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0 Introduction 

Let X be a smooth projective complex curve of genus g > 2, let A ~ X be a line 
bundle of degree d > 0, and let (E, 95) be a pair consisting of a vector bundle E --, X 
such that A2E = A and a section q5 e H~ - O. This paper will study the moduli 
theory of such pairs. However, it is by no means a routine generalization of the 
well-known theory of stable bundles. Rather, it will discuss at least three remark- 
able features of the moduli spaces of pairs: 

1. Unlike bundles on curves, pairs admit many possible stability conditions. In 
fact, stability of a pair depends on an auxiliary parameter a analogous to the 
weights of a parabolic bundle. This parameter was first detected by Bradlow [5] in 
the study of vortices on Riemann surfaces, and indeed the spaces we shall construct 
can also be interpreted as moduli spaces of rank 2 vortices. As a varies, we will see 
that the moduli space undergoes a sequence of flips in the sense of Mori  theory, 
whose locations can be specified quite precisely. 

2. For some values of cr the moduli space M(a, A) is the blow-up of ~HX(A- I )  
along X, embedded as a complete linear system. Thus we can use M(a, A) to study 
the projective embeddings of X. In particular, we obtain a very general formula 
(7.8) for the dimension of the space of hypersurfaces of degree m + n in IPH 1 (A- 1) 
with a singularity at X of order n. This formula does not depend on the precise 
choice of X and A, only on g and d, which is rather surprising. 

3. For other values of tr, stability of the pair implies semistability of the bundle, 
:~o M(a, A) plays the role in rank 2 Brill-Noether theory of the symmetric product 
in the usual case, and there is an Abel-Jacobi map from M(a, A) to the moduli 
:~pace of semistable bundles. For  large d this is generically a fibration, so we can use 
~noduli spaces of pairs to study moduli spaces of bundles. In particular, we recover 
the known formulas for Poincar6 polynomials [2, 14] and Picard groups [9]; more 
.~trikingly, we prove, and generalize, the rank 2 Verlinde formula (7.10) for both odd 
and even degrees. 

We will not fully discuss the many other fascinating aspects of the subject, but 
we will briefly touch on one of t h e m - t h e  relation with Cremona transformations 
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and Bertram's work on secant var iet ies- in an appendix, w We hope to treat the 
relation with vortices and Yang-Mills-Higgs theory in a later paper. 

An outline of the other sections is as follows. In w we prove some basic facts 
about pairs, in analogy with bundles. Following Gieseker [11], we then use 
geometric invariant theory to construct the moduli space M(a, A) of a-semistable 
pairs, and a universal family over the stable points of M(a, A). The choice of 
~r corresponds to a choice of linearization for our group action. In w we discuss the 
deformation theory of the moduli problem. In w we show that the M(a, A) are 
reduced, rational, and smooth at the stable points. We then show that as a varies, 
M(a, A) undergoes a sequence of flips whose centres are symmetric products of X. 
We also define the rank 2 Abel-Jacobi map mentioned above. In w we calculate the 
Poincar6 polynomial of(a, A), and extract from it the Harder-Narasimhan formula 
for the Poincar6 polynomial of the moduli space of rank 2 bundles of odd degree. 

Thereafter we concentrate on studying the line bundles over M(a, A), and their 
spaces of sections. In w we compute the Picard group of M(a, A), and its ample 
cone. We explain how any section of a line bundle on M(a, A) can be interpreted as 
a hypersurface in projective space, singular to some order on an embedded X. We 
also make the connection with the Verlinde vector spaces. Finally in w167 and 7 we 
use the Riemann-Roch theorem to calculate Euler characteristics of the line 
bundles on M(a, A). Combined with the information from w Kodaira vanishing, 
and some residue calculations which were carried out by Don  Zagier, this gives 
a formula for the dimensions of the spaces of sections of line bundles on M(a, A), 
under some mild hypotheses. We conclude by extracting the Verlinde formula from 
this. 

For convenience we work over the complex numbers, but much of the paper 
should be valid over any algebraically closed field: certainly ~ 1 - 3  and 5. Kodaira 
vanishing is of course crucial in w but the computat ion of the Euler characteristics 
ought to make sense in general, if integral cohomology is replaced with intersection 
theory. 

A few notational habits should be mentioned: Xi refers to the ith symmetric 
product of X;  n denotes any obvious projection, such as projection on one factor, 
or  down from a blow-up; tensor products of vector bundles are frequently indicated 
simply by juxtaposition; and likewise a pullback such a s f * L  is often called just L. 
Also, in w and thereafter, M(a,A) is referred to simply as Mi, where i depends on 
tr in a manner explained in w These conventions are not  meant to be elliptical, but 
to clean up what would otherwise be some very messy formulas. 

We also make the following assumptions, which are explained in the text but 
are repeated here for emphasis. We always assume g > 2. In the geometric invari- 
ant theory construction of w we assume d is large, an assumption which is justified 
by (1.9) and the discussion following it. F rom w to the end we assume d > 3. 
However, this assumption is implicit in other inequalit ies--so for example our 
main formula (7.8) is valid as it stands. 

1 Constructing moduli spaces of ~-semistable pairs 

Our main objects of study, which we refer to simply as pairs, will be pairs (E, q~) 
consisting of a rank 2 algebraic vector bundle E over our curve X, and a nonzero 
section 4) ~ H~ A careful study of such pairs was made by Bradlow [5]. He 
defined a stability condition for pairs and proved a Narasimhan-Seshadri-type 
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theorem relating stable pairs to vortices on a Riemann surface. The vortex equa- 
tions depend on a positive real parameter ~, and so the stability condition also 
depends on ~. Bradlow and Daskalopoulos went on [-6] to give a gauge-theoretic 
construction of the moduli space of v-stable pairs, under certain conditions on 

and degE. Garcia-Prada later showed [10] that there always exists a projective 
moduli space, by realizing it as a subvariety of a moduli space of stable bundles on 
X x IP 1. In this section we will give a geometric invariant theory construction of the 
moduli space of t-s table  pairs for arbitrary ~ and degE (though for convenience we 
assume rank E = 2). Aaron Bertram has informed me that he has done something 
similar E4~, and I apologize to him for any overlap. 

The Bradlow-Daskalopoulos stability condition is in general rather complic- 
ated, but in the rank 2 case it simplifies to the following. Let a be a positive rational 
number. It is related to �9 by a = T vol X/47z - deg El2, where vol X is the volume 
of X with respect to the metric chosen in [6]. 

(1.1) Definition. The pair (E, O) is 6-semistable if for all line bundles L c E, 

degL < �89 deg E -  a if ~b ~ H~ and 

degL < �89 deg E + a if 0 r H~ . 

It is a-stable if both inequalities are strict. 

The main result of this section is then the following. 

(1.2) Let A ~ X be a line bundle of degree d. There is a projective moduli space 
M(a ,A)  of a-semistable pairs (E, O) such that A 2 E  = A, nonempty if and only if 
a < d/2. 

Our construction will be modelled on that of Gieseker [11]. We begin with a few 
basic facts about a-stable and semistable pairs, parallel to those for bundles. We 
write A for A 2 E, and d for deg E = deg A. 

(1.3) For a > 0, there exists a a-semistable pair of determinant A if and only if 
a < d/2. 

Proof If a >d/2,  then a-semistability implies d e g L <  0 if q~e H~ which is 
absurd. If a < d/2, let L ~ X be a line bundle of degree [d/2 - a] having a nonzero 
section (9. Let E be a nonsplit extension 

O ~  L--, E ~  A L - I  ~ O .  

Then the first inequality in Definition (1.1) is obvious. As for the second, if M c E 
and d e g M  >d/2  + a, then there is a nonzero map M - - * A L - L  Since 
d e g A L -  1 < d/2 + a + 1, this is an isomorphism, so the extension is split, which is 
a contradiction. [] 

(1.4) Let (E, qS) be a pair. There is at most one a-destabilizing bundle L c E such that 
(9 ~ H~ and at most one a-destabilizing M c E such that dp q~ H~ I f  both 
L and M exist, then E = L ~ M. 

Proof The first statement is obvious, and the second follows from the uniqueness 
of ordinary destabilizing bundles, since deg M > d/2 + a > d/2. If both L and 
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M exist, then the map M ~  E ~  AL  -~ is nonzero since q~ ~H~ but q~ H~ 
B u t d e g M > d / 2 + c r > d e g A L - l ,  s o M = A L - 1  and E is split. [] 

(1.5) Let (El, ~bl) and (E2, (~2) be a-stable pairs of degree d, and let ~:E1 ~ E2 be 
a map such that ~01 = 02. Then ~ is an isomorphism. 

Proof The kernel of~b is a subsheaf of a locally free sheaf on a smooth curve, so it is 
locally free. If rank ker ~ = 2, then ~ is generically zero, so ~ = 0 and Ogb I 4= gb z, If 
rank ker qJ = 1, then ker ~ is a line subbundle L of El ,  since E1/ker ~ is contained 
in the torsion-free sheaf E 2. Hence ~ descends to a map A L -  1 ~ E2 (possibly with 
zeroes) such that ~2 e H~ A L -  1). Since (E2, ~2) is a-stable, deg AL ~ < d/2 - cr, 
so d e g L > d / 2 + a ,  contradicting the a-stability of (E~,q51). Finally, if 
rank ker ~ = 0, then ker ~ = 0 and ~ is injective. Moreover, coker ~ is a coherent 
sheaf on a curve with rank and degree 0, so coker ~ = 0 and ~ is an isomor- 
phism. [] 

(1.6) Let (E, ~b) be a a-stable pair. Then there are no endomorphisms of E annihilating 
cb except O, and no endomorphisms preserving ~ except the identity. 

Proof Subtracting from the identity interchanges the two statements, so they are 
equivalent. We prove the first. Any endomorphism annihilating q~ annihilates the 
subbundle L generated by q~, so descends to a map E/L  --+ E. But by cr-stability E/L  
is a line bundle of degree > d/2 + ~, so the image of this map, if it were nonzero, 
would generate a line bundle of degree > d/2 + a, which would be destabiliz- 
ing. [] 

(1.7) Let (E, ~), (E', 0 ' )  ---} T• X be two families over T parametrizing the same 
pairs. Then (E, ~ )  = (E', tO'). 

Proof For any t e T, the subspace o fH~  Hom(Et, E;)) consisting of homomor- 
phisms 0 such that ~tO~ = 2tO; for some 2 E �9 is one-dimensional by (1.6). This 
determines an invertible subsheaf of the direct image (R~ Hom(Et, E;). But this 
subsheaf is trivialized by the section 2 = 1, which produces the required isomor- 
phism. [] 

The notion of a Harder-Narasimhan filtration for rank 2 pairs is quite a simple 
one. For (E, q~) stable, define Gr(E, ~) = (E, ~b). Otherwise, define Gr(E, q~) to be 
a direct sum of line bundles, one of them containing the section q~, as follows. If L is 
the destabilizing bundle and 4~ e H~ define Gr(E, c~) = (L ~ A L -  1, 0). If M is 
the destabilizing bundle and ~ r 1 7 6  project q~ to a nonzero section 
(a' ~ H ~  -a) and define Gr(E, dp)= (M ~ A M  -a, ~a'). Note that if there are 
destabilizing bundles of both sorts, then by (1.4) E = L (~ A L - 1  and the two 
definitions agree. 

(1.8) There exists a degeneration of(E, (~) to Gr(E, ~b), but Gr(E, ~b) degenerates to 
no semistabte pair. 

Proof. The first statement is vacuous when (E, 4)) is stable. If it is unstable, say with 
destabilizing bundle M, we can construct a pair (E, O ) ~  X x ~E such that 
(Ez, Oz) ~ (E, ~) for z 4= 0, but  (Eo, tOo) -- Gr  (E, ~b), as follows. Pull back (E, ~) to 
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X x ~, and tensor by (9(0) when ~b r H~ This gives a pair (E', @') --* X x 
such that |  is annihilated by the natural map E ' ~  A M  -a Ix• Let E be the 
kernel of this map; then @' descends to @ e H~ and it is straightforward to 
check that (E, @) has the desired properties. 

As for the second statement, suppose first that (E, q~) is stable. If C is a curve, 
p ~ C, and (E, @) --* X x C is a flat family of pairs such that (E~, @~) ~ (E, ~b) for 
z + p, then @p has the same zero-set D as ~b, so E and Ep are both extensions of 
L = O(D) by A( - D); indeed, E is a family of such extensions. The extension class 
varies continuously, so the extension class of Ep is in the same ray as that of E. If it 
is nonzero, (E, q~) ~ (Ep, @v), and if it is zero, (Ep, @v) is destabilized by A L -  a. 

Now suppose that (E,~b) is not stable, so that for some L, 
Gr(E, (~) = L �9 AL  a and q~ e H~ Then as above E v is an extension of L by 
AL -a, but now by continuity the extension class must be zero, so 
Gr(E, q~) = (E v, Or). [] 

(1.9) I f  (E, (~) is a-(semi)stable, then so is (E(D), O(D)) for any effective divisor D. 
Likewise, if c~ vanishes on an effective divisor D and (E, c~) is a-(semi)stable, then so is 
(E( - D), O( - D)). 

Proof If L c E is any line bundle, ~b(D) e H~ if and only if ~b E H~ and 
deg L(D) = degL + degO. But �89 = �89 + degD also, so both in- 
equalities are preserved by tensoring with D. The second statement is proved 
similarly. [] 

Hence if the moduli spaces M(a, A) exist for large enough d, then the moduli 
spaces for smaller d will be contained inside them as the locus of pairs (E, ~b) such 
that q~ vanishes on some effective D. So to prove our existence theorem (1.2) it 
suffices to construct M(a, A) for d large relative to g and a, and we will assume for 
the remainder of  w that d is large in this sense. For  such a large d, we then have the 
following useful fact. 

