PW; - M,_, — PW; . Our next task
is to extend this to a proper map. Let M ;" be the blow-up of M; at PW . Then by
(3.9) the exceptional divisor is E;” = PW; @ PW,",and O+ (E;*) = O(~ 1, - 1).

(3.13) There is a map M — M;_, such that the Jfollowing diagram commutes:

M, —PW; - M} < E

1 ! {
Moy —PW{ > M, « PW; .

Proof. Let (E,®)— M x X be the pullback of the universal family. We will
construct a new family (E’, ®') of pairs all of which are in M;_ .

By uniqueness of families (1.7), (E, ®)|g:«x is the pullback of the family
over PW; constructed in (3.2). Thus there is a surjective sheaf map
E > Og- xA( — 4)(0, — 1) annihilating ®. Define E’ to be the kernel of this map,
so that

(3.14) 0-»E > E- O xA(— AH0, — 1}-0.

Then E' is locally free, and ® descends to @ € HO(E’). For z e M; — PW ", clearly
(E', "), = (E, @),. So to prove the proposition it suffices to show that (E’, ®')g+is
the pullback of the family over PW;~ constructed in (3.3). The first promising thing
to note is that there certainly is a surjection E' — Op-, x(4)— 0, and
A’E' = A?E(— E{ x X), so we get an extension

0 A(= N1, 00> Egrx —> 0(4) > 0,

just as in the family of (3.3).

Now fix seE;} over (E,¢)eM;, and let D be the zero-set of ¢. Let
R=CJe] /(¢?) as before, and choose a map Spec R - M’ representing an element
of T,M} — T,E;". Then (3.14) restricts to an exact sequence

0= Ospec rx x(E") = Ospec g x x(E) > Oy x A(— D) = 0.
On some open cover {U,} of X, E splits as
(3.15) Ely, = O(D)ly,® A( — D)lv,,
and this splitting can be extended to a splitting of Elgpec gxy,- Then
(3.16) E'ly, = 0D}y, @ AD)y,® I -
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The section @ is then of the form ¢ + &y, for some ¥ € C°(E), and the transition
functions are 1 + ¢ f, for some f € C* (End, E). The latter hence act as 1 on the
second factor of (3.16).

Now decompose Wy = ;™ + ;' = and fo5 = £,5° + £~ correspondmg
to the splitting on U,. If E' is restricted to (g) x U,, then 8!//0(0) Oand ¢ fw»
since everything divisible by ¢ is now set to zero. However, 8(// s “Pande S it o) are
not necessarily zero, since not everything in thelr images is divisible by g in the
module A( — )® Jm Hence ®,, = ¢ + st// ' on Uy, and E, has transition

functions (1 o - ) with respect to the splitting (3.16). In other words, the exten-
sion class of E’ = E, is the projection of f € C*! (Endy E) to C'(A( — 2D)), and the
lifting of ¢’ is the projection of ¥ e C*(E) to C*(A( — D)). Hence (E’, ¢') is the
bundle over the image of (E, ¢) in IPW; in the family of (3.3). By uniqueness of
families (1.7) this means that (E’, ®)|, -, x is the pullback of the family of (3.3). O

There is a result similar to (3.13) for the inverse map
M., —PW; > M, — PW;. Let M=, be the blow- -up of M;_, at PW,”. Hence
by (3 11) the exceptional d1v1sor is  E7 = }PW ®PW?, and
Og{E;) = O(— 1, — 1). Note that there is an isomorphism E,-’<-—+E,~+.

(3.17) There is a map M., - M, such that the Jfollowing diagram commutes:

M,_, —PW; —»le— E;

I ! !
M, —PW} — M; « PW;.

Proof. Let (E, ®)— M{,xX be the pullback of the universal family. We will
construct a new family (E’, ®’) of pairs all of which are in M,.

By uniqueness of families (1.7), (E, ®)|z-, x is the pullback of the family over
PW; constructed in (3.3). Thus there is a surjective sheaf map E — Op-, x(— A).
This time the map does not necessarily annihilate ®. However, if we tensor by
G(E; ), then the twisted map E(E; ) > Og-.x(4}( — 1, — 1) of course annihilates
D (E;). If we define E’ to be the kernel of this twisted map, so that

0-E' - E(E; ) Oprx(A)(—1, —1)>0,

then E’ is locally free, and ®(E; ) descends to @ € H°(E’). The remainder of the
proof is analogous to that of (3.13). O

At last we come to the goal of all the above work.

(3.18) There is a natural isomorphism M} oM i—1 such that the following diagram
commutes:

Mi—‘]PW,'+ i M{P - E‘-+

! ! !

M;_, ~PW; > M, « E[.
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Proof. Both M{ and M-, are smooth, and by (3.13) and (3.17) they both inject
into M;_; x M;. Indeed, both injections are embeddings, since as is easily checked
they annihilate no tangent vectors, and both have the same image. This image is
precisely the closure of the graph of the isomorphism M; — PW oM, | — PW,
which proves the left-hand square; for both E; and E; it is the map
PW; @ PW; - PW; x PW, which proves the right-hand square. O

Note. In light of this result, we will henceforth refer to M F=M i~y simply as M i
and E;* = E[ as E;.

Thus M, is obtained from M;_, by blowing up IPW;, and then blowing down
the same exceptional divisor in another direction. Such a blow-up and blow-down
is an example of what is called a flip (or more properly, a log flip) in Mori theory.
This paper will not use any of the deep results of Mori theory, but we will see some
of its basic principles in action.

In one case the flip degenerates to an ordinary blow-up.

(3.19) The moduli space M, is the blow-up of My = PHY (A ') along X embedded
via | Ky A|.

Proof. Since W, is a line bundle, there is nothing to blow down. O

The other extreme case is also of interest. Let w = [(d — 1)/2], so that M, is the
last moduli space in our sequence. Let N be the moduli space of ordinary rank
2 semistable bundles of determinant A.

(3.20) There is a natural “Abel-Jacobi” map M, — N with fibre PH°(E) over
a stable bundle E. It is surjective if d > 2g — 2.

