
Invent. math. 107, 301-322 (1992) 
I~  v e~ tio~les 
mathematicae 
�9 Springer-Verlag 1992 

Integral closure of modules and Whitney equisingularity 
Terence Gaffney* 
Northeastern University, Department of Mathematics, Boston, M A 02115, USA 

Oblatum 4-11-1991 & 3-VI-1991 

In this paper we introduce the notion of the integral closure of a module to 
singularities. 

In a series of six papers [11, 12, 13, 14, 15, 16] John Mather introduced 
infinitesimal objects which were submodules of the set of vector fields over a m a p f  
(These vector fields can be thought of as "tangent vectors" to f i n  the set of all maps, 
hence it is reasonable to think of submodules of them as infinitesimal objects). 
These submodules have been very useful in proving that families of sets and maps 
have the same analytic type. 

In this paper, we use the integral closure operation to provide the correct 
infinitesimal object (again a submodule of the set of vector fields over a map) for 
studying the Whitney equisingularity of families of complex analytic sets. 

The work of Bernard Teissier on hypersurfaces with isolated singularities [19] 
is one of the main inspirations of the present work. In his paper, Teissier works with 

the integral closure of the ideal (x, f~fxj ) in (-gx, where fis the function defining the 
hypersurface X I . For  sets defined by p equations, p > 1, the analogous object is 
a submodule of Cg],x hence the present work. 

A notion of the integral closure of a module related to ours has been developed 
by David Rees and appears in [18]. 

In Sect. 1 we define the integral closure of a submodule of (9~,=, X the germ of 
a complex analytic set, and prove some of its basic properties. In Sect. 2, we show 
that a theorem of Thom-Levine type holds using the infinitesimal object associated 
to a deformation by the theory of Sect. 1. In Sect. 3, we use the theory of 1 and 2 to 
prove analogues of the main theorems on analytic equivalence of sets in the Mather 
school, and we also prove a theorem about  Newton non-degenerate maps defining 
a complete intersection singularity. 

In Sect. 4 we show that the main results of Sect. 3 can be extended to the real 
analytic and C oo cases. A connection between the ideas of this paper and work of 
Wilson, Brodersen and Wall is indicated at the end of the section. 
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This paper is part  of two programs: to extend to ICIS (Complete intersection, 
isolated singularity) singularities all of the results of Teissier on hypersurfaces with 
isolated singularities, and to use integral closure of ideals and modules to study the 
equisingularity of maps and sets. The first program concludes in 1-6] where 

�9 . . 0 ~ ,  

a formula will be proved relating the Buchsbaum-Rim multlphclty of " t ~ )  and 

t vJ~ xi~x j 
the polar multiplicities of XI,  x. The second program continues in I-7] which studies 
the role of integral closure in &Je~ of map-germs and in a future paper 
which will deal with ~r equivalence. 
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VII where he was supported by the C.N.R.S. The paper was completed at the University of 
Warwick during the singularities year organized by David Mond, James Montaldi, Mark Roberts 
and Ian Stewart. 

Conversations with James Damon, L~ Dung Trang, Edward Looijenga, Andrew du Plessis, 
David Rees, Bernard Teissier, Terry Wall and Leslie Wilson contributed to the growth of these 
ideas. The author thanks all of these institutions and people for their help. 

1 The integral closure of a module: Basic properties 

Recall the notion of the integral closure of an ideal as given in [20]. 

Definition 1.1 Let I be an ideal in a ring A, then h ~ A is in the integral closure of  I, 
n - 1  

denoted L iff there exists a monic polynomial P(z) = z" + ~i=o  aiz', a~ ~ 1 "-~ such 
that P(h) - O. 

In the event that A = (gx, x, the local ring of a complex analytic set, then ]-has 
many interesting properties. 

In [20] the following equivalences are proved�9 

Proposition 1.2 Suppose I is an ideal in (gx, x, X a complex analytic set. Then the 
following statements are equivalent 

(1) h~ fx  
(2) (Growth condition) For each choice o f  generators (gi) o f  I there exists 

a neighborhood U o f  x and a constant C > 0 such that 

[1 h(z)l] < Csup ]l gi(z)II for  all z ~ U . 
i 

(3) (Valuative criterion) For each q~: C, 0 ~ X ,  x, hoq~ lies in (q~*(I))(.01. 
(4) There exists a faithful (gx, x module L of  f inite type such that h ' I  c I "L .  

Teissier also shows that if J is a coherent sheaf of ideals with stalk lx, V ( J  ) 

nowhere dense, then there is a unique coherent sheaf on X with stalk Ix. This is 
done by relating j and the pullback of J to N B  j (X), the normalized blow-up of 
X along J .  



Integral closure of modules and Whitney equisingularity 303 

In this section we develop the notion of the integral closure of a module and 
develop analogous properties for this object. In the contexts considered in this 
paper, it seems most convenient to define the integral closure of a module using the 
valuative criterion. 

Definition 1.3 Suppose X, x is a complex analytic germ, M a submodule of (9~,x. 
Then h~(gPx.x is in M ifffor all q~: ffC, O ~ X , x ,  ho~o is in (q~*(M))(91. 

Example 1.4 Suppose X = I172, M c 0 2 is generated by {(x, 0), (0, y), (y, x)}. Then, 
M = m2(92 . For, let q~: l~, 0 ~ II; 2, 0; then (~o*M)(91is generated by {(t n, 0), (0, tn)} 
where n = mini(o(q~i)). But these are the generators of (q~*(m2) 022)01 as well. 

If X, x has several components, then it is clear that M induces a submodule Mr 
in (~e v,x, V any component of X, x. It is also clear from the definition that h ~ M iff 
hv ~ ]~lv for all components V of X, x where hv is the element of e t~v,~ induced by h. 
It is also clear from the definition that the integral closure of M is M. 

The following generalization of Nakayama's lemma is often useful. 

Proposition 1.5 Suppose N, M are submodules of C~,x 
(i) l f  (m~I + N) = ~I then IV = 

(ii) I f  M ~ m~I 4- N ~ M then ]V = ~l. 

Proof. (i) Let ~: C , O ~ X , x ,  then tc*(m~ t + N)(91 

= (q)*(mM) + r 

= (q)*M)(91 . 

This implies that ~0*(M)(9~ = q~*(N)(91 + m~ q~*(M)(91, hence the result follows 
form the standard from of Nakayama's lemma. 

(ii) We claim m~r + N = / ~ .  We have 

~o*(M)(P~ = r ~ q~*(mhl + N)(9~ D (q~*M)(P, 

from which the claim follows. [] 

The link between the integral closure of ideals and modules is very strong, and 
will allow us to derive the analogues of 1.2. I fM is a submodule of (9~,,, and [M]  is 
a matrix of generators of M, let Jk(M) denote the ideal generated by the k • k 
minors of [M].  This is the same as the (p - k)-th Fitting ideal of (9~/M, hence is 
independent of the choice of generators of M (cf. [4, 10], for a proof). If h e (f~,, let 
(h, M) denote the submodule generated by h and M. 

The following lemma which is a generalization of Cramer's rule is helpful in 
establishing the connection between ]~ and Jk (M). 

