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Summary. Riemann showed that a period matrix of a compact Riemann surface of genus g > 1 
satisfies certain relations. We give a further simple combinatorial property, related to the length of 
the shortest non-zero lattice vector, satisfied by such a period matrix, see (1.13). In particular, it is 
shown that for large genus the entire locus of Jacobians lies in a very small neighborhood of the 
boundary of the space of principally polarized abelian varieties. 

We apply this to the problem of congruence subgroups of arithmetic lattices in SLz(~R). We 
show that, with the exception of a finite number of arithmetic lattices in SL2(IR), every such lattice 
has a subgroup of index at most 2 which is noncongruence. A notable exception is the modular 
group SL2(7Z). 

1 Introduction 

Let P, deno te  the  set of posi t ive  n x n mat r ices  of d e t e r m i n a n t  1. SL,(7I) acts o n  
P, by  

P ~ ?pt7,  7~SL,(TZ,). (1.1) 

The  q u o t i e n t  space F, = SL,(TZ)\P,  pa rame t r i zes  the  space of  fiat n -d imens iona l  
(or iented)  tor i  of un i t  vo lume  (if P = (Pij) then  ds 2 = pisdxidxj  on  Z " \ I R "  is such  
a fiat torus).  

D e n o t e  by l)2g Siegel 's space of symplect ic  P ' s  

b20 = {P~P2a] P J P  = J }  (1.2) 

where  J = [ _ ~  toni. Siegel 's m o d u l a r  g r o u p  Sp2o(•) = {7 ~ SLzo(7~)I'vJ~' = J }  acts  
on  Dzo by  the  ac t ion  (1.1) an d  the  q u o t i e n t  

�9 -~r = Sp2o(7Z)\Dzo (1.3) 

pa rame t r i zes  the  p r inc ipa l ly  po la r ized  abe l i an  variet ies  of  (complex)  d i m e n s i o n  g, 
see [L, M] .  (Usua l ly  the  mode l  for b20 is the set IH ~ of Z = X + i Y, X,  Y g • ,q real  
symmet r t i c  an d  Y > 0. T h e  assoc ia t ion  P = [+~x o]  [-rol yOl] [~ + x ]  identifies 
this  space  wi th  (1.2). See A p p e n d i x  0 for detai ls  and  the  re la t ion  to polar iza t ions . )  
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Next we introduce the period sublocus of do.  Let Jr '  0 denote the moduli space 
of compact Riemann surfaces of genus 9. Given S e J-/g and a canonical basis for the 
homology Hi(S, 7Z), j V 1 , . . .  , Jff2o, that is, the intersection matrix of the Jff/s is J, 
we let wl, w 2 , . . . ,  w2o be a dual basis of harmonic forms 

S wj = 6jk �9 (1.4) 

The corresponding period matrix Ps is defined to be (see A.0.5 for its relation to the 
usual period matrix) 

Ps = (Pij) = ( !  Wi A * Wj) . (1.5) 

Riemann's period relations I F - K ]  are equivalent to Ps being in b20. Note that 
another choice of a canonical basis for the homology yields, through the above 
association, the same point P s e d g .  Thus, we have a map t: ~ 0 ~  d 0 which 
associates to a Riemann surface its period matrix. We will refer to the locus t (~o) in  
sr 0 as the period locus or the locus of Jacobians. The Schottky problem is to 
describe this locus. Very interesting characterizations of t(~0) in terms of proper- 
ties of 0-divisors and in terms of K - P-equations have been found [Gu, Sh]. 
However, these do not lend themselves to an explicit or direct determination of 
whether a given P e a l  0 is a period matrix (see, however, Farkas [F]  for 
Schottky-Jung theory and in particular an explicit description of t(~4)). 

We wish to study the location of t(~lo) in d~, this being more to the point in 
many applications. To do so, we investigate the range of the following function 
m on the various loci. 

Define for P s P, 

re(P) = rain 'n lPnl .  (1.6) 
nlff~ n 
n l ~ 0  

m is clearly well defined on F, and in fact is the square of the length of the shortest 
closed geodesic on the corresponding flat torus. By a well-known compactness 
theorem of Mahler  [Gru-Le],  re(P) ~ 0 iff P--, O(F.). That is, m = 0 defines the 
boundary ofF, ,  and we may think ofm as giving a "distance" function to 0(F,). The 
inclusion 

";Jo ~ F2o (1.7) 

is proper and finite (though not injective), so that the restriction of m to d o gives 
a "distance" function to 0(s~o). Define the constants 729,620, q20 by 

72o = max re(P) l 
P ~ P2g 

620 = max re(P) 
PffD2 o 

q20= sup re(P) 
P ~ t(~lg) 

(1.8) 

So, including the supremum, the range of m on F2g is [0, ~2g], on  ~g it is [0, 62g] 
and on t(J/g) it is [0, t/ag 3. The constant ~2g is Hermite's constant from the 
geometry of numbers [Gru-Le].  Its size is fundamental in the theory of lattice 
packings since P's  with large re(P) give good packings of space by spheres. 
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Minkowski [Gru-Le] showed that 

(0-20/2)- 1/o ~.. ~20 ~ 40-291/9 (1.9) 

where 

7~ n/2 

is the volume of the unit n-ball in IR". For large 9 (1.9) gives, after an application of 
Stirling's series, 

g --< )'20 < 49 .  (1.10) 
7~C 7~e 

While the lower bound remains essentially the best that is known, the upper bound 
has been improved to 

1.744 
729 < g (1.11) 

~e 

in [K-L]. 
In Sect. 2 we show, using a variation on averaging methods from the geometry 

of numbers, that 

(0-29/2)- 1/9 ~ 629  . (1.12) 

Thus, essentially (as far as we know), rn gets as large on d 0 as it is on F2o. In general 
820 may not be equal to 729, see (A.3). However, somewhat surprisingly, its behavior 
on the period locus is limited. We will prove 

clog9 < qz0 < !1og(49 + 3) (1.13) 

where c is a small positive constant. (See also (3.20) for a slight improvement of the 
upper bound.) 

The upper bound (1.13) gives a strong combinatorial property that a period 
matrix satisfies. If we set 

No= {PEdg,m(p) ~31og(4g + 3)} (1.14) 

then N o is a neighborhood of the boundary ~?sJ 0 which contains the entire locus of 
Jacobians. We will show in Sect. 2 that if 2 is the Riemannian volume form on 
~0 (coming from the symmetric space b2o) normalized so that 2(s~0) = 1, then 

),(No) = O(g -vo) for any v < 1 . (1.15) 

So for g large No is very small (see Fig. 1). For g of the form 2", n __> 7, we show in 
Appendix 1 how (1.13) may be used to give explicit families of points in s~ 0 which 
are not period matrices (see A.I.10). The smallest genus for which we have found 
(1.13) to be effective is O = 12. In Appendix 2 it is shown that the 24 dimensional 
Leech Lattice [C-S] is symplectic. It comes from an explicit point  ZA E IH t2 and 
(1.13) shows ZA is not a Jacobian. See Appendices 1 and 2 for details. In these 
appendices we also determine 729 and t/z o for small g. 
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~ (mP) = constant 

Fig. 1. A schematic picture of the locus d o and t(~'qt, Q0 corresponds to the Barnes Wall lattice 

The upper bound in (1.13) will be established in Sect. 3. We show that any 
S e ,gg carries a nonseparating cylinder of small capacity. This is used to construct 
a suitable harmonic form and a short lattice vector. The existence of the cylinder 
follows from (1.16), below which is of independent interest. 

