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I Introduction and main results 

1.1 The symplectic packing problem 

Consider all possible symplectic embeddings of k disjoint standard balls of equal 
radii into a given symplectic manifold M of the same dimension. Denote by ~3(M, k) 
the supremum of volumes which can be filled by such embeddings. If the volume of 
M is finite, set 

v(M, k) = f~(M, k)/Volume (M).  

A basic aspect of the symplectic packing problem is to distinguish between the 
following two cases: 

�9 v(M, k) = 1, that is there exists a full filling; 
�9 v(M, k) < 1, that is there is a packing obstruction. 

The history of this problem goes back to Fefferman and Phong [-F-P], who raised 
a somewhat similar question in connection with the uncertainty principle in 
quantum mechanics. Our  formulation is basically due to Gromov (see [G1] and 
also the discussion below). 

Assume for a moment that M is the standard ball B 2", n > 2. Then the packing 
problem also makes sense if one replaces symplectic embeddings by volume- 
preserving or isometric ones. The symplectic version is somehow intermediate, and 
it is not clear apriori what answer one should expect: existence of full fillings as in 
the volume-preserving case, or packing obstructions as in the isometric case. Quite 
amazingly, the answer depends on the dimension and the number of balls. It was 
shown by Gromov [G1] that v(B 2n, k) <= ~ w h e n  k > 1, that is for 1 < k < 2" balls 
there are packing obstructions. In the present paper we prove that v(B 2n, p") = 1 
for all positive integers p. Thus, for infinite number of values of k full fillings do exist. 
We present below (see 2.2.A and 3.1.A) two different approaches leading to 
existence of full fillings. Both of them are based on constructions of algebraic- 
geometric nature, namely symplectic blowing-up and symplectic branched cover- 
ing. These constructions were invented by Gromov [G2] and described in more 
detail by Guillemin and Sternberg in [G-S]. A deep connection between the 
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symplectic packing problem and blowing-up was established by the first author in 
[McD1, McD3]. 

Another way in which algebraic geometry comes into play is Gromov's  theory 
of pseudo-holomorphic curves in symplectic manifolds [GI] .  Note that Gromov's  
packing obstructions appeared as an application of this theory. Combining recent 
results of the first author on pseudo-holomorphic curves in 4-manifolds [-McD2] 
with the theory of symplectic blowing-up one can obtain a detailed picture of 
interrelations between the symplectic packing problem and algebraic geometry of 
rational surfaces. It turns out that every rational exceptional curve on the blow-up 
o f C P  z at k points gives an obstruction for symplectic packing of B 4 by k balls with 
suitable ratio of radii (see 1.3.C below). Moreover this correspondence is one- 
to-one if k < 9 (see 1.3.E below). Using the classification of exceptional curves on 
del-Pezzo surfaces (see e.g. [D])  we give an exact solution of the symplectic packing 
problem by k < 8 balls in dimension 4. In particular, we compute the values of 
v(B 4, k) for k < 9 (see 1.4 and the table below). 

k 2 3 4 5 6 7 8 9 

v(B 4, k) �89 �88 1 ~ ~ ~- ~ 1 

Note that the estimates v(B 4, 2) < 1/2, v(B 4, 3) < 3/4, v(B 4, 5) < 20/25 and 
v(B 4, 6) < ~ are due to Gromov [G1]. 

The problem of computation of v(B 4, k) for k > 10 seems to be very difficult. As 
we shall see in 1.4 the question of whether there are packing obstructions in this 
case is related to an old conjecture by Nagata IN]  which was raised in connection 
with the 14-th Hilbert problem. 

1.2 Basic notions 

1.2.A. Preliminary definitions and notations. A symplectic structure on an even- 
dimensional manifold M 2, is a closed differential 2-form, say O, whose top power 
f2" is a volume form. Given a symplectic manifold (M, O) there always exists an 
almost-complex structure J on M such that f2(~, J ~ ) >  0 for every non-zero 

~ TM. In this situation we shall say that f2 tames J. If in addition J is integrable, 
and the form t2(~, Jq)  is symmetric then f2 is called Kfihler with respect to J. 

Let ~"  be the linear complex space with coordinates Zk =Xk + iyk, 
k = I , . . .  , n. The form c~ = ~k  = ~ dxk ^ dyk is called the standard symplectic form 
on ~". Obviously ~o is K/ihler with respect to the complex structure on ~". Set 
B2"(2) = { z ~ " [ [ z [  < 2}. We shall refer to (B2"(2),co) as to the standard ball of  
radius 2. We denote by I_Ikq=lBZ"(2q) the disjoint union of k balls, and by 

k k 2n ~0 = H q  = l ~Oq" H q -  1 B (~,q) --~ M a m a p  whose  res t r ic t ion  to the q-th ball  co inc ides  
with q~q: B2"(2q)~-M. If q~ is an embedding and q~* t2 = co for all q then ~o is called 
a symplectic embedding, or a symplectic packing. 

Finally, we denote by tr, the uniqe U(n + 1)-invariant K/ihler form on CP"  
whose integral over IEP t is equal to n. It is not hard to show that the complement 
to a hyperplane endowed with such a form is symplectomorphic to the standard 
open unit ball in ~E" (see [McD3]  or Appendix below). In particular, the volume of 
C P" with respect to the corresponding volume form (a,)"/n! is re"In!. This, of course, 
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follows from de Rham theory, as well as by direct calculation. A geometric proof is 
given in 3.1.C below. 

We refer the reader to [A-G] for the elements of symplectic geometry. 

1.2.B. Symplectic blowin9 up and down. Basic to many of our constructions is the 
idea of symplectic blowing up and down. The process of blowing up and down in 
the complex category is well-known. Blowing up replaces a point x in V by the set 
S of all lines through this point. This set of lines is biholomorphic ~ P " -  a and is 
called an exceptional divisor. Conversely, blowing down replaces the exceptional 
divisor by a point. 

In the symplectic category one must consider what happens to the symplectic 
form, and it turns out that the role of a point is played by a symplectically 
embedded standard ball. In fact, blowing up amounts to removing the interior of 
a symplectic ball and collapsing the bounding sphere to the exceptional divisor by 
the Hopf map. Similarly, to blow down one removes the exceptional sphere and 
glues in a ball. The radius 2 of the ball corresponds to the cohomology class of the 
restriction of the blown-up form to the exceptional divisor S. Thus a large ball 
corresponds to a large exceptional divisor, and a small ball to a small divisor. Note 
also that, since balls are contractible, the symplectic blow up is diffeomorphic to the 
usual complex blow-up. 

More details may be found in 2.1 below. 

1.3 Symplectic packings of  B 4 and exceptional curves on rational surfaces 

By definition, a rational exceptional curve on a complex surface is a holomorphi- 
cally embedded 2-sphere with self-intersection index equal to - 1. 

Denote by Vk a complex surface which is obtained from r  by complex 
blowing-up at k distinct points. We think of Vk as a fixed manifold equipped with 
one of a family of possible complex structures, corresponding to different choices of 
the blown-up points. Denote by A, E l , . , . ,  Ek the standard basis in H2(Vg; 71.) 
where A = I-I~P x] and E l , . . . ,  Ek are classes of exceptional divisors. Let 
a, el . . . .  ,ek be the Poincar6-dual basis in Hz(Vk;TI). (Thus a ( A ) = l ,  
ei(E~) = -- 6o.) Define 71+ (resp. 7Z~o) as the set of all positive (resp. non-negative) 
integers. 

Definition 1.3.A. A vector (d, m~ . . . . .  ink) E 71+ x 714o is called exceptional if for 
some Vk the class dA -- ~q= l mqEq is represented by-a rational exceptional curve. 

Definition 1.3.B. A vector (c~, #1 . . . . .  #,)~ 7z~+ +~ is called Kfihler if for some Vk the 
class aa -- ~k  = I/~qeq is represented by a K/ihler form. 

The next two results establish relations between these notions and symplectic 
packings. 

Theorem 1.3.C. Suppose that B4(1) admits a symplectic packing by k standard balls 
of radii 2 1 . . . .  ,2k. Then for every exceptional vector (d, ml . . . . .  ink) the followin9 
inequality holds: 

k 

q = l  
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This theorem is proved below in 2.3. The idea behind the proof is very simple. The 
process of symplectic blowing-up constructs from each packing of B4(1) by balls of 
radii 2 1 , . . .  , 2k a symplectic form on Vk in the class n(a - ~q=lk 22eq). Gromov's  
theory of pseudo-holomorphic curves implies that every exceptional vector may be 
represented by an embedded 2-sphere C in Vk which is symplectic with respect to 
this form, and the given inequality just expresses the fact that the integral of the 
symplectic form over C is positive. Thus the packing obstruction comes from the 
existence of this 2-sphere C. Since C will be realised as a pseudo-holomorphic curve 
(this just means that it is holomorphic with respect to some almost complex 
structure on Vk), we often use the language of complex geometry and call it a curve. 

Theorem 1.3.D. (see [McD1],  and 2.1.D below) For each Kahler vector 
(0~, ~1 . . . . .  ~k )  there exists a symplectic packing of B4(1) by k standard balls of radii 

This follows immediately from symplectic blowing down. The following result 
shows that Theorem 1.3.C has a converse provided that k < 9. 

