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We're going to present a conjecture expressing the number of complex irreducible 
characters with a fixed height h in a p-block B of a finite group G in terms 
of the numbers of complex irreducible characters of related heights h' in related 
blocks B' of certain p-local subgroups of G. The present paper treats only the 
simplest form of this conjecture, that for ordinary characters. Later papers in 
this series will consider the same conjecture for projective characters, for projec- 
tive characters invariant under a given automorphism group of G and, finally, 
for invariant projective characters having a fixed Clifford extension and fixed 
homomorphism relating that extension to the Clifford extension for the block 
B. Each of these forms of the conjecture implies all the preceding ones, but 
is harder to state or verify than they are. In particular, the final form is quite 
complicated and delicate. However, it has one vital property that the others 
lack - it holds for arbitrary finite groups G if it holds for all non-abelian simple 
G. So its proof can be reduced to a long computation for each of the finite 
simple groups. 

It is quite easy to look for a counterexample to these conjectures. You 
merely take your favorite simple group G, one whose local subgroup structure 
you know intimately. You compute the numbers of characters of various heights 
in the blocks of certain subgroups of G, including G itself. Finally, you calculate 
an alternating sum with these numbers, as in (6.4) or (6.6) below. If that sum 
is not zero you have found a counterexample. In that case please check your 
calculations and then inform the author, who will be very interested to learn 
of your discovery. If, on the other hand, that sum turns out to be zero, then 
you have verified a form of the conjecture for G. If that form is equivalent 
to the final form for G, then you have contributed one step towards the ultimate 
proof of all these conjectures. Thus your effort to compute this sum for G 
will be worthwhile whatever the outcome may be. 

When are the weaker conjectures equivalent to the final one? The ordinary 
conjecture studied in this paper has this property if G has both trivial Schur 
multiplier Mult(G) and trivial outer automorphism group Out(G). These condi- 
tions are satisfied by 11 of the 26 sporadic simple groups (see [3, Table 1]). 

* This research was partially supported by a grant from the National Science Foundation 
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In w 10 and w 11 below we verify the ordinary conjecture (and hence the final 
conjecture) for two of these eleven groups, namely J1 and M11. Someone should 
take a look at the other nine groups, even though the largest ones, such as 
the monster M, will have to be handled by computers. 

The projective form of the conjecture is equivalent to the final one for all 
groups G with Out(G)= 1. The invariant projective form is equivalent to the 
final one for all G such that Out(G) has only cyclic Sylow q-subgroups for 
each prime q. From the tables in [-3] it follows that the only finite simple groups 
not satisfying this last condition are of Lie type. So the final and most delicate 
form of the conjecture only has to be verified explicitly for simple groups of 
Lie type. Since a number of deep algebraic constructions are available to help 
us study representations of those groups, we can at least hope that the conjecture 
will be settled for them by general arguments without treating each case separate- 
ly. 

The alternating sums used to state our conjectures are over representatives 
for the G-conjugacy classes in various familes ~r of increasing chains C of p- 
subgroups of G. The local subgroups involved are the normalizers Na(C) of 
these chains. The idea that conjectures about numbers of characters in blocks 
can best be expressed as the vanishing of such alternating sums is due to G. 
Robinson, who pointed out several years ago in [10] that Alperin's Weight 
Conjecture can be written in this form. Thanks to his work [-9] with Kn6rr, 
it is easy to show in w 8 below that this conjecture of Alperin is a consequence 
of the ordinary form of our conjecture. We shall see in the next paper that 
the Alperin-McKay Conjecture follows from the projective form of our conjec- 
ture. By [-9, 5.6] these two Alperin conjectures imply half of the Brauer Height 
Conjecture. 

The first three sections of the present paper give a quick survey of properties 
of p-subgroups, families of p-chains and alternating sums. The next two sections 
review block theory over a valuation ring 9t whose field of fractions ~ is a 
splitting field of characteristic zero for every subgroup H of G. It should be 
remarked that our conjectures are actually stated using irreducible J-characters 
instead of the equivalent complex irreducible characters. Furthermore, their 
statements refer to the defect d(z) of a character X instead of the height h(z) 
of Z. The two numbers d(g) and h(z) are related by (5.7). 

The ordinary conjecture itself is given in several forms in w 6. One of the 
disadvantages of alternating sums over chains of p-subgroups is that they don't 
work right when Op(G)> 1. For this reason the conjecture is restricted to the 
situation where Op(G)= 1. Indeed, Example 7.3 shows that it can be invalid 
without this restriction. Another condition in the conjecture is that B must 
have positive defect. These case where d(B)= 0 is handled by Proposition 7.1. 

We have already mentioned that Alperin's Weight Conjecture is derived 
from the ordinary conjecture in w 8. It is a simple matter in w 9 to verify that 
the ordinary conjecture holds for blocks with cyclic defect groups (in fact, all 
our conjectures do). This avoids a lot of computations when we look at actual 
examples in w 10 and w 11. 

As of this writing (December 18, 1991), the author has verified the final 
conjecture for all primes when G is one of the simple groups Ml I ,  M12, J1, 
Lz(q) or Sz(q) (in the notation of [3]). J. Huang has verified the ordinary conjec- 
ture for G=M22.  This is not a long list of examples. Additions to it would 
be more than welcome. 
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1. Radical p-subgroups 

Let G be any finite multiplicative group. We denote the identity element of 
G by 1 = 1G, and the center of G by Z(G). As usual, we write H<=G to indicate 
that H is a subgroup of G, and H ~ _ G to indicate that H is a normal subgroup 
of G. To say that H is also properly contained in G we write H <  G or H <  G, 
respectively. 

Conjugation in G is written exponentially, so that 

a~=z-l areG and H~=z-~ Hz<G, 

for any a, zEG and any H<G. If H, K<G, then NK(H) and CK(H) denote the 
normalizer and centralizer, respectively, of H in K. We often replace Nr(H) 
and Cr(H) by N(H in K) and C(H in K), respectively, when the expression 
for K is complicated. For example, we would write C(H in NG(K)) rather than 
CNG(K)(H). 

Throughout these papers we fix a prime p. We use the usual symbol Op(G) 
to denote the largest normal p-subgroup of G. We write Sylp(G) for the family 
of all Sylow p-subgroups of G. If P is a p-group, then I2(P) will denote its 
subgroup generated by all a~P satisfying a p = 1. The product of operators such 
as Z, Op, N G, etc. is defined to be their composition. Thus ZOp is the operator 
sending G to ZOp(G)=Z(Op(G)), while OpN6t2Z would send any p-subgroup 
P of G to the p-subgroup 

O p N6 f2Z (P) = Op (N~ (f2 (Z (P)))). 

Alperin and Fong [2] have defined a radical p-subgroup of G to be any 
p-subgroup P of G satisfying 

(i.1) P = Op Na(P). 

Evidently any Sylow p-subgroup of G is a radical p-subgroup of G. More general- 
ly, we have 

(1.2) Any defect group D of any p-block B of G is a radical p-subgroup of G. 

This follows immediately from [4, 111.8.15]. 
Further properties of radical p-subgroups are consequences of 

Lemma 1.3 Let P be any radical p-subgroup of G, and Q be any p-subgroup 
of G normalized by N~ (P). Then Q < P. 

Proof. Since P normalizes Q, the product PQ is also a p-subgroup of G normal- 
ized by N~(P). It follows that NeQ(P) is a normal p-subgroup of N~(P) containing 
P. In view of (1.i) we have 

e < Nee (P) < Op N~ (P) = P. 

So P=NpQ(P). Because the p-group PQ is nilpotent, this forces it to equal its 
subgroup P. Therefore Q < PQ = P, and the lemma is proved. 

The subgroup Op(G) is a very special radical p-subgroup of G. 
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Proposition 1.4 Any radical p-subgroup of G contains Op(G). Furthermore, Op(G) 
is a radical p-subgroup of G. Hence Op(G) is the unique minimal radical p-subgroup 
of G. 

