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Summary. We prove several sharp inequalities specifying the uniform convexity 
and uniform smoothness properties of the Schatten trace ideals Cp, which are the 
analogs of the Lebesgue spaces Lp in non-commuta t ive  integration. The inequali- 
ties are all precise analogs of results which had been known in Lv, but  were only 
known in Cv for special values of p. In the course of our  t reatment  of uniform 
convexity and smoothness  inequalities for Cp we obtain new and simple proofs of 
the known inequalities for L r 

I Introduction 

The concepts of uniform convexity and its dual property, uniform smoothness,  play 
an impor tan t  role in analysis. After reviewing these concepts in the L,  function 
spaces, we shall consider their extension to the Schatten trace ideals, Cp, i.e., the 
setting in which functions are replaced by operators,  and integrals are replaced by 
traces. The emphasis th roughout  will be on the optimal constants  appearing in the 
various inequalities. These opt imal  constants  are "natural",  as will be explained 
later in the introduction: they are the constants  one would obtain from an informed 
guess using elementary calculus. However, as is often the case in such matters,  no 
ready-made arguments  suffice to validate the informed guesses. 

A normed space X is said to be uniformly convex if, for each e > 0, there is 
a 6 > 0 such that  if x and  y are unit vectors in X with II x - y H > 2~, then the 
average (x + y)/2 has norm at most  1 -  6. A normed space X is said to be 
uniformly smooth if, for all ~ > 0, there is a z > 0 such that  if x and y are unit vectors 
in X with I1 x - y II _-__ 2z, then the average (x + y)/2 has norm at least 1 - er. 
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Figuratively speaking, the unit ball of a uniformly convex space is uniformly 
free of "fiat spots", and the unit ball of a uniformly smooth space is uniformly 
free of"corners". Since the unit ball of X*, the dual of X, is the polar conjugate of 
the unit ball of X, it is not difficult to show that X is uniformly convex (and hence 
reflexive) if and only if X* is uniformly smooth [D]. 

Many applications of uniform convexity and smoothness require quantitative 
versions of these notions. The function 6x given by 

6x(e):=inf{1 - �89  = Ilyll = 1, Llx-y[[ >2~} (1.1) 

is called the modulus of convexity of X. (N.B. The function fix is frequently defined 
with e in place of 2e. The definition used here simplifies several of the formulae 
involving 6x and fits more naturally with the definition of the modulus of smooth- 
ness given below.) Clearly, X is uniformly convex if and only if 6x is strictly positive 
for every e > 0. 

It might seem natural to define the modulus of smoothness by setting it equal, 
at ~, to 

sup { 1 - �89 II x + y I1:11 x II = II Yll = 1, II x - y I1 _-< 2z} (,) 

Clearly, X is uniformly smooth if and only if this supremum is o(z) at z = 0. The 
definition (,), however, would not be well adapted to the duality between uniform 
convexity and uniform smoothness. Instead, the function Px given by 

px(z):= sup{ ,,u+ vii + I lu--2 v [ [ -  l : "u"  = 1' ,,vii = z} (1.2) 

is called the modulus of smoothness of X. This definition arises from (,)  if we rewrite 
the quantity to be maximized there in terms ofu = (x + y)/2 and v = (x - y)/2, and 
change the constraint from II u + v II = II u - v IL = 1 to simply [q u II = 1. For small z, 
there is no substantial difference, and it is easy to show (see [K6])  that X is 
uniformly smooth if and only if lim,ooPx(Z)/z = O. 

Lindenstrauss [L] has shown that with these definitions, the modulus of 
convexity of a normed space X and the modulus of smoothness of its dual X* are 
related by 

px,(Z) = sup{~e -- 6x(e):0 < e, < 1}. (1.3) 

This is a quantitative versions of Day's duality theorem [D]. 
Uniform convexity was introduced by Clarkson [C] who proved that every Lp 

space with 1 < p < ~ is both uniformly convex and uniformly smooth. Clarkson 
proved inequalities which give bounds of the form 

6L,(e) > (e/Kp,~) r (1.4) 

w h e r e r = p f o r 2 < p <  ~ , a n d r = p / ( p - 1 )  for 1 < p < 2 .  
Lower bounds of the form (1.4) for the modulus of convexity 6 of a normed 

space are especially useful and, in many applications, particular importance at- 
taches to the best possible value of r. Evidently, such an inequality cannot hold for 
any r < 2. A normed space X is said to be r-uniformly convex in case 6x(e) > (~/C) r 
for some constant C. (After Eq. (2.6) below, we make an apparently more restrictive 
definition of r-uniform convexity. The two definitions will be shown to be consis- 
tent in Proposition 7, and the present definition is the simplest to use in the 
introduction.) Clarkson's bounds (1.4) only show that Lp is r-uniformly convex with 
r > 2 for all p ~ 2 while, actually, Lp is 2-uniformly convex for l < p < 2. 
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The 2-uniform convexity of Lp for 1 < p < 2 follows from a result of Hanner  
[HI, who proved an inequality from which 6L, can be easily computed. Hanner's 
result is recalled in part (a) of Theorem 2 below. The best constant Kp.2 in (1.4) 
seems to have been first determined by Ball and Pisier [-BP], who gave a simple 
direct proof, independent of Hanner's calculation, that Lp is 2-uniformly convex for 
such p. Their optimal 2-uniform convexity inequality is: 

6Lo(e) ~ ~ 2  for 1 < p < 2. (1.5) 

Because of the dual nature of the notions of uniform convexity and smoothness, the 
modulus of smoothness of Lp for 2 < p < oo satisfies an inequality of the form 
pL,(r) < ([(p, zr) z. Again, this is a better estimate than that which follows from 
Clarkson's inequalities. A more detailed history of these and related inequalities 
will be presented in Sect. II of our paper. 

Less is known about the corresponding inequalities for the trace classes Cp. 
Clarkson's inequalities were extended to Cp partly by Dixmier [Di], and fully by 
Klaus [Si], with precisely the same constants and exponents as in the Lp case. 