Theorem 1.3.E. Let k < 9 and let be 21, �9 �9 �9 , 2k be positive real numbers such that 

k 
Z mq 22 < d (al) 

q=l  

for every exceptional vector (d, ml  . . . . .  mk) and 

k 
Z mq2~ < 1. (a2) 

q = l  

Then B4(1} admits a packing by k bails of radii 21 . . . . .  2k. 

Proof By Nakai 's criterion (see e.g. [F-M]) ,  a cohomology class p on a complex 
surface V is represented by a Kfihler form iff p2 > 0 and (0,  [C]  } > 0 for all 
complex curves C c 17. For general V, it is very difficult to understand which 
homology classes are represented by complex curves. However, if V = Vk is the 
blow-up of C P  2 at k generic points for some k < 9, then ~ is a 9ood and generic 
surface in the sense of Friedman and Morgan [F-M] ,  and, as they show [F-M, 3.4], 
it suffices to check that p(C) > 0 on the exceptional divisors and on the anti- 
canonical divisor. More precisely, one has to verify the following inequalities: 

�9 (P, [ C ] )  > 0 for every rational exceptional curve C on Vk; 
�9 p - p  > 0 ;  
�9 P 'e l  > 0, where cl = 3a - -~k=~ eq is the first Chern class of V. 

Observe that, if" p = a - ~qk = 1 2qZ eq, the two first inequalities are just reformula- 
tions of (al) and (a2). In order to check the last one notice that 

due to (a2). Thus any class p which satisfies the given inequalities is represented by 
a Kghler form, and so the needed packing exists by 1.3.D. [] 

Remark 1.3.F. The assumption (a2) has a straightforward geometric meaning. It 
states that the common volume filled by the images of the balls B4 (2~) , . . . ,  B4(2k) 
is less than the volume of B4(1). 
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It turns out that when k < 8 the exceptional vectors form a finite set which can 
be exactly computed (see [D, p. 35]). Summing up the results of 1.3.C and 1.3.E, we 
obtain the following 

Corollary 1.3.G. There exists a symplectic packing orB4(1) by 2 <_ k <- 8 standard 
balls of radii 21 >= 22 ~ " ' "  ~ 2 k if and only if the followin9 inequalities hold: 

V k 2 4. (v) z:.,q= 1 q < 1 (volume inequality); 
(el) 2 2 + 2 2 <  1 , / f k > 2  
(c2) 2 2 +  " "  + 2 2 < 2 , z f k > 5  

7 2 (c3) 2 2 2 + ~ , / = 2 2 .  < 3 , / f k = > 7  

(c4) 222 + 22,  ~ + 22] + 22 + . . .  + 2~ < 4 , / f  k = 8 
( c5 )  6 2 2 2 2~q_12q +27+28<5, / fk=8 
(c6) 322 + 2Zs=2 22 < 6 , / f k  = 8. 

1.4 Packings by equal balls in dimension 4 and Nagata's conjecture 

The results in the case of k < 8 equal balls are presented in the following table: 

Volume The best curves- Inequality giving 
k estimate assisted estimate the best estimate 

1 
2 .g < - -  2 < 1/,f2 (cl) 

1 
3 ,~ < - -  -~ < l/x/2 (cl) 

4 2 < 1/,,/2 2 < l /x /2  (v) + (ct) 

6 2 < 1/~/6 J. < ~ (c2) 

7 2 < 1 / ~ 7  2 < x/~ (c3) 

8 2 < 1/~/8 2 < 6 x / - ~  (c6) 

It turns out that the exceptional curves technique of 1.3.C does not generate 
packing obstructions for k >-_ 9 equal balls (or when k = 4; this will be discussed 
below in 1.4.C). More precisely we claim that for every exceptional vector 
(d. m 1 . . . .  , ink) the inequality 

k 
E m.  22 < d 

q=l  

is worse than the obvious volume inequality k24 < 1 provided k ->_ 9. Indeed, we 
have to show that 

d 1 
> 

Ekq=lm.  N//k " 
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Recall that the first Chern class of V evaluated on a rational exceptional curve is 
equal to 1 (see [D]). In other words 

k 
3 d -  ~ mq = 1. 

q=l  

Therefore 
d 1 1 

Z q :  l mq = X ~  

and our claim follows. 
As we shall see in 2.3.B, one cannot get new packing obstructions for equal balls 

when k > 9 by considering other curves in Vk, because none of the other curves 
which exist generically (in the sense of Fredholm theory) are in classes which 
generate new packing obstructions. Because it is not known whether the complex 
curves which exist for generic complex structures on Vk must in fact be generic in 
the sense of Fredholm theory, the symplectic packing problem is open for k equal 
balls, k > 9, except in the special case when k = p2 for some integer p. In this last 
case, a full filling does exist (see 1.4.C below). Interestingly enough, the existence of 
a full filling for k > 10 would follow from an old conjecture of Nagata, which was 
formulated in connection with his construction of a counterexample to the 14-th 
problem of Hilbert (see [N]). In a slightly modified and weakened form, this 
conjecture states the following. 

Conjecture [N]  For  every k > 9 there exist k points on ~p2 such that for every 
irreducible curve C on the corresponding blow-up Vk the following inequality 
holds: 

d>Zkq=,mq 
, A '  

k 
w h e r e [ C ] = d A -  ~ mqEq. 

q=l  

Remark 1.4.A. Nagata's conjecture can be easily proved for the case k = p2 where 
p is an integer (see [N]  for a more precise result). Indeed, one just has to take the 
k points to lie on an irreducible smooth curve X of degree p. Then, if .~ denotes the 
lift (or proper transform) of X in Vk, the desired inequality is equivalent to the 
requirement that C.  X > 0. For  k = 2, 3, 5, 6, 7, 8 the assertion of the conjecture is 
wrong (see IN]).  

Theorem 1.4.B. Assume that Nagata' s conjecture is true for some k. Then there exists 
a full symplectic packino of B 4 by k equal standard balls. 

Proof Let Vk be the blow-up of ~ p 2  described in Nagata 's  conjecture. Take 

positive integers/~, ct such that 1/x/k >/~/ct and/~/e is arbitrarily close to 1/x/k. Set 
p=cta--~=ll~eqeH2(Vk;Z) .  We claim that the class p is represented by 
a K~hler form. Indeed, due to a version of Nakai 's criteria (see [F-M, 3.4]) it is 
sufficient to check that p .  p > 0 and < p, [C]  > > 0 for every irreducible curve C on Vk. 

The first inequality is obvious. Let us verify the second one. Let C be an 
irreducible curve with [C]  = dA - 2kq= l mqeq. Then 

< p, [ C ] > = otd - I~ ~,m , = l~d ( ~ ~" m, ) 
d " 
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Notice that ct/# > , ~  by definition and (~mq)/d <__ , ~  according to Nagata's 
conjecture. Therefore (p ,  [C]  ) > 0 and our claim follows. 

Now the assertion of the theorem follows from 1.3.D. [] 

Remark 1.4.C. Combining 1.4.A with 1.4.B we obtain that, for any p > 1, B 4 admits 
a full filling by p2 equal symplectic balls. 

1.5 Existence of full symplectic fillings by equals balls 

It turns out that the phenomenon described in 1.4.C is a particular case of the 
following general fact. Set V = C P  "1 x �9 �9 �9 x II?P "d. Endow V with a symplectic 
structure f2u = #1 a,,, 0) " �9 �9 0)/~da,,,, whe re /q  . . . . .  /~d are positive numbers and 
aq is the standard symplectic form on tI?Pq. 

Theorem 1.5.A. Let kl . . . . .  ka be positive integers such that [ k l : . . .  :kn] = 
[#1:. �9 - :#d]. Then for every closed complex submanifold F c V there exists a full 
filling of (V - F, f2,) by 

(ml + " " + m~)! 
k ' ~ l . . . .  �9 k~ ~ 

ml ! " �9 �9 .'rod! 

standard symplectic balls of equal radius. 
There are two ways of proving this theorem, via fibrations as in 2.2 and via 
branched covers as in w 

Corollary 1.5.B. For every complex submanifold F ~ ~ pm the manifold 
(IF.P" - F ,  a) admits a full filling by one standard symplectic ball. 

Corollary 1.5.C (cf. 3.1.B) For every positive integer k the standard ball B 2m admits 
a full filling by k m standard equal symplectic balls. 

Proof Recall that if F c II~P '~ is a hyperplane then (II~P" - F, a) is symplectomor- 
phic to (Int B 2m, co). The needed assertion follows from 1.5.A. [] 

Corollary 1.5.D. (cf. 3.1.C) For every positive integer k the product of m standard 
symplectic 2-spheres S 2 x �9 �9 �9 x S 2 admits a full filling by m!k m standard equal 
symplectic balls. 

We will see in 2.1.E. below that Theorem 1.5.A continues to hold for certain 
singular submanifolds F. In particular, it holds when F c II~P m x I~P j is the union 
of the submanifolds I~P m- 1 x IEP 1 and IEP" x {pt.}. Since the rescaling a ~ / ~ a  of 
the symplectic form on projective space corresponds to multiplying the radius of 

the ball by x/~, we find: 

Proposition 1.5.E. For each positive integer k, the product B2"(2) x Bz(x/k2) may be 
fully filled by (m + 1)k standard equal symplectic balls. 