(1.10) For f ixed  g and a and large d, (E, qS) a-semistable implies that Hi(E)  = 0 and 
E is globally generated. 

Proof Suppose that Ha(E)4: O. Then H ~  *) 4= 0, so there is an injection 
0 ~  K a(D)~ E* for some effective D. Hence there is an injection 
0 4  K - 1 A ( D ) ~  E. Since d e g K - a A ( D )  > 2 - 2g + d, the a-semistability condi- 
tion implies that 2 - 2g + d < d/2 + a, so that d < 4g - 4 + 2a. So for d larger 
than this, H 1 (E) = 0. 

Similarly, if d > 4 9  - 2 + 2a, then H a ( E ( -  x)) = 0 for all x ~ X ,  so E is 
globally generated. [] 

Since we are assuming that d is large, the above lemma implies that for (E, q~) 
a-stable, dim H~ = z(E) = d + 2 - 2g. Call this number Z. If we fix an isomor- 
phism s : ~ Z ~  H~ we obtain a map A 2 ~  x s ,A2HO(E) ^ ,H0(A), which is 
nonzero because E is globally generated. Thus to any bundle E appearing in 
a a-semistable pair, and any isomorphism s, we associate a point T(E, s)E 
IP Hom(AZ~X, HO(A)). We will consider the pair (T(E, s), s-  i dp) ~ ~ ' H o m  • IP~ x, 
where IP Horn is short for IP H o m ( A Z ~  x, H~ Roughly speaking, M(a, A) will 
be a geometric invariant theory quotient of the set of such pairs. The quotient is 
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necessary to remove the dependence on the choice of s. Since two such isomor- 
phisms are related by an element of SL(z), the group action will be the obvious 
diagonal  action of SL(z) on  ~ H am  • IPC x. As usual in geometric invar iant  theory, 
we must  linearize the action by choosing an ample line bundle and lifting the action 
o fSL(  D to its dual. So let the ample bundle be any power of ~9(X + 2o, 4o), with the 
obvious lifting. (Of course ~ + 2o and  4o may not  be integers, but  by abuse of 
no ta t ion  we will refrain from clearing denominators ,  since the choice of power does 
not  matter.) We can then define stable and  semistable points in the sense of 
geometric invar iant  theory with respect to this linearization. 

(1.11) I f  (E, dg) is a-(semi)stable, then (T(E, s), s - '  4)) is a (semi)stable point with 
respect to the linearization above. 

Proof. Suppose T = (T(E, s), s t qS) is not semistable. Then by Mumford 's  numer-  
ical criterion [-19,21] there exists a nontr ivial  1-parameter subgroup 
2: �9 • --* SL( ;0such  that  for any ~? in the fibre of the dual  of our  ample bundle over 
T, l im,~o2(t)-  T = 0. We interpret  this limit concretely as follows. Any 1-parameter 
subgroup  of SL(z  ) can be diagonalized, so there exists a basis ei of ~ z  such that  
2(t)'ei = tr'ei, where rl~ 77 are not all zero and  satisfy ~ i  rl = 0 and r, < rj for i < j. 
Then l i m , ~ 0 2 ( t ) ' T = 0  means that  any basis element (e* /x e ~ |  ek)e 
Hom(A2112 z, H ~  ~ w h i c h  is acted on  with weight < 0 has coefficient zero 
in the basis expansion of T. Because of our choice of linearization, this means that  
T(E, s)(ei, e j) = 0 whenever 

2a 
(1.12) ri + rj < - - - -  r / ,  

= X / 2 + a  

where [ = max { i: coefficient of ei in s -  1 (D is ::4= 0}. Let L c E be the line bundle  
generated by s(el). We distinguish between two cases, according to whether  
4) ~ H~ 

First case. 4) ~ H~ For  i < ~/2 -- cr + 1, note tha t  

0~/2 - c0rl + (Z/2 + a)ri  < ~ ri = O, 
i 

since the left-hand side can be regarded as the integral over [0, )~) of a (two-step) 
step function whose value on [j  - 1,j)  is < r i. Hence for i < Z/2 - a + 1, 

2o 2o 
rl  + r i < z / 2 + c r r l  < Z / 2 + a r ~ ,  

so T(E,s) (e~,e i )= s(eO A s(ei)= 0. Hence s(eO is a section of the same line 
bundle as s(e~), namely L. So dim H~ > Z/2 - a; since d is large relative to g and 
a, this implies tha t  deg L > d/2 - a, so (E, q~) is not  a-semistable. 

Second case. /p • H~ For  i < Z/2 + a + 1, 

()~/2 + a)rl + (Z/2 -- a)ri ~ O, 

for the same reason as above. Hence 

2a  
rl + ri <= r i. 

1./2 + ~r 
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We claim tha t  g > Z/2 + o + 1. If not,  then  for all i < g, 

2o 
r 1 + r i ~ - -  re, 

Z/2 + o 

SO tha t  s(ei) would  be in the  same line bund le  as s(el). Since 4' is a l inear 
combina t i on  of  e~ for i < f ,  we would  conc lude  4' e H~ a cont rad ic t ion .  This 
proves  the claim. 

So for i < Z/2 + o + 1, actually 

2o 
r~ + rl < - - -  re; 

•/2 + o 

hence s(ei) ~ H ~  as in the first case. So dim H ~  > Z/2 + o, and  again (E, 4') is 
no t  o-semistable.  

The  p r o o f  for stabili ty is similar: the numerica l  cr i ter ion now jus t  says 
l imt~o2(t)-  T 4: Go, so we replace the < in (1.12) by < .  We jus t  need to note  that  
i f i < z / 2 - o +  1, then  

0~/2 - o)rl  + (Z/2 + o)ri < 0 

strictly, because  ei ther  the two step funct ions are  different jus t  to the left of)~/2 - o, 
or  the  smaller  one is identically r~ < 0. [] 

(1.13) Let  (E, 4') be a pair, let s : ~  ~ H~  be a linear map, and let v e C x satisfy 
s(v) = 4'. Write Ts for  the composition A21E ~ ~ , A2 H ~  ^ , H~ I f  (T~, v) is 
semistable, then s is an isomorphism and (E, 4') is o-semistable. 

Proof  Firs t  o f  all, no t e  tha t  if s is no t  injective, then  (T~, v) is cer tainly no t  
semistable.  Indeed,  if s(w) = 0 for some w, put  e~ = w, e2 = v, ex tend  to a basis  {ei} 
of  C x, and  then  take the 1-parameter  subgroup  defined by r~ = - X + 2, rz = O, 
r3 . . . . .  r x =  l. T h e n f = 2 ,  so 

2o 
ri + rj "< - -  re 

)~/2 + o 

means  jus t  ri + r; < 0. Hence  ei ther  i = 1, o r j  = 1, or  i = y  = 2; in any ease, clearly 
Ts(ei, e j) -= O. 

Suppose  then  tha t  s is injective and  (E, qS) is o-unstable .  We will p rove  (Ts, v) is 
unstable.  Let  L c E be the destabi l iz ing bundle.  We dis t inguish two cases, depend-  
ing on  the sign of  d - deg L - 2g + 2. 

First case. d -  d e g L  > 2 g -  2. Then  H I ( A L  -1)  = 0, bu t  H t ( L ) =  0 also since 
deg L > d/2 - o which  is large relative to g. Hence  f rom the  long exact  sequence  of  

(1.14) O ~  L ~ E ~ A L  -1 -o 0 

we find tha t  H a(E) = 0, so d im H ~  = Z and s is an i somorph i sm.  C h o o s e  a basis 
el . . . . .  ep for s l ( H ~  and  extend to a basis  el . . . . .  e~ for ~x.  Take  the  
l -pa rame te r  subg r oup  defined by  ri = p - Z for i < p, p for i > p. Then  re = p - Z 
if 4' e H~ p if dp r H~ Since L is destabil izing,  p > Z/2 - o if 4) ~ H~ 



324 M. Thaddeus 

p > Z/2 + cr if 4} ~ H~ Either way, 

2a 
r~ + rj < - - - -  r~ 

= )(/2 + cr 

implies i , j  <= p; if 4} e H~ and say i > p, then 

2a r e > p + ( p _ z ) ( 1  2cr ) )( 
r i + r  i Z / 2 + ~  Z / 2 + ~  = P ~ 2 +  

> (Z/2 - o) }( ~( Z/2 -- a _ 0, 
)~/2 + a X/2 + o 

whereas if 4} r H~ and say j  > p, then 

Z/2 - o 
Z Z~ 2 + a 

- - r e > p - ~ { + p  1 = p  Z > 2 ~ - Z = 0 .  r i + r  s - U 2 + c r  = Z/2+{r  X / 2 + a  

But if i , j  <= p, then s(e~), s(ej) ~ H~ so Ts(e~, ej) = 0. Hence ( T ,  v) is unstable. 

Second case. d - deg L =< 2g - 2. Then dim H o (A L 1) =< g, so from the long exact 
sequence of(1.14) we deduce that the codimension of H~ in H~ is < 9~ Hence 
the codimension of s - l ( H ~  in ~z  is < g .  Choose a basis e l , . . .  ,ep for 
s -1(H~ and extend to a basis el . . . . .  e x for ~z .  Take the 1-parameter sub- 
group defined by r ~ = p - ~ (  for i = p ,  p for i > p .  Since p ~ ( - g  and 
Z = d + 2 - 2g is large relative to {r and g, certainly p > U2 + a. The remainder of 
the proof proceeds as in the first case. 

So far we have proved that i f ( T ,  v) is semistable, then s is injective and (E, 4}) is 
a-semistable. But then by (1.10), d imH~ = ~(, so s is an isomorphism. [] 

(1.15) Suppose (El ,  r and (E2, 4}2) are ~r-semistable, and there exist sl ,  s2 such 
that (T(EI ,&) ,  s ; t 4 } l ) = ( T ( E 2 ,  s2},s~14}2). Then there is an isomorphism 
(El ,  4}1) ~ (E2, (Pz) under which sl ~- s> 

Proof By (1.10) each Ei is globally generated, so the components si(ej) A si(ek) of 
T(Ei, si) give a map from X to the Grassmannian of ()( - 2)-planes in �9 x such that 
E~ is the pullback of the tautological rank 2 bundle, 4}~ is the pullback of the section 
defined by s~- 1 (q~i), and s~ is the natural map from (12 z to the space of sections of the 
tautological bundle. So we can recover (E,  4}i) and s ,  up to isomorphism, from 
(T(E,  s,), s? 14},). [] 

(1.16) Let C be a smooth affine curve and p e C. Let (E, ~ )  be a locally free family of 
pairs on X x C - {p}, and suppose E is generated by finitely many sections si. Then 
after possibly rescat ing �9  by a function on C - {p}, (E, ~ )  and the si extend over p so 
that E is still locally free, ~ v  4= O, and the si generate E v at the generic point. 

The reason for proving the last fact is to ensure that T(E, s) is nonzero at p, so 
defines an element of IP Horn. 

Proof Choose an ample line bundle L on X •  C - { p }  such that E * |  L is 
globally generated. Then E embeds in a direct sum of copies of L, and ~ j L  can be 
extended over p as a sum of line bundles in such a way that the si extend too. 



Stable pairs, linear systems and the Verlinde formula 325 

Consider the subsheaf of the extended G j L  generated by the si. This is a subsheaf 
of a locally free sheaf, so it is torsion-free, and hence [22] has singular set S of 
codimension > 2. Furthermore, it injects into its double dual, whose singular set 
has codimension > 3 [22], hence is empty. Hence the double dual is a locally free 
extension of E over p, and is generated by s~ away from S. As for ~ ,  it certainly 
extends with a possible pole at p, so it is just necessary to multiply it by a function 
on C vanishing to some order at p. [] 

We can finally proceed to construct the geometric invariant theory quotient. 
Consider the Grothendieck Quot scheme [13] parametrizing flat quotients of 
(gxX with degree d, let Quot(A) ~ Quot  be the locally closed subset consisting of 
locally free quotients E with AZE = A, and let U ~ Quot(A) be the open set where 
the quotient induces an isomorphism s:ll2x--* H~ Then the pair E, s specifies 
a point in U. By (1.10), if (E v, 4) is a-semistable for any section ~b, then p e U. 

Now U is acted upon by SL(z) in the obvious way, and the map 

T x  l :U xlPt~x ~ IPHom xlPIl~ x 

intertwines the group actions on the two sets. By (1.11) and (1.13), the c-semistable 
set V(cr) c UxIPll2 z is the inverse image of the semistable set 
V'(o) c IPHom x IPIE x with respect to the linearization (9(Z + 2o, 4a). In future, 
we restrict T x  1 to a map V(a)-~ V'(a). 

Now Gieseker proves the following. 

(1.17) Let G be a reductive group and M1 and M 2 be two G-spaces. Suppose that 
f :M1  ~ M2 is a finite G-morphism and that a good quotient Mz/ /G exists. Then 
a good quotient Ma//G exists, and the induced morphism MI/ /G ~ M2//G isfinite. 

So to show that V(a) has a good quotient it suffices to prove: 

(1.18) On V(o), T x l  is finite. 

