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1 Introduction 

In [BuEp2] we considered the problem of embedding three dimensional CR- 
manifolds in ~:d for some d. The primary focus of that paper was to understand the 
structures near to the standard structure on the three sphere. This restriction was 
largely due to the fact that we made extensive use of the spherical harmonic 
expansions unique to that context. Recently several researchers have considered 
similar questions from other points of view. In particular Bland, Duchamp and 
Lempert, see [B1Du] and [Le]. In the work of these authors a central role is played 
by a U(1)-action rather than SU(2). 

After learning of this general approach and in particular, the paper of Bland 
and Duchamp, [B1Du], it became clear that there was a very close connection 
between these two approaches, and that in fact much of the analysis in [BuEp2] 
only required an action by U(1). In this paper we extend some of the results of the 
earlier paper to the more general context of perturbations of U(1)-invariant 
CR-structures on circle bundles over surfaces. If the structure is U(1)-invariant 
then it is a result of Baouendi, Rothschild and Treves, and Lempert that it can 
always be embedded in ~d for some d. Lawson and Yau have shown that it can 
always be realized as a hypersurface in an affine algebraic variety with a linear 
action by ~E*, see [LaYa, Sect. 2-1. We discuss this from a slightly different 
perspective in Appendix A. 

In the next two sections we show how, in the presence of certain additional 
structure one can actually embed perturbations of a U(1)-invariant structure 
represented by deformations of the CR-structure with 'non-negative' Fourier 
coefficients, in an appropriate sense. This viewpoint was clearly delineated in 
[B1Du]. In Sect. 2 we study the solvability of the Jrequat ion with respect to 
a U(1)-invariant structure. Our method is to introduce a normalized contact form, 
0, and local sections, Z of T o, 1 which allow us to control the ker if*. We assume 
that they satisfy 

~zO^dO=O and U ~ , Z = e i I * Z  
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for some integer m. A contact form defining such a pseudo-hermitian structure 
arises from an asymptotic solution of the Fefferman Monge-Amp6re equation. 
Here and in the sequel we denote the Lie derivative in the direction X by ~x and 
the action of ei~e U(1) by Uo. 

In an open subset U of M perturbations of this structure are represented by 
Z + OZ where ~ e c~o~ (U). These functions patch together to define a global section 
of a flat line bundle over M. If ~ satisfies 

then Z + OZ represents another U(1)-invariant structure. This allows us to define 
what is meant by 'positive' or 'non-negative' Fourier coefficients. For an open set 
U let F,(U) denote the functions defined on U which transform according to the 
rule 

V$ f = e~"4~f 

If the projection of ~ into F, is zero for n < -- 2m then we say that the perturbed 
structure Z + ~kZ has 'positive' Fourier coefficients, if the projections are zero for 
n < - 2 m  we say that Z~ + ~OZ has 'non-negative' Fourier coefficients. This is 
consistent with the usage in [B1DU] and [Lel,  Theorem 4.1]. We show that 
sufficiently small perturbations of U(1)-invariant structures with 'positive' Fourier 
coefficients are embeddable as small perturbations of certain embeddings. In 
Sect. 3 we use the geometry of line bundles to obtain the normalizations posited in 
Sect. 2 for circle bundles of degree - 1. This entails the construction of a distin- 
guished contact form. This contact form is shown to be biholomorphically 
invariant for circle bundles over surfaces of genus at least 2. In Sect. 4 the 
embedding problem is considered for deformations of U(1)-invariant structures 
with 'non-negative' Fourier coefficients on circle bundles of arbitrary degree 
by using covers and equivariant immersions to reduce to the case of bundles of 
degree - 1. 

In [Lel]  it is shown that a pseudoconvex, three dimensional CR-manifold that 
admits an 'inner Sl-action ' is the boundary of a compact surface. This implies that 
it is embeddable in r for some N. I have been informed by John Bland that having 
'positive' Fourier coefficients is essentially equivalent to admitting an 'inner S 1- 
action', [Bll]. Bland has also obtained a similar result, see [B12]. In Sect. 5 we 
examine the relationship between the representation of deformations and the 
concept of 'non-negative' Fourier coefficients and give a simple proof of the 
Bland-Lempert result using our normalizations. In Sect. 6 and Sect. 7 we generalize 
the variational analysis of the [] b-operator in [BuEp2]. This leads to generic 
non-embeddability of real analytic perturbations of real analytic U(1)-invariant 
structures. In Sect. 8 we use the explicit representation of CR-functions for the 
perturbed structures in terms of the unperturbed structures obtained in Sect. 2 and 
the analyticity results obtained in [BuEp2] to study the stability of given embed- 
dings among perturbations with 'non-negative' Fourier coefficients. These results 
were partly inspired by the recent preprint of Catlin and Lempert, [CaLe] and 
a conversation with John Bland, [Bll] .  We have omitted a review of the basic facts 
of CR-geometry. This can be found in several papers including [B1Du], [Le l ]  or 
[Wel] .  
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2 Perturbing normalized U(1)-invariant structures 

Suppose that M is a contact manifold diffeomorphic to a circle bundle over 
a compact surface with a free transverse contact action by U(1). We further 
suppose that M is endowed with a U(1)-invariant strictly pseudoconvex CR- 
structure. In this section we assume that M has a contact form 0 for which the 
pseudohermitian structure is especially simple, see [Wel l .  Let {U~; ~e A } be an 
open cover of M by a finite collection of U(1)-invariant sets. We assume that in 
each U~ there is a one form 0~ of type (1, 0) which satisfies 

dO = iO~ ^ 0 i,  

(2.1) dO~ = iB~O ̂  O~ mod0~ i, B~e C~(U~), 
* 1 - i m r  1 U~ G = e G ,  

for some integer m. On the overlaps, U~ c~ Ua, the different sections are related by 

(2.2) 02 --- ei'q"O~. 

From the structure equations (2.1) it follows easily that the coefficients {e i.~ are 
constants of modulus one. They define a l-cocycle relative to the cover U,. Once 
the contact form is fixed the conditions in (2.1) define a flat line bundle, 2 over M. 
When we represent a CR-structure in terms of such normalized sections its 
deformations are represented by sections of }~-z. 

Let Z ,  denote the (1, 0)-vector field defined on U~ dual to (0, 1 i G ,  0,). From (2.1) 
we conclude that 

Ur = e- ~'r 

(2.3) P-z O /x dO = O. 

The choice of pseudohermitian structure fixes a differential operator representing 
~-b. In U, it is given by: 

Jbu = 2,u0 . 

Since 0 is a contact form dV = 0 A dO defines a volume form on M. From (2.2) 
it follows that if co is a (0, D-form such that 

o rv, = f ,  O2, oteA, 

then 

(2.4) ILl = [hi in U,c~ Up. 

Formula (2.4) implies that the norm of a (0, 1)-form co is well defined, we denote the 
common value by If[. Define an LZ-inner product on sections of A~ by 
setting 

(2.5) 

Proposition 2.6 
given by 

in U~,. 

(co, co) = I Ifl 2dV" 
M 

With respect to the inner product defined in (2.5) the adjoint of ~b is 

y , o ]  = - z , y , ,  
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Proof Since the computation of the L2-adjoint_is local we can suppose that t/is 
supported in a single set U~ where it equals f,O~. Then 

<c~bu , r/> = j" (2~u)J~dV, 
u, 

= -- I u(Z, f~)dV + u0,~z,(dV). 
U, 

The conclusion follows from (2.3). 

The action on M by U(1) induces an orthogonal splitting of L2(M; dV) into 
invariant subspaces. We let F, denote the functions in L 2 which satisfy 

US f =  ein4'f 

Define 

(2.7) 
j = n  

To specify the set on which the functions are defined we sometimes replace F, by 
Fn(U) and ~ ,  by ~,(U),  etc. 

It is a consequence of Proposition A8, in Appendix A, that if M is strictly 
pseudoconvex then all CR-functions have 'non-negative' Fourier coefficients. In 
other words 

(2.8) ker C~b = ~'~o. 

The Fourier decomposition extends to (0, 1)-forms. Such a form is specified by 
its restrictions to the sets in the open cover {U,}. If 

co [~, =LO~ then 

(2.9) f ,  = e -  io,~fr on O~ t~ UB. 

We say that conF, i f f ~ F , ( U , )  for each ~eA. This slightly ambiguous notation 
should not lead to any confusion. From (2.9) it is evident that this is well defined. 
Since the volume form is U(1)-invariant we can define orthogonal projections onto 
the different Fourier components. We obtain a decomposition 

co= ~ co, where 
r l =  - ~  

co, to. =f,.O~, f , ,  ~ F,(U,). 

Note that 

f~, = e-,o,~fp, on U~ ~ Ut~. 

Lemma 2.10 Under the normalizations in (2.1) 

(2.11) ~b" F, ~ F,-m; cT*: F. ~ F,+m . 

Proof Let u ~ F,, then 

= eineP~b u . 
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On U~ we have 

U$c~bu . - . T = U~,(Z~,u)U~O~, 

= ei"g'(U$;Z,u)Oj.  
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Taken together, these two computations show that 

US Z~u = e""-")*:Z~u . 

A similar computation proves the other statement. 
Since M is a circle bundle over a surface with a free transverse U(1)-action by 

CR-automorphisms the quotient, Z is a smooth surface, 

n: m ~ M / U ( 1 )  = Z . 

A complex structure on Z is defined by 

TO.a~r = n , T ~  

The functions on M which belong to F, can be identified with sections of 
a holomorphic line bundle over Z. This is defined by using the unitary characters of 
U(1): 

z . (e  i4') = e i"4', n ~ Z  , 

and forming the fiber product. We define L, as 

L, = M xz.IE , 

where the equivalence relation on M x ~ is 

(p, z) ~ (U~,p, ei"*z) . 

We have a commutative diagram: 

M x C ~- , n * ( L . )  ~" , L .  

i i 

M , S .  

Functions in F. clearly define sections of L. and conversely a section of L, pulls 
back to define a function in F.. A simple calculation in local coordinates verifies 
that a section s of L. is holomorphic if and only if the pull back rc*(s) is 
a CR-function on M. Appendix A covers this construction in greater detail. M itself 
is biholomorphic to a hypersurface in L_ 1. M bounds a relatively compact strictly 
pseudoconvex domain in L_ 1 if and only if the deg L_ 1 < 0. 

Using the relationship between holomorphic sections of line bundles over 
S and CR-functions we can study the kernel of ~-*. 

Lemma 2.12 I f  the degL-1  < 0 then the kernel o f  (3~ is orthogonal to ~ 1 .  

P r o o f  Suppose that r/is a (0, 1)-form in the ker cT*. From Proposition 2.6 it follows 
that in each set U, we have a representation 

rl Iu = f~O i ,  Z ~ f ~ = 0  wi th ,  

(2.13) f~ = e -  ig.,f# in U, n U, . 
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As in the discussion leading up to Proposition A11, the cocycle {e ~~ } defines a flat 
holomorphic line bundle, 2 over S. If 

n = - c o  

is the Fourier decomposition of ~ then 0, defines a section, s. of L_ ,  | 2. Lemma 
2.10 implies that tl e ker ~* if and only if tl, e ker ~* for every n. From Proposition 
A 11 and (2.13) it follows that t/. e ker ~* if and only if s, is holomorphic. Since the 
degree of L_ 1 is negative and 

deg (L_,  | 2) = n deg L_ 1 

it is an elementary fact from Riemann surface theory that this bundle does not have 
holomorphic sections if n > 0, [GrHa, p. 155]. Thus tl, = 0 if n > 1; this completes 
the proof of the lemma. 

The r~roperator  associated to ~-b is given by Dbu = O*0bu. From (2.11) it 
follows that 

(2.14) Db: F, ~ F , .  

From (2.11) and (2.14) it is immediate that 

(2.15) Db: ~-, ~ ~- , .  

Now we are ready to consider perturbations of the CR-structure defined by 
{Z,}. On each open set U, a perturbation is defined by setting 

(2.16) Z~ = Z, + if, Z , .  

From (2.2) it follows that 

Z# = ei~ on U~ c~ Up 

and therefore in order for a collection of functions f f ~ c ~ ( U ~ ) ,  ~ A  to define 
a global CR-structure on M it is necessary that 

(2.17) ~kt7 = e - 2ig~l~ o n  U~ ~ U #  . 

These are sections of a flat line bundle over M which we denote by ~ = ,l-2. The 
Fourier decomposition extends to sections of ~ in an obvious way. We use F,(~) to 
denote sections of ~3 with ~,~F,,(U~,) and ~-,(~3) for sections with f f , ~ , ( U , )  for 
each cc From (2.17) it follows that if r is a section of ~3 then the (0, 1)-forms 

~ u  It,, = (2 ,  + q,,Z,)uO~, ~ A  , 

patch together to define a global (0, 1)-form. Thus we can decompose the perturbed 
0roperator  as 

We want to solve the perturbation equation 

(2.18) g~(z + r = 0 
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where ff is a section of ~3 and z ~ ker 0-b n ~k+ 1. Arguing as in the proof of Theorem 
5.3 of [BuEp2] we define an iteration: 

(2.19) 40 = 0, Jb~. = -- Po(z + 4 . -1 ) .  

Proposition 2.20 I f  deg L_ 1 < 0, z ~ ker Jb c~ ~ l  +k, k > 0 and 

~9eo~_zm(~) if re<O, or Oe~-(M+.,~(~), m = m i n { m , k }  / f m > 0 ,  

then (2.19) has a solution 4 , e ~  +k for all n = 1, 2 . . . .  

Proof Since z r  it follows from (2.14) that 

Pq, z ~ l - , , + k  if m < 0 , 

if m > 0 ,  P ~ , z s ~ l  for k < m ,  P, z e ~ l - , . + k  f o r k > r e .  

Since ker c~' is orthogonal to ~1  it follows, by using the partial inverse, .~, to the 
Kohn-Laplace operator, ~b, as in [BuEp2, p. 832], that we can solve for ~1: 

From (2.15) it follows that 

4 1 ~ 1 + ~  �9 

Inductively we assume that we can solve for ~ a , . . . ,  ~, and that 

(2.21) ~j ~ ' ~ 1  +k  �9 

From (2.21) it follows, as above for n = 0, that 

Po(z + ~ , ) ~ _ , , + ~  if m < 0 ,  

(2.22) if m > 0, Po(z + ~,)e 

P~(z + 4.)e 

From (2.22) it follows that we can solve for 

~1 for k < m, 

f f l - , ,+k  for k > m .  

~,+1 and from (2.15) it follows that 

~n + 1 E: ~.~i  + k . 

This completes the proof of the proposition. 
To complete the perturbation theory all that remains is to prove that the 

sequence {~,} converges in an appropriate topology for r sufficiently small. This 
argument is really done in the proof of Theorem (5.3) of [BuEp2]. The analytic part 
of the proof is entirely formal employing the apparatus of the Heisenberg calculus 
and applies mutatis mutandis to the present situation. For latter applications we 
state a slightly more precise result, which follows from the argument above and the 
analysis in [BuEp2, pp. 831-2]. 

Theorem 2.23 Under the hypothesis (2 .1 ) / fdegL_l  < 0, z ~ k e r J b ~ k + l ,  k > 0 
and 

f f e ~ - 2 , , ( ~ )  / f m < 0 ,  ffe~-(M+m)(~3), M = m i n { m , k }  / f m > 0 ,  

is of  sufficiently small C4-norm then the equation 

g~(z + ~) = o 
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has a unique solution orthogonal to ker t3b with 

~ e ~ k + ~  �9 

If  ~ e C ~ (~) of sufficiently small C4-norm then the map 

z - ~  

is bounded in the C~ with constants depending linearly on ~k. 

As an immediate corollary we have: 

Corollary 2.24 Under the hypothesis (2.1) with degL_l  < 0, the CR-structures 
defined by ~b with 

qJe~-2,.(~) /fm__<0, #~g_,.(~) if m>0,  

of sufficiently small Ca-norm, embed as small perturbations of an embedding of 
(M, ~b). 

Note that in this corollary any sufficiently small perturbation of t~b which 
satisfies the hypothesis can be realized as a deformation of an arbitrary embedding 
of (M, fib). 