Corollary 1.5.F. For each positive integer k, the product B 2 x �9 " " x B 2 of m copies of 
the unit 2-disc admits a full fillin9 by re!k" standard equal symplectic balls. 

Proof This is proved by induction on m. Recall that the volume of the 2m-ball 
Be"(1) is nm/m!. (A proof is given in 3.1.C.) Thus the radius of the m!k" balls which 

fill x ~'B z is almost 1/x/k, and so the inductive step is accomplished by applying 

1.5.E with 2 ~ 1/x/k. Further details are left to the reader. [] 
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Remark 1.5.G. Corollary 1.5.F implies that any compact symplectic manifold 
M may be asymptotically fully filled by equal balls, in the sense that 

lim v(M, k)= 1. 
k ~  

In fact, by using Darboux charts and the fact that the interior of B2(1) is symplec- 
tomorphic to the interior of a square, it is not hard to see that one can fill up as 
much of the volume of M as one wants by a finite number of polydiscs of the form 
B2(2) x - - �9 B2(2). Thus it is enough to prove the statement for a polydisc of this 
kind. But this follows easily from t.5.F. 

1.6 Discussion 

1.6.A. Maximal packings. A set of k symplectically embedded open balls of equal 
radii into (M, f2) is called a maximal packing if the balls are pairwise disjoint and the 
volume filled by the balls is maximal, i.e. equal to ~(M, k). 

Question. Does a maximal packing exist when M is compact? 
Direct geometric constructions of maximal packings for M = CP" and 

k < n + 1 are given in the Appendix by Yael Karshon. Other explicit constructions 
for full fillings of M = ~ P "  by k = p" balls have recently been found by Lisa 
Traynor and the authors (see I-T]). 

1.6.B. Symplectic packings in higher dimensions. Gromov's  proof of the estimate 
v(B 2", k) < k/2" is based on the study of pseudo-holomorphic curves of degree 1. 
There is no obvious way to get better packing inequalities using curves of higher 
degree. It is also hard to generalise our indirect methods for constructing packings, 
since these rely on Nakai's criterion which is valid only in complex dimension 2. 
However, it is true that 

v(B 2n, k) = k/2" 

for 1 < k < 2". This holds because B 2" can be fully filled by 2" balls, and so it is 
enough to consider k of these balls. 

1.6.C. Symplectic packings and symplectic capacities. Note that the symplectic 
packing problem is quite important even in case of k = l ball. Indeed, the quantity 

c(M ) = (O(M z", 1)) ~/" 

is a symplectic capacity in the sense of Ekeland and Hofer [E-HI.  In case 
M = B2(21) x . - -  x BZ(2.) the value of c(M) was computed in [G1] by pseudo- 
holomorphic curves methods as well as in [E-H] by quite different variational 
methods. It would be interesting to apply variational methods to symplectic 
packings by more than one ball. 

1.70rganisation of the paper 

The rest of the paper is organised as follows. In w we formulate our general results 
concerning blowing up and down and prove 1.3.C, 1.3.D and 1.5.A. These results 
are based on an explicit local construction which is presented in w In w 
we describe how to produce symplectic packings using branched coverings. In 
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particular we give another proof of 1.5.C and 1.5.D. In order to treat 1.5.E, we need 
a version of the Moser stability theorem which is valid for symplectic subvarieties. 
This problem is discussed in w 

2 Blowing up and down and symplectic packings 

In this section, we prove the results in w which involve blowing up and down, 
modulo certain technicalities which are relegated to w Our first aim is to make 
precise the relation between embedded balls and forms on the blow-up manifold. 
We then show how to construct packings using fibrations, and show how excep- 
tional curves on blow-ups of 112P 2 lead to packing obstructions for the unit ball 
B4(1). 

As we explained in 1.2.B, in the symplectic version of blowing up the role of 
a point is played by a symplectically embedded ball. Thus, given a symplectic 
embedding 4~: B2"(2)~ V, one constructs a symplectic manifold (V,, cor which is 
diffeomorphic to the usual complex blow-up IP, by cutting out the interior of the 
ball Im r and collapsing its bounding sphere to the exceptional divisor via the 
Hopf map. In our present situation, we need to compare these manifolds (V,, co,) 
as r varies. Although these manifolds are all diffeomorphic to the complex 
blow-up, it is hard to choose a diffeomorphism in a canonical way. Therefore, we 
will proceed a little differently, by standardizing the construction of the blow-up 
manifold and then isotoping the symplectic form to fit. The details of this construc- 
tion are somewhat technical and so are postponed until w However, the main 
results are easily described. 

As always there is an interplay between the complex and symplectic points of 
view. This reflects itself in the fact that we often consider families of symplectic 
forms with varying cohomology class. (Such families are called deformations or 
pseudo-isotopies.) Most often, these families arise by fixing the almost complex 
structure J, and considering a family of closed 2-forms which tame J. It is easy to 
check that the taming condition implies that these forms are non-degenerate, and 
hence symplectic. This might be thought of as the complex point of view. In 
contrast the symplectic point of view corresponds to families of forms cot, 0 < t < 1, 
in a fixed cohomology class. By Moser's theorem, such families are isotopies, that is, 
there is a family of diffeomorphisms { ft } of the underlying manifold, with fo = 4, 
such that .f'co, = coo for all t. 

In the situation considered here, we will consider families of forms of varying 
cohomology class on blow-up manifolds. What will vary is the size of the forms on 
the exceptional divisors. This corresponds to changing the radius of the embedded 
balls. Thus the geometric point of view, in which the size of the balls is fixed, 
corresponds to the symplectic point of view in which we consider isotopies of 
forms, not general families. 

2.1 Pack ings  and deformations 

Let (V, •, J)  be a symplectic manifold such that O tames J. Suppose that J is 
integrable near the points x l, �9 �9 �9  Xk, and let ( V , J )  be its complex blow-up at these 
points. Thus there is a holomorphic map 8 : (V, J ) --* (V, J ) which is a bijection over 
V - { x t  . . . . .  Xk} and maps the exceptional divisors to the points xq. As in 1.3, 
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we write e I . . . . .  e k for the cohomology classes on 17which are Poincar6 dual to the 
exceptional divisors. 

Let us now consider what happens to the symplectic form. The symplectic form 
0 on the blow-up is constructed so that it restricts to a multiple /~cr._ j of the 
standard form on 2; = IEP "-1. The crucial fact is that the Hopf map 
n :S2 . -1  __, CP"-1  pulls or,_ x back to a form on the unit sphere which extends to 
the standard form co on I1~". It follows that the exceptional divisor (S,/ la.  1) has 
a deleted neighborhood N(S)  - X which is symplectomorphic to an annulus in ~"  
of the form 

{z ~ 0:"l , , /~ < Izl < , f ~  + ~}.  

Thus the correct way to blow down (S, per,_ 1) is to remove a neighborhood of 
S and replace it by an embedded ball of radius x / #  + e, for small e. Conversely, one 
blows up a symplectic manifold by removing a symplectically embedded standard 
ball of radius 2 + e, and replacing it by a neighborhood of an exceptional divisor 
equipped with the form 22a,_ 1. 
It follows that, if 

k k 

qg= H qoq: 1I (B(fq+e),co, i)--,(V, f2,J) 
q = l  q = l  

is a symplectic and holomorphic embedding of k small balls into V whose centers 
are mapped to the points xl  . . . .  , Xk, one can construct a symplectic form f2 on 
I? which is tamed by J and lies in the class 

k 

[ 6 1 " ( O ) ] -  .~ ~z62eq. 
q = l  

The point is that q~ maps into a region of V on which J is integrable and f2 is 
K/ihler. Thus one can take 0 to be K~ihler near the exceptional divisors, and equal 
to 61"(O) away from them. This is the basic local construction, and it is described in 
detail in 5.1-5.4. In this situation, we say that O is constructed by symplectic blow-up 
from a symplectic, hotomorphic embedding. 

We will see that this construction is reversible. In other words, when one blows 
down the exceptional divisor in (V, t2), one obtains a form on Vwhich tames J and 
so is isotopic to O. (In fact, the blow-down form equals f2 outside a neighborhood 
of the exceptional divisor.) Thus this construction works very nicely for embed- 
dings q~ which are symplectic and holomorphic. Of course, these exist only if f2 is 
K/ihler near the xq and if the associated metric is fiat near the xq. In this situation, 
we will say that t2 is J-standard near the xq. Our first result shows that this 
restriction is not important. 

Proposition 2.1.A. I f  the symplectic form t2 on V tames an almost complex structure 
J which is integrable near the points x l , . . .  , Xk, then f2 is isotopic to a form f2' which 
also tames J and is J-standard near the xq. 

This is Proposition 5.5.A. _Our next result shows that one can construct a symplec- 
tic form on the blow-up V given any symplectic embedding of balls. 