Let S be a compact Riemann surface of genus g equipped with its hyperbolic metric, 
then we can find on S a homoloqically non-trivial simple closed 9eodesic 7 whose 
length is less than 2 1 o g ( 4 0 - 2 )  and which has a collar of width 9reater than 
artanh(2/3). (1.16) 

By a collar in S about 7 of width w we mean that the set of all points within 
a distance w from 7 is a cylinder. The lower bound in (1.13) will be established in 
Sect. 4. Specific Riemann surfaces constructed by arithmetic means are shown to 
have m(Ps) of oder log 9- To that end we use known lower bounds on the smallest 
eigenvalue of the Laplacian for congruence surfaces as well as the circle method 
from analytic number theory to construct surfaces of all genera. 

We turn to the applications which concern arithmetic and congruence lattices 
in SL2(IR ). Firstly, we do not distinguish between a latticer F in SLz( IR ) o r  any of its 
conjugates in SL2(~). Arithmetic lattices are obtained as follows: 

Let k/Q be a totally real number field with infinite places a l ,  02 . . . .  , a, .  Let 
D be a quaternion algebra over k and assume that D | ~ M2(IR) (by an 
isomorphism 4~, say) and D | IR ~ H(N)  for j = 2 . . . . .  n where H(N) is the 
Hamilton quaternions. Let D* be the group of elements of D of reduced norm 1. If 
p is a faithful representation of D* in GL(n) defined over k, then a subgroup q~ of 
D* is a congruence group if 

~b 1 = {x E D ~ I P (x) e GL,  ((gk), p (X) ---- 1 (mod ~r } 

is containd in �9 with finite index, where Ok is the ring of integers of k and d is some 
ideal in (9,. q~(~) is then a congruence lattice in SL2(IR). The arithmetic lattices in 
SL2 (IR) are lattices F for which F c~ ~ has finite index in both F and �9 for some 
congruence lattice q~ [Bo, Ra]. 

It is known that, given any arithmetic F < SL2(N), there is a subgroup F '  of 
F of finite index which is noncongruence. One way of seeing this is to use results on 
the congruence subgroup problem [B-M-S] which assert that if F has the congru- 
ence subgroup property (i.e. if the above failed) then A/[A, A] is finite for every 
finite index subgroup A of F. For  lattices F in SL2(~/) it is easily seen from their 
welt-known structure in terms of generators and relations that there are subgroups 
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A of F of finite index for which IA/[A, All = ~ .  We show that for all but a finite 
number of arithmetic lattices in SL2(IR) such noncongruence subgroups exist at the 
smallest possible index. Precisely: 

With the exception of a finite number of arithmetic lattices in SL2(~), every arith- 
metic lattice has a subgroup of index at most 2 which is noncongruence. (1.17) 

The proof will be given in Sect. 5. It proceeds by showing (using (1.13)) that all but 
finitely many arithmetic quotients have covers of degree at most two, with excep- 
tional eigenvalues (see (5.3)). 

This is in turn proven by first establishing the following (see Sect. 4 for the 
definition of 21). 

Given E > 0 there is a g(e) such that if F is a lattice in SL2(N) of genus g > g(e) then 
F contains a subgroup F* of index 2 such that 21(F*) < ~. (1.18) 

The proof of this is given in Sect. 5, (5.3)-(5.9). 
The deduction of (1.17) from (1.18) then follows from the finiteness theorem of 

Borel [Bo] on arithmetic groups with bounded volume, a general upper bound for 
21(F) of Zograf [Z] and known lower bounds for 21 for congruence groups. 

Note that SL2(Z) is one of the exceptions to (1.17). Its smallest index noncon- 
gruence subgroup is 7, see I-Rn]. To end the introduction we draw the reader's 
attention to the recent preprint of Gromov [Gro] which puts the inequalities (1.13) 
and (1.16) in a general geometric setting and gives an account of a number of 
interesting related geometric inequalities. 

2 

We give two proofs of(1.12). The first is more elementary in that it does not appeal 
to the Haar measure o n  Spzo(F~. ) = {gESLzo(IR)I'gJ9 = J}. Let U(N) be the 
subgroup of Spzo(~:~ ) defined as follows 

U ( I R ) = { [ I  0 X ]  X i s r e a l g x g a n d s y m m e t r i c } .  (2.1) 

Let U(7I) be the subgroup of U(IR) for which X is integral. A fundamental domain 
for U(7/) in U(IR) is given by 

Thus relative to the U(N) invariant measure 

dX = I] dX,i, Vol(U(7/)\U(IR))= 1. (2.3) 
i<=j 

Letfbe an integrable function of compact support on IR 2~ Consider for y > 0 the 
function l(y) defined by 
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l(y) = I Y'f  
O(~\U(~.) ~neTzg 

"y 

Y 
y-I 

y-1 

I ] L ' . ]  
dX 

Z ' f  
u(z)\u(R) m,n 

"y 

Y 
y-1 

y-1 

-m l  + X l l n l  + . .  

m o + X o l n l + . .  
I"11 

n o 
m 

+ X l o n g  - 

+ Xoon o 
dX (2.4) 

where '  denotes omit (m, n) = (0, 0). If n~ + 0 then, doing the X1 a integral first and 
using the ml sum, we have 

1 

z 
m~modn~ j = - ~  0 

ynl + j + Xl i  + 2  

indep of X l l  

dX~ 

for 2 independent of X11 and ml 

_~ \mindep  of X l l  

= y-1 ~ f y(m2 + Xzln~ + . .  . + X20no) dq . 

Next do the X2~ integral and m2 sum and repeat the above argument. In this way 
we obtain from n = ( n l , . . . ,  n o) with nt �9 0 a contribution (after summing on m) 
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tl  

y-O 7 " ' "  7 . f  to d [ l "  "dto" 
co -oo y 1/'/1 

y in o 

If  nl = 0 and n 2 =1= 0 then the above calculation yields a contr ibut ion of 

t l  "1~ 

tg 
y - - g T " ' ' 7 0 f  0 d t l . . , d t  O . 

- m  -oo y -  I g12 

- 1  
- Y  no - ,  

33 

Also 

where 

ZR2(txx)dx = ~ dx = RZ%r2o. (2.10) 
R 2" I]<1 < R 

Cont inu ing  in this way, we get finally from the n = 0 term 

�9 y tm 

Collecting these together, we have 

= " '"  f ( t l  . . . . .  to;y n l , . . . , y - l n o ) d t l  .dto 
n # O - ~J -co 

+ Z f ( y m ,  O). (2.5) 
m4=0 

Since f is of compact  support ,  we find on letting y ~ oc that  l(y)---, I(oo), where 

I ( o o ) =  5 f ( x ) d x .  (2.6) 
N2q 

Now let 

f ( x )  = ZR~('XX) (2.7) 

where XR~ is the characterist ic function of (0, R2]. Then 

I ( Y ) =  I ~ '  ZR2( 'dPx ,v ( )dX (2.8) 
U(?D\U(R) teZ 2~ 
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Now ifR2~ < 2, then 

I ( ~ )  < 2 .  (2.11) 

Hence for some y and X 

Y,' zR2('~VxM) < 2.  
(~2~ 2g 

But since the last sum clearly takes only even integral values, it follows that 

y '  ZR2('~ex,J) = 0 
E~Z 2g 

and therefore m(Px,y) > R 2. From (2.11) and Px, v~dg, we conclude that 

( 2 ~  1/0 
620 > - -  

\azo/ 
proving (1.12). 