Tomczak-Jaegermann later showed that, as with Lp, Cp is actually 2-uniformly 
convex for 1 < p < 2: 

(~C.(e) ~ (~;/l~p,2) 2 for 1 < p < 2. (1.6) 

Her proof proceeds by establishing the Cp analog of Hanner's inequality when p is 
an even integer, then deducing the 2-uniform smoothness of Cp for all p > 2 from 
this by interpolation, and then using Lindenstrauss's duality result to obtain the 
2-uniform convexity of Cp for 1 < p < 2. Implicit in her proof isthe fact that when 
p = 2k/(2k - 1) for some positive integer k, the sharp cons t an t s  Kp, 2 for Cp coincide 
with those of Lp; i.e. Kp,2 = (p - 1)/2 for such values of p. 

The principal results in our paper are the determination of the best possible 
constants for all p in Tomczak-Jaegermann's theorem, and the proof that the Cp 
analog of Hanner's inequality holds for 1 < p < 4/3, and in the dual range 
4 < p < oo, Our  two main theorems are the following (in which I] " hip denotes the 
Lp or the Cp norm): 

Theorem 1 (Optimal 2-uniform convexity) For 1 < p < 2, the inequality 

( , l X  + Yllg +2 , I X -  y]lpp)2/p >=.lhXIIp 2 + ( p - 1 )  hi Yllp 2. (1.7) 

holds in the following cases: 

(a) X and Y are functions in Lp. 
(b) X and Y are matrices in Cp. 

If'2 < p < oo , the inequality is reversed. 

The title of this theorem will be explained more fully in Sect. II; the point, of course, 
is that validity of the inequality (1.7) implies 2-uniform convexity. Part (a) is an 
unpublished result of Ball and Pisier, and the cases of part (b) for p = 2k/(2k - 1) 
are, as we have said before, implicit in the paper [T J] of Tomczak-Jaegermann. The 
rest is new. The constant p -  1 in (1.7) is clearly seen to be optimal as well as 
natural from the point of view of elementary calculus: if X and Y are real numbers 
with I YI much smaller than IX[, then the two sides of (1.7) agree to second order 
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in Y. The fact that (1.7) is true for all pairs of numbers is Gross's two-point 
inequality I-G]. 

Theorem 2 (Extension of Hanner's inequality to Cp) For 1 < p < 2, the inequality 

I t S +  YII~+ EIX- Y I I ~  ( l lXllp+ II YIIp)P + I I ISl lp-bl  Y]lpl p (1.8) 

holds in the followin 9 cases: 

(a) X and Y are functions in Lp. 
(b) p < a3 and X and Y are matrices in Cp. 
(c) X and Y are matrices in Cp such that both X +  Y and X -  Y are positive 
semidefinite. 

For 2 < p < ~ , the inequality is reversed and the restriction in (b) becomes p > 4, 
and the restriction in (c) changes to the restriction that X and Y are positive 
semidefinite. 

Part (a) is Hanner's inequality, and the cases of part (b) in which p = 2k are due to 
Tomczak-Jaegermann IT J]. The rest is new. As we explain in the first proof of 
Proposition 3 below, the inequality (1.8), whenever it holds, implies the inequality 
(1.7). Thus, if the conditions under which we establish (1.8) were not  more restrictive 
than those under which we establish (1.7), Theorem 1 would be a corollary of 
Theorem 2. 

The paper is organized as follows: In Sect. II, we review the large number of 
inequalities bearing on the uniform convexity of L~ spaces. Thus, Sect. II consists 
largely of known results which are presented because of the light they shed on the 
problems solved in this paper regarding the uniform convexity of Cp, and those 
that remain open. To our knowledge, such a systematic compendium of these 
inequalities has not appeared before, and we hope it will be found useful. There are 
however some new results and some new, simpler proofs. Finally in Sect. III we 
prove Theorem 1, and in Sect. IV we prove Theorem 2. 

Theorem 1 has been applied by Carlen and Lieb [CL] to prove a conjecture of 
Gross, which arose in his work on quantum field theory. Other applications of the 
kinds of the inequalities that we discuss here are given, for example, in Pisier's book 
[P]. 

Although all of our theorems are stated and proved in the language of matrices, 
the proofs go through without any change in the context of linear operators on 
a Hilbert space. By the results of Ruskai [Ru], they can even be extended to 
a natural Von Neumann algebra context. 

II Uniform convexity and smoothness in Lp 

While this section is largely focused on inequalities relating to L n spaces, we state 
certain definitions and prove certain results in the general normed space setting so 
that they are available to us in the next section. 

For the rest of the paper, q denotes the dual index o f  p, i.e., 1/p + 1/q = 1. 
The notion of uniform convexity was introduced by Clarkson who proved four 

inequalities. The two that imply the uniform convexity of Lp spaces are the 
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following, in which x and y are functions in Lp: 

I [ ~ l l v  2 v J  --< for 2_-< p =< oo (2.1) 

and 

< for 1 < p < 2 .  (2.2) ~--.+ ~ - p }  = 2 = 

In the cases 1 < p <= 2 and 2 =< p < oo, the inequalities in (2.1) and (2.2), respect- 
ively, hold in the reversed sense. These are the other two Clarkson inequalities - the 
ones which imply that the L~ spaces are uniformly smooth. They follow from (2.1) 
and (2.2) by an elementary duality argument. 

The inequality (2.1), which involves only p powers and not q powers as well, is 
simpler to prove, and is known as the "easy" Clarkson inequality. In fact, (2.1) is 
not only easier to prove, it is actually a consequence of(2.2). This is so because both 
inequalities can be viewed as statements about the norms of certain linear oper- 
ators. Viewed as such, (2.1) is weaker than the dual inequality to (2.2). More 
concretely, for 1 __< s, t =< oo, equip LsxLs with the norm I1'11,,, given by 
II(x,y)[[s,,=(([Ixll'~+ I[y[l',)/2) a/'. Also, define the operator B:L~,,~Ls, t by 
B(x, y) = ((x + y)/2, (x - y)/2). Then (2.2) is equivalent to the statement that B is 
a bounded operator from Lp, p to Lp,q for 1 =< p __< 2 with norm 21/p. But since B is 
self-adjoint, it has the same norm as an operator between the dual spaces; i.e. B is 
bounded from Lq, p to  Lq, q with norm 21/v for 1 < p < 2. Finally, since p < q, 
[l (x, y) llq, p,_-< I[(x,y)llq, q, and hence B has norm 21/p from Lq, q to Lq, q for 
2 __< q __< oo, which is clearly equivalent to (2.1). 