Proof. 1f i = w, then o €(0, [d/2] + 1 — d/2), so o-stability of (E, ¢) implies ordi-
nary semistability of E. Thus there is a map M,, -» N. Moreover, ordinary stability
of E implies o-stability of (E, ¢), so the fibre over a stable E is just PH°(E). For
d > 2g — 2, any bundle E has a nonzero section ¢ by Riemann-Roch. Hence every
stable bundle in N is certainly in the image of M. But M, is complete, so its image
is a complete variety containing the stable set, which must be N itself. O

We may sum up our findings in the following diagram.

M, M, M, M,
v N v N v N v N
M, M, M, M,,
! !
M, N.

All the arrows are birational morphisms except sometimes the one to N.

4 Their Poincaré polynomials

Before going on to our main application in the next section, let us pause to see how
the flips described above can be used to compute the Poincaré polynomials of our
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moduli spaces.

(4.1) 1 t24+23~2—4i 12i+2 (1 +x£)29
PAM)= _ .
M) = o~ e \a S mi =)

Proof. Since 1\7IJ- is the blow-up of M;_| at PW, by the formula for the Poincaré
polynomial of a blow-up [12, p. 605],

P(Mj) = PM;_,) + P,(E;) — P(PW;).
But A7Ij is also the blow-up of M; at PW;, so
P(M;)= P.M;)+ P.(E) — P.(PW}])

as well. Hence

P(M;)— P(M;_,)=P(PW])— P(PW;).
But the Poincaré polynomial of any projective bundle splits, so

P(PW])— P(PW) = P(P*** 2" %) P(X;) — P(P/"")P,(X))
t3 g2+ 29-2-4)
R S

A formula for P,(X;) was given by Macdonald [17]:

(1 + xt)*

PiXy) = Coell i S =~y
Hence

(t23‘ _ t2d+2g~2—4;’}(1 + xt)Zg
T — (1 — x)(1 — xt?)

P(Mj) — P(M;_,)= C(?)eff

Notice that this formula also produces P,(M,) when j = 0. So to sum up,

1 i x:‘—j(tzj _ [2d+29-2~4j)(1 + xt)lg
P M,‘ =7 ff
(M) = 7 Coefl 2, (1 — (1 = xt?)

1
¢* CSFff(x

PH1 2042 {2d+2g—244i(1 _ £4i~4xi+)) (1 + xt)Zg
= = + 5

x—t2 xtd—1 1 -x~-xtH)
which agrees with the formula stated after the terms containing x'*!
removed. [

are

We can use this formula to recover the formula of Harder and Narasimhan [14]
for the Poincaré polynomial of the moduli space N of stable bundles of rank 2,
determinant A, and odd degree d:

(1+63)% —129(1 + 1)?
- -9

42) P(N) =
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Proof. When d > 2g — 2 is odd and i = w, then by (3.20) there is a surjective map
M,— N with fibre PH°(E) over a bundle E. If moreover d > 4g — 4, then
H'(E) = 0 for all stable E (see for example the proof of {1.10)), so M,, is then just
the IP?~26* L_bundle P(R°m)E, where E is a universal bundle over N, and

1—1¢?
P(N) = l—_WP:(Mw)-

For simplicity we may as well assume that d = 4g — 3. Then w = 2g — 2 and

1 120 t49-2 (1 + xt)*
PAN)= ———C - :
N 1—#f’x$§(w4—l x—ﬂ>Q1—mu~xﬁ)

The following argument, due to Don Zagier, then shows that this equals the
Harder-Narasimhan formula. Let

(1 + xt)*
Fla,b,c,t) = '
(@ b,c,t) ng?g(l a1 = bx)(1 — ¢x)

Then

tYAF (L2472 ) — t29F (1, 15,14 1)
1 — 4972 ’

PI(N) =

On the other hand,

F(a,b,c,t)= Res{

=0

x1729(1 4 x6)*9dx )
(1 —ax)(1 — bx)(1 — cx) |’

since this has no pole at infinity, by the residue theorem

x1729(1 + xt)*9dx
(1 —ax)(1 — bx)(1 — ¢x)
_ (a+p) b+ (c + )%
T@-bla—o (G-ab—c (c—al—b

x=1/a x=1/b x=1/c

F(a,b,c,t):(— Res — Res — Res>{

After this substitution, it is a matter of high-school algebra to verify (4.2). 0O

5 Their ample cones

We now turn to a study of the line bundles over the M. Indeed, our goal is
a formula for the dimension of the space of sections of any line bundle over any M,.
Since M, is just a projective space, the first interesting case is M, ; so we first of all
ask what line bundles there are on M.

(5.1) PicM, =Z @ Z, generated by the hyperplane H and the exceptional divisor
El .

Proof. Obvious from (3.19). [
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The case of M; will be crucial for us, so we introduce the notation
Oy(m,n) = O(m+ n)H — nk,),
Vm,n = HO(MI, (Ol(ms n))

Pushing down to My = PH!(A™!) then yields V,, , = H®(Mo; O(m + n) ® #4).
That is, an element of PV, , is a hypersurface of degree m + n with a singularity of
order n at X. The dimension of ¥, ,, which we shall attempt to calculate, is thus
a number canonically associated to X, A4, m, and n.

Of course, in many cases this number is easy to compute. If m < 0, for example,
then V,, , = 0, since no hypersurface can have a singularity of order greater than its
degree. If n < 0, then V,, , = H°(My; O(m + n) ® F5) = H°(My; O(m + n)), be-
cause codim X/M, =d + g — 3 > 1 by our assumptions on d and g, and a section
cannot have a pole on a set of codimension >1. So in this case
dim ¥, , = ("*":41972). However, for m,n = 0, it is quite an interesting problem
to calculate dim V,, ,. When n = 1, these are of course precisely the spaces whose
syzygies are studied by Green and Lazarsfeld [16], but for n > 1 very little appears
to be known.

What about M, for i > 1? These give exactly the same information as M, for
the following simple reason.

(58.2) For i >0 there is a natural isomorphism Pic M, = Pic M;. Moreover, if by
abuse of notation we denote by O;(m, n) the image of O (m, n) in Pic M, then for any
m, n there is a natural isomorphism V,, , = H° (M O;(m, n)).