Proof. The first statement follows from Lemma 1.3 applied to Q = Or(G). Since 
this Q is a normal subgroup of G, it satisfies 

Op No(Q) = Op(G) = Q. 

By (1.1) this proves the second statement of the proposition. The rest of the 
proposition follows immediately from this. 

Corollary 1.5 The only radical p-subgroup P of G satisfying P ~  G is P = Op(G). 

Proof. The proposition tells us that Op(G) is a normal radical p-subgroup of 
G. Conversely, any normal radical p-subgroup P must satisfy 

P = 0 v No(P) = Op(G) 

by (1.1). So the corollary holds. 
If we apply the operator OvNo to any p-subgroup Q of G, we obtain a 

new p-subgroup Ov No(Q). Since Q is a normal p-subgroup of No(Q), it satisfies 

Q < op No(Q). 

Repeating this process, we obtain an increasing chain 

O __( 0p N o (Q) < (op No) 2 (Q) < (op No) 3 (Q) 5 . . .  

of p-subgroups of G. Since G is finite, this chain must break off with 

(1.6) (Op No)'(Q)= (Op No) ̀+ I(Q) . . . . .  (Op No) ~ (Q) 

for some i>0.  We call P=(OvNo)~ the radical p-closure of Q in G. It is 
evident that P is a radical p-subgroup of G containing Q such that 

(1.7) No(Q)< No(P ). 

This implies that the normalizers of radical p-subgroups control the fusion of 
p-elements und p-subgroups in G (see [7, w X.4]). 

2. Radical p-chains 

A p-chain C of G is any non-empty, strictly increasing chain 

(2.1) C: Po < P~ < ... < P, 

of p-subgroups P~ of G. Its length ICI is the number n > 0  of its inclusions. So 
C consists of I C l + l  subgroups P~, starting with its initial subgroup Po and 
ending with its final subgroup P,. For each i=  0, 1 . . . . .  n we denote by Ci the 
initial subchain 

(2.2a) Ci: Po <P1 < ... < Pi 
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of C with length i, and by C ~ the final subchain 

(2.2b) C i: Pi< Pi+ 1 < ... < P, 

of C with length n - i .  Thus Cn and C O are both C itself, while Co and C" 
just consist of Po and P,, respectively. 

The group G acts by conjugation on the family cg=C~(G) of all p-chains 
of G. Under this action any t r iG  sends the p-chain C of (2.1) to the p-chain 

(2.3) C~: Po~ < P~" < ... <Pfl. 

The stabilizer of C in any subgroup K < G is then the normalizer 

(2.4) NG(C) = N(C in K)=  Nr (P~) n NK (P2) c~... c~ NK(P,) 

of C in K. It is clear from this and (2.2 a) that 

(2.5 a) NK(C ) = NK(C ._ ~)c~ NK (P~)= N (P~ in NK(C n_ 1)) 

whenever n > 0. We also have 

(2.5 b) NK(C) = NK(C,) c~ NK(C' ) = N (C' in N r (C~)) 

for any i = 0, 1 . . . .  , n. 
By a radical p-chain of G we mean any p-chain C: Po <P1 < . . .  <P~ of G 

satisfying 

(2.6 a) 1~ = Op(G) 

and 

(2.6b) P~is a radical p-subgroup of NG(C~_ 1), 

for each i=  1, 2 . . . .  , n. In view of(1.1) and (2.5a) the condition (2.6b) is equivalent 
to 

(2.6c) P~=OpNG(Ci) 

for all i=  1, 2 . . . .  , n. Under this form radical p-chains were briefly mentioned 
in the remarks following [-9, 3.4], although Robinson had already used them 
in several earlier, privately circulated preprints such as [-10]. We denote by 
~ = ~ ( G )  the family of all radical p-chains of G. Clearly ~ is a G-invariant 
subfamily of ~ under the conjugation action (2.3). 

We collect several elementary properties of radical p-chains in 

Proposition 2.7 I f  C: Po <Pz < ... <P~ is a radical p-chain of G, then 
(a) P, = Op N6(C). 
(b) Each Pi, for i=0 ,  1 . . . . .  n, is a normal p-subgroup of both NG(C) and P~. 
(c) Na(C ) = G if and only if C is the unique radical p-chain C: Op(G) of length 
O. 
(d) For each i= O, 1 . . . . .  n, the initial subchain Ci is a radical p-chain of G, and 
the final subchain C i is a radical p-chain of N6(Ci). 
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Proofs. (a) If n=0 ,  then C consists only of Po=Op(G) by (2.6a). In this case 
No(C ) = G and (a) holds trivially. If n > 0, then (a) follows from (2.6 c) for i=  n. 

(b) Since N~(C) normalizes each P/ by (2.4), statement (b) follows from (a) 
and the inclusions (2.1). 

(c) If ICl=0, then the only member of C is Op(G). Hence NG(C)=G in this 
case. 

If IC[>0, then P~ is a radical p-subgroup of G=NG(Po)=NG(Co) by (2.6b, a). 
Since P1 >Po=Op(G), Corollary 1.5 implies that NG(C)<NG(P1)<G in this case. 
So (c) holds. 

(d) The fact that C i lies in N(G) follows immediately from (2.6). In view 
of (2.5b), so does the statement that CIe~(N~(Ci)). 

We should remark that the converse to Proposition 2.7(d) holds, i.e. that 

(2.8) I f  C is any p-chain of G starting with a radical p-chain Ci of G and continuing 
with a radical p-chain C i of N6(Ci), then C is a radical p-chain of G. 

This follows immediately from (2.5b) and (2.6). 

3. Alternating sums 

In order to treat alternating sums with a generality sufficient for the later papers 
in this series, we introduce two new groups E and H satisfying 

(3.1) E is a finite group with G~_E and H<E.  

Then E acts by conjugation (2.3) on the family c~ of all p-chains of G. Hence 
so does its subgroup H. If ~ is any H-invariant subfamily of cs then Yf/H 
will denote an arbitrary set of representatives for the H-orbits in f .  We only 
use this notation in situations where the actual choice of the representatives 
in X/H is irrelevant. 

We fix an additive group A and a function f: cg ~ A. We assume that 

(3.2a) f (C)=f(C' )  whenever C, C'eCg satisfy NE(C)=NE(C'), 

and 

(3.2b) f (C ' )= f (C)  for all C~C~ and 

Then the alternating sum 

(3.3) S ( f  f / H ) =  ~ (-- 1)lclf(C) 
Ce~/H 

a~H. 

is a well-defined element of A for any H-invariant subfamily 5f of cg. 
Alternating sums of the above type have been studied by several mathemati- 

cians, starting with Quillen (see [9] and the papers cited there). The result 
of their work is that the sum S(f, Yf/H) has the same value for many natural 
subfamilies Y" of ~, and that this value is zero when Op(G)> 1. The idea behind 
the proofs of their theorems is quite simple. To some chain C~Y" we associate 
another chain C'~Y" having the same normalizer NE(C')= NE(C) in E but length 
of opposite parity, so that ( -  1) Ic'l = - ( -  1) Icl. Then (3.2a) implies that the terms 
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for the orbits of C and C' cancel in the sum (3.3). So S(f, W/H)=S(f, W'/H), 
where W' is the subfamily obtained by removing the /-/-orbits of C and C' 
from W. After repeatedly removing the orbits of such pairs C, C' from W, we 
are left with a smaller H-invariant subfamily ~ having the same alternating 
sum S(f, ~/H)= S(f, Y/H). Sometimes we can even remove all the orbits from 
W in this way, in which case ~/is empty and S(f, YK/H)=S(f, ~?//H)= 0. 

We illustrate this with the case where W is the family ~ of all p-chains 
of G. To each p-chain C: Po<P1 < . . .  <P,  with initial group P0>l  we associate 
the p-chain C': 1 <Po <P~ < ... <P,,  with initial group 1. Clearly N~:(C')=NE(C), 
while the lengths of C' and C have opposite parities. So we may remove the 
H-orbits of all such C and their associated C' from ~ without changing the 
sum S(f, Cg/H). After we do so the only remaining orbit in <g just consists of 
the single p-chain Co: 1 whose only member is the trivial subgroup 1 of G. 
We conclude that 

(3.4) S(f, c~'/H) = S(f, { Co}/H) =f(Co) .  