Since these bounds on the norm of B (which are equivalent to (2.1) and (2.2)) are 
log-linear in 1/p, they can be proved by interpolation between the elementary cases 
p = 1 (Minkowski's inequality for LI), p = 2 (the parallelogram law) and p = oo 
(Minkowski's inequality for Loo), as observed by Boas [Bo]. This same approach 
was later used by Klaus [Si] to establish the C v analogs of Clarkson's inequalities. 

It is convenient also to have the following inequality, obtained from (2.2) by 
rearranging some powers of 2. If x and y belong to L~ where either s = p or s = q, 
then 

([[x + yll~ + l'x-- y'l~) '/q <(llx[l~+llyllD lip for l__<p<2.  (2.3) 
2 ~ 

Replacing x and y respectively with x + y and x - y, and rearranging some powers 
of 2, we see that the inequality reverses when p and q are interchanged. That is, 

(tlx+yllff+lLx -YlLf)'/P>(llxll~+llyll~)l/" l < p < 2 .  (2.4) for 
2 = = = 

It follows directly from (2.3) that if x and y are unit vectors in one of the spaces Lp 
or Lq, and II x - y I1 = 2e then 

=<(1--eq) 1/qN 1 - - - - ,  
q 

so that 6L,(~) >= eq/q. Similarly, from (2.4) one sees that PL,(~) --< "rP/P �9 
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We next  turn to the sort of inequalities tha t  figure in our Theorem 1. We begin 
with some definitions and general considerations intended to clarify the relations 
among all the inequalities tha t  we consider. 

Let X be a uniformly convex normed space, and suppose that  6x(e) > (e/C) r for 
some C and  r > 1. Then with 1] x 1[ = 1[ y r[ = 1 and ]r x - y 1[ = 2e, we have that  

L ~  __< (1 - ( e / c ) ' ) '  __< - (e/c)', 

and thus, with K = C(1/t)-  1/,, 1/t + 1/r = 1, 

+ < II x I1' + II y 11 (2.5) 
= 2 

for all x and  y such that  FIx II = If y tl. By replacing x with x + y and  y with x - y, we 
find that  

IIx + yll" + I l x -  yIF r 
> x II ~ + IL K -  1 y I1" (2.6) 

2 

for all x and  y such that  II x + y [1 = [I x - y [J. 
As promised in the in t roduct ion (after (1.4)), we now impose a definition of 

r-uniform convexity that  may  seem more restrictive than  the one we gave before. 
Proposi t ion  7 below shows tha t  the two definitions are equivalent, up to constants. 
It is the constant  in (2.6), figuring in the second definition, that  is the main  object of 
our  attention.  

A normed  space X is said to be r-uniformly convex for some r e [2, oe ) if there is 
a constant  K such tha t  (2.6) holds for all x, y ~ X .  The best constant  K is called the 
r-uniform convexity constant of X. When X is r-uniformly convex, so tha t  (2.6) and  
hence (2.5) hold, it is immediate from the lat ter  that  6x(e) > (e/K)'. Thus r-uniform 
convexity implies the validity of a lower bound  of the form fix(e) > (e/C)" for the 
modulus  of convexity; i.e. the condit ion under  which we called X r-uniformly 
convex in the introduction.  

Similarly, X is said to be t-uniformly smooth for some t ~ (1,2] if 

llx + YlI* + F i x -  YII* 
< II x I1' + It K y  I[ t, (2.7) 

2 

for some K and all x,  y e X.  The best constant  K is called the t-unlform smoothness 
constant of X. We shall show at the end of this section that  the t-uniform 
smoothness  constant  of a normed space X equals the r-uniform convexity constant  
of its dual X*  where, as usual, 1/r + l i t  = 1. 

When (2.7) holds, we have that  for all x and  y with II x II = 1 and II y II = r 

Ilx + Yll + IIx - yll _ 1 < ( I l x  + ylt'+ IIx - y l l * ~  ~/* - 1 < (g(1/t)X/'r) '. 
2 = \ 2 / = 

Hence, by (1.1), t-uniform smoothness  implies an  estimate of the form Px(*) < (Cr) t. 
Proposi t ion  7 shows that  the reverse implication holds as well. 

The paral le logram identity shows that  Hilber t  space is 2-uniformly convex and  
2-uniformly smooth,  and it is readily seen tha t  the exponent  2 is the best that  can 
occur for each property. Clarkson 's  inequality shows that  when 1 < p < 2 then 
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each of Lp and Lq is q-uniformly convex and p-uniformly smooth. As we have 
remarked, these exponents are not in general the best possible, despite the fact that 
the constants in Clarkson's inequalities are always sharp. 

The actual situation is the following: 

For 1 < p <= 2, Lp is 2-uniformly convex though no better than p-uniformly 
smooth while for 2 <= q < o~ , Lq is 2-uniformly smooth as well as q-uniformly 
convex. 

These facts follow from Hanner's inequality (Theorem 2(a) of the introduction) 
which determines exactly the moduli of convexity and smoothness of all Lp spaces. 
The optimal 2-uniform convexity inequality is the following: 

Proposition 3 (Optimal 2-uniform convexity for Lp) I f  1 <= p <_<_ 2 and x and y ~ Lp, 
then 

IIx + y[[ 2 + I I x -  yll 2 > ilxll 2 + ( p -  1) llyll 2, 
2 = 

(2.8) 

For 2 <= p < ~ , the inequality is reversed. 

Remark. The inequality (2.8) holds for any normed space for which (1.8) holds, as 
we will soon show. Inequality (2.8) does not seem to appear in the literature in quite 
this form but it is probably folk-lore. Ball and Pisier noticed that it follows from 
Gross's two-point inequality using arguments which (in the context of general 
Banach lattices) go back to Figiel [F]. 

The reader will note that (2.8) is not identical to (1.7), but we shall soon see that 
the validity of (2.8) for all Lp spaces implies the validity of the apparently stronger 
(1.7). 