The second method uses a G =  Sp2o(IR) invariant measure iT on 
Spzo(TZ)\Spzo(N). This measure descends to one on Spzo(7Z)\b2o =s~r o which we 
denote by 2 as well. If one follows the computation of the volume 2(~19) in Siegel 
[Si, pp. 325 330] and uses his normalization of ,~ one finds that he proves the 
following: 

If F is an integrable function of compact support on [0, oo), then 

I Z '  F( 'ePg)d2(P)= r ~ e ( x ) x ~  (2.12) 
do ~eZ2o o 

where 
V o = ~ d[,(P) 

d, 
and ~ is the Riemann zeta function. He also shows that 

V~ = (g -- 1)!72-~ V0_a . (2.13) 

Thus, if 2 is the unique invariant measure on d o normalized so that 

2(do) = 1 ,  (2.14) 
then (2.12) reads 

~ '  F ( ' f n Y ) d 2 ( n ) -  re~ ~ F(x)x~ dx (2.15) 
< t ~ z  2. ( _ ~ T .  o 

If FR is chosen to be ~n 2 as in (2.7), this gives 

R 2 O ~ o  
S ~ '  ZR~('WPE)d2(P) n2ga2o �9 (2.16) 

~ t~z ~ g! 

Comparing this with (2.10) shows that this implies the same lower bound for ~20 as 
method 1. Actually, the reason they give the same answer is that the measures/~o on 
Spz0(7/) \ Sp2o(IR) defined by 

0 I 

tend weakly to 2 as y ~ ~ ,  but this will not concern us here. 
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To prove (1.15), note that for PENg (where N o is defined by (1.14)), 

~ '  XRg('fP() >= 2 
te2~ 2~ 

where 

Hence 

Ro 2 = 3-1og(4g + 3). 
7Z 

2(N o) _-< ~ ~ '  Z R S f P f ) d 2 ( P )  
N~ ?.ETZ 2~ 

<= ~ E '  XRg ('~PE)d2(P) 
s~ 9 ( e Z 2g 

29 = Ro a2o by (2.16). 

Hence 2(No) = O(g -~~ for any e < 1. This proves (l.15). 

3 

We begin by giving a more useful characterization of m(Ps) for S e Jt/g. We claim 
that 

m(Ps) = inf~w A *w (3.1) 
s 

where the inf is taken over all closed (real) 1-forms w on S which have integral 
periods over all cycles and not all periods are zero. 

To see this first note that the inf for a given set of periods is assumed by 
a harmonic w as is well known. If JV'I . . . . .  JV20 is a canonical basis for the 
homology and wl . . . . .  w2g a dual basis, then our form w is of the form 

W = g f l l W  l -1- " " " - I -  m 2 0 w 2 0  . 

Now by the definition of the w's, 
m j =  ~ w  

and since all periods ofw are in 7l, m j ~ T ] .  Also, m = (ml , .  �9 �9 m 2  o) + O. From the 
definition of Ps, it follows that 

f w , ,  �9 w = ' r a P s , , .  
s 

Thus the infimum in (3.1) satisfies 

inf~w ix , w > m(Ps) . 
s 

Conversely, if m(Ps) is achieved by 0 # rh = (rhl . . . . .  rh20 ), then set 

/~) = ~ l l W  1 "Jr- " " " - t -  m2gW2o �9 

has integral periods (not all zero) and hence 

inf~ w ^ *w < ~#  A * #  = m(Ps).  
s s 

This proves (3.1). 
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To prove the upper bound in (1.13), we use (3.1) by finding on any S e . / g  o 
a suitable test form w. In fact, suppose we have equipped S with its hyperbolic 
metric and that we have a simple closed geodesic 7 which is homologically 
nontrivial. Let 7 be of length f and suppose it has a collar C (in S) of width w. Since 
y is homologically nontrivial, it does not separate S into two pieces. 

We construct a suitable test form w as follows. Let 6 and ~ be the boundary 
components of C and let F be defined on C with F[o = 1, Fir = O. Set w = dF on 
C and w = 0 on S \ C .  Then w is a suitable test form in (3.1), for it clearly has 
integral periods, and since 7 does not  separate, not  all its periods are zero. In fact, 
some periods equal one. Now 

Sw /x , w = S  dF /x ( , d F ) .  
S c 

The minimum of the last expression subject to FI~ = 1 and F[~ = 0 is simply the 
capacity cap(C) of the annulus (cylinder) C. Thus 

m(Ps) < cap(C) .  (3.2) 

To compute the capacity, we use the hyperbolic plane model for C. The notation 
is as in Fig. 3. The semicircles have a common perpendicular 7~ of length 
r  = #(~) = f. They are identified by z ~-* 2z. 

We have 

log 2 = E ] 

and t (3.3) 
,/2 dO 

W =  J - -  
0o sin 0 
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The mapping z ~ w = e (2~il~176 gives a conformal mapping of C onto the 
annulus A = {R1 < Izl < R2} where 

R 1 = e -2n( r t -Oo) / log2 ,  R 2  = e-2nOo/log 2 

Hence 

Thus 

log 3, 
cap(C) = cap(A) = 2n 2 n ( n  - 200)" (3.4) 

m ( P s )  < - -  (3.5) 
(n - 200) 

where 0o is determined by (3.3) or equivalently by 

cosh w = 1/sin 0o . (3.6) 

Next we prove (1.16) which in connection with (3.5) leads to the bound 

2 log(4g - 2) 
m ( P s )  < 

( n  - 200) 

where 0o = arccos(2/3) and so 
/ 

m ( P s )  < (1 .37. . . ) log(4g - 2).  

An additional distinction of cases (see (3.12)) will improve the bound as in (1.13). 
The proof  of (1.16) is in two steps. First, we show that there exists on S a non- 

separating simple closed geodesic of length less than L, where 

L = 2 log(4g -- 2). 

This step will use area arguments. In the second step we use hyperbolic trigonom- 
etry to show that the shortest non-separating simple closed geodesic has a collar of 
width at least artanh(2/3). 

Let q ~ S and denote by rq the injectivity radius of S at q. This is the supremum 
of all r such that the distance set 

D = {x e S ldist(x, q) =< r} 

is isometric to a disk of radius r in the hyperbolic plane. Since D has area 
2n(cosh rq - 1) and, by Gauss-Bonnet,  S has area 4 n ( g  - 1), we obtain 

rq < log(4g -- 2). (3.7) 

By the definition of rq there exist two geodesic arcs of length rq emanating from 
q and meeting at their endpoints. Since rq is minimal with this property, the two 
arcs together form a geodes i c  loop c at q, that is, a (smooth) geodesic arc whose 
endpoints coincide with q. The existence of c may also be seen in the universal 
covering IH of S by considering two distinct lifts ofq  at minimal distance (2rq) from 
each other. Since no lift of c in IH is a closed curve, c is a homotopically nontrivial 
closed curve. We let ~ be the closed geodesic in the free homotopy class of c. Since 
c is simple, 7 is simple. We refer to [F-L-P]  or [Bu] for this and for related 
intersection properties of closed geodesics which will be tacitly used in the sequel. 
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So far, we have found a simple closed geodesic 7 on S of length less than L. If 7 is 
non-separating, we are done. Let us now assume that 7 separates S into two 
bordered surfaces F and F' ,  each having a copy of 7 as boundary. We let F be the 
component with the smaller area. Then F is a compact Riemann surface of 
signature (h; 1) with h <__ g/2, and we have the following general fact. 

Let F be a compact Riemann surface of  signature (h; 1) with 1 < h <<_ �89 and assume 
that the boundary 7 has lenyth E(7) < L = 21og(49 - 2). Then F contains another 
simple closed 9eodesic of lenyth less than L in its interior. (3.8) 

With (3.8) we achieve our first step. For  if7 on F is non-separating we are done. But 
if Y separates, then we cut F open along 7 to obtain two pieces, one of area > 2re (by 
Gauss-Bonnet) and the other, F '  say, again of signature (1; h') for some h'. We then 
apply (3.8) to F '  finding another geodesic of length less than L, and so on. 
Eventually, one of these geodesics is non-separating. 

