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Let X be a (2n + 1)-dimensional complex manifold. A (holomorphic) contact
structure on X is a 2n-dimensional non-integrable holomorphic distribution on X.
Dually, we can think of a contact structure on X as a holomorphic line subbundle
L of Q% (the holomorphic cotangent bundle of X) such that if 8 is a local section of
L, then 6 A (dO)* is everywhere non-zero. This, in particular, implies that the
canonical bundle Ky = (n + 1)L, where Ky = A2"*1Q} is the canonical line bundle
of X.

The purpose of this paper is to give a complete classification of complex
projective contact threefolds. Specificaily, we show the following:

Theorem 2 If X is a complex projective contact threefold, then X is isomorphic to
either CIP3, or P (Ty) for some smooth projective surface M.

From now on, unless specifically stated, X will be a complex contact 3-fold and
L will be the contact line bundle. Sometimes we use the pair (X, L) to mean the
same thing. In particular, we have Ky = 2L. Before we prove the above theorem, let
us look at some examples of complex contact threefolds.

Example 1 Tt is well-known that there is a holomorphic contact structure on
IP(Ty) for any complex manifold M. By P(T,) we mean T%\{0}/C* instead of
Ty\{0}/C*. In particular, P(T)) has a holomorphic contact structure if M is
a complex surface. :

Example 2 The old-dimensional complex projective space CP?"*! has a contact
structure. The contact structure is induced from the natural symplectic structure on
©2"*2, The associated contact line bundle is Ogp2+++{ — 2). In particular, CIP* has
a contact structure with contact line bundle Og¢p:( — 2).

Example 3 More generally, Salamon [Sa] showed that the twistor space Z of
a quaternionic-Kéhler manifold (M*", g) (n = 2) is a complex (2n + 1)-dimensional
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contact manifold if the scalar curvature of M is non-zero. Recall that (M*", g) is
called a quaternionic-Kédhler manifold if its holonomy group is contained in
Sp(n) Sp(1). For example, HIP" is a quaternionic-Kahler manifold and its twistor
space is just CPP2"*! Salamon’s argument can be easily extended to the case of
self-dual Einstein Riemannian four-manifolds (see the argument on p. 416 in [ Bes}).
Therefore if (M*, g) is a self-dual Einstein Riemannian four-manifold with non-zero
scalar curvature, then its twistor space Z is a complex contact threefold. Moreover,
if Z is Kéhler, then ¢,(Z) > 0 (see Hi]), hence, Z is necessarily projective.
Before we prove Theorem 2, we need the following lemma.

Lemma 1 Let X be a compact Kahler manifold with ¢(X)=0. Then X has no
holomorphic contact structure.

Following a comment by the referee, the original proof of the above lemma can be
simplified. Therefore we will adopt the simplified proof, which is kindly provided
by the referee.

Proof. Suppose that X admits a holomorphic contact structure with L as its contact
line bundle. By Calabi-Yau theorem, X admits a Ricci-flat Kidhler metric. Since
Ky = (n + 1)L, L is a flat line bundle with the induced hermitian metric. We can
think of the contact structure on X as a holomorphic section § of Qx ® L*. Then § is
a covariant constant section by the standard Bochner technique. Let us choose an
arbitrary locally defined covariant constant contact 1-form, which is also denoted
by 6. Since the metric connection is torsion free, df) = 0, which clearly contradicts
the fact that 0 defines a holomorphic contact structure. Hence we are done. U

Recall that a line bundle is called nef if its intersection number with every
effective curve is non-negative. Now we can start proving the main result of this
paper.

Theorem 2 If (X, L) is a complex projective contact threefold, then X is
either isomorphic to CIP? or X = P(Ty) for some smooth complex projective
surface M.

Proof. We first claim generally that if (X, L) is a complex projective contact
manifold of any dimension n, then its Kodaira dimension x(X) < 0. This was
essentially proved by Bogomolov. Since Ky = (n+ 1)L and L < Q% is a line
subbundle, we have k(X) < 1 by Theorem 4 of §12 in [Bo]. Moreover if #(X) = 1,
then by example 12.9 of [Bo] there is a morphism f: X — S, where S is a smooth
curve, and a general fiber of fis an integral submanifold of L = Q). This contradicts
the fact that (X, L} is a contact manifold. Hence x(X) < 0.

Now let us come back to the three-dimensional situation. We claim that if
(X, L) is a complex projective contact threefold, then Ky is not nef. If Ky is nef, then
Theorem 1.1 of [Mi] implies that x(X) = 0. Therefore x(X) has to be zero. By the
Abundance Theorem (see [Ka]), Ky is numerically trivial, i.e., ¢;(X) = 0. However,
Lemma | above implies that this is impossible. Hence Ky is not nef.

Since Ky is not nef, Mori’s theory of extremal ray (see [Mo]) implies that there
is a rational curve C < X such that4 > — K+ C > 0and C generates an extremal
ray R = R .[C]. Let us recall the length (denoted by /(R)) of the extremal ray R is
the minimal intersection number with — Ky among all rational curves whose
numerical equivalence classes belong to the ray R. It is clear that 0 < [(R) < 4.
Since Ky = 2L in our case, {R) = 4 or 2. If {R) == 4, then Corollary 2.6 of [Wi]
implies that X =~ CP3. If [(R) = 2, then we can assume that there is a smooth
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rational curve C such that — Ky+C = 2, and whose numerical equivalence class
belongs to R. This is clear from the proofs of Theorem 3.3 of [Mo] and Proposition
2.3 of [Wi]. Since Ky = 2L, we have L-C = — 1.