First proof To deduce (2.8) from Hanner's inequality recall that a special case of 
Gross's inequality [G] states that if 1 < p < 2 and a and b are real, 

[a + bl p + la - blP'] lip > (a e 1)be)l/2" + (p 
2 J = 

Now if x, y ~ L v, 

( Ikx + yl[2 + llx - y l l2)  = > ( llx + YllP + l [ x -  yl[ f)  

= > [(,,xtlp + .  ,lyl[pF + ,  ' l x l l p -  2 HYlIrIP; lie 

->- (11 x II ~ + (p - 1)II y II ~)1/2, 

where we have used, in succession, H61der's inequality, Hanner's inequality (1.8), 
and Gross's inequality with a = [[ x II p and b = [1Y II p. []  
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Second proof. An alternative proof of Proposition 3 consists simply of showing that 
for II Y IF small, 

][x + yllZp + l[x- yllZv > l]xlI~ + (p-1)]ly]12 + o(]]y[12p), (2.9) 
2 = 

and then observing that this infinitesimal form of (2.8) is equivalent to the full 
statement. That is, (2.9) is the same as 

 2(rlx§247  p( -l)llxlb -211yl, 2,, 12101 
2 ,=o 

which is easy to establish for Lp functions by elementary calculus. Proposition 3 
follows from this by integration with respect to s ~ [0, 1]. [] 

As will be shown later, inequality (2.10) is also true for matrices in Cp, and this 
will form the basis of the proof of Theorem 1 given in Sect. III. But there is an 
important difference between the commutative and non-commutative cases. For 
functions x and y in Lp, 

ds 2dz (ilx +syl[~ +2 Ilx-sylt~) s= o = p(p-1)S IxlV-2lyl 2, (2.11) 

and the latter dominates p(p-1)llxl[g-2qlylLp z by H61der's inequality (since 
p < 2). For matrices, the analogue of (2.11) is false: one always has 

d2 (I]X + sYI'~'+ I[X- sYII~) <p(p_ l) TrlXlp-2lYi2 
Ts  2 2 , = o  = 

and equality need not hold. The problem is to find a replacement for (2.11) in the 
non-commutative setting. 

Inequality (2.8), as we said, is apparently weaker than (1.7) since 

x - ,  

for 1 __< p _-< 2. However, a simple doubling argument shows that (1.7) is actually 
a consequence of the fact that (2.8) holds for all L~ spaces. This argument is also 
valid for Cp, and we give it in detail in Sect. III, Eq. (3.5)-(3.6). The reader can easily 
translate the Cp version into the Lp version. 

Note also that in the first proof of Proposition 3, which was based on 
Hanner 's  inequality, we actually arrived at (1.7) in an intermediate step. 
In the Cp setting, we do not possess a full analog of Hanner's inequality, and 
so we shall prove Theorem 1 by adapting the second proof of Proposition 3 to the 
C~ setting. 

The following diagram shows the relationships between the several 
expressions mentioned above. Connecting lines indicate inequality between 
the expressions. All of the indicated inequalities hold in both Cp and Lp 
except for that indicated by the line labeled Hanner, which is only known to 
hold in Cp in the special cases specified in Theorem 2. In each expression 
x and y are elements of Lp or of Cp, and q is the index conjugate to p. For 
1 _-< p __< 2, the quantities increase as one goes up the page; for 2 < p =< oo, they 
decrease. 
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7 
l_<p_<2 

Y 
HSlder 

( 11~ + yll~ + I1~ - ~11~) ~/' 

2<_p<_oo 

BCL (Thm. 1) Hanner (Thin. 2) "strong" Clarkson 

[ (llxll~ + Ilyll~) ~ + ]llxll~ - Ilyll~l" 1 ~/~ 
2 

/ 
Gross 

J 
(il~lJ~ + (p - 1)IlyIl~) 'I~ 

"strong" Clarkson 
for numbers 

\ 

Fig. 1, Relationships among the inequalities 

We turn now to a proof of Hanner's inequality for Lp, which yields 
Clarkson's inequalities along the way, and to a simple duality result which shows 
that optimal constants obtained for q-uniform convexity of a normed space 
immediately yield optimal constants for p-uniform smoothness of its dual (and 
conversely). 

Lemma 4 (Variational characterization of sums of pth powers) For 1 < p < oo 
define ~ = ~p: [0, ~ ) --* [0, ~ ) by 

ct(r) = (1 + r) p - l  + [1 -- r f  -x sign(1 -- r). 

Then for  all x, y ~ 

Ix + YlP + Ix - Y[" = inf {~(r)lxlP + ct(l/r)[yF: O < r < oo } 

the sup or inf being taken according as p < 2 or p > 2. 
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Proof Assume  1 < p < 2; the  p roo f  for p > 2 is similar.  Plainly,  it m a y  be a s sumed  
t h a t  0 < y < 1 = x. F o r  r = y; one  readi ly  checks tha t  

~(r) + ~ r y = (1 + y)V + (1 -- y)V. 

T o  see t ha t  (I + y)P + (1 - y~' > .(r) + ~(1/r)yVfor all r, it suffices to  check t ha t  the  
la t ter  q u a n t i t y  a t t a ins  its m a x i m u m  w h e n  r = y. But  

d 1 
~r(Ct(r) + ~(1/r)y v) = . ' ( r ) - ~  ct'(1/r)y v 

= ( p - l )  ( l + r ) ' - e - I I - r l ' - 2 - ~ - \ \ r + l  

= ( p - - l )  1 -  [ ( l + r )  ~ - e - I I - r l  p 2]. 

