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Introduction 

In this paper, we develop further some of the ideas from [38] concerning Calabi- 
Yau threefolds - that is, complex smooth projective threefolds X with canonical 
class Kx=O and with h 1 (Cx)=0=h2(Cx).  The second Chern class c2(X) defines 
a linear form on H2(X, Z), which by Theorem 1.5 of [19] is non-trivial unless 
some finite cover of X is an abelian threefold. Moreover we recall from [2] 
that a Calabi-Yau threefold has finite fundamental group unless some finite 
cover is either abelian or decomposable as a product of an elliptic curve and 
a K3 surface. 

If the Calabi-Yau threefold X is simply connected, we know from Theorem 
12.5 of [33] or the theory of [40] that its diffeomorphism class is determined 
up to a finite number of possibilities by the information: 

(1) The cubic form #: H 2 (X, •) ~ Z given by cup-product. 
(2) The linear form c2 :H2(X ,~E)~Z  given by cup product with 

c2 (X) ~ H 4 (X, 7/). 
(3) The middle cohomology H3(X, 7Z,). 

If moreover H3(X, 7Z,) is torsion free, the above information characterizes the 
diffeomorphism class of X uniquely [373. 

Since H2(X, ~.) is canonically isomorphic to Pic(X), we shall usually think 
of its elements as line bundles or divisor classes on X, and denote /~(D) by 
D 3. In [38], we considered the real vector space H2(X, ff~-)=H2(X, 7Z)~)~-~ of 
dimension p. In this space we have the Kfihler cone ~ ,  and its closure ~,, 
the cone of nef  classes. We also however have the cubic cone W* defined 
by cup-product, and its associated cubic hypersurface W ~ ff'P-I(R). In Sect. 1, 
we review the relationship between these two cones. 

Fact 1 Away from W*, the cone ~ is locally rational polyhedral, the codimension 
one faces corresponding to primitive birational contractions of X. 

Fact 2 Non-singular rational points of W* which are on off" but not on the linear 
space defined by c2 = 0 give rise to elliptic fibre space structures on X. 
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These facts are almost immediate from the theory of [38]. In Sect. 2, we study 
the primitive birational contractions which arise as a result of Fact. 1. The 
main part  of this section is spent proving a general result concerning crepant 
primitive contraction morphisms on a smooth threefold X which contract a 
surface E down to a curve C of canonical singularities - we shall see (2.2) 
that C has to be smooth and E a conic bundle over C. 

For X a Calabi-Yau threefold, it is known that the first order deformations 
of X are unobstructed [34, 35, 28], and so the versal deformation (Kuranishi) 
space of X can be regarded as an open polydisc in HI(X,  Tx)~-HI(X, f2~). In 
fact, by the theory of [36], there exists a global quasi-projective moduli space 
of polarized Calabi-Yau threefolds with given Hilbert polynomial (this corre- 
sponds to fixing n 3 and H.c2 for polarizations H). Moreover, Todorov has 
announced the result that  the space of all deformations of a given X has the 
structure of a quasi-projective variety. 

For  a given Calabi-Yau threefold X, we know that the K/ihter classes corre- 
spond bijectively with the Calabi-Yau metrics on X [39]. In [7], the local 
moduli space parametrizing complex structure plus Calabi-Yau metric is studied 
under the assumption that the Kfihler cone is locally independent of the complex 
structure. This is clearly true of many examples, which for instance are embedded 
as complete intersections in some rigid ambient space, the K/ihler cone of which 
restricts to the K/ihler cone on X. One motivation for the present paper was 
to clarify any dependence the K/ihler cone might have on the complex structure. 

If re: Y" ~ B is a smooth family of Calabi-Yau threefolds over say a polydisc 
B, then we can identify the cohomology groups H2(Xb, TI)---H2(~ 7Z.), where 
X b denotes the fibre of r~ over b~B. We can therefore consider the K/ihler 
cones )U(b) of Xb~B, to be cones in some fixed vector space H2(X, IR). The 
question raised by [7] is whether, when considering the Kuranishi family of 
a Calabi-Yau threefold, these cones are all the same. The answer is provided 
by the following result, proved in Sect. 3 and 4. 

Main Theorem. Suppose that rt: ~ B  is the Kuranishi family of a Calabi-Yau 
threefold X over a polydisc B in Hi (X ,  Tx). The Kiihler cone is invariant in the 
family if  and only if none of the threefolds X b contain a smooth elliptic ruled 
surface. More generally, the Kiihler cone will be invariant over the dense subset 
of beB for which Xb contains no such ruled surfaces, this subset being the comple- 
ment of at most countably many codimension one submanifolds of B. 

Thus in a sense the elliptic ruled surfaces play the same role for Calabi-Yau 
threefolds that the ( -2 ) -curves  do for K3 surfaces. The difference is that in 
the case of  K3 surfaces one will always have ( -  2)-curves on some nearby surface, 
whilst for Calabi-Yau threefolds it will be rare for any deformation to contain 
one of the above ruled surfaces - the existence of such a surface will imply 
that the cubic hypersurface W (an invariant under deformation) is special. In 
(4.6) we study an example where the K/ihler cone does jump under a generic 
deformation. In Sect. 5, the analogy with ( -2 ) -curves  on K3 surfaces becomes 
even more striking when we observe that the theory of elementary transforma- 
tions (or flops) goes over essentially unchanged to the case of elliptic ruled 
surfaces on Calabi-Yau threefolds. 

In Sect. 6, we apply the above theory to the question of whether some defor- 
mation of a Calabi-Yau threefold can have an elliptic fibre space structure 
(compare with the case of K3 surfaces where this is always true for some small 
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deformation). We indicate possible arithmetic obstruct ions (associated to the 
cubic cone) and geometric obstruct ions (determined by the cubic and K/ihler 
cones) to there being an affirmative answer to this question in a given case. 
We observe that certain Calabi -Yau threefolds already in the literature cannot  
have a deformation with an elliptic fibre space structure because of  these obstruc- 
tions. 

This paper was written while the author was at Kyoto University supported on a Fellowship 
from the Japan Society for the Promotion of Science. He would like to thank the JSPS for 
their support, and Kyoto University (in particular Professor Kenji Ueno) for providing a 
pleasant environment conducive to research. The author wishes to thank Professors Y. Kawa- 
mata, N. Shepherd-Barron and S. Tsunoda for pertinent comments. He is especially grateful 
to Prof. C. Borcea for pointing out an error in an earlier draft of the paper, and to Prof. 
A. Fujiki for pointing out the proof of Proposition 4.2 and for the benefit of several enlightening 
discussions. 

1 The Kfihler and cubic cones 

Let X be a Calabi -Yau threefold, and consider the real vector space H z ( x ,  ~ )  
of  dimension p. In this space we have two cones which are of  part icular  interest. 

The Kdhler cone. This is the open cone ~,UeHZ(X, ~ )  consisting of  K/ihler class- 
es; from the point  of view of  divisors, it is the open cone generated by the 
ample divisor classes. The closure ~F ' c  HZ(x, JR) is then the cone consisting 
of  numerical  classes of  n e f  divisors, that  is real divisor classes D with the proper ty  
that  D - C  > 0 for all curves C on X. We shall denote the boundary  of  )F" by 
~?~. The cone ~ is in fact just the dual of  the cone NE(X)  of effective 1-cycles, 
as studied by Mori.  In our  case it is more  convenient  to work  with the cone 

because of  its relationship to the second cone we study. 

The cubic cone. The cubic cone W* c H a (X, N~) is the cone defined by the cubic 
form given by cup-product ,  i.e. 

W* = {DeH2(X,  ~ ) ;  D 3 =0} .  

This in turn determines a cubic hypersurface W c  PP-1  (~). 

Remarks 1.1 (1) The rat ional  points of  Y correspond to ample divisor classes 
on X. 
(2) We observe that  D 3 > 0  for all D in ~F; and fur thermore that the linear 
form c 2 is non-negat ive on o~Z (i.e. c2.D>O for all D e ~ ) .  This latter claim 
follows f rom Theorem 1.1 of [22]. 
(3) A non-zero  element D e H Z ( X ,  ~ )  has D 2 (numerically) trivial if and only 
if the point  of IP ~  a (~)  corresponding to D is a singular point  of  W. To see 
this we remark that  for any L e H 2 ( X ,  lR), the function (D+xL)  3 has a multiple 
root  at x = 0  if and only if D 3 = 0 = D  2.L. In  part icular  we note that  W is 
singular whenever some deformat ion of  X has the structure of  a fibre space 
over a curve, or  the structure of  an elliptic fibre space over a normal  surface 
S with Picard number  p(S)> i. 
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\ 

Fig. 1. 

