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1 Introduction 

Consider the one complex parameter family of 2 :2  correspondences on the 
Riemann sphere, defined by z ~ w, where 

(az+l 2 (aw-, 2 
+ \ z + l J \ w _ t J + \ w _ l )  = 3 .  (1.1) ~-Tq-) 

We show that there is a non-empty set M of values of the parameter a for which the 
dynamics of this correspondence is that of a matin9 of the modular group 
PSL(2, Z) with a quadratic map qc :z ~ z 2 + c, in the following sense. For  these 
values of a the Riemann sphere is partitioned into two subsets, each fully invariant 
under the correspondence: a regular domain f2, homeomorphic to an open disc, on 
which the action of the correspondence resembles that of PSL (2, Z) on the 
complex upper half-plane, and a olobal attractor A, the one-point union of two 
subsets A +, A_,  each resembling the filled-in Julia set Kc of qc and on each of which 
the actions of appropriate backward or forward branches of the correspondence 
resemble that of qc on Kc. The precise nature of these 'resemblences' is made clear in 
Theorems 1 and 2 below. 

Computer  experiments indicate that every connected filled-in Julia set K~ of the 
quadratic family can be realised in this way (see Figs. 8, 10, 11 and 13) and that the 
set M of values of the parameter a such that the correspondence is a mating of this 
type is homeomorphic to the Mandelbrot  set (see Fig. 14). However, the situation is 
most easily described for real values of a and c. 

Theorem 1 For a real, 4 < a < 7, the Riemann sphere is partitioned into two sets, 
s and A, each fully-invariant under f :  z ~-~ w and f - l :  w ~-~ z, defined by (1.1), and 
such that 
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(i) f2 is open and simply-connected, and the action of the correspondence (1.1) on 
f2 is conformally conjugate to that of PSL(2, Z) acting by MSbius transformations 
z ~-* z + 1, z ~ z/(z + 1) on the complex upper half-plane; 

(ii) A is the one-point union of two connected closed subsets A +, A_ ,  which are 
forward and backward invariant respectively. The correspondence (1.1) has a forward 
branch carrying A_ onto itself with degree 2 and a backward branch carrying 
A+ onto itself with degree 2; the remaining forward branch on A carries A_ homeo- 
morphically onto A+. 

Our computer plots suggest that the sets A +, A_ of Theorem 1 are homeomorphic 
to filled-in Julia sets Kc of the quadratic family qc :z ~ z 2 + c. The homeomor-  
phisms appear to 'pull out cusps' from Kc, changing the conformal structure on the 
boundary Jr To prove that our A + and A_ are homeomorphic to Kc we should 
have to extend the Douady-Hubbard theory of polynomial-like mappings [8] to 
a theory of pinched polynomial-like mappings (see Sect. 6 for a discussion). This is 
a difficult technical problem, and we content ourselves here with proving that for 
each of the correspondences of the form (1�9 with a real and 4 < a < 7, there exist 
arbitrarily small perturbations of the form 

az + 1) 2 {az + 1 ) l a w - 1 )  l a w - 1 )  z 
~ j  + \ z + l J \ w _ l j + \ w _ l J  = 3 k  (1.2) 

such that A+ and A_ become disjoint, but such that each can be proved quasi- 
conformally equivalent to some Kc, using the standard Douady-Hubbard theory. 
These perturbations have the unfortunate effect of allowing critical points of the 
correspondence to enter the regular domain f2, with the consequence that the 
action of the correspondence there is no longer that of PSL(2, Z), but they are the 
best we can hope for if we are to obtain quasi-conformal conjugacies to quadratic 
maps on A + and A_.  

�9 1 Theorem 2 There exist continuous functions amin, area x . [-;~, 1] --* [1, 7] satisfying 
amin(1 ) = 4, amax(1) = 7 and 1 < amin(k ) < amax(k) (except for 1 = amln(�88 = amax(�88 
such that for �88 < k < 1 and ami,(k) < a < amax(k), the Riemann sphere is partitioned 
into two sets, f2 and A, each fully-invariant under f:  z ~ w and f - 1 : w w-~ z defined by 
(1.2), and such that 

(i) f2 is open, homeomorphic to an annulus, and the action of the correspondence 
f defined by (1.2) on it is discontinuous; 

(ii) A is the disjoint union of  two closed connected subsets A +, A_ , forward and 
backward invariant respectively. On a neighbourhood of  A_ there is a branch of  
f which is hybrid equivalent to a quadratic map qc (z ~ z 2 + c), with a connected 
filled-in Julia set Kc; this hybrid equivalence sends A_ to Kc by a quasi-conformal 
bijection. On a neighbourhood of A + there is a branch of  the inverse correspondence 
f -  x with the same property (for the same c). The remaining forward branch o f f  on 
A carries A_ onto A § by a conformal bijection. 

Comments. I. We say that an action of a correspondence is discontinuous at z if 
there exists a connected neighbourhood Uz of z such that on Uz there are only 
a finite number of branches F of the iterated correspondence (forwards, backwards 
or mixed) such that F(z) = z, and if all other branches have F ( U z ) n  Uz - 0. (See 
Sect. 3 for the definition of a branch of an iterated correspondence.) 
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2. Recall that a hybrid equivalence between a quadratic map qc and a holomor- 
phic map g is a quasi-conformal equivalence ~b such that ~q5 = 0 on Kc [8], and that 
if the Julia set Jc has measure zero (which is the case in all known examples) then 
~q5 = 0 on Kc if and only if ~b is conformal on the interior of Kc. 

The term 'mating' was introduced by Douady and Hubbard to describe (in the 
simplest case) a map manufactured from two polynomial maps Pl,  P2 (of the same 
degree) by gluing together their filled-in Julia sets (along boundaries) to form 
a sphere, the gluing being performed in such a way that Pl and P2 match on the 
boundary and so together define a single self-map of the sphere. The general 
definition of a mating of polynomials (for example [15]) is rather more technical. 
but the simplified description above applies at least in the case that Pl and P2 are 
hyperbolic and their Julia sets connected. Douady, Hubbard, Shishikura, Rees and 
Tan Lei have considered conditions under which matings of polynomials are 
realisable by rational maps (see [15] for details and further references). 'Matings'  
also occur in the category of Kleinian groups: for example one can consider 
a quasi-Fuchsian group as a 'mating' of two (group-theoretically isomorphic) 
Fuchsian groups. The building blocks for our 'matings' between quadratic maps 
and the modular group are" 

(i) the standard action of PSL(2, Z) on the upper half-plane H via z ~ z + 1, 
z ~ z/(z + 1); 

(ii) two copies Kc +, K~- of a filled-in Julia set Kc for a quadratic map 
qc: z ~-, z z + c (c in the Mandelbrot set); we equip these with coordinates z + and z -  
respectively. 

We assume that we have a parametrisation of the boundary J~ of K~ as 
a quotient of the circle R/Z, with qc acting as a quotient of the binary shift 
0 ~ 20 mod 1 (as is the case, for example, if qc is hyperbolic), and we 'mate'  
PSL(2, Z) with qc as follows. We divide the boundary R ~ { oo } o f / 4  into two 
parts, [0, oo] and [ -  oo, 0], and homeomorphically map 

[0, o o ] / ( 0 ~  o o ) ~  R/Z(--* Jc +) 

1 
a 0 +  1 ~--~0.00. .0  11 . .1  0 0 . . 0  . . .  (1.3) 

al + , 2 + . . .  ~ ~ 
a o  a l  a 2  

This is the unique continuous (orientation-reversing) map which sends 0 to 1 and 
carries the action o fz  ~ z + 1, z ~-~ z/(z + 1) on [0, ~ ] across to that of 0 ~ 0/2, 
0 ~ 0/2 + 1/2 on R/Z. Similarly we map [ - ~ ,  0]/(  - ~ ~ 0) ~ R/Z( ~ J/- ) by 
pre-composing the above map with z ~ -  z and post-composing with 
0 ~ (1 - 0 ) .  We glue together K~ +, H and K~- (along boundaries) using these 
maps, and define a 2 :2  correspondence on the union by fitting together 
q~-l:z+ ~ +_ x / ~ - - c o n K + , z ~ - - - ~  z + l,z~-~ z/(z + 1)onH,  q~:z- ~--~ ( z - ) 2 +  
c on K~-, and the map K~- ~ K + ,  z -  w, - z+. The result we call an abstract 
mating of q~ with PSL(2, Z). 