Lemma 1.6 Suppose he(gfr M c CPx,x, Jk+l((h, M))  = O, no element of Jk(M) 
a zero divisor on (fix, ~. Then 

Jk (M) 'h  c M ' J k ( h , M ) .  

Proof. Suppose p = J [A], A a k x k submatrix of [M ] the matrix of generators of 
M. Let ha be the k-tuple obtained by deleting the elements of h corresponding to 
the rows deleted from [M ]. By Cramer's rule 

phA = A ' q ,  

where q is the appropriate k-tuple of elements from Jk((hA, At?k)). 
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Let B be the p x k submatrix of [M]  obtained by deleting the same columns 
from [ M ]  as were deleted to get A. Consider g = ( h -  Bq). We claim g = 0. 
Suppose not, say g~ :~ 0. Let ~ be obtained from g by deleting the same elements 
that produced ha, retaining the i-th element, Bg the submatrix obtained from B by 
deleting the corresponding rows. 

Then J [9, Bo] = +- giJ [A] = 0. Since J [A] is not a zero-divisor, g~ = 0. [] 

The link beween M and Jk (M)  is established by 

Proposition 1.7 Suppose M is a submodule of (9~,x, X irreducible, he(_9~.x. Then 
h e ~ t  iffJk((h, M)) c Jk(M) where k is the largest integer such that Jk((h, M))  +- O. 

Proof. =~ Let q~: C, 0 - ~ X, x, then 

q~*Jk((h, M))(-91 = Jk(tP*(h, M)d),  ) 

= Jk(Cp*(M)(91) 

= ~o*(Jk(M))Ct 

hence by the valuative criterion Jk((h, M ) )  = Jk(M). 

There are two cases. 
(i) Suppose q~(t) lies in the Z-open subset of X where the rank of (h, M) is k for 

t+O. 
(ii) The image of r lies in V(Jk((h, M))).  

Assume we are in (i). We have ~o*(Jk((h, M)) )  = r -- (p). By the previous 
lemma p' (h  o (p)e (r ~*Jk((h, M)). 

Since q~*(Jk((h, M)))  = (p), ho q9 e r 
Assume we are in (ii). Assume in addition that (X, x) is a smooth germ. Suppose 

~o*(M) ~ ~o*((M, h)). It must be the case that there exists Vo such that for all k > Vo 

q~*((M, h))(91 ~= tp*(M)(91 m o d m  k C~ 

(If not, by the Artin-Rees theorem, there exists Vo such that for l > Vo 

m~ (_9~ c~ tp*((M, h))C~ = m~-V~176 n q~*((h,M))). 

This would imply q~*(M)(gx + m~(q~*((M,h))C~) = tp*((M, h))(9~, so ~o*(M)(gx = 
q~*((M, h))(9~, by Nakayama's lemma.) 

Truncate q~ at level k for k >> Vo, and alter q~ by adding higher order terms from 
m k+l to get ~0~ such that opt(t) is not in V(Jk((h,M))  for t + 0. Then 

(~0" M)(91 = tp*(M)(9~ mod m] (_9 p 

tp*((h, M))d~ -= (p*((h, M)) mod m ] (0~ 

q~*((h,M)) -- ~o*(M) by case i .  

Hence q~*(M)d~l = ~?*(h, M)dJ1, mod m ] (9~ which is a contradiction. 
I fX  is singular, let (X, ~z) be a smooth resolution of X. Since X is irreducible, the 

complement of V(Jk((h, M)) )  is dense in X, so zt-l(V(Jk(h,  M)))  is nowhere dense 
in X. Consider some lift ~ of q~ to 3f, and approximate (9 by qh as before. If 
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rc*(M)(9"~,,,,=n*((M,h))(92.~,,, it follows that qg*(M)(9a=(o*(Tz*(M))6~= 
~*(n*((M,h))(91 = q~*(M,h)(91. Thus we may assume 7z*(M)(92,x, 
n*(M, h))(92,~,, and the argument of (i) finishes the proof, for ~0" ~* (Jk(M)) is the 
same as q~T(rc*(Jk((h,M)))). [] 

Note that the proof of the implication =~ shows that h~j~t implies 
Jk((h,M)) c Jk(M) for all k with no assumptions on X or the rank of M. 

If X is not irreducible one obtains: 

Corollary 1.8 Suppose X, x is a complex analytic germ with irreducible components 

(Vi). Then h~ lQl, M a submodule of (9~, x iff Jk~((h, Mi)) c Jk,(Mi), where Mi is the 
submodule of (9~i,~ induced from M and ki is the rank of (h, Mi) on Vi. I f  ks is 
independent of i, then h~f f l  iff Jk,((h,M)) c Jk(M). 

David Rees in [18] defined the notion of the integral closure of M in K | M 
where R is a Noetherian domain, K its field of fractions, M a finitely generated 
torsion-free R module. His definition is based on the theory of discrete valuations. 
However, the previous proposition and Theorem 1.2 of 1-18] show that M in our 
language is exactly the set of elements of (9~,~ which are integral over M in Rees's 
language. 

Using 1.7 and 1.8 we now develop the analogues of 1.2 for modules. 

Proposition 1.9 Suppose M is a submodule of (9 ~, x, h ~ (9 ~,x. Then h e M iff on each 
component V, x of X,  x there exists an ideal I ~ Cv ~ such that I " h c I " M in (gP , V , x ' ~  

I ~ 0 .  

Proof We have h ~/~" iff h ~ .h3"~, Ms the induced submodule in (gf,,,~, so we may 
assume (gx,x is a domain. 

Suppose h e M ,  then there exists ( such that (Jk(M)) r'+ 1= Jk(M)f .  Jk(M) 
where k is the rank of M. 

Then Jk(M) r + 1. h = Jk(M)e" dk(M) �9 h 

c Jk(M)e(M �9 Jk((h,M))) (by 1.6) 

(Jk(M)) ~ + ~M (by 1.7). 

Suppose there exists an ideal K , K  4: 0, such that K ' h  c K ' M .  Fix 
B a matrix of generators of M. Denote the k x k minors of [h, M] which involve 
h by S. Since kiS, ks ~ K, is the set of k • k minors of [kih, M] involving ksh, we have 
ks'S ~ K 'Jk (M) .  Hence S c Jk(M) by 1.2 so h~./~3 by 1.7. [] 

There is one case where we can strengthen 1.9 to get a generalization of 1.2. 

Proposition 1.10 Suppose M is a submodule of P (g x, x, of rank p or 0 on each 
component of X,h~(P~,x.  Then h~lVi iff there exists I a faithful submodule of 
(gx,x such that I" h c IM.  

Proof ~ follows by the same argument as 1.9. 
=~ Let I = Jp(M) r + (gj) where (gj) is the ideal of functions vanishing on 

those components of X where the rank of the induced module Mi is p, ~ chosen as 
in 1.9. 
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Then Jp(M)" h c MJp((h, M)) since Cramer 's  rule does not need any assump- 
tion about  zero divisors. Since h e M, it follows that the component  functions of 
h vanish on those components of X where the rank of M~ is zero. Hence 
l ' h  c I ' M .  Ifg~(gx, x and gI = 0 then g - 0 on X. For g "Jp(M) e+ 1 = 0 implies 
g is zero on all components of X where Mi has rank p, while g '(gi) = 0 implies g is 
zero on all components of X where M~ has rank 0. Hence I is faithful. [] 

The problem is that Jk(M) may not be faithful when Ms has different ranks on 
the different components of X. The above proof fills in a small gap in the proof of 
1.5.1 of Teissier [20]. 