Proof. By (3.6), M is isomorphic to M; except on sets of codimension = 2. Hence
divisors, functions, line bundles, and sections can be pulled back from one to the
other and extended over the bad sets in a unique way. U

However, we will certainly not ignore the higher M; for the rest of the paper.
Instead, they will be indispensable tools in the study of the cohomology of M, to
be used as follows. A naive approach to calculating dim V,, , would be to calculate
¥ (My; Oy (m, n)), which is easy using Riemann-Roch, and then to apply Kodaira
vanishing to show that the higher cohomology all vanished. This will not work: the
hypothesis of Kodaira vanishing, which is that K;hl @4 (m, n) must be ample, will
not typically be satisfied, and the higher cohomology will not vanish. But this
problem can be cured by shifting attention to some other M;. Indeed, under some
mild hypotheses on m and n, there will be some i such that K;' 0;(m, n) will be
ample on M;. Hence dim V,, , = y(M;; O;(m, n)), which will be calculated by an
inductive procedure on i.

To carry out this programme, of course, we need to know the ample cone of
each M;. So our goal in this section will be to prove the following theorem.

(5.3) For 0 < i < w, the ample cone of M, is bounded by O;(1,i — 1) and 0;(1, i). For
d > 2g — 2, the ample cone of M, is bounded by 0,,(1,w — 1) and 0 ,,(2,d — 2}, for
d £ 2g — 2, it is bounded on one side by 0,,(1, w — 1), and contains the cone bounded
on the other side by 0,,(2,d — 2).

So as we pass from i — 1 to i, the ample cone flips across the ray of slope i — 1, as
illustrated for d = 9 in the figure. This is exactly the behaviour which is predicted
by Mori theory; indeed, flips are so named for precisely this reason.
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n

=4

=1

The first thing to notice is that, since all the M; have unique universal pairs
(E, ®)— M; x X, an expression such as det n,E, or A2E, for some x € X, defines
line bundles on all the M;, which agree with one another on the open sets where the
maps between different M; are defined, and which consequently correspond under
the natural isomorphism of (5.2). Since A2E, and det =, E are the canonical (indeed,
essentially the only) examples, we work out what they are on M.

B4)0On M, A’E.=0,0, —1) and detnE=0,(—1,9—d); that is,
Oy(m,n) = det ™™ . E @ (A2E )¢ om=n,

Proof. The universal pair on My x X is easy to construct directly: it is the tauto-
logical extension
050->E;>A(—1)->0

determined by the class ideEndH'(X;A47')=HO(PH! (A ');0(1)
@ H (X; A 'y= H' (IPH' (A~ ') x X; A~ (1)), together with the constant section
@, € H°(®). Recall from (3.17) that the universal pair (E;, ®,)— M x X is con-
structed by pulling back (E,, ®,), twisting by O(E{ ), and modifying at E{ .

OﬁEI*EO(E;r)—’(DE,*XX(A)(' 1)-0.
Hence A (Ey), = A*(Eq(E{ ), ® O(— E{) = A’E,® O(E{) = 0,(0, — 1), and
detmE; = det mEo(E{) ® O((g — 2)(ET))
= det m O(E{) ® detm A(— HET)® 0, (g — 2,2~ g)
=01(1-g9-1)®0,0, —d-1+9)®@0(g—2,2~¢g)
=0,(—1,9g~d). O

The next three results collect some basic information about pullbacks of @;(m, n).

(5.5) The restriction of O;(m, n) to
(i) a fibre of PW; is O(n — (i — 1)m);
(1) a fibre of PW; is O{(i — )m — n);
(ii) f ~Y(E) = M,,, where E is a stable bundle and f is the Abel-Jacobi map of (3.20),
is O(m(d — 2) — 2n).
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Proof. By (3.2), the bundle E in the universal pair restricts to an extension
0->0D)y»E~>A(—D)(-1)>0
on the fibre of PW;" over D € X;. Hence on this fibre A2E, = O( — 1) and
detmE = detm O(D) ® det myA( — D)( — 1)
=0{—y(AM{—D))=0(—d+g—1+i).

So by (54) O;(m,n) restricts to O(d—g+1—iim—(d—gim+n) =
O{(1 — i)m + n), which proves (i). Similarly by (3.3), E restricts to an extension

0> A(—D)(1)>E->0D)—0
on the fibre of PW; over D € X;. Hence A2E, = ¢(1) and
detmE = detmyA(— D) (1) ® detm O(D) = O(x(A(— D)) =0Od —g + 1 -i).

So the previous situation is reversed, and @;(m, n) restricts to O((i — 1)m — n),
which proves (ii). Finally, on a fibre IPH°(E) of the Abel-Jacobi map, the universal
pair restricts to E(1) with the tautological section. Hence on this fibre A2E, = 0(2)
and detmE = O(d + 2 — 2g). So by (5.4) O;(m, n) restricts to O((2g —2 — d)m
+ 2((d — gym — n)) = O(m(d — 2) — 2n), which proves (iii). ]

(5.6) On M,, O;(m, n) = O;_(m, n)(((i — ))m — n)Ey).

Proof. Certainly O;(m,n) and 0O;_,(m,n) are isomorphic away from E;, so
Oi(m, n) = O;_,(m, n)(qE;) for some ¢q. But O;(m, n) must be trivial on the fibres of
PW;, and O, (qE;)=0(—¢q, —q),s0by S5 (i) g=(— Om—n O

(8.7) For an effective divisor D, let 1p be the inclusion of moduli spaces defined in
(1.20). Then 1} 0;(m, n) = O;(m, n — m|D|).