Proof By (1.15), T x 1 is injective. We use the valuative criterion t o  check that T x 1 
is proper. Let C be a smooth curve, p e C, and let 7/: C - {p} --, V(o) be a map such 
that ( T x  1)W extends to a map C ~  V'(a). On C - {p}, we then have a family 
(E, ~ )  of pairs such that E is generated by the sections s(el) . . . . .  s(ex). By (1.16), on 
an open affine of C containing p, (E, ~ )  extends over p in such a way that ~p + 0 
and the s(ei) generically generate E v. Thus T(Ev, s) is defined, and so by continuity 
(r(Ev, s ) , s - l~p )  = ( (Tx 1)7~)(p). Hence by (1.13) s : l E x ~  H~ is an isomor- 
phism and (Ev, q~p) is a-semistable. So (E v, s -  1 ~p) e V(a) and 7 j extends to a map 
c - ~  v(G). [] 

Hence V(a) has a good projective quotient. By (1.8), the closure of the orbit of 
(E, q~) contains the orbit of Gr(E,  4~), which is closed in the a-semistable set. But the 
closure of any orbit in the z-semistable set contains only one closed orbit [21,3.14 
(iii)]. Hence if two pairs are a-semistable, then the closures of their orbits intersect if 
and only if they have the same Gr. This completes the proof of our main theorem 
(1.2). [] 

The stable subsets of these moduli spaces are actually fine: 
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(1.19) There exists a universal pair over the a-stable set M~(a, A). 

Proof There is a universal bundle E ~ Quot (A) x X and a surjective map (9 x -* E. 
Hence there is a natural SL(z)-invariant section O eH~ 
X; E(1)), and (E(1), O) is a universal pair. By (1.6) the only stabilizers of elements of 
the a-stable subset of V(cr) are the zth roots of unity. These act oppositely on E and 
on t~(1), hence trivially on E(1), so on the a-stable set E(1) is invariant under 
stabilizers. Hence by Kempf's descent lemma [9] E(1) descends to a bundle on 
M~(a, A ) x  X,  and the section O, being invariant, also descends. This pair over 
M~(a, A) x X then has the desired universal property. [] 

(1.20) Remark. If D is any effective divisor, by (1.9) there is an inclusion 
tD: M(a, A) ~ M(a, A(2D)) given by (E, 0) w-~ (E(D), ~b(D)). Indeed, if (E A, �9 A) and 
(EA(2m, ~12m) are the corresponding universal pairs, there is a sequence 

0--} E A ~ , t*EAI2m--* (-gD(I~EA~2D))--* 0 

such that tD(@ A) : ~A(2D) 

2 Their tangent spaces 

We now turn to the deformation theory of our pairs. By semicontinuity a-stability 
is an open condition, so the Zariski tangent spaces to our moduli spaces at the 
a-stable points will just be deformation spaces. Hence we may refer to 
TtE.,)M(a, A) simply as T(E.,). 

(2.1) I f(E,  (~) ~ M(a, A) is a-stable, then 
(i) (cf. [6]) TtE,e~) is canonically isomorphic to H 1 of the complex 

CO(EndoE)0)~  p ~CI(EndoE)@CO(E) q ,CI(E),  

where p(9, c) = (dg, (9 + c)(~) and q ( f  t~) = f 4~ - dt~; 
(ii) H ~ and H 2 of this complex vanish; 

(iii) there is a natural exact sequence 

0 ~  H ~  ~ ~ H ~  T~e,4,)-~ Hl(Endo  E) 4' ,HI (E) -~O.  

Proof Let R = II; [e]/(e2). By a well-known result [15, II Ex. 2.8] T(e,,) is the set of 
isomorphism classes of maps Spec R--* M(a, A) such that (0 ~ (E, ~b). Since 
a-stability is an open condition, T(E.r is just the set of isomorphism classes of 
families (E, ~ )  of pairs on X with base Spec R, such that (E, ~)1~) = (E, gb) and AZE 
is the pullback of A. We will explain how to construct any such family. 

The only open set in Spec R containing (e) is Spec R itself, so any bundle E over 
Spec R • X can be trivialized on Spec R • U, for some open cover {U,} of X. Thus 
if E m = E, the transition functions give a Cech cochain of the form 1 + ef~p where 
f e C  1 (EndE). In order for A2E to be isomorphic to the pullback of A, the 
transition functions of A2E must be conjugate to 1 e C~ But the transition 
functions are det(1 + ef, a) = 1 + e trf~p, so we are asking that 

(1 + eg,)(1 + etrf~p)(1 - ega) = 1 
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for some g 6 C~ that is, t r f =  - dg. But if such a g exists, t h e n f = f +  dg/2 is 
trace-free, and 1 + e f  is obviously conjugate to 1 + e f, so determines the same 
bundle E. Hence up to isomorphism we can obtain any E even if we consider only 
trace-free f ~ C a (Endo E). 

Now if there is a section ~ e H~ such that ~(~) = qS, then with respect to the 
local trivializations of E described above, �9 = 4) + e~,  for some Cech cochain 

e C~ Of course, ~ must be compatible with the transition functions; this 
means that 

(1 + ~L~)(~ + ~ p )  = (0 + ~ ) ,  

that is, f r  = dff. Hence any pair (E, ~ )  having the desired properties can be 
obtained from some ( f  ~b) e C 1 (EndoE) @ C~ sat isfyingf~ - dff = 0 E C 1 (E). 

We now need only check which (f, if) give us isomorphic (E, ~) .  Of course the 
two choices will be related by a change of trivialization on Spec R • U,, but we may 
assume that the change of trivialization is of the form 1 + eg, on Us, since (E, r 
itself has no automorphisms (1.6). Furthermore, g must belong to C~ E) @ 
in order to keep f trace-free, since the action of g is given by 

1 + e . f , ~  (1 + eg~)(1 + ef~t~)(1 -- eg~), 

that is, f ~--~f+ dg, and dg is trace-free if and only if g ~ C~ E) is the sum of 
a trace-free cocycle and a constant. Similarly the action of g on ~9 is 

that is, ~h ~ 0 + gO. Hence two pairs ( f  ~) and (J~ ~) determine isomorphic pairs 
(E,(1)) if and only if they are in the same coset of the image of the map 
C O (Endo E) @ q:-* C ~ (Endo E) @ C~ given by g + c ~ (dg, (g + c)dp). This 
completes the proof of (i). 

As for (ii) and (iii), substituting H ~  ~ = H~ E) into the long 
exact sequence of the double complex with exact rows 

0 ~ 0 ~ C~ E) 0 ) ~  ~ C~ E)~)IIy ~ 0 

0 ~ C~ ~ C a ( E n d o E ) G C ~  ~ Ca(EndoE) ~ 0 

J, J, ~, 
0 ~ Ca(E) ~ Ca(E) ~ 0 ~ 0 

gives 

0 ~  H ~ ~ H ~  E) ~ H ~  o H 1 -0 Ha (Endo E) ~ H a ( E ) ~  H 2 --* 0, 

where H i is the cohomology of the complex from (i) .  But the map 
H ~  r ) H ~  is injective for (E,r  a-stable by (1.6), and the map 
Hl(Endo E) * , Ha(E) is always surjective: indeed this is equivalent to the Serre 
dual map H o ( K E  *) #' , H o ( K  Endo E* ) being injective, which is obvious since the 
map K E *  #" ~ K Endo E* is an injection of sheaves. Hence H o and H 2 vanish, and 
we get the exact sequence in (iii). [] 

As a corollary, we obtain the following. 
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(2.2) I f ( E ,  4)) e M (g, A)  is a-stable, then dim T~,4, ~ = d + g - 2. 

Proof. By (2.1 (iii) 

d i m T ( E . , ) = z ( E ) - z ( E n d o E ) - I  = ( d + 2 - 2 g ) - ( 3 - 3 9 ) -  l = d + g - 2 .  [] 

We will see in the next section that dim M(a, A) = d + g - 2; hence M(g, A) will be 
smooth at the stable points. 

3 How they vary with 

For  obvious numerical reasons the g-semistability condition remains the same, and 
implies g-stability, for any g e (max(0, d/2 - i - 1), d/2 - i), where i is an integer 
between 0 and ( d -  1)/2. Hence for a in that interval we get a fixed projective 
moduli space M ( g ,  A), which we will henceforth denote Mi(A)  or just M~. The 
remainder of this paper will concentrate on these moduli spaces M~, ignoring the 
special values of g for which there exist a-semistable pairs which are not g-stable. 

In the extreme case i = 0, it is then easy to construct the moduli space: 

(3.1) Mo(A)  = IPHI(A  - 1). 

Proof. The first inequality in the a-stability condition (1.1) says that ~ e H~ 
implies deg L < 0. Hence L = (9, E is an extension of (9 by A, and 4) e H~ is 
a constant section. The second inequality says that E has no subbundles of degree 
> d: this is equivalent to not being split, since M - *  E ~  A nonzero and 

d e g M  >= d = degA implies M = A. Hence M o ( A )  is simply the moduli space of 
nonsplit extensions of (9 by A, which is of course just IPH 1 (A- 1 ). [] 

We will not attempt such a direct construction of Mi(A)  for i > 0. Rather, we 
will carefully study the relationship between Mg_ 1 and Mi. Of course, this will only 
be of interest if there exists an M~ for i > 0, so we will assume f o r  the remainder o f  the 
paper that  [(d - 1)/2] > 0, that  is, d > 3. Anyhow, the first step is to construct 
families parametrizing those pairs which appear in M~ but not M i  1, or M i -  1 but 
not M~. To do this, we first define two vector bundles over the ith symmetric 
product X~. 

Let z r : X i x X ~ X i  be the projection and let ,4 c X i x X  be the universal 
divisor. Then define W,: = (R ~ ~) (9~ A( -- A) and Wi + = (R 1 ~ ) A -  1 (2A). These are 
locally free sheaves of rank i and d + g - 1 - 2i, respectively. 

(3.2) For  i <= (d -- 1)/2, there is a f ami l y  over IP Wi + parametriz ing exac t ly  those pairs 
which are represented in Mi  but  not M i - ~ .  

Proof. As we pass from i to i - 1, the first inequality in the stability condition (1.1) 
gets stronger and the second gets weaker. So we look for pairs which almost violate 
the first inequality. That is, E must be an extension 

0 - ,  (~(m)--* E-~  A( -- m ) ~  0, 

where deg D = i, and 4) is the section of d)(D) vanishing on D. Conversely, any such 
pair is stable unless it splits E = d)(D) ~ A( - D). Indeed, if L c E and 4) ~ H~ 
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then the map L ~ A( - D) is nonzero, so degL < deg A( -- D) = d - i, with equal- 
ity only if L = A( - D). 

But IP W~ + is the base of a family parametrizing all such nonsplit pairs: indeed 
E is the tautological extension 

O ~  C ( A ) ~  E ~ A ( -  A)( - 1 ) ~ 0 ,  

and �9 is the section of (_9(A) vanishing on A. [] 

(3.3) For i <  ( d -  1)/2, there is a family over IPWi- parametrizing exactly those 
pairs which are represented in M~_ ~ but not M~. 

Proof This time the first inequality in (1.1) gets weaker and the second gets 
stronger. So we look for pairs which almost violate the second inequality. That is, 
E is an extension 

O ~  M---, E ~  A M - I  ~ O  

where deg M = d - i, and 4' ~ H~ Hence projecting 4) in the exact sequence, 
we get a nonzero 7 ~ H ~  - i) vanishing on a divisor D of degree i such that 
A M - a =  C(D). Then at D, 4) lifts to M = A ( - D ) ,  so we get an element 
p(E, (9) ~ H~ - D)), defined up to a scalar as usual. 

On the other hand, we can recover (E, 4') from D and p. Indeed, choose a (~ech 
cochain 0 e C~ - D)) such that 01D = P. Then d01D = dp = 0, so d o vanishes 
on D and descends to a closed cochain f = dO/7 ~ C 1 (A ( - 2D)). This determines 
an extension 

0--+ A(  -- D ) ~  E'--, C ( D ) ~  O. 

The compatibility condition for 7 + 0 to define a section 4" e H~ ') is y f =  dO, 
which is automatic. Thus we get a new pair (E', 4") satisfying p (E', 4") = p. 

Up to isomorphism, (E', 4") is independent of the choice of 0, since adding 
~ C~ - 2D)) to 0 is simply equivalent to acting by (o 1 r on the local splittings 

of E '  with which the extension is defined. In particular, we can choose local 
splittings of the old E and let 0 be the projection of the old 4' on M = A( - D) with 
respect to these splittings. Then the construction of the previous paragraph re- 
covers (E, 4'), so (E', 4") = (E, 4')- 

The construction above can be generalized to produce a family 
(E, @)-+ IPW~- • X, as follows. Let p:~W~- --+ X~ be the projection, and choose 
a cochain ~ E C o (A ( -- A) (t)) such that W tp-' ~ is the tautological section. Then d ~  
vanishes on p ~A, so descends to C~(A( - 2A)(1)). This determines an extension 

0 ~ A(  - A ) ( 1 ) ~  E- - ,  r  0 ,  

and if ~ ~ H~ is the section vanishing on A, then 7 + ~ defines the desired 
section ~ ~ H~ Q 

By the universal properties of Mi-1 and Mi, we thus get injections ~ Wg + ~ M~ 
and I P W i - ~ M i - ~ .  As an example, consider the case i = 1 .  By (3.1), 
Mo = IPHI(A-a).  Moreover, Wx- is a line bundle and hence IPW( = Xa = X. 
Hence the inclusion of (3.3) is a map X ~ IPH i (A- 1); it can be identified explicitly 
as follows. 



330 M. Thaddeus 

(3.4) The inclusion X ~ IPH 1 (A-~ ) is given by the complete linear system I K x A  I. 

Proof  There  is an  a l t e rna t ive  way to  see w h a t  pairs  a re  represen ted  in M o  bu t  no t  
M1.  Any  pa i r  (E, qS) e M0 is an  ex tens ion  

(3.5)  0 4  (9 --* E ~  A ~ 0 ,  

say wi th  ex tens ion  class s e H ~ (A - ~ ), and  wi th  4, e H~ Such a pa i r  is the  image 
of x e X u n d e r  the  in jec t ion of (3.3) if there  is an  inc lus ion  0 ~ A ( - x) ~ E such 
t ha t  the  c o m p o s i t i o n  7x:A( - x ) ~  E ~  A vanishes  at  x. Hence  we ask for w h a t  
ex tens ion  classes s e H 1 ( A -  1) the  m a p  Vx: A ( --  x) ~ A lifts to  E. 