A picture of what the geometry of the above two cones in H2(X, IR)_---~ p 
might look like (when p--3) is provided by Fig. 1 above. The hyperplane given 
by the linear form c2 has not been included, but the reader should bear in 
mind that the cone oF" is on the positive side of this hyperplane, although 
possibly also touching it. 

Fact 1 The cone 3~ is locally rational polyhedral away from W*, the codimension 
one faces corresponding, to primitive birational contractions on X. 

Definition 1.2 We say that a birational contraction morphism ~b: X ~ X onto 
a normal projective variety )C is primitive if it cannot be further factored into 
birational morphisms of normal varieties. 

We shall always assume that the birational contraction rnorphisms under 
consideration have normal image varieties. In the terminology of [-38], such 
morphisms are Calabi-Yau contractions, and they were studied in the cited 
paper without the restriction that X is smooth. For a birational contraction 
morphism q~:X ~ X on a Calabi-Yau threefold X, I claim that any relatively 
ne f  divisor LEPic(X) has a multiple which is @generated in the terminology 
of [16]. In other words, if L is non-negative on the relative cone NE(X/X)  
and DePic(X) is the pull-back of a hyperplane section from X, then L+nD 
is semi-ample (and big) on X for n sufficiently large. The claim follows from 
the theory in Chap. 3 of [-16], in particular Remark 3-1-2(1) when applied to 
L, which by assumption is both 4)-  n e f  and q~ - big. Using this result, the reader 
will easily check that the condition given in (1.2) for ~b: X ~ X to be primitive 
is equivalent to the condition that the real vector space N 1 (X/X) of (numerical 
classes of) relative 1-cycles has dimension one, and that this in turn (cf. Lemma 3- 
2-5 of [16]) is equivalent to the condition that PicR(J()= Pic(X')| P, has dimen- 
sion one less than PieR(X). In the more general context of [38], it follows 
also that a non-primitive Calabi-Yau contraction will factor into a composite 
of primitive contractions. 

If ~b: X ~ X is a primitive contraction, the pull-back of a very ample divisor 
on J~ defines a hyperplane in the real vector space NI(X)  (dual to Hz(X, IR)); 
this hyperplane intersects NE ( X ) c  N ~ (X) along a single (geometrically extremal) 
ray. An alternative terminology therefore is to call such contractions extremal, 
although this term is used by some authors to include negativity of the canonical 
class on the ray in question. 
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The above Fact 1 is just a restatement in more geometrical language of 
the results from [38]. Given a divisor D on 0 R \ W * ,  we have that D is nef 
with D3>0.  Let H be an ample divisor on X;  since D is nef  and D3>0,  we 
deduce that O 2. H > 0. Observe that D. H 2 > 0 and that the Hodge index theorem 
applied to rational approximations to D implies that (D2.H)(H3)<(D.H2) 2. 
Hence D. H z > O. 

We can now find arbitrarily close to D, rational divisor classes Do not in 
a(? ~ but with D 3 > 0, O0 z. H > 0 and Do. H 2 >  0. This however is the circumstance 
in which the Key Lemma from [38] applies; its proof  shows that for some 
positive 2 e Q  (in fact 2 = s u p { x e l R ;  Do+xH(EY}), we have that D~=Do+2H 
is a rational divisor in d ~ ;  and that some multiple of D~ defines a birational 
contraction morphism. 

By slightly moving the divisor D o, we may assume that the birational con- 
traction qS: X ~ X  defined by D~ is primitive. This says that ~*PicR(X) is a 
rational hyperplane of H2(X, R), and that the pull-back of the nef cone on 
X corresponds to the intersection of this hyperplane with ~ ;  this intersection 
is then clearly a codimension one face of ~ which has Da in its interior. 

An analogous argument tells us that if D a yields a birational contraction 
morphism of an r-dimensional space of numerical classes of 1-cycles, then Da 
is in the interior of a codimension r rational face of ~ .  

Since the above argument can be applied in a neighbourhood of any 
DeSJffr\W *, we see that ~ is indeed locally rational polyhedral as claimed. 

Remarks 1.3 (1) Fact  1 tells us that the picture in Fig. 1 is not too misleading. 
It may however happen that as one approaches W*, one obtains infinitely many 
faces of ~ (for an example of this, see [4]). This should be compared with 
the structure of the cone NE(V) for a projective manifold V, which cone is 
locally rational polyhedral on the negative half-space defined by the canonical 
class Kv, but may have infinitely many faces as one approaches the hyperplane 
Kv.Z=O. 
(2) The codimension one faces of f correspond as we have seen to primitive 
birational contraction morphisms ~b: X ~ X ~. This morphism may be small, in 
which case ~b contracts finitely many curves isomorphic to F 1. If however ~b 
is a divisorial contraction, a standard argument proves that the exceptional 
locus E has to be irreducible (since E i ' Z < 0  for any component  Ei of E and 
any curve Z on E); moreover,  when E is contracted to a curve C, the generic 
fibre of E over C is irreducible. In Sect. 3, we shall see that ~b is either a contrac- 
tion of E down to a point or to a non-singular curve C of genus g. In the 
first case, we note that E . Z > 0  for all irreducible curves other than those on 
E, i.e. in the numerical class contracted. Thus for any ample divisor H on X, 
the line {E+xH; xeF,~} cuts 3~f( along the same face independent of H. Thus 
our original divisor D was in the interior of a rather large face of the cone 
~ .  The same statement is true if E is a ruled surface over a curve of genus 
g > 0 ,  since if E + 2 H ~ a J ~  gives rise to a contraction of either the whole of 
E to a point or curves on E not contained in the ruling, then we would have 
g = 0 .  

For  the part  of ~ which lies in W*, we have in general no rationality 
statement corresponding to that in Fact 1. We can however say something if 
we are given rational points on that part  of the boundary.  Here we shall need 
the assumption that X is not the &ale quotient of an abelian threefold. 
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Fact 2 Non-singular rational points of W* which are on 3~ r but not on the linear 
space defined by c 2 = 0 give rise to elliptic fibre space structures on X. 

If D is a divisor whose class represents such a non-singular point of W*, 
the fibre space map will be qS,D: X ~ S  where S is a normal surface and n 
is sufficiently large. If H is ample on X, then D is n e f  with D z . H > 0 .  Moreover, 
since c2 -D@0 , we have by (1.1) that D ' c 2 > 0 .  Therefore we can apply (3.2)' 
of [38] to obtain the claimed result. 

2 Primitive birational contractions 

We have seen in Sect. 1 that the boundary ~3~ of the K/ihler cone of a Calabi- 
Yau threefold X consists of a part which lies in W* and a locally rational 
polyhedral part corresponding to birational contractions of X (with image a 
normal threefold )~). In this section, we study this latter part. Since a class 
in O:,ff"\W* can be approximated arbitrarily closely by classes of divisors in 
~ \ W *  for which the corresponding contraction qS,D (n sufficiently large) is 
primitive (i.e. D is in the interior of a codimension one face of ~(7"), the important 
case to look at is that of primitive contractions. 

Assume now that DePic(X) represents a point in ~ ? ~ \ W *  in the interior 
of a codimension one face of ~ ,  and that the corresponding primitive contraction 
is ~b D = 4>: X-~ X. We noted in Sect. 1 that if the exceptional locus E has codi- 
mension one, then E will be irreducible. In the case when the exceptional locus 
consists of curves, this will no longer in general be true, since distinct curves 
may well be numerically equivalent from the global point of view. 

Definition 2.1 We say that a primitive contraction is of Type I if it contracts 
only finitely many curves, of Type II  if it contracts an irreducible surface down 
to a point, and of Type I l I  if it contracts an irreducible surface down to a 
curve. 