The next proposition contains the growth condition for integral closure in the 
module case; the version we work with here was suggested by E.J.N. Looijenga. In 
what follows we let F(E) denote sections of a vector bundle E. 

p 
Proposition 1.11 Suppose he(9~,x, M c (gx,~ a submodule. Then h~ff l  iff for each 
choice of generators {si} of M there exists a neighborhood U of x such that for all 
tp ~ F(Hom(ll~ p, r II ~0(z) �9 h(z)II -_< C sup~ II ~o(z). s~(z)II for all z E U. 

Proof. I t  suffices to prove the result for each component  of X so we may assume 
X is irreducible, and the rank of M is k. Choosing a set of generators {si } for 
M gives a set of generators {S~} for Jk(M). Choose a neighborhood U of x, C > 0 

such that IIg(z)ll < Csupi LlSi(z) l[ for z e  U, iff geJk(M)  

=:- Assume h e.~t; for each Ss above we have 

Ssh = Z Skask where ask e Jk ( (h, M ) ) 

by Lemma 1.6. 

Then [I tp(z)" h(z)l[ = II ~ ~ ~o(z) �9 Sk II. 

Working first at z ~ U - V (Jk(M)), let II Sj(z)II = sup~ II S~(z)II. Then 

[1 tp(z) �9 h(z)I[ = II Y4ajjaj)q~(z)'s~ It _<- ~:(Itajk It/It S~ I[) tl ~o(z)" sk [I 

< CNsup II ~(z)" sk II 
k 

where N is the number  of generators of M. 
Since the inequality is between continuous functions on U and holds on an 

open dense subset of U, it holds on U. 
Assume the above inequalities hold. Consider the set of sections of H o m  (C p, C) 

defined as follows: 

~(h) = J [h~, S~ ] 

where S,p is some k x (k - 1) submatrix of S, the matrix of generators of M, and h~ is 
obtained by deleting the same rows from h as were deleted from S. Then the 

inequalities involving these cp imply that Jk((h, M))  ~ Jk(M) which in turn implies 
he~ t .  [] 

We end this section by considering the "sheafification" of our construction. 
The connection between M and Jk(M) allows us to show that the integral closure 
gives rise to a coherent sheaf. We prove this using a description of M in terms of 
blowing up. 



Integral closure of modules and Whitney equisingularity 307 

Proposition 1.12 Suppose M is a coherent sheaf of submodules of (9~ on X a complex 
analytic set. Then there exists a unique coherent sheaf IV1 on X such that for each 
x~X,( f f i )x  ~1~ in P ( g  X , )c . 

Proof. Suppose first that M has rank k on each component of X. Consider 
NBj~{M~(X), the normalized blow-up of X along Jk (M), with projection map n. By 
the proof of 1.3.1 of [20], we have that J k ( h , M ) ~  Jk(M) iff n*Jk(h,M)| 
(fiNB(X) = n*Jk(M) @ (9NB(X). Consider the sheaf on NB(X) generated by n*M. 

Claim. ((~z.((n*M)| (PNB(X))) C~ (ge ~)x = 5,Sty. 

I fheM~,  then ~Z*Jk(h, M ) |  ONz = 7Z* Jk(M)|  (9ss = Jk(rr*M | Since on 
NB(X),  Jk+I(r~*M|174 by Lemma 1.6 we have 
hoTze(n*M)| (i.e. at each point of V(@Z*Jk(M))| 7r*Jk(M)| is 
principal, so we can divide.) 

If h o rt ~ rt* M | (gNn, then 7z*( Ji((h, M ) ) ) |  (P~n 

= Ji(rc*((h, M) ) |  g~Ns) 

= Ji(rc*(M)| 

This implies that the rank of(h, M) is k also, and Jk(h, M)  c Jk(M). The claim 
then holds by Corollary 1.8. This sheaf is coherent from the properness of n. 

In the general case, let V~ denote the union of the components of X on which the 
rank is i. If i > 0, on V~, by the above construction, we have a coherent sheaf 
M~ c (9~,, where ~ti, x = Mi.~. (Here M~.x is the submodule of d?~, induced from 
M~.) If i_= 0 set ]~o = 0. 

Let Mi be the kernel of the sheaf morphism (95 ~ (9~,/M j, let ~t = n Hi ,  then 
h~(M)x iff h~(M~.~) for all i iff h~]~x. [] 

Based on the above proof we can make the following observation. 
Suppose that the rank of M~ is k on each component V~ of X. It follows from 

the above description of M, that if h e 1 ~ ,  then there exists a neighborhood U of 
x, and a representative h of h such that in a neighborhood of each 
7 ,  ~ (U - -  V(J k (M))) -- Sing X, h(~) = E ai.z(~)s~(~) and [[ ai, z(~)l[ < C, C depending 
only on U and the generators s~. This follows because rc is an equivalence over 
(U - V(Jk(M))) - SingX, and U can be chosen so that these inequalities hold on 
~-l(U). 

2 Integral closure of a module and Whitney equisingularity 

Given a set of infinitesimal objects around which one hopes to develop an 
infinitesimal theory of equisingularity, the first task is to prove a theorem of 
Thom-Levine type. 

In such a theory one can associate an infinitesimal object M ( f )  to each member 
f o f  the set of objects considered, and an infinitesimal object to a family F of such 
objects. If F(t, z) is a family of maps parameterised by t defining a family of objects, 

tF  
then a theorem of Thom-Levine type says -~- e M ( f )  iff the family F is equisingu- 

lar. For  example, if the set of objects considered are function-germs, and the 
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equisingularity relation is right equivalence of function-germs at the origin, then 

M ( f )  = mnJ( f )  while M ( F ) =  mn \ ~ z l  " ' " - ~ z .  and the theorem of Thom- 

Levine type is: 

Theorem 2.1 Suppose F: (12n + k, 0 - ~ C, 0 is a k-parameter family offunction germs; 

then the family is right trivial iff - -  e mn 1 -< i -< k, 1 _-< j < n. aui 

A theorem of Thom-Levine type shows that the infinitesimal objects of your 
theory work well at least at the level of unfoldings or deformations. The first 
theorem of this type that seems to be used as a model for similar theorems is 
contained in Theorem 12.3 of Levine's notes of Thorn's Bonn lectures [23]. This 
result dealt with d-triviality of a family of map-germs. Other examples are the case 
of condition C by Teissier in the theory of Whitney equisingularity of hypersurfaces 
([21, Sect. 2.5, p. 604] and [22, p. 589 and if.I) and Mather's work on contact 
equivalence ([13] see the material around 5.3). 

In this section, we prove a theorem of Thom-Levine type for Whitney equisin- 
gularity of complex analytic sets, integral closure of modules providing the relevant 
infinitesimal objects. A first proof of this theorem was inspired by the material of 
[20, III, Sect. 2.2]. 