Since p - 2 ___< 0 an d  1 + r > I 1 - r h the  last  fac tor  is non-pos i t ive .  Thus,  the  whole  
is non -nega t i v e  for 0 < r < y and  non-pos i t i ve  for r > y. [ ]  

Proof of  Theorem 2(a) (Hanner's inequality) Again  assume 1 < p =< 2 and  let 
x, y e L r T h e n  

IIx + y l l '  + IIx - yllV = I ( I x  + yl p + Ix - y l ' )  = I s u p  {c~(r)lxlV + ot(1/r)lyl p} 
r 

/> sup ~ (ct(r)Ix[ p + ct(1/r)lyl p) = sup {~(r)U x Jl v + ~(1/r)II y II v} 
�9 r 

= (l[xll + Ilyll)~ + I I P x l l -  I/y[ll p. [ ]  

Proof of  (2.2) Let  us also show how L e m m a  4 can  be used to deduce  the  " h a r d "  
C l a r k s o n  inequal i ty .  This  t ime  we shall  p rove  it in the  un i fo rm s m o o t h n e s s  range,  
i.e. for Lq wi th  2 < p < oo. Since 

jlx + yJ]g + tJx - YJtg < ct(r)Hxlj v + or(l/r)IJyll v 

for all r, it is e n o u g h  to find a n  r for which  the r ight  side equals  2( II x It q + II y II q)~/~. 
Set u = II x [I qv, v = II Y ]l ~, r = v/u, a n d  assume tha t  v < u. T h e n  

~(r) II x II ~ + ~(1/r) IJ y II ~ = ~(v/u) u ~- 1 + ~(u/v)v~- 1 = 2(u + v) ~- 1 

= 2([lxll~, + IlyllpP) p/~. [ ]  

W e  n o w  prove  the  dua l i ty  results  m e n t i o n e d  earlier.  These  results ho ld  in 
general ;  no  reference to Lv o r  Cp is made .  

L e m m a  5 (Dual i ty  for q -un i fo rm convex i ty  a n d  p -un i fo rm smoo thness )  Let X be 
a normed space with dual X*.  The p-uniform smoothness constant of  X (the constant 
K in (2.7)) is equal to the q-uniform convexity constant of X*  (the constant K in (2.6). 

Proof Suppose  t ha t  the  q -un i fo rm convexi ty  of  X *  is K a n d  let x ,y  e X. We 
d e n o t e  n o r m s  in X an d  X *  ind isc r imina te ly  by  (l" I] a n d  t rus t  t ha t  the  m e a n i n g  
will be clear. There  are un i t  vec tors  2 a n d  # in X *  such  tha t  2(x  + y) = IIx + YII 
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and  / 4 x - y ) = l l x - y l l .  Define 4 , , 0 e X *  by 4 , = z - 1 / q l [ x + y H P - 1 2  and  
O = Z - I / q t l x - - y l [ V - ~ #  with  Z = ( l l x + y l } P + l k x - y l l P ) / 2 .  Then ,  ]14,1lq+ 
II 0 PI q = 2 and  we have  

( IIx + yl'P + I I x -  yIIP)I/P=4,(x + y) + O ( x - Y ) - ( ~ - ~ - ) ( x )  + ( ~ - )  2 

< + 2K J ( l l x l l P +  IIKylIP)~/P 

= - (I}xl[ p + LIKyllP) lip 

= (llxll p + IIKyI[P) ~/p" 

The  first inequa l i ty  is H61der 's  inequa l i ty  for number s ,  and  the  second  is (2.5) wi th  
r = q. The  o the r  imp l i ca t ion  is similar.  [ ]  

L e m m a  6 (Dual i ty  for H a n n e r ' s  inequal i ty)  Let X be a normed space with dual X *. 
Let 1 < p < 2 and lip + 1/q = 1. Then the validity of 

114, + 01[q + 114,-011q__< (114,11 + I[011)q + 1114,1[- [}0LII q (2.12) 

for all 4,, O e X *  implies the validity of  

Ily + zllP + Ily-z[IP>=(lly[I + Ilzll)P + I l l y l l -  Ilzlll p (2.13) 

for all y, z ~ X. Similarly, the validity of(2.13) in X implies the validity of(2.12) in X *. 

Proof. Suppose  first t ha t  (2.12) ho lds  in X*.  T o  es tab l i sh  (2.13), we first rewri te  it in 
t e rms  of u = y + z an d  v = y - z, so tha t  w h a t  we mus t  show is: 

2P( Ilu tl p + llvl[ p) ->_ (llu + vii + tlu - vii) p + Illu + vii - Ilu - vii [P. (2.14) 

We m a y  assume  w i t h o u t  loss of  general i ty  tha t  Ilu + vii = 1, and  tha t  
r :  = [I u - v II < 1. T h e n  the  r ight  side of(2.14), wh ich  we call R p, can  be rewr i t ten  (as 
in L e m m a  4) as 

R p = ctl[u + vii p + f l [ [u -  vii p = (1 + r) p + (1 - r) p, 

where  e = (1 + r) p-1 + (1 - r) p-1 and  fl = r l - P [ ( 1  + r) p - I  - (1 - r)P-~]. As in 
the  p r o o f  of L e m m a  5, we choose  uni t  vectors  2 and  /~ in X *  such tha t  
,~(u + v) = II u + v II an d  #(u - v) = [{ u - v I[. T h e n  we define 

4) = ctR-P/qllu + vllP-12 and  0 = flR-P/q[lu - vllP-1/t .  

Thus ,  

R = ch(u + v) + O(u - v) = (4' + O)(u) + (4' - O)(v) 

< 114' + 01111ull + 114' + 01111vll < (114, + 011q+ t l 4 ' -  011~)l/~(llull p + [tvllP) I/p. 

T o  comple te  the  d e m o n s t r a t i o n  of (2.14), we have  to show tha t  
T : =  [14' + 0It q + 114, - 011' _-< 2,. By (2.12), 

T <  R-P[~ttlu + vii ~-x + /~ t lu  - vllP-X] ~ + R-P[~I Iu  + v{I p-1 - / ~ l t u  - vltP-x] ~ 

= R-p[ct + flrP-1] ~ + R-PItt  - flrp-t]q = 2 ~. 

A similar  p r o o f  works  in the  o the r  d i rec t ion  to go f rom (2.13) to  (2.12) [ ]  
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Remark. In  our  appl icat ion of  L e m m a  6 to the p roof  of  Theorem 2, we need the 
following refinement whose t ruth is evident  from the p roof  given above. We take 
X = Cp and X *  = Cq. Then the validity of (2.13) with the extra constraint that  
y + z andy - z are positive semidefinite matrices implies the validity of (2.12) when 
~b and ~ are positive semidefinite matrices. 

We close this section with a proposi t ion showing the consistency of the two 
definitions that  we have given for r-uniform convexity; i.e., the ones following (1.4) 
and (2.6). 

Proposit ion 7 (Equivalence of  definitions of r -uniform convexity) Let X be a 
normed space. Then (2.5) holds for some constant K and all x, y ~ X if and only if 
fix(e) > (e/C)" for some constant C. Similarly, (2.7) holds for some constant K and all 
x ,y  ~ X if and only if  px(z) < (Cz)" for some constant C. 