Proof. Choose x € X — D. Then from (5.4) and the long exact sequence in (1.20),
0:0, — 1) = A2E = A2(*E{@P)) = 1*@,(0, — 1). Likewise,
0(—1,g—d) = detmE*
= det 7 1*E1?? @ det = m Op(E1?D))

= detm1*E1®?' Q@ @ (A2E1@P)"!

xeD
=1*0(— 1,9 —d - 2|D))®1*0,(0,|D])
=1*0(~1,g—d—|D|). O

We now pause to apply these ideas to compute the Picard group of the moduli
space N of ordinary semistable bundles of determinant A:

(5.8) PicN =1Z.
Proof. If g = 2 and d is even, then N = IP3 [20], so the result is obvious. Otherwise,

the complement of the stable set N, < N has codimension = 2; since N is normal
[9], this implies Pic Ny = Pic N.
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By (3.20) the Abel-Jacobi map f: M, — N has fibre PH°(E) over a stable bundle
E. Tensoring by a line bundle, we may of course assume d > 4g — 4. But then
HY(E)=0 (see for example the proof of (1.10)), so dimPH®(E)=d + 2g — 1
always and fis locally trivial over N,. Hence Pic N, is the subgroup of Pic M,,
whose restriction to each projective fibre of fis trivial. By (5.5 iii) this consists of the
bundles @, (k, k(d/2 — 1)) for k € Z (where k is even if d is odd). 1

Denote by 0(®) the @-Cartier divisor class such that f* 0 (@) = 0,,(1,d/2 — 1).
Note that this differs slightly from the normalization in [9]. The following is then
true for any d, not just d > 4g — 4:

5.9) f*0©)=0,(1,4/2 - 1).
Proof. True by definition if d > 4g — 4; follows otherwise from (5.7), since
150,(1,d2+|D|—1)=0,(1,d2-1). O

Now that we know Pic N, we can make the following definition.

(5.10) Definition. The Verlinde vector spaces are
Z(A) = H°(N; 0(k©)),
with the convention that Z,(A) = 0 if d and k are both odd.

Verlinde’s original papers [7, 24] conjectured a striking formula for the dimensions
of these vector spaces, which has since been proved by several authors. We will give
our own proof in §7; the first step, however, is the following result, originally due to
Bertram [3].

(5.11) For d > 2g — 2, there is a natural isomorphism Z(A) = Vi xeaj2-1)-
The proof requires the following lemma.

(5.12) Let M, N be varieties with N normal, and let f- M — N be a morphism which is
generically a projective bundle. Then f, Oy = Oy.

Proof. This is essentially Stein factorization. Let U < N be the open set such that
f:f Y (U)y-> U is a projective bundle. Then certainly f,0;-1y) = 0Oy, so
N’ = Spec f,. 0y is birational to N. By construction there isamap f': M — N’ such
that f; @) = Oy.. On the other hand, since f, 0y, is a coherent sheaf of Oy-algebras,
the birational morphism N’ — N is finite. But a birational finite morphism to
a normal variety is an isomorpism—this is essentially Zariski’s main theorem; the
proof in [15,11111.4] goes through, or see [18,I11.9]. Hence N'= N and

Proof of (5.11). Recall again from (3.20) that for d > 2¢g — 2, the Abel-Jacobi map
{:M,,— N is surjective with fibre PH°(E) over a stable bundle E. If U < N is the
set of bundles E such that E is stable and dim H°(E) is minimal, then certainly
fif "Y(U)— U is a projective bundle; for example it is the descent of a trivial
projective bundle over the Quot scheme. Moreover, N is always normal [97]. So by
(5.12), f,,Op .= Oy. Hence f, f* O (k®) = O(k®), so that

J*HO(N; 0(k©)) > HO(M,,; 0,,(k, k(d/2 — 1))
has inverse f,. O
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It is worth mentioning, if not proving, a generalization of this result. Over the
stable set N, = N, let E— N,x X be a universal bundle, normalized so that
A2E|y, tx} = 0. (Actually, such a normalization is impossible for d odd, and E will
not even exist for d even! However, the obstructions are all in Z/2, and will cancel in
the cases we are considering; for details see [23].) Then let U = (R°m)E - N,.

(5.13) For d >2g — 2, there is a natural isomorphism H®(Ny; S™4~ 272"/ (m@))
= V,u.n unless g = 2 and d is even.

Sketch of proof. The complement of f ~1(N,} = M,, has codimension = 2 unless
g = 2 and d is even (in which case N = IP3 [20]), s0 V,,, = H°(f ' (Ny); O(m, n)).
Also (R°m)O(m, n)|y, = S™~D"2"U(m®), so

HO(f YN, O(m, ) = H°(N; S™4~272"U(m @)
as in the proof of (5.11). [

Hence seeking a formula for dim ¥, , can be regarded as seeking a generaliz-
ation of the Verlinde formula.

At last we return to the determination of the ample cone of M;. It can of course
be quite difficult to decide whether a given line bundle on a projective variety is
ample. However, a geometric invariant theory quotient is naturally endowed with
an ample bundle, which is the descent of the ample bundle used in the linearization.
So we shall work out how the line bundles used in the linearizations of §1 descend
to M;. Recall that the linearization was some power of O(y + 20,40)—
IPHom x IPC*, or more precisely, its pullback to Quot(4) x PC*, which by abuse
of notation we still denote O(x + 20, 40). By further abuse of notation we refrain
from worrying about whether y + 2¢ and 4¢ are actually integers.

(5.14) The bundle O(y + 20, 46) - Quot(A) x PC* descends to O0;(1,d — 1 — 20)
- M,.

Proof. Asin§l,let U < Quot(A) be the set of quotients 0* > E — 0 of determinant
A such that the induced map €* - H(E) is an isomorphism. If @* > E — 0 is the
universal quotient over U x X, then as in (1.19) there is a universal pair
{E(1), ®) > U x PC* x X descending to the universal {(E, @) on each M;. Hence
detm, E(1) > U x PC* descends to det m,.E = 0,( — 1,g — d}— M;, and for any
xe X, A*E(1), - U x PC* descends to A°E, = §,(0, — 1)> M,.

By [15, IIT Ex. 12.6(b)] Pic(U xIPC*) = Pic U @ PiclPC*. So to determine
a bundle on U x IPC?, it suffices to determine it on {E} x PC* and U x {¢} for some
EeU, ¢ e PC*.