Our belief is that the family (1.1), for a in a certain subset of parameter space, are 
all realisations of such abstract matings. If we could prove that in the limiting case 
(k = 1) of Theorem 2(ii) the branches of f mapping A_ two-to-one onto itself, and 
of the inverse correspondence mapping A + two-to-one onto itself, described in 
Theorem l(ii), remain topologically conjugate to q~ (on K~), then (at least in 
the hyperbolic case) we should have proved that (1.1) is a realisation of the 
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corresponding abstract mating. We examine in detail three examples, a = 4, 5 and 
7, which correspond to c = - 2, 0, and 1/4 respectively. We prove that we have 
a realisation of a mating when a = 4, and we produce strong heuristic arguments in 
the case a = 7. 

The layout of this paper is as follows. In Sect. 2 we investigate diagram 
conditions on correspondences, with the objective of identifying a class of corres- 
pondences having actions resembling that of the modular group. The class of 
reversible maps of triples, having graph a sphere (see Sect. 2 for definitions) gives us 
(1.2). Imposing the contact condition (again see Sect. 2) reduces us to (1.1). In Sect. 
3 we develop a theory of limit sets, regular sets and fundamental domains for these 
correspondences, and in Sect. 4 we apply this theory to prove Theorems 1 and 2. In 
Sect. 5 we consider examples, and we conclude, in Sect. 6, with remarks on the 
problems involved in generalising our proofs to the full situation evident in 
computer plots. 

Our strategy throughout the article is to concentrate attention on the algebraic 
conditions that correspondences must satisfy in order to have actions resembling 
modular group actions, and on the dynamical behaviour of these particular 
correspondences. At almost every stage in the development of our analysis there 
are generalisations that can be made, but in order to keep the paper to reasonable 
length, and (we hope) to keep it readable, we confine ourselves here to the theory 
needed for the examples in question. A more general setting will be presented 
in [4]. 

The work described here forms part of an on-going research programme to 
investigate correspondences which behave dynamically like rational maps or 
Kleinian groups. In [13] Sullivan constructed a partial 'dictionary' between the 
theories of such maps and groups, and showed how quasi-conformal deformation 
theory could be applied very productively in different ways in the two fields. 
Correspondences form a category in which rational maps and Kleinian groups are 
particular examples, a natural category in which to attempt to complete Sullivan's 
programme. Our examples in this paper exhibit 'rational-map-like' and 'Kleinian- 
group-like' behaviour in a single system for the first time, and it also seems likely 
that using the techniques of [12], [13] and [14] it will be possible to prove that 
(generically) they exhibit structural stability for appropriate classes of perturba- 
tions. Sullivan [t4] proved that structural stability is generic for holomorphic 
families of rational maps, but the corresponding question for discrete representa- 
tions of Kleinian groups remains a major unsolved question [13]. 

A survey of our results on limit sets of correspondences can be found in [3], and 
technical details in [4]. For background on quadratic maps see [1, 6, 7], and for 
Kleinian groups see [10]. 

2 Diagram conditions on correspondences 

All our correspondences will be 2 : 2 'maps' z ~ w defined by equations p(z, w) = 0, 
where p is polynomial of degree 2 in each of z and w, with complex coefficients. We 
say that two such correspondences Pl and P2 are equivalent if there exists a MSbius 
transformation M such that p2(z, w) = 0 r pl(Mz, Mw) = 0. Equivalent corres- 
pondences have conformally conjugate dynamics. 

We say that a correspondence z ~ w is a map of pairs if whenever wx, w2 are 
images of zl ,  and wl is also an image of z2, then w2 is an image of z2. Diagramatically 
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we may represent this condition by: 

Z I --~ W 1 

x ~  (2.1) 

g 2 ~ W 2 

It is an elementary observation that a 2 : 2 correspondence is a map of pairs if and 
only if it can be expressed in the form 

ql(z)  = q2(w) (2.2) 

with ql and q2 rational functions of degree two. A necessary and sufficient 
condition for such a separation of the variables z and w to occur was given in [2]. It 
is that the 3 • 3 matrix of coefficients of p(z, w) have zero determinant. Note also 
that a map of pairs comes equipped with two involutions, that interchanging zl and 
zz if they have the same images, and that interchanging wl and w2 if they have the 
same pre-images, in other words the covering involutions for the degree two maps 
ql and q2. 

The next stage of complication is that of a map of triples. Here we are still 
dealing with 2 : 2 correspondences, as we are throughout this article, but we impose 
the diagram condition: 

Z 1 W 1 

i ~ 3 z 2  w2 (2.3) 

Formal definitions of diagram conditions will be given in [4], but for our purposes 
here it will suffice to define a 2: 2 correspondence to be a map of triples if and only if 
there exists a fractional cubic map C, (i.e. a degree three rational map), and 
a fractional linear map M, such that the correspondence sends each z to the two 
solutions w of C(Mz) = C(w) other than w = Mz. For such a correspondence the 
map C is unique up to post-composition by a M6bius transformation, and the map 
M is unique. We shall say that the correspondence is a reversible map of triples if 
M is an involution, ie. M = M -  1 = j (say): then z ~ w if and only if Jw ~ Jz. 

We can investigate the dynamics of a correspondence either by considering it as 
z ~ w on the dynamical plane (the Riemann sphere), or by lifting it to a 2 : 2 
correspondence on its graph F ( f )  = {(z, w):p(z, w) = 0}. Abstractly, the objects of 
the latter (pairs (z, w)), are the morphisms of the former (arrows z ~ w). Both points 
of view are useful in different situations. 

When we lift a correspondence to its graph, we always obtain a map of pairs: 
a point (z, w) on the graph maps to (u, v) under the lift if and only if w = u, that is 
nl(z, w) = rc2(u, v). Here we have adopted the somewhat unusual convention that 
~, denote projection onto the second factor and ~2 that onto the first. The reader 
should think of these as projections 'forgetting the first factor' and 'forgetting the 
second' respectively. Let 11 and 12 denote the covering involutions for nl and ~2. 
Thus I a interchanges pairs of points on the graph which have the same image under 
the (lifted) correspondence, and 12 interchanges pairs of points with the same 
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pre-image. Our diaoram conditions on arrows z ~ w translate directly into alge- 
braic conditions on these involutions: 

z ~-~ w is a map of pairs if and only if I l i 2  = I211; 
z ~-~ w is a map of triples if and only if 11/211 = 1211 I2; 
z ~ ,  w is a reversible map of triples if and only if there exists an involution J of 

the sphere such that Ili211(z, w) = I21112(z, w) = (Jw, Jz) for all (z, w)~F. 
We shall concentrate attention on maps of triples, indeed on reversible maps of 

triples, since these turn out to be the correspondences which act like the modular 
group in appropriate circumstances. However it is worth remarking that there is 
a natural generalisation of the notions of maps of pairs and maps of triples: we 
define maps ofn-tuples to be 2:2 correspondences with the property that the covering 
involutions 11 and 12 (defined as above) generate a dihedral group of order 2n. This 
generalisation, and other 'diagram conditions', will be considered in 1-4]. 

The global orbit of a point Zo under a correspondence (allowing mixed se- 
quences of forward and backward iteration) can be quite a complicated object to 
describe algebraically in general, but for a reversible map of triples it has a parti- 
cularly simple structure, as we now show. 

For any correspondence f : z  ~ w let O+(zo) denote the set of all forward 
images of Zo. Thus 

O+(zo) = U f"(zo) (2.4) 
n > O  

wheref(zo)  denotes the set of all w such t h a t f m a p s  Zo to w. Similarly let 

O-(zo) = U f-"(Zo) (2.5) 
t t>O 

where f -1(Zo)  denotes the set of all w such t h a t f m a p s  w to Zo, and let 

O • (z0) = O + (Zo) u O_ (Zo) ~ {Zo }. (2.6) 

Thus O • (Zo) denotes the set of all points accessible from Zo by purely forward or 
purely backward iteration of the correspondence. 

Lemma 1 I f  f is a reversible map of  triples, with time-reversing involution J, then 
0 5(Zo) u 0 5( Jzo) is the global orbit of zo under f. 

Proof. Since the (at most three) values o f f f -  lf(zo) are the (at most two) values of 
f(zo) together with Jzo, we see that Jzo, and hence 05(Jzo), is contained in the 
global orbit  of Zo. 