In the sequel it will be of interest to consider equivariant immersions as well as 
embeddings. If xl . . . . .  Xd, define an .immersion of M with 

U~Xj = eikexj, k e n  

then we can consider perturbations of this immersion by restricting to functions 
~ 'eff-2m(~) whose projection into Fj is non-zero only for j  = - 2m + nk, nElNo. 
For integers l, m define 

(2.25) ~ / "  = ~ )  Fl+jm, 
j=O 

with the obvious modifications for sections of fiat line bundles. Using (2.14) instead 
of (2.15) and the fact that 

u ~ [ ] b  = D b U ~ ,  

in the above argument we easily obtain 

Corollary 2.26 I f  deg L_ 1 < O, z ~ Fnk, n ~ N and 

ffs~_~,~(~) if m < 0 ,  

@~ffk2m+tk(~),(l+n)k>m+ 1 if m > O  

is of sufficiently small Ca-norm then there is a unique solution to 

~ ( z  + ~) = o 

orthogonal to ker ~b which belongs to ~ ,k. 

The hypothesis in Corollary 2.24 that ~ e ~ - r , ( ~ )  if m > 0, is non-optimal 
in that it does not include all structures with 'positive' Fourier coefficients, 
i.e. r  If we assume that ze,~m+l instead of ~-~ then we can allow 

~- -2m(~) .  As follows from Theorem A16 this suffices for applications of this 
theorem to study embeddability of perturbations of U(1)-invariant structures. 
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However it suggests that in certain cases there may exist embeddable perturbations 
which cannot be realized as perturbations of a particular embedding. This is closely 
related to a construction of Catlin and Lempert. They have constructed smooth 
families of CR-structures on circle bundles with the property that the embeddings 
are unstable under deformations. More precisely, they have constructed a family of 
CR-structures J, depending smoothly on the parameter t such that all structures 
are embeddable. However the structures for t 4:0 cannot be realized as perturba- 
tions of a fixed size of a given embedding of J0, see [CaLe]. The question of the 
stability of embeddings is taken up in Sect. 8. 

3 Ricci flat volume forms 

In the previous section we showed how to solve the perturbed ~-b-equation under 
certain additional hypotheses. In this section we examine the geometric implica- 
tions of these hypotheses. To recap we have a CR-manifold with a free transverse 
U(1)-action by CR-automorphisms. Let 2; and L, be as defined in Sect. 2. Since the 
action on the ~;-factor is unitary the bundles L, come equipped with a canonical 
metric. Another local coordinate calculation verifies that the unit circle in the 
bundle L_ 1 is biholomorphic to M itself. Thus we have M realized as the boundary 
of a compact complex manifold. As a hypersurface in L_ 1, M is either pseudo- 
concave of pseudoconvex. If the degree of the line bundle L_ 1 is negative then M is 
pseudoconvex. 

In this section we obtain a contact form, 0 and local sections, 0~ as in (2.1), for 
the canonical bundle of 2. Using the theory of line bundles over a Riemann surface 
we show how to extend these constructions to any bundle of degree 2 ( 9 -  1). 
Similar techniques were employed in [BuEpl,  Sect. 6] for other purposes. The 
holomorphic line bundles over 2; are parametrized by their degree, or Chern class 
and the Picard variety. Let K denote the canonical bundle of 2;. If  9 = 0 then x is 
negative, if 9 > 2 then it is positive and if9 = 1 it is trivial. First suppose that 2; is of 
genus 9 4: 1. 

These line bundles have a very special property, there is a non-vanishing, 
holomorphic (2, 0)-form, co defined on the total space which satisfies 

(3.1) U~,CO = ei4~co . 

This is the canonical holomorphic symplectic form. To define this form we recall 
that a point in x is a one-form of type (1, 0) on 2; and therefore if p denotes the 
projection to 2; then at q ~ x we define 

(3.2) r/q(v) = q ( p . v )  and co = dr/. 

If z is a local holomorphic coordinate defined in an open subset V c 2; and we use 
dz to trivialize ~c, with w the fiber coordinate, then 

(3.3) co(z, co) = dw ^ d z .  

From (3.3) it follows that co is nonvanishing, holomorphic and transforms accord- 
ing to (3.1). For  the moment  we suppose that M is the unit circle bundle in the 
canonical bundle of 2; relative to some Hermitian metric. 

In [BuEpl ,  Sect. 6] it is shown that if one has a Ricci flat volume form v defined 
in the neighborhood of a strictly pseudoconvex hypersurface in complex manifold 
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then one can define a third order asymptotic solution to the Monge-Amp6re 
equation along this hypersurface. Setting 

1J----- O.) A (.O 

defines a Ricci flat volume form on x which is invariant under the U(1)-action. Let 
u denote the third order solution to the Monge-Amp6re equation along M ~ L_ 1. 
Since u transforms by a power of the absolute value of the Jacobian of a biholomor- 
phic mapping it is invariant under the U(1)-action. Thus if we define a contact form 
by 

0 = Im ~u 

then it too is invariant under the U(1)-action. 
Using the contact form we define a vector field ~-- of type (1, 0) in a neighbor- 

hood of M ~ L_ 1 by the conditions 

i j ~ u  = a ~ u  , 

(3.4) i j ~ 3 u  = 1 .  

Here a is a smooth function defined in a neighborhood of M. A holomorphic 
coordinate system Zl, z2 is called unimodular if 

v = d z l  ix d z 2  A d 2 l  ^ d~2 . 

The coordinates (w, z) introduced above are unimodular. On p. 66 of [BuEpl ]  it is 
shown that if the vector field Y-- is given in terms of a unimodular coordinate 
system by 

= t l ~  w + t2~z 

then the (1, 0)-form 

(3.5) 

satisfies 

01 = t 2 d w  - t l  d z  , 

dO = iO 1 /x 0 i , 

(3.6) dO 1 = iBO /x 0 x , 

for some function B. Since the conditions (3.4) are U(1)-invariant it follows that 

U ~ , Y  = 5'- .  

This implies that 

(3.7) U $ O  1 = e i~O 1 . 

If we set U = n-*(V)  then U is a U(1)-invariant open subset of M in which we can 
find a (1, 0)-form 01 so that the conditions in (2.1) are fulfilled. 

Let { V~, e e A } denote an open cover of 2~ by holomorphic coordinate neighbor- 
hoods in which x is trivial. Let (z,, w,), e e A denote the local trivializations defined 
above. Set 01 equal to the (1, 0)-form defined in U, = n - l (~ ] )  by the foregoing 
construction. Thus we have obtained an open cover of M by U(1)-invariant sets in 
which (1, 0)-forms satisfying (2.1) are defined. This shows that the hypothesis (2.1) 
can be verified for a unit circle bundle in the canonical bundle of a Riemann surface 
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provided the genus is not 1. A simple calculation shows that the flat line bundle ). is 
trivial in this case. Thus we have a globally defined (1, 0)-form satisfying (2.1). 

Any other line bundle, L over Z of degree 2(g - 1) can be represented as x | 2 
where 2 = x -  1 @ L is a fiat line bundle. The fiat line bundle, 2 determines and is 
determined by a 1-cocycle consisting of constants of modulus 1. To obtain this 
presentation of the fiat line bundles one represents Z as the quotient of the unit disk 
by a Fucshian group and uses the unitary characters of nl (Z) to construct the line 
bundles of degree zero. After possibly refining the cover constructed above we 
denote the cocycle by {eli's}. If {m,a} denote the transition functions defining 
x relative to the refined cover, 

wp=m~pw~ in U ~ n U p ,  

then {eit'Pm,p} is the 1-cocycle defining K | 2. 
Since the cocycles differ by constants of modulus 1 it is clear that the metric 

defined on x by M and the Ricci fiat volume form can be transferred to x @ 2. This 
in turn defines a U(1)-invariant hypersurface in x @ 2. Denote the hypersurface by 
Mz. Using the Ricci fiat volume form we can repeat the constructions of the contact 
form and family of(I ,  0)-forms satisfying (3.6) and (3.7) for Mz ~ x @ 2. Note that 
Mz is locally biholomorphic to M and one can actually use the contact form and 
(1, 0)-forms constructed for x, only the 'gluing instructions' are changed. 

Starting with a hypersurface Ma in ~: @ 2 the process outlined above can be 
reversed to obtain a hypersurface M in x. From this observation we conclude 

Theorem 3.8 Suppose that M is a strictly pseudoconvex or pseudoconcave, three 
dimensional, U (1)-invariant, CR-manifold such that the quotient Riemann surface has 
genus g 4: 1. Suppose further that, 

L-1 = x |  

where 2 is the flat line bundle defined by the cocycle {eit~}, then there is a U(1)- 
invariant contact form, a cover of M by U(1)-invariant subset {U~} and (1, O)-forms 
O~ defined in U~ such that the conditions (2.1) are satisfied with m = - 1. Moreover 

= e " o~ in U~n Up . 

Suppose that ~t is a CR-manifold with a free transverse U(1)-action which 
equivariantly covers a CR-manifold M satisfying the hypotheses of the theorem. 
The contact form, the U(1)-invariant open cover and the (1, 0)-forms can all be 
lifted to ~t. Denote their lifts by ~ {(7} and {ff~ } respectively. The lifts satisfy (2.1). 
If the cover is m-sheeted then 

For applications it is most useful to work on bundles of degree _+ I as every bundle 
of non-zero degree is a quotient of such a bundle. We restate Theorem 3.8 in this 
context. The case g = 0 is covered in the previous theorem. 

Proposition 3.9 I f  M is a three dimensional CR-manifold with a transverse, free U(1) 
CR-action such that S, = M/U(1) is a Riemann surface of genus g 4: O, 1 and the line 
bundle M x x _ l C  is of degree + 1 then there is a contact form O, an open cover by 
U (1)-invariant subsets and (1, O)-forms { 0~ } which satisfy the conditions (2.1) with 

m = ~ 2 ( 0  - 1 ) .  
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If the genus of X is one then the construction is more direct. Suppose that F is 
the period lattice for X so that 

Z ~- C / F .  

We can normalize so that F is generated by 1, z with Im z > 0. From the classical 
theory of line bundles over abelian varieties it follows that every line bundle over 
a surface of genus 1 arises as a quotient of the trivial bundle over ~, see [GrHa, 
p. 316]. 

To every holomorphic line bundle, L, over X there corresponds a non-vanishing 
holomorphic function e(z). The line bundle over X is defined as the quotient of 
C x • by the equivalence relation generated by: 

(3.10) (z, w) ~ (z + z, e(z)w); (z, w) ~ (z + 1, w) .  

From this construction it is easy to see that any holomorphic line bundle over an 
2-torus has a non-vanishing holomorphic (2, 0)-form, defined in the complement of 
the zero section, which is invariant under the action of U(1). 

Using the (z, w)-coordinates appearing in (3.10) we define 

dz ^ dw 
(3.11) (o 

w 

This form is clearly invariant under the diffeomorphisms defining the equivalence 
relation in (3.10) and therefore descends to the quotient. The local formula also 
shows that it is holomorphic and invariant under the action of U(1). 

We suppose that the line bundle L defined by (3.10) has non-zero degree and 
that a metric has been chosen so that the unit circle bundle has non-vanishing 
curvature. Denote the unit circle bundle by M. The curvature condition implies 
that M is either pseudoconcave or pseudoconvex. We need to introduce x = log w 
in order to have a unimodular coordinate. The U(1)-action lifts to a translation by 
ilR. The construction above of a defining function u and vector field ~- can now be 
repeated. Both of these objects are invariant under the action by ilR and therefore 
can be re-expressed in terms of the (z, w)-coordinates, for example 

dw 
01 = t 2 - - - -  tx d z  . 

w 

This (1, 0)-form satisfies 

(3.12) U$O 1 = 01 . 

A calculation shows that 01 is invariant under the action defined in (3.10) and 
therefore descends to the quotient, M. This extends the foregoing considerations to 
the genus one case. 

Proposition 3.13 I f  M is a three dimensional, CR-manifold with a transverse, free 
U(1) CR-action such that X = M /U  (1) is a Riemann surface o f  genus one and the line 
bundle M • 1 ~E is o f  non-zero degree then there is a U (1)-invariant contact form and 
(1, O)-form OX~ such that the conditions (2.1) are satisfied with m = O. 

We now prove that the contact form defined on a U(1)-invariant CR-manifold 
is a biholomorphic invariant if the genus of X is at least 2. Therefore the flat line 
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bundle defined by (2.1) is as well. This constitutes a first step in the construction of 
a normal form for certain classes of three dimensional CR-manifolds analogous to 
that constructed in [B1Du, pp. 68-9] for linearly convex domains. Throughout this 
subsection we assume that the U(1)-action is transverse to the contact field and 
free. 

Proposition 3.14 Suppose that M t  and M 2 are  circle bundles over a surface of genus 
at least 2 with U (1)-invariant CR-structures. Then any orientation preserving, CR- 
diffeomorphism intertwines the U (1)-actions and therefore extends to a biholomorphic 
bundle map of the line bundles M i x  z-  1C. 

Proof This proposition follows by considering the possible automorphism groups 
which could arise and then applying results of Cartan, see [Ca]. Let r denote 
a biholomorphism from M1 to M 2 and let T~, T2 denote the infinitesimal generators 
of the respective U(1) actions. The statement of the proposition is equivalent to 

(3.15) r  T1 = ~T2, 

where ct is a constant. In any case T~ = ~ ,  T~ defines a transverse, free, CR 
U(1)-action on M2. Let Aut(M2) denote the identity component in the group of 
CR-transformations of M2. It follows from Theorem 5.1 in [ChMo] that Aut(M:) 
is a finite dimensional Lie group. We will show that the identity component of 
Aut(M2), Auto(M2), must be one dimensional from which (3.15) follows. 

Suppose that T~ is not proportional to T~ at some point o n  M 2 ,  then 

(3.16) dim Auto(M2) > 2 . 

We split our considerations into two cases. 

Auto is compact 
Suppose the dim Auto(M2) = 2; this implies that Auto(M2) is abelian. 

Lemma 3.17 Suppose that M is a three dimensional, unit circle bundle with a U(1)- 
invariant CR-structure. I f  Auto(M) contains a two dimensional abelian subgroup 
containing the given U (1)-action then 

(3.18) M/U(1) ~- N 2 or "IF 2 . 

Remark. Since we are assuming that the U(1)-action is transverse to the contact 
field and free, M is automatically orientable and the quotient of M by U(1) is 
a smooth orientable Riemann surface. 

Proof of  lemma. Let q~t, Os denote two one-parameter subgroups generating the 
abelian subgroup, with the given U(1)-action defined by ~b,. Let I; denote the 
quotient Riemann surface defined by ~bt, with g the quotient map. Since the group 
is two dimensional there must be some open subset of M where the infinitesimal 
generators of the given subgroups are not proportional. Denote these by X, Y 
respectively. Because the group is abelian we have 

(3.19) 4),o~ks=r and (at, Y =  Y, ~ s , X =  X .  

The formulae in (3.19) imply that for each s the map 

0's(q) = g o Os o 7~- t(q), 
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of 2; to itself is well defined. Using the infinitesimal statement in (3.19) and the 
definition of the complex stucture on S it follows that these maps are holomorphic 
self maps. Since Y is not parallel to X it follows that these maps are non-constant 
for sufficiently small values of s and therefore depend in a non-trivial way on the 
parameter. The only oriented Riemann surfaces with continuous families of holo- 
morphic self maps are S 2 and ql "2. This completes the proof of the lemma. 

This allows us to conclude that the group is not two dimensional as we have 
assumed that genus of Z is at least 2. So if the group is compact and (3.15) fails then 

(3.20) dim Auto(M2) > 3.  

If the dimension is 3 then a theorem of Cartan implies that Auto(M2) is transitive, 
see [Ca, Sects. 28-29]. Thus M2 would be one of the CR-manifolds on Cartan's list. 
However an examination of the list shows that this cannot be the case since the 
genus of I; is at least 2. This completes the analysis in case Auto is compact. 

Auto is non-compact 
It follows from a theorem of Webster, [We2], that M is spherical, that is locally 
biholomorphic to S a, with its standard structure. Again suppose that 

(3.21) dim Auto(M2) = 2.  