If the primitive birational contraction ~b o is of Type I, the image of the 
exceptional locus consists of a finite number of isolated singularities, each with 
a small resolution. The singularities are clearly terminal of index 1, and so 
by the theory of 1-30,1 are compound Du Val (cDV in the now standard notation) 
singularities. These singularities have been studied by a number of authors (w 8 
of [27,1, w 5 of [30-1, [25, 9,1). The basic technique is to work in the analytic 
category and consider a cDV point (V, 0) with small resolution g: X ~ V; the 
exceptional locus of g will consist of a finite number of curves isomorphic to 
p1. We can however consider V as the total space of a 1-parameter family 
of deformations of its generic hyperplane section H (a Du Val singularity), and 
the small resolution X as the total space of a 1-parameter family of deformations 
of a partial resolution /q of H. We are therefore in a position to apply the 
theory of simultaneous partial resolutions of Du Val singularities, and this is 
the method employed in the papers cited above. 

If the primitive birational contraction ~b o is of Type II, then the exceptional 
locus is a (generalized) Del Pezzo surface. The reader is referred to [29,1 for 
a discussion of this case. We note that n D - E  is ample on X for n sufficiently 
large, and so from the exact sequence 

O-~ C(nD-- E) ~ ~(nD) --* ~)r-~ O 
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and vanishing theorems we obtain h~(E,(gE)=0 - in fact as commented on 
p. 149 of [24], this is true for any irreducible generalized Del Pezzo surface. 

For  much of this paper, it will however turn out that the interest lies in 
primitive contractions 49D: X ~ X" of Type III,  and it is these that we now study 
in this section. The image X will have a curve of canonical singularities corre- 
sponding to the surface contracted, and otherwise be non-singular. Since the 
results may be of independent interest, we shall in fact classify (for an arbitrary 
smooth complex projective threefold X) the possible exceptional surfaces for 
primitive crepant contractions 49o: X ~ X, contracting a surface down to a curve 
of canonical singularities on )?. 

Theorem 2.2 Suppose that X is a smooth complex projective threefold, and that 
(90: X ~ X is a crepant contraction morphism, contracting some irreducible surface 
E down to a curve C of  canonical singularities on X ,  and an isomorphism outside 
E. The curve C is then smooth and E is a conic bundle over C. The possible 
singular fibres o f  the morphism h: E--* C are either two lines or a line taken twice. 
The possible singularities of  E are A n singularities at the point where distinct 
components of  a singular f ibre meet, or A l singularities appearing as a pair on 
some double fibre. 

We comment  that by the theory of [29], C is generically a curve of A 1 

singularities, but there may well be certain 'dissident '  points at which the three- 
fold X" has rather more complicated cDV singularities. The fact that the singulari- 
ties of )f  will be cDV follows from Theorem 2.2 of [29] and the observation 
that E is essentially the only possible crepant exceptional divisor on a resolution 
of X'. We prove first a general lemma concerning curves of cDV singularities. 

Lemma 2.3 Suppose that C c V is a curve o f c D V  singularities (generically cA 1) 
on a threefold V with P ~ C  a singularity of  the curve o f  multiplicity r. I f  O: X - ~  V 
is a crepant partial resolution o f  V with X having at worst isolated singularities, 
then 49-1 (p) consists o f  at least r components. 

Proof  The statement being a local one on V, we can take V to be a small 
neighbourhood of the singularity P. We use the technique mentioned earlier 
in the context of isolated cDV singularities with small resolution (described 
in detail in [30]), and consider V as the total space of a 1-parameter deformation 
V-+ A over the open disc, with simultaneous partial resolution X ~ A. Let us 
change notation so as to denote the first family by ~e ~ A (where the fibre 
Zo over 0 is a general hyperplane section of the singularity), and the second 
family by ~ ~ A. We have a diagram 

\ /  
and we wish to show that 49- ~ (P) ~ Yo consists of at least r components.  Observe 
that the general fibre Y~ (t 4: 0) contains r exceptional ( -  2)-curves. 

We may assume that Yo is the only singular fibre of the family ~ ~ A; 
by Theorem 1.14 of [30], Yo is a partial resolution of Z 0 obtained by contracting 
some set of ( -2 ) -curves  on the minimal desingularization. In particular, Yo 
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has only Du Val singularities. After taking a finite cover 0:  z] ~ A ramified 
over the origin, we may assume that the monodromy action is trivial on the 
r exceptional ( -  2)-curves of the general fibre, and furthermore that there exists 
a simultaneous minimal resolution of singularities in the family. We obtain 
therefore a family of smooth surfaces ~ -~ A and a corresponding diagram 

+ i + 
A - - * A =  A 

The exceptional locus of the map ~ --, Lr contains divisors gl . . . . .  o~r whose 
fibres over t ~e 0 contract down to the At-singularities on Zoo,). 

The family ~ ~ z] is however by [14] a pullback of the simultaneous resolu- 
tion of the versal deformation of the singularity Z 0. Using the standard theory 
of such resolutions (see [9, p. 673] for a brief summary), we deduce that the 
g~ will restrict to distinct ( -2)-curves  in the exceptional locus on ~'o, which 
we recall is the minimal desingularization of Z o. 

If now we take the images gl . . . . .  gr of these divisors on Yr these restrict 
to give the r exceptional ( -2)-curves  on the fibres Ys for s :~ 0. On the central 
fibre Yo, they restrict to give distinct curves E~ . . . . .  E, in the exceptional locus 
of Yo ~ Z0, and the lemma is proved. 

Proof  o f  (2 .2)  Let D be the pull-back of a very ample divisor on 9(, and let 
q~=~b,. Since n D - - E  is ample on X for n sufficiently large, it follows from 
vanishing and the exact sequence 

0 ~ (gx(nO - E )  ~ Cx (nD) ~ Ce(nD ) --* 0 

that the map H~176  is surjective. The morphism @: E ~ C  
therefore exhibits E as a fibre space over C. From vanishing and the exact 
sequence of sheaves 

0 ~ (9 x (n D -- 2 E) ~ Cx (nD -- E) --* CE (nD -- E) -.-r 0 

we deduce that n D -  E is very ample on a neighbourhood of E for n sufficiently 
large. 

We now show that C has to be smooth; suppose that P ~ C  is a singularity 
of C of multiplicity r > 1. Since - E - l =  2 for the general fibre l of E over C, 
it follows that q~-l(p) can have at most two components, and hence by (2.3) 
we have r = 2 and the fibre of E over P contains exactly two components. 

Now choose a general element S in the linear system ] n D - E [ ;  the surface 
S intersects the fibre of E over P in two distinct points, say Q~ and Q2, at 
which it is smooth. Thus on some neighbourhood of Q1, the morphism ~bls 
is unramified, and hence induces an analytic isomorphism from a neighbourhood 
of Q1 in E n S  to a neighbourhood of P on C. Hence we conclude that the 
curve C has embedding dimension at most two at P. 

We observe now from the fact that ~b is a small morphism, that 4), ( g x ( - E )  
= J c ,  the ideal sheaf of C in )(  (cf. the argument of (2.14) on p. 148 of [30]). 
Moreover, the sheaf d ) x ( - E  ) is 'relatively generated by its sections', i.e. the 
map ~b* ~b, (gx( -E)  ~ (gx( -E)  is surjective. Following the same line of argument 
as in [30], we deduce that the map q~*Jc ~ (gx( -E)  is surjective, and in particu- 
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lar we have J;c.(gx=Ox(-E) is invertible. The universal property of blowing 
up implies that the morphism ~b factors through the blow-up X~ of X in C. 
The threefold X1 is clearly non-singular in codimension one. Since C is locally 
a complete intersection, the same is true of X1 (see calculation given below), 
which then by Serre's criterion must therefore be normal. Since q~ was assumed 
to be primitive, we deduce that the blow-up of )( in C will just be X. 

Apart from assuming that E is Cartier, we have not really used yet the 
non-singularity of X, the above arguments going through equally well if X 
say had isolated cDV singularities - it is now that we use the fact that X 
is smooth. Recall that PeJ~ is a cDV singularity and so can be (analytically) 
embedded in ~4. Our deduction concerning the curve C at P says that we 
can choose local analytic coordinates x, y, z, t for 112 4 with Jc.e = (x, y, h}, where 
P is the origin and helI;[[z, t]]. Since P is a singular point of C, h has no 
linear or constant parts. 