It remains to show that every point  of the global orbit of Zo lies in either 0 5 (Zo) 
or  05(Jzo). Consider an arbitrary point z ~ 05 (Zo)w 05 (Jzo). It will suffice to 
show that all (at most four) points in f(z) u f - 1 (z) are also in 0 5 (Zo) ~ 0 5 (Jzo). 
This is trivial for z = Zo, so suppose, without loss of generality that z ~ O + (Zo). The 
(at most two) values o f f ( z )  are then automatically in O+(zo) and one value of 
f - l ( z )  is in O+(zo)u {Zo}. Denote this value by x. We now have a diagram of 
triples 

x Jx  

jz~z (2.7) 
y -  v.-jy 



Mating quadratic maps with the modular group 489 

for some y. Observe, from (2.7), that f (x)= {z, Jy}. Hence Jy~O+ (Zo) (since 
x~{zo}wO+(zo)). But J sends O+(zo) to O-(Jzo), (J being a time-reversing 
involution) so that y~ O_ (Jzo) as required. [] 

Not  every point z for an n : n  correspondence f : z - -*  w need have n distinct 
images w. We shall say that z is a forward singular point if it has fewer than n images 
w, and that w is a backward singular point if it has fewer than n pre-images z. Care 
must be taken over the distinction between singular points and critical points. 
A forward critical point is a point z with the property that dw/dz vanishes for at least 
one of the n branches f :  z ~ w. The corresponding w is a forward critical value. 
There are analogous definitions of backward critical points and backward critical 
values. Note that while a backward critical value is necessarily a forward singular 
point, a forward singular point may be a backward critical value, or a multiple 
point (where the graph of the correspondence has two or more intersecting 
sheets), or a degenerate point (where critical points for the two graph projections 
coincide). In what follows we shall employ both terminologies: generally 
speaking we shall consider singular points when examining the topology of the 
graph of a correspondence, and critical points when we look at dynamics under 
iteration. 

The graph F of one of our maps of triples p(z, w) = 0 is a Riemann surface. To 
compute the genus of F we consider the projections ~1 and ~z. For  a map of triples 
the group generated by the two covering involutions is finite (D6). It follows that 
(once double points o f F  have been resolved) the fixed points of I2 on F are distinct 
from those of 11, so that there are no degenerate singular points in the sense 
described above. Hence the (forward) singular points z of the correspondence 
are the branch points and double points for the double covering 7zz. As p is 
quadratic in each of z and w there are 4 such points z (counted one for a branch 
point, two for a double point). The possibilities for double and branch points for 
~2 are therefore: 

(i) 2 double points: F two (intersecting) spheres; 
(ii) 1 double point and 2 branch points: F a (self-intersecting) sphere; 

(iii) 4 branch points: F a torus. 
While (iii) is the generic situation, our primary concern in this paper will be with 
correspondences of type (ii). Note that a correspondence is of type (i) if and only if it 
factorises into a pair of M6bius transformations, i.e. p(z, w) is equivalent to some 
(w - Az) (w - Bz) where A and B are fractional linear. 

We now specialise to reversible maps of triples. If zl is a singular point, having 
unique image Jzz, then Jzi has unique pre-image z2 (by the reversibility condition). 
Thus branch points have diagram 

"I"~ z' i ~ ~'al N 

. ~  zz/-'--'*~Jzz ~ (2.8) 

and double points have diagram 

" ~ z l  ~ J z ~  (2.9) 

If our reversible map of triples has exactly one double point, we may place it at 
zl = J - 1 (~) ,  and choose our fractional cubic C such that C ( ~ )  = ~ ,  indeed such 
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that C is a polynomial. We may further normalise the two critical points of C 
to lie at z = _+ 1 (since if the critical points of C are identical the correspondence 
has two double points), in other words we may assume that C(z) = z 3 - 3z, and 
deduce 

Lemma 2 Every reversible map of triples with graph a single sphere is equivalent to 
a correspondence of  the form 

( Jz) z + ( Jz)w + w z = 3 (2.10) 

for some involution J. This J is unique up to conjuyacy by z ~ - z. 

Proof By the remarks above, our correspondence is equivalent to z ~-* w, where 

(Jz) 3 - 3Jz = w 3 - 3w (2.11) 

but w + Jz. The expression in the statement of the lemma follows by dividing 
through by w - Jz, Uniqueness up to conjugacy by z ~ - z follows from the fact 
that we have normalized points to lie at ~ and + 1. [] 

Since an involution is uniquely determined by its two fixed points, Lemma 
2 gives us a two (complex) dimensional parametrisation of the moduli space of 
reversible maps of triples having graph a single sphere. 

Returning to condition (i) on the graph F, if our reversible map of triples has 
two double points we can place them at 0 and ~ ,  and assume that C(z) = z 3. We 
deduce 

Lemma 3 Every reversible map of triples with graph a pair of spheres is equivalent to 
a correspondence of  the form 

(Jz) 2 + (Jz)w + w 2 = 0 (2.12) 

for some involution J. This involution is unique up to conjugation by scalars. 

The correspondence in Lemma 3 can be more easily expressed as 

w = e + 2ni /3  J z  (2.13) 

and it follows at once that 

Lemma 4 There is a bijection between equivalence classes o f  reversible maps of  
triples with 9raph a pair o f  spheres, and equivalence classes of representations of  the 
free product C2 * C3 in PSL(2, C). 

Here Cp denotes the cyclic group of order p. Of course C2 .  C3 = PSL(2, Z), the 
modular group, the standard isomorphism being given by taking generators 

(0 -:) 
If we write z for the generator of order 3, the correspondence (2.13) has the form 
z ~ ~• 1 Jz. The first few terms in the (directed) orbits O• (Zo), O• (Jzo) discussed 
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in Lemma 1 now have the form 

...•Jzzo ZJzo. .~  

 zo./ 
. .I  

"•J•Jzo. 
" ~  j z ~ f f  zz~ ' ' ' ~  

(2.15) 

and it is easily seen that O• is made up of Wzo where W runs through all 
reduced words in ~ + ' and J having an even number of letters, and 0 + (Jzo) is made 
up of Wzo where W runs through all reduced words having an odd number of 
letters. Together, as guaranteed by Lemma 1, 0 • (Zo) w 0 +_ ( JZo) contains Wzo for 
all W in the group C2 * C3. 

We remark that the moduli space of representations of C2 * C3 is itself a space 
of considerable interest, and should have features analogous to those of the Maskit 
embedding of the moduli space of punctured tori, and the Riley slice of representa- 
tions of Coo * Coo having two parabolic generators [9]. In particular we would 
expect there to be an open region ~ of parameter space, homeomorphic to 
a punctured disc, where the action of Cz * C3 is discrete, faithful and has limit set 
a Cantor set. This region ~ should be thought of as analogous to the complement 
of the Mandelbrot set for quadratic maps qc:z ~-+ z 2 + c, an analogy which is 
developed for other free products of cyclic groups in [5]. However our concern here 
will only be with the classical action of the modular group on the complex upper 
half-plane. 

The correspondences described in Lemma 2 can be expressed as the two- 
parameter family 

(oz+l V :az+l :ow-l  (aw-, V 

that is to say the family (1.2) of the Introduction. Here we have normalized J to be 
the involution z ~ - z. 

It is also useful to derive the equation of the lift of such a correspondence to its 
graph F. This we now do by considering the properties which characterise the lift. 
Given a reversible map of triples with graph a sphere, we know that the covering 
involutions 12, 11 for the projections from F generate a dihedral group of order 6, 
and that 121112 = 11 I21, = ],  the lift of a time-reversing involution J on the 
dynamical plane. Since there is only one faithful action of D 6 o n  the sphere (up to 
conjugacy by M6bius transformations), we may choose a co-ordinate Z on F such 
that I1, I2 and J are given by 

1 1 : Z v - - > - 1 - Z  1 2 : Z t - - + - Z / ( Z + I )  J:Zv-+I/Z. (2.17) 
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The correspondence on F, which lifts our given correspondence on the dynamical 
plane, now has the form Z -o W where 

M(Z(Z + 1)) = W2/(W+ 1) (2.18) 

for some M6bius transformation M (since Z ~ Z(Z + 1) identifies pairs related by 
I1, and W ~-~ W2/(W + 1) identifies pairs related by I2). But in order that the time- 
reversal symmetry be respected we require that 

M [ 1  f l  1 1 
~ +  1 ) )  = ~ 5 / ( ~  + 1 ) (2.19) 

be the same correspondence, and hence that 

M - 1(1/~) = 1/M~ (2.20) 

for all (. A necessary and sufficient condition is that M have the form 

(where 2 and ~ may both be oo, in which case their ratio is a parameter). Our 
family of graph correspondences can therefore be written 