There are only two real Lie algebras,-up to isomorphism, of dimension 2, one 
abelian and one non-abelian. It follows from Lemma 3.17 that Auto(M2) cannot be 
abelian. Any non-abelian two dimensional Lie algebra has generators X, Y such 
that 

(3.22) r x ,  r ]  = 2 r .  

The corresponding simply connected Lie group is IR 2 represented as 2 x 2 matrices 

{ ( ; a  xea'~ } 
(3.23) 15 = e_a], x, 2elR . 

This group has neither compact subgroups nor discrete normal subgroups. Since 
Auto(M2) contains a compact subgroup it cannot be isomorphic to a quotient of 15. 
Hence if dim Auto(M2) # 1 then 

dim Auto(M2) > 3.  

In Sect. 63 of [Ca] it is shown that in this case Auto(M2) is a subgroup of 
SU(2, 1). These subgroups are then classified according to which three dimensional 
subgroup of SU(2, 1) they contain. In particular the action of Aut0(M2) would be 
transitive and therefore M2 would have to be on Cartan's list. This has already 
been ruled out and therefore 

dim Auto(M2) = 1 

in this case as well. 
This proposition implies that 

O, Z~ = c~T~ 

for some function e on Mz. Since the dimension of Auto(M2) is 1, e must be 
a constant. As the periods of T~ and T2 are normalized to equal 2re the constant 
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must be _+ 1. Since ~b preserves orientation we see the ct = 1. This completes the 
proof of the proposition. 

For the moment  we restrict to unit circle bundles in line bundles of degree 
2(1 - g) over surfaces, S of genus g > 2. Later we consider the 'universal case' of 
bundles of degree - 1. Such bundles are of the form T I ' ~ 1 7 4  2 for a flat line 
bundle 2. Using the construction above we obtained a Ricci flat volume form on 
the complement of the zero section in any such bundle. It is obtained by transfer- 
ence from the bundle T1'~ itself. Let A1 and A2 be line bundles of the stated form. 
Denote the Ricci flat volume forms by Vl, v2 respectively. 

Lemma 3.24 I f  ~I' is a biholomorphic bundle map from A1 to A2 then 

~*(v2) = e3vl 

for some positive constant c. 

Proof. To prove (3.24) we introduce local coordinates charts {z,, V~} on 2;2 over 
which A2 is trivialized and such that A1 is trivialized over their inverse images 

{r = ~e*(z~), v~ = ~ ' - l ( v , ) } .  

We represent Aj, j = 1, 2 as twists of the bundles TI '~  = 1, 2 by flat line 
bundles 2j, j = 1, 2. Let 0z, and c3r be used to trivialize T L ~  j = 1, 2 with fiber 
variables w,, rh respectively. We also use these parameters to trivialize A1 and A2. 
The Ricci flat volume forms are given in all cases by 

d~r ^ drh, A d(r A dq~ dz~, /x dw~, ̂  d~,~, ̂  d~,  
(3.25) v l =  ir/~14 , v 2 =  iw~l 4 

Let ~ '  denote the biholomorphic mapping of L'I onto S2 defined by 7 ~. This 
induces a biholomorphic bundle map of T 1, o L,1 onto T 1, o Xz which we denote by 
~. In terms of these local parameters this map is given by 

(~,,  ~,) ~ (z~, m , ( z , ) w ~ )  , 

for some non-vanishing holomorphic function m,. As a consequence of Proposition 
3.14 one can show that P in these local coordinates is also given by 

(3.26) (~,, q~) ~ (z,, n,(z,)m,(z~)w,) , 

where n, is another non-vanishing holomorphic function. By comparing the repres- 
entations for different coordinate charts we deduce that {n,} is a non-vanishing 
holomorphic section of the flat line bundle P - 1 " ( 2 i - 1 ) |  22. Since this bundle is 
represented in these coordinates by constant transition functions of modulus one it 
follows that each n, is constant and 

(3.27) I n, l= lna ]  on V~c~Vp. 

The lemma follows from (3.25)-(3.27). 
From the work of Fefferman it follows that the solution of the Monge-Amp~re 

equation on a K/ihler manifold is invariantly a section of the cube root of x | g 
where x is the canonical bundle, see [Fe, Sect. II].  This of course also holds for 
formal asymptotic solutions. If u~, u2 denote the asymptotic solutions constructed 
above in unimodular coordinate frames then 

(3.28) ~t /*(u2yl /3  ) = UlV~/3 "4- O(U3). 
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Combining Lemma 3.24 with (3.28) we obtain 

(3.29) 7'*(u2) ul = - -  + ' ~ ? ~ v , u l , .  
C 

Let 

O~=ia~Ou~I~tj, j =  1 ,2 ,  

where the constants aj are chosen so that 

(3.30) ~ 0 i ^ dOt= l, j = l ,2  . 
Ms 

From (3.29) and (3.30) it follows that 

(3.31) 7J*(02) = 01 �9 

Now take M1 and M2 to be unit circle bundles in line bundles of degree - 1 
over surfaces of genus g. Assume that they are biholomorphically equivalent via 
a map 7 j. It follows from Proposition 3.14 that 7 j intertwines the U(1)-actions and 
therefore defines a biholomorphic mapping of the quotient of M1/7Z;(o_I ) onto 
M2/Z2(o-1). From this and the argument given above we conclude that if 01,02 
are the canonical contact forms on M1, M2 respectively then 

~*(02) = 01 �9 

This completes the proof of 

Theorem 3.32 Suppose that M is a unit circle bundle diffeomorphic to the unit circle 
in a line bundle of degree - 1 over a surface of genus g > 2. The contact form 
0 defined by the third order asymptotic solution to the Monge-Ampbre equation 
normalized by (3.30) is biholomorphically invariant. 

Remark. This is a normal form for the U(1)-invariant structures themselves. In the 
work of Bland, Duchamp and Lempert a solution to the homogeneous Monge- 
Amp6re equation is used to construct normal forms for linearly convex domains. 

To conclude this section we consider embeddings of U(1)-invariant structures 
on S a. The three sphere, with its canonical structure, is the unit circle bundle in the 
square root of the canonical bundle of the two sphere, ~c 1/2. The uniformization 
theorem implies that there is a unique complex structure on the two sphere. Thus if 
M is S a endowed with a U(1)-invariant CR-structure then M/U(1) = 27 is canoni- 
cally biholomophic to the unit sphere in IR 3. Let 7 j denote the biholomorphism. 

The manifold M is CR-equivalent to the unit circle bundle in the square root of 
the canonical bundle of 2; relative to some hermitian metric. The mapping ~ lifts to 
define a biholomorphic bundle map between the square root of the canonical 
bundle of 2; and that of S 2. Evidently M can be realized as a U(1)-invariant 
hypersurface in x 1/2 which does not intersect the zero section. Since the total space 
0f1r 1/2 maps holomorphically into ~2, with the zero section blown down to a point, 
it follows that M can be realized as a hypersurface in tI; 2 invariant under the 
standard linear action of U(1). This completes the proof  of 

Theorem 3.33 Any CR-strueture on the three sphere which is invariant under the 
standard action of  U(1) can be realized as a hypersurfaee in t1~ 2 invariant under the 
standard linear action of  U(1) on t122. 



CR-structures on three dimensional circle bundles 367 

In fact it is clear from the construction that the embedding is complex star 
shaped relative to the origin in ~2. I would like to thank Dan Burns for simplifying 
the proof of this theorem. Implicit in the proof of this theorem is an application of 
the theorem of Ahlfors and Bets on the solvability of the Beltrami equation on the 
sphere, see [AhBe]. Since the CR-embedding theorem for small perturbations can 
be proved directly one obtains a new proof  of the Ahlfors-Bers theorem in this case. 

4 Embeddable perturbations of quotients 

Along with the theory of line bundles over Riemann surfaces, Propositions 3.9, 
3,3 and Corollary 2.21 allow a reasonably complete treatment of the perturbation 
theory of U(1)-invariant CR-structures on three dimensional circle bundles. As we 
saw in the previous section a U(1)-invariant structure can be realized as the unit 
circle bundle in a holomorphic line bundle with a hermitian metric. If the underly- 
ing Riemann surface has genus one then one can proceed directly as a unit circle in 
any such bundle has an invariant contact form and (1, 0)-form satisfying (2A). For  
Riemann surfaces of other genera the holomorphic line bundles of degree + 1 are 
'universal' in that every other line bundle, of non-zero degree, can be realized as 
a quotient. 

As remarked above the unit circle in the canonical bundle is pseudoconvex if 
g = 0 and pseudoconcave if the genus is two or more. There is a biholomorphic 
map from the complement of the zero section in a degree - 1 bundle to the 
complement of the zero section in the dual degree + 1 bundle. This map carries the 
unit circle bundle relative to some metric onto the unit circle bundle relative to the 
dual metric. If we have defined a contact form and normalized (1, 0)-forms by the 
procedure outlined in Sect. 3 on the degree + t bundle then we can use the 
biholomorphic map to pull them back to the degree - 1 bundle. Let 0 denote the 
pulled back contact form and 0~ the pulled back (1, 0)-forms. If 2~ has genus g then 

* i e2i(1-o)4~O1 Ur O, = 

In this section we assume that g > 2 unless otherwise stated. 
Let ~ denote a holomorphic line bundle of degree - 1 over 27 a Riemann 

surface of genus g > 2 and M the unit circle bundle in 56' relative to some hermitian 
metric of positive curvature. To embed M into C d for some d we need to construct 
sufficiently many CR-functions. Let h. denote CR-functions which belong to/7,. In 
Appendix A we prove that the CR-functions in h, are in one to one correspondence 
with holomorphic sections of ~ - n  According to Theorem A16 we can embed 
M into ~d in such a way that all the embedding functions belong to ~-,. This allows 
us to apply Theorem 2.23 with k = 2( 9 - 1) so that we can study all structures with 
'non-negative' Fourier coefficients, that is, those with ~9 ~4t1-0) (3) ) .  Thus Pro- 
position 2.20 implies that the sections ~O e ~4t1-0)(9)  of sufficiently small C4-norm 
define embeddable perturbations of the U(1)-invariant structures. To obtain such 
results for hypersurfaces in bundles which are covered by ~ we simply use the 
equivariant perturbation result, Corollary 2.26 and embeddings of the quotients 
defined by holomorphic sections of large powers of the underlying line bundle. 

Let M be a U(1)-invariant strictly pseudoconvex CR-manifold, set 

(4.1) , Y ,=M/U(1)  and L = M x x - l • ,  
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with the induced complex structures. As proved in Appendix A, L is a holomorphic 
line bundle over Z. Lemma A4 implies that M has a CR-embedding into L; in the 
sequel we frequently identify M with its image in L. Since M is pseudoconvex it 
follows that L is a bundle of non-zero degree. After possibly reversing the direction 
of the infinitesimal generator of the U(1)-action, we can assume without loss of 
generality, that deg L < 0. The classical theory of holomorphic line bundles over 
Riemann surfaces implies the existence of a holomorphic line bundle of degree - 1 
over Z which covers L. We denote such a bundle by ~ with p denoting the 
holomorphic projection 

p: ~ - - ,  L . 

Set k - card { p -  1 (x) }, x e M and 

~I = p-Z(M) . 

If 5~ r is given the CR-structure induced from ~ then p restricted t o / ~  is a CR- 
immersion. Functions on M pull back via p* to functions on ]~r lying in the 
subspace 

,-@k(5,1) = O Fkj(-~). 
j =  --of) 

For integers 1, m define the subspaces of functions on 3~t by 

~p(J~,l) = + Fz+~(2~,l). 
j = 0  

The pullback identifies functions in ~ ( M )  with functions in ~ ( M ) .  The CR- 
functions in ~ , ( M )  pull back to functions in ~-~(M). 

Let g denote the genus of the Riemann surface, 2: defined in (4.1). We let ~) be 
the flat line bundle parametrizing the deformations of M. Using this covering the 
deformations of the CR-structure on M can be parametrized by a space of sections 
of ~. 

Proposition 4.2 Suppose that M is a U(1)-invariant CR-manifold and Yl the 
k sheeted cover defined above. Let {Z~} denote the normalized sections of T O, 1M1 
which satisfy 

U ~ , Z ~  = e2i (~  a)ePZ~ . (4.3) 
The map 

~ - ,  p,(Z, + O~z~) 

defines a surjection from ~" k(z _g)+,(~) ~ o~ ~ _o)(~) onto deformations of the given 
CR-structure on M. 

Remark. If g = 1 then M can be taken equal to M and k = 1. 

Proof It is clear that if 

4, ~ s ,~< l  - g) + k ( ~ )  �9 ~ ' 2 ~  - g) (~)  

then p , (Z ,  + ~b~Z~) defines a CR-structure on M. Moreover since p is a CR- 
immersion of_/~ onto M the section ~ = 0 corresponds to the initial U(1)-invariant 
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structure on M. What remains is to show that every deformation of the given 
structure on M arises in this way. 

Let H denote the real 2-plane field on M underlying the given CR-structure. As 
a consequence of the theorem of Gray on the stability of contact structures, [Gray] 
any deformation of this structure is specified by choosing a line subbundle 
l c H | �9 which does not coincide with T I ' ~  at any point. The condition 

p, (Z,q + d/, (q) Z,q) ~ Iptq), 

defines a section ~h of ~. The transformation formula (4.3) implies that ~h, is of the 
required form. 

To study the embeddability of such structures we apply Corollary 2.26 to solve 
the perturbation equation 

[ p , ~ q ( x  + 4) = 0 

on M by pulling back to M. It ff is the pullback of a CR-function from o~,(M), 
n sufficiently large, and ~ ~ ~ ] t l  -o)(~) is of sufficiently small C4-norm then there is 
a function ~ e~,kk(M) which satisfies 

~ ( ~  + 3) = o .  

Clearly ~ + ~ is the pull back of a CR-function on M relative to the pushed forward 
structure. This argument  shows that if the C4-norm is small enough then the 
immersion of M defined by an embedding of M can be perturbed to give a k- 
equivariant immersion of the perturbed structure on 2~ which in turn defines an 
embedding of the pushed forward structure on M. 

To summarize we have shown: 

Theorem 4.4 Let M be a three dimensional pseudoconvex CR-manifold with a free 
transverse CR-action by U(1). Suppose that the associated Riemann surface, Z, has 
genus g and that M --* Z is the unit circle bundle in a line bundle of degree k < O. With 
M and ~ as defined above the sections in ~ t x - g ) ( ~ )  of sufficiently small C4-norm 
parametrize a space of embeddable CR-structures on M. 

Remarks. 1. In the genus one case the covering argument can be dispensed with as 
the line bundle ~3 is trivial and thus embeddable perturbations are parametrized by 
~o(M).  
2. If k > 2(g - l) then the non-constant CR-functions on M lift to ~-2g_1(214). 
Thus we see that if t: M -+ ed is any embedding then all sufficiently small perturba- 
tions with 'non-negative' Fourier coefficients can be realized as small perturbations 
of I. On the other hand if 1 _< k _< 2(g - 1) it is conceivable that certain perturba- 
tions with 'non-negative' Fourier coefficients cannot be realized as deformations of 
a given embedding of M. At least our iteration scheme for solving the perturbation 
equations may fail. This is considered in greater detail in Sect. 8. 

5 Special framings and 'positive' Fourier coefficients 

So far we have insisted on pseudohermitian structures and framings that satisfy the 
very strict conditions in (2.1). These conditions are useful for constructing normal 
forms and studying the solvability of Ob but are more restrictive than is necessary to 
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define what is meant by 'positive' or 'non-negative' Fourier coefficients. In this 
section we introduce a more general class of pseudohermitian structures and 
framings for which these notions agree. 

In order for the Fourier decomposition of(0, 1)-forms to make sense all that is 
required is that the contact form be U(1)-invariant and the local framing of A 1'~ 
satisfy 

( 5 . 1 )  Uq~O 1 = e - " * O  1 . 

The dual (1, O)-vector field Z satisfies 

(5.2) Uc~,Z = e - ~ " * Z  . 