The blow-up of X in C is the strict transform of X in the blow-up ~4 
of lU 4 in C, and both as we have noted are locally just X. The blow-up of 
C 4 in C lies in ~4 x F 2 (where ~4 has coordinates (x, y, z, t), and ~2 has homoge- 
neous coordinates (u:v:w) say), and is given by equations 

rank(X Y hw)<l. 

Take the affine piece given by u = 1; we therefore have affine equations in {E 6, 
y=xv,  x w=h. We can embed this affine piece of ~4 in 112 5 (coordinates 
(x, z, t, v, w)), with affine equation x w = h. This affine variety is singular above 
P at points where w---0. Hence ~4D Ip2D L, where the ~:~2 is the exceptional 
locus above P, and L is the line given by w=0,  which as we have seen is 
the singular locus of ~4. Now consider the intersection of X with the exceptional 
locus IP2; this is just the fibre of E above P, a conic in p2. We observe that 
X has singularities at points where this conic intersects the line L, contradicting 
the assumption that X was smooth. Thus we have shown that P cannot be 
a singular point of C in this case. 

It now follows immediately that E is a conic bundle over C (since - E - l =  2 
for each fibre l), and the final sentence of the theorem concerning the possible 
singularities of the surface E follows by standard combinatorics. 

Remark. From the local point of view, all the above singularities on E can 
occur. For  the case of one A,, singularity (m> 1) on a fibre, we can take X" 
locally given by the equation 

X 2 + y 2  + Z  3 + t " -  ~ z 2 

and X the blow-up along the curve C: x=y=z=O.  For the case of two AI 
singularities on a double fibre, we can take g locally given by the equation 

X 2 -t- Z y  2 -[- Z 3 -[- t ( y  2 - -  Z 2) 

and X the blow-up along the curve C: x---y = z = 0. In both the examples given, 
X is in fact smooth above the singular locus C of 3~. If however we take a 
higher power than three in the z term, we then obtain a threefold X with 
cDV singularities. 



570 P.M.H. Wilson 

3 Behaviour of the Kfihler cone under deformations 

Let us consider the case of n: Y" ~ B is a complex analytic family of Calabi-Yau 
threefolds over a polydisc B, with fibre X = X o  over 0~B (often we shall be 
dealing with the Kuranishi family for the threefold X, with B a polydisc therefore 
in HI(Tx)). We can identify the cohomology groups in the family, with 
H 2 (Xb, 7/)_ H 2 (X, 7 / ) -  H2(X, 7/) for b ~ B, the isomorphisms being induced from 
the inclusion maps. Any class L in H 2 (X, 7/)~ Pic (X) therefore induces an invert- 
ible sheaf 5O on Y" with Cl(solxb)=L for all b~B. We shall usually denote the 
sheaf 5olxb by (gx~(L). Since the map ~: Y'--*B is smooth, we have that 5 ~ 
is flat over B, and so the Grauert  semi-continuity theorem ([31], [1, p. 134]) 
may be applied. 

To study the behaviour of the K/ihler cone under deformations, we shall 
typically consider the intersection of ~3(~ with a rational line of the form 
{M + xH; x~ll.}, where both M and H are rational, and H is ample. By shrinking 
B if necessary, we may assume [21] that H remains ample on Xb for all beB. 
As described above, we can identify the cohomology groups in the family and 
thus consider the K/ihler cone ~ ( b )  of Xb as a cone in Hz(x, JR). We set 

2(b) = sup {x elR; M + xHq~J~/'(b)}. 

If M + 2 ( b ) H e W * ,  then by Fact 1 from Sect. 1, it is a q-Cart ier  divisor class, 
some multiple of which defines a birational contraction morphism on Xb. 

We shall see below that to understand how the Kfihler cone varies, we 
shall need to understand the case when M+2(O)H(EW*, and so is a q-Car t ier  
divisor class, determining a birational contraction morphism on X = X  o. In 
particular, we need to discover whether any exceptional curves on X deform 
in the family. 

In the case for instance when the contraction ~b: X ~ ) (  determined by 
M +  2(0)H is small (Type I), the singularities of )( are cDV and the components 
of the exceptional locus of q~ have normal bundles ( 9 ( - 1 ) G  C( -1 ) ,  ( 9 ( - 2 ) � 9  (9 
or ( 9 ( - 3 ) O 0 ( 1 ) ;  in the first of these cases, the curve is a stable submanifold 
in the sense of Kodaira [20], and so it will deform to give a similar curve 
on any small deformation of X. Friedman observed on p. 678-9 of [9] that 
in general a weak stability property holds for the exceptional locus of a small 
resolution of a cDV singularity. We adopt a different approach. 

Proposition 3.1 Let X be a Calabi- Yau threefold and Z a curve on X isomorphic 
to ~1 which does not deform in X. For any smooth family n: ~ ~ B of deformations 
of X = Xo over a base manifold B, the curve Z will deform in the family. 

Proof. We consider the relative Douady space of f over B, and let S be the 
component containing the point z corresponding to the curve Z. Let g: S ~ B 
be the corresponding proper map of complex manifolds. 

The dimension d of S is just the dimension of the complete local ring (~s. z, 
and this ring is approximated by Artinian rings. To calculate d, we express 
~s,z as A/I, where A is a formal power series ring over C with maximal ideal 
M, where d im(M/M 2) is the local embedding dimension of S at z. The argument 
of Proposition 3 from [23] therefore applies (since we need only consider (alge- 
braic) deformations over Artinian rings) to show that d > h ~  l(Nz/~r). 
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This inequality can also be obtained by analytic means and is implicit in the 
theory of [26]. 

The right hand side of the above inequality is Z(Nz/~)=dim(B),  by an easy 
application of Riemann-Roch. Thus dim(S)> dim(B). Furthermore, since Z by 
assumption does not deform in X 0, the point z~S  is isolated in the fibre g-l(0).  
Therefore we deduce that the proper map g: S ~ B  is surjective, and the result 
is proved. 

Remark. In (3.1), the parameter space for the deformations of Z in the family 
is not claimed to be B; the point is that it maps surjectively to B. 

We consider now the Kuranishi family 7t: • ~ B (with B a polydisc in H 1 (Tx)) 
for the Calabi-Yau threefold X = X o ,  and suppose M, H ~ H 2 ( X , Q )  with H 
ample on X b for all beB.  We study the behaviour of the function 2(b), which 
was defined above, in a neighbourhood of 0e B. 

Proposition 3.2 (i) I f  M + 2(0) H ~ W*, then 2(h) < 2(0) for all b in some neighhour- 
hood of  O~ B. 
(ii) In (i), /f moreover M + 2(O)H lies on a codimension one closed face of 
whose interior rational points do not correspond to the contraction of  a smooth 
minimal ruled surface to a curve of  positive genus, then 2(b) is constant on some 
neighbourhood of the origin. 
(iii) I f  M + 2(O)HeW*,  then 2(b) is continuous at b=0.  

Proof (i) Let De Pic(X) be a multiple of M + 2(0)H with ~bo: X--* X" the corre- 
sponding birational contraction morphism. Let @ be the invertible sheaf on 
f corresponding to the class D, as explained above. Since D is n e f  and big, 
it follows that hl(Cxo(D))=0. Applying Corollary 3.9 from p. 122 of [1], we 
deduce that the sheaf r e . 9  is free on some neighbourhood of 0~B, with the 
natural map 

~ . 9  | II~ --. H~ (~xo(D)) 

an isomorphism. Moreover, the Proper Coherence Theorem ([8, p. 64]) implies 
that H ~ (~; 9 ) ~  H ~ (B, 7t, 9). We may assume therefore (shrinking B if necessary) 
that the map 

H ~  9 ) ~  H~ Cx(D)) 

is a surjection. Since the linear system IDI on X = X  o is base point free, we 
see that the linear system 191 has no base points above an appropriate neigh- 
bourhood of 0. For  all b in such a neighbourhood, we know that D is nef, 
and hence 2(b) < 2(0). 
(ii) The condition in (ii) implies that q5 o factors through a primitive contraction 
~b: X ~ X  1 of Type I or II, or of Type III with the surface E contracted either 
containing a singular fibre or being ruled over a rational curve. In the light 
of (i), we need to show that in all these cases, there is a neighbourhood of 
0eB over which the class D is not ample on the threefolds X b. 