2Z(Z + 1) + 1 W 2 
(2.22) 

- Z ( Z  + I)+ /~- W + I '  

We stress that (2.22) are just the graph correspondences of the family (2.16). It is 
merely an exercise in algebra to relate 2 and # to a and k. However it is an exercise 
which is easier to carry out once we have made an examination of the dynamics of 
both families, and once we have imposed a final constraint, the contact condition, 
which will restrict both families to one l~arameter. This is the condition that one of 
the fixed points of J, or equivalently of J, be afixed point of the correspondence. Our 
motivation for imposing this condition comes from dynamical considerations (see 
(3.3)). However, in the present context, our interest in the contact condition is 
purely algebraic. On the dynamical plane, requiring the origin to be a fixed point of 
(2.16) yields k = 1, that is 

az + l ']2+(az + l~(aw--1"] (aw-- 1~ 2 
z - T i - / t  \ - f ~ - J  \ ~ - i - J  + \ w - 1 J = 3. (2.23) 

On the graph, requiring the point 1 to be a fixed point of (2.22) yields ~t = 4(2 + 1), 
that is 

2Z(Z + 1) + 1 W ~ 
(2.24) 

- Z ( Z +  1)+4(2+1)= W+ 1" 

To begin to understand the dynamics of (2.23) and (2.24), we first identify their 
critical and double points. As a by-product we shall obtain the relation between 
2 and a. 

For  (2.24) critical points of the forward map (Z ~ W) are Z = - 1/2, m ,  and 
those for the backward map (W ~ Z) are W = 0, - 2. There are no double points 
(except in the special cases 2 = 0, 2 = - 8/7, and in the case 2 = 4 which has two 
double points - 1/2 ~ ,  0 and oo ~ - 2 and which corresponds to a = 4 - see  
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Example  2, Sect. 5). The  critical points lie in configurat ions 
x 

~ " " ~ - -  2 ~ -- 1/2--.. ~ ' "  ~ 0 ~ ~ ~ " "  ' ~.........~ "~ I.. .~ .........~w ......... _ _ ~  

\ + /  -. -. 
(2.25) 

These critical points  are just  the zeros of the derivatives of  each side of (2.24). For  
(2.23), which is not  a m a p  of pairs, it is easier to compute  the singular points  (points 
w with unique pre- image z, or  points  z with unique image w): these are the forward 
and backward  critical values of the correspondence,  and its double  points. A simple 
calculat ion for (2.23) yields 

" " ~ - -  3/(2 + a) - - -6 -~  3/(2 + a) ._ .~  

1 ~ 1~--~ . _ 1 / , -  

- ' ~ l / ( a  - 2) ~ 2/(a + 1)......~ 

" ' * -  2/(a + 1)  - - ,  - 1/(a - 2 ) . _ ~ ( 2 . 2 6 )  

The project ion n l ,  which identifies Z with - 1 - Z, has the form 

p(Z(Z  + 1 ) + q  
n l (Z)  = (2.27) 

r Z ( Z  + 1) + s 

for some p, q, r, s t  C, and the project ion n2 is given by nz(Z) = Jn~(JZ) ,  that  this 

- q Z  2 - p(Z + 1) 
~'2 ( Z )  = sZ 2 + r(Z + 1) (2.28) 

However ,  f rom the critical point  d iagrams (2.25) and (2.26) we know that  
2 2 ( -  2) = - 3/(2 + a), ~ 1 ( -  2) = nz(1) = 7r1(1) = lr2( - 1/2) = 0, lh(  - 1/2) = 
3/(2 + a), ~z(OO)= - 2 / ( a  + 1) and n ~ ( o o ) =  - 1 / ( a -  2). It follows that  p = 1, 
q =  - 2 ,  r = 2 - a a n d s =  - ( a +  1) .Thus 

Z ( Z  + 1) - 2 
n d Z )  = 

( 2 - a ) Z ( Z +  1 ) - ( a +  1) 

and 

(2.29) 

2Z  2 - (1 + Z)  
rt2(Z) = (2 - a)(1 + Z) - (a + 1)Z 2" (2.30) 

The graph correspondence  is given by rh(Z) = n2(W) and the parameters  2 and 
are obta ined from the formula  

whence 
2(a - 2) 

2 =  
5 - a  

(2.32) 
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The diligent reader is invited to perform the analogous calculation for the two- 
parameter families (2.16) and (2.22): the computations in Lemma 5 (Sect. 4) provide 
the necessary hints. 

3 Direetionalities and limit sets 

Attractors for arbitrary closed relations on compact Hausdorff spaces have been 
considered by McGehee [11]. We adapt and develop some of his ideas, for our 
particular correspondences. A much more complete development, for rational 
correspondences in general, will be presented in I-4]. We modify McGehee's 
notation, in t h a t f  - 1 (S) will denote the set of all points z for which there exists w ~ S 
with p(z, w) = 0 (where p is the relation defining f ) ,  rather than the set ofz such that 
all w with p(z, w) = 0 lie in S. O u r f  - l(S) is McGehee ' s f*  (S). In par t icular f  - 1 will 
denote the correspondence inverse to f 

We say that a subset S of the Riemann sphere defnes a directionality for the 
correspondence f :  z ~ w if 

f (S)  ~ S ~ (3.1) 

Here f (S)  denotes {_w:p(z, w) = 0 for some z~ S}, where p is the relation defining f, 
in other words f ( S )  is the set of all images of points z~S. Associated to such 
a directionality is an attractor N ,  z_ of"(S)  �9 Moreover, since (3.1) can be written in 
the symmetric form 

F n (S • sO = 0 (3.2) 

(where F is the graph of the correspondence), associated to the same directionality 

there is a repeller ~ ,~_o f  ( ). 
We shall say that S defines a contact directionality if there exists a contact point 

z 1 6 aS such that 

F n (S • sO = {(z s, zs)}. (3.3) 

A consequence is that the associated attractor and repeller meet at the single point 
z I instead of being disjoint. 

In the case of  either a directionality or a contact directionality the attractor 
A+ is forward invariant ( f (A  +) = A+) and the repeller A_ is backward invariant 
( f - l ( A _ )  = A_). Moreover S - f ( S )  behaves rather like a fundamental domain in 
that no forward orbit started in S - f ( S )  returns to it (except the contact point, if 
there is one). Similarly, S c - f -  1(SO) behaves like a fundamental domain for f - 1 .  
Thus we have the beginnings of the ideas of limit sets and regular sets. However 
what we really seek are limit sets and regular sets for arbitrary 'zig-zag' combina- 
tion o f f  and f - 1, not just 'unidirectional '  orbits. The general theory is considered 
in I-4]: all we need here is a special case which can be applied when f i s  a reversible 
map of  triples. Recall that in this case 11 and I2 generate a dihedral group of order 6, 
acting on the graph F. We say that a subset D of the Riemann sphere defines an 
equivariant (contact) directionality for such an f if 

(i) D is the projection n2(z~) of the closure of a fundamental domain A for the 
action of (I1, 12) on F, and 

(ii) D defines a (contact) directionality for f 
To make the meaning of this definition quite clear we must define the term 
'fundamental domain '  for the action of a group G on the Riemann sphere. We shall 
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do this for a discrete group in general, not just for a finite group such a s  D6, as the 
general case will motivate the analogous concept for an iterated correspondence. 

We say that the action of a discrete group G on the Riemann sphere is 
discontinuous at z if there exists a neighbourhood U of z such that there are only 
finitely many g~ G with gUm U 4= O, and if gz = z for each such g. A fundamental 
domain for the action of G on some invariant open set f2, on which G acts 
discontinuously, is an open subset A of f2 such that every G-orbit on f2 contains at 
least one point of zl and at most one point of A ~ 

We next define what we mean by a discontinuous action, and a fundamental 
domain, for an iterated correspondencef  For this we must first clarify exactly what 
we mean by a branch F of the iterated correspondence. Given a path Zo . . . . .  z, 
with specified transitions el . . . . .  e, (ei~ { + 1}), (i.e. where (z~-l, z+)~F(fe'), and 
given a connected neighbourhood Uo of z0, there is defined a sequence of connec- 
ted neighbourhoods U~, i = 1 . . . .  n, given recursively by: Ui is the w-projection of 
the connected component (in F(fe'))  containing (z~_ 1, zi) of the inverse image of 
U~_ 1 under the z-projection. 

