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Let X be a (2n + 1)-dimensional complex manifold. A (holomorphic) contact  
structure on X is a 2n-dimensional non-integrable holomorphic  distr ibution on X. 
Dually, we can think of a contact  structure on X as a holomorphic  line subbundle  
L of f2} (the holomorphic  cotangent  bundle of X) such that  if 0 is a local section of 
L, then 0 A (dO)" is everywhere non-zero. This, in particular, implies tha t  the 
canonical  bundle Kx "~ (n + 1)L, where Kx = A 2"+ lf21x is the canonical line bundle  
of X. 

The purpose of this paper  is to give a complete classification of complex 
projective contact  threefolds. Specifically, we show the following: 

Theorem 2 I f  X is a complex projective contact threefold, then X is isomorphic to 
either (~I~ 3, or  I~ (TM) for some smooth projective surface M. 

From now on, unless specifically stated, X will be a complex contact  3-fold and 
L will be the contact  line bundle. Sometimes we use the pair (X, L) to mean the 
same thing. In particular, we have Kx = 2L. Before we prove the above theorem, let 
us look at some examples of complex contact  threefolds. 

Example 1 It is well-known that  there is a holomorphic  contact  structure on 
1P(TM) for any complex manifold M. By IP(TM) we mean T*\{0}/ •*  instead of 
TM\{0}/II2*. In particular, P(TM) has a holomorphic  contact  s tructure if M is 
a complex surface. 

Example 2 The old-dimensional  complex projective space II?P z"+ 1 has a contact  
structure. The contact  structure is induced from the natural  symplectic structure on 
1122"+2. The associated contact  line bundle is (~.r . . . .  ( - 2). In particular, ~ I P  3 has 
a contact  structure with contact  line bundle (9f~3( - 2). 

Example 3 More  generally, Salamon [Sa] showed that  the twistor space Z of 
a quaternionic-K/ihler  manifold (M 4", g) (n > 2) is a complex (2n + 1)-dimensional 
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contact manifold if the scalar curvature of M is non-zero. Recall that (M ~", 9) is 
called a quaternionic-K/ihler manifold if its holonomy group is contained in 
Sp(n)Sp(1). For  example, NIP" is a quaternionic-K/ihler manifold and its twistor 
space is just IEIP 2"+ ~. Salamon's argument can be easily extended to the case of 
se![-dual Einstein Riemannian four-manifolds (see the argument on p. 416 in [Bes]). 
Therefore if(M 4, .q) is a self-dual Einstein Riemannian four-manifold with non-zero 
scalar curvature, then its twistor space Z is a complex contact threefold. Moreover, 
if Z is K/ihler, then cl(Z) > 0 (see Hi]), hence, Z is necessarily projective. 

Before we prove Theorem 2, we need the following lemma. 

Lemma I Let X be a compact K~hler manifold with c l (X)= O. Then X has no 
holomorphic contact structure. 

Following a comment by the referee, the original proof of the above lemma can be 
simplified. Therefore we will adopt the simplified proof, which is kindly provided 
by the referee. 

Proof Suppose that X admits a holomorphic contact structure with L as its contact 
line bundle. By Calabi-Yau theorem, X admits a Ricci-flat K~ihler metric. Since 
Kx --- (n + 1)L, L is a flat line bundle with the induced hermitian metric. We can 
think of the contact structure on X as a holomorphic section 0 of O~| Then 0 is 
a covariant constant section by the standard Bochner technique. Let us choose an 
arbitrary locally defined covariant constant contact 1-form, which is also denoted 
by 0. Since the metric connection is torsion free, dO = 0, which clearly contradicts 
the fact that 0 defines a holomorphic contact structure. Hence we are done. 

Recall that a line bundle is called nef if its intersection number with every 
effective curve is non-negative. Now we can start proving the main result of this 
paper. 