In the case when ~k is of Type I, let Z denote any irreducible curve in the 
exceptional locus of ~k. By (3.1), it deforms in the family, and so we may assume 
that for each b~B, the threefold X b contains a deformation Zb of Z. The fact 
that ( M + 2 ( O ) H ) . Z = O  implies that (M+2(O)H) .Zb=O,  and hence that M 
+2(0 )H  is not ample on X b. Therefore 2(b)>2(0) for all beB.  This argument 
however works equally well if ~ is of Type III with the surface E contracted 
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having either a reducible or a double fibre, since in both cases we have a curve 
Z isomorphic to p1 which does not deform in X, and so (3.1) applies. 

When the primitive contraction @ is of Type II, then @ contracts down 
some irreducible generalized Del Pezzo surface E to a point. We noted before 
that h 1 (E, ~/~)=0, and so from the exact sequence 

0 ~ (9(--E) ~ (~ ~ (~E ~ 0  

we deduce that hi(E, (9(E)) = 0  for i>0 ,  and h~ (9(E))= 1. If g is the invertible 
sheaf on ~r corresponding to the class E, the argument as in (i) shows (shrinking 
B if necessary) that the map  H~ g ) ~  H~ (gxo(E)) is surjective, and also 
that h~ 1 for all b. This says that there is a (uniquely determined) 
flat family of effective divisors E b for b~B with Eo=E. In passing, we observe 
that if E is smooth, it is in fact a stable submanifold in the sense of Kodaira.  

On Xo=X,  we have (M+X(O)E).E.H=O, and thus on Xb it follows that 
(M+2(O)E).Eb.H=O. Since Eb is effective and H is ample, we deduce again 
that M + 2 ( 0 ) H  is not ample on X b, and hence 2(b)>2(0) for all b in some 
neighbourhood of 0 ~ B. 

This argument however works equally well if ~9 is of Type III  with the surface 
E having hi(E,  (gE)=0 (i.e. E being ruled over a curve of genus 0). Part (ii) 
of the proposition has therefore now been demonstrated. 
(iii) If  M+2(O)H~W*, then it is clear that 2(b)>2(0) for all beB. Given any 
e>0 ,  we observe that  M+(2(O)+e)H is ample on X = X o ,  and hence remains 
ample on X b for b in some neighbourhood of 0 [21]. Thus in this case 2(b) 
is continuous at b--0.  

Corollary 3.3 Suppose that rc: ~ ~ B is a smooth family of Calabi- Yau threefolds, 
and that for all b~B the threefold Xb contains no smooth minimal ruled surfaces 
over a curve of positive genus; then the Kdhler cone is locally constant in the 
family. 

Proof We can reduce first down to the local case, and then to the case of 
the Kuranishi  family of a threefold X = X 0. We claim then that the K/ihler 
cone is (locally) constant on B. For  this, we need to show that given classes 
M, H~Pic(Xo)  with H ample on Xb for b~B, the function 2(b) defined above 
is constant. 

I f / ~ = s u p { x e ~ ;  (M+xH)a<O}, we know that 2(b)>/~ for all b~B. From 
(3.2), we know that 2(b) is continuous everywhere, and locally constant when 
2(b) >/~. Thus 2(b) must  be constant as claimed. 

4 Deformation properties of ruled surfaces in the fibres 

For the purposes of understanding the behaviour of the Kfihler cone in families, 
we saw in Sect. 3 that  it is necessary to study the case when the Calabi-Yau 
threefold X contains a smooth surface E ruled over a curve C of positive genus. 
We observe first that  if X contains such a surface, then there is a primitive 
Type I I I  contraction of it. To  see this choose an ample divisor H on X and 
consider the line {E+xH; x~R} .  Clearly this line does meet O ~  at a point 
of W*, and so there is a corresponding divisor class D which defines a contraction 
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morphism ~bo: X ~ ) ~ ,  an isomorphism outside E. We noted in (1.3) that q~o 
cannot contract E to a point and cannot be a Type I contraction of curves 
on E; thus ~b o must be a Type III contraction of the fibres of E. We now 
study the behaviour of such ruled surfaces under deformations of the threefold. 

Proposition 4.1 Suppose that n: f ~ B is the Kuranishi family for X = X o (where 
B is taken to be a polydisc in H ~ (Tx)), and that X contains a smooth ruled surface 
E over a curve C of genus g. The locus F c B  of deformations for which E deforms 
in the family is a complex submanifold of codimension g. In particular, g < h 1' 2(X). 

Proof The easiest way to see this is to apply the theory of [28]. By Theorem 
2.1 of [28], the result will follow if we can show that the natural map H~(Tx) 
~HI(NE/x) is always surjective, where in our case Tx~f22 and N~/x~toE. We 
need to show therefore that the natural map H z' I ( X ) ~ H  2,~(E) is surjective, 
the corresponding map or alternatively by Hodge Theory that H~'2(X) 

H 1, z (E) is surjective. This last map corresponds to the map on sheaf cohomol- 
ogy H 2 (X, f21x) ~ H 2 (E, f2~) obtained from the exact sequences of sheaves 

and 

We denote by qS: X ~ )? the primitive morphism corresponding to E (where 
by the previous section we can assume g > 0). We note that X has only quotient 
singularities (except perhaps at the dissident points of the curve of singularities 
to which E is contracted - as E is also minimal over C, these do not occur). 
This then ensures that H~ H~ Thus H3((2~( - E))=0,  and so 
the map H 2 (f2~) ~ H z (f2~ [e) is surjective. The map H 2 (f2~ [E) ~ H2 (O2) is clearly 
surjective, and so the result follows (since HZ(f2~) has dimension g). 

Remark. This result should extend to the case when E has singular fibres, since 
by (2.2) E has only Du Val singularities, and is therefore an orbifold. Thus 
Hodge Theory still works, provided we work with the reflexive sheaves O~ 
rather than the sheaves f2~ I"32]. The sheaf ~2 is of course just the dualizing 
sheaf co E. The argument of (4.1) goes through essentially unchanged to show 
that the natural map Hl ( f22)~  Hl(co~) is surjective, and in particular that g 
< h  t, 2. For the statement concerning the codimension of F in the general case, 
a recent preprint of Kawamata  [17] is clearly highly relevant. 

F rom now on, we consider the case of E a smooth surface, ruled over a 
curve C of genus g > 0, which lies on a Calabi-Yau threefold X. The arguments 
from Sect. 3 illustrate the fact that for the purposes of investigating the behaviour 
of the K~ihler cone under deformations, we do not need to know whether the 
whole surface E deforms, but  only whether some fibre does. Let h: E ~ C be 
the structure map for E and Z = h-1 (p) a fibre. If q~: X ~ X" is the primitive 
contraction morphism contracting E to C, we have that Z is locally a complete 
intersection of E and a divisor D, the pull-back under q~ of a general hyperplane 
section through P. Since by assumption Z is a smooth fibre, the point P will 
just be a cA1 singularity of )? and the divisor D will be smooth along Z. 

We now consider the question of whether Z extends 'sideways' to first order 
in a 1-parameter family n: 5~"--, d. Working to first order, we have an induced 
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morphism of schemes 7EI :X 1 --~ A l =  Spec(~ [e]/(e2)), and so Z extends sideways 
to first order in the family ~t: 8f ~ A if and only if it extends to a subscheme 
Z1 of Xa over A~, with Z~ not a subscheme of X. We have a diagram of 
natural sheaf morphisms 

0 , ~  

0 ) Nz/X 

, Tx~lx ' ( ;x  ,0  

L 
' Nz/x, ,62z , 0  

where Nz/x'~(gz@(gz(E).  We will have an extension sideways Z~ of Z in the 
family n l : X  ~ ~ A~ if and only if the group H ~ (Nz/x,)/H ~ (Nz/x) is non-zero. 

Corresponding to the above diagram, we have a diagram of cohomology 
groups 

H~ 61 HI(Tx) 

H2((gz) 6 2 Hl(Nz/x)  

and 61 (1) = 0 e l l  ~ (Tx), the class corresponding to the given 1-parameter deforma- 
tion via the Kodaira-Spencer map. Whether Z extends sideways in X a is asking 
whether e(1) is in the image of H~ i.e. whether 62e(1)=0.  Since the 
diagram commutes, this is just the condition that f l (0)=0 under the natural 
map  H 1 (Tx) ~ H 1 (Nz/x). 