The composite correspondence Uo--, U. in the above situation is called 
a branch F, along Zo � 9  z,, of the global iteration (that is, forwards backwards and 
mixed) o f f  on Uo. Note that U, will be a connected neighbourhood of z,, but may 
be ramified or folded copy of the original U0 if critical points are encountered along 
the path. Note also that at a double point of a correspondence we have a single 2 : 2 
branch rather than two separate 1 : 1 branches: the definition of 'branch'  could be 
amended to avoid this conflict with the usual terminology, but there seems to be no 
particular benefit in doing so, as the results below hold with either version. 

We say that the global action of the correspondence f is discontinuous at z if 
there exists a connected neighbourhood U of z such that there are only a finite set 
of distinct branches F on U of the globally iterated correspondence f having 
F({z}) = {z}, and if all other branches have F(U) ~ U = O. 

A fundamental domain for the global action of f on an open set ~2 on which fac t s  
discontinuously, is an open subset A of f2 such that every full orbit of f on 
f2 contains at least one point of zl and at most one point of A ~ 

Theorem 3 l f  D defines an equivariant (contact) directionality for a reversible map of 
triples f then the action o f f  on the union f2 of  the full orbits of points in 
D c~ J (D)(\ {zf } ) is discontinuous and any fundamental domain for the action of J on 
D c~ J (D) is a fundamental domain for the action of f on f2. Moreover the complement 
of f2 consists of  the union of the attractor A+ = (-],~o f"(D) and the repeller 
A_ = (~.~_of-n(JO). 

Before we prove this theorem we illustrate it with an example of a real 2 : 2  
correspondence with an equivariant directionality (Fig. 1). For  simplicity we have 
drawn a piecewise-linear graph F. The covering involutions I2 and 11, for the 
projection of F onto the z-axis and w-axis respectively, generate a dihedral group 
D0. In terms of coordinates chosen such that the point z = 0, w = 0 is at the centre 
of the figure, the involution J is the map z ~ - z, which lifts to ,T= 111211 = 
I2IlI2:(z,  w) w+ ( - w, - z), in other words reflection in the anti-diagonal. The 
g r o u p  D 6 permutes the six straight line segments of F. We take as fundamental 
domain A one of the two straight line segments of F meeting on the right-hand edge 
of figure 1 and let D = r~2(A), the projection of A onto the z-axis. Then D defines 
a directionality for the correspondence if and only if the point marked P in the 
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\ y  / 

\X 
/ / \~ 

/ \ \ \ \  Fig. 1. Graph of a piecewise-linear real 
2: 2 correspondence with equivariant di- 
rectionality. The crosses mark a typical 
D6-orbit ((z, wj): i , j =  1, 2, 3, i:~j). 
The 'missing points' (z~, wl = Jzi) are 

marked by circles 

figure is above the diagonal, and a contact directionality if and only if P is on the 
diagonal. There is an attractor A + (not shown) within D, and a repeller A_ = JA + 
within JD. On F itself there are three copies of the lift of A § namely an attractor 
lr21(A§ a repeller 7ri-l(A_) and an intermediate copy I i ( n 2 1 ( A + ) ) =  
I2 (nr  I(A-)): these three sets are invariant under /2 ,  I1 and f respectively. 

Proof o f  Theorem 3. Since D = :r2(A), we know that f ( D ) =  nl(zTu I2(z~)), and 
since A is a fundamental domain for the action of ( I i ,  12) = D6 on F we deduce 
that 

(f(D)) c = (Trl(Jw I 2 A ) )  c = ( 7 r l ( d T ~ ) )  ~ = JD ~ (3.4) 

whence, modulo points in t~D or c~(JD), 

D - f (D)  = D c~ JD = JD - f - 1 (jD). (3.5) 

Now the fact that D defines a (contact) directionality for f ensures that the sets 
fn  (D) --fn+l(D), n >= 0 and f -  n(jD) - f -  ~ § l~( dD), n > 1, form a disjoint (modulo 
points in aD or O(JD)) cover of f2 := ( 7 -  ( N n ~ o f n ( D )  u ~ n z o f - n ( J D ) ) .  The 
injectivity of zt restricted to l t f  I(D) and of ~2 restricted to ~-~ (JD) guarantees 
that these differences are in fact the whole images f n ( D - f ( D ) )  (or 
f - n ( J D  - f - l ( J D ) ) ) ,  and that the branch o f f - 1  mapping fn+~(D - f ( D ) )  back 
onto fn(D - f ( D ) )  is a 2:1 surjection, branched only at critical points o f f  -1. It 
follows that for a generic point Zo E D - A + the forward orbit O + (Zo) of Zo is a free 
binary tree, as is the backward orbit O_ (3Zo) of Jzo. But by Lemma 1 (Sect. 2) the 
global orbit of any Zo under a reversible map of triples is O• O• We 
deduce that for generic Zo e ~ there is only one branch F of the (globally) iterated 
correspondence such that F(zo) = Zo, namely the identity branch. 'Non-generic' 
points Zo ~ f2 are those which have global orbits containing fixed points of J or 
critical or double points off. But if Zo is a critical point there are two branches F of 
the iterated correspondence having F(zo)= Zo (namely the identity and the 2 :2  
correspondence f - l  f) ,  at a double point there are three branches (the identity, 
f -  ~ f, and J f ) ,  and at a fixed point of J there are two branches. Thus for any Zo e f2 
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there are only finitely many distinct branches having F(zo) = Zo, and the action of 
f o n  f2 is therefore discontinuous. Moreover if Do is a fundamental domain for the 
action of J on D c~ JD, then for each Zo e ~ the global orbit O+ (Zo)u O+ (Jzo) 
contains at least one point of the closure of Do, and this point is unique if it lies in 
the interior of Do. Hence Do is a fundamental domain for f i n  our generalized sense 
for correspondences. [] 

Theorem 4 Suppose that D = x2(A) is an equivariant (contact) directionality for 
a reversible map oftriplesfwith graph a sphere and that D is a topological disc with 
boundary a Jordan curve. Then D contains at most one backward critical value. The 
complement s of the attractor and repeller is connected. The attractor and repeller 
are themselves connected if and only if there is a backward critical value contained in 
fn(D) for all p > O. 

Note. To say that the complement f2 is connected is equivalent to saying that the 
attractor and repeller are both full sets, that is, their individual complements are 
each connected. 

Proof. We equip the g r a p h F  of f with the coordinate Z introduced in Sect. 2, so 
that actions of 11, I2 and J are as given in (2.17). We first see that D contains at 
most one backward critical value because otherwise an arc through D ~ connecting 
the backward critical values lifts to a loop in ~z 2 I(D~ {0, - 2 }  which passes 
through the critical points Z = 0 and Z = - 2 of the projection n2, but which 
separates the two copies of the double point (Z = ( - 1 + ix /3) /2  ). This gives 
a contradiction because n21(D ~ (and hence any such loop) is disjoint from its 

image under Ii12, a rotation with fixed points Z = ( - 1 _+ ix /3) /2  ). Thus the 
inverse-image under 7z 2 of D (or any simply-connected or full subset) is full. Now 
~21 (O o) (or ~ -  1 (D ~ ~ {z/}) in the contact case) is injectively mapped by n l .  Hence 
the inverse image under rc2 of any compact full subset of D ~ (for of D ~ u {z•}) 
is homeomorphically mapped by nl to a compact full set. Since f (D) = J((D~ c) 
is homeomorphic to a closed disc it follows that the sets f"(D), n ~ 0 (and 
hence also their intersection) are all compact and full. Now for each n > 1,f" + ~ (D) 
is connected if and only if f"(D) is both connected and contains a backward 
critical value. Since the intersection of a decreasing chain of compact connected 
sets is connected the result follows. In the case that f"(D) contains no backward 
critical value for some n, each component of fro(D), m > n, contains two 
components of f"~+l(D) and hence the attractor has uncountably many 
components. [] 

It should be mentioned that there is some dependence of attractor A+ and 
repeller A_ on the choice of directionality D, and that for some choices of D the 
complement f2 of A + u A_ may only be part of the (maximal) regular set R( f ) ,  the 
set of all points where f acts discontinuously. 