Proof of  (3.8) We consider the boundary collar 

C~ = {xsFIdis t (x ,  7) < w} 

where w is the supremum of all co such that the geodesic arcs of length ~o emanating 
perpendicularly from 7 are pairwise disjoint. There exist two geodesic arcs of length 
w perpendicular to 7 having their endpoint p in common. Since w is minimal with 
this property, the two arcs together form a smooth geodesic arc 6 as shown in 
Fig. 4. 

Again, the existence of 6 may also be seen in the universal covering by looking 
at two distinct lifts of 7 at minimal distance (2w) from each other. 

The endpoints of c5 separate 7 into two arcs 71 and 72 with ~(71) =< �89 The 
closed curve h 6  (first along 71 then along 6) is homotopically nontrivial, for 
otherwise it would have a closed lift in the universal covering consisting of two 
perpendicular geodesic arcs which is impossible. Similarly, 6-172 is homotopically 
nontrivial. Since neither h 6 nor 6 - t  72 are contractible, the curve 716 is not freely 
homotopic to the boundary 7 (or 7-  ~ ) of F. Indeed if 71 ~ and 7 are freely homotopic 
and 7 is a boundary curve, then by a well known fact in surface topology [Bu, 
Proposition A.11; E]  h ~  and 7 bound a domain of signature (0; 2) and it follows 
that 6-172 bounds a disk. 

Now let/~ be the simple closed geodesic in the free homotopy class of 716. Then 
/~ is contained in the interior of F and satisfies 

Y(/~) < 2w + �89 �9 

If 2w + g(7)/2 < L, then /~ is as in (3.8). ((3.8) does not  require /3 to be non- 
separating.) We assume, therefore, from now on that 

2w + �89 > L .  (3.9) 

Consider the double ff of F (that is, attach a mirror image of F along the boundary 
Y). In if, 7 has an open collar (~r of width w, 

6"~ = {x e ff L dist(x, 7) < w} . 

Let 2 be the shortest geodesic loop at the midpoint p of 6. By (3.7), 

~ ( 2 ) = 2 r p <  L . 
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We shall prove that 

2 is contained in F ; (3.10) 

)~ is not freely homotopic to the boundary o fF  . (3.11) 

The closed geodesic in the free homotopy class of 2 will then satisfy the 
requirements of (3.8). 

Proof of  (3.10) Assume that 2 intersects ?'. 
Then 2 contains two subarcs such as arc q in Fig. 5 connecting the two 

boundary curves of t~  with each other (recall that ?' is a separating geodesic in F). 
In view of (3.9) and the hypothesis of (3.8) (t~ < L), we get 

~(2) ~ 4w > 2 L -  E(?') > L ,  

a contradiction. 

Proof o f  (3.11) Let A be any geodesic loop at p in F freely homotopic to 7 (or 
?'- 1 ). A is homotopic with fixed basepoint to aTa- 1, where a is a geodesic arc from 
p to ? arriving perpendicularly at 7. The shortest possible arc of this kind is the arc 
al of length ~(aa) = �89 = w. 

Figure 6 shows lifts in the universal covering of the curves a?'a-~ and al ?'at-1. 
The geodesic arc/T from p to p' is a lift of A, and the geodesic arc A~ is mapped 
under the universal covering map onto a geodesic loop A1 at p. It is well known 
that the length of A is a monotone increasing function of t~ (the formula is 
sinh(�89 Y(A)) = sinh(�89 ((9))" cosh(�89 E(t~)), [Be, p. 157]), therefore E(A) > t~(A1). 

Figure7 shows a lift of the closed curve a171 a~ 1 where a2 is the second half of 6. 
The arc A2 is mapped onto a geodesic loop A2 at p. Since ~(Az) is a strictly 
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mono tone  increasing function of g(Tt), we obtain al together  

d(A2) < f (A1)  < ( ( A ) .  

This shows that ,  if A is freely homotop ic  to 7, then A is no t  the shortest  loop at p. 
(3.11) and  (3.8) are now proven. 

We turn to the second step. The constant /~  occurring in the next  s tatement  is 
determined by the equat ion 

The numerical  value is # = 3.325 . . . .  

The shortest non-separatin9 simple closed 9eodesic 7 on S has a collar of width 

w > a r t anh~  = 0.8047 . . . .  

This bound is sharp for any 9 >= 2. I f  d(7) > # then S has a collar o f  width 

w > a r t a n h 2  = 1.316 . . . .  

This bound is asymptotically sharp as d(7) ~ oe. (3.12) 

Proof There exists a geodesic arc 3 of length 2w meeting ? perpendicularly at its 
endpoints.  Two cases are possible: either 6 arrives at 7 on opposite sides of y or it 
arrives on the same side. 

Case 1 3 arrives on opposite sides 

Figure 8 shows a lift S o l  3 in the universal covering, together  with  lifts ~ and  7" 
of ? at  the endpoints  of 6. Note  that  ~ and  ?* have the same or ienta t ions  with 
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respect to 6. Therefore, there are po in tsA E ~ and A * ~ 7" on opposite sides of 3"and 
at the same distance from 6such that A and A * are mapped to the same point A ~ 7 
under the universal covering map. 

Observe that we can find A and A* in such a way that their distance to 6"is at 
most �88 By drawing the geodesic F/from A to A*, we obtain two isometric 
right-angled geodesic triangles. Applying the cosine formula (Beardon [Be, p. 146]) 
to these triangles, we get 

cosh �88 E(7)- cosh f(&') > cosh �89 f(F/) . (3.13) 

Since ~/ intersects ~ and 7" under the same angle, the image q of ~ under the 
universal covering map is a smooth closed geodesic on S. The curve 7 contains an 
arc connecting points on opposite sides of q without intersecting ~/. Hence, q is 
non-separating and therefore E(q)> ((7). Since w = � 8 9  �89 the above 
inequality implies 

cosh�88 cosh w > cosh�89 . (3.14) 

The resulting lower bound for w is good for large f(7) but tends to 0 as ((y) ~ 0. We 
apply, therefore, also Randol's inequality sinh�89 w > 1 (Randol [R2]; this 
inequality holds for any simple closed geodesic on S). Both bounds together yield 

( , cosh -x2 . 1 t 
w => max ~.arcosn ~ d-~'E(7)" arsmh sinh ~ f (7 ) ,  . (3.15) 

Fom the monotonicity of the two functions in the brackets, we see that max has 
a strict global minimum w0. The functions coincide when sinh (f(7)/4) = �89 and so 
tanh Wo = ~. This proves the first inequality; the second inequality follows from the 
definition of # and the monotonicity of the first function in the brackets. 

Case 2 The endpoints o f f  meet 7 on the same side of 7 

This case is shown in Fig. 9. The endpoints of 6 divide 7 into two arcs 71 and 72. 
We denote by 7' and 7" the closed geodesics in the free homotopy classes of the 
closed curves 716 and 6-172. Since a small distance neighborhood of the union set 
7 u 6 is a topological surface of signature (0; 3), it follows from Epstein's theorem on 
isotopies [E] that 7, 7' and 7" bound a three-holed sphere Y (the interior of Y is 
embedded in S but some of the boundary geodesics may coincide in S). 

It is well known (Fathi et al. IF-L-P] ,  Thurston [ T ] )  that the common 
perpendiculars (dotted lines in Fig. 9) dissect Y into right-angled geodesic hexagons 
and that 6 decomposes these hexagons into right-angled pentagons. 
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Since y is non-separating, one of the other boundary geodesics of Y, say 7", is 
also a non-separating geodesic of S and so t~(7 ") > t'(7 ). 