In our case however, Hl((gz)=0,  and so there is a natural isomorphism 
Hl(Nz/x)~HX(eo~lz) .  Therefore Z extends sideways to first order in the family 
n: ~r ~ A if and only if the image of the class 0 under the natural map H a (Tx) 
~ Hx (ogElz) is zero. Now H1 (cOElz)--~H1 (~Oz)~(E, and thus for a fibre Z to extend 
sideways to first order, we have a codimension one condition on H a (Tx). 

The map  H 1 (Tx) ~ H 1 (ogE [z) factors as H 1 (Tx) ~ H a (~E) ~ H 1 (toe iz ) where 
as we noted in (4.1) the first of these maps is surjective. 

With h: E ~ C the structure map  giving the ruling on E, we have 

R a h ,  we  ~- (R 1 h ,  ogE/c) | ~ c  

where duality theory implies that  R ~ h ,  ~e/c ~- h ,  (9 e ~- (9 c. Thus R a h ,  cot ~ ~o c, 
and the Leray spectral sequence identifies Ha(~g) with H~ Moreover,  if 
Z = h -  1 (p), the maps H 1 (toe) ~ H~ (~oe Iz) ---- H 1 (~z) may  be identified with the 
maps H~176 If  n: W ~ A  is a 1-parameter deformation of X 
= X o  with Kodaira-Spencer class 0 which has non-zero image in H~ then 
the general fibre of E does not extend sideways in the family, consistent with 
the previous result (4.1). 
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We see from the above discussion that the case g = 1 should be very different 
from the case g > 1. For  g = 1, the general 0 ~ H  ~ (Tx) will have a nowhere vanish- 
ing image in H~ and so there will be a first order obstruction to extension 
sideways for any fibre of E. For  g >  1, the general O~HI(Tx) will have non-zero 
image vanishing at 2 g - 2  points of C. For  such a point, the corresponding 
fibre will therefore extend sideways to first order in the family. 

As pointed out to the author by Prof. Fujiki, the case when g >  1 can in 
fact be dealt with by a simple dimension counting argument, on which argument 
the proof  below is based. 

Proposition 4.2 Suppose that n: ~ - ~  B is the Kuranishi family for X = X  o and 
that X contains a smooth surface E ruled over a curve C of  genus g >  1. Let 
Z be any fibre of  E over C; then (shrinking B if necessary) we have that every 
threefold X b in the jamily contains a curve which is a deformation of Z. 

Proof Let D~Pic(X) be a divisor with q~D: X ~ . ~  the primitive contraction 
morphism for E. If we take ~ to be the invertible sheaf on X corresponding 
to the class D, we saw in (3.2 i) that by shrinking B if necessary, we could 
assume that q~o: ~ - ~  .~ is a birational contraction morphism over B. 

Let PEC be the point corresponding to the given fibre Z. The general hyper- 
plane section H of X through P has an A~ singularity at P, and locally X 
can be thought of as the total space of a 1-parameter family of A1 surface 
singularities. Since however the family n: W-~B may be locally embedded by 
the linear system on 5~ corresponding to the class H (cf. argument of (3.2 i)), 
we can take a neighbourhood U of P in o~, and consider it as a family of 
deformations of the A1 singularity H over a parameter  space B x A, for some 
open disc A c ~ .  On Y', we therefore have a family t] of deformations over 
B x A of a neighbourhood of Z in the pullback of the surface H. 

If now S denotes the versal deformation space for the A1 surface singularity, 
we can think of S as an open disc around 0~C,  where the origin corresponds 
to the singular fibre of the versal family. The family U --* B x A induces a holo- 
morphic map (of germs) 0: B • A-~S, and the fibres of U therefore have A 1 
singularities over the (non-empty) hypersurface 0 -~(0)=  W in B x A (as usual, 
having allowed ourselves to shrink B and A if necessary). Thus if we consider 
the family t] ~ B  • A, the fibres contain a curve isomorphic to ~1 which is 
a deformation of Z precisely over the hypersurface W ~  B • A. 

Considering the projection B x A--* B and family t]--* B, we observe that 
the image of W must be dense in B. This follows from (4.1), since the threefold 
0 b only contains a positive dimensional family of deformations of Z for b in 
the locus on B over which the whole of E deforms, a closed analytic subvariety 
of codimension g > 1. Consideration of dimensions then implies immediately 
that the morphism W ~  B must be dominating. 

By shrinking B, we may assume that the family n: Y'-~ B is projectively 
embedded, and so may consider the Hilbert scheme Hilb(W/B) [-12, 11]. If T 
is the component  which contains the point corresponding to the curve Z, we 
have a proper map  T ~  B, whose image contains the image of W, a dense subset 
of B. Thus the map  T ~  B is surjective, and so for every b~B, the threefold 
X b contains some deformation of Z. 

Remark 4.3 We deduce from (4.2) that both in (3.2 ii) and (3.3), we may now 
replace the phrase 'curve of positive genus'  by 'elliptic curve'.  In other words, 
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we have seen that it is only the existence on our threefolds of elliptic ruled 
surfaces that can cause the K/ihler cone to fail to be invariant under small 
deformations. We now show that if X contains such a surface E, then the K/ihler 
cone will jump under the general small deformation; this then will provide 
a precise answer to the question raised in [7]. 

Proposition 4.4 Suppose rt: ~ ~ A is a 1-parameter family of deformations of X 
= X  o with Kodaira-Spencer class OE H I ( Tx), and that X contains a smooth surface 
E ruled over an elliptic curve C. I f  E does not deform (locally at O) in the family, 
then the Kgihler cone is not invariant under the deformation. More precisely, for 
any DEPic(X) with 49o: X ~ X the primitive contraction morphism for E, the class 
D will be ample on Xt for tEA*, some punctured neighbourhood of zero. 

Proof Since H ~ (NE/x)= O, we observe first that E not deforming in a 1-parameter 
family is the same as the condition that E does not extend sideways in the 
family. 

Taking ~ to be the invertible sheaf on ~ corresponding to the class D, 
we have seen that by shrinking A if necessary, we can assume that 49~: 5(--, 5? 
is a birational contraction morphism over A. If D is not ample on X t for t 
in some punctured neighbourhood, we may assume that 49~ is not an isomorph- 
ism on Xt for tEA. Since moreover  E does not deform in the family, we may 
assume that the contraction morphisms Xt ~ X t  induced by 49~ are all of Type I 
for tEA*, the punctured disc. 

Take an irreducible (2-dimensional) component  ~ of the exceptional locus 
of 49~ which maps surjectively to A. By assumption its fibre Z0 over zero lies 
on E, and moreover D . Z o = 0 ;  therefore Zo is concentrated on the fibres of 
E. Let Z be a component  of Zo,  a fibre of E, and let PEC be the corresponding 
point of C. 

Since the general hyperplane section of X through P is an A1 surface singular- 
ity, we may consider ~ as locally a 2-parameter deformation of such a singulari- 
ty, and ~ locally as a 2-parameter deformation of a neighbourhood of Z in 
the pullback D of a general hyperplane section of X through P (cf. proof  of 
(4.2)). We deduce therefore that Z deforms in the 1-parameter family ~z: .~r ~ A. 
In particular, by taking an n-fold cyclic covering A---, A for suitable n>0 ,  we 
have that Z extends sideways in the induced 1-parameter deformation ~: ~ ~ A. 

The ruled surface E will of course now extend sideways to at least order 
n - 1 ,  and so our previous first order argument needs to be refined to deal 
with higher order obstructions. Our conclusion will be that the first non-vanish- 
ing obstruction to E extending sideways in ff: 5~ ---, 3 will provide a non-vanishing 
obstruction to Z extending sideways, thus yielding the required contradiction. 