We begin by recalling the following definition of the distance between linear 
subspaces ([20, III, Sect. 2.1]). 

Definition 2.2 Suppose A, B are linear subspaces at the origin in ~", then 

I(u, v)i 
dist(A, B) = sup 

. ~ -  {0} il u li Jl v il 
w A  - {0} 

In the applications B is the "big" space and A the "small" space. 
Note that dist(A, B) is not in general the same as dist(B, A). If B' c B, then 

dist(A, B) < dist(A, B') because B '• = B • 
This allows us to talk about the Whitney conditions holding with a certain 

exponent. 

Definition 2.3 Suppose 2s = Y, X, Y strata in a stratification of a complex analytic 
space, and dist(TYo, T X x ) <  dist(x, y)e. Then (X, Y) satisfy Whitney A with 
exponent e at 0 ~ Y. 

(Here Yo denotes the smooth points of Y.) 
If e = 1, and X is semi-analytic, then the hypotheses of Kuo's ratio test are 

satisfied, and (X, Y) satisfy both of Whitney's conditions at the origin ([K ]). In this 
ease, we say (X, Y) are w-regular. 

Teissier has shown that this last condition, in the complex analytic case, is 
necessary as well as sufficient. Coupling the two results gives: 

Theorem 2.4 ([20, p. 455]) Let X be a complex analytic, reduced, purely d dimen- 
sional space, Y an analytic subspace of X purely of dimension t, and 0 a smoth point of 
Y. Then (Xo, Y) satisfy Whitney A with exponent 1 at the orioin iff(X0, Y) are 
Whitney at the orioin; in particular if (Xo, Y)  are Whitney at the orioin, they are so in 
a neiohborhood of  O. 



Integral closure of modules and Whitney equisingularity 309 

Since Teissier also showed that (Xo, Y) Whitney at the origin implies the 
multiplicity of X constant along Y in some neighborhood of the origin, it follows 
that O~S(X)  implies Y c S(X). Further, if V is a component of X at the origin, 
then the pair (Vo, Y) is also Whitney at 0, so Y c V. 

We can now prove the Thom-Levine type theorem for this context: 

Theorem 2.5 Let X ,  Y be as above, F: IEtx CN ~ ~P,O coordinates chosen so that 

z l - -  for all IE'x {0} = Y, F defines X with reduced structure. Then ~s ~ ~?zj ~, 

tangent vectors O/c?s to II; t x {0} iff (Xo, Y) are Whitney. 

Proof. ~ We are going to show that Whitney A holds with exponent 1 at O. We do 
this by finding a t-dimensional subspace of TXx which will converge to qY x {0} at 
the correct speed. 

Our hypotheses imply that the module z~--~z ~ has rank N + t - d on each 

component of X, and 

By the observation at the end of the last section, there exists a neighborhood 

U of 0 such that in a neighborhood of z~ U - V JN+t-d Zi-~Z j 

a~k(Z- ) = ~ k t3F and Ila~,j, zIe)ll _-< ck, ck independent of z .  

This implies that Vz, k is tangent to TXz where 

Vz,  k - (~Sk ~ .  a k , j , z ( Z ) 2 j  �9 
l,J 

Let S~ be the t-dimensional space determined by (Vz, k). The set of vectors ortho- 

g~ t~ S~ is spanned bY {~z~ ~sk} + E 
kj  

These are linearly independent and there are N of them. Then dist(C t x {0}, S~) < 
Csup~ I1~1[ _-< C dist(z, Ct) where C = SUpk(Ck). Hence, dist(r x {0}, TXz) < C 
dist (z, Ct). 

,:= Assume (Xo, r x {0}) are Whitney at the origin in IU x CN. 
Let re: C tx  II2N~ C t be projection onto C t. Since Whitney A holds at 0 with 

exponent 1, there exists a neighborhood U of the origin such that for all z e U c~ Xo 

dist(r x {0}, TX~) < C dist(z, C') < 1. 

This implies that n[ TXz is a submersion, hence ~-  ~(0) n TX~ is a linear space of 
codimension t. 

Let V~ denote the vector in TX~ orthogonal to ~-  ~(0) n TX~ which projects to 
t3/c3S~. A basis for the set of vectors orthogonal to V~ is given by a basis of 
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- 1 (0) n TXz, a basis of those vectors orthogonal to TX,  and {ej } = C', j 4= i. Let 
Yz denote the line determined by V~, Yi the line determined by O/OS~. The above 
basis for vectors orthogonal to t~, implies 

dist(Y,, ~ )  = dist(t',, TX,)  < dist(IU, TX, )  < C dist(z, C ' ) .  

Another basis for the vectors orthogonal to fz is {wj},wj being the vector obtained 
from V~ by replacing 1 with - ~ ,  Vj with 1, and the other entries with zero. 

The above inequalities then imply that 

sup II Vi II ~ C dist(z, flY) z ~  U c~ Xo  �9 
i 

Since V~ is a tangent vector we have DF(z)'Vz = 0  

~si(Z) = ~ -  V ~ z  (z). Let q~(z)~Hom(~P, ff~), then 
�9 j �9 

r = 

which implies 

OF 
CNdist(z, Ct)sup ~o(z)'~z ~ 

CN sup 0F ~0(z)" zi--  
i, j c3zi 

z i - -  by 1.11. [] hence ~si ~ Ozj ~ 

One of the keys to Teissier's work on Whitney equisingularity is his idealistic 
Bertini theorems ([20, II, Sect. 2]). Before moving to the applications of the next 
section we show these can be reformulated in terms of integral closure of modules. 

We first describe the Bertini theorem with section. Suppose X is an analytic 
subspace of C s x C N with coordinates (t, z), containing ~s x {0}. Assume that the 
fibres of the projection of X to C s are smooth of dimension d off a nowhere dense 
analytic subset of X. Suppose X is defined in an open U of ~s x C N by an ideal 
generated by global sections G1, �9 �9 �9 Gp~ H~ (9r215 r If I and K are subsets of 
{1, 2 , . . . ,  N} and { 1 , . . . ,  p} o f / and  k elements respectively, let DGK.: denote the 
submatrix of DzG with rows given by K, columns by I, Gr the map germ with 
component functions given by K. 

Theorem 2.6 ([20, p. 372]) For each choice of coordinates (tl . . . . .  ts) and 
(ul, �9 �9 �9 , us) on C s and 112 N respectively, for each inteoer ~, 0 < f <_ S and for each 
choice of subset I with i = N -  d -  ~, there exists a nowhere dense analytically 
closed subset F of C s x {0} such that at each point z e •s x {0} - F the images in 
dgx, z of the elements of the form 

OGK OGK 1 
J I_ ~ . . . . .  Otj' DGK,, 
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are integral in (gX.z over the ideal generated by the images of 

�9 , U k . ~ ,  DGK,~ J Ukl G~UkI ' " " ~ (TUk I -I 

for any K c {1 . . . . .  p} with N -- d elements, 

( k l , . . . , k : }  c (1 . . . .  , N } , { j l  . . . . .  j :}  ~ {1 . . . . .  S } .  