We set t =�89 r= �89  and r '  =�89 By the pentagon formula 
(Beardon [Be, p. 159]) we have 

sinh w. sinh t = cosh r '  

sinh w. sinh(r - t) = cosh�89 > cosh r . (3.16) 

Using the rule sinh(r - t) = sinh r .  cosh t - cosh r .  sinh t, we get 

sinh w .cosh t  > cothr-(1  + coshr ' )  > 1 + coshr '  . 

Squaring the last line and using the first Eq. (3.16) once more, we get 

sinh2w + cosh2r ' >= 1 + 2coshr '  + cosh2r ' > 3 + coshZr ' . 

This proves the inequality (3.12) in the second case. Together with (3.4), (3.6) and 
using that log 2 = g = f(7) < 2 log(4o - 2) we obtain the following result which is 
of independent interest. 

The shortest non-separatin9 simple closed 9eodesic ~ on S has a collar of capacity 
cap(C) < ~1og(49 + 3).  (3.17) 

Together with (3.2) we get the upper bound in (1.13). 
In order to prove that the bound artanh 2 in (3.12) is sharp we consider 

a 3-holed sphere Y with the boundary geodesics y, 7" and 7' of lengths 
f(7) = f ( Y " ) =  fo and •(7 ' )= e where e is arbitrarily small and fo satisfies 
sinh fo/4 = 3. 

We let 6 be the shortest arc on Y from y to y". Similar arcs exist between 7 and 7' 
and between 7" and 7'. The three arcs together decompose Y into two isomeric 
hexagons. By dropping the common perpendicular from 6 to 7' on one of these 
hexagons we obtain two isometric right angled geodesic pentagons with sides of 
lengths �89 d(6),., 1 1 4~, ~ 2 ga(7)" The pentagon formula yields sinh �89 sinh�89 = 
cosh ~. As ~ --* 0, the length of 6 tends towards twice the bound Wo of the width of 
a collar associated with a geodesic of length d0- 

Now we identify 7 with 7" so that Y turns into a surface Q of signature (1; 1). 
When gluing 7 to 7" there is a degree of freedom: the Fenchel-Nielsen twist 
parameter. We choose this parameter such that the endpoints of 6 in Q become 
opposite points on 7. The geodesic r/occurring in the proof (case 1) has length d(q) 
satisfying cosh�89 = cosh�88 fo" cosh �89 This shows that 7 is smaller than 
q and, in fact, 7 is the shortest closed geodesic in the interior of Q. As e ~ 0, 
~(q)--* d(7). Since the width of the collar around 7 must be less than �89 we 
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obtain the sharpness of the first inequality in (3.12) for surfaces of signature (1; 1). 
Using a hyperbolic surface B of signature (0; g) with g boundary geodesics of length 

and attaching g copies of Q to B, we obtain sharpness for any genus g > 2. 
For the asymptotic sharpness of the second inequality in (3.12) we construct 

examples in a different spirit. We let r > It/2 be an arbitrarily large number and 
consider Y with the notation as in Fig. 9 (where 6 goes from 7 back to 7). We take 
f(7) = ~(7") = 2r. Now (3.16) tells us that cosh�89 2 as r ~  ov and e ~  0. 

Now we take h copies of Y, and identify 7" of the first copy with 7 of the second, 
then 7" of the second with 7 of the third, and so on. Finally we identify 7" of the last 
copy with 7 of the first again. In this way we obtain a hyperbolic surface T of 
signature (1; h). By taking h large enough, the copies of 7 on T are the shortest 
non-separating closed geodesics on T. This shows the asymptotic sharpness of the 
second inequality in (3.12) for surfaces such as T. To obtain examples without 
boundary we attach to each boundary geodesic of T a copy of a hyperbolic surface 
N where N has exactly one boundary geodesic (of length e) and where the smallest 
closed geodesic in the interior of N is longer than r. That surfaces N with these 
properties exist follows from the next section. 

For the upper bound in (1.13) we used the capacity of cylinders. Using more 
general domains we may improve the bound a little bit. We briefly outline the idea. 

For 7 an arbitrary non-separating closed geodesic on S we let W* be the 
supremum of all numbers 1~ for which the set 

(7 = {x ~ S I dist(x, 7) < 1~} 

is separated by 7 (that is, 7 is a separating curve on C). Note that W* is larger or 
equal to the width of the largest collar about 7. 

Now take W < W* arbitrarily close to W*. Denote by 6 the union of the 
boundary components of C on one side of 7 and by e the union of the boundary 
components on the other side. Define the capacity of C with respect to 7 as 

capr(C) = inf ~ dF ^ ( * dV) 

for test functions with F I 6 = 1, F I e = 0. It is not difficult to prove that 

m(Ps) < cap~(C) < cap(C~) (3.18) 

where C #  is a hyperbolic comparison cylinder (not contained in S) with core 
geodesic of length d(7) and width W. 
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Now let again 7 be the shortest non-separating closed geodesic on S. To find 
W* in this case one proceeds as in (3.12) where now only case 1 must be considered. 
The result is 

cosh W* > cosh�89 (3.19) 
= cosh �88 d(?) " 

Applying (3.4) and (3.6) to C~? and using that l~ may be chosen arbitrarily close to 
W*, we obtain from (3.18) 

~(~) 
m(Ps) <= ~ . fcoshk((7)• (3.20) 

_  arcslnt ) 

where, by (1.16), E(7) _-< 21og(49 - 2). 

In order to prove the lower bound in (1.13), we need to introduce the notion of 
21(F) for a lattice F in SL2(~). Let ~-I denote the hyperbolic plane and define 

I Vfl2 dxdy 

21(F) = inf r \ ~  (4.1) 

where the inf is taken over all non-zero complex valued f eL2(F \ IH)  satisfying 
~r f (dxdy)/y  2 = 0 Here 21(F) is the second smallest (0 is the smallest) eigen- 

] ~  �9 , . 

value of the Laplacian (for the hyperbolic metric) on F invanant  functions on lH. 
To construct surfaces S with large m(Ps), we use a quaternion algebra. Let 

a, b be positive integers and let A be the quaternion algebra over I1~ generated by 

1, i , j ,k  where i 2 = a , j  2 = b , i j = - j i = k .  

Choose a and b so that the form 

N(X)  = Nm(Xo + X~i + X2 j  + X3k) 

= X 2 -- aX21 - bX~ + abX~ 

does not representzero for (X0, X1, X2, X3)E (l~ 4, X :z~ 0. In this case A is a divi- 
sion algebra. Let F be the group o f  all X e A (7/) with N(X) = 1. For p an odd prime 
define the congruence subgroup F(p) of F by 

F(p)= { X ~ P I X =  l (p)} .  

We have an isomorphism of/~ into SLz(R) given by 

X =  Xo + XIi  + X2 j  + X a k - - , L b ( X z _  Xax/~) X o -  Xxx /~  " (4.2) 

The corresponding lattices in SLz(~-.) will be denoted by F and F(p). 
Since A is a division algebra, it is known that the quotient F \ ~  is compact, see 

[G-G-PS].  Also, F(p) is torsion free (see below) so that S v = F(p)\  IH is a compact 
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Riemann surface. Its genus ,qv is easily computed to be of the form 

9p = P(P - 1)(p + 1)v 4- 1 (4.3) 

where v > 0 depends on a and b, which we fix. 
Next we estimate the girth of Sp, that is, the length of its shortest closed geodesic 

w,r.t, the hyperbolic metric. If 

o~ = Xo + X~i  + Xz.j  + X 3 k ~ f f ( p ) ,  

then 

Also, 

Hence 

and therefore 

p I X j  for j =  1 ,2 ,3 .  

1 = N ( c c ) = X  2 - a X  2 - b X  z + a b X ~ .  