Suppose that 0, flare two U(1)-invariant contact forms and 01, 0 "1 are (1, 0)-forms 
defined in an open set U, which satisfy (5.1) and 

dO = iO 1 ^ 0  i, d f l =  ifl 1 ^ f l i  , 

respectively. If Z, Z denote the dual (1, 0)-vector fields then 

; Z =  u Z  ; 

from (5.1) it follows that u is 
perturbation of Z by setting 

U(1)-invariant. 

Z* = Z +  ~ z .  

Suppose that ~ defines a local 

In the normalization defined by Z this CR-structure is represented by 

(5.3) 2 + ~Z. where q7 = t i 0 .  
u 

Since u is U(1)-invariant it follows from (5.3) that 

(5.4) ~ e o ~ k ( u )  if and only if f f e ~  k . 

Thus we see that the notion of an equivariant perturbation with 'non-negative' 
Fourier coefficients is well defined relative to all local representations of the 
CR-structure satisfying (5.1). 

The reason we introduced normalized sections was to prove Proposition 2.6. 
This result carries over in a simple way to the more general context presently under 
consideration. Suppose that 0, 01 are normalized according to (2.1) and that if, 0 "1 
are as above. Let ff~ denote the Jb-operator defined by if, it is given locally by 

O~f= 2 f f l  1 . 

The L2-norm of a (0, 1)-form is given locally by 

(5.5) <ff l i ,  f f l i ) v  = S [ f l2 f l ^  dO'. 
v 

Using (5.5) we derive that 

(5.6) ff~.(gfli) = - -  1)-2Zuu2g if 2~ = uZ,  f l =  vO. 

Since u and v are U(1)-invariant we see from (5.6) that ker Oy,* is also orthogonal to 
~1 .  The above remarks make clear that a (0, 1)-form belongs to ~ 1  relative to 01 
if and only if it belongs to ~-1 relative to fll. 
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The cocycles defining the flat line bundles introduced in the previous sections 
can be trivialized'over the sheaf of smooth U(1)-invariant functions. That is we can 
find non-vanishing functions ~b~ ~ cr ~ (U,) which are U(1):invariant and satisfy 

(5.7) qSj = eil~ p in U~ ~ Up. 

Define a (1, 0)-vector field by 

w Fu~ = r  

This vector field is easily seen to be globally defined on M. It satisfies (5.2), therefore 
we can use this globally defined vector field to parametrize deformations of the 
CR-structure by functions in cr with sup-norm less than 1. As remarked 
above the deformations with 'non-negative' Fourier coefficients relative to this 
normalization coincide with that introduced previously. If the quotient surface 
Z has genus # and the line bundle L has degree k then ~k t l  _g)(~r) parametrizes 
these structures. 

So far we have only considered deformations of the CR-structure with the same 
underlying contact structure. The theorem of Gray on the stability of contact 
structures implies that these deformations actually include representatives of all 
deformations, [Gray, Sect. 5]. If H1, H2 are two contact structures on M invariant 
under U(1)-actions we would like to find a contact transformation from H1 to 
H2 which intertwines the actions. The following argument indicates that this is not 
an unreasonable expectation: 

Topological Lemma 5.8 I f  M is a oriented circle bundle over an oriented surface, S, of 
genus at least 2 then ~I(M) is a central extension of hi(Z). The center of z~(M) is 
generated by the fiber of M ~ Z. 

Proof. Let N denote the subgroup of ~z~(M) generated by the fiber. In the case at 
hand Proposition 11.4.5 in [JS] implies that if ~ e N  then the centralizer of ~, 
C~ = z~ (M). On the other hand if ~ r N then Proposition 11.4.7 in [JS] implies that 
C~ is abelian. Since ~ (M) is non-abelian this implies that the center of nl(M) is 
exactly N. Since 

rq(S) = rq(M)/N 

this proves the lemma. 

From this lemma we deduce that the surfaces 

(5.9) Z j = M / U  J, n j : M ~ Z j  j =  1,2,  

are diffeomorphic and the line bundles 

L~ = M xzL , C 

have the same degree. Let 0~ be contact forms which are invariant under the actions 
U J normalized so that 

(5.10) ~ 0 j =  2n, for all qeS~ .  
~r ~ (q) 
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It follows from the U(1)-invariance and (5.10) that the forms iOj define connection 
forms for the principle bundles defined in (5.9). The Euler classes of the bundles 
L i are given by dOJ/2n. Since these bundle are diffeomorphic it follows that 

(5.11) ~ dOi = ~ doz .  
r Z2 

Thus we have defined volume forms, dOj, on Sj, j = 1, 2 with the same total 
volume. The theorem of Moser, see [Mos], implies that there is a diffeomorphism 

such that 

(5.12) ~1" d02 = dO1 �9 

We would like to use the connections to lift ~k and obtain a map 7 j which makes the 
following diagram commute: 

M q',  M 

(5.13) ~, ~ + ~2 

Zl ' ) Z 2  �9 
V, 

This can of course be done over contractible subsets of S1, the lifted map is 
a contact transformation. However ~O defines a monodromy representation of 
n l (Z x) in U (1). The map can be lifted if and only if this representation is trivial. As 
this would take us too far afield we leave it as a conjecture that, at least for maps 
sufficiently close to the identity, by composing ~k with area preserving maps on the 
right and left a map ~,' can be found for which the monodromy representation is 
trivial. 

Assuming this conjecture we observe that the notion of 'non-negativity' of 
Fourier coefficients has strong invariance properties. Let W, Z define two U(1)- 
invariant CR-structures relative to the actions U 1 and U 2 respectively. Let �9 de- 
note a contact transformation conjugating U 1 into U 2. Let F. and G. denote the 
Fourier subspaces relative to U 1 and U 2 respectively, with the notations ~ and 
fr defined by (2.25) with the obvious alphabetic modifications. Since �9 conjugates 
the two U(1)-actions it follows that 

(5.14) ~,*(G,) = F . .  

Thus we see that if 4 "  Wis represented by Z + q~Z, for a function q~eF-2,, then 
a deformation if" + ~O W is represented by 

(5.15) (Z + q~Z) + ~k'(Z + 0Z), where ~O' = ~-~*(~k), 0(eFo. 

Thus ~k e (#k if and only if ~k' e ~-k. Rewriting (5.15) in the normalization associated 
with Z we obtain that if" + ~k W is represented by 

(5.16) Z + - - Z .  1 + CqJ' 
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Since Ilk'lit ~, I[(0llt ~ < 1 so is 1t(~' + tO)/(1 + O~b')llL *. Suppose that ~beffk2m. 
Since q~ e F_ 2,. it follows that 

(5.17) (1 + ~ , ) - 1  e~ -~ .  

From (5.16) and (5.17) we conclude that 

0 '  + ~0,e (5.18) i 

To complete this part of the paper we show that deformations of a CR-structure 
defined by ~ with 'non-negative' Fourier coefficients can be extended to integrable 
almost complex structures on the unit disk in the total space of the line bundle 
containing M. This was proved in [B1Du] for CR-structures on S 2"- 1, John Bland 
suggested that this was also true in the case at hand, [Bll]. For simplicity we only 
consider the case where the line bundle L has degree - 1. The general case is 
treated by taking quotients. This result is the content of Theorem 4.1 in fLel] ;  
Lempert allows somewhat more general circle actions. 

Suppose that M is a U(1)-invariant CR-manifold embedded as the unit circle 
bundle in a line bundle L of degree - 1 over a Riemann surface 2; with genus 
9 4: 0, 1. We cover S by holomorphic coordinate neighborhoods {V~} with lifts 
{U~} to L. Let z~ denote a local holomorphic coordinate in V, and x~ a fiber 
variable for L Ivo obtained, as in Sect. 3, by transference from a bundle which 
covers the canonical bundle of S. There are sections Z~ of TI"~ ~ M) which 
satisfy 

(5.19) Z~ = eit'pZt3 in U~ ~ Up c~ M .  

As a submanifold of L, M n U~ is given by 

(5.20) h~(z~)lx=12= 1 , 

where h,(z,) is a positive function of the coordinate z,. The (0, 1)-vector field Z,,  is 
given in these local coordinates, by 

t~eh'xo 7 

These vector fields also satisfy 

S g ~ , Z a t  = e 2 i ( o - 1 ) Z a  , 

Suppose that ~b e o~a(1 -g)(~) is defined along M and has sup-norm less than one, so 
that 

defines a strictly pseudoconvex CR-structure on M. Observe that Z ,  and Z,  are 
defined in L ~ U, and satisfy 

(5.21) Z,  = eli'#z# in U, c~ U#. 

Using the local coordinates, (z,, x,)  we expand q:, to obtain 

(5.22) ~h=(z~, x~) = ~ a~,(z,,)xd. 
i=4(1  -e) 
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The expansion is uniformly convergent for h~,(z~,)lx~,l z = 1 and defines an extension 
of q;, (z,, x,) as a function meromorphicalong the fiber of L F v, with a pole of order 
4 ( 0 -  1) along the zero section. Let ~,  denote this extension, it is a section of 

pulled back to L\{0}. 
To extend the perturbed CR-structure to an almost complex structure on L we 

set 

2 ~  = (hax~)  2( t  - g ) Z ~  

(5.23) where Z ; = [ ( 0 e .  O~e "2~632,,) q- (h~x~)2(o-1)~Z~ 1 �9 
From (5.20) it follows that 

2~ = (h~lx~12) 2(1-~ + ~ Z ~ ,  

agrees with Z~ along U~. Since h~,(z~,)lx~,l 2 is simply a scalar function on L in local 
coordinates, the extended vector fields satisfy (5.21). Moreover (5.23) implies that 

�9 / ~  \ 2 ~ z - o )  _ 
(5.24) Z'~ = e'l'*~'_-~#) Z'#, in U ~  Ua, 

at least on the complement on the zero section. The ratio ~/:~a actually depends 
only on z~ and therefore (5.24) extends to the zero section as well. 

The vector field Z" is smooth and non-vanishing on the closed unit disk bundle. 
It is defined on this subset up to a non-vanishing multiple. Observe that the 
perturbation term in (5.23) can be rewritten as 

(5.25) hZ(g-1)x~~ 0~ h~ " 

From (5.25) we see that this vector field is smooth and holomorphic as a function of 
x, up to the zero section. Since 

2~0-1)  4~g- 1 ) ~ ( x ~ ,  = lh~ x, z=)l < i where h, lx~l 2 1 

the maximum principle implies that this inequality holds for h~ Ix, 12 ~_~ 1. Therefore 
{Z',} and {3~,} define an almost complex structure on the closed unit disk bundle 
extending the perturbed CR-structure on the boundary. Since x4(~ is holo- 
morphic in x, it follows from (5.23) that 

[Z~, 0~,] = -~ - a~ . (5.26) -, oe h, 
h~ 

From (5.26) we conclude that the extended almost complex structure is integrable. 
Thus we have proved: 

Theorem 5.27 (Bland-Lempert) I f  M is the strictly pseudoconvex unit circle bundle 
in a holomorphic line bundle, L of degree - 1 over a surface of genus 9 then the 
perturbations of the CR-structure represented by functions 

~k~4(x-o ) (~ )  with II~,IIL~(M) < 1 

extend to integrable almost complex structures on the unit disk bundle in L. 
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Remark. The zero section of L remains a compact holomorphic curve relative to 
the perturbed CR-structure. As pointed out by Lempert this implies that there are 
nearby embeddable structures which are not parametrized by functions with 
'non-negative' Fourier coefficients. For  example let V be the null variety in ~3 of 
a homogeneous polynomial p(z) and M be the intersection of V with the unit 
sphere. The polynomial can be chosen so that M is covered by a manifold satisfying 
the hypotheses of Theorem 5.27. For small e, the intersection of p(z) = ~ 4:0 with 
the unit sphere is a strictly pseudoconvex deformation of M. The variety it bounds 
contains no compact holomorphic curves, [Le2]. 

If ~ ~ ~4k (1 _g)(~)) then the extended structure has the same equivariance prop- 
erties as the CR-structure on M defined by ZS + qJZ. This allows the extension of 
Theorem 5.27 to the general U(1)-invariant case treated above. We leave this to the 
interested reader. 

As a corollary of this theorem we have: 

Corollary 5.28 Any structure satisfying the hypotheses of Theorem 5.27 is embedd- 
able in C a for some d. 

Proof. Applying the construction in Sect. 5 of [Lel ]  we obtain a defining function 
for M q L which is strictly plurisubharmonic on a neighborhood of the image of 
M in the unit disk bundle. This allows us to apply the "Newlander-Nirenberg with 
boundary" proved in [Cat] to conclude that the unit disk bundle in L has the 
structure of a complex manifold with boundary where the CR-structure on the 
boundary is that defined by 4. Finally we apply Theorem 5.3 in I-Ko] to conclude 
that the range of 8b is closed and therefore the structure is embeddable. 

6 Generic non-embeddability in the holomorphically trivial case 

In [BuEp2] it is demonstrated that the generic CR-structure on the three sphere 
with the standard underlying contact field in non-embeddable. This of course was 
well known for generic cg~-structures, however in the cited paper this is shown for 
generic real analytic structures as well, see [BuEp2, p. 830]. Perhaps more import- 
ant than the generic non-embeddability is the construction of an explicit obstruc- 
tion to embedding. This obstruction is obtained by considering one parameter 
families of structures of the form Z '~' = Z + t~Z. It is shown that the associated 
[]b-operators form an analytic family of operators. The analyticity statement is 
actually proved for any three dimensional CR-manifold with a trivial holomorphic 
tangent bundle. 

In this section M is a strictly pseudoconvex, three dimensional, CR-manifold 
with trivial holomorphic tangent bundle and volume form dV. Let Z denote 
a global real analytic section of T o, 1M and Z* the L2-adjoint of ,~ relative to dV. 
The perturbations of the CR-structure defined by Z are parametrized by functions 
4J ~c~~ with II qJ }lz ~ < 1, by setting 

Z ~ = Z +  ~,z. 

The associated Db-operator is given by 

(6.1) D~ = (Z* + z*gJ)(Z + r  
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It is a non-negative, self-adjoint operator o n  L 2 ( M ;  dV). We use lE~o,a~ to denote 
the family of spectral projections defined by D~. The normalization in (6.1) is 
slightly different from that used in [BuEp2] but this is immaterial for what follows. 

Suppose that 0 < 2r then the operator 

(6.2) d q' ~ ~' = [ ]  b lEIo, 41 , 

defines an obstruction to embeddability. The structure is non-embeddable if and 
only if the rank of this operator is infinite. As this operator is difficult to study 
directly we introduce the analytic one parameter family of operators d r*. If any 
derivative of d r* at t = 0 has infinite rank then so does d '* for all but countably 
many values of t. 

For  M = $3, Theorem 14.1 in [Lel ]  implies that there exists a number 2 > 0 
such that if ~, is sufficiently small and 

r k d *  > 0 ,  

then actually the rank is infinite and the structure is non-embeddable. In light of 
this it follows that if any derivative of d '* at zero has non-zero rank then the 
structures are non-embeddable for all sufficiently small, non-zero values of t. In 
[BuEp2] we conjectured that certain Fourier coefficients of $, provided local 
moduli for perturbations of the standard structure on $3. This fact was recently 
proved by John Bland, [B12, Theorem14.1].  In fact Bland discovered two normal 
forms; we call the one conjectured in [BuEp2] the inner normal form and the other 
the outer normal form. By combining Theorem 5.25 in [BuEp2] with Theorem 13.1 
in [Le l ]  and the continuity of the map between the inner and outer normal forms 
established in Sect. 14 of [B12], one can show that a structure in inner normal form 
which is a small perturbation of the standard sphere is embeddable if and only if the 
second derivative of d r* at t = 0 is zero. The detailed definitions and proof of this 
statement would carry us too far afield and will be left to a latter publication. In this 
section we extend the variational analysis presented in Sects. 2-4 I-BuEp2] to 
arbitrary U(1)-invariant structures on three dimensional CR-manifolds with trivial 
holomorphic tangent bundle. 

The first step is to compute the first and second variations of d r* at t = 0. The 
calculation is essentially identical to the derivation given in Sect. 3 in [BuEp2]. We 
simply state the result. 