So alternating sums over Cg/H are rather trivial. 
To avoid situations of the above sort we stick to subfamilies W of cg which 

are "anchored"  by some fixed H-invariant subgroup K of G, in the sense that 
each chain CaW has K as its initial subgroup Po. By (2.6a) the family ~ = N ( G )  
of all radical p-chains of G is anchored in this way by Op(G). In I-9] Kn6rr  
and Robinson choose 1 as the anchor for all their families. Thus their basic 
family ~ consists of all p-chains C of G starting with 

(3.5 a) Po = 1. 

They also use the family JV'=JV'(G) of all p-chains C: Po < P~ < . . .  < P, of G 
satisfying both (3.5 a) and 

(3.5b) P ~  P,, 

for all i=0 ,  1 . . . . .  n. In addition they discuss the family g = g ( G )  of all C e ~  
consisting only of elementary abelian p-subgroups P~ of G, and the family 
~#=~//(G) of all C e ~  consisting only of radical p-subgroups P~ of G. Since we 
shall use the families JV" and g extensively, we call their members the normal 
and the elementary p-chains, respectively, of G. The family N is much more 
useful than q/. So its members have the honor of being called the radical p-chains 
of G. 

In the special case where E = G = H Kn6rr  and Robinson showed that 

(3.6) S(f, ~/H)= S ( f  J~/H)= S( f  g/H)= S( f  ~ll/H) 

(see [9, 3.3]). Their arguments work equally well for any E and H satisfying 
(3.1). So we shall treat (3.6) as a known fact. However, the equality between 
the sums (3.6) and S(f, N/H) when O~,(G)= 1 is left as an exercise for the reader 
in the remarks following [9, 3.4]. Since we shall need that equality, we give 
its proof in detail. 

Proposition 3.7 The alternating sum S ( f  ~A~/H) is equal to S ( f  N/H) if Ov(G ) = 1, 
and is equal to 0 if Op(G)> 1. 
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Proof. Let dg be the H-invariant subfamily J V - ~  of ./V. Every chain C e ~  
begins with Po=O~,(G) by (2.6a), while all the chains in ~ begin with 1 by 
definition. It follows that J g = J f  if Or(G)> 1. On the other hand, (2.6a) and 
Proposition 2.7(b) imply that ~ _  ~ if Op(G)= 1. We conclude that the present 
proposition is equivalent to the single equation 

(3.8) s (./; ~//-/) = o, 

whatever the value of Or(G) may be. 
Let C: P0 = 1 < P~ < . . .  < P, be any p-chain in .~V, and C~: Po < P~ <- . .  < P~ be 

its initial subchain of length i for any i=0 ,  1, ..., n. It follows from (3.5b) that 

(3.9) Pj < P, < NG(C,) 

for all i,j=O, 1 . . . . .  n. In particular Pi is a normal p-subgroup of NG(C~). So 
we have 

(3.10) P~ <= op N~(C,) 

for any i =  0, 1 . . . . .  n. 
If C lies in N then equality always .holds in (3.10) by (2.6a, c). On the other 

hand, if equality always holds in (3.10), then 

1 ~. PO = Op N G (Co) = OpN G ( 1 )  = Op (G). 

So C e ~  by (2.6a, c). Thus J/r consists of all CeJr  for which the inclusion 
(3.10) is strict for some i. In particular, if C e d / ,  then the set of all i=0,  1, ..., n 
for which (3.10) is a strict inclusion has a unique largest member k = k(C). 

Suppose that the above chain C lies in ./g with k<n. Then Pk+~ is a p- 
subgroup of N~(Ck) by (3.9). The maximality of k implies that 

Pk+l =OpN6(Ck+I)=OpN(Pk+1 in N~(Ck)). 

Therefore Pk+~ is a radical p-subgroup of NG(Ck). So Proposition 1.4 tells us 
that 

(3.11) op N~(Ck)__< 8 + 1. 

We denote by Jg0 the subfamily of all C ~ /  such that k<n and (3.11) 
is equality. Clearly ~go is an H-invariant subfamily of ~ ,  as is the complementa- 
ry subfamily J/1 = J g - ~ o -  If CeJgo,  we define C' to be the p-chain 

C': Po <P, < . . .  < 8  < 8 +  2 < . . .  <P. 

obtained by omitting the subgroup Pk+I=OpNG(Ck) from C. (Notice that C' 
is just Ck if n = k + 1.) Clearly C' is also a normal p-chain of G with Ne(C')= N~(C) 
and ( -  1) Ic'l = - ( -  1) Ict. Furthermore, C ' r  since C;, = Ckr Therefore C ' e ~ ' .  

Because PR + 1 = Ov No(Ck) is normalized by N~(Ck), we have 

No(C'i)=NG(CI) if i=0 ,  1, ..., k, 

=No(Ci+ 0 if i = k + l , . . . , n - 1 .  
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It follows that k(C')=k (C)=k and that either k = n - l = l C ' l ,  or k < n - I  and 
the (k + 1)st subgroup Pk+ 2 in C' properly contains O~No(C;,)= Pk+ 1- In either 
case C' belongs to ~ 1 .  Of course C can be recovered from C' by reinserting 
the missing subgroup Pk+ 1, which only depends on C' since 

Pk+l =OpNG(Ck)=OvN~(C'k). 

SO the correspondence C~-+C' is one-to-one between all C6oJ# o and some 
C' ~Jfg~. 

In fact, every chain C' :Qo < Q l < . . .  < Q,-~ in o~#1 corresponds in the avove 
fashion to a unique chain C~J~ o. If k=k(C') is equal to n - 1 ,  then C is given 
by 

C: Qo<Q1 <... <Q,-1 <OpNG(C'), 

which exists by the definition of k(C'). If k < n - 1 ,  then C is the chain 

C: Qo <QI <... <Qk <O, NG(C'k)<Qk+1 <...  <Q,,  

which exists by (3.1 1) for C' and the definition of Jgl- Hence C~--~ C' is a one-to- 
one, H-invariant correspondence between all CaJgo and all C'e.//gl = . g - o ~ 0 .  
So the removal from o~# of all the H-orbits corresponding to such pairs C, C' 
leaves only the empty family. Since this removal does not change S(f, JI/H), 
we conclude that (3.8) holds. Thus the proposition is proved. 

Corollary 3.12 The alternating sums S(f, ~/H), S(j~ .A/'/H), S(J~ E/H), and S(f, 
ql/H) all vanish when Ov(G ) > 1. 

Proof This follows immediately from the proposition and (3.6). 
The only reason S(f, .#/H) does not appear among the sums in Corollary 

3.12 is that the chains in :# are anchored by Op(G) and not by 1. 

4. Rings, algebras and orders 

When we speak of a ring N we mean an associative ring with identity element 
1 = 1,~. We denote by Z(N), U(N) and J(N) the center, unit group and Jacobson 
radical, respectively, of N. Any N-module 9Jl, whether right or left, is understood 
to be unitary in the sense that multiplication by 1,~ is the identity map of 
9Jl onto itself. As usual, we write 77 for the ring of all ordinary integers 
0, _+1,_+2 . . . . .  

The above conventions and notation also apply when N is an algebra over 
a commutative ring G. In particular, N is then a unitary G-module. Furthermore, 
any N-module 9Jl is automatically an G-module, with multiplication by any 
s~G being multiplication by s l a i N .  When we speak of an G-subalgebra 
of N, we do not assume that its identity element 1~ is equal to 1~. If 1,~= 1~ 
we say that ~ is a unitary subalgebra of N. Similarly an arbitrary homomorphism 
7: ~ N  of G-algebras need not send 1~ to 1,a. We say that ~/ is unitary or 
identity-preserving if it does send 1~ to 1~. 