Twis t ing  (3.5) by  A - 1  (x) and  t ak ing  the  long  exact  sequence  yields 

H ~  | A -  l (x))  ~ H~ " , n 1 ( A -  l (x)) ,  

where  the second  m a p  is the  cup  p roduc t  wi th  s. Hence  7 x e H ~  lifts 
to H ~ 1 7 4  l(x)) as des i red  if a n d  only  if 7 ~ s =  0. T h a t  is, s mus t  be in the  
kerne l  of  the  m a p  ~, :  H 1 (A - 1 ) ~ H 1 (A - 1 (x)), or  Serre dually,  
~/~:H~ * ~  H O ( K x A ( -  x))*. Since ~,~ is dua l  to  the  in jec t ion 
H ~  -- x))--* H ~  it is surjective,  so 

d im ker  7~ = d im H ~  - x)) - d im H ~  

But  since deg K x A  ( - x) > 2g - 2, th is  is 1. Hence  for each  x e X,  there  is a un ique  
s e IPH~(A - ~) such t ha t  7xs = 0. 

W h a t  is this s? Rega rded  as a l inear  func t iona l  on  H ~  s e kerT~ if it 
ann ih i l a t e s  all sect ions van i sh ing  at  x. Cer ta in ly  eva lua t ion  at  x does  this, so this  is 
the  s genera t ing  ker  Yx. But  it is also the  image of  x in the  m a p  X ~ ~ H  1 (A - a) given 
by  I KxA[ .  Hence  the  two m a p s  are identical .  []  

(3.6) The Mi are all smooth rational integral projective varieties o f  dimension 
d + g - 2, and for i > 0, there is a birational map Mi~-~M1, which is an isomorphism 
except on sets of eodimension >- 2. 

Proo f  By (3.1) an d  R i e m a n n - R o c h ,  the  first s t a t e m e n t  is cer ta in ly  t rue of  Mo. F o r  
i > 0, suppose  by i n d u c t i o n  on  i t ha t  it is t rue  of  M i -  1. By (3.2) a n d  (3.3) there  is an  
i s o m o r p h i s m  M i - 1  - IPW~-~--~M~ - IPWi +. But  d im PW~- = 2i - 1 < d - 1 < 
d + g - 2 ,  a n d d i m P W i  + = d + g - 2 - i < d + y - 2, so dim Mi = dim Mi_ l = 
d + g - 2 a n d  M~ is b i r a t i ona l  to M~_ ~, hence  to M0.  M o r e o v e r  by  (2.2), the  
Za r i sk i  t angen t  space to M~ has  c o n s t a n t  d i m e n s i o n  d + g - 2, so M~ is a s m o o t h  
reduced  variety.  T h e  second  s t a t emen t  is a lso p r o v e d  by induc t ion :  jus t  no te  
t h a t  for i > 1, c o d i m l P W i - / M ~ _ l  = d +  g - 2 i -  1 > 2 and  c o d i m P W i + / M ~  = 
i > 2 .  [ ]  

(3.7) Let (E, q~)e lPW~ + , let D be the zero-set o f  dp, and let ~ be the map 

E | A - I ( D ) ~  A(  - D ) |  A - I ( D )  = tP. 

Then T(E.g,)~W + is canonically isomorphic to H 1 of  the complex 

C O ( E |  e , C I ( E |  q , C ' ( ( 9 ( D ) ) ,  

where p(g, c) = (de, (Vg + e)~) and q( f ,  tp) = ~ f dp - d$. Moreover, H ~ and H 2 o f  
this complex vanish. 
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Proof. The proof is modelled on that of(2.1). We regard PW~ + as a moduli space of 
triples (L, E, ~b), where L is a line bundle of degree i, E is an extension of L by A L -  1, 
and ~b ~ H~ and consider the deformation theory of this moduli problem. 

Let R = II;[e]/(~ 2) as before. Then T~L,e,,~IPW + is the set of isomorphism 
classes of families ( L , E , O )  of triples on X with base SpecR, such that 
(L, E, O)(~) = (L, E, 40. We will explain how to construct any such family. 

Any bundle over SpecR x X can be trivialized on SpecR x U~ for some open 
cover { U~} of X. Thus if L(~) = (9(D) and E(~) = E, then the transition functions for 
E give a Cech cochain of the form 1 + ef ,  p w h e r e f  e C ~ (End E). Since E is to be 
a family of extensions of L by AL ~, it must have A~E = A, so as explained in the 
proof of (2.1) we may take f E C 1 (Endo E). Furthermore, the transition functions 
must preserve L, so i f f '  is the projection of f to C a (A( - 2D)) in the natural exact 
sequence 

0 ~ E |  1 ( D ) ~ E n d o E ~ A ( - 2 D ) ~ 0 ,  

then 1 + ef~'a must be conjugate to 1. Hence 

(1 - -  e g ~ ) ( 1  + e f ~ ) ( 1  - -  e g ~ )  = 1 

for some g ~ C~ - 2D)), that i s , f '  = clg. But if such a g exists, then for any lifting 
of g to C~ s T = f  - dO projects to O c C I ( A ( -  2D)), and 1 + e)Tis 

obviously conjugate to 1 + e f, so determines the same bundle E. Hence up to 
isomorphism we can obtain any E that is an extension of some L by A L -  ~ even if 
we consider only those f in the kernel of C l(Endo E ) ~  C I(A( - 2D)), that is, in 
C t(E | A I(D)). The transition functions for L are then just 1 + e..?f~a. 

Now if there is a section (O e H~ such that (D(~) = ~b, then with respect to the 
local trivializations of E, (O = q5 + eO~ for some Cech cochain ~ e C~ Of 
course, O must be compatible with the transition functions; this means that 

that is, yf~b = dO. Hence any triple (L, E, ~ )  having the desired properties can be 
obtained from some (f, $) E C 1 (E | A - a (D)) (~ C~ satisfying 
7 f (o - d$ = Oe C1((9(D)). 

We now need only check which (f, $) give us isomorphic (L, E, O). This part of 
the argument follows that of (2.1) exactly, except that g ends up being in 
C 1 (E | A - a (D)) (~ r  and acts on $ by ~ ~-~ tk + ?gr This completes the proof of 
the first statement. 

As for the second, taking the long exact sequence of the double complex 

0 - *  0 --. C ~ 1 7 4  ~ C ~ 1 7 4  ~ ( D ) ) ~ r  ~ 0 

$ 

o ~ C~ 

o - ,  C'((9(D))  -~ 

gives 

C ~ ( E |  ~ C a ( E |  ~ 0 

C ~  

C'((P(D)) ~ 0 .-4, 0 

O ~  H ~ ~ H~  | A - I ( D ) ) ~ I I 2 ~  H~ H 1 

H i ( E |  A - I ( D ) ) ~  H~(d)(D))~ H 2 ~ O, 
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where H i is the cohomology of the complex in the statement.  Now 
H ~ (A x (20)) = 0 since deg A x (2D) < 0, and  E is a nonspli t  extension of (9(D) by 
A( - D), so 

H~ | A-1  (D)) = H ~  - D), E)) = 0. 

But  the m a p  C ~ H~ is injective: indeed, it is multiplication by ~b. Hence 
H ~ = 0. Likewise, the map  H 1 (E | A - 1 (D)) ~ H 1 ((~(D)) is surjective: indeed this 
is equivalent  to the Serre dual m a p  H ~  D))~ H~174  K A ( -  D)) being 
injective, which is obvious since the map K ( -  D ) ~  K ~  E * |  K A ( -  D) is an 
injection of sheaves. Hence H 2 = 0. [] 

The following proposi t ion is proved similarly. 

(3.8) Let ( E , ~ ) e l P W i ,  and let D = p ( E ,  qS). Then TtE,4~)IPW i is canonically 
isomorphic to H 1 of the complex 

C~ - 0)) ~ r ~ C '(E( - D)) �9 C~ ~ C'(E). 

Moreover, H ~ and H 2 of this complex vanish. 

(3.9) The injection F W + ~ Mi induces an exact sequence on IP W { 

0-~ T~W+ ~ TMII~w+~ W ? ( -  1 ) ~ 0 .  

Proof The complex 

C~ 2 A ) ) ~  C ' ( A ( -  2 3 ) ) ~  C ~  3))---, CX(A(-- A)) 

with the obvious maps has R~  = 0, R~= = W~- from the long exact sequence of 
the double complex 

O ~  C ~  -~ C ~  --. 0 ~ 0 

(1,0) ,L ,L 

C~ - 23)) C~ - A)) 

0 --~ (~ CI (A(  - 23))  ~ @ Ca(A( - 23)) ---, C~ - A)) ~ 0 

0 ~ C ' ( A ( -  2A)) ---, CI(A(--  A)) --* C~((gAA(- A)) ~ O. 

Hence the result follows from the long exact sequence of the double complex 

O ~  C ~  ~ C ~ 1 6 2  C ~  1) ~ 0 

(1,o) ~ p 

Ca(EA-I (A) )  Cl(EndoE) C ~ ( A ( -  2 3 ) ) ( -  1) 

O ~ @ C~ ~ OC~ ~ ~ C~ - 3))( - 1 ) ~  0 

0 - ~  C'(d)(A)) ~ CI(E) ~ C ' ( A ( - -  A ) ) ( -  1) -- 0, 

together  with  (2.1) and  (3.7). [] 
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(3.10) The map IPWi + ~ M i  is an embedding. 

P r o o f  By (3.7), it is an injection, and by (3.9), so is its derivative. D 

The following proposition and corollary are proved similarly, using (2.1) and (3.8). 

(3.11) The injection IPWi~ ~ M i - 1  induces an exac t  sequence on IPWi- 

0---* T I P W 7  --+ T m i - l l e w ;  --* W+ ( -  1)--* 0. 

(3.12) The map P W i -  ~ M i - 1  is an embedding. 

By (3.2) and (3.3) every pair in Mi - IPW + is also in Mi -  1 - P W i ,  and vice-versa. 
Hence there is a natural isomorphism Mi - IPW~ + ~ Mr_ 1 - IPW~-. Our next task 
is to extend this to a proper map. Let M {  be the blow-up of Mi at ~W~ + . Then by 
(3.9) the exceptional divisor is E + = IP W f  (~ IP W + , and 0 U (Ei + ) = (9( - 1, - 1). 

(3.13) There is a map 57I { ~ M i -  l such that the Jollowing diagram commutes: 

M i -  IPW + --* i(4i + *-- Ei + 

M i - 1  - - P W 7  ~ M i - 1  r ~ W i .  

P r o o f  Let (E , (1 ) )~ /~ i  + •  be the pullback of the universal family. We will 
construct a new family (E', (I)') of pairs all of which are in M~_ 1. 

By uniqueness of families (1.7), (E,O)]e:• is the pullback of the family 
over PWi + constructed in (3.2). Thus there is a surjective sheaf map 
E ~ (9~:• - A)(O, - l) annihilating O. Define E' to be the kernel of this map, 
so that 

(3.14) 0 ~  E ' ~  E ~  (gE:• --  A)(O, - 1 ) ~  0. 

Then E' is locally free, and �9 descends to @' e H~ For  z ~ Mi - P W  + , clearly 
(E', (I)')z = (E, O)z. So to prove the proposition it suffices to show that (E', (1)')~ +is 
the pullback of the family over ~'W~- constructed in (3.3). The first promising thing 
to note is that there certainly is a surjection E '~ (gE+•  and 
A Z E ' =  A2E( - E{  •  so we get an extension 

O-* A(  - A)(1, 0 ) -~  E'E:• (9(A)-* O, 

just as in the family of (3.3). 
Now fix s e E {  over (E,(J) E M i ,  and let D be the zero-set of ~. Let 

R = qT[eJ/(e 2) as before, and choose a map Spec R-~ Mi + representing an element 
of T~4~-  - T~E +. Then (3.14) restricts to an exact sequence 

0--* (gsp~r a •  (-gspec R • x(E) --* (9(~)• - D ) ~  O. 

On some open cover {U,} of X, E splits as 

(3.15) Ely, = (9(D)lv, @ A(  --  O)lv,, 

and this splitting can be extended to a splitting of E [Sper R • U,. Then 

(3.16) E'iu, = ~(D)lv, $ A(D)Iv,  | J(~).  
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The section ~ is then of the form q5 + ~ ,  for some ~, ~ C~ and the transition 
functions are 1 + ef ,  a for some f ~ C~ (End0 E). The latter hence act as 1 on the 
second factor of (3.16). 

dtO(D) cO(D)  ~_ c A (  -- D) Now decompose ~a = ~,p + tp;~-nl and f~p = j , p  ~j~a corresponding 

to the splitting on U o, If E '  is restricted to (e) x U~, then e~v a-'o@ = 0 and e,.f~~ = 0, 
since everything divisible by e is now set to zero. However, r ~ - m and ef,~ I - ol are 
not necessarily zero, since not everything in their images is divisible by e in the 

~ A (  --  D~ module A( - D) | J(~). Hence ~(~) = ~b + e~u e on Ue, and E(~) has transition 

functions (~ ~'fJ~ o)) with respect to the splitting (3.16). In other words, the exten- 

sion class of E'  = E(~)is the projection o f f  e C t (Endo E) to C~(A( - 2D)), and the 
lifting of ~b' is the projection of ~ eC~(E) to Ca(A( - D)). Hence (E', ~b') is the 
bundle over the image of (E, qS) in ~W~ in the family of (3.3). By uniqueness of 
families (1.7) this means that (E', ~')I~+• x is the pullback of the family of (3.3). [] 

There is a result similar to (3.13) for the inverse map 
Mi-~ - IPW7 ~ Mi - F W  +. Let MiZl be the blow-up o f M i  1 at ~Wi- .  Hence 
by (3.11) the exceptional divisor is E~- = IPW~- �9 IPW + , and 
(9~?(E~-) = (9( -- 1, - 1). Note that there is an isomorphism Es +. 