Proposition 6.3 Let M be an embeddable, three dimensional CR-manifold with Z 
a non-vanishin9 section of T o' 1M and dV a volume form. Let ~ e cr 0o (M) and d r* be 
defined by (6.2), we have 

Otd  t~ Ir=o = 0, 0t2d t* It=o = 2cd*(r 

where 

(6.4) cg(g,) = 5~g, ZZf .  

Here 5o is the orthogonal projection on ker Z and 5~ is the orthogonal projection onto 
ker Z* relative to the volume form dV. 

Remark. We have corrected a sign error in (3.3) of [BuEp2]. 

The second derivative of d r v  has infinite rank if and only if qr does. This 
operator depends linearly on @. As noted above, in the case of perturbations of the 
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standard structure on S 3, it represents the complete obstruction to embeddability. 
Hopefully it will prove useful in general. In this section we show that this is a 
smoothing operator and the map ~0 --. cg(q/) is a continuous from Ck(M), for some 
finite k, to bounded operators on L2(M) with the uniform topology, Bunif(LZ(M)). 

To show that cg(O) is generically of infinite rank we use the following general 
proposition. 

Proposition 6.5 Let  ~ be a Banach space and B(H)  denote bounded operators on 
a Hilbert space with the stron9 topology. Suppose that x ~ K(x)  defines a continuous 
linear map from ~ to B(H). Either there is a constant N < co such that 

rkK(x)  < N for all x e ~  

or there is subset f~ c ~ which is a dense Ga such that 

r k K ( x ) = o o  for x e N .  

Proof  To prove the proposition we require an elementary lemma. 

Lemma 6.6 Let A ,  be a sequence of  operators in B (H)  which converge to A ~ B(H). 
Suppose that for some m <- co 

then 

as well. 

Proof  o f  lemma. Suppose that 

rkA,  < m,  

rkA < m  

rkA > m. Then we can find vectors u~, vi, 
i = 1 . . . . . .  m + 1 such that the matrix, 

alj = ( A u ,  v j )  , 

has rank m + 1. In light of the strong convergence the sequence of matrices, 

a~j= (A .u i ,  v j ) ,  n =  l, 2 . . . . .  

converges to a~j. The hypothesis implies that 

rk a~'j < m 

and therefore the lower semicontinuity of the rank for finite dimensional matrices 
implies 

rk a~j =< m.  

The contradiction proves the lemma. 
From the lemma we conclude that the sets 

R, = { x e ~ ;  rkK(x)  < n} 

are closed for each n. Suppose that for some N the set RN has non-empty interior. 
We claim that 

(6.7) N = Ru .  
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Suppose that this were not the case. Let x belong to the interior of RN and let 
y ~ \ R N .  In virtue of the linearity of K it is clear that K(ty + (1 - t)x) is an 
analytic family of operators. Since x is in the interior of RN the rk K(ty + (1 -- t)x) 
is at most N for t in a neighborhood of 0. Let ui, v ~ H ,  i = 1 . . . . .  m + 1 be chosen 
so that 

ai~ = (K(ty  + (I - t)x)ul, vj) 

has rank m + 1 when t = 1. As a[j is an analytic matrix valued function, if its rank is 
at most N on an open subset then 

r k a i ) < N  for all t .  

This contradiction proves (6.7). If (6.7) does not hold for any N, then the interior of 
R, is empty for every n. The Baire category theorem then implies that 

n = 0  

is a dense G~. This 'completes the proof of the proposition. 
Thus to show that rk cg(~) is generically infinite for ~ ~ ~ it suffices to construct 

a sequence ~, ~ ~ for which rk cg(~,) is unbounded. As in [BuEp2] such a formula- 
tion gives us considerable latitude in the choice of function space ~.  To show that 
~(~)  is a smoothing operator we use the representation of the Szeg6 kernel as 
a Fourier integral operator with complex phase and the calculus of wave front sets 
for such operators. To show that c~(qj) defines a continuous map from Ck(M) to 
Bunif(L2(M)) w e  use the simpler representation afforded by the Heisenberg calcu- 
lus. This is a symbol filtered algebra of operators contained in S*, ~. Very briefly, 
one begins with an odd dimensional manifold, N and a codimension one sub- 
bundle, ~ of TN. The Heisenberg symbol classes are denoted by S~(N), corres- 
ponding to operators in 7J~(N). The algebra is closed under compositions and 
adjoints; it has a symbolic composition formula and complete asymptotic expan- 
sions. The interested reader is referred to the excellent account presented in 
[BeGr]. 

Let M be a strictly pseudoconvex, embeddable three dimensional CR-manifold. 
The theorem of Harvey and Lawson implies that M smoothly bounds a variety, V. 
Let p be a plurisubharmonic defining function for M ~ V. The contact form 

0 = -- icOp IM 

defines the real two plane bundle underlying the CR-structure on M. 

Theorem 6.8 Suppose that M is a strictly pseudoconvex, three dimensional, embedd- 
able CR-manifold. For ~b ~ ~ ~ (M) the operator cg(~b ), defined in (6.4), is a smoothin9 
operator. There is a finite k such that the map, ~k ~ cg(r ), is continuous from C*(M) to 
Bu,ir(LZ(M)). 

Proof As is shown in [BeGr, Sect. 25] the operators 5 ~, 5 ~ ~ 7J~,er0(M) and therefore 

(6.9) ~ O Z 5  a ~ tlJ~,,o(M) . 

We deduce the second statement in the theorem from the first statement and (6.9). 
These two assertions imply that the composition 

5~OZZe e ~k-e~(M). 
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Since the Heisenberg calculus has a symbolic composition formula it follows from 
(6.9) that for any finite N we have an expansion of the symbol of cg(qj) into 
homogeneous terms with a smaller remainder term, 

N 

(6.10) a~,ero(cg(~b))(P, 4) = ~ al-j(p, ~) + rN(p, ~) . 
j = o  

1 - j  
Here a1-jzSkero(M) and the remainder term ru is of order at most - N. On the 
other hand since ~(~O) is a smoothing operator the terms 

(6.11) a l - j = 0  for j = 0  . . . . .  N .  

For  each N the computation of the remainder term requires only finitely many 
derivatives of ~b. Using the Fourier representation for the Schwartz kernel of cg(ff) 
it follows from (6.10) and (6.11) that we can estimate the sup-norm of the kernel in 
terms of finitely many derivatives of qJ. The continuity statement follows from this, 
the linearity of the map ~b -~ c.g(@) and the closed graph theorem. 

In [BoSj] it is shown that 5 a is a Fourier integral operator with complex phase. 
From Proposition 2.16 in [BoSj] it follows that the canonical relation determined 
by 5 '~ is 

C+ = U {(p, tOp;p, tOp);t~(O,~)}c T * M x T * M .  
pEM 

An essentially identical argument shows that 5 ~ is a Fourier integral operator with 
complex phase associated to the canonical relation 

C-  = U {(p, t0p;p, t 0 p ) ; t e ( - ~ , 0 ) } c T * M x T * M '  
pe M 

Set 

L + = {(p, t0p); p~M,  t~ (0 ,~ )}  and L -  = {(p, top); p~M,  t ~ ( -  ~ , 0 ) } .  

From (25.2.2) in [H6] and Sect. 7 in I-MeSj] it follows that if ue  C-~ then 

WF(~eu) = C+(WF(u) )  = WV(u) • L + 

WV(~Vu) = C -  (WF(u))  = WV(u) c~ L - .  

Since ~,Z is a differential operator it follows from this calculation that 

WF(~(~)u)  = WF(u) c~ L + c~ L -  = ~ . 

Thus cg(~) defines a map from c~-~ (M) to cg~ (M) which is the first assertion of the 
theorem. 

Suppose that ~ is a Banach space of functions on M such that the norm II" I1~ 
satisfies 

(6.12) ]lfllc,, < Ckllfll~ , 

for some constant Ck. It follows from Theorem 6.8 that cg(~ ) extends as a continu- 
ous map 

c~: ,.~ ~ B u n i f ( L 2 ( M ) )  . 

Proposition 6.5 implies that if there exists a sequence { f ,  } = ~ for which rk c.g (f,) is 
unbounded then rk( f f ( f ) )  is generically infinite for f ~  ~ .  We first construct such 
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a sequence using smooth functions then, using a result of Morrey to obtain uniform 
analytic approximations, we extend to the real analytic case. 

For the remainder of the section we restrict our considerations to M a real 
analytic 3-dimensional CR-manifold with a real analytic, fixed point free, trans- 
verse, U(1) CR-action. Let 

Z = M/U(1) 

endowed with the induced complex structure and L the holomorphic line bundle 
defined as the fiber product M Xx_x~. Since M and the U(1)-action are real 
analytic, S and L have induced real analytic structures compatible with their 
holomorphic structures. The embedding of M into L as the unit circle bundle is real 
analytic. We use these observations to construct a real analytic trivialization of 
TI,OM. 

In Sect. 3 we defined open covers of Z and M which we denoted by { V~} and 
{U,} respectively. We can assume that the sets {V,} are a basis of real analytic 
coordinate neighborhoods for Z. We also constructed local sections {Z, } of T 1' ~  
which satisfied (5.2) and 

Zp=e- ig 'PZ~ in U, n U ~ .  

Since the embedding of M into L is real analytic and the holomorphic and real 
analytic structures are compatible it follows that these local sections are also real 
analytic. To obtain a global real analytic section we need to show that the flat line 
bundle, 2 defined by the cocycle {e ig'~} has a non-vanishing real analytic section. 
This follows from the Oka-Grauert  principle. 

Suppose that N is a compact real analytic manifold. A complex neighborhood 
of N is a complex manifold, X such that 

d i m c X = d i m ~ N  and N ~ J V  

as a totally real submanifold. Using the holomorphic extensions of real analytic 
transitions functions, defining the real analytic structure on N, one easily con- 
structs a complex neighborhood ~#. Choose a Riemannian metric on JV and define 
p(p), p E ~# to be the square of the distance from p to N relative to this metric. Since 
N is smooth and totally real, there exists an open neighborhood U of N c ~ in 
which p is smooth, strictly plurisubharmonic and dp 4:0 for p > 0. Setting 

x~ = { p ~ y ;  p(p) < #}, 

it follows that, for small enough #, JV u is a smooth Stein manifold, see [Gr, Sect. 3]. 
We complexify Z by extending the real analytic transition functions relative to 

the cover { V~}. Denote the complexification by 2;'. The flat line bundle 2 clearly 
extends to define a holomorphic line bundle on Z'. This bundle is topologically 
trivial. Let Z;  denote a relatively compact neighborhood of Z in 2;' which is a Stein 
manifold. According to the Oka-Grauert principle the extended line bundle re- 
stricted to 2; 3 must also be holomorphically trivial, see [JL, Sect. 2]. Let {~b,} 
denote a non-vanishing holomorphic section of 2 relative to the cover {V~}. It 
satisfies 

dp_~ = eig,p in U~ n U~. 
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The restrictions of the ~b, to 2 are real analytic as are their lifts to M. Denote 
these lifts by {~,}. Define a real analytic section of T X ' ~  by 

(6.13) Z ru~ = ~ Z ~ .  

These are easily seen to piece together to define a global section which satisfies (5.2). 
The following classical lemma forms the basis of our construction. 

Lemma 6.14 Suppose that Z is a Riemann surface and E is a positive, holomorphic 
line bundle over Z. Given a positive integer n and non-negative integers i j, 
j = 1 , . . . , n  there exist a positive integer m, distinct points P l , . . . , P n e Z  and 
holomorphic sections sl, . . . , s, orE | such that ss vanishes to order at least ij at p], 
i :~ j and to order exactly is at Ps. 

Proof. This is a consequence of the Riemann-Roch theorem. 

Remarks. If k l , .  � 9  k, is another set of non-negative integers with kj < i] then one 
can use the same points Pl . . . . .  p, and the same integer m to find sections s~ which 
vanish to order at least k~at pj , j  4: i and exactly order ks at p~. One should also note 
that the condition on the points {Pl . . . . .  p,}  is generic relative to the Zariski 
topology on Z". 

The assumption that M is strictly pseudoconvex is equivalent to the negativity 
of L. To apply Lemma 6.14 we use the relationship between holomorphic sections 
of line bundles over Z and CR-functions established in Proposition A8 as well as 
the connection between the ker ~* and holomorphic sections of L - "  | 2 -  ~. Sup- 
pose that {U~} is an open cover of M by U(1)-invariant open sets with 0, 0~ 
satisfying (2.1) and (2.2). Proposition 2.11 implies that {f:O~} defines a global 
section A ~ 1 in ker b-g' provided 

(6.15) f~=eig~f~ in U ~ n U a  and Z ~ f ~ = 0 .  

Taking conjugates in (6.15) we see that {f~} satisfies 

(6.16) J ~ = e - i g ~  in U~nU~ and Z ~ f ~ = O .  

Thus we see that if 

{ f=O~} e F. c~ ker ~ , 

then {s e F_,  are locally CR-functions. 
The section, sfof  L - ' |  2-~ defined by these functions is holomorphic. Con- 

verse_ly if s is a holomorphic section of L - "  |  -a corresponding to {f~} then 
{f~0~ } s F. c~ ker ~*. This reduces the construction of(0, 1)-forms in the F. c~ ker ~-* 
to the construction of holomorphic sections of L - "  | 2-  

Let {q~.} be a C ~ U(l)-invariant cochain which trivializes 2 and let Z be 
defined by (6.13). For  { f~ 0~ } e F. c~ ker J* we define a 

(6.17) g Fu. = q~,f~, 

to obtain a globally defined function in /7, c~ kerZ*.  Thus the construction of 
functions in F. n ke rZ*  is also reduced to the construction of holomorphic 
sections of L - "  | 2-  
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We use Lemma 6.14 in two special cases. First we construct holomorphic 
sections {si; i = 1 . . . . .  n} of L -m | 2-1 such that 

si(pj) = O i f i 4= j ,  si(pi) :~ O . 

Secondly we construct sections (al; i = 1 . . . . .  n} of L - "  such that 

ai(Pi) = r -- 0 if i 4: j, ai(p,) = 0, ~3ai(p~) 4: 0 .  

We can pull these sections back to M to obtain functions. Denote the pull back of 
ai to a function on M by 5~. From Proposition A8 it follows that ZS~ vanishes if and 
only if 9ai vanishes at the corresponding point on M/U(1) .  Let si denote the section 
si pulled back to M, conjugated and multiplied by the cochain {q~} as in (6.17). 
These are functions in ker Z*. If we let {qi} c M denote a choice of preimages of 
{Pi} then we have proved the following proposition: 

Proposition 6.18 For each n > 0 there exist distinct points ql . . . . .  q , ~ M  and 
functions si, ~i, i = 1 . . . . .  n such that 

Z*~  = O, gi(qA = a~j; Z ~  = 0, z~(qj)  = a~. 

Let {~=} be a sequence of functions in (d~(M) which converges, in the sense of 
distributions, to a sum of a-masses concentrated at the points ql . . . . .  qn. Since 
{gj} c ke rZ*  and {Sj} c kerZ,  we have 

A,. = (cg(z.,)5,, ~j} , 

(6.19) = ( , , , ZS , ,  gj)  . 

This sequence of matrices converges to the n x n identity matrix. Since n is 
arbitrary, Proposition 6.5 implies that rk (g(~) is unbounded for ff ~ (g~~ 

Morrey proved that a compact real analytic manifold has a real analytic 
embedding into IR' for some I, see [Mo].  

Morrey's  theorem. I f  N is a compact, real analytic manifold then for some 1 there 
exists an analytic embedding 

t : N ~ I W .  

The following approximation result is a simple consequence of Morrey's  
theorem; for the sake of completeness we include a proof. 

Proposition 6.20 I f  N is a compact real analytic manifold with a family o f  complex 
neighborhoods, JV'u, then for  kt sufficiently small the restriction of  functions holomor- 
phic on JV'~ to N is dense in cg ~ (N). 