There are plenty of valuation rings whose value groups are discrete, yet 
different from the additive group of 77. To construct them, just compose together 
discrete, rank-one valuation rings as in [ l l ,w So we prefer to speak 
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of a "local principal ideal domain" rather than use the expression "discrete 
valuation ring" familiar to group theorists. Accordingly we fix 91, 5, and 
satisfying 

(4.I) 91 is a local principal ideal domain whose field of fraction ~ has characteristic 
O, and whose residue class field ~ = 91/J(91) has the prime characteristic p. 

We shall denote the unique maximal ideal J(91) of 91 by p. 
As usual, an 91-lattice is any finitely-generated, torsion-free (and hence free) 

91-module, an 91-order 33 is any 91-algebra which is a lattice as an 91-module, 
and a 33-1attice P~ is any (right or left) D-module which is a lattice as an 91- 
module. In that case the 91-algebra End~(~) of all ~-endomorphisms of ~ is 
itself an 91-order. Of course 33 can be embedded naturally in the finite-dimension- 
al j-algebra ~1=~|  and ~ in the finitely-generated N-module 
9 J l = ~ |  in such a way that 91-bases of 1t? and ~ become j-bases of 
and 9Jl, respectively. Then End~(~) can be identified with the 91-suborder of 
End~(9)~) consisting of all 9.l-endomorphisms of 9Jl sending ~ into itself. After 
this identification any 91-basis of End~02) is an j-basis of End~0-1l). 

The Jacobson radical J(33) of any 91-order ~ contains p 33 by Nakayama's 
Lemma for the 91-lattice 33. So the factor 91-algebra 33/J(33) is a finite-dimension- 
al semi-simple algebra over the residue class field ~=91/p. The order 33 is 
local if the factor ~-algebra 3)/J(33) is a division algebra. This happens if and 
only if ~ is non-zero with U ( ~ ) =  33-  J(~).  

We are especially interested in the case where 33 satisfies 

(4.2) ~ is an 91-order whose associated finite-dimensional ~-algebra 9A=~| 
is split and semi-simple. 

A well-known theorem of Heller [-5, 2.5] implies that 

(4.3) I f  33 satisfies (4,2), then any idempotent ~ of the factor ~-algebra 33/J(33) 
is the image e + J (33) of some idempotent e of 33. 

This ability to lift idempotents is all that we need for block theory. 
Suppose that 33 satisfies (4.2). The blocks of 33 correspond one-to-one to 

the primitive central idempotents of 33, and hence to the primitive direct sum- 
mands of 33 as an 91-order. We denote by Blk(33) the set of all blocks of 33. 
If B~Blk(~), then In will be the corresponding primitive central idempotent 
of 33, and 1B 37 the corresponding primitive direct summand of ~.  Our hypothesis 
(4.2) implies that ~| is isomorphic as an ~-algebra to a direct 
s u m  

(4.4) ~ |  z(~)__ 5 |  ... @ 

of copies of 5- In particular, Z(33) also satisfies (4.2). Because Z(33) is commuta- 
tive, Heller's Theorem (4.3) implies that the natural map is a bijection of the 
primitive idempotents of Z(33) onto those of Z(33)/JZ(33) (where, of course, 
JZ(33) is J(Z(33))). It follows easily from (4.4) and (4.1) that the ~-algebra Z(33)/ 
J Z ( ~ )  is isomorphic to a direct sum 

z ( ~ ) / s z ( ~ )  ~_ ~ |  @ ~8 
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of copies of ~. So its primitive idempotents correspond one-to-one to its algebra 
epimorphisms onto ~, which, in turn, correspond to the 9t-algebra epimorphisms 
of Z(D) onto ~. Thus any block B~Blk(D) determines a unique epimorphism 

(4.5 a) ~oB: Z(D)--~, ~ 

of ffl-algebras such that 

(4.5b) OOB(IB,)=I,~ if B ' = B ,  

= 0  if B ' # B ,  

for any B'~Blk(D). Furthermore, the map B~--~o~ is a bijection of Blk(D) onto 
the set of all epimorphisms of the N-algebra Z(D) onto ~. As usual, co 8 is 
called the central character for B. 

In the above paragraph we have been careful not to say just what a block 
B of D is. Authors differ on this point. In [-4] Feit defines B to be the category 
of all D-modules on which 18 acts as the identity. A more customary definition 
is that used in [9], where B is the direct summand 1BD of D. Still others 
identify B with the idempotent 1~. For  our purposes it really doesn't matter 
which definition is used. All we need to know is that two blocks are equal 
if they are defined for the same N-order D and correspond to the same primitive 
central idempotent of D. 

The other tool necessary for representation theory, namely the Krull-Schmidt 
Theorem, also holds for lattices s over orders D satisfying (4.2). Evidently the 
endomorphism algebra End~ (93l) of the finitely-generated ~l-module ~JJ~ = j | ~ s 
is also a finite-dimensional, split, semi-simple j-algebra.  So the ~-order  Endz(s 
satisfies (4.2). Hence Heller's Theorem (4.3) tells us that any idempotent of 
End~(s163 is the image of one of Endz(s Since s is indecomposable 
if and only if the identity element is the unique non-zero idempotent of End~(s 
this implies Fitting's Lemma that 

(4.6) An D-lattice s is indecomposable if and only if End~(s is a local order. 

As a consequence (see [4, 1.11.1]) we have the Krull-Schmidt Theorem that 

(4.7) l f  a D-lattice s has two decompositions 

~,~ = ~,1 -}- -~2 4- . .. --[- ~ n  = ~ 1 ~- ~ 2  -~ . . . --~ ~ m  

as direct sums of D-sublattices s and Rj, then n = m and the .~lj can be renumbered 
so that s (as D-lat t ices) for each i= 1, 2 . . . . .  n. 

5. Blocks of  characters 

We write ~G for the group algebra of our finite group G over any commutative 
ring ~. Then 91G is an order whose associated J-algebra J |  9tG is the group 
algebra jG .  Of course j G  is semi-simple since the field j has characteristic 
0 by (4.1). In order to obtain all the benefits of Heller's Theorem, we assume 
that 

(5.1) J is a splitting field for any subgroup H of  G. 
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By one of Brauer's theorems [-6, V. 19.11] this just says that J contains a primitive 
exp(G)th root of unity, where exp(G) is the exponent of G. Since the orders 
~IH now satisfy (4.2) for every H__< G, the arguments of the preceding paragraphs 
give us all the tools needed for block theory as developed in [4]. So we shall 
use the results of that theory as required, without worrying about the fact that 
the ground rings in [-4] are different from our present 9t. 

We denote by Irr( jG) the set of all irredtacible j-characters of the group 
G. If xeIrr(JG),  then i x will be the corresponding primitive central idempotent 

(5.2) lx=  Z(1) ~ Z( a_l)  a 

of JG. 
We often call the members of Blk(91G) the p-blocks of G. If B is a p-block 

of G, then Irr(B) denotes the family of all zEIrr ( jG)  which belong to B in 
the sense that 1B acts as the identity on any simple jG-module  affording Z. 
The set Irr(B) determines the block B, since 

(5.3) 18= ~ Ix. 
zelrr(B) 

Of course, any )~I r r ( JG)  belongs to a unique block of 9tG, a block which 
we denote by B()0. 

If n is any positive integer, then a(n) will denote the unique non-negative 
integer such that 

(5.4) n=p"~")m, 

where m is an integer not divisible by p. Since the degree Z(1) of any ze I r r ( jG)  
divides ]GI by [-6, V.12.6], there is a unique integer d(z)>O such that 

(5.5) a (Z(1))-- a(I GI) - d(z). 

We call d(z) the defect of Z- By [4, IV.4.5] the defect d(B) of a block B~Blk(~IG) 
is the maximum 

(5.6) d ( B) = max { d ()O I z e lrr( B) } 

of the defects of its irreducible j-characters. The defect of any z~Irr(B) is related 
to the height h()0 of X (as defined in [4, w IV.4]) by 

(5.7) d(x) + h(x) = d(B). 