Using only the case where : = 1 we can derive as a corollary of this: 

Theorem 2.7 Suppose X, G as above, then there exists a closed analytic set F of 
117 s x {0} such that at each point z e C s x {0} - f 

- -  2 i - -  . 
t~te ~ r ~x,, 

Proof. By the above  theorem elements of the form 

r o, ] 
z n l ' . . . ' z n ~ J L  t?te 'DGK'~ , n j e I  

~_--~[- t?GK 1 are integral over the ideal generated by z n , ' . . . ' z n ,  J Iz j- f fZ. ,  DGK, I off some 

closed nowhere  dense F~. This implies that  elements of the form 

l-o . oG, z oG, q 
J L Otd ' nl OZnl OZni j 

, . . .  z ~ - -  off F t .  are integral over the ideal generated by J zj , znz ~3zn I ' ' ~zn, 

Since there are only finitely m a n y  choices of I we get 

Jk ~tr Zi~iZi c Jk Zi-g-- , k = N - d  
\ czi 7~ 

zeUf, 
I 

By 1.8 we g e t ~ e  Zi~zi G., I 

We next  show that  if the conclusion of the above theorem holds, then the 
conclusion of the idealistic Bertini theorem with section holds. 

Theorem 2.8 Suppose X, G as above, and suppose that there exists a closed nowhere 
dense analytic set F of IE s x {0} such that at each point z e C s x {0} - F 

3te e z~ I < : < S  
~/r 

Then the conclusion of 2.6 holds for such z. 
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Proof. Suppose ~0: ~, 0_ --* X, z is a path. Consider 

=[~i  aJl ' i ( t ) (u i~i  ) ~ " " "  ~i \ 8ui /o q~, DGKdotp].  

Clearly these elements lie in the ideal generated by 

J .,, o9 . . . . .  k ui' ui-U)~ 

Since q~ is arbitrary this implies the desired result. [] 

It is worth noting that 2.5 and 2.7 together imply that Xo is Whitney over 
C s x 0 - F which is one of the key steps in proving the existence of Whitney 
stratifications. (In fact they show that one has generically Whitney with expo- 
nent 1.) 

Teissier also proves a Bertini theorem for X without section, that is without 
assuming ~s  x {0} c X. 

Theorem 2.9 Suppose X ~ ~s x C N, ~: C s x ~N ~ Cs projection on the IF. s factor. 
Suppose n iX  has the same properties as in 2.6. 

Then there exists a complex analytic B ~ X such that rt(B) has measure zero in 

t_ F ~GK~t,~ ~GK~t;, 1 Cs and for z ~ X - B, elements of the form J I ' . . . .  , DGKd are integral 

over the ideal in (gx,~ generated by elements of the form J[DGK, z,] where 
K c {1 . . . . .  p} with N - d elements, I ~ {1 . . . .  , N} fixed with N - d - f ele- 
ments, I' ~ I with N - d elements. 

Proof. See [20, p. 375]. [] 

The translation of this result is straightforward. 

Theorem 2.10 Suppose X, 7t as above, then there exists B ~ X such that re(B) has 

measure zero in tl; ~ and for z ~ X - B, ~ e 1 < i < t, 1 < j < N. 

3 WV-equivalence, finite determinaney and Newton polygons 

In this section we describe some applications of the theorems of the previous 
section. We first state the equivalence relation on map-germs that we study here. If 
f :  K" ,0  - ~ KP,0, K = IR on C, we denote f -  ~(0) by X I .  

Definition 3.1 Suppose fi: K ' , 0  - ~KP ,0 ,  i = 0, 1. We say fo and f l  are WV 
equivalent if there exists an open set U c K, [0, 1] c U, and a map-germ 
F: U x K' ,  U x 0 - ~ K p, 0 such that F(j ,  - ) = f ; , j  = 0, 1, and (XF - U, U) are 
Whitney regular along U. 

By Thom's first isotopy lemma this implies that there exists a homeomorphism 
of K ' ,  0 to itself taking Xfo to XI , .  
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Recall that  two map-germs f :  r 0 - ~ IE p, 0 are contact  equivalent if there 
exist map-germs H:  ~ " , 0 -  ~ G L ( p ) ,  I and r e ~ ,  such that  (H. fo)or  = f l .  If 
M and N are submodules of (9, p, then we can speak of M and N and (gP,/M and 
(gP/N being contact  equivalent as well. Our  first lemma shows that integral closure 
is well behaved with respect to contact  equivalence. We denote the pair (H, r) by A. 

Recall that  T J f f ( f ) = { x i ~ f x j , f e i } ( 9 , . .  

Lemma 3.2 TJff (A "f) = A" T:Cf(f). 

Proof It is easy to check that  T J f ( A ' f ) =  A" Tof f ( f )  so it suffices to show 

a" TJY"(f) = A" Toff ( f ) .  

Suppose h e A" TYf (f). Let qg: r  0 - ~ C", 0 be a path. Then h o q~ = (A" hi) o r = 
(H" hi ~ r) o r 

= Horoq~'((Dforo~o)'~l  + B[ foroq~] ) .  

This implies that q~*(A'hl) lies in r hence h = A ' h l e  

A" T ~  (f) .  
If we assume h e A" TJT" (f) ,  consider hi = ( H - i  o r, r - 1 ) .  h. An analysis similar 

to the above shows that  hi ~ T ;U( f ) ,  hence h = A" hi lies in A" T J r ( f ) .  [] 

Proposition 3.3 Suppose f :  flY, 0 -  ~ C p, 0 i = O, 1 are two map-germs such that 
T~t"(fo) = Tgff(fl) .  Then (Xr - S) (XF), ~ x 0 )  is Whitney regular at (0, 0), (l, 0) 
where F ( t, z) = fo(z) + t( fl  (z) - fo(z) ). 

Proof Let G(t, z) =-fo(z). It is clear that  

t T J f ( f ) ( 9 .  + l,,o, = xiff~xj, GieJ)(t, o) - Bt for all t . 

We claim Bt =- xi-~x~ ' F~ei j , ,  o) - At for t = O, 1. Consider the case where t = O. 

We have 

/~o ~ m . + l / ~ o  + Ao D Bo , 

hence by 1.5 (ii) we have Bo = Ao. 
The result for t = 1 is similar; rewrite F as f~ + (t - 1)(f~ - f o )  and use the 

inclusion TJ{'(fo) ~ T~l(f~). 
Since OF/Ot = (fl  - f o ) r  B~ it follows that 

- -  E x~ , Uej  w h e r e t = O ,  1 .  
~t )it, o~ 

But this clearly implies 

where t = 0, 1. 

F X i - -  

Ot E c3xj r 



314 T. Gaffney 

The result then follows from 2.5. [] 

As a corollary of the method of proof we obtain: 

Proposition 3.4 Suppose F: C x C", ff~ x 0 - ~ ff~P, O where F (t, z) = ( fo(z) + th(z) ), 
and suppose TO[r(ft) = Tgf'(fo) for all te  C. Then the pair (Xr - S(Xr),  IF. x O) is 
Whitney regular along ff~ x O. 

If T ~ r ( f )  ~ m~ (gP, we sayfhas  finite singularity type. This is equivalent, over IE, 
to saying that the restriction o f f  to its critical set is a finite map. If n > p this is 
equivalent to saying that X I is an ICIS singularity. 

