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The purpose of this paper is to study the geometry of the moduli space of rank two 
vector bundles of fixed Chern classes over a smooth algebraic surface X. Of  the two 
topics which we will concentrate on, one is to determine the dimension and the 
singularity of the moduli space and the other is to calculate the Kodaira dimension 
of this moduli space. 

For  X a smooth algebraic surface over C and H, I two line bundles on X, where 
H is ample, let 9Jlu(d, 1) be the moduli space of rank two H-semistable sheaves 
E over X with de tE  = I and c2(E) = d. In late 70's, Gieseker showed that 9Jln(d, I) 
is projective and later, Maruyama, Gieseker and Taubes showed that 9Jln(d, 1) is 
non-empty when d is large. In the mean time, a lot of work has been done in 
understanding the geometry of 9Jln(d, I) for special surfaces. However, not much is 
known about the geometry of ?Oln(d, I) for general X. One basic result along this 
direction is the Donaldson's generic smoothness theorem. Namely, Donaldson [4] 
(later generalized by Friedman [6] and Zuo [26]) showed that when d is suffi- 
ciently large, the (open) subset Yn(d,  I)  ~ fgln(d, I)  of locally free H-stable sheaves 
has the expected dimension and further, 

codim(Sing ~//n(d, I), ~l/'n(d, I)) > �89 d >> 0 .  

It is this generic smoothness result that allows Donaldson to show that his 
polynomial invariants of the underlining smooth four manifold X is non-trivial. In 
this paper, we will demonstrate that a stronger result holds for the whole moduli 
space ~JXu(d, I). More precisely, we prove 

Theorem 0.1 For any polarized smooth algebraic surface ( X, H)  and any fixed line 
bundle I on X, there is a constant C depending on (X, H, I) such that whenever d >= C, 
then 

(1) ~ n ( d ,  I) has pure dimension 4d - 12 - -  3z((gx) as expected by R.R.; 
(2) 9Jln(d, 1) is normal and further, for any closed s ~ 9Jlu(d, I)  that corresponds to 
a stable sheaf over X, 9Jln(d, I)  is a local complete intersection at s. 
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One should view this theorem in contrast to the fact that the moduli space S0lt~(d, 1) 
is not in general smooth. As to the proof, it is based on Donaldson's generic 
smoothness theorem (of ~n(d,  1)) and the deformation theory. Loosely speaking, 
the deformation theory 1-14] shows that the complete local ring R of any closed 
point z e 9Xtt(d, I) associated to a stable sheaf E is determined by a morphism 
of complete local algebras o:T2--.  T ~, where T i=  C [ [ t l  . . . . .  t,,,]] and 
mi = dim Exti(E, E) ~ (Here and later, we always use the superscript 0 to denote the 
traceless part of the corresponding groups or sheaves). More precisely, 
/~ = T t |  On the other hand, a generalization of Donaldson's generic 
smoothness result implies that R has dimension ml - m2 when d is sufficiently 
large. Thus /~ must be of the form C [ [ t l  . . . . .  tml]]/(fl  . . . . .  .fm2) and conse- 
quently, ~)ln(d, I) is a l.c.i, at z. 

Next we turn our attention to the study of Kodaira dimension of the moduli 
space ~JJ/n(d, 1). When X = p2, work of Barth, Hulek, Ellingsrud, Stromme and 
Maruyama shows that the moduli space ~ltt(d, 1) is rational when either deg I or 
d is odd. In case both deg I and d are even, they also gave quite a description of 
~JlH(d, I). In short, 9XH(d, I) always has Kodaira dimension tc = - oo. For  some 
ruled surfaces, Qin also showed that 9JlH(d, I) has Kodaira dimension - oc [24]. 
As to K3 surfaces, a consequence of Mukai's work [18] shows that 9Jln(d, I) has 
Kodaira dimension ~c = 0. Recently, O 'Grady  has proved that when X is a surface 
of general type (satisfying some extra conditions), then ~n(d ,  I) has Kodaira 
dimension tc > 0 [22]. All these indicate strongly that the Kodaira dimension of 
9Jln(d, I) is very closely related to the Kodaira dimension of X. To this end, one 
ponders what should be the Kodaira dimension of 9Jll~(d, I) when X is a surface of 
general type. In this paper, we will prove 