In particular, X has height zero if and only if d(z) = d(B). 
Let ~ be any commutative ring and H be any subgroup of G. We denote 

by pr~ the unique ~-linear map from ~G to ~ H  such that 

(5.8) pr~(a)=a if a~H, 

= 0  if a6H, 

for any aeG. Then PPn sends Z(~G) into Z(~H) whenever ~ is an integral 
domain. If B is a p-block of H, then the induced block BaEBlk(9tG) is defined 
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if and only if the composite map oJB~,prg: Z(91G)--*~ is an epimorphism of 
N-algebras. In that case B a is the unique p-block of G satisfying 

(5.9) c%~ = co B o p rg: Z OIG)-~ ~. 

One case in which B a is known to be defined is that in which 

PC G (P) <= U <= N a (P), 

for some p-subgroup P of G (see [-4, 1II.9.4]). In [9, 3.2] Kn6rr  and Robinson 
used this to show that 

(5.10) The induced block B ~ is defined whenever BeBIk(g lN(~(C))  for some p- 
chain C of G. 

6. The ordinary conjecture 

We fix a block B of 91G and an integer d>0.  If C is any p-chain of G, then 
Irr(~Nc,(C), B, d) will denote the set of all characters ~belrr(NN~(C)) such that 

(6.1a) B0p)a=B and d(O)=d. 

(Notice that B(O) G is defined by (5.10).) We then set 

(6.1 b) k(~NG(C), B, d)= [Irr(~Na(C), B, d)l. 

It is evident from (2.3) and (2.4) that conjugation by any T~G sends Na(C) 
to NG(C~)=NG(C) ~. Hence it sends Irr(~NG(C)) one-to-one onto Irr(~NG(C~)). 
Fix a character OeIrr(~NG(C)). Then B(O~)=B(Oy induces B if and only if 
B(O) does (see (5.9) and (5.8)). Furthermore, ~ ( 1 ) = ~ ( 1 )  and d(0~)=d(q~) by 
(5.5). We conclude that conjugation by ~ is a bijection of Irr(~NG(C), B, d) onto 
Irr(~NG(C*), B, d), and hence that 

(6.2) k(~NG(C~), B, d)=k(~NG(C), B, d) 

for any C~Cg and zEG. 
The ordinary form of our conjecture is 

Conjecture 6.3 I f  G is any finite group with Op(G)= I, if B is any p-block of 
G with defect d(B)>0, and if d is any non-negative integer, then 

(6.4) ~ ( -  1) Icl k(~No(C), B, d)=0 .  
C ~ I / G  

Of course (6.2) implies that the alternating sum in (6.4) is well-defined. 
We have stated the conclusion (6.4) of our conjecture using an alternating 

sum over the family ~ of all radical p-chains of G. We could just as easily 
have used any of the families of p-chains in 1-9]. 
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Proposition 6.5 Under the hypotheses of Conjecture 6.3 the equation (6.4) is equiva- 
lent to 

(6.6) ~ (-- 1) Icl k(~No(C), B, d)=0, 
C~X/G 

where f is any of the families ~ ~ ,  E or ~ll of p-chains of G. 

Proof We shall apply the results of w 3 with 

E = H = G  and A = Z .  

For any p-chain C of G, let f(C) be the element k(~NG(C), B, d) of Z. Clearly 
f satisfies (3.2a), while (6.2) implies (3.2b). The left side of (6.6) is the alternating 
sum S ( f  f /G)  of (3.3), and the left side of (6.4) is S(f, ~/G). Since Op(G)= 1, 
Proposition 3.7 and the equations (3.6) tell us that the left sides of (6.4) and 
(6.6) are equal to each other for f = ~ ,  tiff,, g or ~/g. The proposition follows 
immediately from this. 

By (2.6a) there is only one radical p-chain C of G with length ICI =0. This 
C consists only of Op(G), and has G as its normalizer NG(C ). By (3.5a) there 
is only one p-chain C' of length [C'l = 0 in each of the families ~, ~,, g or ~.  
This C' consists only of 1, and has G as its normalizer. It follows that 

(6.7) The conclusions (6.4) and (6.6) of Conjecture 6.3 are equivalent to 

(6.8) k(~G, B, d) = ~ ( -  1) Icl +' k(~NG(C), B, d), 
C~:~/G 
Icl>o 

where Y" is any of the families ~,  ~,  JV', g or ~ll. 

Since the hypothesis Op(G)= 1 of Conjecture 6.3 implies that NG(C)<G for 
any p-chain C of G with ]Cl>0, the formula (6.8) expresses the number 
k(~G, B, d) of characters z~Irr(B) with a given defect d(x)=d in terms of similar 
numbers for blocks of proper subgroups N6(C) of G. 

The following observation can often be used to eliminate terms from the 
sums in (6.4) or (6.6). 

Lemma 6.9 Let G be any finite group, B be a p-block of G and d be a non-negative 
integer. I f  k(~N~(C), B, d)>0  for some p-chain C in ~,  JV" or g, then the final 
subgroup P, of C is contained in some defect group D of B. 

Proof Our hypotheses imply that P, is a normal p-subgroup of NG(C), and 
hence that P,<OpN~(C). (If C ~  this comes from Proposition 2.7(b). If C~JV" 
or C ~ g this follows from (3.5 b).) Since k(~NG(C), B, d)> 0, there is some charac- 
ter ~EIrr(~N~(C), B, d). Then the p-block B(~9) of Na(C) induces the p-block 
B of G. Hence any defect group D' of B(~) must be contained in some defect 
group D of B (see [4, III.9.6]). But D' must also contain OpNG(C) by [-4, III.6.9]. 
Therefore 

P,<=OpNa(C)<=D' <=D, 

and the lemma is proved. 
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As an example of the simplification afforded by the above lemma, consider 
the case.where a defect group D of B is a trivial intersection subgroup of G, 
i..e. where 

D ~ D = I  
for any a~G--N~(D). 

Proposition 6.10 Suppose that the hypotheses of Conjecture 6.3 hold Jbr some 
block B with a trivial intersection defect group D. Let B' be the unique p-block 
of G'=No(D) inducing B in Brauer's first Main Theorem [4, III.9.7]. Then the 
conclusion (6.4) of Conjecture 6.3 is equivalent to the statement that 

(6.11) B and B' have the same number of irreducible ~-characters of defect d. 

Proof. In view of Lemma 6.9 we may restrict the sum in (6.4) to those radical 
p-chains C: 1 = Po < P1 <- . .  < P, which also satisfy 

Pn<=D. 

Suppose that n>  0. Then P1 is a non-trivial radical p-subgroup of G contained 
in D (see (2.6b)). Because D is a trivial intersection subgroup of G, this implies 
that 

NG(P1) <= Nc~(D). 

Hence ND(P1)= D c~NG(P1) is a normal p-subgroup of N~(PO. So 

P~ < N~(P1) < O.  NG(P~)= PI . 

Since the p-group D is nilpotent, this is only possible when / ' I=D. In that 
c a s e n = l  a n d C i s  I < D .  

The above discussion tells us that there are only two possible non-zero 
terms in the sum (6.4), those corresponding to the trivial chain 1 and to the 
chain 1 <D. The normalizers of these two chains are G and G', respectively. 
Since B' is the only p-block of G' inducing B, it is now obvious that (6.4) is 
equivalent to (6.11). So the proposition holds. 

7. Limits of validity 

The conclusion (6.4) of Conjecture 6.3 can be false when B has defect zero. 
What happens in this case is explained in 

Proposition 7.1 Let G be any finite group and B be any p-block of G with 
defect d(B)=0.  Then Op(G)= 1 and 

(7.2) ~ (-1)ICl k(q~NG(C), B, d)= I /f d = 0 ,  
C ~ / G  

= 0  /f d > 0 ,  

whenever 3{" is one of the families ~,  ~, JV~ 8 or ~ll. 

Proof. The defect group 1 of B must contain Or(G) by [4, III.6.9]. Hence Or(G) 
= 1. So (3.6) and Proposition 3.7 tell us that the value of the alternating sum 
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on the left side of (7.2) is independent of the choice of Y" among ~ ,  ~, JVI 
and ~'. Thus we may assume that 

~ = ~ .  