Proof. Let t denote an analytic embedding of N into ]R t with coordinate functions 
( x ~ , . . . , x t ) .  Since N is compact there is a #o > 0 such that the functions x~, 
i = 1 . . . . .  I have holomorphic extensions to JV'Uo. This in turn defines a holomor- 
phic map, 

t: W~0 --, r  

which extends t. 
If  ~k ~ c~o (N) a standard argument shows that there is a function ~ ~ ~ ( ] R  z) 

such that 

~ , (~ , )  = ~ , .  
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By convolving ~ with the heat kernel for IR ~ we can obtain a sequence of functions 
{~"} which extend as entire functions to C ~ and such that 

lim II ~em - ~ II c~r = 0 ,  
r a  ---~ oo  

for any k. Setting 

if" = t*(~, , ) ,  

we obtain a sequence of holomorphic functions defined on XUo for which 

lim II r -- r II C~tM) = O, 

for any k. 
Let ~'~ denote a family of complex neighborhoods of M as in Proposition 6.20. 

Let C~(M) denote real analytic functions on M which have a bounded holomor- 
phic extension to Jr We use 

I[u{[u = sup If(P)l 

to define a norm on C~(M). Standard Cauchy estimates imply that these norms 
satisfy (6.12) for any value of k. Proposition 6.20 implies that if # is sufficiently small 
then we can uniformly approximate functions in cr by functions in C~(M). 

Proposition 6.21 I f  l~ is sufficiently small then for any n ~ IN there exists a sequence 
{qb,} c C~(M) such that 

(6.22) lim rk c~(tpm) = n .  
m ~ o o  

Proof Fix a positive integer n, let {zm} denote the sequence constructed in the 
proof of Proposition 6.18. It follows from the Proposition 6.20 that if we choose 
a positive sequence {6" } then, for sufficiently small #, there is a sequence 

{r c C~(M) 

such that 

(6.23) II Cm - -  "Cm II L~(M) ~ (~" �9 

Note that # is a fixed positive number. By choosing a sequence {6,,} tending to zero 
sufficiently fast we can arrange that 

has rank n for large m. This proves the proposition. 
As a corollary of Theorem 6.8, Propositions 6.5 and 6.21 and the standard 

Cauchy estimates, we have 

Corollary 6.24 For # sufficiently small the operator ~(~ ) has infinite rank for a dense 
G~ in C~(M). 

This corollary, Proposition 6.3 and Lemma 2.33 in [BuEp2] give the generic 
nonembeddability result. 

Corollary 6.25 I f  M is a U (1)-invariant, real analytic three dimensional CR-manifold 
which has a real analytic global section of T I ' ~  that satisfies (5.2) then, for 



3 8 4  C . L .  E p s t e i n  

I~ sufficiently small, there is a dense Gb, (#~ ~ C'~(M) such that if ~O ~ (#u then Z + ~OZ 
is not embeddable. 

Remark. It would be interesting to obtain a precise description of those ~ for which 
cg(O) o e 0. In case that M = Sl(2, N)/F, where F is a co-compact discrete subgroup 
this may be possible using representation theory. I would like to thank Bruce 
Kleiner for help clarifying the material in this section. 

7 Generic non-embeddability for quotients 

In this section we extend Corollaries 6.24 and 6.25 to U(1)-invariant CR-manifolds 
which are quotients of CR-manifolds of the type considered in the previous section. 
We adopt the approach used in Sect. 4 of replacing analysis on the quotient with 
'equivariant' analysis on the cover. Let M denote a real analytic U(1)-invariant 
CR-manifold. Define Z and L as in (4.1) and s162 and M as in Sect. 4. The line bundle 
s is of degree - 1 and /~, the unit circle bundle in s defines a k-sheeted 
CR-cover of M. Let p denote  the projection of M to M. 

We suppose that M is endowed with a real analytic section Z of T O, 1 ~ and 
a contact form, so that (5.2) is satisfied with m = 2(9 - 1). Then Db = -- Z * Z  is 
U(1)-invariant, that is 

(7.1) U~ Db = []bU,~ �9 

Since the contact form is U(1)-invariant it descends to the quotient. Using this 
contact form we obtain a representation of fb on M as a differential operator. The 
contact form also defines a volume form which in turn defines an adjoint for 0-b and 
an associated [] b-operator on M. Denote this operator by ~ b- From this construc- 
tion and (7.1) it follows that 

(7.2) P* [~b = Dbp* �9 

Suppose that E has genus 9, then according to Proposition 4.2 the deformations 
of the g i~ n  U(1)-invariant CR-structure on M are parametrized by 
~ t l - o ) + k ( M )  G ~2~-9)(M).  Let ~ belong to this subspace, set 

20 = Z + O z ,  

and let [B~ denote the associated ~ r o p e r a t o r .  This operator no longer commutes 
with the action of U(1), however if 

2~j 
qgi = ---~--, j ~ g ,  

then 

(7.3) U* IZ* �9 j O, ,k  q~j b = = . . . .  

From this we conclude that []~ satisfies 

(7.4) p* D~ = [ ]~p* ,  

with D~ denoting the operator induced on cr176176 by the pushed forward CR- 
structure and contact form. 
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The pullback defines an isomorphism between ~~176 and ~-k(Al)n ~g~(M). 
From (7.3) and (7.4) we conclude that 

(7.5) [ ] ~ k ( ~ )  C ~k ( )~ ) .  

Proposition 7.6 Suppose that 

(7.7) ~ e~(1-0)+k(M) ~) ~ - ~  - o)()~t), 

the self adjoint extension of  Q~b on L2(M) is unitarily equivalent to the self adjoint 
extension of  [ ~  I ~ ( ~ ) ~ ( ~ ) .  

Proof This is immediate from (7.3), (7.4) and (7.5). 

Let IEm.~l denote the spectral projections defined by [2b ~. AS a consequence of 
(7.5) and the functional calculus it follows that ~ k ( ~ )  is an invariant subspace of 
�9 ~,~] for all 2. If IE~,~ denotes the spectral projections defined by ~ then 
Proposition 7.6 implies that 

~q, ^ q, ̂ q, 
= [ ]  b ]E[o, z] 

is unitarily equivalent to 

From these observations we conclude 

Proposition 7.8 I f  ~ satisfies (7.7) then d~ ~tq, It=o is unitarily equivalent to 

This proposition reduces the variational calculation on M to an equivariant 
calculation on M. 

From Proposition 6.3 and elementary linear algebra it follows that 

rk 02~IJ ' r,=o = rkW(~){~k(~). 

Let ~k(~O) denote if(O) r~k(fi). As in the previous section we first produce a smooth 
sequence 

(7.9) {~m} c ~k~l-g)+k(M) • ~ g ~  -o)(M) 

so that rk (~k (Zra)) tends to infinity and then approximate by real analytic functions. 
Applying Lemma 6.14 we conclude that for each n we can find points 

{Pl . . . . .  p,} and a positive integer m such that there are holomorphic sections 
{O" 1 . . . . .  an} of o~ 9-rak and holomorphic sections, {sx . . . . .  s,}, of s | 
2-1 which satisfy 

(7.10) c3ffi(Pj) = (~ij, si(pj) = 6ij �9 

For i = l . . . . .  n let {qu,J = 1 . . . . .  k} c ~t, denote a choice of 7lk-orbit lying over 
Pi. The sections ai, i = 1 . . . . .  n lift to CR-functions on M in Frak. As before we lift 
the sections {si} to sections in Frak_Ztl_g)(2-1). Denote by {si} the functions 
obtained by conjugating the lifted sections and multiplying by the cochain { ~,} 
defined in (6.17). As before these functions lie in kerZ* n F2(1-o)-rak. Formula 
(7.10) implies that, by multiplying by constants, the lifted sections can be nor- 
malized to satisfy 

(j-- 1)(g-- 1) (j-- 1)(1 -g)  
(7.11) Zffra(qij) = e 4"i k 6ira, Sra(qij)  = e4~i k 3ira  . 
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Finally we can choose a smooth sequence, 

~ ' k  ~ - {Tm } C7. ,~~ 1 _g)+k(M) G ,~,,~-~)(M) , 

converging to 

(7.12) 
( j -  1 ) ( 1 - g )  

e s€ k 8q,j(p).  
i , j  

Let Am = (Cgk(Z,.)6~, gj); from (6.23), (7.11) and (7.12) it follows that 

(7.13) lim Am = k i d , .  

Let ~(u denote a family of complex neighborhoods of M. The assumption that 
the U(1)-action is real analytic implies that U, extends to a biholomorp~sm of 
some complex neighborhood J[,o. Bychoosing the Riemannian metric on ~ '  to be 
U(1)-invariant we can suppose that ~/,o is carried to itself by the U(1)-action. By 
possibly decreasing #o we can assume that the real analytic embedding of )~ into 
Nt extends to a holomorphic mapping of ~ 0  into ~t. 

Let {8,,} be a sequence of positive numbers and # < #o be a fixed positive 
number. Applying Proposition 6.20 we obtain a sequence {~k,,} of holomorphic 
functions defined on ~r which, satisfy 

(7.14) II~Pm - ~,. ILL~r < 8m ' 

Since the action of Uo on ~r is biholomorphic, the Fourier components of the 
functions 0m are also holomorphic on ~ ' , .  Let {~k;. } denote the projections of {q/m} 
into the subspace ~ l t~  -g)+k(M) @ ~ 2 ~  -o)(M). These functions are also holomor- 
phic on s//,. Since the sequence {Vm} satisfies (7.9) we can choose a sequence {Sin} 
tending to zero so rapidly that 

(7.15) lim rk ffk(0~.) = n . 
m--* o0 

The real analytic perturbations of M are parametrized by 

Cj,,k(M) C~(l~7l) c~ 

for different values of #. The functions ~kmeCu~k. Since the integer n in (7.15) is 
arbitrary Theorem 6.8 implies 

Theorem 7.16 Suppose that M is a real analytic, three dimensional CR-manifold with 
a free, transverse, real analytic action by U(1) then for each I~ < Po there is a dense 
G~, N.,k c Cu, k(M) such that if ~keN.,k then the CR-structure p . ( Z  + q/Z) is non- 
embeddable. 

8 Small eigenvalues and the stability of embeddings 

Let (M, ~-~), t e [ - e ,  e] be a continuous family of strictly pseudoconvex CR- 
structures on a manifold M. We say that a CR-function, v relative to ~-o is stable if 
there is a 0 < 6 < e and a continuous family of functions {v,; t e ( -  6, 8) }, such that 

(8.1) Vo = v ,  O ~ v t  = O . 
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For the present discussion we leave vague the sense in-which vt depends continu- 
ously on t. A CR-function is unstable if a continuous family satisfying (8.1) does not 
exist for any 6 > 0. We say that the family (M, ~-~,) is stably embeddable at 0 if every 
CR-function relative to ~o is stable. If the families in (8.1) can be taken to be 
continuous relative to the C2-topology on M then this condition implies that any 
CR-embedding 

i: (M, fro) ~ c N ,  

can be included in a continuous family of CR-embeddings 

i~:(M,O~)~IE ~, t ~ ( - f i , ~ ) ,  f i > 0 ,  

with io = i. In general 6 may have to be taken less than e, 
If (Vx . . . . .  vN) defines a CR-embedding of (M, c~ ~ and one of the coordinate 

functions is unstable then we say that i is an unstable embedding. In Sects. 2 
and 4 we observed that certain embeddings of U(1)-invariant CR-manifolds may be 
unstable. In fact Lempert and Catlin have produced an example of an unstable 
embedding for a family of U(1)-invariant structures. In this section we give 
conditions in terms of the spectrum of the associated Db-operators and the 
algebraic structure of the ring of CR-functions for a family to be stably embedd- 
able. In some sense these conditions are necessary and sufficient. 

Let M be a circle bundle of degree - t over a surface Z of genus g >= 2. We 
suppose that a U(1)-invariant CR-structure is fixed on M. From Proposition 3.9 we 
can suppose that there is a normalized contact form 0, a U(1)-invariant covering 
{U~" a~A} and sections 0J of AI"~ normalized by (2.1). Let Z ,  denote the 
sections of Tx'~ dual to 0~. As in the previous sections we treat this 'universal' 
case in detail, with the quotients following by using equivariant analysis on g~f. 
Unless otherwise stated, an object 'v~', indexed by a, refers to a globally defined 
object whose restriction to U~ is v~. 

Recall that in terms of the normalized frame we have 

(8.2) ~bu = 2~uO~; J*(f,O~) = - Z , f~  . 

The deformations are parametrized by sections {~,} of the flat line bundle ~ de- 
fined in (2.17). The normalized contact form defines a volume form, dV = 0 ^ dO, 
and therefore an L2-structure on M. As in Sect. 2, we define 

= ( 2 .  + . 

Since the frame 0~ satisfies (2.2) we can use dV to define an L2-structure on 
(0, 1)-forms. This in turn defines the adjoint of ~-~b: 

= - ( z ,  + 

The associated Laplace operator is given by 

u b U b  �9 

We let 6P~' denote the orthogonal projection onto the ker ~ and . ~  denote the 
partial inverse to 5~ ,  they satisfy: 

(8.3) .~' D~ = VI~.~' = Id - bo~,. 
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For simplicity we use S~ and .~ to denote these operators relative to the unpertur- 
bed structure. If t /=  f~0~ is orthogonal to the kernel of ~'~ * then the unique solution 
of the equation 

orthogonal to ker t~,  is given by 

(8.4) 

Otherwise stated 

Y u=n, 

u = .~*cV~*rl. 

(8.4') ~-~'b S'~~'* = Id - S~ ~' , 

where 6 ~* is the orthogonal projection onto ker J~*. We denote the ker ~-~ by .~o; 
as above ~ refers to ker Jb. 

Suppose that v is in -~*, this implies that 

(8 .5 )  & v  = - 

Since the right hand side of (8.5) lies in the range of Ub it follows from (8.2) and (8.4) 
that 

satisfies 

(8.6) 

From (8.5)-(8.6) we conclude that h = v - ~ belongs to the 9. To summarize we 
have shown that if v~.~ * then there is a function h e ~  such that 

(8.7) (Id - .~*~ , ,Z , ) v  = h . 

Proposition 8.8 Suppose that {~,~} is a section of ~ and the L 2-norm of the operator 
. ~ k , Z ,  is less than 1 then the operator (Id - ,~J*~,Z,)  defines an injection of 
.~' into 9. Conversely, under these hypotheses, if h e ~ then 

v = (Id - .~*~b ,Z , ) - lh  

belongs to ~ '  if and only if 

= o . 

Proof. If .~@lp~Z~ has L2-norm less than 1 then the operator in (8.7) is invertible 
and the first claim follows easily. 
sides of (8.7) we obtain 

From this the second statement 

Formula (8.4') implies that if we apply Jb to both 

+ = o .  

is immediate. 

Remark. Note that Proposition 8.8 does not require ~k to have 'non-negative' 
Fourier coefficients. John Bland has also obtained a result of this sort, [BI1]. 

Under the hypotheses of the proposition we can use a Newmann series to 
represent (Id - .~ ~* ~b~Z~)- 1. Several important corollaries follow from this repres- 
entation. For  each m e Z, let 

= 6 n 
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Since ,~ belongs to the functional calculus defined by C3b, (7.1) implies that  

, ~ : F ~ F m ,  for m ~ Z .  

Thus  for {~, } ~ ffkl + a~ - g)(~) it follows from (2.1 1) that  

(8.9) (~cVt ff~,Z,,).j: ~-~ __, o;k Y',~ --m+ikt, for m~2~, j ~ N o  �9 

Let  ~ , j  denote the [ j  + 4(1 - 9) ] -Four ier  componen t  of  ~, .  

Corollary 8.10 I f  ~k,~ff4~l_g)(33) is such that the operators ~O*~b~Z~ and 
~ ,~k~oZ ,  have L2-norm less than I then for mr the map in (8.7) defines an 
injection of ~ into ~m. The subspace ~o equals ~"  moreover 

(8.11) d i m ( ~ / ~  + ~ ) < dim(bm/.~r~ + ~). 

I f  m > 2(9 - 1) then the map from ~ to ~ is an isomorphism. 

Proof. The assumpt ion  that  ~ has 'non-negat ive '  Fourier  coefficients, (8.9) and the 
assumpt ion  on the n o r m  of the opera to r  ~ - ~ $ , Z ,  imply the first s ta tement  in the 
corollary. 