Xg ~ l (p  2) 

Xo -= _+ (p2).  (4.4) 

If c~ 4= _+ 1 then Xo + + 1 (since F has no parabolic elements) and so if c~ + + 1 

iXol ~ p2 _ 1 . (4.5) 

That is to say, if 7 e F(p), 7 + 1 then 

[Trace(?)l > 2p z - 2.  (4.6) 

In particular, all ~ e F(p) are hyperbolic and so S o = F(p)\IH is a compact Riemann 
surface. It follows that the girth of Sp satisfies 

girth(Sp) > 2 Iogp z . (4.7) 

Finally, concerning 21(F(p)), it is shown in IS-X] using elementary means that 
there is eo > 0 (depending on a and b) such that 

21(F(p)) > ~:0 for all p .  (4.8) 

Actually, using more sophisticated means which we appeal to in the next section, 
one can replace eo by 3/16 in (4.8). For  this section we do not need that. 

To summarize, Sp satisfies 

(i) girth(Sp) > 41og(genus(Sp)) - C (where C is independent of p), 
(ii) genus(Sp) = v(p - 1)(p + l)p + 1 = yp 

(iii) 21(Sp) ~ e o > O. 

We remark that (i) should be compared with girth bounds for regular graphs 
see [Sa]. 

Next we show that (i), (ii), (iii) above imply that 

m(Ps,) > clog,qp (4.9) 

for a suitable positive constant c. 
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To prove this we use the characterization (3.1). Let w be any closed 1-form on 
S v with integral, not all zero, periods. Let 

2~i i w G(z) = e zo (4.10) 

where Zo is any fixed point of Sp. Observe that G is well defined as a function on Sp. 
Furthermore 

(. IGI2dr= 47z(9 - 1) =: V (4.11) 
Sp 

[. I V G I 2 d V  = 4~ 2 [. w A , w .  (4.12) 
Sp S 

For  t ~ [0, 2re) let 

L, = {z[ G(z) = e i'} . (4.13) 

Computing everything from now on w.r.t, the hyperbolic metric, we have by the 
'co-area' formula [Ch], 

5n/4 
[~ IVGIdV= S g(Lt)dt (4.14) 

{z I G(z)~} 3n/4 

where t~ is the length of the level set L, and c~ = {ei~ I ]~ < 0 < ~} .  For  any t the 
connected components of Lt cannot all be homotopically trivial, for otherwise 
G would have zero winding number along all closed loops. Hence, according to (i), 
it follows that for each t 

g(Lt) > Blogg v (4.15) 

for a constant B > 0. 
This, together with (4.14), yields 

logg e < B' ~ [VG[dV 
{zlO(z)e~} 

<= B'A1/2({zlG({)e~ } ' VG'2dV) '/2 

<= B"A 1/2 II w II (4.16) 

where B' and B" are constants, 

A = Vol({z[G(z)ee})  

and 

I[wll = = ff w ^ * w .  
Sp 

By replacing G(z) by ei~G(z) for suitable ~, we can assume w.l.o.g, that 

Oo : :  ~ o(z)clv(z) 
gp 

is real and nonnegative. 
By the definition of A 

0 < Go = IGol < V -  A .  (4.17) 
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Write 

so that 

1 
G = ~-.Go + G1 

v 

G 1 ( z ) d V ( z )  = O . 
Sp 

Using (iii), we conclude that 

~ I VGIZ M V =  ~ I V G ,  IZ N V  > C.o S ]G'[Z MV" 
Sp Sp Se 

Hence, from (4.17) 

4 n Z H w l l 2 = ~ l v a l z d V > ~ o  I r s, G I 2 d V  - -  ~ G d V  
Sp 

>=~o V - ~ ( V -  A) ~ 

and (4.16), 

(4.18) 

It follows that 

lim m(Ps, )  = min (m(Pj)) > c loggj  >- c ' l o g n  
t~O j 

Ilwll 2 ~ %A > ~;(loggp)2/llwl] 2 

for some e; which is independent of p. Thus 

IlwlL 2 _-> x/~.6 log gp. (4.19) 

This proves (1.13) for g of the form v p ( p  + 1)(p - 1) + 1. 
To prove (1.13) in general, we could seek to vary a and b in the definition of the 

quaternion algebra and to vary the congruence groups, but this seems very 
complicated. Rather, we appeal to some results from additive analytic number 
theory. By use of the "circle method", see, for example Vaughan [Va], one can find 
large integers K and No such that every n > No can be written as 

n = 9 l  + g2 + " " " + gk (4.20) 

for some k < K, gj being of the form v p ( p  + 1)(p - 1) + 1 and gj > n I/zk. For each 
such gj let Sj be the Riemann surface constructed as above. For  t a complex 
parameter t in a neighborhood of 0 we can construct a surface S, of genus 
g = n = g l  + �9 �9 �9 + Ok as in [Fay, Chap. III],  that is by pinching along cycles 
homologous to zero. See Fig. 11. 

As shown in Fay [Fay] if we choose an appropriate canonical basis for the 
homology on St then as t ~ O, Ps, will converge to the block matrix 

Ps~ 

fs~ 
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with c' independent of n. Thus for t small enough we have a Riemann surface 
St satisfying the lower bound in (1.13). 

To prove (1.17) we will use the following fact about congruence lattices, which 
follows from the theory of automorphic forms, see [Vii, for example. I fF  < SLz(IR ) 
is a congruence lattice, then 

21(/') > 3/16. (5.1) 

It is known JR1, Se] that, given ~ > 0 and F any lattice in SL2(IR), there is a F '  < F 
of finite index such that 

,~I(F') < ~. (5.2) 

Our purpose is to prove the following sharp quantitative version of (5.2) which, 
together with (5.1), implies (1.17). 

Given ~ > O, then for all but a finite number of  arithmetic lattices, every arithmetic 
lattice has a subgroup F* of index at most 2 Jbr which 

21(F*) < ~, . (5.3) 

We first prove the version (1.18). Let g(F) denote the genus of F \IH. We recall 
that Zograf [Z] has shown that for any F 

21(F) < 8~(g(F) + 1) (5.4) 
Area (F \ ]H) 

Thus, for the purpose of proving (5.3), we may assume that 

8n(g(F) + 1) > Area(F \if-I). (5.5) 
e 

Our  aim is to bound Area(F \ ~-I) for F ' s  for which (5.3) fails. To this end, from (5.5) 
we can assume g ( F ) >  2. We now define a test form on F\~-I.  For this we 
temporarily ignore the hyperbolic metric and regard F \ H  as a surface with 
complex structure. Then F \ IH after compactification and choice of uniformizers at 
the elliptic fixed points is a Riemann surface Sof  genus g. It follows from (1.13) that 
g carries a closed (harmonic) l-form w, with integral periods, and at least one 



O n  the per iod matr ix  of a Riemann surface of large genus 49 

period equal one, for which 

w/x * w < _3 log(49 + 3). (5.6) 
g 

w lifts to lH giving a F invariant 1-form and ~g w /x �9 w = ~s w ,', * w. For  0 _< 0 _< 1 
and z e IH set 

Then 

where 

G ( z )  = e 2~i0 ~ w . 

6(~z) 
- z 0 ( ~ ) ,  ( 5 . 7 )  

G(z) 

Z0 e Horn(F, S 1) . 