Suppose that C~o~ satisfies k(~Nc(C ), B,d)>0 .  Then Lemma 6.9 tells us 
that the final subgroup P, of C is contained in the trivial defect group 1 of 
B. So C must be the trivial p-chain consisting only of P0 = 1. We conclude 
that the left side of (7.2) is just the number k(~G, B, d) of characters of defect 
d in Irr(B). But the block B of defect zero contains exactly one ordinary irreduc- 
ible character X, and the defect d(;~) of this character is zero (see [-4, IV.4.19] 
and (5.6)). This implies the proposition. 

The following example shows that the conclusion (6.4) of Conjecture 6.3 
can also be false when Or(G)> 1. 

Example 7.3 Multiplication in the field GF(p p) of pP elements gives an action 
of the multiplicative group M of GF(p p) as automorphisms of the additive group 
A of GF(pP). So we may form the semidirect product M A  = M~<A of M with 
A. The (absolute) Galois group Y of GF(p p) acts as automorphisms of both 
M and A, while preserving the action of M on A. So it acts as automorphisms 
of MA, and we may form the semidirect product 

G = F M A  = F~<(MA). 

The elementary abelian group A of order pP is clearly Ov(G ). The groups 
M and F are both cyclic, with orders p P - 1  and p, respectively. Hence FA 
is a p-Sylow subgroup of G. It follows that there are exactly two G-conjugacy 
classes of radical p-chains in G, represented by the chains 

Co:A and C I : A < F A  

of lengths 0 and 1, respectively. The normalizers of these chains are 

N~(Co) = G and N~(C~) = NG(FA) = FM~ A = (F • M~) A, 

where M1 is the multiplicative group of the fixed subfield GF(p) of F. 
The normal p-subgroup A is its own centralizer CG(A) in G. Therefore the 

only p-block of G is the principal block B = Bo(G) (see [-4, V.3.11]). Using Clifford 
theory for the normal subgroups A and M A  of G, it is straightforward to com- 
pute that I r r (B)=Ir r (~G)  has 

p ( p -  1) characters of degree 1, 

(pP - 1) - (p - 1) = pp_ 1 _ 1 characters of degree p, and 
P 

p characters of degree p P -  1. 

Since a(I G I)= p + 1 (see (5.4)), this and (5.5) imply that 

k ( ~ G , B , d ) = p ( p - 1 ) + p = p  2 if d = p + l ,  

= p p - 1 -  1 if d = p ,  

-- 0 otherwise. 
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A similar computation shows that the only p-block of FM 1 A is the principal 
block B '=  Bo(FM 1 A), which has 

p ( p -  1) characters of degree 1, 

p characters of degree p -  1, and 
pp_ p pp- 1 _ 1 

- characters of degree p ( p -  1). 
p ( p -  1) p -  1 

Since a(IFM1 A[) is also p +  1, this and (5.5) imply that 

k ( ~ F m l A ,  B , d ) = p ( p - - 1 ) + p = p  2 if d = p + l ,  

= (pp-1 _ l)/(p - 1) if d = p, 

=0  otherwise. 

The left side of (6.4) for d = p is now 

( ' )  k ( ~ a ,  B, p) - k ( i ~ r M ,  A,  B, p) = ( p ~ - '  --  11 l - ~ - I  ' 

which is non-zero if p>2 .  So (6.4) fails in this case, even though d(B)=p+ 1 >0.  

8. Alperin's weight conjecture 

In its original form [1] the Alperin Weight Conjecture for a block B of a 
finite group G said that the number of modular irreducible characters in B 
should equal the number of G-conjugacy classes of weights in B. Here a weight 
of B is any modular irreducible character q5 of the normalizer Na(P) of some 
p-subgroup P <  G such that P is a vertex of any simple NG(P)-module affording 
~b, and ~b belongs to some block B(~b) of NG(P ) inducing B. So Alperin's conjecture 
only dealt with modular characters of subgroups of G. 

In 1-9] Kn6rr  and Robinson translated that conjecture into one involving 
only ordinary irreducible characters. For  any H < G  let I rr(~H, B) be the set 
of all characters 0 e I r r ( ~ H )  belonging to blocks B(0) inducing B. We denote 
by k(~H, B) the order tIrr(~H, B)[ of this set. Then 1-9, 4.6] tells us that Alperin's 
Weight Conjecture is equivalent to 

Conjecture 8.1 I f  G is any finite group and B is any p-block of G such that 
d(B) > O, then 

(8.2) ~ (-- l) Icl k(Na(C), B)=0 .  
CeJV/O 

Alperin's conjecture in the Kn6rr-Robinson form is an easy consequence 
of ours. 

Theorem 8.3 I f  Conjecture 6.3 holds, then Alperin's Weight Conjecture holds. 

Proof We only need derive Conjecture 8.1 from Conjecture 6.3. So we assume 
that B is a block of a finite group G such that d(B)>0,  and must prove that 
(8.2) holds. 



204 E.C. Dade 

We apply the results of w with E = H - G  and A = ~ .  For  f we take the 
function sending any p-chain C of G to k(Na(C), B). Evidently f satisfies (3.2a, b). 
Furthermore, the left side of (8.2) is the alternating sum S(f, JV/G) of (3.3). 
So Proposition 3.7 tells us that (8.2) holds if Op(G)> 1. 

Now assume that Op(G)= 1. From the definition of Irr(~Na(C), B, d) in w 
it is clear that Irr(~NG(C), B) is the disjoint union of its subsets Irr(~NG(C), B, d) 
for d > 0. Hence 

(8.4) k(~Ua(C), B)= ~ k(~Na(C), B, d) 
d>-O 

for any CeCg, where all but a finite number of terms in this infinite sum are 
zero. Because Op(G)= 1, Conjecture 6.3 and Proposition 6.5 tell us that 

(-1)lCl k(~;XG(C), B, d ) = 0  
CeW/G 

for all d=>O. Summing these equations over d and using (8.4), we obtain (8.2). 
So the theorem is proved. 

9. Cyclic defect groups 

The only blocks whose structure in known in detail are those with cyclic defect 
groups. For  them our conjecture is a routine calculation. 

Theorem 9.1 Conjecture 6.3 holds for blocks with cyclic defect groups. 

Proof Assume that G, B and d satisfy the hypotheses of Conjecture 6.3, and 
that B has a cyclic defect group D. In view of Proposition 6.5 it will suffice 
to prove that 

(9.2) ~ (-- 1) Icl k(~No(C), B, d)=0 .  
Ce~/G 

Let C: Po = 1 <P~ < . . .  < P, be an elementary p-chain of G. Then each P~ is 
an elementary abelian p-subgroup of G. If P, is not contained in a defect group 
of B, i.e. in a G-conjugate D ~ of D, then k(q~NG(C ), B, d ) = 0  by Lemma 6.9. 
If P, < D ~ and n >0,  then the elementary group P, must be the unique cyclic 
subgroup O(D) ~ of order p in D ~. Since d(B)>0,  the subgroup D has order 
patB) > 1. We conclude that the alternating sum in (9.2) has at most two non-zero 
terms, corresponding to the G-orbits of the trivial chain Co:l  and the chain 
C1:1 < (2(D). So (9.2) reduces to 

(9.3) k(~G, B, d)-k(~N~Y2(D), B, d)=0 .  