Let { V s , . . . ,  v~} = . ~  be representatives for a basis of .~m~/SS~+ 1 and set 

We claim that  the functions {h~ . . . . .  ha} are linearly independent  mod.~,~+~. 
Were this not  the case then we could find constants, {a~ . . . . .  an}, not  all zero, such 
that  

(8.12) ~, aihie~m+l �9 
i 

Set v axv~ + + aava, as the v~ define a basis for ~' " " �9 -~,,/~m + 1, we conclude that  

v ~ 0 m o d ~ + ~  . 

F r o m  formula  (8.12) it follows that  

(8.13) (Id - , ~ * ~ , , Z , ) v ~ , , + x .  

We decompose  v: 

v = v ' + v ' ,  where 0 4 : v ' ~ F , , ,  v ' ~ Y ' , , + ~ .  

Fo rmula  (8.9) implies 

(Id - ~Ob~* ~O~Z~)v" " ~.~,,+~ , 

from (8.13) we deduce that  

(~d - ~ , 7 t ' G 0 z , ) v '  = 0 .  

As v' + 0 this contradicts  the assumpt ion  on the norm of the opera tor  -~Y* ~k,oZ, 
and completes  the p roof  of  (8.11). 

F r o m  the N e u m a n n  series representat ion for (Id - .~c~ 'q ,Z~)-~ and (8.9) we 
conclude that  if h ~.~,, then v ~ , . .  Thus if m => 2(9 - 1) + I then 

The final s ta tement  follows from this and L e m m a  2.12. 



390 C.L. Epstein 

Remark. If ~, is in F4(1-9) so that ~'b is also U(1)-invariant and one could freely 
interchange the roles of tTb and J~ in (8.11) then it would follow that the inequalities 
in (8.11) are equalities. The reason one cannot do this in general is that the norm of 
.~q' is determined by the smallest eigenvalue of ~b ~ Thus .~,~* ff~Z~ may have very 
small norm while 

has very large norm. The latter operator can be used, as in (8.7), to represent 
CR-functions relative to b-b in terms of CR-functions relative to ~-~b. This prevents 
one from establishing the reverse of the inequalities in (8.11). This is a reflection of 
the classical fact that the dimension of the space of holomorphic sections of 
a bundle with degree between 1 and 2(9 - 1) depends on the bundle. 

These considerations lead to an algebraic condition for a continuous family of 
perturbations to be stably embeddable. In the remainder of this section we let ~,(t) 
denote a one parameter family of sections of ~ with ~,(0) = 0. For simplicity we 
replace notations like ~ ' " )  by .5'. 

Theorem 8.14 I f  O( t )c  ~-4(1_0)(~), t ~ O ( t )  is continuous with respect to the 
Ck-topology on sections, for some sufficiently large k > 1, and the dimensions, 

(8.15) " ~ t dlm(-~m/.~m+l), m = 0, 1 , . . .  

are independent of t then the family {M, J~) is stably embeddable at O. 

Proof As shown in [BuEp2, 5.13] the L2-norms of the operators ~ g ' ~ Z ~  and 
~*~,~oZ~ are bounded by a constant times the C~-norms of ~,~ and ~ o  respec- 
tively. Thus we can apply the previous corollary to conclude that if t is sufficiently 
small then 

(8.16) At = (Id - .~#tp~(t)Z~) 

defines an injection of . ~  into -~m. From Corollary 8.10 it follows that if m is large 
enough then this injection is actually an isomorphism. Let mo be the least such 
m for which this is true; in fact mo = 0. Suppose that this were not the case, then 
there would be a proper subspace V c "~mo-~ such that 

A t  x V ~--- ~ m o - -  1 " 

However this would imply that 

d im(-~o-  ~/-~o) = dim(V/~,.o) 

< dim (-~,,o- 1/-~mo) , 

contradicting (8.15). 
On pp. 832-3 of [BuEp2] it is shown that, since A, is a pseudodifferential 

operator of order 0 and type i i (2, 2), for each positive number s there is a constant 
CAt) such that 

(8.17) [I (At - Id)u IIH~ < cat)II u I1,,, �9 

For each s the constant CAt) depends on some finite number, k(s), of derivatives of 
r I f  gJ(t) is continuous with respect to the Ck(~)-topology on sections then the 
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constant C~(t) tends to zero as t tends to zero. This implies that, for sufficiently 
small t, we can sum the Neumann series for A,- 1 and obtain a continuous family of 
operators from H s to H s tending to the identity as t tends to 0. 

L e t f b e  a CR-function relative to the unperturbed structure. Suppose that ~(t) 
is continuous relative to the Ccs)-topology on sections. The functions 

f t  = ai - l  f 

form a continuous one parameter family in H s with 

f t E ~ t  ' f o = f .  

This proves the theorem. 
Let (fl . . . . .  fn) define a CR-embedding of (M, c~ ~ and define 

f / =  AEl f i .  

If r is continuous with respect to the Ck~4)-topology on sections then it follows, 
from the Sobolev embedding theorem, that the mappings 

it(p) =- (f~(p), . . . ,f~(p)) , 

have uniform estimates in C2(M) N. Since io is an embedding it follows from the 
compactness of M that there is an interval ( -  6, 6) such that i, is an embedding of 
M into IE u for t ~ ( -  6, 6). 

The next order of business is to relate the changes in the dimensions of the 
quotients in (8.11) to the appearance of small eigenvalues for []/,. In [BuEp2, 
Sect. 2] it is shown that if the real and imaginary parts of ~(t) are real analytic 
functions of t then [] g is an analytic family of operators. The Friedrichs' extension 
of Q~ is self adjoint for real values of t. In the cited paper it is shown that the 
spec [] ~, \ {0} consists of discrete eigenvalues of finite multiplicity, however accumu- 
lation can occur at {0}. This prevents the direct application of analytic perturba- 
tion to obtain the existence of analytic families of eigenvalues and eigenprojections 
for the 'small eigenvalues.' We make this notion more precise. Let ~(t) denote a real 
analytic family of smooth sections of ~3 such that ~(0) defines an embeddable 
structure and r denote a positive real number such that 

(0, r] n spec([] ~ = ~5 �9 

In [BuEp2, p. 821] it is shown that there is a 6 > 0 such that if Itl < 6 then 
rCspec(�9 For values of t with ]tJ < 6 an eigenvalue of []~ lying in the interval 
(0, r) is called a small eigenvalue. Let 

, ~ t  r ~  ~b (1) l l~ ~#(t) . 
= L~ b xL'[O, r ]  , 

for It] < 3 this is a real analytic family of compact operators. The non-zero 
eigenvalues of d *  are precisely the small eigenvalues of V?~. 

Proposition 8.18 Let ~b(t) denote a real analytic family o f  smooth sections o f  ~ with 
r , s r  t and 6 as above. Suppose that rk (~  r is finite for  all t e ( - 6 , 6 )  and not 
identically zero then there is an m ~ N and analytic functions #i(t), i = 1 . . . . .  m such 
that for  t ~ ( -  6, 6)\{0} 

(8.19) spec(~r n (0, r) = {#l(t) . . . . .  #re(t)} �9 
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Moreover there are projection valued analytic functions lP~, i = 1 . . . . .  m such that 

(8.20) ~ r  = lP~d t = #,(t)lP~. 

Proof From Proposition 6.5 it follows that there is a non-negative integer N such 
that 

(8.21) r k ( d ' )  =< N ,  

with equality on a dense set. For real values of t define the 'N x N characteristic 
polynomial' of d t by 

N 
ON(2; t ) =  ~ 2J( - 1)N- iaN_i (d t ) ,  

j = 0  

here ak(A) is the kth elementary symmetric function in the eigenvalues of the 
matrix A. If we set 

Z~ = t r ( d t )  k , 

then the formulae of Newton imply that there are polynomials, pj(x 1 . . . . .  X j )  such 
that 

a k ( d  t) = pk(Z] . . . . .  Ztk), k = 1 . . . . .  N 

see [Chr, pp. 436-7]. From these equations it follows easily that the coefficients of 
DN(2; t) depend analytically on t. Using elementary linear algebra one can show 
that, for real values of t, the non-zero eigenvalues of d '  are among the roots of 
DN(2; t). A standard argument from finite dimensional self adjoint, analytic per- 
turbation theory, shows that these roots are given by analytic functions 
{21(0 . . . . .  2u(t)}, see [Ka, Chap. 2, Sects. 1, 6]. 

From among these functions we can select a maximal set of distinct non-zero, 
functions which we denote by {#1(0 . . . . .  /~,,(t)}. This completes the proof of (8.19). 
The set of values of t for which any of the equations 

pi ( t )  = # j ( t ) ,  i :# j, pi(t) = O, i = 1 . . . . .  m ,  

has a solution is finite. Let E denote this set, for t ~ E let ~[ denote the orthogonal 
projection onto the k e r ( d  t -  #i(t)). For each ie{1 . . . . .  m} define an analytic 
family of operators by 

d2 
(8.22) P~ = ~ ,~ [-I ( 4 -  #j(t))(~-  []~)-l-- 

I~l=r j+i  27ri' 

For  t BE it follows from the spectral theorem for self adjoint operators and the 
functional calculus that 

(8.23) P~ = kti(t) I-] (#,(t) -- I~( t ) )~  . 
j=r  

Because the norm of ~'~ is at most 1 we conclude that, for any functions 
u, v e L 2 ( M ) ,  the divisor of the analytic function <P~u, v>, in a small disk about 0, 
satisfies the inequality 

(8.24) (<P,u,v>) ~ (#,(t) I-I ( # i ( t ) -  #j( t ) ) ) .  
j , i  
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From (8.24) it follows that 

(8.25) ~ I  = P ~i(t) (~i(t) - ~ j ( t  , 
j i 

defines a weakly analytic family of operators in a small disk about 0. From (8.23) it 
follows that for t r E 

(8.26) ~'~ = F~. 

Since the notions of weak and uniform analyticity coincide for bounded families 
of operators, IP~ define analytic families of projection operators. For tr  E the 
operators F~ are in the functional calculus of []~, and therefore 

(8.27) ~r = 1P~d t =  #i(t)IP~, i =  1 . . . . .  m for t e E .  

Since E is a finite set this extends, by continuity, to t ~ E as well. This completes the 
proof of the proposition. 

Above we observed that the CR-functions in 9,, are stable for sufficiently large 
m in that for each function u ~ ~m there is a continuous family of functions ut e ~ 
with Uo = u. Using the analytic family of projections obtained in the proposition we 
can show that the small eigenvalues are connected with unstable CR-functions. 
Since the eigenvalues #i(t) tend to 0 at t = 0 it follows that 

range IP ~ c ~o . 

Proposition 8.28 Suppose that the quotient o f  M by U(1) is a surface of  genus g, then 
range(lP ~ has a trivial projection into ~ og_ 1, for i =  1 . . . . .  m. 

Proof  The structure corresponding to t = 0 is U(1)-invariant thus the Fourier 
components of a CR-function are also CR-functions. As the IP ~ i = 1 . . . . .  m are 
orthogonal projections onto subspaces of .~o it follows that for each i there is an 
orthonormal set of CR-functions {u~j,j = 1 , . . . ,  n~}, i = 1 . . . . .  m such that 

ni 

(8.29) lP~ f = ~ ( f  u,j)ui~ . 
j = l  

Suppose that for some i , j  uij has a non-trivial projection into .~og_ 1, denote it by v. 
Using Corollary 8.10 we conclude that 

vt = (Id - ~ 8 ~ k , ( t ) Z , ) - ~ v  

is an analytic family of functions which satisfies 

(8.30) D/,v, = 0; Vo = v .  

From (8.27) it follows that 

Db~ivi  ~ ' ~ v ,  = O . (8.31) ' ' = 

On the other hand it follows from (8.29) that IP~ 4:0  and thus ~ v t  4:0  for t in 
some open interval about  0. The function /~(t) does not vanish in a deleted 
neighborhood of 0, therefore in this neighborhood 

t 3 ~ ' ~ v t  = ~,(t)~'~v, 4: 0 .  

This contradicts (8.31) and completes the proof of the proposition. 
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To connect this result to the question of stable embeddability we consider the 
following question: given a function v e .~o is there a continuous family of functions 
v, e-~' with Vo = v? 

Proposition 8.32 I f  v lies in the range of  IP~ for some i e { I . . . . .  m) then there does 
not exist an L2-continuous family, vt, with 

v tE~ t  arid v 0 = v .  

Proof. Suppose that such a family exists, call it v,. Since the family is continuous in 
the L 2 topology and 

lP~ vo = Vo 

it follows that for some open interval 

(8.33) P~v, 4= 0 .  

From (8.29) we conclude that 

[:3blPivt = IPi IS]by, = 0 .  (8.34) ~ , t 

On the other hand (8.20) implies that 

t U~lP, v, = #,( t)F~v~.  

Since #i(t) 4= 0, for t in a deleted neighborhood of 0, this contradicts (8.34) thus 
proving the proposition. 

Corollary 8.35 A real analytic family, ~k(t) ~ ~4(1-g) (~)  of  CR-structures is stably 
embeddable at 0 if and o n l y / f r k  d ( t )  = O for t in a neighborhood of  O. 

Proof. With r as above we define an analytic family of operators by 

~ ' =  I ( '~ -  D~) - ~ d 2  
[ 2 1  = r 2rti " 

If the rk ~r = 0 then 6 ~t is the Szeg5 projector for the structure c~,. If f is 
a CR-function relative to (M, c~o) then 

f t  = o@t f 

is a continuous family of CR-functions relative to g~, with f o  = f. Since 5 ~' is an 
analytic family of operators it is easy to establish the continuity of the family { f ' }  
relative to the H s topology for any s > 0. 

If (M, g~,) is stably embeddable at zero then any CR-function relative to go can 
be included into a continuous family. If rk at(t)  were not 0 for any value of t then 
we could easily derive a contradiction by applying Proposition 8.32. 

We can now relate the algebraic conditions obtained at the beginning of this 
section to the small eigenvalues of the associated []s-operators. As above we 
assume that 0 ( t ) c  o~4o_g)(~ ) defines analytic family of CR-structures with 
~(0) = 0. The ranges of the projection operators, P~, are mutually orthogonal. 
Define 

IP'= ~ IPI, 
i = l  
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and set 

h " = . ~ ~  H = h o O " " ~ h z t o _ l  ). 

Proposition 8.28 implies that the range of IP ~ is contained in H. Denote the 
complementary orthogonal subspaces of H by 

H1 = I P ~  and H 2 = ( I d - I P ~  

From the spectral theory of [2~ it follows that if p~(t) ~ 0, for all i = 1 . . . . .  m, then 

5e' = ~ '  - F '  

is the Szeg6 projector for the structure ~,. This is also an analytic family of 
operators for t in an interval about 0. Let /7 , .  denote the orthogonal projection 
onto Fo G '  �9 ' @ F,. and define the operator 

(8.36) R = (Id - -  IP~ 1) �9 

Lemma 8.37 For t in a deleted neighborhood of 0 the dimension 

�9 t t dlm(-~o/~2 (,- I)+ 1 ) ,  

is constant. 

Proof Observe that for each t we can find a set of functions 

{hi . . . . .  ha} = H such that vi = A;-lhl,  

(8.38) is a basis for t 

Here and in the sequel At is as defined in (8.16). This follows easily from Corollary 
8.10. This fact and Proposition 8.8 imply that 

(8.39) d im($~ /~ (g_  1)+ 1) = dim ker ~ P t A f  1 Fn. 

The operator P, is defined by 

= . 

The operator on the right hand side of (8.39) depends analytically on t lying in an 
interval about 0, thus its rank is constant on the complement of a finite set. This 
proves the lemma. 

Through a series of lemmas we identify the d i m ( ~ / . ~ ( o _  1)+ 1) with dim H 2 . 

Lemma 8.40 For t in a deleted interval about 0 

(8.41) dim (.~)/$~ (o- ~)+ ~ ) > dim H 2 . 