On {E}xPC* E(l)= E(1), so detm,E(1) = O(y) and A°E,= 0(2). On
U x {¢}, E(1) = E, so det mE(1) = det mE. But for all E € U, H°(E) = H°(0*) and
H'(E) = 0. Consequently det m,E = ¢. Moreover, there is a canonical map

A2C* = A2 HO(O%) —» A*HO(E) > H*(A*E),

so the pullback of 0(1) > PHom(A>C* H®(A)) to U, also denoted by 0(1), is
precisely (R°n) Hom(A, A2E). This is clearly isomorphic to A%E,=
Hom(A, A%E),, since Hom(A, A%E) is trivial on every fibre of .
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Putting it all together, we find that ©(0, y) descends to O;(— 1,9 — d) and
0(1, 2) descends to 0,(0, — 1). The result follows after a little arithmetic. [

Proof of (5.3). For any ¢ € (max(0, d/2 — i — 1), d/2 — i), the quotient of U x PC*
by the action of SL(y), linearized by O(y + 20, 40), gives the same quotient M;.
Hence the descent of O(y + 20, 40) to M, is ample for any ¢ in that interval. By
(5.14) and a little arithmetic these bundles span exactly the cones in the statement of
(5.3). Hence those cones are contained in the ample cones of the M;. It remains to
show that no bundles over M; outside those cones are ample, except possibly on
one side fori=wand d £ 29 — 2.

By (5.5)(i), the restriction of @;(m, n) to a fibre of PW is O(n — (i — 1)m). So
0;(m, n) can only be ample over M, if this is positive, that is, if (i — 1)m < »n. Thus
one side of the ample cone of M; is where it should be.

Likewise by (5.5 ii) the restriction of ¢;_,(m, n) > M;_, to a fibre of PW, is
O((i — 1)m—n). So for 1 < i< w, that is, when the dimension of this fibre is
positive, (;_; (m, n) can only be ample over M;_, if (i — 1)m > n. Thus the other
side of the ample cone of M;_, is where it should be.

The only case we have not yet treated is the other side of the ample cone of
M, for d > 2g — 2. In that case there is by (3.20) a surjective map M,, — N onto the
moduli space of semistable bundles of determinant A. It is not an isomorphism,
since for example Pic M,, = Z @ Z while Pic N = Z. Hence the pullback of the
ample bundle ©(2@) — N is nef but not ample, that is, it is in the boundary of the
ample cone. But by (5.9) this is precisely 0(2,d — 2). [

6 Their Euler chracteristics

Now that we know the ample cones of the M, we can calculate dim V, , following
the programme outlined in the last section. We first need a formula for the
canonical bundle of M;:

(6.1) Ky, =0(-34—-d—yg).

Proof. Clearly the canonical bundle is preserved by the isomorphism of (5.2), so it
suffices to work it out on M. But this is easy using (3.19) and the standard
formulas for the canonical bundle of projective space and of a blow-up. [

(6.2) Suppose that mn=0 and that md-—-2)—2n> —d+2g—2. Let
b =[rtd*e=47 4 1. Then dim V,, , = y(Ms; Oy (m, n)).

The idea of the proof is that dim V,, , will be an Euler characteristic by Kodaira
vanishing provided that @ {m, n) lies inside some cone in the translate of the ample
fan by K. This is illustrated in the figure for the case d = 9.

Proof of (6.2). Note first that the inequality can be rewritten
d2—D{m+3)>n+d+g—4,

which guarantees that b £ [(d — 1)/2] and hence that M, exists.
Suppose that 2*4+4-% i5 not an integer. Then b(m+ 3) >n+d+g—4 >
(b — 1)(m + 3), 50 Oy(m + 3,n + d + g — 4), which by (6.1) equals Ky} Oy(m, n), is
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in the ample cone of M, by (5.3). The result then follows from (5.2) and Kodaira
vanishing.

If rtd*e4 s an integer, then @, (m+3,n+d+g—4) and
Oy(m + 3,1+ d + g — 4) are merely nef, so Kodaira vanishing does not apply.
This case could be handled using the Kawamata-Vichweg vanishing theorem.
However, we will take the more elementary approach of moving up to M,. By
(5.12) the Oth direct image of 0y, in the projection M, —» M, is Oy,, and by the
theorem on cohomology and base change [15,II112.11] the higher direct
images vanish, so for all j, H (M,; 0,(m, n)) = H’(M,; 0y(m, n)). By (6.1) and the
standard formula for the canonical bundle of a blow-up, Kz, =0,
(— 3,4 —d— g)(b — 1)E,). Unfortunately K ! (ﬁb(m n) may not be ample SO
Kodaira vanishing still does not apply. Instead we make the following two claims:
first, that H’(Mb,(ﬂ,,(m n)} = HI(My; Oy(m, n)((b —2)E;)) for all j, and second,
that Oy(m + 3,n +d + g — 4)( — E,) is ample on M,. The desired result follows
immediately from these claims, since at last Kodaira vanishing applies to
Op(m, n)((b — 2) Ep).

To prove the first claim, note that for 0 < k < b, H/(E,; 0,(m, n)(kE,)) = 0 for
all j, since 0,(m, n)(kE,) is O( — k) on each fibre of P*~! — E, — PW,", so that
every term in_the Leray spectral sequence vanishes. Hence from the long exact
sequence on M, of

0= Op(m, n)((k — Ey) > Oy (m, n)(k Ey) > Oy(m, n) Og,(KE;) > O,

we get isomorphisms H/(M,; Oy(m, n)((k — 1)E,)) = H’(M,; Oy (m, n)(kE,)). The
first claim follows by induction.

As for the second claim, note that on M,, the line bundles 0,_,(1,b — 2),
0,(1, b — 1), and @,(1, b) (or O,(2, 2b — 1) if b = w) are all nef, since they are pulled
back from nef bundles on M,_, or M,. It is easy using (5.6), the constraints on
m and n, and a little arithmetic to check that O,(m + 3, n + d + g — 4)(— E,)isin
the interior of the cone generated by these three bundles. [

We will have to assume in future that

(63) md—2)—2n> ~d+29—2,
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since otherwise there is no analogue of the last result and K ;! 0;(m, n) may not be
ample for any i. However, for d = 2g, we still get a complete answer to our problem,
for the following reason.

(64) Ford=2gandmd—2)—2n<0, V,,=0.