Proposition 2.1.B. Let 
~o = H ~o~ : (/3 (,~q), co) --, ( v, a )  

be a symplectic embedding of k balls into the sympleetic manifold ( V, f2 ). Choose an 
almost complex structure J on V which is tamed by ~ and is integrable near k distinct 
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points Xl . . . . .  X_k, and let (V, J) be the correspondiny complex blow-up. Then there 
exists a family f2 t of symplectic forms on V such that f2 o tames J and 

k 

[ ~ , ]  [ o * a ]  ~ ~ . = - -  ~ L q  eq 

q - t  

To see this, consider the family of symplectic embeddings obtained by restricting 
to balls of radii t2q, for ~ _< t _< 1. Blowing up this family, we obtain a de- 

formation of symplectic forms on V which satisfies the desired cohomological 
condition. Moreover, it follows from Proposition 2.l.A that the initial form f2o, 
which corresponds to the "smallest" packing, can be constructed by symplectic 
blow-up from a symplectic, holomo_rphic embedding as described above. Therefore, 
it may be chosen so that it tames J. Full details of the proof may be found in 5.5. 

We now state the corresponding results about blowing down. As before, we 
assume that d is an almost complex structure on (V, O) which is integrable near the 
points x l , .  �9 . , xk and that f2 tames J everywhere. We write (V, d ) for the complex 
blow-up at the Xq. 

Proposition_ 2.1.C. Suppose that there exists a family ~_t of symplectic forms on V, 
such that Do tames J, the restrictions of all the forms Qt to the exceptional divisors 
tame J, and 

k 

[Q,] = [O* f2 ] -  ~ ~2#(t)eq, 
q = l  

for suitable positive constants 2q(t), 0 _< t < 1. Then the manifold (V, ~2) admits 
a symplectic embedding of k disjoint standard symplectic balls of radii 21 . . . . .  2k, 
where 2q ---- 2q(1), for all q. 

The idea of the proof is as follows. In view of 2.1.A we can assume that ~2 is 
J-standard near the points xl  . . . . .  xk. Let ~ be the symplectic form on /7  which is 
constructed by the basic local construction described above. Since g}o and ~ both 
tame J,  we may, by extending the family Ot by the linear family Sf2o + (1 - s)f2, 
suppose that f2o = f2. Then, the family of forms f2t on 17 blows down to a family of 
forms f2t on V which, by the reversibility of blowing up and blowing down, starts at 
f20 = f2. Further, for each t, the form f2t admits a symplectically embedded set of 
k disjoint standard balls of radii 21 (t) . . . .  ,2k(t). The assumption on the cohomol- 
ogy class of the f2, implies that all the forms f2t are cohomologous to the initial form 
f2o = Q. Thus O1 is isotopic to f2, and the desired result follows easily. For  more 
details see 5.5. 

As an immediate consequence of the previous result we obtain the following 

Corollary 2.1.D. Suppose that there exists a symplectic form ~ on ~" such that 
f2 tames J and 

k 

[~7] = [ o * ~ ] -  Y, ~,~eq. 
q = l  

Then (V, f2) admits a symplectic embeddin 0 of k disjoint standard symplectic balls of 
radii 21 . . . .  ,2 k. 

Remark 2.1.E. In the applications of this corollary, (V, s'2, J )  will be a K/ihler 
manifold, so that J is integrable everywhere. Then the blow-up (V, J )  is also 
a complex manifold, and the hypotheses will be satisfied by any Kfihler form ~. 
Observe also that if in this situation F is a closed complex submanifold of 
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V - {xl . . . . .  Xk}, then the manifold ( V -  F, O) admits a symplectic embedding of  
k disjoint standard symplectic balls of  radii ).1 . . . .  ,2q. 

Indeed, wemay assume that F does not meet the small holomorphic bails used 
to construct O. Then, if f2t = rE2 + (1 - t)f2; the restriction of f2, to the proper 
transform /~ of F tames J[ r .  This implies that the restriction of the blow-down 
forms f2 t to F tames J [r for all t. Hence Ot Ir is symplectic for all t, with constant 
cohomology class. Therefore the Moser stability theorem (see 4.1.B below), when 
applied to the pair (V,F),  implies that ( V - F ,  f21) is symplectomorphic to 
(V - F, f2). Take now ).q(t) as in 2.1.C. Then our assumption on F guarantees that 
for all t the form f2t admits a symplectic packing by k balls of radii ).t ( t ) , . . . , ) .k ( t )  
and each of these balls does not meet F. Hence our claim follows. 

As an example, one can take the pair (V, F)  to be (~p2, iEp1), thereby proving 
Theorem 1.3.D. 

If F is a singular complex subvariety of V, one cannot expect ( V -  F, f21) to be 
symplectomorphic to ( V -  F, f2). However, given any compact subset K of V -  F, 
one can hope to show that (K, f21 ) is symplectomorphic to a subset of (V - F, f2), 
which is all one needs in order to construct full fillings of(V - F, f2). In Proposition 
4.1.C, we show that this is indeed the case when V =  I E P " •  1 and 
F = (I~P"-1 x 112P 1) u II;P" x {Zo}. This proves Proposition 1.5.E. 

2.2 Fillings via fibrations 

In this section we apply the above results to prove Theorem 1.5.A on the existence 
of full fillings of certain products of projective spaces. The first result describes the 
general method. It will be convenient to write r for the subspace of H2(l ?, IR) which 
is general by the classes el . . . . .  ek. 

Theorem 2.2.A. Let ( V, J ) be a closed n-dimensional complex manifold and let ( V, J ) 
be its blow-up at k distinct points x t , . . . ,  Xk. Let  0 be a s~mplectic form on V which 
tames J. Suppose that there exists a holomorphic map f :  V ~ C P~- 1, which induces 
a biholomorphism on each exceptional divisor, and is such that 

Then, for every closed complex submanifold F c V - - { x l  . . . . .  Xk}, the manifold 
( V - F, f2) admits a full filling by k equal symplectic balls. 

Proof. Fix a real positive R, and set 

f2(R) = (1 + R)- ' (O*E2 + R f * a ) .  

Obviously, Y2(R) is symplectic form for each R which satisfies the assumptions of 
2.1.D, 2.1.E with )2 = (1 + R ) - I R .  Note that ).q---~ 1 when R ~  oo. Therefore 
( V -  F, f2) admits a packing by k equal standard balls of radius 2 for all 2 < 1. 

It remains to check that this packing is arbitrary full, that is 

Volume(V, I2) = k .  Volume(B(1), r = kn~/n!. 

Geometrically, this assertion is quite clear since the volume which is no t  filled by 
the balls is equal to the volume of Vwith respect to f2(R). As one can easily verify, 
the last quantity tends to 0 when R goes to infinity, because when R is very large the 
form is essentially a pull-back from ~P"-1 .  
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More formally, note tha t  

n! Volume(V, f2) = <If2]", [ V ] >  = <[O*f2]", [ I715.  

On  the other  hand,  because f is a b iholomorphism on each exceptional divisor, 
and  because cr integrates to ~ on each projective line, 

[ f*(cr)]  = [ O ' f 2 ] -  L ae~. 
q = l  

Therefore 

0 = < [ f * c r ] " ,  [17 ]>  = [ 6 ) * 0 ]  - -  ~ eq , I V ]  
q= l  

= <[o*o]", [~]> + k<I-~e~)", [P]> .  

Since eq is Poincar~ dual to an exceptional divisor, 

< ( -  ~eq)", [ 17] ) = - ~" = - n! Volume (B(1), co). 

Therefore 
Volume (V, f2) = k. Volume (B(I), ~,). 

This completes the proof  of the theorem. E] 

Proof  of  Theorem 1.5.A. Set m = ~ = 1  mq. Let xq = [Xqo: �9 . .  : xq,,q] be projective 
coordinates on ~pmq. Let kl . . . . .  ka be positive integers such tha t  
[ k l : . . .  : ka] = [ # x : . .  �9 : #a]. For  every 1 < q < d take polynomials  
Pqt(xq) . . . . .  Pq,,(xq) which are homogeneous  of degree kq. 

Consider a map  F:  V--. ~ P "  1, (xl  . . . . .  x n ) ~  [ F 1 : . .  �9 : F,,],  where 

d 

F r ( x ,  . . . . .  In) = H Pq,.(Xq). 
q - I  

A simple argument  shows that  if the polynomials {Pqr} a r e  yeneric then the map  
( m l +  " ' "  +ma)!  

F is well defined on  the complement  of exactly k ] " . . . . - k ~  '" 
ml ! " " ma! 

points, and moreover  F can be lifted to a m ap  f :  17--, r  where 17 is the 
blow-up of V at these points. Note  also that  f induces a b iholomorphism on each 
exceptional divisor. 

Without  loss of genericity we may assume that  gq = kq for the q = 1 . . . .  , d. We  
claim that  in this case 

h 

[O*Qu]  = [ f * a , , _ ~ ]  + ~ freq. 
q = l  

Indeed, set Q, = {pt}  x . . .  x {pt} I l l ] P "  x {pt} x . . .  x {pt}. Choosing Q, gen- 
erically we can see tha t  the restriction of F to Q, is a polynomial  map of degree k,. 
Therefore [ (F  IQ,)* or,,_ 1] = kram. Our  claim follows immediately. 

The result now follows from 2.2.A. [] 

2.3 Deformations and exceptional curves 

In this section we investigate the correspondence between curves on the blow-up of 
IgP 2 and packing inequalities for the unit ball. As in the complex case we shall 
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define a symplectic rational exceptional curve in a symplectic 4-manifold as a sym- 
plectically embedded 2-sphere with self-intersection number equal to - 1 .  