In fact 0 ~ Z0 is a (nontrivial) homomorphism of S 1 into the group of characters of 
F. Z1/2 is of order 2 and if/~ = ker Za/2, then clearly/~ is an index 2 subgroup of F. 
The spectrum of /~\R-I consists of the union of the spectra of F \ I H  and of 
L2(F \IH, Z1/2); that is, functions on IH satisfyingf(Tz ) = )h/2(V)f(z). Thus (using 
again the hyperbolic metric) 

S [VIi 2dg 
21(/~) < inf r \ ~  

Ifl 2dV 
F \ ff-I 

where the inf is over all non-zerofsatisfyingf(yz) = Z1/z(7)f(z). Now the function 

G ( z )  = e '~ i w 
zo 

is a perfectly good test function for the latter. Moreover,  

]GIZdV= Area(F \ lH)  > 4rc(9 - 1). 
F \ H  

Moreover, by (5.6) 

I VGJZdV= ~211w112 < rc2-3 log(4f/+ 3). 
F\I-I rc 

Thus 

2t(/~) < 31og(49 + 3) (5.8) 
4 ( 9 -  1) 

Hence, if 9 is large enough, say greater than C = C(0, we have 

,t~ (~)  < ~.  (5.9) 

We conclude that (5.3) is valid if 9(F) > C(O. This proves (1.18). Furthermore it 
shows that the arithmetic F ' s  for which (5.3) fails must, according to (5.5), satisfy 

8re(C(0 + 1) 
Area(F \IH) < (5.10) 
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By a result of Borel [Bo], the set of arithmetic lattices satisfying (5.10) is finite. This 
completes the proof of (5.3). 

Appendix O: Polarizations and quadratic forms 

A polarization for a lattice A c C 0 is a positive definite Hermitian form H(~, q) for 
which the alternating form E = Im H is integral on A x A. In this case (A \ C  ~ H) is 
a polarized abelian variety. If, moreover, p f a f ( E )  = 1 we say the polarization (or 
the abelian variety) is principal. In this case we can choose a Z basis for A such that 
E is of the form J = [ o  o~]. A and H can be brought to standard form [M],  that is 

A = m +  Zn,  m , n ~ 7 l ~  

Z = X + i Y ~ - I  ~ (A.O.1) 

H (~, q) = '~-Y- t ~/ 

Relative to the basis [I, Z ]  of  ~g = •2g E((m, n), (m', n '))  = tmn' - 'nm'. That is 
E = J. In this form Z and Z '  correspond to the same principally polarized abelian 
variety iff 

Z '  = ( A Z  + B ) ( C Z  + D) -~ 

where 

Associated to A and H as above we have a positive definite (real) quadratic form 
F on C ~ = IR 2g given by 

F(~) = H(~, ~), f f e ~  ~ . (A.0.2) 

If we choose as above, the basis for A so that E = J then F has a matrix 
representation P which is a symplectic quadratic form. Indeed if A = m + Zn,  
m, n ~ Z  0 and H is as above, then 

F((m, n) = f(rn + Zn)  y -  t(m + Zn) 

= t(m + Xn) Y -  1 (m + Xn)  + 'n Y n .  

That is the matrix P of F is given by 

~ ~ 
This is the association Z ~ Pz described in the Introduction. It is one-to-one and 
Z ~ Z ' (mod F ) i f f  Pz ~ Pz,(mod F). 

In terms of the polarization A = (A, H)  note that the key invariant m in (1.6) is 
defined in a basis free way by 

m ( A ) =  min H(2 ,2) .  (A.0.3) 
0=~ 2EA 

Finally let S be a compact Riemann surface and Jac(S) its principally polarized 
Jacobian in the form (TZg + H Z g ) \ ~  o where H ~  ~ is the period matrix of S. 
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W r i t e / 7  = X + i Y t h e n  according to the formulas on p. 58-61 in I-F-K] we have 
that  the symplectic quadrat ic  form Ps, as defined in (1.5), is given by 

so that  

Y + X Y - 1 X  - X Y  - l ]  
Ps = _ y -  1 X y -  1 (A.0.4) 

Ps = Vn  x = 'JPrtJ  . (A.0.5) 

Since J e F, Ps and Pn are equivalent symplectic quadrat ic  forms and our  various 
definitions are consistent. 

Appendix 1: Some explicit examples 

For  g = 1 it is well known tha t  72 = 2 /~ /3  corresponding to the form with matr ix  
P = 2 /~f3  [ 1~2 1~2]. p is symplectic (this is au tomat ic  in dimension 2) and  since 

2 
rh = 62 = 72 x/- ~ . (A.I.1) 

Now Ze = e i'~/3 and so m(Ps) is extremized by the curve L\II~ where L = {m + 
ei~/3nlrn, n e Z } .  

The situation for 9 = 2 is similar. The extremal quadrat ic  form in IR 4 is the 
G r a m  matr ix PD, of the lattice D4 (see [C-S]). In Appendix 2 it is shown tha t  Po, is 

symplectic and  hence 54 = ~/4 = ,,~2. Since t(,//2) = ~ z  we have 

q4 = 74 = 64 = ~ .  (A.1.2) 

In fact Ze,  E ~I 2 corresponds to the Jacobian  of the curve y2 = x 5 _ x (see Gross 
[-Gr] wher~ a discussion is given of how this and other  lattices arise from group 
representations,  see also Bolza [Bol]). 

The extremal quadrat ic  form Q on IR 6 is the G r a m  matr ix  of the lattice 
E6 [C-S] and 

m ( Q ) = ' 1 6 = ( 6 ~ )  1/6= 1.665 . . . .  (A.1.3) 

M o r e o v e r  E 6 is not  self dual. Since any symplectic quadrat ic  form P is self dual  as it 
satisfies 

p -  1 = t j p j  , 

it follows that  Q is no t  symplectic. This together with t(M/3) = ~ 3 ,  implies that  

r/6 = 36 < T6- 

A natura l  candidate  for r/6 comes from the Jacobian of the Klein curve K : xy  3 + 
yz 3 + zx  3 = 0. Its Jacobian  has  been studied by Serre (see M a z u r  [ M a ] )  and its 
polarized Jacobian  has  its symplectic form corresponding to A~62) in Appendix 2. 
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Moreover  

Hence 

4 
re(K) = x /~  . 

4 
1.511 . . . . .  < 36 < 1.665. = / / 6  = 7 6  = �9 �9 

with equality on the left being quite likely. 
For  g = 4 the extremal quadrat ic  form in R 8 is PE, - the G r a m  matr ix of the 

lattice E8 [C-S]. PE8 is symplectic, see Appendix 2 where Zw~ E IH 4 is given. Hence 
68 = 78 = 2. As was pointed out  to us by F. Rodriguez Villegas, one can use 
Torelli 's theorem in the form proved by Weil (see Mazur  [-Ma]) to deduce ZE8 is 
not  a Jacobian.  Indeed, according to Appendix 2, the au tomorph ism group of the 
polarized abelian variety corresponding to ZE8 is of order  46080. If ZE~ were 
a Jacobian  of a curve S then according to Torelli 's theorem the au tomorph ism 
group of S would have order 46080 or 46080/2. However, according to Hurwitz 's  
well known theorem, the au tomorph ism group of a curve of genus 4 has order  at 
most  252. Thus, since ZE, is not  a Jacobian  and is irreducible, we have 

q8 < 2 = 78 = b8 . 

We are not  aware of a good candidate for q8. For  comparison,  we ment ion  that  the 
inequali ty (3.20) yields the following bounds.  

q4 < 1.645 . . . .  q6 < 1.888 . . . .  t/8 < 2.058 . . . .  

Finally, it is shown in Appendix 2 tha t  the Leech Lattice A24 is symplectic. Let 
PA and ZA be the corresponding G r a m  and  Siegel matrices (see Appendix 2). Now 
according to (1.13) 

t/z , < 31og51 = 3.7546 . . . .  
7~ 

(With  (3.20) we even get t/24 < 2.696 . . . .  ) Since m(Pa) = 4 it follows that  ZA is not 
a Jacobian.  We conclude tha t  t/z4 < 624 and (since in all l ikelihood the Leech lattice 
is m-extremal) tha t  probably  624 = 724 = 4. Again, one can use Torelli 's theorem to 
show that  ZA is not  a Jacobian.  Indeed, the au tomorph ism group of the polarized 
abelian variety L \  ti;12, where L = {m + ZA n Ira, n ~ 2g l z }, is of order  2012774400 
(see Appendix 2). This number  is substantially larger than the Hurwitz bound  for 
genus 12. 