(3.17) There is a map ]~I[-_ 1 ~ Mi such that the following diagram commutes: 

M i - 1 - - ~ W i -  ~ ~Ii-1 ' -  E i  

M I -  IPW + ~ Mi ~- IPW +. 

Proof Let (E, ~)~-M~--1  x X be the pullback of the universal family. We will 
construct a new family (E', ~ ' )  of pairs all of which are in Mi. 

By uniqueness of families (1.7), (E, ~)l~;• is the pullback of the family over 
P W [  constructed in (3.3). Thus there is a surjective sheaf map E-~ OEl• - A). 
This time the map does not  necessarily annihilate ~ .  However, if we tensor by 
(9 (E/-), then the twisted map E (EF)-~ (9~-• x(A)( - 1, - 1) of course annihilates 
�9 (E[) .  If we define E' to be the kernel of this twisted map, so that 

0 ~ E' ~ E(E7)  ~ (gE+• -- 1, -- 1) -~ O, 

then E'  is locally free, and O ( E T )  descends to ~ ' ~  H~ The remainder of the 
proof is analogous to that of (3.13). [] 

At last we come to the goal of all the above work. 

(3.18) There is a natural isomorphism ~I + *-~17_1 such that the following diagram 
commutes: 

I I I 
M ~ - I -  IPWi- --, ffli--1 ~ Ei- .  
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Proof  Both 2Q + and ]Q/-- 1 are smooth,  and by (3.13) and (3.17) they bo th  inject 
into Mi 1 • Mi. Indeed, bo th  injections are embeddings, since as is easily checked 
they annihi late  no tangent  vectors, and  bo th  have the same image. This image is 
precisely the closure of the graph of the isomorphism Mi - IPW+~--~Mi - 1 - IPW[~, 
which proves the left-hand square; for bo th  E i  and  E + it is the map 
IPWF ~ IPW~ + --* IPWF x IPW~ +, which proves the r ight-hand square. [] 

Note. In light of this result, we will henceforth refer t o / ~ i  + = M i - l  simply as M~, 
and Ei + = E~- as Ei. 

Thus Mi is obtained from M~_ 1 by blowing up IPW~-, and then blowing down 
the same exceptional divisor in another  direction. Such a blow-up and blow-down 
is an example of what  is called a flip (or more properly, a log flip) in Mori  theory. 
This paper  will not  use any of the deep results of Mori  theory, but  we will see some 
of its basic principles in action. 

In one case the flip degenerates to an ordinary blow-up. 

(3.19) The moduli space Mi is the blow-up of  Mo = IPH i (A-  1 ) along X embedded 
via IKxAI .  

Proof  Since W i  is a line bundle, there is nothing to blow down. [] 

The other  extreme case is also of interest. Let w = [(d - 1)/2], so that  Mw is the 
last modul i  space in our sequence. Let N be the moduli  space of ordinary rank 
2 semistable bundles of determinant  A. 

(3.20) There is a natural "Abel-Jacobi" map Mw--+N with fibre IPH~ over 
a stable bundle E. I t  is surjective i f  d > 2g - 2. 

Proof  If i = w, then a e (0, I-d/2] + 1 - d/2), so a-stabili ty of (E, q~) implies ordi- 
nary semistability of E. Thus there is a map  Mw ~ N. Moreover,  ordinary stability 
of E implies a-stabili ty of (E, th), so the fibre over a stable E is just  PH~ For  
d > 29 - 2, any bundle  E has a nonzero section q~ by Riemann-Roch.  Hence every 
stable bundle  in N is certainly in the image of Mw. But Mw is complete, so its image 
is a complete variety containing the stable set, which must  be N itself. [] 

We may sum up our  findings in the following diagram. 

M2 M3 M4 Mw 

M 1 M 2 M 3 ... M~ 

Mo N.  

All the arrows are birat ional  morphisms  except sometimes the one to N. 

4 Their Poincar~ polynomials 

Before going on to our  main applicat ion in the next section, let us pause to see how 
the flips described above can be used to compute  the Poincar~ polynomials  of our 
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moduli spaces. 

(4.1) Pt(Mi)= ~ C o e f f ( t  2a+20-2-4i t2i+2 ~ ( (1 + x t )  2g 

1 - t  ~, \ ~ 5 ~ - )  - ; - 7 ~ / \ ( 1  - - x~ i  ~-~t~) / 

Proof. Since M2 is the blow-up o fMj  1 at IPWj-, by the formula for the Poincar6 
polynomial of a blow-up [12, p. 605], 

P,(~Ij) = P,(Mj_ , ) +  P t ( E j ) -  e t (~W]-} .  

Rut/14j is also the blow-up of Mi at IPW] ,  so 

Pt(~l j) = Pe(M j) -1- Pt(Ej) - P t ( l P w f  ) 

as well. Hence 

P ~ ( i j ) -  P,(M~_~)= P , ( F W f )  P,(PW]-).  

But the Poincar6 polynomial of any projective bundle splits, so 

P,(P W + ) - P , ( ~ W ;  ) = p,(lpa+o-2- 2 j )p t ( x j  ) _ p t ( ~ j -  I ) p , ( x j )  

t2J _ t2d+2g-2-4J 
= 1 -- t 2 Pt(Xj). 

A formula for Pt(Xj) was given by Macdonald [17]: 

Pt(Xj) = Coeff(1 (1 + xt) 2~ 
_- xS~i-~ ~ t~)  �9 

Hence 

�9 tza+:g-z-4j)(1 + xt) 2s 
P t ( M j ) -  P d M j - , ) =  Coeff( t2[1 - t2)( 1 _ x ) ( 1 -  xt  a) 

Notice that this formula also produces P,(Mo) when j = 0. So to sum up, 

1 ~ x i -J( t  2j - tza+2g-2-4J)(1 + xt)  20 
P,(M,) = V ~ V  coeff E ~i ~ ~ 5 ~ -  

- -  t x ,  j=o  

1 /X  i+l t 2i+2 t 2d+2g 2 - 4 i ( 1 - - t 4 i - 4 x i + 1 ) ) (  (l + x t )  2~ ~, 
= C o e f f { -  - - -  - -~ 

1--  t 2 x, \ x - -  t 2 x t  4 -  t (1 - -x) ( ' l  Y-x t2)J  

which agrees with the formula stated after the terms containing x i+1 are 
removed. [] 

We can use this formula to recover the formula of Harder and Narasimhan [14] 
for the Poincar6 polynomial of the moduli space N of stable bundles of rank 2, 
determinant A, and odd degree d: 

(1 + t3)2~ + t) 2g 
( 4 . 2 )  P , ( N )  = 

( 1  - t 2 ) ( 1  - t * )  
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Proof When d > 29 - 2 is odd and i = w, then by (3.20) there is a surjective map  
Mw--*N with fibre IPH~ over a bundle E. If moreover  d > 4 g - 4 ,  then 
H 1 (E) = 0 for all stable E (see for example the proof  of ~1.10)), so M,~ is then just  
the IP a 20+ l_bundle ip(R0=)E, where E is a universal bundle  over N, and 

1 - -  t 2 

P,(N) - 1 - -  t 2 a - a ~ + 4  P,(M,,.). 

For  simplicity we may as well assume that  d = 49 - 3. Then w = 29 - 2 and 

P,(N)= 1 - t  4g 2 =2~-2 \ x t  - 1 ~ / /  ( 1 - x ) ( 1 - x t Z ) J "  

The following argument,  due to Don Zagier, then shows that  this equals the 
Harde r -Naras imhan  formula. Let 

Then 

(1 + xt) 2~ 
F(a, b, c, t) Coeff 

x2,-~ (1 - ax)(1 - bx)(1 - cx)" 

t4~ t 2, t -z, t) - t2OF(1, t 2, t '~, t) 
Pt(N) = 1 - t 40-2 

On the other  hand,  

F ( a , b , c , t ) = R e s {  x l  2~176  } 
,=0 (1 - -  a x ) ( 1  - b x ) ( 1  - c x )  ; 

since this has no pole at  infinity, by the residue theorem 

x=l/~ ~=l/b x = l / c /  ( 1 - a x ~ 1 2 b . ~ ) ( l ~ c x )  

(a + t) 2~ (b + t) z~ (c + t) z~ 

- ( a  - b ) ( a  - c )  + ( b  - a ) ( b  - c )  + ( c  - a ) ( c  - b)"  

After this substi tution,  it is a mat ter  of high-school algebra to verify (4,2). [] 

5 Their  ample c o n e s  

We now turn to a study of the line bundles over the Mi. Indeed, our  goal is 
a formula for the dimension of the space of sections of any line bundle  over any Mi. 
Since M0 is just  a projective space, the first interesting case is M1; so we first of all 
ask what  line bundles there are on M~. 

(5 .1 )  P i c M l  = 7Z ~ Z ,  generated by the hyperplane H and the exceptional divisor 
E 1 . 

Proof. Obvious  from (3.19). []  
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The case of M~ will be crucial for us, so we introduce the notation 

(91 (m, n) = (9((m + n)H - nE1), 

Vm,, = H~ (ga(m, n)). 

Pushing down to Mo = IP H 1 (A- a ) then yields V,,,, = H o (Mo; (9 (m + n) | J ~). 
That is, an element of �9 V,,., is a hypersurface of degree m + n with a singularity of 
order n at X. The dimension of V,,,,, which we shall attempt to calculate, is thus 
a number canonically associated to X, A, m, and n. 

Of course, in many cases this number is easy to compute. If m < 0, for example, 
then Vm,, = 0, since no hypersurface can have a singularity of order greater than its 
degree. If n < 0, then V,,,, = H~ (9(m + n) | J ~ )  = H~ (9(m + n)), be- 
cause codim X / M o  = d + 9 - 3 > 1 by our assumptions on d and 9, and a section 
cannot have a pole on a set of codimension > 1. So in this case 
dim V,. ,  m+,+d+o-2 , = ( m+, ). However, for m, n > 0, it is quite an interesting problem 
to calculate dim V,,,,. When n = 1, these are of course precisely the spaces whose 
syzygies are studied by Green and Lazarsfeld [16], but for n > 1 very little appears 
to be known, 

What  about M~ for i > 1? These give exactly the same information as Ma, for 
the following simple reason. 

(5.2) For i > 0 there is a natural isomorphism Pic Ma = Pic Mi. Moreover, if by 
abuse of  notation we denote by (gi(m, n) the image of (ga (m, n) in Pic Mi, then for any 
m, n there is a natural isomorphism V,,,, = H~ Ci(m, n)). 

Proof By (3.6), M1 is isomorphic to Mi except on sets ofcodimension = 2. Hence 
divisors, functions, line bundles, and sections can be pulled back from one to the 
other and extended over the bad sets in a unique way. [] 

However, we will certainly not ignore the higher M~ for the rest of the paper. 
Instead, they will be indispensable tools in the study of the cohomology of M1, to 
be used as follows. A naive approach to calculating dim V,,,, would be to calculate 
z(M1; (ga(m, n)), which is easy using Riemann-Roch, and then to apply Kodaira 
vanishing to show that the higher cohomology all vanished. This will not work: the 
hypothesis of Kodaira  vanishing, which is that KM~ (ga(m, n) must be ample, will 
not typically be satisfied, and the higher cohomology will not vanish. But this 
problem can be cured by shifting attention to some other M~. Indeed, under some 
mild hypotheses on m and n, there will be some i such that K~t ~ (gi(m, n) will be 
ample on Mi. Hence dim Vm,, = z(M~; (9~(m, n)), which will be calculated by an 
inductive procedure on i. 

To carry out this programme, of course, we need to know the ample cone of 
each M~. So our goal in this section will be to prove the following theorem. 

(5.3) For 0 < i < w, the ample cone of  Mi is bounded by (9i(1, i - 1) and (9i(1, i). For 
d > 29 - 2, the ample cone of  Mw is bounded by (9w(1, w - i) and (9w(2, d - 2);for 
d < 29 - 2, it is bounded on one side by (gw(1, w - 1), and contains the cone bounded 
on the other side by (9w(2, d - 2). 

So as we pass from i - 1 to i, the ample cone flips across the ray of slope i - 1, as 
illustrated for d = 9 in the figure. This is exactly the behaviour which is predicted 
by Mori theory; indeed, flips are so named for precisely this reason. 
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i=4 

i=2 

The first thing to notice is that, since all the Mi have unique universal pairs 
(E, ~ ) - ~  M~ • X, an expression such as det ~,E, or A2 Ex for some x e X, defines 
line bundles on all the Mi,  which agree with one another on the open sets where the 
maps between different M~ are defined, and which consequently correspond under 
the natural isomorphism of (5.2). Since A 2 E~ and det ~, E are the canonical (indeed, 
essentially the only) examples, we work out what they are on M1. 

(5.4) On MI,  AZEx=(91(0,  - I) and d e t ~ ! E = ( 9 1 ( -  l , g - d ) ;  that  is, 
(91 (m, n) = det -m ~,E | (AZE~) ~e-g)m-". 

P r o o f  The universal pair on Mo x X is easy to construct directly: it is the tauto- 
logical extension 

0 ~  (9--* E o ~  A( - t ) ~  0 

determined by the class i d e E n d H l ( X ; A - l ) =  H~ 
| H 1 (X; A - 1 ) = H 1 ((iPH 1 (A 1) x X;  A - 1 (1)), together with the constant section 
~o  e H~ Recall from (3.17) that the universal pair (Eb ~1)--* M1 x X is con- 
structed by pulling back (Eo, ~o) ,  twisting by (9(E ~), and modifying at E ~. 