When D is a Jordan directionality (a topological disc, with Jordan curve 
boundary, as in Theorem 4), the set f2 is always a connected fully-invariant subset 
of R(f ) ,  and is hence contained in a fully-invariant component Ro( f )  of R(f ) .  Any 
other component of R ( f )  cannot be fully-invariant because it is contained in D c or 
JD ~ and hence not fixed by J. In the non-contact case, the fact that the appropriate 
branches of iteration of the correspondence fail to be equicontinuous on the 
boundaries of A+ and A_ guarantees that t2 = Ro(f) ,  and that A+, A_,  and t2 are 
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independent of the choice of D (among Jordan directionalities). In the contact case, 
however, it is possible to find Jordan D such that A + and A_ are "decorated" by 
pieces (e.g. "horodiscs") from Ro(f) ,  tacked on at the orbit of the contact point, so 
that 12 becomes a proper subset of Ro(f) .  

If we drop the restriction that D be a Jordan directionality, we can find the 
opposite situation where now Ro( f )  becomes a proper subset of f2. For  example, 
starting with a Jordan directionality D for which the repeller, A_,  contains an 
attracting periodic orbit which is not super-attracting (under forward iteration of 
a branch of f ) ,  we can modify D by adding to it small disc neighbourhoods along 
the cycle (mapping to subdiscs under the one branch o f f )  and subtracting from 
D the images under J of these subdiscs. Thus D c~ JD is enlarged by a factor of 
several small annuli. In this case we see that f2 contains a fully-invariant system of 
components in addition to Ro( f ) - -namely  the basin of attraction of the periodic 
cycle, together with its image under J, but minus the cycle itself (now belonging to 
the attractor) and its global orbit. 

We are now in a position to define the "connectedness locus" c~ for reversible 
maps of triples f with graph a sphere. We say f e c g  if the regular set R ( f )  
contains a fully invariant component which is either annular or simply-connected. 
If we define ~ to be the set o f f  having an equivariant Jordan directionality or 
contact directionality then for f e cr c~ ~ every such directionality gives rise to 
a connected attractor and repeller We conjecture that the set of a such that the 
correspondence defined by (1.1) lies in cg n ~ is (or at least contains a component 
which is) a homeomorphic copy M of the Mandelbrot set {c:q~"(0) ~ o o  as 
n ~ oo }. At the end of this paper we display a computer plot (Fig. 14) which 
indicates that there is such a copy of the Mandelbrot set contained in the disc 
l a - 4 1 < 3 .  

4 The proofs of Theorems 1 and 2 

Let A be the closed subset of the complex plane bounded by the unit circle, the real 
axis from - 1/2 to + 1, and the line 9~e(z) = - 1/2, ~m(z) < 0 see (Fig. 2). Then 
A is a fundamental domain for the action of (I1, I2~ on F, where 11 and I2 are the 
involutions Z ~-* - 1 - Z and Z w-~ - Z / (Z  + 1) respectively (as in Sect. 2). The 
projected image of A onto the dynamical plane, D = n2(A), is as illustrated in 
Fig. 3 (for a real), namely the complement of the left-hand heart-shaped region. The 
precise boundary of D can be found by applying (2.30) (for the case k = 1) to the 
boundary of A: it crosses the real axis at z = - 1 at an angle of rt/3 and at z = 0 
orthogonally. The correspondence maps D one-to-two onto the right-hand heart- 
shaped region (shown cross hatched in Fig. 3). The (double) point - 1 has unique 
image 1, the point 0 has images 0 and 3/(2 + a), and the two images of the upper 
half of the boundary dD are the upper half of the boundary of the cross-hatched 
region and the straight line segment from 3/(2 + a) to 1. Similarly the images of the 
lower half of ctD are the lower half of the boundary of the cross-hatched region and 
the same straight line segment. 

Lemma 5 For 0 < k <= 1 and a :~ 1 satisfying la - 41 < 3, the region D = lt2(A) 
defines an equivariant (contact) directionality for the correspondence f :  z ~-* w given 
by (1.2) and has a contact point (zf = O) if and only i l k  = 1. 
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7 

Fig. 2. A fundamental domain A for the action of 
(11,12) on F 

Fig. 3. D = r:2(z] ) and f(D) = D 

Proof To compute  7r2(z~ ) we decompose the projection z = 7z2(Z ) into a chain of 
three maps: 

1 -- e2~i/aZ 
U - -  1 - -  e - 2 n i / 3 z  ' 

r "+  = ' f i  -~ +7 +~- ) '  a=d 

(so tha t  ( = (az + 1)/(z + 1)). 

Thus the set of z in D is obtained by the criteria 

Z ~ J u I 2 ( f f )  ~ - n/3 < arg(u) < n/3 

<=~ 9 t e ( 0  > x /k  + (~m(~))2/3. 

Since f (D) = (JD ~ it follows that  D is a (contact) directionality if and only if D ~ 
contains a fundamenta l  domain  for J (less contact  point  in OD). Now J has fixed 
points z = 0 and z = oo so this is true if and only the region 

{~: ~te(~ ) > x /k  + (~m(~))2/3} 

contains a fundamenta l  domain  for the involution with fixed points ~ = 1 and 
~ a .  

Finally observe that  we can find such a fundamental  domain  (a round disc with 
points 1 and a on its rim) provided that  a lies in the disc I( - 41 ~ 3 which is itself 
contained in the above region (when k < 1, and modulo  the boundary  point  ~ = 1 
w h e n k =  1). [] 
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Lemma 6 For �88 < k < 1 and a real, 2x / - s  a < a~ax(k), the correspondence 
f : z  ~-* w defined by (1.2) has an inverse branch defined on a real interval 
[ + Zo, + za], which is a unimodal map (i.e. satisfying zl  ~-* Zo ~ Zo and with 
a unique maximum). For ami,(k) < a < amax(k) this interval is invariant and contained 
in the attractor ~ , >  o f " (D)  which itself is connected. The corresponding repeller 
~ , >  o f - " ( J D )  is connected and contains the interval [ - z l ,  - z0]. 
The formulae for  amax(k), Zo, zl  and ami,(k) are: 

amid(k) = 7 - 4 x / ~  - k), 

~. -- a 2 + 8a -- 1 -- 6k - (a - 1)x/a 2 - 14a + 1 + 48k 
Zo = 6(a 2 - k) ' 

2a 2 + 5a - 1 + 12k + (2a + 1)x/a 2 - 14a + 1 + 48k 
Z 1 - -  

9a z - 3a + 1 2 k + 3 a ~ / a  2 -  1 4 a + l + 4 8 k  

amin(k)=~--2q- /3(l-3N//k-l-~4~k ). 
Proof. The unimodal  b ranch  o f f  - 1 comes from the real segment [ - 1/2, + 1] in 
the graph F. This segment is mapped homeomorphical ly  by ~a to the interval  

[ I - v / #  I + 2 ~ I  
[~x(+l) ,Th(-- I /2)]= a , v f k ' a + ~ A  

and is mapped  2 : 1 by rCz (with critical point  Z = 0) onto the interval 

-1,2 -1l 
When k = 1 (and a > 2) the resulting b ranch  o f f -  1 = re: o 1tl- 1 is a unimodal  map 
on  the former interval [0, 3/(a + 2)], but when k < 1 there is a sub-interval [ + Zo, 
+ z~ ] on  which this branch  o f f -  1 is unimodal  provided tha t  its graph intersects 

the diagonal. The condit ion for this is a < amax(k), which is the condit ion that  
equat ion (1.2) have all real fixed po in t s - - the  least positive one being + Zo. The 
value of zl  can be computed using the fact that  { + Zo, - Zo, + z~ } is a backward 
triple, whence 

a z o - 1  a ( - z o ) -  1 a z l -  1 
- -  + + - - = 0 ,  
Z o - - i  ( - - Z o ) - -  1 z l - -  1 

giving 
3 - (2a -I- 1)z 2 

Z 1 -~. 
(a + 2) - 3az 2 " 

The condi t ion for this interval to be mapped  into itself by our b ranch  o f f  - 1 is that  

the maximum value n2(0) = (2v /k  - 1)/(a - 2x /~  ) not  exceed zl.  An arduous  
calculation yields the precise condit ion to be a ~ ami, (k). However  when k = I the 
inequality 1/(a - 2) < 3/(a + 2) easily gives us a > 4 as the condit ion.  

Finally observe that  ami,(k) =< a < a~,x(k) gives us an interval  [ + Zo, + z l ]  
satisfying f ( [  + Zo, + z l ] )  ~- [ + z0, + z l ] and therefore, being contained in D, is 
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contained inf"(D) for all n > O, The result follows by Lemma 5, Theorem 4 and the 
fact that [ + Zo, + z~] contains a backward critical value--namely n2(0). [] 

Of interest is the observation that solving when the maximum value equals the 
original right-hand end point ~, ( - 1/2) = (1 + 2x/k)/(a + 2x/~ ) gives a = 4k. 
This is the condition for f to be a real 2:2 correspondence of the interval 
[ - ~ t l ( -  1/2), ~z , ( -  1/2) ]. 