Theorem 2 I f  (X, L) is a complex projective contact threefold, then X is 
either isomorphic to ~IP3 or X ~-IP(TM) for some smooth complex projective 
surface M. 

Proof We first claim generally that if (X, L) is a complex projective contact 
manifold of any dimension n, then its Kodaira dimension •(X) =< 0. This was 
essentially proved by Bogomolov. Since Kx = (n + l )L and L c Ok is a line 
subbundle, we have K(X) =< I by Theorem 4 ofw in [Bo]. Moreover if ~(X) = l, 
then by example 12.9 of [Bo] there is a m o r p h i s m f :  X ~ S, where S is a smooth 
curve, and a general fiber o f f  is an integral submanifold o fL  c ~ .  This contradicts 
the fact that (X, L) is a contact manifold. Hence ~(X) < 0. 

Now let us come back to the three-dimensional situation. We claim that if 
(X, L) is a complex projective contact threefold, then Kx is not nef If Kx is nef, then 
Theorem 1.1 of [Mi] implies that x(X) > 0. Therefore x(X) has to be zero. By the 
Abundance Theorem (see [Ka]), Kx is numerically trivial, i.e., ca(X) = 0. However, 
Lemma 1 above implies that this is impossible. Hence Kx is not nef. 

Since Kx is not nef, Mori's theory of extremal ray (see [Mo]) implies that there 
is a rational curve C c X such that 4 > -- Kx" C > 0 and C generates an extremal 
ray R = IN + [C]. Let us recall the length (denoted by I(R)) of the extremal ray R is 
the minimal intersection number with - Kx among all rational curves whose 
numerical equivalence classes belong to the ray R. It is clear that 0 < l(R) < 4. 
Since Kx = 2L in our case, l(R) = 4 or 2. If l(R) = 4, then Corollary 2.6 of [Wi] 
implies that X = IE1P 3. If l(R) = 2, then we can assume that there is a smooth 
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rational curve C such that - Kx" C = 2, and whose numerical equivalence class 
belongs to R. This is clear from the proofs of Theorem 3.3 of [Mo] and Proposition 
2.3 of [Wi]. Since Kx = 2L, we have L.C = - 1. 

Let (p: L ~  (2~x be the natural bundle inclusion. Consider the restriction of the 
contact sequence to C: 

0 --+L• ~ Txlc ~*l~ L*lc ~ 0 (1) 

where q*  is the dual of q~, and L • c Tx is the two-dimensional holomorphic 
distribution coming from the given contact structure. Because Tc is a subbundle of 
Txlc we have a (Yc-module homomorphism ~c: Tc -~ L*lc. Since Tc ~ 5c(2) and 
L*]c ~ (5'c(1), we conclude that ec has to be zero, i.e., C is a contact curve. Then by 
a theorem of Bryant [Br], Nc/x -~ (9c@6;c. By Theorem 3.5 of [Mo],  X is isomor- 
phic to a conic bundle in this case, i.e., there is a smooth projective surface M and 
a morphism ~: X ~ M such that a general fibre of ~ is isomorphic to ~ ) 1 .  It is clear 
from the proof of Theorem 3.5 of [Mo] that the morphism ~z is the contraction 
morphism associated with the extremal ray R = ~. + [C]. We claim that X is in fact 
a C~)l-bundle over M. To show this, it suffices to show that every fibre of 7: is 
reduced and irreducible. Note that the smooth rational curve C above is a fiber for 
7:. If 7: has a non-reduced, or a reducible fiber, then [C] = [C1] + [C2] for two 
effective curves C1 and C2 on X, where [C] means the numerical equivalence class 
of the curve C. Since R = IR+[C] is an extremal ray, [C~] + R for i = 1, 2. Hence 
K x ' C ~ < O  for i = 1 , 2 .  Since K x = 2 L ,  L ' C ~ <  - 1  for i =  1,2. Therefore 
L- C = L-  C~ + L" C2 < - 2. But this is a contradiction since L" C = - 1. Hence 
every fibre of ~ is reduced and irreducible. So X must be a (U~)~-bundle over the 
smooth projective surface M. 