0 ~  Ea ~ Eo(E +) ~ (gE,*• 1 ) ~  0. 

Hence A2(E1)x = A2(Eo(Ei~))x | (9( - E~)  = AZEo | (9(E~) = (91(0, -- 1), and 

det n! E 1 = det ~! Eo (E i ~ ) | (9 ((g -- 2) (E + )) 

= det ~ (9(E;) | det ~ A( - 1)(E~- ) | (91 (O - 2, 2 - g) 

= ( 9 1 ( 1 - - g , g -  1)| - d -  1 + g ) |  

= (91 ( -  1, g -  d). [] 

The next three results collect some basic information about pullbacks of (9i(m, n). 

(5.5) The restriction of (gi (m , n) to 
(i) a f ibre o f ~ W /  is (9(n - (i - 1)m); 

(ii) a f ibre o f ~ W i -  is (9((i - 1)rn - n); 
(iii) f - I ( E )  c Mw,  where E is a stable bundle and f is the Abel -Jacobi  map of(3.20), 
is (9(rn(d - 2) - 2n). 
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P r o o f  By (3.2), the  b u n d l e  E in the  universa l  pa i r  restr icts  to  an  ex tens ion  

0 ~ (9(D)--, E ~ A(  - D)( - 1)--* 0 

on  the  fibre of IPW + over  D e Xi.  Hence  on  this  fibre A2Ex  = (9( - 1) and  

det  n !E = det  n! (9(D) | det  n!A(  - D)( - 1) 

= ( 9 ( - z ( A ( - D ) ) ) = ( 9 ( - d + g -  1 + i ) .  

So by (5.4) (9~(m,n) restr icts  to  ( 9 ( ( d - g +  1 - i ) m - ( d - g ) m + n ) =  
(9((1 - i )m + n), which  p roves  (i). Similar ly  by (3.3), E restr icts  to an  ex tens ion  

0 ~  A ( -  D ) ( 1 ) ~  E ~  (9(D)-~ 0 

on  the  fibre of IPWi- over  D ~ Xi.  Hence  A Z E x  = (9(1) and  

det  n~E = det  n~A( - D ) ( 1 ) |  det  n!(9(D) = (9(z(A( --  D))) = (9(d - 0 + 1 - i). 

So the  p rev ious  s i tua t ion  is reversed,  and  (gi(m, n) restr icts  to  (9((i - 1)m - n), 
which  proves  (ii). Final ly,  on  a fibre F H  0 (E) of the  Abe l - Jacob i  map ,  the  universa l  
pa i r  restr icts  to  E(1) wi th  the  t au to log ica l  section. Hence  on  this  fibre A 2 E x = (9(2) 

and  d e t n ! E  = (9(d + 2 -  29). So by (5.4) (gi(m,n) restr icts  to  ( 9 ( ( 2 9 -  2 -  d )m  
+ 2((d - g)m - n)) = (9(m(d - 2) - 2n), which  p roves  (iii). []  

(5.6) On IVl~, (gi(m, n ) =  (gi-a(m, n ) ( ( ( i -  1)m - n)Ei). 

P r o o f  Cer ta in ly  (9i(m, n) a n d  (gi - j (m,  n) are i s o m o r p h i c  away  f rom El, so 
(gi(m, n) = (9i - l (m,  n)(qEi) for some q. But  (gi(m, n) m u s t  be  tr ivial  on  the  fibres of 
�9 WF,  a n d  (ge,(qEi) = ( 9 ( -  q, - q), so by (5.5 (ii) q = ( i -  1 ) m -  n. [ ]  

(5.7) For  an effective divisor D, let to be the inclusion o f  moduli  spaces defined in 
(1.20). Then t*(gi(m, n) = (gi(m, n - miD]).  

P r o o f  C h o o s e  x r X - O. T h e n  f rom (5.4) and  the  long  exact  sequence  in (1.20), 
(9i(0, 1) 2 ~ A 2 

- = A Ex = 0 * E  A(2~ = t*(gi(0, - 1). Likewise,  

(9i(--  1, g -  d) = d e t n ! E  A 

= det  n ! / * E  n(2~ @ d e t -  1 n ,  (gD(E A(2D)) 

= detn! l*EA(2D)|  | (A2EA(2D)) - I  
x ~ D  

= t*Ci (  - 1, g - d - 2 1 9 1 ) |  l*(gg(0,1Ol) 

= z * t 3 ~ ( - 1 ,  g - d - I D I ) .  [] 

We n o w  pause  to app ly  these ideas to  c o m p u t e  the  P i c a r d  g r o u p  of the  modu l i  
space N of  o r d i n a r y  semis tab le  bund le s  of  d e t e r m i n a n t  A: 

(5.8) Pic  N = 7L 

P r o o f  I f g  = 2 a n d  d is even, t hen  N = ~ a  [20] ,  so the  resul t  is obvious .  Otherwise ,  
the c o m p l e m e n t  of  the  s table  set N= c N has  c o d i m e n s i o n  > 2; since N is n o r m a l  
[9],  th is  implies  P ic  N= = Pic  N. 
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By (3.20) the Abel-Jacobi map f :  Mw ~ N has fibre IPH~ over a stable bundle 
E. Tensoring by a line bundle, we may of course assume d > 49 - 4. But then 
Hi(E)  = 0 (see for example the proof of (l.10)), so dimIPH~ = d + 2g - 1 
always and f is locally trivial over Ns. Hence Pic N~ is the subgroup of Pic Mw 
whose restriction to each projective fibre o f f  is trivial. By (5.5 iii) this consists of the 
bundles (9~(k, k(d/2 - 1)) for k ~ 7/(where k is even if d is odd). [] 

Denote by (9(0) the q-Car t ier  divisor class such that f *  (9(0) = (gw(l, d/2 - 1). 
Note that this differs slightly from the normalization in [9]. The following is then 
true for any d, not just d > 49 - 4: 

(5 .9)  f * ( 9 ( O )  = (gw(1, d/2 -- 1). 

Proof True by definition if d > 49 - 4; follows otherwise from (5.7), since 

, * ( % ( 1 ,  d/2 + I n l  - 1) = (9w(1, d / 2  - 1). [ ]  

Now that we know Pic N, we can make the following definition. 

(5.10) Definition. The Verlinde vector spaces are 

Zk(A) = H~ (9(kO)), 

with the convention that Zk(A) = 0 if d and k are both odd. 

Verlinde's original papers [7, 24] conjectured a striking formula for the dimensions 
of these vector spaces, which has since been proved by several authors. We will give 
our own proof in w the first step, however, is the following result, originally due to 
Bertram [3]. 

(5.11) For d > 29 - 2, there is a natural isomorphism Zk(A) = Vk.k~a/2-1). 

The proof requires the following lemma. 

(5.12) Let M, N be varieties with N normal, and let f :  M ~ N be a morphism which is 
generically a projective bundle. Then f ,  (tim = (9u. 

Proof This is essentially Stein factorization. Let U c N be the open set such that 
f : f  I(U)--* U is a projective bundle. Then certainly f,(91 , w ) =  (gv, so 
N'  = Speef ,  (gM is birational to N. By construction there is a m a p f '  : M --* N'  such 
that f ,  (gM = (gN.. On the other hand, since f ,  (flu is a coherent sheaf of (gN-algebras, 
the birational morphism N ' ~  N is finite. But a birational finite morphism to 
a normal variety is an isomorpism this is essentially Zariski's main theorem; the 
proof in [15, III 11.4] goes through, or see [18, III.9]. Hence N ' =  N and 
f , (gM=ON. [] 

Proof of  (5.11). Recall again from (3.20) that for d > 29 - 2, the Abel-Jacobi map 
[ : M w ~  N is surjective with fibre FH~ over a stable bundle E. If U c N is the 
set of bundles E such that E is stable and dim H~ is minimal, then certainly 
f : f - l ( U )  ~ U is a projective bundle; for example it is the descent of a trivial 
projective bundle over the Quot  scheme. Moreover, N is always normal [9]. So by 
(5.12),f,(gMw= ON. Hence f ,  f * ( 9 ( k O ) =  (9(kO), so that 

f *  :H~ (9(kO))--* H~ (9w(k, k(d/2 - 1))) 

has inverse f , .  [] 
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It is worth  mentioning,  if not  proving, a generalization of this result. Over the 
stable set N~ ~ N, let E ~  N~ x X be a universal bundle, normalized so that  
A z E IN. • {~} = (9. (Actually, such a normal izat ion is impossible for d odd, and E will 
not  even exist for d even! However, the obstruct ions are all in 77/2, and will cancel in 
the cases we are considering; for details see [23].) Then let U = (R~ ~ N~. 

(5.13) For d > 2 9 - 2, there is a natural isomorphism H~ S "~d 2 ) -2"U(mO))  
= V,,,, unless 9 = 2 and d is even. 

Sketch o f  proof  The complement  o f f -X(N~)  c M~ has codimension > 2 unless 
9 = 2 and d is even (in which case N = ]p3 [20]), SO V m ,  n = H ~  l(Ns); (9(m, n)). 
Also ( R ~  n) (9(m, n)lN. = S m~a 2~ 2, U (m6) ) ' so 

H ~  - x (N~); (9(m, n)) = H~  S ~la- 2)- 2, U(m 0 ) )  

as in the proof  of (5.11). [] 

Hence seeking a formula for dim V,,,, can be regarded as seeking a generaliz- 
at ion of the Verlinde formula. 

At last we return to the determinat ion of the ample cone of M~. It can of course 
be quite difficult to decide whether  a given line bundle  on a projective variety is 
ample. However, a geometric invar iant  theory quotient  is natural ly endowed with 
an ample bundle, which is the descent of the ample bundle  used in the linearization. 
So we shall work out  how the line bundles used in the l inearizations of w descend 
to M~. Recall tha t  the l inearization was some power of (9()~ + 2o, 4 o ) ~  
�9 H o m  x IPIE x, or more precisely, its pul lback to Quot(A) x IPIE z, which by abuse 
of no ta t ion  we still denote (9(Z + 2a, 4a). By further abuse of no ta t ion  we refrain 
from worrying about  whether  X + 2o and  4o are actually integers. 

(5.14) The bundle (9(Z + 2a, 4~r) ~ Quot(A) • ~ C  X descends to (9i(1, d - 1 - 2or) 
--4 M i . 

Proof. As in w let U c Quot(A) be the set of quotients  (9 x ~ E ~ 0 of de terminant  
A such that  the induced map  lEz ~ HO(E) is an isomorphism. If (9z --. E --* 0 is the 
universal quot ient  over U x X ,  then as in (1.19) there is a universal pair 
(E(1), 4 )  ~ U x IPIE x x X descending to the universal (E, 4 )  on each Mi. Hence 
d e t n , E ( 1 ) ~  U x1PIE z descends to det n~E = d)i( - 1, g - d)--* Mi, and for any 
x ~ X, A2E(I)x ~ U x FIE x descends to A2E~ = 0~(0, - 1)--. Mi. 

By [15, III  Ex. 12.6(b)] P ic(U x ~ l E  z) = Pic U ~ P i c k l e  x. So to determine 
a bundle  on U x •r  it suffices to determine it on {E} x FIE x and  U x {4~} for some 
E ~  U, q~ ~ plEx. 

On  {E}xlPIE x, E ( 1 ) =  E(1), so detTr~E(1)= (_9(X) and A 2 E ~ =  (9(2). On 
U • {~b}, E(1) = E, so det 7r!E(1) = det ~,E. But for all E ~ U, H ~  = H ~  and 
H ~ (E) = 0. Consequent ly det 7r,E = & Moreover,  there is a canonical  map  

A2ff?.x = AZH~ z) -.. A2HO(E) ~ H~ 

so the pullback of (9(1)~ IPHom(A21~ x, H ~  to U, also denoted by (9(1), is 
precisely (R~ Hom(A,  AZE). This is clearly isomorphic  to AZEx = 
Horn(A, AZE)x, since Hom(A,  A2E) is trivial on every fibre of n. 
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Put t ing it all together,  we find that  (9(0, X) descends to (9~( - 1, g - d) and 
(9(1, 2) descends to (9~(0, - 1). The result follows after a little arithmetic.  [] 

P r o o f  o f  (5.3). For  any a e (max(0, d/2 - i - 1), d/2 - i), the quot ient  of U • IPC x 
by the act ion of SL(x), linearized by (9(g + 2a, 4a), gives the same quotient  Ms. 
Hence the descent of (9 (Z + 2a, 4or) to Ms is ample for any cr in tha t  interval. By 
(5.14) and a little ari thmetic these bundles span exactly the cones in the s tatement  of 
(5.3). Hence those cones are contained in the ample cones of the My It remains to 
show that  no bundles over Ms outside those cones are ample, except possibly on 
one side for i = w and  d < 2 9 -  2. 

By (5.5)(i), the restriction of (gi(m, n) to a fibre of P W  + is (9(n - (i - 1)m). So 
(gi(m, n) can only be ample over Mi if this is positive, that  is, if (i - 1)m < n. Thus 
one side of the ample cone of Ms is where it should be. 

Likewise by (5.5 ii) the restriction of (9~ l(m, n) ~ M~_I to a fibre of IPWI is 
(9((i - 1)m - n). So for 1 < i < w, tha t  is, when the dimension of this fibre is 
positive, (g i - l (m,  n) can only be ample over M~ i if(i - 1)m > n. Thus the other 
side of the ample cone of Ms x is where it should be. 