Let ¢: Lo Q% be the natural bundle inclusion. Consider the restriction of the
contact sequence to C:

@*lc

0 —’Llic - Txle — L*|c >0 (1

where @* is the dual of ¢, and L* < Ty is the two-dimensional holomorphic
distribution coming from the given contact structure. Because T is a subbundle of
Txlc we have a Oc-module homomorphism o¢: T — L*|. Since T = O2) and
L¥|c = 0(1), we conclude that a has to be zero, i.e., C is a contact curve. Then by
a theorem of Bryant [Br], N¢jx = Oc® 0. By Theorem 3.5 of [Mo], X is isomor-
phic to a conic bundle in this case, i.e., there is a smooth projective surface M and
amorphism n: X — M such that a general fibre of r is isomorphic to €IP, Tt is clear
from the proof of Theorem 3.5 of [Mo] that the morphism = is the contraction
morphism associated with the extremal ray R = R, [C]. We claim that X is in fact
a CP!-bundle over M. To show this, it suffices to show that every fibre of n is
reduced and irreducible. Note that the smooth rational curve C above is a fiber for
7. If © has a non-reduced, or a reducible fiber, then [C] = [C,] + [C;] for two
effective curves Cy and C, on X, where [C] means the numerical equivalence class
of the curve C. Since R = R, [C] is an extremal ray, [C;JeR for i = 1, 2. Hence
Ky'Ci<0 for i=1,2. Since Ky=2L, L-C; < — 1 for i=1,2. Therefore
L-C=L-C{+ L-C, £ — 2. Butthisisa contradiction since L*C = — 1. Hence
every fibre of n is reduced and irreducible. So X must be a CIP!-bundle over the
smooth projective surface M.

Therefore we can write X as IP(E) for some rank-two vector bundle over M. Let
X % M be the natural projection. Note that any fiber of 7 generates the extremal
ray R. Let Ox(1) be the tautological line bundle of X. It is easy to see that
Ky = —204(1) + n*(Kuy + A2E). However Ky = 2L. Hence n%(K, + A2E) =
— 2Lo, where Ly = Ox(1) — L. Since Ly C= — 1 + 1 =0, Ly = n*L, for some
line bundle L, on M. Therefore Ky + AE = — 2Ly, ie., AE® L) = ATy
Hence if we replace E by E® L,, then we can assume that A’E = AT, and
Ox( — 1) is the contact line bundle. Then there is a natural bundle injection
A:0x( — 1) - Q%, which defines the given contact structure.

We will show that E = T,,. We first prove the following claim:

Claim. Let Qi be the relative contangent bundle. Then
HO(Qim(1)) =0, H'(Qp)=C
Proof of the claim. Consider the relative Euler sequence:
0 - Q1) = 7*E > Ox(1) - 0. 2)

Since HO(r*E) >~ HE) = H%Ux(1)), we have H°(Q4n(1))=0. Since n is a
CIP!-bundle, we have rc*QX/M = 0. Hence Leray spectral sequence for n 1mplles
that H' (Q,) = H(R'n,Q%,y). However by the relative duality, R'nQys =
{(mxOx)* = Op. Hence H! (Q}(,M) = C. Hence the claim is proved.

Now consider the tangential sequence:

0= Ty = Tx »n*Ty -0 (3)
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Since H°(Q%,m(1)) = 0, the bundle injection (from the contact structure on X)
A:0x( — 1) — Q% induces a surjective bundle map 6:7* T — Gx(1). Let A be the
kernel of o. Then 4" is a line bundle. Moreover 4~ = a*(A2Ty) ® Ox( — 1). How-
ever by our assumption, AE = A2Ty. Therefore sequence (2) implies that
A = Qx,u(1). Thus we obtain an exact sequence:

0 — Qi) » 7*Tyy S Ox(1) — 0. 4)

Let ey, respectively e, be the extension class of (2), respectively (4). They are
elements in H' (@4} = C. They are non-zero since their corresponding sequences
do not split (because their restrictions to a fiber of = do not split for trivial reasons).
Hence they differ only by a non-zero scalar. This last fact implies that n*E =~ n*T),.
Since nx(0y = Oy, we have E = Ty. Hence we are done. [

Corollary 3 If X is a contact threefold such that ¢,(X) is positive (i.e. X is Fano),
then X is isomorphic either to CIP? or P(T¢p2).

Proof. Suppose that X is not isomorphic to CIP*. Then Theorem 2 implies that
(X, L) = (P(Ty), Opra( — 1)) for some smooth complex projective surface M.
Hence — Ky = Op(ryy (2), which is ample by our assumption. Therefore T, is also
ample by definition of ampleness of vector bundles. This clearly implies that
M = CP? by Mori’s proof of Hartshorne’s conjecture. Hence we are done. [
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