Corollary 3.5 Suppose f and g in (9~ have finite singularity type and ~P , /T~( f ) ,  
d~/ T~r(g) are contact equivalent. Then f a n d  g are WV equivalent. 

Proof The hypothesis implies that To,~(f) and T~,~(g) are contact equivalent; by 
the previous Proposition 3.2 there exists f l  contact equivalent with f such that 
Tif f( f1)  = TJ{'(g). 

We claim f l  and g are WV equivalent. 
r i The proof of 3.3 shows that the stalks of are the same as the stalks 

T~(A)O.+I 15 
(-On+ 1 

~  0Fxi  --dxj ' F iej } on C x {0} except at isolated points not including (0, 0), (1, 0), 

where F is the linear deformation between f l  and g. 
* P for some k, it follows that in a neighbourhood of Since T~f(fl)(-9.+l ~ m.(-9,+l 

0~+I 
all but a discrete set of points of C x {0} the support of I" 0F i ) is ~ x {0}. 

l x ' - ~ x j ' F e j ~  

If n < p, this support is F -  1(0). If n > p the support includes S(Xr). Thus 3.3 
implies that (XF - (r  x {0}), r x {0}) is Whitney except at a discrete set of points 
not including 0, 1. We can then map a disk of radius 2 in tI~ into C x {0} in such 
a way that 0 and 1 are sent to (0, 0), (1, 0) but the disk misses the discrete set of bad 
points. The induced deformation showsfl and g are WV equivalent. Since the set of 
contact equivalences are connected we map our disk of radius 2 smoothly into ~,  
sending 1 to id and 0 to ro such that Xylor o = Xy. Then Fo(u, r,) gives a deforma- 
tion between X s and Xg with the desired properties. [] 

Teissier proved the above theorem for the hypersurface case (p = 1) in 1-21]. (In 
(9, (9, 

fact, in this case it suffices for - - ~ -  since f ~ m j ( f ) . ) )  Smooth 
Z ~ e ( f )  Z3Ue(g) 

analogues of the above result can be found in [7]. 
We also obtain the following estimate of WV-determinacy which is the precise 

analogue of Mather's [13]. 

k V = f m o d m  k+l (9, p. Then fand  g are WV- Corollary 3.6 Suppose T ~ ( f )  ~_ m,(9,, g 
equivalent. 

Proof L e t f  = f +  t(g - f ) ,  we claim To[r(f) = T • ( f )  for all t. 
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We have 

Hence 

x~ Oxj ~m. (9. for a l l t .  

T , ~ ( f )  ~ m, T3~'(f) + T3f~(f) ~ T~Y'(f) 

so by 1.5 the claim holds. As in the proof of 3.5, S(Xz) = C x {0}, and the result 
follows by 3.4. [] 

{ 0 f }  canbecomputed i swhen  One important case where a large piece of Xi~x j % 

f is Newton non-degenerate, a condition which we now describe. 
The Newton polyhedron, F + (g), where 9e(9, is the convex hull of 

{c~ + N~IC~ # 0}, C~ a coefficient in the Taylor expansion of 9. The Newton 
boundary of g, F(g) is the union of the compact faces of F+ (g). Given v ~ N~ \0, we 
let Av be the face of F(g) on which the inner product with v assumes its minimum 
values. Let 9zo denote the sum of the terms in the Taylor expansion ofg with indices 
in Av. 

If f :  t13", 0 - -~ tE~, 0, then we associate p polyhedrons to f, namely F(f~). We 
assumef~ is commode for all i, which means that F ( f )  intersects each coordinate 
axis. Byf j ,  we mean (fz~). 

Definition 3.7 We say tha t f i s  Newton non-degenerate if for each v ~ IR~ \ {0}, there 
are no solutions in (C*)" to the system of equations 

f~o = O, 1 < i < p, (w, xi~/Oxi(f)~o)) = 0 

for some w # 0. 
This definition is due to Khovanskii 1-26]. 

Theorem 3.8 Suppose f: 112", 0 - ~ 112 p, O, n > p, f defines an ICIS singularity. Sup- 
pose f is Newton non-degenerate and commode in the given coordinate system. 

(A) Suppose F: IE x flY, 0 - ~ C p, 0 is a deformation o f f  by terms above or on 
the Newton boundary off. Then 

n r • r  - r • {0}, r • {0}) 

is Whitney where tEx is any coordinate plane. 
(B) Suppose F is a deformation o f f  by terms above the Newton boundary off. 

Then f = F(t, - )) is WV-equivalent to f for all t. 

Proof. We prove part (A) and obtain (B) as a corollary. 
Suppose ~o: II~, 0 - - - *  Xr ,  0. Let ll~ ~ be the smallest dimensional coordinate 

plane that contains the image of re. o q~ = (cp~ . . . . .  q~.). The initial terms ofr~. o ~0 at 
0 define a curve (Pin on ~n which necessarily lies in IU and no smaller coordinate 
plane. The map cpi, defines a covector p = (p~ . . . . .  p,) in (12"; p, is the exponent of 
the initial term of the i-th component function of ~0in. If the i-th term of cO~, is zero, 
let p, = 0% or some arbitrarily high number. 

We first describe the submodule of (9~ generated by q)* { x ~  }, i~I. To do 

this we note several items. 
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We havefz, o ~0i, = 0, so im ~Oin lies in V(fdp). This follows because the hypothesis 
on F implies that the lowest order terms of F o ~o are exactlyfap o ~0i,; since F o ~o = 0, 
we have fd, ~ ~oi, = 0. 

We also have that fdpl~E x is Newton non-degenerate. For suppose the equations 

have a solution in (IEI)*. Sincefja,, (w, xi ~ )  are independent of the complement - 

xC~,  ary variables of ~E I, and i ~ = 0 for j a complementary index of I, a solution to 

fj, a = O, (w, x~ ~ )  = O on (C*)* would give a solution on (IE*) ". 

This means that if IE ~ is a coordinate plane of dimension p or less, then 

(r • r  = • { 0 } .  

Finally (fJ~E J)ap = fap I ~I  = ( f]  IEr)ap where IE I c IE l'. 
This relation, though obvious, is what is needed to prove the theorem simultan- 

eously for all the coordinate plane sections. 

By the second remark, the matrix [ tpi~, , ~ o tpi, l ,  i ~ I, has generic rank p, and 

the order of each entry in the j-th row is the value of p lAp(fj) = qj. 
This implies that by column operations the matrix can be reduced to I-Q, O ] 

where q j, j = qj and the off diagonal entries of Q are zero. 

We claim that q~* Xi~x i (9~ is exactly the submodule of (_9[ generated by the 

columns of Q. 

This follows because the lowest order terms of x~--o~o are exactly 
ax~ 

qhn,~-0-~x ~ ~ q~i~, so Nakayama's lemma gives the desired result. Thus, 

- -  x i - -  and -fff- e x i - -  i e l . 

By 2.5 (A) folows. 
To prove (B) we can apply the result of (A) to the germ of Ft at (t, 0) for all t. The 

hypothesis on F implies that ft will be Newton non-degenerate, F(ft, i) being 
constant. [] 

From the above proof it is clear that any h above or on Newton boundary of 

.flies i n ~  ~ ) x i  vJ'~ . 