The only case we have not  yet treated is the other  side of the ample cone of 
Mw for d > 29 - 2. In that  case there is by (3.20) a surjective map  Mw --, N onto  the 
moduli  space of semistable bundles of determinant  A. It is not  an isomorphism, 
since for example Pic Mw = 7Z ~ 7Z while Pic N = 7/. Hence the pul lback of the 
ample bundle  (9(20) -~ N is nef but  not  ample, tha t  is, it is in the boundary  of the 
ample cone. But by (5.9) this is precisely (9(2, d - 2). [] 

6 Their Euler chracteristics 

Now that  we know the ample cones of the Ms, we can calculate dim Vm,, following 
the p rogramme outl ined in the last section. We first need a formula for the 
canonical bundle  of Ms: 

(6.1) KM, = (9~( -- 3, 4 -- d - g)- 

Proof  Clearly the canonical  bundle  is preserved by the i somorphism of (5.2), so it 
suffices to work it out  on M1. But this is easy using (3.19) and the s tandard  
formulas for the canonical  bundle  of projective space and  of a blow-up. [] 

(6.2) Suppose that m, n > O and that m(d - 2) - 2n > - d + 2 g - 2 .  Let  
b = [ , + ~ + 0 - 4 ]  ,.+3 + 1. Then dim V,,., = g(Mb; (gb(m, n)). 

The idea of the p roof  is tha t  dim Vm,, will be an Euler characteristic by Koda i ra  
vanishing provided that  (9(m, n) lies inside some cone in the translate of the ample 
fan by K. This is i l lustrated in the figure for the case d = 9. 

Proof  o f  (6.2). Note  first tha t  the inequality can be rewritten 

(d/2 - 1 ) ( m + 3 ) > n + d + g - 4 ,  

which guarantees  tha t  b < [(d - 1)/2] and hence that  Mb exists. 
Suppose that  ,+d+g-r  is not  an integer. Then b(m + 3) > n + d + g - 4 > m + 3  

(b - 1)(m + 3), so Ob(m + 3, n + d + g - 4), which by (6.1) equals KM~ Oh(m, n), is 
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in the ample cone of Mb by (5.3). The result then follows from (5.2) and Kodaira 
vanishing. 

If "+n+~-4 is an integer, then ( g b - l ( m + 3 ,  n + d + 9 - - 4 )  and m + 3  

(fib(m + 3, n + d + g - 4) are merely nef, so Kodaira vanishing does not apply. 
This case could be handled using the Kawamata-Viehweg vanishing theorem. 
However, we will take the more elementary approach of moving up to Mb. By 
(5.12) the 0th direct image of (fi~b in the projection M b ~  Mb is (fiMb, and by the 
theorem on cohomology and base change [15, III 12.11] the higher direct 
images vanish, so for all j, HJ(lklb; (fib(m, n)) = HJ(Mb; (fib(m, n)). By (6.1) and the 
standard formula for the canonical bundle of a blow-up, K~b=(f ib  
( -- 3, 4 -- d - 9)((b - 1)Eb). Unfortunately K;71 (fib(m n) may not be ample so 
Kodalra vamshmg still does not appJy. Instead, we make the following two claims: 
first, that HJ(Mb; (fib(m, n ) )=  HJ(mb; (fib(m, n) ( (b- -2)Eb))  for all j, and second, 
that (gb(m + 3, n + d + 9 - 4)( -- Eb) is ample on Mb. The desired result follows 
immediately from these claims, since at last Kodaira vanishing applies to 
(fib(m, n)((b - 2)Eb). 

i = 4  

i = 2  

�9 i ,Tr~ 

To prove the first claim, note that for 0 < k < b, H"(Eb; Oh(m, n)(kEb)) = 0 for 
all j, since (fib(m, n)(kEb) is ( f i ( -  k) on each fibre of I p b - l ~  Eb ~ P W ~ ,  so that 
every term in the Leray spectral sequence vanishes. Hence from the long exact 
sequence on/~r b of 

O ~  (fib(m, n)((k -- 1)Eb)--, (fib(m, n)(kEb)--* Oh(m, n) (fiEb(kEb)~ 0, 

we get isomorphisms HJ(Mb; (fib(m, n)((k - l)Eb)) = HJ(llTIb; (fib(m, n)(kEb)). The 
first claim follows by induction. 

As for the second claim, note that on /~b, the line bundles (fib-1 (1, b -  2), 
(fib(l, b -- 1), and (fib(I, b) (or (fib(2, 2b - 1) ifb = w) are all nef, since they are pulled 
back from nef bundles on Mb-1 or Mb. It is easy using (5.6), the constraints on 
m and n, and a little arithmetic to check that (fib(m + 3, n + d + g -- 4)( -- Eb) is in 
the interior of the cone generated by these three bundles. [] 

We will have to assume in future that 

(6.3) m(d - 2) - 2n > - d + 29 - 2, 
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since otherwise there is no analogue of the last result and KM~ (9~(m, n) may not be 
ample for any i. However, for d > 2g, we still get a complete answer to our problem, 
for the following reason. 

(6.4) For d > 2g and m(d - 2) - 2n < 0, Vm,, = O. 

Proo f  By Riemann-Roch deg E > 2g implies d i m H ~  2, so for any stable 
bundle E, by (3.20) the f i b r e ] -  ~ (E) of the Abel-Jacobi map is a projective space of 
positive dimension. By (5.5iii), the restriction of (gw(m,n) to this is 
(9 (m(d - 2) - 2n), so any section of (gw(m, n) must vanish o n f -  I(E). Hence it must 
vanish on the inverse image f  i (Ns) of the stable subset of N. But this is open, so it 
must vanish everywhere. [] 

Let L i ~ X i  be the line bundle defined by L i = d e t - l n , A ( - A ) |  
det 17r!C(A). Also put qi = n - (i - 1)m. 

(6.5) The restriction of  (9i- 1 (m, n) to IPWi- is LI"( - qi). 

Proof  Easy from (5.4) and the description of the universal pair over IPW( in 
(3.3). [] 

Now let U~ ~ Xi be the vector bundle 

Ni = z(Xd LT' | A' 

with of course the convention that this is 

(Wi-) | (Wi + )*, and define numbers 

~ -  |  

zero when q~ - i < O. On Mo, which is 
just projective space, make the additional convention that (9o(m, n) = (9(m + n). 

(6.6) No = )~(Mo; Co(m, n ) )=  ( m  + n + d + g - 2 ~. 
\ m + n  / 

Proof  Since Xo is just a point and Wo = 0, Uo = (W+) * is just the vector space 
H i ( A - I )  *. Hence sm+"Uo = H~ (90(m, n)) with our conventions and the 
result follows. [] 

(6.7) Let 0 < i < b, and suppose that m, n > 0 satisfy (6.3). Then 

z(MI; (gi(m, n)) - x ( M i - l ;  (9i l(m, n)) = ( -- l ) iNi .  

Proof  By (5.12) the 0th direct image of (9~, in the projection Mi ~ Mi  is (9M,, and 
by the theorem on cohomology and base change [15, III 12.11] the higher direct 
images vanish, so x(Mi; r n)) = z(Mi; (gi(m, n)). Likewise z(M/; (gi-l(m, n)) 
= x ( Mi -1 ;  (91-l(m, n)), so it suffices to work on Mi. 

Suppose first that qi =< 0, so that Ni = 0. For  0 < j < - q~, consider the exact 
sequence 

O ~  Oi - l (m ,  n)((j - 1)Ei) ~ (9i_,(m, n ) ( j E i ) ~  (gi- ,(m, n) | (gE,(jE,) ~ 0. 

By (6.5) the restriction of (9i-1(m, n) to Ei = ]PW:, G I P W  ] is L ~ ' ( -  qi, O), and 
(%,(Ei)= ( 9 ( - i , -  1), so the third term of the exact sequence becomes 
(9( - qi - j ,  - j )  and we get 

Z()~i; (9i-, (m, n)(jEi))  - z (Mi;  (9i-, (m, n)((j -- 1)Ei)) = z(EI', L'f( - qi - -  j, -- J)). 
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Summing over j and using (5.6) yields 
q~ 

X()~,; (g,(m, n)) -- Z(~I,; (9, l(m, n)) = ~ z(E,; L?( -- q, -- j, -- j)). 
j = l  

However, for 0 < i =< b and m, n, d, g => 0, a little high-school algebra shows 
- q i < d + g -  1 - 2 i .  Hence for a l l j  in the sum above, 0 < j < d + g -  1 - 2 i ,  so 

every term in the Leray sequence of the fibration ~a+g-2-2 ,  ~ E, ~ IPVVi- vanish- 
es. Hence all terms are zero, as desired. 

Now suppose q, > 0. By an argument similar to the one above, 
q . -  1 

Z(~I,; (9,(m, n)) -- Z(1Q,; (9, l(m, n)) = ~ z(E,; L'['( - qi +J,  +J)) .  
j=o 

Each term of the right-hand side can be evaluated using the Leray sequence of 
the fibration I P i - l x ~ a + g - 2 - 2 i ~ E i ~ X , .  Because - q i + j < 0 < j ,  the only 
nonzero direct image of L ' [ ' ( -  q, + j , j )  is the ith, which is just 
L ~ |  A i W i  - | S q ' - j  ' ( W  i ) |  *. Here the factor of A i m [  - comes from 
Serre duality, since the isomorphism (9( - i) = Ke,  , is not canonical unless the 
right-hand side is tensored by such a factor. Hence 

z(E,; L'r( -- q, + j , j ) )  = ( -- 1)'z(X,; L'~ | A 'W[-  | Sq ' - J - ' (W,  ) | SJ (W~ )*). 

Of course the right-hand side is zero if qi - J  - i < 0, so the sum need only run up 
to q, - i. The result follows because certainly 

Sq,-'u,= @Sq,-~(w, )| [] 
j=o 

(6.8) For i > b, N,  = O. 

Proof  It suffices to show that if i > b, then q, - i < 0, that is, (m + n)/(m + 1) < i. 
But using m, n > 0, the definition of b, and the inequality (6.3), it is a matter of 
high-school algebra to check (m + n)/(m + 1) < b. [] 

(6.9) 
dim V,,., = ~ ( - 1)~N,. 

/ = 0  

Proof  Put together (6.2), (6.6), (6.7), and (6.8). [] 

Since each N, can be evaluated using Riemann-Roch on X,, the right-hand side 
depends only on g, d, m, and n, not  on the precise geometry of X and A. So even 
before doing the hard work of the next section, we have found that dim V,,,, 
depends only on g, d, m, and n, which is rather surprising. 

7 Don Zagier to the rescue 

All of the results in this section (except (7.4) and (7.5)) are due to Don Zagier, who 
communicated them to the author. 

In this section we will compute the N,, using the Riemann-Roch theorem 
and Macdonald's  description [17] of the cohomology ring of X,. So we begin 
with a review of Macdonald's  results. Let e, . . . . .  eg, e't . . . . .  e'g e H ' ( X ;  Z) be 
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generators such that the intersection form is ~ j e j |  Define classes 
~, ~'~ H~(X~; 77) and q e H2(X~; Z) as the K/inneth components of the divisor 
A ~ Xi x X,  regarded as belonging to H2(Xi x X; 77): 

= ~ + E (~j e~ - ~je j )  + i x .  
J 

These generate the ring H * ( X i ;  77). Moreover, if we put a~ = r162 then for any 
multiindex I without repeats, 

(7.1) <q'-Iqal, X i )  = 1. 

This implies that for any two power series A(x),  B(x), 

(A(tl)exp(B(tl)a), X~) = ~ (A(tl)B(tl)kak/k!, X , )  
k - O  

o g 
= 2 ( ~Res [A(q)B(q)kd ~ ' ;  

=Res{ } 
tl = 0  r / i +  1 d~/ , 

where a = ~ j a~ .  Note that since a} = 0, ak/k! is just the kth symmetric poly- 
nomial in the aj. 

Since we will be doing Riemann-Roch, we need to know the Todd class of X ~; 
luckily this can be worked out in a useful form. 

(7.3) t d X i = \ ~ ]  exp e ~ -  1 q " 

Proof. Macdonald [17] shows that the total Chern class of the tangent bundle of 
X~ is 

c(Xi) = (1 -k I"/) i-2~+1 h (1 + t /--  o'j). 
j - 1  

Let h(x) = x/(1 - e-X), so that 

g 

t d X i  = h(q) i 2g+l [I  h ( q -  aj). 
j - I  

Expanding h ( t / -  aj) in a power series around q and using a] = 0, 

td Xi = h(rl) i-g+1 h (1  - crj h'(rl) 

( h't.t ) k h(t/)i-0 +l 
k:o ( -  " k! \ h - ~  

= h(r/) ' - ~  exp ( - 
h'(~)'~ 

a h ~ J '  

which yields the desired formula. [] 
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(7.4) For any line bundle M ~ X and any k ~ 2g, 

c h m M ( k A )  = ( ( d e g M  + ki + 1 - g) -- k2a)e k". 

Proof. B y G r o t h e n d i e c k - R i e m a n n - R o c h  

c h m M ( k A )  = 7r, c h M ( k A ) t d X  

= n ,  e x p ( ( d e g M  + k i ) X  + k3  + kr/)(1 + (1 - g)X)  

= n , ( 1  + ( d e g M  + ki)X)(1 + k S  - k2aX)ek"(1 + (1 --  g)X)  

= ( ( d e g M  + ki + 1 -- g) - k2cr)e k", 

w h e r e  E = ~ i ( ~ j e ~  - ~jej) ,  s o  t h a t  E z = - 2~rX.  [ ]  

(7.5) (i) c h ( L i )  = e x p ( ( d  - 2 i ) r / +  2~r); 
(ii) c h ( A '  W , )  = e x p ( ( d  - 3i + 1 - g ) ~ / +  30); 
(iii) ch (U~)  = (d - i + 1 - 2g)e-" + (2g - 2 )e  -20 + Y[~=I e - " - %  

Proof Since  Li = d e t -  1 ~, A ( A) | d e t  ~ m (9 (A), by  (7.4) 

q(Li )  = -- ct (m A(  -- a)) -- cl (m(9(a)) 

= ( d -  i +  1 - g ) ~ / +  o +  ( -  i -  1 + g ) t / +  o =  ( d -  2 i ) t / +  2 a ,  

w h i c h  i m p l i e s  (i). F r o m  the  e x a c t  s e q u e n c e  

0 ~ A ( - -  2 A ) ~  A ( -  A) ~ O a A  ( -  A ) ~  O, 

it  f o l lows  t h a t  W (  = n , C ~ A (  A) = n~A (  - A) - ~ , A (  - 2A) in K - t h e o r y .  H e n c e  
b y  (7.4) 

ch  W~- = ((d - i + 1 - g) - ~r)e " - ((d - 2i + 1 - g) - 4cr)e - 2 " .  