We're going to use the results in Chapter VII of Feit's book [4]. Feit's 
field K is our ~. Our hypothesis (5.1) that ~ splits every subgroup of G implies 
that Feit's f i e ld / (  is also ~ = K. Hence Feit's inertial indices e and ~ are equal 
to each other. Our ~2(D) and NaYS(D) are Feit's Da_ 1 and N,_I, respectively. 
We know from page 270 of [4] that there is a unique p-block B' (which Feit 
calls Ba_ 1) of NaO(D) inducing B. Furthermore, B' has the same defect group 
D and the same index of inertia e as B. From [-4, VII.2.12] we know that Irr(B) 
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and Irr(B') have the same number e + ( l D [ - 1 ) / e  of characters, all of which have 
height zero by [4, VII.2.16]. Since d(B)=d(B'), we conclude from this and (5.7) 
that all these characters have the same defect d(B). Thus 

and 

k(~G, B, d ) = e + - -  
IDI-1 

if d=d(B), 

= 0  if d:~d(B), 

k(~N~O(D), B, d)=k(~N~Y2(D), B', d ) = e + - -  
ID1--1 

=0  

if d=d(B), 

if d+d(B). 

Therefore (9.3) holds and the theorem is proved. 

10. The first Janko group 

Following the conventions of [3] we denote by J1 the simple group described 
by Janko in [8]. 

Theorem 10.1 Conjecture 6.3 holds if G is Jl. 

Proof. Let B be any p-block of G=J1 with d(B)>0,  and d be any non-negative 
integer. By [8, w all odd order Sylow subgroups of G are cyclic of prime 
order. So Theorem 9.1 implies the present theorem if p > 2. Thus we may assume 
that p= 2 .  In this case we shall prove the theorem by showing directly that 
(6.4) holds. 

A Sylow 2-subgroup S of G is elementary abelian of order 8 by [8, w 
Hence we have 

a([Gl)=a(ISI)= 3. 

We follow the notation of the table in [8, w I] for the irreducible ~-characters 
of G. There are fifteen such characters, denoted by ~i for i=  1, 2 . . . . .  15. By 
[8, 5.1] the first eight characters ~ ,  ..., ~8 are those in the principal 2-block 
Bo(G ) of 9tG. The next two, ~r and ~9lo, both have degree 76=2z.19,  and 
thus have defect 1 by (5.5). The remaining characters ~ 1 ,  ..-, ~015 all have 
degrees divisible by 8, and hence have defect 0. We conclude that G has seven 
2-blocks, the principal block Bo(G) of defect 3, a block BI(G ) of defect 1 with 
Irr(B 1 (G))= {4J9, ~1o}, and five blocks of defect 0, one for each of the characters 
~Pll . . . . .  ~15. Since B has defect d(B)>0,  it must be either Bo(G) or BI(G). 
In the latter case a defect group of B is cyclic of order 2, and the present 
theorem holds by Theorem 9.1. So we may assume from now on that 

B=Bo(G ). 

The normalizer N~(S) is described in [8, w It is a double semi-direct 
product 

(10.2) N~ (S) = FMS = Fe,<M~.<S. 
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If we identify S with the additive group of the field GF(8) of eight elements, 
then M can be identified with the multiplicative group of GF(8) acting on S 
via multiplication in GF(8). In particular, M is cyclic of order 7. The group 
F can be identified with the absolute Galois group of GF(8) acting naturally 
on both the additive group S and the multiplicative group M. So F is cyclic 
of order 3. 

The above description of NG(S) implies that any involution in G is conjugate 
to the unique involution r eS  fixed by F. One of the defining properties of 
J1 (see the theorem on the first page of [8]) is that 

(10.3) No((z))  = Co(r)= ( z )  • F, 

where F is isomorphic to the alternating group A5 on five letters. 
As Janko remarks in [8, w it follows from (10.2) and (10.3) that any 

four-subgroup of G is conjugate to the unique F-invariant complement V= IS, F] 
to ( r )  in S. Furthermore, we have 

(10.4) NG(V) = F ~ S  = ( ~ )  • ( r v ) ,  

where FVis  isomorphic to the alternating group A4 of degree 4. 
The above arguments tell us that any 2-subgroup P of G is conjugate to 

exactly one of 1, (~), V or S. From the description of the normalizers in (10.2)- 
(10.4), and the definition (2.1) of radical p-subgroups, we conclude that 

(10.5) The radical 2-subgroups of G are the conjugates of l, (~) and S. 

In view of (2.6) any radical 2-chain of G with length at least one must 
begin with either 1 < (~) or 1<S. The latter chain cannot be extended any 
farther, since S is a Sylow 2-subgroup of G. The former can be extended by 
adjoining a radical 2-subgroup of its normalizer (~) • F (see (10.3)). Since F --~ A 5 
has Sylow 2-subgroups with trivial intersections, the only possible such extension 
is 1 < (~) < S, which cannot be extended any farther. Thus 

(10.6) The radical 2-chains of G are the conjugates of the four chains 

1, 1 < ( ~ ) ,  l<S ,  and I < ( ~ ) < S .  

Let C: 1 be the trivial radical 2-chain of G. Then NG(C)=G. So 
Irr(jN~(C), B, d) consists of those characters in Irr(B) having defect d. Since 
B is the principal block Bo(G), the set Irr(B) consists of ff l , --- ,  ~8. By the 
character table in [-8, w I] each of these characters has odd degree, and hence 
has defect 3. Thus 

(10.7) k(jN~(1), B, d) = 8 if d = 3, 

= 0  if d # 3 .  

Now let C be the 2-chain 1 < (~) of G. From (10.3) it follows that NG(C) 
= ( z )  x F. The principal 2-block of F~-A5 has four irreducible J-characters 
q~l, q52, q53 and ~b4 with degrees 1, 3, 3 and 5, respectively (see the character 
table in [8, w It follows that the principal 2-block Bo((Z ) • F) of ( ~ ) •  F 
has eight irreducible j-characters 2ix q~j, for i=0,  1 and j =  1, 2, 3, 4, where 
2 is the faithful linear J-character of (z) .  Each of these characters has odd 
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degree, and hence defect 3. By a theorem of Brauer [4, V.6.2] no non-principal 
2-block of ( r )  x F can induce the principal block B of G. Therefore 

(10.8) k(~N~( l<(z) ) ,B ,d)=8 if d = 3 ,  

= 0  if d4=3. 

Next we let C be the 2-chain I < S  with normalizer N~(C)=N~(S)=FMS 
(see (10.2)). Since FMS has a self-centralizing Sylow 2-subgroup S, all its irreduc- 
ible ~-characters belong to its principal 2-block Bo(FMS). Using the description 
of FMS following (10.2), and Clifford theory for its normal subgroups MS and 
S, we easily compute that Irr(~FMS) has eight members with degrees 1, 1, 
1, 3, 3, 7, 7 and 7. Since all these degrees are odd, these characters all have 
defect 3. Hence 

(10.9) k(~NG(1 <S), B, d )=8  if d = 3 ,  

=0  if d4:3. 

Finally we let C be the 1-chain 2 < ( ~ ) < S  of G. Its normalizer is that of 
( r )  in NG(S), and hence is 

N~(C)=FS~-(r) x A4. 

All the characters in Irr(~FS) belong to the principal 2-block Bo(FS ). There 
are eight such characters, six of degree 1 and two of degree 3. They all have 
defect 3. Thus 

(lO.lO) k(N~( l<(~)<S) ,B,d)=8 if d = 3 ,  

= 0  if d + 3 .  

The equation (6.4) for any value of d follows directly from (10.6)-(10.10). 
So the theorem is proved. 

11. The smallest Mathieu group 

We denote by Ml l  the Mathieu group on 11 letters as described in [7, w 

Theorem 11.1 Conjecture 6.3 is true if G is MI1. 

Proof We fix a p-block B of G with d(B)>0,  and a non-negative integer d. 
By [-7, XII.1.3] the group G = M11 is a sharply quadruply transitive permutation 
group on a set A={1,  2 . . . .  , i1} of 11 points. So its order is 

(11.2) [GI= 11 .10 .9 .8=24 .32  .5.11. 

In particular, all Sylow p-subgroups of G are cyclic if p >  3. In that case our 
theorem holds by Theorem 9.1. So we may assume that p is either 3 or 2. 