We start with the following result which is proved in [McD2, Lemma 3.1]. We 
shall sketch the proof here in order to illustrate certain properties of exceptional 
c u r v e s .  

Proposition 2.3.A. Let (M*, (2o) be a closed symplectic manifold admitting a sym- 
plectic rational exceptional curve in a class E c H2(M; 7/). Suppose that (2o is 
included into a family of symplectic forms (2t, t E [0; 1]. Then (M, Q1) admits a sym- 
plectic rational exceptional curve in the class E. In particular, ([Y21 ], E )  > O. 
Sketch of  the proof (see [McD2] for the details) Let J -  be the space of smooth 
almost complex structures on M. Let o ~ be the space of smooth paths 

{ J : [0; 1] - -+  J-[Jt is tamed by (2t } - 

Note that ~ is open in C~([0; 1], Y) ,  ~- is non-empty, and for every almost 
complex structure J on M which is tamed by (2 o there exists a path { J, } e ~ with 
J o = J. Denote by C a (2o-symplectic exceptional sphere in the class E. Choose 
J such that: 

�9 a v is tamed by (2o; 
�9 f is gs 
�9 C is J-holomorphic (see [McD2, p. 690]):. 

Now choose a generic path { Jt } E ~- with Jo = J- Because E" E = - 1, there is, by 
Positivity of intersections, at most one J-holomorphic E curve for each J. There- 
fore, if there is no Ja-holomorphic sphere in class E, Gromov's compactness 
theorem (see [G1]) implies that for some t* E [0; 13 there exists a Jt,-holomorphic 
cusp-curve in the class A1 + " " �9 + Aa = E. Denote by ca the first Chern class of 
M*. Since E is represented by an exceptional curve then Cl(E) = 1. Since d > 2, 
there exists d such that cl (Ae) < 0. Note that At is represented by a holomorphic 
sphere which appears in a 1-parametric generic family. Thus a dimension counting 
argument (see [McD2]) shows that 

1 + 2 ( c 1 ( A t ) + 2 ) - 6 > 0 ,  i.e. c l ( A t ) > 0 .  

This contradiction implies that there exists a fa-holomorphic sphere in the class E. 
Note finally that every Ja-holomorphic sphere in the class E is embedded [McD2, 
(2.6)]. Thus it is a Ol-symplectic rational exceptional curve. This completes the 
proof. [] 

Proof of Theorem 1.3.C. Assume that B(1), and therefore (CP 2, a), admits a sym- 
plectic packing by k standard balls of radii 2a , . .  �9 2k. Let 17 be the blow-up of 
~ p 2  at k points, which are chosen so that the exceptional vector (d• . . . . .  mk) is 
represented by a holomorphic rational exceptional curve C in V. According to 
2.1.B there exists a family ~t, t E [0; 1], of symplectic forms on 17 such that Oo tames 
the complex structure on V and 

k 

[ ~ a ]  = xa - -  Z x22eq �9 
q = l  

Since ~o tames the complex structure on 17, C is a symplectic exceptional curve with 
respect to (2o. Applying 2.3.A we have that ( [Oa] ,  [ C ] )  > 0 ,  that is 
d - ~ =  1 mq 2q 2 > 0. This completes the proof. [] 
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Remark 2.3.B. A similar argument  works for curves C of higher genus. However, 
one cannot  get any new packing inequalities for k equal balls in B4(1) or ~ p 2  in 
this way. To see this, note first that  we may suppose that  k > 9 since our  previous 
results show that  exceptional curves detect all packing inequalities for k < 9. We 
must  consider the moduli  space of parametr ized ( J , j ) - h o l o m o r p h i c  curves 
f :  (Sg, j ) ~ (Vk, J )  as j varies in Teichmfiller space and  J varies in some suitable 
space of almost complex structures on Vk. In order for a curve C to have such 
a parametr izat ion for a generic almost complex structure ~ the formal dimension 
of the moduli  space of all unparametr ized J-curves must  be non-negative. This 
dimension is just  the Fredholm index of a suitable operator,  and has the 
formula 2 ( c l ( C ) + g - 1 ) .  (See I-McD2, w for more details.) Thus, if 
[C ]  = dA - Z~=x mqEq, and N = 2 ~  =1 ms one has: 

�9 3 d - - N >  1 - 9 ;  
�9 (d 2 - ~ m Z q ) - ( 3 d - - N )  > 2 (g -1 ) ;  

where the second inequality comes from the adjunct ion formula 

g < = l +  

Using this, one easily finds that  

1 /2 (c .  c - cl ( c ) ) .  

d 1 

N = x / k  ' 

which, as we saw in 1.4, corresponds to a packing inequality which is worse than  
the volume inequality when k > 9. 

3 Branched coverings and symplectic packings 

3.1 Symplectic packings via branched coverings 

Recall tha t  a covering ct : X ~ Y which is branched over a subset Q ~ Y is called 
regular if the action of the group of deck t ransformations associated with the 
covering ct : X - ct- I(Q) ~ y _  Q is free and discrete. 

In this section, we construct  full fillings using the following result. 

Theorem 3.1.A. Let (X, f2, J)  be a closed complex symplectic manifold of complex 
dimension n such that f2 tames J. Let ~ : X ~ ~ P" be a regular holomorphic branched 
covering of order k. Assume that [~*a]  = [ 0 ] .  Then for every closed complex 
submanifold F, the manifold ( X -  F, (2) admits a full symplectic filling by k equal 
standard balls. 

The basic idea of the proof  is very simple. If Q ~ ~ P "  is the branching  locus of ct, 
one first shows that  CP"  - (Q u F)  can be fully filled by one ball. Since 

ct:X -- c t -X(Q)~ II~P" - Q 

is a k-fold cover, this ball lifts to k disjoint balls in X. The only problem is tha t  
does not  preserve the symplectic form, so that  the lifted balls need not  be 

symplectically embedded. However, because ct is holomorphic,  it preserves the 
symplectic forms up to isotopy, and so one can isotop the lifted balls to make them 
symplectic. 
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Full details of this argument are given in 3.2. The rest of this section is devoted 
to examples. 

Example 3.1.B (cf.l.5.C) Consider a holomorphic map 

c~ : C P "  --* IEP" ,  

[ X o : . . . : ~ ]  ~ [ x ~ : . . . : x ~ ] .  

Obviously c~ is a regular branched covering of order km. Hence IEP m - II?P m- 1, and 
therefore B2"(1), admits a full filling by k m equal symplectic balls. 

Example 3.1.C (cf.l.5.D) We shall identify ~ P "  with the projectivization of the 
space of homogeneous polynomials of two variables z, w of degree m. Define a map 

a: x~ff~Pl ~ ~ P  " ,  

([X,o : x,,  ] . . . . .  [X~o : x . ,  ]) ~ ~ (X~oZ - X ~ l W ) .  
d = l  

Obviously a is a regular holomorphic branched covering of order m!. Therefore the 
product ofm copies of(t~P l, a) admits a full filling by m! equal symplectic balls. It is 
clear from the proof  of 3.1.A that each of these balls gives a full filling of II2P". 
Hence the volume of 112P" is 1/m! times the volume of the product, and so must 
equal n"/m!. 

3.2 Symplectic branched coverings (cf. [G2, G-S])  

Given a branched covering, the pull-back of a symplectic form degenerates near the 
branching locus. The next result shows that such a degeneration disappears after 
a suitably chosen perturbation. 

Proposition 3.2.A. Let (X, f2, J) be closed symplectic complex manifolds of the same 
dimension such that (2, s tame J and f respectively. Let c~ : X -~ Y be a holomorphic 
coverin 9 which is branched over a subset Q c Y. Suppose that [c~*(2] = [(2]. Then 
for every neighborhood ql of  Q there exists a symplectic form z on X with the followin9 
properties: 

1) "clx-~-,m2 = ct*f2[x_, ,(~); 
2) z tames J; 
3) [~] = Eft]. 

Proof. Set ~ = cc  l(q/). Let ~ '  be a neighborhood of ~- I (Q)  such that # '  c ~/. 
Fix a Riemannian metric on X. Choose 3 > 0 such that 

~*n(r i r  __> 61r 

for all ~ T(X -~l f ' ) .  Let f b e a  bump function on X such that f = 0 on X - " U  
and f = 1 on ~v" '. Note that  f2 - ~*f2 = d2 for some one-form 2 on X. Set 

r = ~*g7 + xd(f2), where x > 0. 
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We claim that t is the needed symplectic form provided x is sufficiently small. Let 
us divide the proof in several steps. 

1) Observe that t is closed and cohomologous to f2. Also it coincides with ~*f2 on 
X _ z e  ~. 
2) Outside 3r we have 

t(4, 74) >_- 61412 - ~:c1412 , 

where c depends only on f and 2. Therefore choosing ~c sufficiently small we get 
that t tames J outside ~+'. 
3) Inside 3r ~', t = c~*f2 + ~(~ - ~*f2) = (1 - x)c~*f2 + x~.  Therefore t tames . l in-  
side ~/r, if x < 1. 

Combining the results of (I-3), we obtain the assertion of the proposition. [] 

Proof of Theorem 3.1.A. Fix a hyperplane S c CP" and e > 0. There exists 
a neighborhood 3q r of S such that if  P" -~W admits a symplectic embedding ~0 of 
the ball BZn(1 - e ) .  