Related work in this area has been done by J. Damon ([2]) and M. Oka ([17]). 
Damon, using his filtration based technique of constructing vector fields, proved 
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that any deformation of f by terms on or above the Newton boundary of f is 
topologically trivial. 

Oka showed in [17] that such deformations have a simultaneous resolution. By 
results of Teissier ([20]) this implies that the deformations are Whitney equisingu- 
lar along the parameter space. 

4 The real analytic and C | cases 

Much of the theory of the preceeding sections can be extended to the real analytic 
case, and some to the C ~ case. 

To start with one needs a definition of the integral closure f~ of an ideal which 
ignores complex phenomena. In such a theory one would have h ~/-R ifflh(x)[ < C 
suplf~(x)l for all x in a neighborhood of the origin iff for all tp: IR, 0 -  ~ IR", 0, 
h o q~ ~ (q~* I )A  ~. (Here A, refers to analytic germs in n variables at the origin, while 
C, refers to C ~ germs. The term (9, will be reserved for holomorphic germs.) 

Unfortunately, the algebraic definition of the integral closure of an ideal 
(Definition 1.1) gives a theory sensitive to complex phenomena. For, if 
h" + E a y  = 0 holds on IR k with a ~ I  "-~, then it holds on C k as well, so h lies in f. 
However, i f I  = (x 2 + y2) for example, we expect fR to be m 2 4: f. Work of Robson 
shows that a good algebraic definition can be given using monic polynomial 
inequalities (cf. [28, Proposition 8]). 

However, in order to develop the real analytic theory simultaneously for ideals 
and modules in a way parallel to the complex analytic case, we again adopt the 
valuative criterion as a definition. 

Definition 4.1 Suppose M is a submodule of AP, x, X a real analytic set. Then the 
real integral closure of M, denoted M~ in A~,x is the set of h such that for all 
analytic ~p: IR, 0 - ~ X, x, we have h o q9 e(q~*M)A1. 

With this definition it is clear that (x 2 + y2)~ ___ m2Z. If M is an ideal, then the 
real integral closure of M coincides with Robson's notion of the complete hull of 
1 ([28]). When M is a submodule of C~:,x, X a real analytic set, we still only use real 
analytic paths to check f o r / ~ .  Although this definition is likely to change as the 
theory of the C ~ case is developed, it suffices for the results of this section. 

Hironaka's work on the resolution of singularities provides a very nice point of 
view for studying i-,. Given a real analytic germ X . x  and an ideal I c Ax, x, we can 
find a desingularization ()~,rc)of (X, x) such that I = (n*l)A~ is simple; this means 
that at each point Y of V(I), Ix is ( z ] " . . .  �9 na"), ai non-negative integers, zi local 
coordinates on X at 2. (This is the content of Desingularization I and II in Sect. 5 of 
[8]). 

The desingularization of a singular real analytic space is constructed as follows. 
A real analytic space has a canonical filtration by real analytic subspaces X", ), 

(,+ 1) (0 0) (') X(~ X and X" = S (X ' ) ;  each X" is resolved by . ~  using Hironakas  
resolution of singularities theorem. The desingularization is then a disjoint union of 
)~(~). (For details see Remark 5.8.1 and the material after 5.8.2 of [8]). 

If X is the Whitney umbrella with equation X z - X 2 X 2  = 0  then 
X (~ = X, .~(o) = IR 2, X(,~ = )~(,) = X2-axis. The problems of the real case arise 
when the smooth points of X are not dense in X in the metric topology. 

Using these notions we can prove: 
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Proposition 4.2 Suppose I, (X, x), (()~, ~), g) as above, h e A x . x .  Then, the following 
are equivalent. 

(i) h e IRx 
(ii) h o g e ~ f o r  all 2 e g - l ( x )  

(iii) There exists a neighborhood U o f  x for  each choice o f  generators (gl) o f  1 such 
that [h(y)l < C s u p i l g i ( y ) l f o r  all y e  U. 

Proo f  (i) ~ (ii) 
Suppose h e/- , ,  ~ e g -  1 (x). We have h o n vanishes on V(r~), for we can find a family 
of curves {~ol} whose image covers V(~) and h o g o ~0, = h o (g o r must be zero by 
hypothesis for ct e I. 

This implies (hog) is divisible by xj, where ~ = ( x ~ ' " . . .  "x~), cq positive 
integers. We must show hog  is divisible by x ~.' Write h o g =  J i "  

Z k =  t h , (x l ,  . . . , -xlx, " " , X,)xk,, where he(x1 . . . . .  s . . . . .  , x , )  + O. 

We can choose tp: R, 0 - --* )f, s such that the order of ht o q~ is the multiplicity, 
m, of he and the order of X j, o q~ is N > m. 

Then o(h o g o ~) = f N  + m, and o(rp*l) > ~iN. 
If C < ~i we have ~ N  > (~+ 1)N > dN + m which gives a contradiction. 
(ii) =~ (iii) Suppose h o geI~ for each s  
This implies that in a neighborhood of V(I),  h o g  satisfies H holr(z)[I < 

C sup1119i ~ g(Z)[ I ,  hence [I h(z)H ~ C sup [I gi(z)11 holds on a neighborhood of x in 
X as well. 

(iii) =~ (i) If q~: IR, 0_ ~ X, x is real analytic the hypothesis implies that 
II h o tp(t) I[ < C supi II gi ~ q~(t) I[ for t close to zero. 

This implies that the order of h o ~0 is greater than or equal to the minimum of 
the orders of g~ o q~. [] 

(A result similar to this was proved by Risler and appears in the appendix to 
[29]). 

With this result in place, it is easy to check that the real analytic versions of 1.5, 
1.6, 1.7, 1.8 and 1.11 are true. In the hypothesis of 1.7 it is necessary to assume that 
the smooth points of X are dense in X for sufficiency. This assumption implies that 
only )~to) is necessary to resolve X and the proof proceeds as before. In the general 
case of 1.8 it is necessary to assume that Jk,(h, M )  = J k ( M )  on X (i) where kl is the 
generic rank of (h, M) on X "). With this point of view in mind the real analytic 
version of 1.11 can be proved. Although the proof of 1.12 does not completely go 
through, (the real analytic version of Grauert's theorem would be needed) the 
remark after 1.12 does hold. 

OF 
Examining the proof of 2.5 we see that ~ e hi  implies that Xo is w-regular over 

Y, while the converse holds provided that on each component of X the smooth 
points are dense on that component. 

Propositions 3.3 and 3.4 go over to the real analytic case, changing Whitney 
regular to w-regular. 

The analogue of 3.1 that we want in the real case (C oO or C ~) asks that 
(Xr - U, U) is w-regular over U. In this case, by [27], it is known that there exists 
a rugueuse trivialization of XF, hence Xfo  and X f ,  are embedded homeomorphic. 
If such an F exists we say fo and f l  are Verdier-V-equivalent which we abbreviate 
by VV-equivalent. 

In the analytic case we have: 
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Proposition 4.3 Suppose f: ~ , 0 -  ~ IRe, 0 is C ~ and suppose T ~ ( f ) R  ~-- mkt~, 
and g = f mod mkn + 1 (gpn. Then f and g are VV-equivalent. 