We first treat the case where p =  3. Since G is sharply quadruply transitive 
on A, the stabilizer Gll,  lO in G of two points 11, 10~A is a Frobenius group 
of order 9.8 on the set A 9 = { 1, 2 . . . . .  9} of the remaining nine points. Its Froben- 
ius kernel F is a normal subgroup of order 9 acting regularly o n  A 9 .  Its stabilizer 
Q = G ll, 10.9 of the point 9 E A 9 has order 8 and acts regularly on both F - {  1} 
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(by conjugation) and A8 = {1, 2, ..., 8}. This forces F to be elementary abelian. 
Of course F e Syl 3 (G) by (11.2). 

Because G is doubly transitive on A, its stabilizer G~1~,1o~ of the subset 
{11, 10} ~_A has G~l, lo as a normal subgroup of index 2. So the characteristic 
subgroup F of Gll,  lo is a normal subgroup of index 8 . 2 =  16 in G~I 1, ~o~. Any 
aENG(F) must leave invariant the set {11,10} of all fixed points of F, and hence 
lie in G~I 1, 1o~. Therefore G~l 1, ~o~ is precisely the normalizer Nc,(F). 

Of course G(11, ~0~ acts faithfully on A9, and hence is the semi-direct product 
of its regular normal subgroup F on that set and its stabilizer S =  G{l t,10}, 9 
of the point 9~A 9. Since S has order 16, it is a Sylow 2-subgroup of G by 
(11.2). Because S acts faithfully on F by conjugation, it is isomorphic to a 2- 
subgroup of the automorphism group Aut(F)-~ GL2 (3). But a Sylow 2-subgroup 
of GL 2 (3) is semi-dihedral of order 16 = ]SI. We conclude that 

(I 1.3) The Frobenius kernel F of G 11, ~ o is an elementary abelian Sylow 3-subgroup 
of G with order 9, acting regularly on A g = A - { l l ,  10}. Its normalizer No(F) 
is the stabilizer G~11,1o~, and is a semi-direct product S~<F, where 
S= G{l l ,  lo}~ G 9 is a semi-dihedral Sylow 2-subgroup of G acting faithfully on 
F (under conjugation) like a Sylow 2-subgroup ofAut (F) ~- GL2 (3). 

Any element a4= 1 of F fixes only the points 11 and 10 of A. So No((a)) 
is a subgroup of G(I~.lo~=N~ (F). 'It follows that F is a trivial intersection 
subgroup of G. This implies that B has F as a defect group, and corresponds 
in Brauer's First Main Theorem [-4, III.9.7] to a unique 3-block B' of NG(F)= SF. 
Because SF has a self-centralizing normal 3-subgroup F, its only 3-block is 
the principal one Bo(SF) (see [-4, V.3.11]). Therefore B = Bo(SF) 6 is the principal 
3-block Bo(G ) of G, and all other 3-blocks of G must have defect zero. 

We use the notation of [-3] for the ten characters X1, )~2, ..., Za0 in Irr(~G). 
By the character table of G = M 11 in [-3], the character Z9 has degree 45 divisible 
by 9, and hence lies in a 3-block of defect zero. All the other nine characters 
have degrees not divisible by 3. So they all have defect 2 (see (5.5)) and lie 
in Irr(B). Therefore 

(11.4) Irr(B) has nine characters, all of defect 2. 

From the description of N~(F)=SF given in (11.3), it follows that Irr(~SF) 
consists of nine characters with degrees 1, 1, 1, 1, 2, 2, 2, 8 and 8. These characters 
all lie in B' and have defect 2. Therefore Irr(B') also has nine characters, all 
of defect 2. In view of Proposition 6.10, this and (11.4) imply our theorem when 
p= 3 .  

Finally, we assume that p=2 .  Proposition 6.5 tells us that we can prove 
the theorem by showing that 

(i1.5) ~ (-- 1) Icl k(~No(C), B, d)=O. 
CEg/G 

We may choose a four-subgroup V in the semi-dihedral Sylow 2-subgroup 
S of G. Any elementary abelian subgroup of S is S-conjugate to one of V. 
Hence any elementary abelian 2-subgroup of G is G-conjugate to one of V. 
It follows from (11.3) that V has exactly one orbit F of length 4 on A, the 
remaining orbits being of lengths 2, 2, 2 and 1. Because G is sharply quadruply 
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transitive, the normalizer N~(V) must act faithfully on F. So N~(V) is isomorphic 
to a subgroup of the symmetric group $4 on four letters. 

If NG(V) is not isomorphic to $4, then it must be the dihedral group Ns(V ) 
of order 8. This would imply that the central involution ~ of S (which lies 
in V) could not be G-conjugate to any other involution pc  V. But (11.3) implies 
that r is the unique involution in Gl l . lO .  9, and that p fixes 3 elements in A 9. 
Because G is triply transitive on A, this forces p to be G-conjugate to ~. Therefore 

(11.6) Na(V)"~S4. 

Incidently, this says that V is a radical 2-subgroup of G. 
We know fi'om [7, XII.5.1] that 

(11.7) N~ (('c)) = C~(r) ~- GL2(3 ). 

So both NG((r) ) and NG(V) have normal 2-subgroups whose centralizers are 
their centers. It follows that the only 2-blocks of these normalizers are their 
principal blocks (see [4, V.3.11]). Since any 2-block of G with positive defect 
must be induced from a 2-block of the normalizer of some non-trivial elementary 
abelian 2-subgroup of G, we conclude that B is the principal 2-block B0(G), 
of G, and is the unique 2-block of G with positive defect. 

Because any elementary abelian 2-subgroup of G is conjugate to a subgroup 
of the four-group V, it follows from (11.6) that 

(11.8) The members of ~ are the G-conjugates of the four 2-chains 

1, t<( z ) ,  I < V  and t < ( z ) < V .  

Of the ten characters Z1, Z2 . . . . .  Zlo in Irr(~G), only ~6 and )~7 have degrees 
divisible by 16 (see the character table of Ml l  in [-3]). So these two lie in 
2-blocks of defect zero, while the remaining eight characters Zl . . . . .  Z5 and 
Ks, Xg, Zlo form Irr(B). The degrees of these eight characters are 1, 10, 10, 10, 
11 and 44, 45, 55. Since a(lG[)=4, we conclude that 

(11.9) k(~No(1), B, d ) = 4  if d = 4 ,  

=3  if d = 3 ,  

=1  if d = 2 ,  

= 0 otherwise. 

In view of (11.7) there are eight characters in Irr(~Co(r)), with degrees 1, 
1, 2, 3, 3, 2, 2 and 4. They all belong to the principal 2-block Bo(CG(O), which 
induces B =  Bo(G). Since a(lC6(r)[)=4, we conclude that 

(11.10) k(~N~(1 <(~>), B, d ) = 4  if d = 4 ,  

=3  if d = 3 ,  

= i  if d = 2 ,  

= 0 otherwise. 
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It  fol lows f rom (11.6) that  there  are  five charac te rs  in Irr(~NG(V)),  with 
degrees  1, 1, 2, 3 and  3. They all lie in the p r inc ipa l  2 -b lock  Bo(N~(V)), which 
induces  B = Bo(G). Since a([S4[)= 3, this implies  tha t  

(11.11) k ( ~ N ~ ( l < V ) , B , d ) = 4  if d = 3 ,  

= 1  if d = 2 ,  

= 0 o therwise .  

The  normal i ze r  Na(1 < ( ~ ) <  V) is the cent ra l izer  of ~ in the above  g roup  
N~(V). This is the  Sylow 2 - subgroup  Ns(V) of tha t  g roup ,  and  so is d ihedra l  
of  o rde r  8. Al l  its i r reducible  j - c h a r a c t e r s  be long  to its p r inc ipa l  2-block,  which 
induces  B. Since these charac te rs  have degrees 1, 1, 1, 1 and  2, while a(lNs(V)l ) = 3, 
we conc lude  tha t  

(11.12) k ( ~ N 6 ( l < ( z ) < V ) ,  B, d ) = 4  if d = 3 ,  

= 1  if d=2 ,  

= 0 o therwise .  

The  equa t ion  (11.5) for any value of d fol lows di rec t ly  f rom (I1.8~(11.12). 
So the t heo rem is proved.  
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