Proof. By Riemann-Roch deg E = 2¢g implies dim H°(E) = 2, so for any stable
bundle E, by (3.20) the fibre f ~ ' (E) of the Abel-Jacobi map is a projective space of
positive dimension. By (5.5iii), the restriction of @, (m,n) to this is
O(m(d — 2) — 2n), so any section of @,,(m, n) must vanish on f ~1(E). Hence it must
vanish on the inverse image f ~ ! (N,) of the stable subset of N. But this is open, so it
must vanish everywhere. [

Let L;— X; be the line bundle defined by L;=det™'nA(—AH®
det 'm@(4). Also put g; = n— (i — )m.

(6.5) The restriction of O;_y(m, n) to PW; is L¥( — q;).

Proof. Easy from (5.4) and the description of the universal pair over PW, in
(33). O

Now let U;— X, be the vector bundle (W; )} @ (W;)*, and define numbers
Ni=y(Xs LP'Q W7 @ 827Uy,

with of course the convention that this is zero when g; — i < 0. On M, which is
just projective space, make the additional convention that O (m, n) = O(m + n).

m+n+d+g—2
(6.6) No = y(Mo; Oo(m, n))=< >
m+n
Proof. Since X, is just a point and Wy, = 0, Uy = (W{)* is just the vector space
HYA Yy Hence S™*"Uy = H®(My; Og(m, n)) with our conventions and the
result follows. [l

(6.7) Let 0 < i < b, and suppose that m,n = O satisfy (6.3). Then
A(M; Oi(m, n)) — x (M O;—1(m, n)) = (— 1)'N,.

Proof. By (5.12) the Oth direct image of Oy;, in the projection M; - M;is Oy, and
by the theorem on cohomology and base change [15, III 12.11] the higher direct
images vanish, so y(M;; Oi(m, n)) = x(M;; O;(m, n)). Likewise x(M;; O;_,(m, n))
= x(M;_; O0;_{(m, n)), so it suffices to work on M,.

Suppose first that g; £ 0, so that N; = 0. For 0 < j £ - ¢, consider the exact
sequence

00— y(m,n)((j— DE)—> O;—((m,n)(jE;)» O; - 1(m, n) ® Op (JE;) - 0.

By (6.5) the restriction of @;_,(m, n) to E;= PW; @ PW; is L"(— ¢;,0), and
Og(E)=0(—1, — 1), so the third term of the exact sequence becomes
O(—4qi—j, —j)and we get

1 (M5 0,y (m, n)(JE))) — 1(My; O, (m,n)((j — DEJ) = 2(Es L~ q; ~ j, — J)).
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Summing over j and using (5.6) yields

- - a
(M Oi(m, n)) — x(M; O (m,n)) = 3, x(Ei; LT(— qi — J, —J)).
j=1
However, for 0 <i<b and m,n,d,g 20, a little high-school algebra shows
~¢; <d + g — 1 — 2i. Hence for all j in the sum above,0 <j<d +g—1—2i,s0
every term in the Leray sequence of the fibration P4*¢~ 272 — E, » IPW; vanish-
es. Hence all terms are zero, as desired.
Now suppose g; > 0. By an argument similar to the one above,
~ ~ g1
1 (M; O0;(m, n)) — x(M; O (m, n)) = Z X (Ei; LY - q; +j, +J)).
j=0
Each term of the right-hand side can be evaluated using the Leray sequence of
the fibration P! xP9*97272 L, E,  X;. Because — q; +j < 0 <, the only
nonzero direct image of L"(— ¢ +j,j) is the ith, which is just
L' AW, @ S YW, )® /(W )*. Here the factor of A'W; comes from
Serre duality, since the isomorphism @( — i) = Kp:-1 is not canonical unless the
right-hand side is tensored by such a factor. Hence

XEG LM =g+ 1)) = (= )X LT @ AW, @ S47T7H (W) @ S/ (WiH)*).
Of course the right-hand side is zero if ¢; — j — i < 0, so the sum need ouly run up
to g; — i. The result follows because certainly

g, i
Sy = P s W)@ siwhx. O
j=0

J

(6.8) Fori>b, N;=0.

Proof. 1t suffices to show that if i > b, then ¢; — i < 0, that is, (m + n)/(im + 1) < i.
But using m, n 2 0, the definition of b, and the inequality (6.3), it is a matter of
high-school algebra to check in + n)/(im+ 1)< b. O

69) dmV¥,,= Y (- N,
i=0

Proof. Put together (6.2), (6.6), (6.7), and (6.8). O

Since each N; can be evaluated using Riemann-Roch on X, the right-hand side
depends only on g, d, m, and n, not on the precise geometry of X and A. So even
before doing the hard work of the next section, we have found that dim V.
depends only on g, d, m, and n, which is rather surprising.

7 Don Zagier to the rescue

All of the results in this section (except (7.4) and (7.5)) are due to Don Zagier, who
communicated them to the author.

In this section we will compute the N;, using the Riemann-Roch theorem
and Macdonald’s description [17] of the cohomology ring of X;. So we begin
with a review of Macdonald’s results. Let e;,...,e,¢€),...,e,e H {X;Z) be
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generators such that the intersection form is ) ;e;®e). Define classes
& E&eH (X;;Z) and ne H*(X;; Z) as the Kiinneth components of the divisor
A = X;x X, regarded as belonging to H2(X, x X; Z):

A=n+3 (Ee;—Ee)) + iX.
j

These generate the ring H*(X;; Z). Moreover, if we put o; = ¢;&;, then for any
multiindex I without repeats,

(7.1 Mo, Xip = 1

This implies that for any two power series A(x), B(x),

CAn)exp(B(no), Xi» = Z CAm)B(n)Ya*/k!, X5

<9 A(n)Bin)*
- 5 (0 ra et}

(7.2) =R S{M(i”},
0

”iJr 1
where o = ). ;. Note that since o]
nomial in the G;.

Since we will be doing Riemann-Roch, we need to know the Todd class of X ;;
luckily this can be worked out in a useful form.

B 7 i-g+1 G o
(7.3) thi_(l—e"’) exp<en__1 ,1).