Although working with the family ~: ~ 3 ,  for ease of notation we shall 
now omit the tildes. Our  family re: 5f ~ A is now therefore by assumption trivial 
up to order (n -1 ) .  For  r > 0, set A r = Spec(~ [e]/(g + 1)), the rth order neighbour- 
hood of 0 in A, and ~zr: X , ~  A, the induced rth order deformation of X = X o .  
By assumption, E does not extend sideways in the family; we suppose that  
the mth order obstruction is the first one which is non-zero. Thus E extends 
to a scheme Era-~ over Am_ 1, but has a non-vanishing obstruction at the next 
step. The extension sideways of Z restricts to an infinitesimal extension 
Z,._~ CXm_ x over A,.-1. It is left to the reader to check that  Z,._~ is a closed 
subscheme of E.,_ 1 - indeed this is true of any extension sideways of Z to 
order m - l ,  and follows from the fact that h~ (gz.(E~))=O for 1 <_r<m--2. 
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Consider now the mth order infinitesimal deformation ~Zm: X,.--+A,.  induced 
by the family; this corresponds to an extension of sheaves 

0-+ Tx,,, _ , / A~ _ , --~ Tx~ l x~ , - ~ O x  . . . .  -+0. 

Moreover we have a diagram 

0 , T x . _ , / ~ : _ ,  ' T ~ l x ~  , ' r  , 0  

i l l  
0 'NE~_, /x~  , ' Ne~ ,/x~ 'OE~ , , 0  

1 1  1 
0 ' NE~_ =/x~ = ' NL'~ - ~/x= , , (9 E . . . .  , 0  

(where the horizontal rows are exact and the vertical maps are surjective), and 
a similar diagram with Z substituted for E everywhere. Taking cohomology, 
we obtain a diagram 

H~ (Ox=_ ,) ' H l (Tx~_ ,/A._ ,) 

1 1 
U ~ (CE~ ,) , U 1 (Ne,~_ ~/x . . . .  ) 

1 1 
H~ ~) , U 1 (Ne~_~/x~ ~) 

and again a similar diagram with Z substituted for E. We denote by 0,, the 
image of l~H~ ~) in H l (Tx~_ 1/a.,_ )- The image 0,, of 0,, in HI(Ne~_  ~/x~_ ,) 
is the obstruction to E,,_I extending at the next step, and so by assumption 
is non-zero, whilst the image in H~ (Ne~_ ~/x~,_ ~) does vanish. 

From the exact sequence 

O-+ NE/x-+ NEm_, /x :_ , -+ N e : _ : / x . _ : - + O  

and the corresponding cohomology sequence, we see that the obstruction O-m 
may therefore be considered as an element of H t ( N ~ / x ) = H  1 (oJE). Similarly, the 
obstruction to Zm_ l extending at the next step (an element of H 1 (Nz,._,/x~_,)) 
may be considered as an element of H 1 (Nz/x), and is then just the image of 
Om under the map HI(Nwx) - -+H ~ (Nz/x). If, as in the first order calculation, we 
identify Hi(toE) with H~ we have that Z extends to ruth order if and only 
if the element 0-,,eH~ vanishes at P. By assumption however 0,, is non-zero, 
and so (since g =  1) is nowhere vanishing. Hence there is a non-vanishing mth 
order obstruction to Z extending sideways in the family contrary to expectation, 
and the required contradiction has been obtained. 

P r o o f  o f  M a i n  Theorem. We have now proved all but the last sentence of the 
theorem. For  this we consider the (at most countably many) classes Ei e H a (~,  Z) 
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which can represent an elliptic ruled surface on some threefold of the family. 
Using (4.1), we see that each class E i corresponds to a codimension one submani- 
fold F~ of B. We observe that B 0 = B \ U F  ~ is a dense subset of B by Baire's 
category theorem. I claim that the Kfihler cone is constant on B0. By connecti- 
vity, we need only show this in a neighbourhood of each point of B. 

We suppose therefore that we have classes M, H~Pic(X) with H ample on 
Xb for all b~B, and consider the behaviour of the function 2(b) defined in 
Sect. 3. By (3.2) and its extension noted in (4.3), we observe that for b~Bo, 
the function has the following properties: 
(i) 2(b)>#;  
(ii) if 2(b)>#,  it is a rational number, and the function is locally constant 
at b; 
(iii) if s  it is continuous at b. 

As in (3.3), we deduce that 2(b) is constant on the connected set Bo. Since 
this holds for all M~Pic(X), the K/ihler cone in constant over Bo. 

Corollary 4.5 For any connected analytic family n: f ~ B of Calabi- Yau three- 
folds, the Kdhler cone is locally constant over some dense subset B o of B (locally 
the complement of at most countably many analytic subvarieties). 

Proof. Details here will be left to the reader. We reduce immediately to the 
local case by connectivity of the family. Any class E which represents an elliptic 
ruled surface on all threefolds in the family will then correspond to a codimension 
one face of the K~ihler cone which is invariant, and so can be ignored. The 
result can therefore be deduced from the above theory using the versality the 
Kuranishi family. 

Example 4.6 For an example in which the K~ihler cone does jump under a 
general deformation, we consider a simple example taken from [18]. We let 
)f be the normal projective threefold 

~[~2 0 2 . 

]P(1,1,2) 0 0 

The notation here indicates a complete intersection of three hypersurfaces in 
the product ]p2• ]p2 x ]p(1, 1, 2), the hypersurfaces having degrees (in each set 
of coordinates) (2, 0, 0), respectively (0, 2, 0), respectively (1, 1, 4). As calculated 
in [18], X has an elliptic curve C of A 1 singularities; when we blow C up, 
we obtain a Calabi-Yau threefold X with b2(X)=4 and h l '2 (X)=68,  and con- 
taining a smooth ruled surface over C. 

As pointed out to the author by Prof. Borcea, both X and X have a small 
deformation X1 which is a hypersurface in ]pl • ]p1 • ]pl • ]p1 defined by a poly- 
nomial which is homogeneous of degree two in each set of variables. This follows 
since both the quadratic cone ]p(1, 1, 2) and its minimal desingularization F 2 
have ]p~ • ]p1 as a small deformation. Thus X has as a small deformation 

]p2110 2 
]p'll o 0 " 
]p~IIO 0 

which is isomorphic to the one claimed. 
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The closed K/ihler cone x/? on X a is generated by the divisors D~ (i = 1, .. . ,  4) 
obtained by pulling back a point from one of the IW factors and restricting 
to X1. The cubic form on X1 (and hence on X) is therefore just a multiple 
of 

X l  X2 X3 -]- X2 X3 X4-[- X3 X4 X 1 -~- X4 X 1 X 2 . 

The corresponding hypersurface W c  ~ o -  1 (~)  is a cubic surface with four nodes 
at the points corresponding to the D~. 

If one considers the deformation of F2 to IP t x IW, one observes that one 
of the rulings of F ~ x IP 1 corresponds to the ruling on F 2, and therefore represents 
a nef class, whilst the other ruling corresponds to a non-her class on F 2. Thus 
three of our classes, say D1, D2, D3, remain n ef on X = X o, whilst the remaining 
o n e  D 4 is not nef on X. The closed K/ihler cone of X is therefore the cone 
on the tetrahedron generated by DI, Dz,D 3 and say D3+D4,  and under a 
general small deformation this jumps to the cone on the tetrahedron generated 
by all four Di. 

Remarks 4.7 The codimension one submanifolds F~ in (4.5) form a stratification 
of the base B, the strata consisting of sets of points which lie on the same 
subcollection of the F~. It follows that the Kfihler cone is in fact constant on 
each stratum, and differs on different strata. The general picture would however 
be very much more pleasant if we knew that the F~ were locally finite in number, 
for the stratification would be an 'open stratification' with each stratum being 
open in its closure, and Bo would be the complement of an analytic subvariety 
of B. It is an open question whether this is always true. If not, then the examples 
where it fails will exhibit very special features. It can be shown for instance 
that such examples will have the cubic hypersurface W containing a real singular- 
ity at which the tangent cone is two hyperplanes. 

The above question seems also to be related to the theory of intermediate 
Jacobians as developed in [ i0] .  If a Calabi-Yau threefold X contains a ruled 
surface E over a curve C of genus g > 0, then we have a cylinder homomorphism 

q~: HI(C,  ~ ) ~  H3(X, ;g), 

which induces the Abel-Jacobi map from the Jacobian J(C) to the intermediate 
Jacobian 

J (X) = (H 3' 0 (X) (~ H 2' ' (X))*/(H 3 (X, Z) @ 7Z). 