Suppose that the covering ~ : X ~ i fP" is branched over a set Q c ifP". Since 
~(F) w Q + if;P" there exists a complex automorphism, say F of if  P" such that 
F(S)  = S and F(ct(F)u Q ) ~  ~ Set R = F(Q), fl = Fo~. Then f l : X ~  if  P" is 
a holomorphic regular covering branched over R. Let q / b e  a neighborhood of 
R such that q / =  ~/V. Choose a symplectic form r on X associated with fl and 
q /accord ing  to 3.2.A. Denote by G the group of deck transformations acting on 
X - r - I ( R ) .  Obviously G acts by t-preserving diffeomorphisms on X - fi-1(~r 
Let ~: B 2n (1 - e,) ~ X - r -  1 (~W) be the lift of q. Then ~ is a symplectic embedding 
with respect to r. Moreover, 

Image(~p) c~ Image(got~) = 0 for every g e G  

because of the regularity of/3. Thus L[0~a g ~ ?p is a symplectic embedding of k = # (G) 
balls of radii (1 - e) into (X - f l t  (W'), t). Since F ~ r -  I(~W) by construction, we 
have the desired embedding into (X - F, r). 

It remains to show that we may replace t here by ~2. By construction, the forms 
and t2 are cohomologous and both tame J. Thus they may be joined by the 

isotopy f2t = (1 - t)f2 + tt, t e [0; 1]. Because F is complex, the restriction of each 
form Ot to F is symplectic. Therefore the Moser stability theorem of 4.1.B implies 
that (X, t) and (X, f2) are symplectomorphic by a symplectomorphism which 
preserves F. Hence (X - F, f2) admits a symplectic filling by k symplectic balls of 
equal radius (1 - e ) .  

Note that Volume (X, ~2) = k Volume (if P", a) = k Volume (B(1), ~o). Therefore 
our filling can be made arbitrarily full. This completes the proof. [] 

4 Symplectic isotopies of subvarieties 

If we want to fill open manifolds such as products of balls, it is useful to generalise 
results like 2.1.E and 3.1.A above to the case when F is a complex subvariety rather 
than a submanifold. The missing step is the analog of the symplectic neighborhood 
theorem for such subvarieties. In this section we first discuss the usual theorem, and 
then discuss an extension to subvarieties. Our main result is Proposition 4.1.C 
below which is used for the proof of 1.5.E. 
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Theorem 4.1.A (The symplectic neighborhood theorem) Suppose given two sym- 
plectic embeddings ~bi : (1, co)~ (Vii, (2i), i = O, 1 and an isomorphism �9 between the 
pull-back symplectic vector bundles (qb*(TVi), ~b*((21)). Then, any diffeomorphism 
from a neighborhood No of ~bo(F ) in Vo onto a neighborhood N1 of ~b 1 (F) in V 1 which 
induces the given bundle isomorphism ~ is isotopic to a symplectomorphism, through 
maps of pairs (No, q~o(F))--* (I1, ~bl(F)) which induce cb. 

This is the well-known Darboux-Weinstein theorem. It may be proved by Moser's 
argument (which is called the homotopic method in [A-G]): see [A-G, 2.1.5]. 

Corollary 4.1.B (Moser stability for pairs) Let 12~, 0 < t < 1, be an isotopy of  
symplectic forms on a compact manifold V which are all non-degenerate on the 
submanifold F. Then there is a family of diffeomorphisms F, : ( V, F) ~ (V, F) such that 
Fo = ~ and F ' f21  = (20. 

Sketch of proof When F --- 0, this is the usual Moser stability theorem, and may be 
proved by the homotopic method quoted above. Therefore, by applying it to the 
restrictions (2,lrr, we obtain an isotopy g~ of F such that g* ((2,) = (20 for all t. Let 
0t :(V, F) ~ (V, F), 0 < t < 1 be an extension ofgt. It is not hard to see that we may 
choose 0t in the directions normal to F so that, for each t, 0~ also induces an 
isomorphism between the symplectic vector bundles (TVIr,  (20) ~ (TVIr, (2~). We 
are now essentially reduced to the situation considered in the symplectic neighbor- 
hood theorem, and the proof may be completed by the homotopy argument of 
[A-G]. [] 

We would like an analog of this corollary which holds when F has singularities. 
The part of the above proof which causes difficulties is the construction of 
a suitable extension ~ .  We will consider the simplest case here, assuming that F is 
the union of two complex submanifolds A, B of V which intersect transversally. In 
this case, it is easy to see that 4.1.B cannot hold as stated. The problem occurs along 
the intersection K -- A c~ B. For example, consider the (2t-symplectic orthogonal 
of TK in TA which we will denote by T K X ~ n  TA, and the similar bundle 
T K  • c~ TB. If these are symplectically orthogonal when t = 0, they must remain so 
under any isotopy of the type (F f  1)*(2o, while an arbitrary isotopy (2~ need not 
have this property. 

However, for our purposes we do not need the full strength of 4.1.B. We are 
given an isotopy (2t, 0 < t _-< 1, of K/ihter forms where ~o is the given form and 
there is a packing of ( V - F ,  (21). In order to get a corresponding packing of 
( V - - F ,  (2o), it would clearly suffice to find a family of diffeomorphisms Ft, 
0 _< t < l, such that F*(t2t) = (2o outside a neighborhood of F which is so small 
that it is disjoint from the bails in the packing. 

A geometric approach to this problem is given in Lemma 3.11 of [McD4]. Here 
we present a more explicit argument which works in the special case of interest to 
us, and exploits the fact that B has a trivial normal bundle. (In fact, all we need is 
that K have a trivial normal bundle in A.) 

Proposition 4.1.C. Let V--- ~ P ~ •  2, A = ~ P n - l  x S  2, B =  ff~P"x {zo} and 
F = A u B, and suppose that (2t, 0 <= t <= l; is an isotopy ofsymplecticforms starting 
at the standard form (2o = t~, ~ a I . I f  (2t is non-degenerate on A and B for all t, 
then, for every neighborhood ~ of  K = A r~B there are diffeomorphisms 
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Ft : V--* V ~ V, O < t < 1 such that 
�9 F o = ~ ;  
�9 Ft (F)  = F; 
�9 F*(f2o) = f2, outside ql. 

Proo f  We divide the proof  into several steps. We will call a deformation Ft which 
satisfies the first two condit ions above an allowable deformation. 

1) Let p, q be Darboux  coordinates in a ne ighborhood D of the point  z0 in S 2, 
and let a denote the s tandard  symplectic form on B. If f, g are functions on B which 
vanish on K, consider the 2-form 

co( f  g) = dp A dq + a + dp /', d f  + dg ^ dq ,  

on I~P" x D. It  is easy to check tha t  this is symplectic with the correct or ientat ion iff 

1 + ( f ,g}  > 0 ,  

where {, } denotes the Poisson bracket  (see [A-G])  on B. We will say that  pairs of 
functions (f, g) which satisfy these conditions are "good". 

2) We next claim tha t  there is an allowable deformation which takes the path  
t2, into a pa th  O't which equals the normalized path co(f ,  g,) near  K. To see this, 
first observe that  by successive application of Corollary 4.1.B to K, A and  B, we 
may arrange that  the restriction of the family f2 t to A and to B is constant.  Then, 
there are closed 1-forms at and fit on B such tha t  

s = dp ^ dq + a + dp /', ~ + fit /x dq 

on T V b : .  Because f2 t is s tandard  on A, the restrictions of at and  fit to K must  
vanish, and hence these forms may be written as dft, dgt for suitable functions ft, #t 
on B which vanish on K. Thus f2 t = co(ft, 9,) on  TxV at all points x e K .  

We claim that,  for each t, there is an allowable isotopy Gt, s of V such that  
G* 1 (f2t) = c o ( f ,  gt) near  K. To see this, consider the path  of symplectic forms 

zt, s =  sOt + ( 1 - s ) c o ( f , a t ) ,  0 < s - <  1. 

The relative Poincare  lemma* implies that  there are 1-forms Pt,, which vanish on 
A w B and are such that  

Ozt. 
= dpt ' ~ �9 

Os 

The usual Moser  argument  now constructs the desired isotopy near K. Finally, one 
extends this to an allowable ambient  isotopy of V. 

3) Let Zt be an isotopy of symplectic forms which starts at f~o and such that  all 
Zt are s tandard (that is coincide with co(0, 0)) near K. Then Moser 's  argument  
implies that  there exists an allowable deformation Ft such that  F *  t2 0 = Z,. 

Assume for a momen t  tha t  we have a deformation of the original pa th  f2t to 
Zt which is supported in a ne ighborhood  q/. Then outside q/ each form F * O o  
coincides with f2t, and  hence the diffeomorphisms Ft satisfy all the requirements of 
the proposi t ion.  

As we shall see in the next step such a deformation exists. 

* The proof of this is not so obvious: for details and further discussion see [McR]. In fact, all we 
need here is that the deformation from t2~ to f2't has support near K, which will be achieved if 
P~a= 0on K. 
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4) In view of step 2 we can assume without loss of generality that O t coincides 
with some o ( f , ,  gt) near K. Hence in order to find the deformation of step 3 it 
suffices to show that each good pair ( f  9) can be deformed through 9god pairs to 
a good pair which vanishes near K. Moreover, we need this deformation to depend 
smoothly on f, 9 and to have support in the given neighborhood q / o f  K. 