Proof. Macdonald [17] shows that the total Chern class of the tangent bundle of
X;is

=0, c*/k! is just the kth symmetric poly-

(XD =+ [] (141 —a).

j=1
Let h(x) = x/(1 — e~ *), so that
g
td Xi = h(r’)iflg#-l H h(r[ — O'j).
i=1

Expanding h(n — ¢;) in a power series around » and using sz =0,

xo=hy = 1] (12050

)

k h/ k
=h(y) ot Z (—1) <h((:77))>
=h(n)"“-”“exp<—aﬁ((’;’—))>,

which yields the desired formula. O
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(7.4) For any line bundle M — X and any ke Z,
chmM(kd4) = ((degM + ki + 1 — g) — k*g)e*".
Proof. By Grothendieck-Riemann-Roch
chn Mk4)=n,chMka)td X
=n.exp((degM + k)X + kE + kp)(1 + (1 — g) X))
=m, (1 + (degM + k) X)(1 + kZ — k26 X)e*(1 + (1 - g) X)
=((degM + ki+ 1 — g) — kP a)e*",
where £ = z}.(égej — e sothat 2= —20X. [
(7.5) (i) ch(L;) = exp((d — 2i)n + 20);
(i) ch(A'W)=exp((d - 3i+1—g)n + 30);
(i) ch(U)=(d—i+1—2g)e ™"+ (29 —2e 2"+ 37 e """
Proof. Since L; = det ' 7. A( — 4) ® det™ ' m,0(4), by (7.4)
(L) = —cy{mA(— 4)) — ¢, (m.0(4))
=d—i+1l—gnp+o+(—i—1+gp+o=(d— 24+ 20,
which implies (i). From the exact sequence
0> A(—24)> A(—A) > O 4A(— A) -0,

it follows that W, = n.0,A( — 4) = 5, A( — A) — n. A( ~— 24) in K-theory. Hence
by (7.4)

chW  =(d—i+1—g)—a)e "—((d—2i+1—g)—4da)e ",
In particular
GAW =W )= —~d—i+1—gn—04+2d—-2i+1—g)y+4c
=(d—3i+ 1 — g}y + 3a,
which implies (ii). Again by (7.4),
ch(WHy* =chn, A7 24) = ((d — 2i + g — 1) — 4o)e” 1.
Hence
chU; = ch(W; )@ (W )*
=(d—i+1—g)—0cje "+ (Q2g—2)e 21
=(d—i+1-2g)e""+ (29 —2)e "+ i e "
j=1

i=
which is (i). O
(76) ch(Lr®@ A'W. @ S*~'U))

¢ “n _ pymd+i-l+g
= cOefr[eW*ZHm exp ((Zm + 30— — l t) il }

Jois n_ (1 . l)2g—2
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Proof. The Chern roots of S*U; are the sums of k (not necessarily distinct) Chern
roots of U;, so by (7.5 iii}
i 1
h(S*U,)t* —_—
Z cht ) 1 —teé”

k=0 Chern roots
aof U,

1 d-i+1-29 1 29-2 ¢ 1
1 —te™™ 1 —te ™" 11:[1 1 —te o

(1_{e—r;)—d+i—1+g ( ~f0'>
= exXp .

(1=t 2m22 et

il

Replacing ¢ by e and taking coeflicients of 1%~ yields

i . l_t’l—d+i—l+g _t
Ch(S“"‘Ui)=Coeff[e—zﬂh—:)n( e”) exp(e o )}

(1 -2 2 Tt

The result then follows using (7.5 i) and (ii) and the pleasing identity
md—-20y+d—-3i+1—-¢g)—-20@—-D=md—-2)—-2n+d—-i+1—-g). U
We are now ready to perform our Riemann-Roch calculation:

Ni={ch(Lf @ AW, @ S*T U (X)), X

(e

= Coeff<e('""“2”2"”’exp <(2m +3)o —

it

f i—gt+1 o o
() en(s-5))

{(d—2)ym—2mn¢,—n —d+i—-1+g

e e 1T—1

= Coeff Res 3 4(2 )_ -
(27 =0 (1 + t) g (1 —é ")l

an (e‘"+(2’”+3—e—nt_l)(l ~e"’1)>gd77};

the first equality by Riemann-Roch, the second by (7.3) and (7.6), and the third by

taking
Alx) = X e e((f‘*Z)m—Zn)x(e_X_t}_dHiH—g
l—e™* (1 +1y 2

to (e"l_t)‘d+i'1+g
) (112

e "—t

and
Bx)=1fe*— D —1/x +2m+ 3 —t/e " —1)

in (7.2), then combining gth powers. 7 _
The term in braces is the product of ({==4)* with something independent of i, so
make the substitution

y:e‘”__t, e,"=1+ty’ 1_e_,lz(l—t)y’
1—e™" 14y T+y
1—1t 1—1)d
N dn (1—t)dy

T1ry "TT A+ nd + oy
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Then the residue in (7.7) becomes

Res {M} = Coeff a(y)
y=0 (¥ y*

for
(1 + ty)29 =11 4 y) e +d =29 +1
a(y) = = t)dfg_l (1 +Q2m+3)(1 — )y — ty?).
Then since ¢; — i = (m + n) — (m + 1),

dim ¥V, .= Y (= 1)'N;
i=0

s

(— 1) Coeff Coeff a(y)

0 ey

i

IngE

= Coeff (

pmetn

(—em=) COf:ffa(y)>

i=0

It

= Coeff a( — t™*1).

pmtn

Thus we obtain the following theorem. We repeat the definition of V,, , for
convenience.

(7.8) Let X be embedded in PH'(A™ ') via the linear system |KxAl For any
mnz0,let ¥V, ,=H(PH (A™'); O(m + n) ® £%). Define

(1 - tm+2)~h*1(1 - tm+1)—h’~1

o= (1 — giFa—igmen (1 ~@m+ 31 —em — ey,
where h=(d—2ym—2n and h = —h—d+ 29— 2. Then if m(d — 2) - 2n >
—d+29—2,

dim ¥, , = Res {F(t)dt},
t=0

t

that is, the constant term in the Laurent expansion of F(t) at t = 0. Moreover, if
dz2g and md—2)—2n <0, then V,, ,= 0.