Moving  to larger genus, our condi t ion (1.13) together  with (1.12) is effective for 
g > 38 (respectively, for g > 23 if we use (3.20)). Given a r a n d o m  P in b20 our test of 
whether  P is a Jacobian  by comput ing  re(P) is, according to (1.15), robust.  We point  
out, however, tha t  the problem of suitably numerically est imating m(P) for large 
g is a difficult one even with the recent developments  of such fast algori thms as for 
example in [L-L-L].  

We give some explicit families of abelian varieties which are not  Jacobians 
using (i. 13). If Z = X + i Y ~ ~I 0 and  Pz is the corresponding symplectic form, then 
from 

(r,s)P~(r,s) = (r + s X ) Y - l ( r  + sX) '  + s y t s  
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we see that 

re(Z) =: m(Pz) > min(m(Y), m( Y- 1 )) . (A. 1.4) 

Hence to find Z 's  with large m we look for self-dual forms Ye Pg. 
Recall the definition of the Barnes Wail lattices LB-W]. Let 9 = 2", n __> 4, 

el,  ez . . . . .  e, the standard basis for V =  {0, 1}" the vector space of dimension 
n over 7Z/2~. Then IV] = 9 so we may realize the integer lattice 2~ ~ as {x = x(c0}, 
x having coordinates x(c0 where c(~ V. For W c V define the lattice vector xw by 

{10 i f ~ E W  (A.1.5) 
xw(~) = if ~ W . 

The g vectors 

2t{"-')/21xw, 0 -< r _< n (A.1.6) 

where W~ ranges over all subgroups of V of dimension r having a subset of 
e l , . . . ,  e., as basis, form a basis for a lattice A0 c ~ .  If we scale .~g to have 
covolume 1 in IR 9 we obain the Barnes-Wall lattice A s. The lattice A, is self dual 
and its Gram matrix Qg satisfies 

m(Q~) = ( 2 )  I/2 = m(Q~- 1). (A.1.7) 

Consider Z = X + i Y ~ I H  g satisfying for instance 

�88 =< Y < ~Qo �9 (A.I.S) 

Here P < R means '~P~ < ' ( R (  for all ( e N  ~ According to (A.1.7) and (A.1.4) we 
conclude that for g = 2", n > 7 and Z satisfying (A.1.8) 

re(Z) >-3 log(4g + 3). (A.1.9) 

Hence from (1.3) we conclude: 

I f  g = 2" with n > 7, and i f  Z c ~ - [  ~ satisfies (A.1.8) then Z is not a period 
matrix. (A. 1.10) 

Appendix 2: D4, Es, Leech and certain other lattices are symplectic 
J.H. Conway and N.J.A. SIoane 

A 2n-dimensional lattice A is symplectic if and only if it has a Gram matrix P of the 
form 

I 0 Y 0 I 

with X, Y symmetric, Y > 0 (this is equivalent to the version used in the introduc- 
tion and the translation to Z ~ I  ~ can easily be achieved using the version 
following (1.3)). Any two-dimensional lattice may be scaled to be symplectic. 
We show that suitably scaled versions of the lattices (named as in [C-S]) 
D4, O+m (m > 1), A(62), Es, K12, AI6, A24 (the Leech lattice) and certain others, are 
symplectic. 
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Theorem. A lattice A is symplectic if and only if  there is an orthogonal transforma- 
tion t on the space such that t 2 = - 1 and t(A) is the dual lattice A*. 

Proof. The following argument is rather more complicated than necessary but also 
yields a basis. (Only if:) We regard the matrix [o r_ r ~ ~] as the Gram matrix of the 
direct sum of a lattice L in a space V and a copy L* of the dual lattice L* in a space 
12. Let e~ . . . . .  e, be an integral basis for L, e* . . . .  , e* the dual basis for L*, and 
el . . . . .  ~ and ~ * , . . . ,  ~* the corresponding bases for /S and /~*. The matrix 
[ ' x  o] represents a base change under which ~* is replaced by 

- ~ xijej + Oi* (i = 1 . . . .  , n) .  
j = l  

Then [ J x  o] [r  ~ rO_,] [~ -;x]  is the Gram matrix of a lattice whose basis vectors 
are 

ei, - ~ xi~ej+ei* ( i = l  . . . . .  n). (A.2.1) 
j = l  

The dual basis is 

e* + ~ x i i6 ,  ei (i = 1 . . . . .  n ) .  (A.2.2) 
j = l  

The symmetry condition x~j = xii (all i , j)  holds precisely when the transformation 

t =  ~ (a~e~ + b~i) ~ ~ (bie~ - ai~i) 
i=i i=I 

maps A to A*. (If:) Let t be as stated in the theorem. We first select vectors 
e ~ , . . . , e ;  which are linear combinations of vectors in A, choosing 
e~ (k = 1 . . . . .  n) to be orthogonal to l ( ~ ) , . . . ,  t(e~_ 1). e~ is automatically ortho- 
gonal to t(e~). Let V = F,(e~ . . . . .  e,~), V = ~,(~(e~) . . . . .  t(e~)). Let el . . . . .  e, be 
a basis for A c~ V, let ~1 . . . . .  ~, be their t-images in l 7, and let {e* }__ V, {~i*} c_ I? 
be the dual bases. Any u e A can be written u = v + w, v e V, w e V. Since t maps 
A to A*, there are u's whose projections w include all the ~*. Thus, we can find 
a basis for A of the form (A.2.1), whose dual basis is (A.2.2). But applying t to (A.2.1) 
we obtain a second basis for A*, namely 

- e* + ~ xij~j, ei (i = 1 . . . . .  n). (A.2.3) 
j = l  

Comparing (A.2.2), (A.2.3), we see that xij and xii differ by integers, and so, by 
adding multiples of the ~j's, X may be taken to be symmetric. 

Corollary. Let  A be a classically integral lattice. Then A is symplectic if  and only if  it 
is unimodular and has an automorphism t satisfying t 2 = - 1. 
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The theorem shows that  D4+~ (m > 1), A~62), E8 and A24 are symplectic (an z for 
A24 is given in [C-S, p. 178]). Some explicit matrices X, Y are as follows: 

A~62': 

~[ 1 --21] ~2E 2 ; ]  D4: X = -- 2 ' Y = 1 ' 

4 - - 2  4 4 - 2  1 
1 1 

- X = - -  - - 2  - - 1  Y = - -  - 2  4 - 2  
12 

4 6 x / /  1 - 2  4 

2 1 0 

1 2 1 
E8: ' Y =  0 1 2 

1 0 - 1  

2 - - 1  0 - 1  

1 1 2 - 1  0 

- X = ~  0 - 1  2 1 

1 0 1 2 il 
14 [24 ,0jl, ] I F 1 y =  

A24: - -  X = ~[_3tj~t , - 10till 2111 + 4 J l t  ' 

where j l l  is a vector of 11 l's, J l l  is an  11 x 11 matr ix of l's, and  C is a retro- 
circulant with first row (1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0). An integral basis for A24 corres- 
ponding to this pair X, Y consists of the rows of the matr ix  

- 4 4 j l  1 0 1 
2~11 4 1 1 1 - - 2 J l x  0 

2C 2~11 2 I l l j  

For  Es the subgroup of the au tomorph ism group that  commutes  with z has 
structure 4.24S6 and  order 46080�9 For  A24 the corresponding group is (4 x G2(4)): 2 
of order  2012774400. 
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