Let R be a smooth function on B which measures the square of the distance 
from K. Thus R vanishes on K together with its first derivatives, and R > 0 outside 
K. We may suppose that the set where R < 1 is contained in 0g. We shall look for 
a deformation of the form (Hs(R) f  Hs(R)9), 0 <= s < 1, where H~ = (1 - s) + sH 
for a suitable cut-off function H which vanishes near 0 and equals 1 for R _-> 1. 

The main observation is that the function 

E = 9 { f  R} + f { R ,  9} 

vanishes on K together with its first derivatives. Therefore, for some c > 0 and u, 
0 < u < 1, there is an estimate 

E ( x )  > - c R ( x ) ,  

which holds when R(x) < u. Choose 6 between 0 and 1 so that 1 + { f  9} > 6 when 
R < 1, and then choose H so that H = 1 for R > u, and 

H' < 6/2cR. 

(This is possible since So 1/R = ~ . )  
We claim that H is as needed, that is, it gives good pairs (H j ,  H~9) for all s. To 

see this, observe that 

1 + { H j ,  H~g} = 1 + ( n ~ ) 2 { f g }  + H~H'~E. 

Since 0 < H~ < 1, and H" = 0 when R > u, 

1 + (Hs )2{ fg}  >1 6 
and 

H~H'~E >= - cRsH~H' > - cRH'  > - ~/2, 

by construction. Our claim follows. This completes the proof. [] 

5 Blowing-up and down 

This section proves the results stated in 2.1. 

5.1 Local models 

Let (~", o ,  i) and ( ~ P " -  l, a , j  ) be linear and projective complex spaces respec- 
tively endowed with the standard K/ihler structures. We shall assume that 
( [ a ] , [ C P l ] ) = n .  Let . L P c ~ E " x ~ P  "-1 be the incidence relation, that is 

= {(z, : ) [ z e : } .  Denote by prl and pr2 the natural projections of ~ to C" and 
~ p , - I  respectively. Note that pr~ induces a biholomorphism ~ - p r i - l ( 0 )  
~ "  - {0}, and prz is a complex line bundle whose zero section is identified with 
pri-l(0). Thus ~ is the blow up of ~"  at the origin. We write B(2) for the ball 
{ze~" l [z [  < 2}, and set &~ = pr~-l(B(2)). For  ~, 2 > 0 define a K/ihler form 
p(x, 2) on ~ as x2pr*~o + 22pr*a. 
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Proposition 5.1.A. For every e > 0, 2 > 0 there exists a Kfihler form f = f(e,, 2) on 
=LP such that the following holds: 

�9 ~ = pr*(220)) on ~ - ~ ( 1  + e.); 
�9 "g = p(1, 2) on ~LP(6)for some 6 > O. 

Moreover ~ and 6 can be chosen smooth with respect to e and 2. 

Proposition 5.1.B. For every e > O, 6 > O, 2 > 0 there exists a Kfihler .form 
z = z(e, 6, 2) on C" such that the following holds: 

�9 pr*(r)  = p(6, 2) on ~ - A~ + ~); 
�9 z = 220) on B(1). 

Moreover, z can be chosen smooth with respect to e, 6, 2. 

Before proving the propositions,  let us introduce the following notion. An embed- 
ding F : I ~ " -  {0} ~112" is called monotone if in spherical coordinates 
(u, r)e S z" i • (0; + oo) it can be written as (u, r) ~-~ (u,f(r)) where f is a strictly 
increasing function. The following two observations are impor tan t  for our  pur- 
poses. 

�9 For every monotone embedding F the form F 'co  is Kfihler (with respect to the 
usual complex structure i). 
To see this, observe that  F*0) is K/ihler at the point  x iff the tangent  space to 
x = (u, r) has a basis Vl, iv1 . . . . .  v,, iv, such that  F*0) vanishes on all pairs except 
those of the form (vq, ivq). Such a basis may be found by taking v~ to point  in the 
radial direction, and vz . . . . .  v, to be a basis for the complex vector space 
TuS2n i ~ iTuSZn - 1. 

�9 There exists a smooth family of  monotone embeddings ha : t12" - {0}  
117" - B(2) such that p r * h ~ o  = p(1, 2). 
This remark is due to [G-S].  In polar  coordinates, we may take ha to be the map  
ha(u, r) = (u, (r 2 + 22)1/2). 

Proof  of  Proposition 5.1.A. Take 6 > 0 such that  ha(B(6)) c B(2 + 2e/2). Using 
a suitable smoothing procedure, one can find a monotone  embedding F such that  

F ( z ) = 2 z  for [ z l >  1 +e., and 

F(z )=ha(z )  for Iz 1=<6. 

Obviously the form f = prl*(F*co) has the needed properties. [] 

Proof o f  Proposition 5.I.B. Note  that  p(6, 2) = 62p(l, v) for v = 2/6. Using a suit- 
able smoothing procedure, one can find a monotone  embedding G such that  

G ( z ) = v z  f o r l z l <  1, and 

G(z)=h~  f o r l z l <  l + e .  

Obviously, the form r = 62G'0) has the needed properties. [] 

5.2 Global setting 

Let (V, J )  be an almost  complex manifold such that  J is integrable near the 
k points xl  . . . .  , x~, and let O : ( V ,  J ) ~  (V, J )  be its blow-up at these points. 
Throughou t  the following discussion, we will assume that  J and the points xq are 
fixed. Consider  a holomorphic  embedding ~0 k = H q = l  (~0q : LI(B(1 + 2eq), i) ~ (v, J )  
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such that q~q(0) = Xq for 1 N q N k and eq > 0. (Note that J has to be integrable on 
the image of (p.) Denote by fpq the lifting of q~q to a holomorphic map 
s162 + 2eq)~ V such that the following diagram is commutative: 

s162 + 2eq) %, P 
~,pr t +t9 

B(l+2e.q)  ~", V. 

5.3 Symplectic blowing-up 

Suppose that V is endowed with a symplectic form ~ such that ~0" D = 22m for 
some 2q > 0. Define a symplectic form f2 on V as follows: 

k { O*~2 on I ? -  U (pq(s + eq)) 

(~*)-l~(e.q,2q) on ~q(L,r + 2~q)) for all q = 1 . . . . .  n ,  

where ~ is defined in 5.1.A. We shall say that Q is obtained from ~ by the symplectic 
blowing-up associated with ~p. Let us describe several properties of the symplectic 
blow-up which immediately follow from 5.1.A. 

5.3.A. If Q tames J (resp. ~2 is Kiihler) then ~ tames J (resp. ~ is K~hler). 

5.3.B. Recall that Hz(V, IR) = H2(V, R) @ ~, where o ~ is a real linear vector space 
generated by the classes el . . . .  , ek which are Poincar6 dual to the classes of 
exceptional divisors O -  1(x1),. �9 �9 O -  ~(Xk). With these notations 

5.3.C. For each q =  1 , . . .  ,k  there exists c~q > 0  such that 0 " ~ =  p(1,2q) on 
~(6q). 

5.3.D. If t2 and q) are included in smooth families t~ and qh, which satisfy the given 
hypotheses for all t, then ~ can be included into a smooth family ~t  of symplectic 
forms on 17 such that for every t properties 5.3.A-5.3.C hold. 

5.4 Symplectic blowing-down 

Suppose now that 17 is endowed with a symplectic form, say t~ such that 
(o*s = p(~q, 2q) for some 2q > 0, 6q > 0 (q = 1 . . . k). 

Define a symplectic form ~ on V as follows: 

( o * ) - ' ~  o n  v -  U~=, ~0~(B(1 + ~)); 
O =  

(q~*)- lz(%,6q,2q) on ~oq(B(1 + 2~)) for  all q = 1 . . . . .  k ,  

where z is defined in 5.1.B. We shall say that f2 is obtained from t~ by the symplectic 
blowing down associated with the embedding q). Let us describe several properties 
of the symplectic blow-down which immediately follow from 5.1.B. 
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5.4.A. If f2 tames J (resp. f) is K~ihler) then f2 tames J (resp. f2 is K~ihler); 

5.4.B. The cohomology class of 12 satisfies the following relation: 

[ 0 ]  - [ o * t ? ]  e ~  ; 

5.4.C. For each q = 1 . . . . .  k, tp*t2 = 22o on B(1). In other words (V, Q) admits 
a symplectic embedding of k disjoint standard symplectic balls of radii 21 , . .  �9 2k. 

5.4.D. If f2 and cp are included into smooth families t), and q~t, which satisfy the 
given hypotheses for all t, then t~ can be included into a smooth family O, of 
symplectic forms on V such that for every t properties 5.4.A-5.4.C hold. 

5.5 Normalization 

In order to carry out the blowing-up construction described above we have to 
choose an auxiliary almost complex structure J on V, and start with a symplectic 
and holomorphic embedding of a ball into V. The next result shows how to 
transform an arbitrary symplectic embedding into one with the required properties 
by a suitable perturbation of the symplectic structure. It is a slightly sharper form 
of Proposition 2.1.A. 