Proof We have already seen that  (2.5) and (2.7) imply the indicated bounds  on 6x 
and Px respectively. 

Suppose first that  px(r) < (Cz)" for some constant  C. Of  course, 1 < r __< 2. Then 
for all 11 x II = 1 and II y I[ --< 1, 

IIx + yll + I I x -  yll 
1 < (CllylIL 

2 

Define numbers  b and fl by 

Then 

IIx + yll + 1Ix - yll IIx + yll - IIx - yH 
b : =  and f l : -  

2 IIx + Yll + [ I x -  YlI" 

llx -+- YlI' -4- IIx - y l l r )  1/" _ IIx + Ylt + IIx - yll 
2 2 

2 fl)r _ (2.15) 

The function of fl on the right side in (2.15) vanishes quadrat ica l ly  at the origin. 
Thus, a simple es t imat ion using Taylor 's  theorem shows that  it is no greater  than 
D, fl 2 for some cons tant  D, depending  only on r. Then,  since till < It Y LI/b < ]l Y ql and 
1 < r < 2, we have f rom (2.15) and the assumpt ion on Px that  

l l x + y t l ' + I I x - y t l r <  I + C ' I l Y l I ' + D ,  Nyll z < I + ( K ,  HylI)', (2.16) 
2 = 

for all x and y with t1 Y It < II x II = 1, where K,  depends only on C and  r. Therefore,  

IIx + YlI' + tlx - YlI' 
< tlxll" + g~  IlYlV (2.17) 

2 

for all x and y with Ilyll < l lx l l .  Finally, since we may assume that  K,  > 1, (2.17) 
holds for all x and y. 

Next ,  suppose that  fix(e) > (e/C)' for some constant  C. Then by (1.3), 

Px*(V) = sup {~e -- 6x(~): 0 < e -< l} __< sup {re - (e/C)': 0 < e _< oo } = (Cz) ~' 
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where 1/r + 1/r' = 1.Then, by what we have shown above, there is a constant K so 
that (2.7) is valid in X*.But then by Lemma 5, (2.5) is valid in X with the same 
constant K. [] 

III Optimal 2-uniform convexity inequalities for trace norms 

Norms on the space of n • n matrices which are non commutative analogs of the Lp 
norms can be defined in terms of the trace by 

II X I1~ = (Tr( (X* X)P/z) lip = (Tr( (XX * )p/2) l/p, (3.1) 

for 1 < p < ~ .  For p = ~ ,  II X lip denotes the operator norm of X, as usual. The 
analogy can be made quite close, and it has been developed in a v o n  Neumann 
algebra context by Segal [-Se] and Dixmier [Di] as part of their theories of 
non-commutative integration. 

Many familiar inequalities for Lp norms also hold for the Cp norms. This is true, 
in particular, of the H61der inequality 

I ] x Y L  ~ ]lXI]p]l YIIq, 1/r = l ip + 1/q. 

There are, however, other inequalities for Lp n o r m s  which do not hold 
for the Cp norms. Many examples are connected with the poor behavior of 
the map 

x ~ IXI = ( x ' x )  1/2. (3.2) 

For example, if f and g are complex valued functions in some Lp space, then 
[[ If[ - ]gl lip < I l f -  9 Hr This is not true for Cp, and, when p = 2, the factor of 
x/2 in the Araki-Yamagami inequality [ArY] I I ]XI -  I Y]l12 < x /21qX-  YII2 is 
optimal whenever n > 2. 

As we have asserted in Theorems 1 and 2, however, almost all of the optimal 
inequalities expressing uniform convexity and smoothness properties of Lp spaces 
have exact analogs which hold for the Cp norms. Most of this section is devoted to 
the proof of Theorem 1. Before giving the proof we briefly discuss the history of 
uniform convexity inequalities for Cp as we know it. 

The first such inequality was established by Dixmier [Di] who proved the Cp 
analog of the "easy" Clarkson inequality (2.1) by means of interpolation. As with 
Lp, this implies that for 2 < p < ~ ,  6cp(~) > (1/p)e p. 

Interpolation was later used to establish the analog of the "hard" Clarkson 
inequality (2.2) which implies the uniform convexity of Lp for 1 < p < 2. Such 
a proof has been given by Martin Klaus, and is sketched in [Si]; to some extent it is 
modeled on Boas' proof [Bo] of (2.2) for L r This result implies that for 1 < p < 2, 
Cp is at least q-uniformly convex. 

Later, Tomczak-Jaegermann showed that for 1 < p < 2, C~ is actually 2-uni- 
formly convex and Cq is 2-uniformly smooth. Moreover, she showed for q = 2k, 
that the sharp 2-uniform smoothness constants of C~ are the same as those for L~ 
(so that the corresponding equalities of 2-uniform convexity constants hold by 
Lemma 5). 
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Before we prove Theorem 1, note that t ~-* t p/2 is concave for 1 < p < 2 and 
therefore (1.7) immediately implies that 

I[X + YI/~ + IIX - YII~ > IlXll~ + (p - 1)11YII~, (3.3) 
2 = 

which expresses the 2-uniform convexity of Cp in the usual way. It follows that 

6 c , ( e ) _ - > ~ e  2 for l < p = < 2 ,  (3.4) 

and thus the analog of (1.5) holds for Cp. 
We now observe that (1.7) is only formally stronger than (3.3). To see that (3.3) 

implies (1.7), consider the 2n x 2n matrices given in block form by 

Z = [ O  0 ] ,  W = [ O  ? y J .  (3.5) 

Then 

and thus, 

T r lZ  + WI p = T r I Z -  WI ~ = (TrlX + YIP + T r l X -  YI p) 

IIZ+ WIl~ = r l z -  wIl~ = ( l l x +  YIl~+ H x -  rllg) 2/'. 
Since also IlZll~ = 22/plIXI[~ and II W]I~ = 22/Pll YII~, (33) implies 

IlXl[~ + (p - 1)[I gll~ = 2-2/P(11 zll~ + (p - 1)II Wll~ 

=< 2_2/p(llZ + Wll~ + I l Z - 2  wl,~) 

= ( I [ X + Y l l ~ + l l X - Y I ' ~ ' )  ' (3.6) 

which is (1.7). 