Figure 4 illustrates real sections of the graphs of the correspondences con- 
sidered in the lemma above. In parts (d) to (f) of the figure the right-hand 'unimodal 
box' is the region [z0, z l ]  • [z0, zl]  discussed in the proof. In parts (a) to (c) of the 
figure the right-hand and left-hand 'unimodal boxes' meet at the origin, the central 
point of each picture. 

P r o o f  o f  Theorem 1 Lemma 6 and Theorem 4 establish that the attractor and 
repeller are connected with connected complement. The contact condition k = 1 
guarantees they meet in a single point whence their union A is also connected with 
connected complement. Hence the complement f2 is homeomorphic to 
a d isc- indeed conformally equivalent to the upper half-plane via some Riemann 
map. Since all critical points are in A, the action of the correspondence on O is that 
of a group, and moreover the group is PSL(2, Z), by the methods of Sect. 2. By 
Theorem 3, any fundamental domain for the action of J on D c~ JD is a funda- 
mental domain for this group action on f2. The hatched region in Fig. 5 is such 
a fundamental domain (for D as illustrated in Fig. 3). We shall show that the 
Riemann map 05 from f2 to the complex upper half-plane H carries the action of the 
correspondence to the s tandard action of PSL(2, Z) (which has fundamental 
domain as illustrated in Fig. 6). We first observe that q5 conjugates the two branches 
of f to two conformal homeomorphisms of the upper half-plane which, by 
Caratheodory, extend to the boundary, and hence, by the Schwarz reflection 
principle, extend to two M6bius transformations of the sphere which generate 
a Fuchsian group. The only possible actions are from a one-real parameter 
subfamily of the moduli space of representations of C3 * C2. Furthermore we can 
rule out the representations where the two branches of f correspond to elliptic 
M6bius transformations since any fixed points o f f  belong to the attractor or 
repeller. We normalize 05 so that the regular fixed point ( co ) of J is sent to i (thus 
~bJ05-1 is z ~-* - 1/z) and so that the double point - 1 has as image under 

a point on the unit circle with negative real part. 
Using the fact a is real, the uniqueness of the Riemann map subject to this 

normalisation guarantees that complex conjugation in the dynamical plane is 
carried by ~b to the inversion z ~-. 1/~. The images of the positive quadrant segment 
of the unit circle under the two branches of 05f - 105 - 1 are geodesic arcs which cross 
at the double point and bound the region qS(f2 c~ D) in the upper half-plane H, 
where D = nz(zl). Its image under the map z ~-~ - 1/z (and hence also under the 
reflection z ~-~ - ~) is q~(f2 c~ JD). See figure 7, where the region 05(D c~ J D \  {zl}) is 
shown hatched. To show that our group action is genuinely that of the modular 
group it only remains to show that four bounding geodesics of this region strike the 
boundary of the upper half-plane at two points of coincidence- namely 0 and or. 
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Fig. 4a- f .  Real sections of g raphs  of  correspondences in families (1.1) and  (1.2): a-e: k = 1: a = 4, 
5 a n d  7 respectively; d-f:  k = 0.8: a = 4k, ami,(k) and  am,,(k) respectively 
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Fig. 5. A fundamental domain for the action of 
J on DnJD 

Fig. 6. A fundamental domain for the 
standard action of PSL(2, Z) 

Fig. 7. ~b(D n JD) 

Were this not the case then ~b- 1 would send the central hexagonal region, bounded 
by the four geodesics and the (extended) real line 0H, to the quadrateral region 
D c~ JD. We obtain a contradiction by seeing that 4~-1 converges to a constant 
limiting value (zl) along the two real intervals bounding the hexagon. This follows 
because removing any open neighbourhood U of the contact point z~ from D c~ JD 
gives a compact subset of O whose image under 4) is a compact subset of H and 
therefore clear of some neighbourhood of the two real bounding intervals. The 
intersection of this neighbourhood with the hexagon therefore maps entirely inside 
U under q~-l. Standard theory of analytic maps says that any holomorphic 
function of H having an interval along OH where it converges to a constant limiting 
value must itself be constant. 

Finally, we must show that the dynamics of f on A are as claimed in Theorem 
1 (ii). But f, restricted to A + is a 1-to-2 surjection, and similarly f - 1 ,  restricted to 
A_ is a 1-to-2 surjection. Sincefis  2-to-2 and A + n A_ is invariant (Theorem 3) the 
result follows. [] 

Remark. For the values of a in Theorem 1 the lift ~ of t? to thegraph o f f  is a pair of 
open discs, and the action of the lifted cor respondencefon  O is that of the group 
PGL(2, Z). (See Example 2: a = 4 in Sect. 5). 

Proof  o f  Theorem 2. In the situation of Theorem 4 (Sect. 3), in the non-contact case, 
the branch o f f  - 1 sendingf(D o) to D ~ is polynomial-like in the sense of Douady and 
Hubbard [8]. It follows from their Straightenin9 Theorem that this branch o f f -  1 is 
hybrid equivalent to a quadratic map qc: z ~ z 2 + e, acting on a neighbourhood of 
its filled-in Julia set Kc, and that the hybrid equivalence sends A+ to Kc by 
a quasi-conformal bijection. Since A+ remains connected for ami,(k) < a < am~(k) 
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by L e m m a  6 we are done.  It only remains  to observe that  A_ carries the same 
dynamics  for f as does  A + for f - 1  (by the t ime-reversal  symmet ry  J )  and  tha t  f2 is 
h o m e o m o r p h i c  to an annulus,  since it is the complemen t  of  two disjoint  connec ted  
and  full sets A+ and  A_ .  The  co r respondence  acts d i scont inuous ly  on  t2 by 
T h e o r e m  3 (Sect. 3). [] 

5 Three examples: a = 4, 5 and 7 

These  three  values co r r e spond  to c = - 2, 0 and  1/4 on  the  M a n d e l b r o t  set. (Real 
sect ions  were displayed in Fig. 4a-c . )We s tar t  with the example  where  the dynamics  
on Kc are the simplest,  namely  c = 0. F o r  this we need the  critical po in t  - 2/(a + 1) 
of  (1.1) to be a fixed point ,  tha t  is - 2/(a + 1) = - 1/(a - 2), i.e. a = 5. 

E x a m p l e  1 a = 5 
The  critical and  double  po in t s  for (1.1) now have orbi ts  

@ / 3  ~ 1/3~ ""~- 3/7 --,Q~ 3/7 - -~  

1 _., 1 . . . ~  ~ (5.1) 

! 

Fig. 8. f2 and A for (1.1), with a = 5. A tessellation oft2 by copies of a fundamental domain (not 
that of Fig. 5) is shown. The blank area at the centre of this plot (and subsequent plots) is due to 

inefficiency in the computer program near parabolic points 
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If we lift the correspondence (1.1) to its graph F, we obtain (by (2.32)) 2 = o~, and 
thus (by (2.24)) 

Z(Z + 1) W z 
(5.2) 

4 W + I  

as the equation of the lifted correspondence. The critical orbits of (5.2) are 

C ~  --* - 1 - - 0 ~  -"~-.1...., 2 ~  - 1 / 2 ~  

~ Q . , ~ /  (5.3) 

Under arbitrary iteration (forward, backward and mixed) the correspondences (1.1) 
with a = 5, and (5.2) exhibit the limit sets illustrated in Figs. 8 and 9. Figure 8 is the 
quotient of Fig. 9 under the projection ~z2. In Fig. 8 we see a regular domain O, an 
attractor A+ (the right-hand lobe), and a repeller A_ (the left-hand lobe). In Fig. 9 
we see the lifts of these regions to P: here the attractor is the right-hand lobe, the 
repeller is outer region (containing ~ ) and the left-hand lobe is the ' intermediate 
limit set' arising from the action of the dihedral group (11, 12) of order 6 (recall the 
discussion of the piecewise-linear example displayed in Fig. 1). 

Observe that while the dynamics o f f  on A_ appears to be that of qo:z ~ zZ,the 
boundary of A_ is most certainly not conformally equivalent to a circle. Indeed it 
appears to be a circle R/Z with cusps 'pulled out' at the points 0, 1/2, 1/4, 
3/4 . . . .  p/2" . . . .  ; we shall have more to say about this 'pulling out' process in Sect. 6. 