Proposition 5.5.A. Let q~ : (B(~), ~) ~ (V, ~ ) be a symplectic embedding, and let J be 
an almost complex structure on V which is tamed by (2 and is integrable near the point 
cp(O). Then for every compact subset K ~ V -  ~p(O) there exist a number 6' ~(0, 3), 
a symplectic form (2' on V which is isotopic to f2, and a symplectic embedding 
tO' : (B(6), co) ~ (V, f2') with the following properties: 

�9 q0'lBo, ) is holomorphic; 
�9 f2' tames J and coincides with (2 on K. 

For the proof of the proposition we need the following 

Lemma 5.5.B. Let f2 be a symplectic form on B(1) which tames the standard complex 
structure i. Then there exists a new symplectic form, say Q' on B(1) with the following 
properties: 

�9 Q' coincides with ~2 near the boundary of the ball; 
�9 C2' tames i; 
�9 (2' is i-standard near 0, i.e. it is Ki~hler, and the associated metric is fiat. 

Proof. We divide the proof into two steps. 
1) We claim that for every x > 1 and every 1 > e > 0 there exists a Kiihler 

form, say z~ on B(1) which is equal to /s in B(e/2x) and coincides with g2~ near 
the boundary. Indeed, take a map h, which is monotone in the sense of 5.1.B, such 
that h(z)= (~/e)z for zeB(e/2~) and h is equal to the identity map near the 
boundary. Then the form z~ = h*(e2o) is as needed. 

2) Let p be a bump function on B(1) which is equal to 1 near the origin and 
vanishes near the boundary. Choose e > 0 so that ~ -  e2r tames i, and set 
Pk(Z) = p(2OC/e)Z). Finally, denote by fl a primitive of ~,  that is ~ = dfl, and 
consider 

~2' = ~ + % -~2~o -- d(pKfl). 

We claim that f2' has the desired properties provided ~ is sufficiently large. 
Indeed, t2' coincides with t2 near the boundary, and, near the origin, is equal to 
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( / ( 2  - -  g 2 ) O ) ,  and hence J-standard. Moreover, I2' tames i outside B(e/2/s due to our 
assumption. It remains to check that this is true also inside B(e/2x). 

Note that inside B(e/2/s 

I2' = (x 2 -e2)~o + (1 -p~) f2  -2(~/e)dp A ft. 

Therefore for every non-zero vector { we have 

s i~) > ((/s _ e2) _ c(K/g))l{j2, 

where c is a positive constant which depends only on x and p. Thus f2' tames 
i provided/s is sufficiently large. This completes the proof. [] 

Proof of Proposition 5.5./t. In view of 5.5.B we can assume that f2 is J-standard 
near the point q9(0) and therefore by composing ~0 with a suitable symplectomor- 
phism of B(6) we can achieve that q~,oi = Joq~, at the origin {0}. Since J is 
integrable near q~(0), there exists a diffeomorphism ff of l /such that r = ~(0) 
and 

~,, o ~o, oio ~o,~ t = Jo~ , ,  

in a sufficiently small neighborhood of ~p(0). Take ~ ' =  (~*) lt2, ~ ' =  ~,o~o. 
Obviously, ~'  is symplectic on B(3) and holomorphic on B(6') for some 6' e(0, 3). 
Moreover, qJ can be chosen to have support in V - K and to be arbitrarily C 1-close 
to the identity. This implies the last assertion of the proposition. [] 
Proof of Proposition 2.1.B. By the symplectic neighborhood theorem for hypersur- 
faces (see 4.1.A), we can extend the original packing tp to a symplectic embedding of 
balls of radii 2q + e, for some small e > 0. The normalization procedure described 
in 5.5.A above allows us to assume without loss of generality that ~pq is holomor- 
phic on B(3) for some 6 > 0 and each q = 1 , . . . ,  k. 

Let S,.q : B(2q + e) ~ B(2q + 0 be a family of diffeomorphisms with the follow- 
ing properties: 

�9 S o = q :  
�9 S,,q is equal to the identity near OB(2q + 5); 
�9 S*qco = #q(t)co on B(6), where #q(1) = 22(1 + ~,)26 2 for some ? > 0. 

�9 k 1 Let Ft : V ~ V be the extens,on of LIq = t q~q ~ st. q o q~q by the identity map, and 

= - set ~, = F*  Q. Set 0q(z) q~q ~ z B(1 + ? ) ~  V. Obviously, Oq is holomor- 

phic and 
6 2 

Taking the blow-up, say ~ of the family Qt associated to ~0 = [ I  Oq we obtain 
a pseudo-isotopy which satisfies the required conditions. [] 

Proof of Proposition 2.1.C. We will assume that ~ is constructed from a symplectic 
and holomorphic embedding: 

k 

q' = H ~o~:LI(B(1 +2eq),1r176 
q = l  

as in 5.3. According to 5.3.C there exists 6 > 0 such that for each q = 1 . . . . .  k we 
have 

0 * ~ = p ( 1 , / s  o n e ' ( f ) .  
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The symplectic neighborhoodtheorem implies that there exist 6' > 0 and a family 
of diffeomorphisms Ft: V--* 11, t e I-0; 1] with the following properties: 

�9 F o = ~ ;  
�9 Ft preserves the except ional  divisors for all t; 
�9 F o r  a l l q a n d  - *  * -  t, tpq F t  f2, = p(1, 2q(t)) on  ~'(6 ') .  (Note  tha t  2q(0) = xq.) 

6' 
Set R ( z ) = ~  z, and  set ~k~ = ~oq o R : B ( 1  + ~ ) ~  II. Let  f2 t be the  symplect ic  

b l o w - d o w n  of the  family F *  0 t  associa ted  wi th  #/ k = LIq = 1 ~bq. N o t e  that  each form 
of  this family is c o h o m o l o g o u s  to Oo in view of  5.4.B. Accord ing  to 5.4, O o tames  
J and  [ t2o]  = [f2]. Therefore  f2 and  O1 are isotopic.  Moreover ,  (II, O1) admi ts  

�9 �9 k a symplect lc  e m b e d d i n g  of  ]__[q = i (B(2q), ~o) due  to 5.4.C. Combin ing  these facts we 
ob ta in  the  needed  assertion�9 [] 

Acknowledgements. The work on this paper was initiated during our stay at Ruhr-Universit/it, 
Bochum in July, 1991 (this visit was partially supported by DSF-SFB 237). We would like to 
express our deep gratitude to Helmut Hofer for the hospitality and for extremely stimulating 
discussions. 

Special thanks to Ron Livin6 for giving us the reference to Nagata's paper I-N]. We are 
grateful also to Michele Audin, Yael Karshon, Andrey Reznikov, Eugenii Shustin, and Alexey 
Skorobogatov for various useful consultations. 

And we thank Mikhael Gromov for critical remarks improving the quality of the exposition. 

References 

[A-G] 

[D] 

[E-HI 

[F-M] 

[F-P] 

[G1] 

[G23 

[G-S] 

[McD1] 

[McD2] 

[McD3] 

[McD4] 

[McR] 
[N] 
[T] 

Arnold, V.I., Givental, A.B.: Symplectic geometry. In: Arnold, V.I., Novikov, S.P. 
(eds.) Dynamical Systems-4. (Encycl. Math. Sci., vol. 4, pp. 1-136) Berlin Heidelberg 
New York: Springer 1990 
Demazure, M.: Surfaces de del Pezzo II-V. In: Demazure, M. et al. (eds.) Srminaire 
sur les singularitrs des surfaces, Palaiseau 1976-1977. (Lect. Notes Math., vol. 777, 
pp. 23-69) Berlin Heidelberg New York: Springer 1980 
Ekeland, I., Hofer, H.: Symplectic topology and Hamiltonian dynamics I, II. Math. 
Z. 200, 355-378 (1989); 203, 553-568 (1990) 
Friedman, R., Morgan, J.: On the diffeomorphism types of certain algebraic surfaces 
I. J. Differ. Geom. 27, 297-369 (1988) 
Fefferman, C., Phong, D.: The uncertainty principle and sharp G~trding inequalities. 
Commun. Pure Appl. Math. 34, 285-331 (1981) 
Gromov, M.: Pseudo-holomorphic curves in symplectic manifolds. Invent. Math. 
82, 307-347 (1985) 
Gromov, M�9 Partial differential relations. Berlin Heidelberg New York: Springer 
1986 
Guillemin, V., Sternberg, S.: Birational equivalence in symplectic category. Invent. 
Math. 97, 485-522 (1989) 
McDuff, D.: Blow-ups and symplectic embeddings in dimension 4. Topology 30, 
409-421 (1991) 
McDuff, D.: The structure of rational and ruled symplectic 4-manifolds. J. Am. 
Math. Soc. 3, 679-712 (1990) 
McDuff, D.: Remarks on the uniqueness of symplectic blowing-up. In: Proceedings 
of 1990 Warwick Symposium. Cambridge: Cambridge University Press 1993 (to 
appear) 
McDuff, D.: Notes on Ruled Symplectic 4-manifolds. (Preprint 1992); Trans. Am. 
Math. Soc. (to appear) 
A. McCrae, Ph.D. thesis, Stony Brook, in preparation. 
Nagata, M.: On the 14-th problem of Hilbert. Am. J. Math. 81,766-772 (1959) 
Traynor, L.: In preparation 