Proof of Theorem 1 First, we reduce to the case in which X and Y are self-adjoint. 
Consider the 2n x 2n matrices given in block form by 

X* , D = y ,  . 

Clearly, if (1.7) holds for the 2n x 2n matrices C and D, it holds for X and Y. Since 
C and D are self-adjoint, it suffices to prove inequality (3.3) for such matrices. We 
therefore assume without loss of generality that X and Y are self-adjoint. 

Let Z and Wbe defined in terms of X and Yas in (3.5). Then we can rewrite (1.7) 
as 

Tr(IZ + rWIP) 2/~ ~ (TrIZIP) 2/p + r2(p - 1)(TrIWIP) 2/p. (3.7) 

First, note that without loss of generality we may assume by continuity that the 
union of the ranges of Z and W span C 2". Then det(Z + rW) is a polynomial of 
order exactly 2n in r, and it has at most 2n zeros for 0 < r < 1. We will avoid these 
values of r below in our computations. We define ~b(r) by 

~k(r) = Tr IZ  + rWI p = Tr((Z 2 + r(ZW + WZ) + r 2 W2)p/2). 
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Then 0(r) is continuously differentiable and 

d O(O = (P/2)Tr(( Zz + r(ZW + WZ) + W2)vla-1)((ZW + WZ) + 2rW2). g 2 

With the aid of the integral representation 

(Z 2 + r ( Z W  + W Z )  + r2W2) Cp/2 1~ 

o~ 
= flpl  ttP/2-l) 1 r2wz)d t ,  (3.8) 

o t -4- (Z 2 + r(ZW + WZ) + 

we see that dO(O/dr is again continuously differentiable. 
Now, both sides of(3.7) agree at r = 0, and the first derivatives in r of both sides 

vanish there as well. Moreover, the second derivative in r of the left hand side of 
(3.7) satisfies 

d 2 2 2 
(0(r))2/~ > p 0(r)<2-,~/. D 0(r), 

while the second derivative on the right side of (3.7) is just 2(p - 1)(TrIWIV) 2iv. It 
therefore suffices to show that 

!,/.r r p) ipd2 ils r (p - 1)(Trl WI') 2/" (3.9) P T, ) dr z T( ) > 

for all 0 < r < 1. By redefining Z to be Z + r W, it suffices to establish (3.9) at r = 0. 
Since Z + rW is non-singular, after the redefinition, [ZI will be strictly positive. 

We now claim that 

d~r2 T r l Z d 2  rWip r=O d2 rWiP r=o" + > Tr2 TrlIZI + (3.10) 

To see this, note that by the integral formula (3.8), 

ut d2 r WI P ,=o 7 ~_2Trl Z + = T r l Z f  2W2 - (p/2)flp - tvi2-1Tr 
o 

• W Z ) z ~ t ( Z W +  (3.11) 

The trace under the integral sign consists of four terms which, using the cyclicity of 
the trace, can be rewritten as 

T r ( W Z z 2 - - ~ t W Z z z ~ t ) +  3 T r ( W z z - ~ t W Z 2 z z ~ t  )" 

Since only Z 2 enters the second of these two terms, this term is unchanged when 
Z is replaced by IZI. Upon  writing out the first term in a basis that diagonalizes Z, 
that term becomes 

nj~.= ( Z 2 i ~ t ) ( z ~ . ~ t ) i W i j i 2 Z i Z J "  
i, - 1 

Clearly this term, and hence the integral in (3.11), increases when Z is replaced by 
IZI. The first term in (3.11), being a function of Z 2, is invariant under the 
substitution, and the assertion (3.10) is established. 
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Therefore, without loss of generality we may assume that Z > 0. Then, of 
course, Z + r W > 0 for all r sufficiently small, and we no longer need to square 
Z + r Wto  obtain a positive operator whose powers can be expressed as an integral 
over its resolvent. Working directly with Z + r W, we can use the simpler integral 
representation 

i [ 1 1 ( Z + r W ) ~ V - 1 ) = T v  t~P-1) t t + ( Z + r W )  

to conclude that 

r  ' 1 ]- 1 1 ~t.-'TrLt-T2wt+-~w dt. (3.t3) 

Consider the right side of (3.13) as a function of Z for fixed W. We claim that it is 
convex in Z. To prove this, it suffices to prove the following inequality for every 
self-adjoint matrix A: 

A(A): = ~s2Tr ~=o > t + (Z + sA) W t  + (Z + sA) W O. 

There are six terms. If we define C = (t + Z)- I /ZA( t  + Z)-1/2 and 
D = (t + Z ) -  1/2 W(t  + Z) -  1/2, then the result of the computation is 

A(A) -- 4Tr CZD z + 2Tr CDCD. 

But by the Schwarz inequality, 

ITr(CDCD )[ < {Tr(CDZC) } 1/2 {Tr(DC2D) } 1/2 = Tr C2D 2. 

Thus, A(A) >~ 0 and the integrand in (3.13) is a convex function of Z. 
Now fix W and t, and define 

Clearly, when U is any unitary matrix that commutes with W, F ( U Z U * )  = F(Z). 
Let {el . . . . .  e2,} be an orthonormal basis of eigenvectors of W. Let {Uj}I <j ~ 2 2. be 
some enumeration of the 2 2" unitary matrices with the property that Use k = +_ ek 
for each k. Clearly each of these unitaries commutes with W. Thus, by the convexity 
of F which we have established in the last paragraph, 

F(Z) = 2 -2" 2 F(UsZU*)  >-- F 2 -2" ~ UiZU = F(Zai,g), 
j=l \ j=l 

where Zd~a, is the matrix whose diagonal entries, in the basis specified above, are 
those of Z, and whose off-diagonal entries are all zero. Replacing Z by Zdiag in 
(3.13), the integration can be carried out, and we obtain 

t~"(O) = > p(p - 1 z - 2)w 
J 

where z s and w j, respectively, denote the jth diagonal entries of Z and W in the 
W-basis specified above. 
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Now consider r = Tr(Z p) as a function of Z. It is clearly convex. Thus,by the 
averaging method just employed, we obtain 

( 
\ j = l  

To establish (3.9), it only remains to check that 

j=l z~) t j~ '  J ' / /~  \ j= l  } w J l P  " 

but this follows immediately from Hrlder's inequality. []  

IV Hanner's inequality for matrices 

This section is devoted to the proof of parts (b) and (c) of Theorem 2. We begin with 
the proof of Theorem 2(c), and then show how that implies Theorem 2(b). 