If ~ ,  ~2 denote two 1-cycles on C, we check easily that (4~(71), ~(72))x = 
-2(71 ,7z)c ,  where the pairings are the obvious ones induced from cup-product. 
Thus the image of J(C) under the Abel-Jacobi map is a g-dimensional abelian 
subvariety of the principally polarized analytic torus J(X). In particular, if we 
know that J(X) contains no elliptic curves, then X contains no elliptic ruled 
surfaces. 

5 Remarks on elementary transformations 

Suppose that X is a Calabi-Yau threefold containing an elliptic ruled surface 
E. We observe that E 3 = 0  and E.c2=O, and so the corresponding point in 
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F p-I(~,.) lies both on W and the hyperplane c 2=0.  However, we also know 
that the quadratic form D~--~E.D 2 on Pic(X) has rank 2; explicitly, it is the 
product  of linear forms (l.D)(m.D), where l is a fibre of E and m is the 1-cycle 
--EIE. From this observation it is easy to see that E represents an Eckardt 
point of the cubic hypersurface W (i.e. a smooth point for which the tangent 
hyperplane intersects the cubic in a cubic cone). In general we would not expect 
any points of the hyperplane (even with real coefficients) to be Eckardt  points 
of W, and the larger the value of p, the stronger the statement being made 
about  the cubic becomes. Thus in most cases we shall be able to deduce that 
the K~ihler cone is locally constant in familes containing X merely because 
there are no rational points of the hyperplane c2 = 0  which are Eckardt  points 
of W. 

In the case however when we do have a ruled surface E over an elliptic 
curve C on our Calabi-Yau threefold X, the situation is very analogous to 
that of a ( -2 ) - cu rve  on a K3 surface as described in [6]. Suppose 7t: ~ ~ A 
is a 1-parameter family of deformations of X = X  o under which E does not 
extend sideways. I claim that there is an elementary transformation or flop which 
results in a different family 7t': ~r, ~ A, albeit with the same fibres. 

In the case when E does not extend sideways even to first order, we saw 
in Sect. 4 that the same was true of all fibres of E. Therefore every fibre 1 
of E has normal bundle (91~9 (91(-1)• (gt ( -1)  in Y'. We can blow up X in 
E, obtaining a fibre bundle over C with fibres F ~ x  ~'~, which can then be 
contracted along the other ruling to form a new family ~t': f '  ~ A. The operation 
described here is just the elementary transformation of [6] performed on the 
fibres of E. In the case when E deforms to order r - 1  but not to order r, 
the argument  of (4.4) showed that this remains true for all fibres of E. In this 
case we need to blow up r times before obtaining a family of surfaces ~,1 • ]p1 
which can be contracted in a different direction. Contracting all the way down 
to E again, we have the required flop - this is just the elementary transformation 
of [30] performed on the fibres of E. 

If  we fix a fibre X I + X  o of r c : 5 ~ A ,  we obtain an identification 
~: H2(X0, 7Z.)=~H2(X1, Z). F rom the flopped family, we obtain a different identi- 
fication ~ H a ( X 0 ,  7I)_-__H2(X1, Z). The composite 7'ct-1 defines an involution 
tr on H2(X0, Z) which preserves both the cone W* and the hyperplane c2=0.  
As in the case of K3 surfaces [6], the involution a is just a reflection; in our 
case it fixes divisors D with D. l = 0 and sends E to - E .  From this description, 
it is clear that it does indeed preserve both W* and the hyperplane c2=0.  
For  an arbitrary element D ~ H 2 (X, R), we have 

tr (D) = D + (D. l) E. 

In passing we remark that the induced involution on the cubic hypersurface 
W c  FP-  ~(~) is just the canonical involution associated with the Eckardt  point 
defined by E. 

The theory of root systems now applies as in the case of K3 surfaces [6]. 
For  instance, it follows that  if re: &r ~ A is any 1-parameter family of deforma- 
tions of X = X o  and HEPic(X1)_-----Pic(~ r) is ample on each fibre X t for t4:0 
(where X~ is some fixed fibre different from Xo), then by making elementary 
transformations on elliptic ruled surfaces on X 0 we may obtain a family 
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n': ~ r ,~  A for which H ~ P i c ( X 0 g P i c ( Y ' )  is semi-ample on all fibres (cf. Sect. 7 
of 1-30]). Details of this will be given in a subsequent paper. 

If we turn to the example described in (4.6), the flop on H2(X, Z) is very 
easy to see. Here the Eckardt point of W is the point E = D 3 - D  4 and the 
corresponding involution on IW-~(R) reflects the tetrahedron generated by 
D1, D2, O 3 and D3 + D4 to that generated by D 1 , D2, D4 and D 3 +D  4. 

6 Remarks on elliptic fibrations 

It is well-known that any K3 surface is the deformation of one with an elliptic 
structure, and one might hope that the same might be true for Calabi-Yau 
threefolds. It has been observed in [15] that the condition bz(X)> 1 is clearly 
necessary for this to be true. The next example shows that this condition is 
not sufficient. 

Example 6.1 Consider the weighted complete intersection )(6,6 c 
IP(I, 2, 2, 2, 2, 3) cut out by two general equations of degree six. As observed 
in [18] this has a curve C of A1 singularities, and on blowing up this curve 
we obtain a Calabi-Yau threefold X with b2(X)=2. The curve C has genus 
10. If one calculates the cubic form on HZ(x, Z), one discovers that the cubic 
hypersurface W c  IW- I(R) (in this case just three points) has no rational points. 
If some deformation of X had an elliptic fibre space structure, this would clearly 
provide a point of W (given by pulling back a hyperplane from the base). There- 
fore, in this example, no deformation of X can have an elliptic structure. 

This kind of arithmetic obstruction to some deformation of X having an 
elliptic structure ceases to be relevant for large enough b2(X) (for instance 
b2(X)> 19, when the rational points of W are always dense [38]). One might 
therefore hope that although for small values of b2(X) there will be examples 
of Calabi-Yau threefolds with no elliptic deformations, this would not be the 
case for b2(X) sufficiently large. This too however seems not to be true, since 
obstructions to there existing elliptic deformations are provided also by the 
geometry of the two cones ~ and W* in H2(X, ~,). 

Proposition 6.2 I f  X is a Calabi-Yau three]bid not containing any elliptic ruled 
surfaces and for which the two cones ~'~ and W* are disjoint (and hence by 
Fact 1 from Sect. 1, o,ff r is rational polyhedral), then no deformation of X can 
have an elliptic structure. 

Proof For any connected family ~: 5V~B containing X, (4.5) implies that the 
K~ihler cone will be locally constant on a dense subset B o of B, over which 
the threefolds Xb contain no elliptic ruled surfaces and have ~,~(b) disjoint from 
W*. The result has now been reduced to the local case, with B say a polydisc. 
For  any point b~B, we deduce from (3.2) that the cone ~ '(b)  is always contained 
in the cone ~ at the general point, and hence is also disjoint from W*. Hence 
no Xb in the family possesses an elliptic fibre space structure. 

One suspects that the situation of (6.2) (for which there seems to be no 
obvious restriction on b 2(X) for it to occur) should not be too uncommon. 

Example 6.3 An example of an interesting Calabi-Yau threefold X with bz(X ) 
= 12 and hL2(X) = 15 is constructed by Borcea in [3], where in his notation 
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the threefold  is Z=FI(V4). It  fol lows f rom the geomet ry  of  this example  and  
the first pa r t  of  T h e o r e m  6.2 f rom I-3] tha t  the cod imens ion  one faces of  
in this case all co r r e spond  to small  cont rac t ions ,  and  hence tha t  X con ta ins  
no ru led  surfaces of  posi t ive  genus. In  the second par t  of  his T h e o r e m  6.2, 
Borcea  writes down  the genera to r s  for the cone ~ ;  it is easi ly checked tha t  
all these genera tors  D have D 3 > 0 ,  and  hence ~7- is d is jo int  f rom W*. 

It  might  be no ted  here tha t  Kollf i r  has recent ly  shown tha t  this l a t te r  p r o p e r t y  
also ho lds  for any  C a l a b i - Y a u  threefold  X lying on a s m o o t h  F a n o  fourfold 
(see A p p e n d i x  to  I-5]). If  we cons ider  such threefolds  X con ta in ing  no el l ipt ic 
ruled surfaces, then in these cases also,  no  de fo rma t ion  of  X can have an el l ipt ic 
fibre space s tructure.  
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