Proof Let F(t, s) =ft(x) =f (x)  + t(g(x) - f(x)). 
The proof of 3.6 comes over to the analytic case, and using the analogues of 3.3 

and 3.4 we get that the smooth points of XF are w-regular over T, the parameter 
axis. 

Since ffI = xi~,x, Fge~ ~_ m, An+l, it follows that S(XF) = T. (If not, choose 

go: N, 0 - --} XF, (a, 0) such that im go c S(Xr), im go r T. Then the rank of go*M is 
* k p less than p in which case go (mnAn+t) does not lie in go*M.) 

Thus, T and the components of XF \ T give a Whitney stratification of XF. [] 

We now turn to the analogue of 3.8. 
We say a real analytic f :  IR n, 0 - ~ IR p, 0 is Newton non-degenerate over IR if 

there are no solutions in (IR*) to the equations of Definition 3.7. The proof of 3.8 
then carries over using the real versions of the propositions. Again, as in 4.3, 

x D P 
t~F ) 

i ~ ~ IA~ + ~, where I is the ideal generated by the monomials lying above 
i ) X F  R 

all the Ne~/ton boundaries, implies that S(XF) = T. It is worth noting that F may 
be Newton non-degenerate over IR without having finite singularity type. Thus the 
real integral closure is insensitive to complex phenomena as a good theory of real 
equisingularity should be. 

We turn now to the Coo case. The lack of a Coo theory of the resolution of 
singularities blocks a parallel development of the theory of integral closure in this 
case, but we can still prove the analogue of 4.3. 

Proposition 4.4 Suppose f: IR ~, 0 -  ~ IRP, O is a C ~ map germ and T f  ( f )~  D 
mnk Cn p for some k, g =-fmodm~ +1 C~,P then f and g are VV-equivalent. 

Proof. Consider the two parameter deformations 

F(s, t, x) = T~f(x) + s(f(x) - T~f(x)) + t(g - f )  

where T~f is  the k-th Taylor polynomial of f a t  0. 
The methods used in 3.6 show 

go*M,,b = go*M for all analytic go: IR, 0 - --* IR 2 X ] R  n, ( a ,  b, 0) 

where 

OTk~ Tkofiej Cn+2,,,,b,O, ~ Fie1 C,+2,~.b,o, M = (  d x j '  P and M~,b x, , . 

This implies equality of the corresponding Fitting ideals go*Up(M)) and 
go*( J p( Ma.b ).). 

Let ~: )~ ~ lR2x IR n be the embedded resolution of Jr(M). Then we have 
~*(Jp(M))C~ = ~*(Jp(M.,b))C~, so s provides the embedded resolution for 
Jp(M.,b) as well. This shows that S(XF) = 1R 2 • {0} at all points (a, b) of R 2, and 
allows us to rebuild the theory of integral closure in this case. [] 
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Although we cannot prove the C ~ version of 3.8 directly, we can use 4.4 and the 
real analytic version of 3.8 to prove something dose. 

Definition 4.5 Suppose there exists a sequence of maps f~: IR", 0_ ~ IRP,0 
i = 1 . . . . .  k and deformations F~: ~ x IR", $ • 0 - ~ IR p, 0, F~ a deformation 
from f to f~+ 1. If Xv, is w-regular, then X:,  and X:k are VV-linked. 

Note that if X:,  and X:k are VV-linked then they are embedded homeomor- 
phic. 

Theorem 4.6 Suppose f :  IR", 0 -  ~ IR p, 0, f Newton non-degenerate over ~ and 
commode in the 9iven coordinate system. 

(A) Suppose f is real analytic, F: ]R x IR n, 0 - ~ IR p, 0 a deformation o f f  by terms 
above or on the Newton boundary o f f  Then ((Xr c~ ]R x IR') - IR x {0}, IR x {0}) is 
w-regular where IR ~ is any coordinate hyperplane. 

(B) Suppose f is real analytic, F a deformation o f f  by terms above the Newton 
boundary. Then f = F(t, - )  is VV-equivalent to f for all t. 

(C) Suppose f is COO; if F satisfies the hypotheses of (A) then X f ,  X:,  are 
VV-linked for t small, if F satisfies the hypotheses of(B) then X : , X y, are VV-linked 
for all t. 

Proof Parts (A) and (B) follow from the remark after 4.3. 
Part (C) follows by considering the deformation 

G(s, t, x) = rkf(x) + tTkh(x) + s ( ( f  - Tkf)(x) + t(h - Tkh)(x)) 

for k large. By (B) or (A) Tkf(x) + tTkh(x) is a VV trivial deformation for all t or 
small t. By 4.4. the 1 parameter deformation that comes from fixing t at a "good" 
t-value and varying s is w-trivial for all s. Hence the result follows. [] 

It is worth noting that 4.6 covers cases not covered by [2] and [3]. The germ 
(x 2 + y2)2 is non-degenerate over P,. for example but not non-degenerate over ~;. 

Note that w-regular implies Whitney regular in the semi-analytic case ([9]). 
However, given a closed subset of Euclidean space, which has a stratification by C ~ 
submanifolds, it is known that w-regular does not imply the Whitney conditions 
([9]). Nonetheless, given the hypotheses of 4.4 and 4.6 it is easy to see that in the 
C ~ case the map-germs are at least Whitney linked. Consider the two parameter 
deformation 

F~,, = T: ( f )  + t(T:(9) - T: ( f ) )  + s ( ( f  + t(g - f ) )  - (T:f  + t(T:g - T y ) ) ) ,  

: >> k, k as in 4.4. 
The deformation Xro., is w-regular over T, hence Whitney regular over T since 

XFo., is an analytic set. By choosing : sufficiently large, we have X~,,, is Ct-trivial 
([24]) hence Whitney regular over S. Thus X :  and X o are Whitney linked. If f is 
analytic and O is C ~, replace Te(x) by f i n  the above deformation, and by part of the 
argument of 3.5 we can show f and 9 are VV-equivalent. (It seems absurd, but 
though we can prove f + t(Te9 - f )  = 0 defines a Whitney equisingular deforma- 
tion of X :  for all : ,  we cannot prove that f +  t(g - f )  = 0 does.) 

Finally, we note the connection between our work and that of Wilson, 
Brodersen and Wall on finite C o determinacy ([25, 1, 24]). Using the previous 
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p ropos i t ions  and modif ica t ions  of  the previous  proofs,  it is possible  to show that  if 
k p f :  IR', 0 - ~ IR p, 0 is C~~ then T ~  ( f )R ~- mn Cn for some k iff C sup~ Ig~(x) l > Ix I t 

for some f ,  where g~ is a set of genera tors  for J(f) +f*(mp)Cn, for x sufficiently 
close to zero. This last condi t ion  is the condi t ion  which implies  f is finitely 
V de te rmined  in the f ramework  of  Wilson,  Brodersen and Wal l  ([24, p. 519]). 

Seen in this light, integral  closure provides  the r ight  infinitesimal objects from 
which the re levant  L-inequal i t ies  can be derived. This  connect ion  has also been 
checked for s equivalence in [7]. 
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