Proof of Theorem 2(c) First, let Y be a fixed self-adjoint n • n matrix, and consider 
the set Mr  of n • n self-adjoint matrices given by 

M y : = { X : X +  Y > 0  and X - Y > 0 } .  

Clearly Mr  is convex, and if X e Mr, then X > 0. 
We claim that 

G(X) :=  LIX+ Y{I~+ LIX- Y l l g -  211Xllg (4.1) 

is a convex function on Mr. 
By the averaging method employed in the proof of Theorem 1, this convexity 

would imply that 

llX + YII~+ ] I X -  Y I I ~ - ~ F l X l l g -  >-- [IXdiag qt- YI]~,+ I[Xdiag - YI]~-c~lrXd~.g]l~ 

(4.2) 

for any 0 < ~ -< 2, where X~i~g denotes the diagonal part of X in a basis diagonaliz- 
ing Y. (Note that i fX e Mr, then X~iag ~ Mr.) By Lemma 4 and Hanner 's  inequality 
in lp. 

II Xdiag ~- Y I] Pp "~ II Xdiag - -  Y 11 ~ - ~(r)I1Xdi~g I[ Pp > ~(1/r) [I Y II ~, 

for all r, where ct(r) is the function defined in Lemma 4. (Here we are making use of 
the easily checked fact that for 1 < p < 2, ~(r) and ~(1/r) never exceed 2.) Combin- 
ing this with (4.2), we would obtain 

tJ x + YII g + IE x - Yrl g > ~(r)ll X II g + or(l/r)]l YII ~. 

Then, by another application of Lemma 4, the inequality (1.8) would be established 
for 1 < p < 2 for all matrices X and Y such that X + Y and X - Y are positive 
semidefinite. By Lemma 6, and the remark that follows it, (1.8) would be established 
for 2 < p < oo and all positive semidefinite matrices X and Y. 

It remains to establish the convexity of G(X). We choose a self-adjoint matrix 
A and define 

~b(s) = I}(X+sA)+ Yllg+ II(X+sA)-- Yll~,-211(X+sA)ll~. (4.3) 
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Then 

d 
~ b ( s )  = pTr[( (X + sA) + y)p-1 + ((S + sA) - y)p-1 _ 2(X + sA) p 1]A. 

Using the integral representation formula to compute the next derivative, we 
have 

q~"(0) = pyp ~ t ~p- 1)Tr 1 1 1 A 1 
o t + X +  X +  Y + t + X -  Y t + X -  Y 

This is positive by the convexity of 

1 1 
X ~+ T r t ~ A t - ~ A ,  

which we established in the last section. [] 

Proof o f  Theorem 2(b) We use a power doubling argument inspired by the 2- 
convexification method developed by Figiel and Johnson [FJ].  First, consider the 
case p => 4. As in the proof of Theorem 1, we can assume that X and Y are 
self-adjoint n x n matrices. The spectrum of the 2n x 2n matrix 

consists of the union of the spectra o fX + Yand o fX - Y. Thus, the pth power of 
its Cp norm equals the left side of (1.8). By the same spectral considerations, one sees 
that the pth power of the Cp norm of the 2 x 2 matrix 

ILxII [[ YII'] (4.5) 
IF YII II x I I /  

equals the right side of (1.8). Thus, our problem is to show that the Cp norm of the 
2 x 2 matrix in (4.5) exceeds the Cp norm of the 2n x 2n matrix in (4.4). 

Now 
y 2 =  ( X 2 +  y2 X Y +  

p/2" (4.6) X p \ X Y +  YX X2+ y2 

The second matrix is positive semidefinite, and it has the special block form (~ ~). 
Block matrices of this form are characterized by the fact that they commute with 
(o ~), where I is the n • n identity matrix. Evidently, all powers of a positive 
semidefinite block matrix of this special form have the same special form. 

Thus, if r is the index conjugate to p/2, there is a positive matrix (c ~) whose 
C,-norm is 1 with the property that the norm in (4.6) is realized as 

Tr~x Y = 2Tr(X: + Y2)C + 2Tr(XY + YX)D 

< 2IIC H,(I[X 2 Ila2 + II y2 tt~2) + 4liD lit IlX [tvll YlPp 

by the H61der inequality for traces of matrices. 
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Let us define l ICt l :=  hlCIhr, hlDIl: = bIDIhr, IhXll: = IbXllpand 11Y[I: = II Yl l r  The  
last  express ion  is 

211Ct](I] X]I 2 + II YII2)+ 4IIDLI HXI] II YI] 

[ l l C l l  HDIr'][IIX[IZ+l]Yll 2 2HXIIIIYII "~ 
= x r k l i D I I  I I C I I J \  211XlllIYII IlXll2+llYllZfl 

= IIDII llC]l , I1 rll /IXll/ll, '  

T h e  pos i t iv i ty  of  the  ma t r ix  (c  ~) gua ran t ee s  tha t  b o t h  C + D and  C - D are  
positive.  Since 1 < r < 2, T h e o r e m  2(c) implies tha t  

DII IlCtl r =  c 

Consequen t ly ,  

s p =  \ Y IISll . '  

as required.  Final ly,  by L e m m a  6, we o b t a i n  the  val idi ty of(1.8) for 1 < p < ~3. [ ]  

Remark. F o r  all p, (1.8) ho lds  (with the  app rop r i a t e  d i rec t ion  of inequal i ty)  in Cp 
w h e n  [1 Y IL = II x [I since (1.8) is then  a special case of the  "easy"  C l a r k s o n  inequal i ty  
(2.1) which  was ex tended  to Cp by Dixmie r  [Di] .  It a lso holds  to  leading order  for 
small  Y, as one can  verify us ing T h e o r e m  1. We  m a k e  the  na tu r a l  conjec ture  t ha t  
(1.8) ho lds  in Cp for I < p < 2, w i thou t  the  res t r ic t ions  im posed  in pa r t  (c) of 
T h e o r e m  2. 
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