Proof Define an analytic family of operators by 

Bt = R A t  ~cpt IFI2 , 

R is defined in (8.36). From the definition of Hz and the fact that Jb is U(1)- 
invariant it is clear that B, maps H2 into itself. Since Bt is analytic and Bo = Id rn~ it 
follows that Bt is an isomorphism of H2 for small values of t. If h~H2 then 
S f t h E ~ t o  . We claim that for h 4: 0, 

(8.42) 5:~h ~ 0 mod.~)~(0_l)+l . 
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If (8.42) were false then 

and therefore 

(8.43) 

AtSf 'h ~ g~ x)+ 1 

Bth = 0 .  

C.L. Epstein 

This contradicts  the fact that  Bt is an i somorphism for small  values of t and implies 
(8.41). 

Lemma 8.44 For t in a deleted interval about 0 

(8.45) d i m ( . ~ / . ~ ( g _  1)+ 1 ) < dim H2 �9 

Proof To prove this inequality we consider several analytic families of operators ,  
for i = 1 . . . . .  m define 

C~=lP[At-Z In, i = l , . . . , m .  

The opera to r  IP~ is a ' finite rank project ion opera to r  therefore 

rk IP~ = tr ~ .  

As IP~ depends analytically on t and Co = ~,o this implies that, for t in a neighbor-  
hood  of 0, 

r k C ~ = r k l P  ~ i = l  . . . .  , m .  

Using the a rgument  employed  in the p roof  of Propos i t ion  8.28 we deduce that  

(8.46) if h ~ H  and A T ~ h ~  t then C~h = 0, for i = 1 . . . . .  m .  

Define an analytic family of opera tors  by 

C' = I P ' A ;  -1 I n ,  �9 

As above  ~o = Id  and therefore 

(8.47) rk ~t = dim H i  , 

for t in an interval about  0. Let  ~ be the linear subspace of  H such that  if v ~ ~ then 
At- iv  ~-~r. We claim that  for sufficiently small t 

(8.48) V~n H1 = {0}.  

If  (8.48) were false then it would follow from (8.46) that  we could find a non-zero  
function u e H1 such that  

(8.49) 

Since 

C~u=O for i = l  . . . . .  m .  

i = 1  
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it would also follow that Ctu = 0. But this contradicts (8:47). F rom (8.38) and (8.48) 
we obtain that 

dim(.~/-5~tg- 1)+ 1) < dim Vt 

(8.50) < d i m H  - d imH1 = d imH2 . 

This completes the proof  of the lemma. 
Putt ing together these inequalities we have 

Theorem 8.51 Let ~ ( t ) c  ~4(1_g)(~3) define an analytic family of CR-structures 
on M. For t in a non-empty deleted neighborhood of 0 

(8.52) dim(-~6/-~(9-1)+ ~) = dim H2 �9 

As a simple corollary we have 

Corollary 8.53 Let ~(t) be as in the previous theorem then the dimensions 

' t t dlm(-~m/-~m+l), m = 0, 1 . . . . .  

are constant if and only if the operators [ ~  have no small eigenvalues. 

Proof. The proof  of the corollary is an easy consequence of (8.11), Theorem 8.51 
and the fact that  

2 ( 0 - 1 )  

(8.54) ' ' * dlm(~o/~2(a_,)+ 1) = ~ �9 t t . dim (Sm/.~,, + 1 ) 
m=O 

This completes the analysis in the case that M is a circle bundle of  degree - 1 
over Z. If  M is a circle bundle of degree - k over f then it is covered by M a circle 
bundle of  degree - 1. The quotient map 

p : M1--* M 

allows one to identify C~176 with c~oo(lQ)n o~*(/~) and deformations of the 
CR-structure on M with sections lying in ~-*(~).  Using (7.5) and (7.6) it is a simple 
matter  to extend the results of this section to these cases. We leave the precise 
statements to the interested reader and content ourselves with stating two simple 
corollaries. 

Corollary 8.55 Suppose that M is a circle bundle of degree - k over a Riemann 
surface of  genus g. I l k  > g then any family ~b(t) of perturbations of a U(1)-invariant 
structure with 'positive' Fourier coefficients is stably embeddable at O. 

Proof. We prove this statement by showing that the operator  At defined in (8.16) is 
an isomorphism between .~t and .~o. The CR-functions on M are identified via p* 
with CR-functions on .~  belonging to ~ k. The deformations with 'positive' Fourier 
coefficients are identified with sections in ~-ktl_ g)+k(~). TO prove the corollary it 
suffices to prove that for such a section 

r o ~ - k  (8.56) At : ~.,mk n ~ k  --* -~k Ca , 

is an isomorphism for all m ~ N o .  If  m = 1 then (8.56) follows from (8.9) which 
implies that  if h ~.~, then 

(8.57) ~, l i k (O~(t)Zr162 b O~(t)Z~) h)O~ e,~"(2 +Ok-2(g- 1) �9 



398 C.L. Epstein 

The hypothesis implies that (2 + l)k > 2(g - I) for all I > 0 and therefore 

5~0~(t)Z,(Id - ~*O~( t )Z~) - l  h = O . 

The case m = 0 follows easily from the observation that the function u = 1 repres- 
ents .~ / .~]  for all values of t. 

Using a similar argument we obtain stability for perturbations with 'non- 
negative' Fourier coefficients. 

Corollary 8.58 Let M, k, g be as in the previous corollary if k > 29 - 1 and r (t) is 
a family of deformations with "non-negative' Fourier coefficients then it is stably 
embeddable at O. 

Remark. The hypothesis is equivalent to the statement that 

~/(t) CZ ,~k(1 _9)(8).  

Catlin and Lempert have constructed a family of U(1)-invariant perturbations 
of a circle bundle of degree m over a surface of genus (m - 1)(m - 2)/2, m > 5 
which is not stably embeddable. This family can easily be made real analytic and 
thus an equivariant version of Proposition 8.51 applies to show that the family of 
E3b-operators defined by this family of structures must have a finite dimensional 
collection of 'small eigenvalues'. This is in marked contrast to the genus zero case 
where Lempert has shown that this cannot occur. 

One can also define a notion of stability of a given embedding relative to a class 
of perturbations. We say that an embedding, i, of (M, c~b) is stable relative to ~k e M, 
a Banach space, if there is a 6 > 0 such that for every r ~ ~ with 

II~ [1~ < 6 

there is an embedding i * of (M, 0~) close to i. We leave the notion of closeness 
a little vague for the present. Using the techniques of this section one can prove: 

Proposition 8.59 Let (M, ~b ) be a strictly pseudoconvex, U (1)-invariant CR-structure 
on M with M/U(1) a surface of genus g. I f  i is an embedding of (M, Jb) with all 
coordinate functions in ~ ( M )  for a k > 2(g - 1) then i is stable relative to defor- 
mations in ~4~l-g)(M) with the C 4 topology. 

A Embedding U(l)-invariant structures 

In this appendix we present the outline of a proof that every U(1)-invariant 
CR-structure on a three manifold can be embedded into C d for some d as 
a hypersurface in an affine algebraic variety. This result follows from theorems of 
Lempert  and Lawson and Yau, see [LaYa, Sect. 2] and [Lel ,  Theorem 2.1]. We 
include this appendix because we require more complete information about the 
Fourier coefficients of the embedding functions and CR-functions in general. The 
only deep fact that we require is the Kodaira embedding theorem for curves. 

Kodaira Embedding Theorem AI I f  S, is a Riemann surface and L is a positive 
holomorphic line bundle over Z then there exists a positive integer N such that 
if n > N then a basis of holomorphic sections of L | n defines a projective embedding 
of Z,. 

For  a proof see [GrHa,  p. 192]. 
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Suppose that M is a three dimensional contact manifold, with contact plane 
field H. Suppose further that there is a free action by U(1) which preserves H and is 
everywhere transverse to it. We denote the action of eiO~ U(1) by 

p ~---~ U4, p . 

Since the action is free the quotient 

~z: M ~ Z = M / U ( 1 )  

is a smooth compact surface. A CR-structure on M with underlying contact field 
H is a one dimensional subbundle T O, 1M of H | I~. If for every ei~E U(I) we have 

U 4 ) , T ~  = TO, I M  

then we say that the structure is U(1)-invariant. 
Suppose that T o, 1 M  is a U(1)-invariant structure, then it is easy to show that 

re, T o, ~ M is a one dimensional subbundle of T S  | C. Since there are no integrabil- 
ity conditions in this case, T O, 12; defines a complex structure on the surface. Using 
the characters of U(1) we can define a collection of line bundles Ln, n e 2g over 2;. Let 
;G denote the character defined by 

;(n(e/~) = ein4, . 

The bundle Ln is the fiber product M xzo~2; this is the quotient of M x C by the 
equivalence relation: 

(p, w) ~ (U4, p, )~,(ei4')w) . 

Let p, denote the projection 

pn: M x (I; --* M xz  C . 

If we use the standard complex structure on 112 then we can define an almost 
complex structure on L~ by setting 

(A2) T O, ~Ln = pn,[T ~ 1M x T O, 11~] . 

The following is proved by a local coordinate calculation: 

Lemma A3 The almost complex structure defined in (A2) is integrable and makes 
L~ into a holomorphic line bundle over N. 

In addition to complex structures, the bundles have canonical metrics defined 
on them. This follows because the action of U(1) on ~; is unitary so putting the 
standard metric on each fiber of M x 112 induces a metric on the quotient. The 
immersion of M into Ln defined by 

in(p) = p~(p, 1), 

immerses M as the unit circle bundle in L~ relative to the canonical metric. 

Lemma A4 The immersions in are CR-mappings  for  each n with i_ ~ an orientation 
preserving CR-isomorphism.  

Proof. To prove the lemma we need to show that 

(A5) in, T ~  M = T ~  . 
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Introduce local coordinates (x, y, 0) on M, so that the action of U(1) is given by 
Ur y, O) = (x, y, 0 + ok). If w denotes a coordinate on IE then the projection p~ is 
given by 

Pn (x, y, 0; w) = (x, y; e-i,0 w). 

Let Z = a~x + b~3y + c~o define a local section of T O, 1M. A calculation shows 
that 

(A6) pn,(Z) = a~?x + b~ r - inc((~?; - ~ )  , 

where ( = e-i"~ is a linear fiber coordinate. The defining function for i , (M)  is 
[([2 _ 1. From (A6) it follows that pn, Z is annihilates the defining function and 
therefore belongs to T O, l inM. The equality (A5) follows from this and (A2). 

If w = e ~r then we have that 

i_  l , (Z)  = a~?x + bc?y + c~34, . 

This is easily seen to agree with the CR-structure induced from the embedding thus 
verifying the statement of the lemma for this case. 

If M ~ L_I  is strictly pseudoconvex then the action of U(1) is positive as 
defined in [Lel,  $2], thus the bundles L,,  n > 0 are of positive degree. To reduce 
the CR-embedding problem to finding projective embeddings of 22 we observe that 
a section s of L, defines a function f~ on M which satisfies 

(A7) U~(fs)  = ei"r f~ . 

This is because the pulled back bundle, n*L , ,  is canonically trivial over M. 
A simple coordinate calculation verifies 

Proposition A8 A holomorphic section, s o f  L . ,  pulls back to a CR-function on M and 
conversely a CR-function f~ which satisfies (A7) defines a holomorphic section o f  Ln. 

As a simple corollary we have 

Corollary A9 I f  M is a strictly pseudoconvex CR-manifold with a free transverse 
positive U(1) CR-action, then 

ker ~-b c ~ o  �9 

Proof  Since the Fourier components of a CR-function on M correspond to 
holomorphic sections of the line bundles L, the corollary following from the fact 
that negative line bundles have no holomorphic sections. 

In our applications it is sometimes useful to twist the bundles L. with fiat line 
bundles. Let {V~} be an open cover of 22 with {U,} their inverse images under re. 
Suppose that the constants, {e~go,} define a 1-cocycle relative to the cover { E} .Le t  
2 denote the flat holomorphic line bundle over 2; defined by this cocycle and 2 its 
lift to M. A collection of functions f~ e cgoo (U~) which satisfy 

(A10) f~ = eig'pf~ in U~ n U~, 

defines a section of L As above we can decompose such sections into Fourier 
components. Let F~(;T) denote sections of 2 such that 

f ~ F ~ ( U ~ )  for all ~ .  
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A section in F.()~) defines a section of L. | 2 and vice-versa. A section in F,()~) is 
locally represented by CR-functions if and only if the corresponding section of 
L, | 2 is holomorphic. 

Proposition A l l  Let 2 be a flat line bundle over Z and ~ its lift to M. The pullback 
defines a one to one correspondence between sections of L.  | 2 and sections of 
2 belongin9 to F,(X). This correspondence carries holomorphic sections o fL ,  | 2 to 
CR-sections in F,(~) and vice-versa. 

In fact we can extend the functionf~ as a function defined on L_ 1. The reason is 
the same: L, pulled back to L_ 1 is trivial in the complement of the zero section. If 
we use F, to denote a section of L. pulled back to L_ 1 then 

(A12) U*Fs = 2"Fs, for 2 ~  • 

Thus if n > 0 the function F~ extends continuously to the zero section. Proposition 
A8 applies to the extension F~ as well. If s is holomorphic then F~ is clearly 
holomorphic in the complement of the zero section. If n > 0 then the Riemann 
removable singularities theorem implies that the extension across the zero section 
is also holomorphic. 

Suppose that N is as in the statement of the Kodaira Embedding Theorem, if 
n > N then a basis of global sections of L, defines a embedding of S into F R for 
some R. Let So . . . . .  sR be a basis of global holomorphic sections for L,. Let 
[Zo :" �9 ": ZR] denote homogeneous coordinates on 1P R. The embedding is defined by 

z ~ [ S o ( Z ) : '  �9 ' :  s R ( z ) ]  �9 

In order for this map to define an embedding it is necessary and sufficient that for 
each pair of points z 4: ~ in Z there are vectors a, b, c ~ C R + 1 \ {0} so that either 
c. s(z) 4:0 or c- s(() 4:0 and 

(A13) a. s(z) 4: b. s(~) 
e . s ( z )  c . s ( ~ )  ' 

and for each z s Z  there are vectors d, e~CR+I \{0}  such that 

d.s(z) 4:0 and 

e.s'lz  .slzt - 

(A14) \d"  sit (z) = d. S(Z) 2 4: 0 .  

The following proposition follows from (A12), (A13) and (A14). 

Proposition A15 I f  a basis of 9lobal sections of L,, n > 0 defines an embeddino of 
Z into F R then the lifted sections 

(Fs . . . . . .  Fs.) 

define a holomorphic map of L_l/7Zn into C R+l which is an embeddin9 in the 
complement of the zero section. 

As an immediate corollary of this proposition we obtain that 

v . :  p ~ ( A o ( p )  . . . . .  L . ( p ) )  
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defines as embedd ing  of  M/Zn.  Since the embedd ing  of L_ 1/Zn has po lynomia l  
g rowth  at  0o if follows tha t  it is an  affine a lgebraic  variety. Thus we have 
M immersed  as a hypersurface in an affine a lgebraic  variety. To obta in  an 
embedd ing  of  M we need to separa te  points  on the U(1)-orbits.  If p, q are relat ively 
pr ime posi t ive integers larger  than N then kup, ~uq define immers ions  of M/Zp  and  
M/Zq respectively into 112 P+ 1 and C Q+ 1. Since p, q are relat ively pr ime it is clear 
that  the m a p  

~'~,~: p --' (~G(p), ~'q(p)),  

defines an embedd ing  of M into C e + l  x II~ e+ 1. By consider ing the exstensions of 
these maps  to L_ 1 it is clear  that  the image of  F'p,q is a hypersurface  in an affine 
a lgebra ic  variety. 

This  proves the fol lowing theorem 

Theorem A16 I f  M is a strictly pseudoconvex three dimensional, CR-manifold with 
a free, transverse U(1) CR-action then, for some d, M can be embedded into C d as 
a hypersurface in an affine algebraic variety. Moreover the embedding functions can 
be chosen to lie in ~n fo r  any f ixed n. The embedding dimension may depend on n. The 
U(1)-action is realized as a linear action on C d which extends to an holomorphic 
action of  112". 
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