This is the most explicit formula for dim ¥, , we will obtain in general. However, in
some cases we could obtain completely explicit formulas. If m + n is small, for
example, we could calculate directly, since we would then be looking at the residue
of a function with a pole of low order; for fixed m + n, we would get an explicit
polynomial in g, d, m, and n. Otherwise, we can still use the residue theorem, which
says that the sum of the residues at all the poles of F(¢)dt/t is zero. These poles are
of five possible kinds: t =0, t= oo, t=1,t"* ' =1butt+ 1,and t"*%2 =1 but
t + 1 (note that the last two cases are disjoint). But in fact £ = 1 is never a pole,
since at that point 1 — (2m + 3)(1 — t)t™*! — t2™*3 has a triple zero, and hence
the order of F(t) is

(mh=D+(=H—=1)—d+g—1)+3g=120.
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Also, it is straightforward to check that F(1/t) = — F(t), which implies that

Res{F(t)dt}z es{F(t)dt}.
t=cw t t=0 t
Hence

N R s L)

ey t=¢ [mr2aq t={
(+1 {+1

There are poles at the (m + 2)th roots of unity if and only if h = 0, and at the
(m + 1)th roots of unity if and only if &' = 0. Thus dim V,, , is a sum over the
residues at the (m + 2)th roots if ¥ <0 < h, a sum over the residues at the
(m+ )th rootsif h < 0 Z K, and is O if h, K’ < 0. (Note that this last case agrees
with (6.4).) For h = 0 it is necessary to calculate the residue of a function with a pole
of order 1 + h, which gets more and more difficult as h grows. However, when
h = 0, the calculation is easy, and we can prove the celebrated Verlinde formula.

k+2>g*1k+l (__l)d(jJrl)

2 £ : 2g—-2"
j=t sin~——Jn
k+2

Proof. If d and k are both odd, then on symmetry grounds the right-hand side is
zero as desired. So assume d and k are not both odd. By (5.11)
dim Z,(A) = dim V} x,2-1,forany d > 2g — 2. Then h = 0 and i’ < 0, so by (7.9)

dl/[ (1 _C-l)d>2g+1
k+2 ~1 (I - C)d+g~lckd/2

(.10 dim Z,(4) = <

— 2dim Vk,k(d/zfl) = Z Res

Jrt2=q t=¢
{+1

x(1—QRk+3)HC =11

But(1 — 2k +3)(¢ ' - 1) =YY =2k + H(1 — 1), the residueis — 1/(k + 2),
and
(1= (1=
a— C)dckd/Z = 1= C)JC—AC(HZM/Z

— ( _ 1)dc(k+2)d/2’
SO

- g-1
dim Vi xaj2-1y = 2k + 471 Z (— pighr2an (ﬁ)

[er2=q

t41
( _ 1)d+g—1 é(k+2)d

=32k + 47 ——TT G
’ 5“2_1 ET—g» 2

¢+ 21

which is equivalent to the Verlinde formula. [
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8 Relation with Bertram’s work

In this appendix we explain briefly, without proving anything, how this paper is
related to Bertram’s work on secant varieties.

In [3], Bertram considers how to resolve the rational map PH!(4"!) - N. He
shows that blowing up first X = PH!(4 '), then the proper transform of each of
its secant varieties in turn, produces after [(d — 1)/2] steps a smooth variety
P having a morphism to N that agrees with the rational map away from the
blow-ups. The existence of the morphism is proved by constructing a sequence of
families of bundles, each obtained by an elementary transformation of the last,
starting with the pullback of the tautological family on PH* (4™ ') x X, and ending
with a family of bundles that are all semistable. Bertram’s families of bundles can be
interpreted, after some twisting, as families of pairs in our sense, and it follows that
his P dominates all of the M;. In other words, he performs all of our blow-ups but
none of our blow-downs. In particular, our blow-up loci are birational to his, that
is, our PW; in M,;_, is the proper transform of the ith secant variety in
IPH!(A™ ') = M,. This makes sense, since both are essentially IP‘™ !-bundles over
Xi'

However, this correspondence is a little more delicate than it seems, because
the P‘~!-bundles are different: ours is PPW; = P(R°n) O, A( — 4), but as
Bertram explains, the secant variety is the image in PH' (4™ ') of P(R°7) O, KA.
How is one projective bundle transformed into another? If we pull back the
lower secant varieties to IP(R°n) 0,KA we find that blowing them up and
down induces a Cremona transformation on each fibre of the projective bundle.
For example, consider the IP? fibre over x, + x, + x3 € X3 of the 3rd secant
variety. This of course meets X < PH'(A7 1) in the 3 points x,, X,, X3, so if X is
blown up, then IP? gets blown up at those 3 points. The proper transform of the 2nd
secant variety meets this blown-up P? in the proper transforms of the 3 lines
between the points, so blowing it up does nothing, and blowing it down blows
down the 3 lines. All in all we have blown up the vertices of a triangle in the
plane, then blown down the proper transforms of the edges. This is well-known to
recover P2 [15,V 4.2.3]; indeed it is given in coordinates by [zq,z;,25] —
(2123, 2022, 2021 ]

If we do the same thing to IP?, we find ourselves blowing up the vertices of
a tetrahedron, then blowing up and down—that is to say, flipping - the proper
transforms of the edges, and finally blowing down the proper transforms of the
faces. Notice that by the time we get to the faces, they have already undergone
Cremona transformations themselves. More generally, starting with a simplex in
P", we may flip all of the subsimplices, starting with the vertices and working our
way up. The varieties we obtain thus fit into a diagram shaped exactly like that at
the end of §3. It is not so well-known that this recovers IP", or that it is given in
coordinates by [z;] + [z -+ Z;_12;+1 --- 2, ], but these facts can be proved using
the theory of toric varieties.

Even that is not quite the end of the story, since over divisors in X; with
multiple points the transformations are somewhat different. Over 2x; + x; € X3,
for example, we want to blow up one reduced point and one doubled point, then
blow down one reduced line and one doubled line. In coordinates, this is
[2o, 21, 221 ¥ [23, 2021, 21 2, ). It is an amusing exercise to work out coordinate
expressions for the Cremona transformations over other divisors with multiple
points.
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