Therefore we can write X as IP(E) for some rank-two vector bundle over M. Let 
X ~. M be the natural projection. Note that any fiber of 7: generates the extremal 
ray R. Let 6Jx(1) be the tautological line bundle of X. It is easy to see that 
Kx = -- 2(~x(l) + 7:*(Km + A2E). However Kx = 2L. Hence ~z*(KM + /x2E) = 
-- 2Lo, where Lo = Ox(1) - L. Since L o ' C  = - 1 + 1 = 0, Lo = 7:*L1 for some 

line bundle L1 on M. Therefore KM + A2E = - -2LI ,  i.e., AZ(E | L d  = A2Tm. 
Hence if we replace E by E | L1, then we can assume that A2E ~ AZTm and 
(gx( -  1) is the contact line bundle. Then there is a natural bundle injection 
2:(5~x(- 1) ~ (2~, which defines the given contact structure. 

We will show that E ~ Tin. We first prove the following claim: 

Claim. Let ~2~/M be the relative contangent bundle. Then 

HO(g21/M(I)) = O, HI(g2~/M) ~ C. 

Proof of  the claim. Consider the relative Euler sequence: 

0 -+ (2~/M(1) --+ 7:*E --+ (5x(1) ~ 0. (2) 

Since H~176176 we have H~ Since 7: is a 
ClPl-bundle, we have ~ .O~m = 0. Hence Leray spectral sequence for u implies 
that H ~ (O~M) ~ H~ However by the relative duality, R~u*f21/M ~- 
(7:*(5x)* ~ 5'M. Hence H l(Q~m) ~ ~. Hence the claim is proved. 

Now consider the tangential sequence: 

0 --* Tx/m -~ Tx --* u*Tm -~ 0 (3) 
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Since H~ 0, the bundle  injection (from the  con tac t  s t ruc ture  on X) 
~.:Cx( - 1) ~ f21x induces  a surjective bundle  m a p  a:n*TM ~ Ox(1). Let  s l /  be the  
kernel  of  tr. Then ~ /  is a line bundle. M o r e o v e r  Y _~ n*(^2TM) | (gx( -- I). H o w -  
ever  by our  assumpt ion ,  A2E _~ ^aTe. Therefore  sequence (2) implies tha t  
j r  ~ ~2~/M(1) ' Thus  we ob ta in  an exact  sequence: 

0 ~ f2~/M(1 ) ~ ~*TM -~ Cx(1) --* 0. (4) 

Let  el,  respectively e2 be the  extension class of (2), respectively (4). They are 
e lements  in H 1 (f2~/~) - •. They are non-ze ro  since their  co r re spond ing  sequences  
do  no t  split (because their res t r ic t ions to a fiber o f n  do  no t  split for trivial reasons). 
Hence  they differ only  by a non-ze ro  scalar. This  last fact implies that  n*E ~ n*TM. 
Since n*Cx = 6'M, we have E ~ TM. Hence  we are done.  [] 

Corol lary 3 I f  X is a con tac t  threefold such tha t  cl(X) is positive (i.e. X is Fano), 
then X is isomorphic either to ~:)3 or  ~:)(Tc~2 ). 

Proof. Suppose  tha t  X is n o t  i somorph ic  to IE~ '3. Then  T h e o r e m  2 implies that  
(X, L) ~ (P(Tu),  (9~rMl( - 1)) for some  s m o o t h  complex  project ive surface M. 
Hence  - K x  = (fetrM~ (2), which  is ample  by our  assumpt ion .  Therefore  T~ is also 
ample  by def ini t ion of  ampleness  of  vector  bundles.  This clearly implies tha t  
M -~ I1~P 2 by Mor i ' s  p roo f  of  Har t shorne ' s  conjecture.  Hence  we are done.  [] 
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