Fig. 9. f2 and A for (5.2) 
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Example 2 a = 4 
When a = 4, the graph correspondence (2.24) has 2 = 4 (by (2.32)), and hence 

equation 

4 Z ( Z  + 1) + 1 W 2 
(5.4) 

- Z ( Z +  1)+20= W+ 1" 

This has no critical points, only double points 

""~-- 1/2 ~ 0 - . ~  ...~oo ~ - 2 ~  (5.5) 

and (5.4) therefore factorises into two M6bius transformations 

(5.6) 

Conjugating the matrices 

A = (  -21 14) B = (  -21 --15) (5.7) 

by 

i) (,.8, 
normalises them to 

 =(101) :) 
respectively. Thus (5.4) is an action of PGL(2, Z) on the Riemann sphere, the 
forward limit set (that of the semigroup generated by A and B) is [ - 1/2, 1] c R, 
the backward limit set is [1, - 2] (including ~ ), and the intermediate limit set is 
E - 2 ,  - 1 /2 -1 .  

Passing to the dynamical plane, we obtain the correspondence (1.1) with a = 4. 
This has critical points and double points 

""~--~ 2/'f~ - 1/2 -~0y  1/2 ~ 2~5~.~ 

1 ..- ---~ ......~- 1-....~ (5.10) 

Note that it is critically resolvable, in the language of [3], in other words all forward 
critical values are also backward critical values. As remarked in [3], this is 
a necessary and sufficient condition for a 2 :2  correspondence to lift to a pair of 
maps on its graph. 
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. f --. -,-L . 

.... f .... ',~ ' 3~( \ -  " 

Fig. 10. ~2 and A for (1.1), with a = 4 

F r o m  our  knowledge  of the lift (5.4) we deduce  tha t  on  the  dynamica l  p lane  the 
a t t r a c t o r  A+ is the  in terva l  [0, 1/2] c R, and  the  repeller  A_  is [ - 1/2, 0]. The  
regu la r  d o m a i n  f2 is ( 7 \ [  - 1/2, 1/2]. A c o m p u t e r  plot  is d i sp layed  in Fig. t0. 
Res t r ic ted  to A _  the co r r e spondence  has  the  dynamics  of  z ~-, z : - 2  on  
K - 2  = [ - 2, 2]: this fol lows at once  f rom the  fact tha t  [ - 1/2, 0] is m a p p e d  on to  
itself two- to -one ,  with  the  critical po in t  - 2/5 be ing  sent  to  the  end po in t  - 1/2. 

E x a m p l e  3 a = 7 
At the  value  a = 7 the  co r r e spondence  (1.1) has  jus t  one  fixed point ,  the  po in t  

z = 0, a n d  the dynamics  o f f  on  A_  is like tha t  of z ~-~ z 2 + 1/4 (which has  a un ique  
fixed po in t  a t  z = 1/2). A c o m p u t e r  p ic ture  (Fig. 11) suggests  tha t  in this case the  
b o u n d a r y  of A_  is a quasi -c irc le  with  angles 27z/3 r a t h e r  t h a n  the  cusps  of the  a = 5 
case. W e  are grateful  to  C u r t  M c M u l l e n  for suggest ing the fol lowing explana t ion .  

T h e  fixed p o i n t  of the  Blaschke  p r oduc t  co r r e spond ing  to z ~-* z 2 + 1/4 has  the 
local dynamics  of  z ~-~ z - z 3, t ha t  is to  say the fixed po in t  has  n e i g h b o u r h o o d  
a ' f lower '  wi th  t w o  petals ,  one  o n  e i ther  side of the  Jul ia  set. F o r  z ~-~ z - z 3 an  

orbi t  a p p r o a c h i n g  the fixed po in t  does  so like 1 /x /~ ,  whereas  for z ~ z / ( z  + 1) it 
does so like 1/n. It  follows t ha t  the  dynamics  of z ~ z - z 3 a n d  the  m o d u l a r  g r o u p  
can be  ma ted  a l o n g  a b o u n d a r y  which  a t  each o rb i t  po in t  has  angle  41t/3 o n  one 
side ( tha t  c o r r e s p o n d i n g  to z ~ z - z 3) and  2~r/3 on  the o t h e r  side ( tha t  corres-  
p o n d i n g  to the  m o d u l a r  group).  
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I 

. ] , 

Fig. 11. ~ and A for (1.1), with a = 7 

6 Possible generalisations 

There are two main questions to consider. These are whether it is possible to prove 
that A + and A _ are homeomorphic to K~ in the situation of Theorem t (not just in 
the perturbed situation of Theorem 2), and what we can say about the set of 
complex values of a for which analogous results to these theorems hold. 

Any approach to the first question would seem to require a generalisation of the 
Douady-Hubbard theory of polynomial-like mappings I-8] to a theory of pinched 
polynomial-like mappings. We define a m a p f t o  be pinched quadratic-like iffis a map 
of degree 2 from a closed disc D onto a disc f(D) containing D, such that c~f(D) 
meets t3D at a single point P, which is a parabolic fixed point of f, and if f is 
holomorphic on D except at the other inverse image Q of P, where it has a square 
root singularity (see Fig. 12(a)). This is exactly the situation we have with our 
equivariant contact directionalities of Sect. 4. Given a pinched quadratic-like map, 
the inverse images of the outer pinched annulus fit together as illustrated in Fig. 
12(b). We conjecture that if we blow up each pinch point in this figure to a line 
segment, and blow up f appropriately, it should be possible to find a complex 
structure for which the blown-up f is holomorphic, and hence is a genuine 
quadratic-like map (Fig. 12(c)). It would follow that our 'cusped' filled-in Julia sets 
A+ and A_ would be obtained by taking filled-in quadratic Julia sets Kc and 
'pulling out cusps' by contracting appropriate segments of external rays to points. 
However the construction of such a theory seems quite a difficult technical exercise. 
A variation on this approach would be to excise an orbit of horodiscs from the 
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Fig. 12a--e. A pinched quadratic-like map: a D a f(D); b a sequence of inverse images of D; e the 
conjectured 'blown-up' version 

Fig. 13. ~ and A for (1.1), with a = 4.54 + 0.44i 

regular region f2 for a correspondence of the type considered in Theorem 1, and, by 
making appropriate identifications of pairs of points on the resulting boundary, 
construct a topological 2 : 2 corresponding which is a reversible map of triples, with 
graph a sphere, and having an equivariant n o n - c o n t a c t  directionality, but with 
unchanged dynamics on the (now disjoint) attractor and repeller. The new O could 
then be equipped with a conformal structure preserved by the new correspondence. 
If one could overcome the remaining (difficult) problem of extending this conformal 
structure to the new A + w A_ one would have conjugacy to a holomorphic 2 :2  
correspondence and could then use Theorem 2 to deduce that the original A + and 
A_ were homeomorphic to filled-in Julia sets of quadratic maps. 

As to the second question, that of realising the rest of the 'Mandelbrot  set' for 
matings, we first remark that it is not too hard to compute 'landmarks', both on 
and off the real axis. For  example, the next point to examine after a = 4, 5, and 7, is 
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Fig. 14. The 'Mandelbrot set' M, for matings of quadratic maps with the modular group: the 
black disc containing M is the region la - 41 < 3 in parameter space 

a = (3 + x/ /~) /2 ,  when the critical point has period 2, which corresponds to 
c = - 1. Experiment suggests that every filled-in Julia set Kc, for c in the Mandel- 
brot  set, can be realised in the family (1.1) (Fig. 13 displays another example, 
a mating of 'Douady's rabbit' with the modular group). All our proofs are adapted 
primarily to the case a real and the search for the best choice of fundamental 
domain A for the action of (11,12) on  F with the property that /z2(d ) defines 
a directionality for the correspondences (1.1) and (1.2) is not attempted for a non- 
real. Nor do we have a proof  that the action of PSL(2, Z) on f2 remains the 
standard action for such values of a (though Fig. 13 suggests that it does). 

Our final illustration, Fig. 14, shows (in black) the region for the parameter a of 
(1.1) for which (using the co-ordinate ( of Lemma 5) every branch of the forward 
orbit  of the critical point ( = - 1 eventually enters the disc I( - 41 < 3. By Lemma 
5, the disc [a - 4] < 3 is in ~ ,  and by Theorem 4, the black region in Fig. 14 is 
certainly outside the 'connectedness locus' cg. 
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