I n  p a r t i c u l a r  

c~(A ~IV( ) =  q ( W [  ) = - - ( d - i +  1 -  g)r 1 -  Cr + 2(d - 2i + l - g ) q + 4 c r  

= ( d  - 3 i  + l - g ) r l  + 3~r,  

w h i c h  i m p l i e s  (ii). A g a i n  by  (7.4), 

c h ( W / + )  * = c h ~ z , A - l ( 2 A )  = ((d - 2i + g - 1) - 4 a ) e  - 2 " .  

H e n c e  

c h U i  = c h ( W ~ - )  O ( W + )  * 

= ((d - i + 1 - -  g) - ~r )e-"  + (2g - 2) e -2"  

= ( d - i +  1 - 2 g ) e - " + ( 2 g - 2 ) e  2 ,+  ~ e "-~', 
j = l  

w h i c h  is (iii). [ ]  

(7.6)  c h ( L ?  | A i W[- @ S q'-i U~) 

=Coe f f [ecm(a_2 ,_2n) , exp( (2m+3)  a to "~(e " - t )  -d+i-l+g ] 
t .... L e - "  -- t ]  (1 -- / )2g-2 �9 
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Proof The Chern roots of S k U~ are the sums of k (not necessarily distinct) Chern 
roots of Ui, so by (7.5 iii) 

ch(SkUi) tk = l-I 1 - te ~ 
k = 0 C h e r n  r o o t s  

o f  U ,  

1 "]a-i+l-2e 1 ~20-2 X 1 -( ,,, ( ( , e " ' , )  1 - 1 - t e - 2 7 J  j[~ 1 -  

( 1 -  te-~) -d+i - I§  ( - t ~ )  
= ( l_ te_2~)20_ 2 exp e~_~_ . 

Replacing t by te 2~ and taking coefficients of t q ' - i  yields 

.... (1 - 0 20-2 exp ~ . 

The result then follows using (7.5 i) and (it) and the pleasing identity 

m ( d - 2 i ) + ( d - 3 i +  l - # ) - 2 ( q ~ - i ) = m ( d - 2 ) - 2 n + ( d - i +  1 - 9 ) .  [] 

We are now ready to perform our Riemann-Roch calculation: 

Ni = <ch(L~" | A i Wi | Sq'-~Ui)td(Xi), Xi> 

__ t j ~ _ ) ( e - " - t )  -d+i-l+~ 
= C o e f f ( e  ("(d-2' z")"exp ( 2 m + 3 ) a  e - " - t ]  - ( i ~ t - ~  z5 

t 0, , \ 

x exp - , Xi 
e ~ 1 q 

t)  . + , - x  + .  
= CoeffRes [ (1 + t)z~ - ~ i  

t q' ' I / = 0  

the first equality by Riemann-Roch, the second by (7.3) and (7.6), and the third by 
taking 

( x "~-"+~e,,a 2,.._z,,,~,(e-X--t)-a+' '+~ 
A(~) = \ ~ /  (1 + t) ~ - ~  

and 

B(x )=  1/(e x - l ) -  l /x  + 2m + 3 - t / ( e - ~ -  t) 

in (7.2), then combining .qth powers. 
The term in braces is the product of (~ _" ~--'~) ~ with something independent of i, so 

make the substitution 

e - " -  t 1 + ty ( 1 - t ) y  
e ~ = , 1 - -  e - ~  

Y 1 - e  - " '  l + y  l + y  ' 

1 - t (1 - t)dy 
e ~ - t =  dr / -  

1 + y' (1 + y)(1 + ty)" 
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T h e n  the  res idue in (7.7) becomes  

~ Y -~a(y)dy} Res . ~  = Coe f f a (y )  
y = O  yx  

(1 + ty)  2qd/z 1(1 -+-y)-2qdjz+d 2g+1 

for 

a (y )  = 
( 1  - t )  d + ~  1 

T h e n  since qi - i = (m + n) --  (m + 1)i, 

d i m  V,.,. = 

(1 + (2m + 3)(1 -- t ) y  -- t y 2 )  ~ 

~ ( - -  1 )  i N i 
i = 0  

~ ( - 1) i Coeff  Coeff  a(y) 
i = 0  t q'-~ Y~ 

co~ff Z ( -  r"+l)'c~ 
t ~ " \ i = 0  

= C o e f f a (  --  t " + l ) .  
fm+n 

T h u s  we o b t a i n  the  fol lowing theorem.  We repea t  the  def in i t ion of Vm,. for 
convenience .  

(7.8) L e t  X be e m b e d d e d  in ~ H I ( A  -1 )  via the l inear s y s t e m  [ K x A [ .  F o r  any  
m, n > O, let Vm,, = H o ( ~  H 1 ( A - 1 ); (9 (m + n ) |  J ~: ). Def ine  

(1 - t i n + 2 )  - h  1(1 - -  t i n + l )  - h ' - I  
F( t )  = (1 - (2m + 3)(1 - t ) t  m+ 1 _ t 2m + 3 ) g  

( 1  - -  t) a+g-1 t "+"  

w h e r e  h = (d - 2 ) m  - 2n and  h' = - h - d + 2y  - 2. Then  i f  m (d  - 2) - 2n > 
- d + 2 y - 2 ,  

d i m V m , , = R e s { ~ } , t = 0  

t ha t  is, the  c o n s t a n t  t e rm  in the  L a u r e n t  e x p a n s i o n  o f  F ( t )  at  t = O. M o r e o v e r ,  i f  
d > 2g and  m(d  - 2) - 2n < 0, then  Vm,, = O. 

This  is the  mos t  explici t  f o rmula  for d im  Vm,, we will o b t a i n  in general .  However ,  in 
some  cases we cou ld  o b t a i n  comple te ly  explici t  formulas .  If  m + n is small ,  for 
example ,  we could  ca lcula te  directly,  since we would  t hen  be look ing  at  the  res idue 
of  a func t ion  wi th  a pole  of low order ;  for fixed m + n, we wou ld  get an  explicit  
p o l y n o m i a l  in 9, d, m, an d  n. Otherwise ,  we can  still use the  res idue theorem,  which  
says tha t  the  sum of  the  res idues  at  all the  poles  of F ( t ) d t / t  is zero. These  poles are 
of  five poss ib le  kinds:  t = 0, t = oe ,  t = 1, t "+1 = 1 bu t  t # 1, and  t m + 2  = 1 bu t  
t # 1 (note  tha t  the  last  two  cases are disjoint).  But  in fact t = 1 is never  a pole, 
s ince at  t h a t  po in t  1 - (2m + 3)(1 - t ) t  m+l - t 2m§ has  a tr iple zero, a n d  hence  
the  o rde r  of  F( t )  is 

( - h -  1 ) + ( - h ' -  1 ) - ( d + # -  1 ) + 3 g =  1 > 0 .  
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Also, it is s t r a igh t fo rward  to check tha t  F(1/ t )  = - F(t), which  implies  t ha t  

Hence  

(7.9) -,dimV...:( ,,,s+ I. 
~;4-i ~74=1 

There  are poles at  the  (m + 2)th roo ts  of un i ty  if and  only  if h > 0, a n d  at the  
(m + 1)th roo ts  of  uni ty  if and  only  if h' > 0. T h u s  d im V,,,, is a sum over  the  
residues at  the (m + 2)th roo ts  if h ' <  0 < h, a sum over  the  residues at  the  
(m + 1)th roo ts  if h < 0 < h', and  is 0 if h, h' < 0. (Note  tha t  this  last  case agrees 
wi th  (6.4).) F o r  h > 0 it is necessary  to calcula te  the  residue of a func t ion  wi th  a pole  
of o rde r  1 + h, wh ich  gets more  a n d  more  difficult as h grows. However ,  w h e n  
h = 0, the  ca lcu la t ion  is easy, and  we can  p rove  the  ce lebra ted  Ver l inde  formula .  

(7.10) d i m Z k ( A ) = f k + 2 ~ g  l k + l  ( _ 1)d(j+l) 

~ ~ / / - -  _ ~ ( s i n k + 2  / 
J :  j ~  ~ 2 9 - 2  " 

Proof. If  d an d  k are b o t h  odd,  t hen  on  s y m m e t r y  g r o u n d s  the  r i g h t - h a n d  side is 
zero as desired. So as sume  d a n d  k are no t  b o t h  odd.  By (5.11) 
d im Zk(A ) : dim Vk,k(d/2- 1) for any  d > 2 ( / - -  2. T h e n  h = 0 and  h' < 0, so by (7.9) 

[/ --dt/ t  "~ (1 __(-1)d-2g+l 
- - 2 d i m V k ,  k,al2 1) = ~ r, e s [ ~ ] 7 7 : y ~ 7 + ~ / - 2  

Jl'+2 = 1 r = g \ ~  - - 1 / 1 1  ,~1 ~ 

( * 1  

x(1  - (2k + 3)(( -~ - l) - ~ - l ) a .  

But  (1 - (2k + 3 ) ( ( -  1 _ 1) - ~-  1 ) = (2k + 4)(1 - ( 1 ) ,  the  res idue is - 1/(k + 2), 
and  

(I  - -  ( - i )  d ( i - - (  1)a 
(I --  OdQ di2 - ( i  -- o d ~ - d Q  k+ 2)d12 = ( - -  1)d((k+ 2)dl2' 

SO 

d im Vk, k(dl2-1, = (2k + 4) ~  Z ( - -  1)d( (k+z)a/2 ( -- ( y - X  
: . . . .  , t,(1 -- 27 ) 

= � 8 9  0-1 y' ( -  1)d+"-l~( k+2)a 

r  + !  

which  is equ iva len t  to the  Ver l inde  formula .  [ ]  



352 M. Thaddeus 

8 Relation with Bertram's work 

In this appendix we explain briefly, without proving anything, how this paper is 
related to Bertram's work on secant varieties. 

In [3], Bertram considers how to resolve the rational map IPH 1 (A- 1) ~ N. He 
shows that blowing up first X = IPH ~ (A ~), then the proper transform of each of 
its secant varieties in turn, produces after [ ( d - 1 ) / 2 ]  steps a smooth variety 
IP having a morphism to N that agrees with the rational map away from the 
blow-ups. The existence of the morphism is proved by constructing a sequence of 
families of bundles, each obtained by an elementary transformation of the last, 
starting with the pullback of the tautological family on IPH 1 (A- 1) • X, and ending 
with a family of bundles that are all semistable. Bertram's families of bundles can be 
interpreted, after some twisting, as families of pairs in our sense, and it follows that 
his �9 dominates all of the Mi. In other words, he performs all of our blow-ups but 
none of our blow-downs. In particular, our blow-up loci are birational to his, that 
is, our ~ 'W7 in Mi_ 1 is the proper transform of the ith secant variety in 
IPH I (A-1)  = Mo. This makes sense, since both are essentially IW-1-bundles over 
Xi. 

However, this correspondence is a little more delicate than it seems, because 
the IW-l-bundles are different: ours is I P W / - = I P ( R ~  but as 
Bertram explains, the secant variety is the image in P H  1 (A-1) of P(R  o n)(_gd KA.  
How is one projective bundle transformed into another? If we pull back the 
lower secant varieties to IP(R~ we find that blowing them up and 
down induces a Cremona transformation on each fibre of the projective bundle. 
For  example, consider the IP 2 fibre over x l  + x2 + x 3 E X 3 of the 3rd secant 
variety. This of course meets X ~ ~ 'HI(A - I )  in the 3 points x l ,  x2, x3, so i f X  is 
blown up, then ~32 gets blown up at those 3 points. The proper transform of the 2nd 
secant variety meets this blown-up p2 in the proper transforms of the 3 lines 
between the points, so blowing it up does nothing, and blowing it down blows 
down the 3 lines. All in all we have blown up the vertices of a triangle in the 
plane, then blown down the proper transforms of the edges. This is well-known to 
recover ~72 [15, V4.2.3]; indeed it is given in coordinates by [z0, z l , z2]  ~-~ 
I-z1 z2, ZoZ2, ZoZd. 

If we do the same thing to p3, we find ourselves blowing up the vertices of 
a tetrahedron, then blowing up and down that is to say, f l ipping- the  proper 
transforms of the edges, and finally blowing down the proper transforms of the 
faces. Notice that by the time we get to the faces, they have already undergone 
Cremona transformations themselves. More generally, starting with a simplex in 
�9 ", we may flip all of the subsimplices, starting with the vertices and working our 
way up. The varieties we obtain thus fit into a diagram shaped exactly like that at 
the end of w It is not so well-known that this recovers P", or that it is given in 
coordinates by [zl] ~ [Zo ... z i - l z i+l  ... z,] ,  but these facts can be proved using 
the theory of toric varieties. 

Even that is not  quite the end of the story, since over divisors in X~ with 
multiple points the transformations are somewhat different. Over 2xl + x2 s X3, 
for example, we want to blow up one reduced point and one doubled point, then 
blow down one reduced line and one doubled line. In coordinates, this is 
[Zo, zl,  z2] ~ [z~, ZoZl, zlz2]. It is an amusing exercise to work out coordinate 
expressions for the Cremona transformations over other divisors with multiple 
points. 
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