Theorem 0.2 Let (X, H) be any minimal polarized smooth algebraic surface of 
general type and let I be any line bundle over X so that c l ( l ) ' Z  is even for any 
( - 2)-exceptional curve of Z ~_ X. Suppose Z(d)x) + I" I is even and that there is 
a reduced canonical divisor D e IKxI, then there is a constant C depending on 
( X,  H, I) such that whenever d > C, then 9XH(d, 1) is of general type. 

The proof of this theorem is inspired by Donaldson's work on polynomial invari- 
ants of smooth four manifolds [4]. There are two main ingredients in the establish- 
ment of this result. The first is to express the dualizing sheaf to of ~ n ( d ,  I1 in 
terms of some line bundles of which we know how to construct global sections. 
This can best be explained by looking at the fiber to | k(s), where s e ~ln(d, 1) 
is a smooth point associated to a locally free sheaf E. Since the Zariski tangent 
space T~gJln(d,I ) is Ex t t (E ,E)  ~ to |  can canonically be identified to 

top t 1 
( A E x t l ( E ,  E) ~ For that there is 0 H~ with simplicity, we assume a E l 

D = 0-1(0) smooth. Then there is an exact sequence 

0 ~ H~176 | Kx) ~ Ext ,(E,  E) ~ -~ 

| ,Ext , (E,  E | Kx) ~ --* H~( gnd~ | K x) ~ 0 

induced by the exact sequence 

| 
O'-* E , E | Kx--* (E | Kx)Io ~ O . 
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By using Serre duality, we get 

f~_o(/\Hb(WndO(Ew) t o p  Kx) ) \~ -xr=(~Ex t~(E ,E)~174176174176  

= Extl(E, 

Now if we let ~lD(2, I) be the moduli space of rank two vector bundles on D with 
cl = [ix, then when EID is stable, 

top \ ( -  ~ ) , \ -  l 

is the fiber of an ample line bundle on ~lo(2, I) over the closed point associated to 
the vector bundle Eio. More precisely, there is an ample line bundle L~o on 
~10(2, I) so that under the rational map 

7 s : ~Jln(d, I ) - -  ~ ~1o(2, I), 7J(E) = Eio when it is semistable, 

~P*(ZCD) = ~o | Therefore, the pullback sections of H~ I), ~ g " )  give rise to 
a group of meromorphic pluricanonical sections of ?O~u(d, I). In fact, all of them 
turn out to be regular. In this way, we obtain a lot of pluricanonical sections of 
~Jln(d, 1). In this paper, we will use the fact that X is of general type in an essentially 
similar way to show that 

dimH~ co| fl'nr + O(nC(d)-l), fl >0, d >> 0 

when I satisfy the condition of the theorem, where c(d) = dim ?Oln(d, I). 
In order to determine the Kodaira dimension of ~n(d ,  I), we need to look at 

the dualizing sheaf of a desingularization ffJln(d, I) of ~Jln(d, I). Let T1 . . . . .  T,, be 
the exceptional divisors of n:?TJtn(d,I)~gJ~n(d, 1). Then there are integers 

~ such that the dualizing sheaf & of ?Olu(d, I) satisfies 

(~) ~ 7 ~ ' 0 )  ~ i  �9 

\ i =  I 

(For simplicity, we assume r is locally free.) Note that when some of the ~i's are 
negative, which is possible in general, the question when a section 
~, ~ H~ I),~o | can be lifted to a section in H~ I), ~|  is quite 
delicate. In our  situation, this has been made easier by the existence of a 2- 
canonical section q2 (of ?Oln(d, I)), constructed by O 'Grady  [23], that vanishes 
along the exceptional divisor of n : ~J~n(d, I) ~ ~ln(d, I). Namely, 
q2 ~ H~ I), ~7J| - ~ "  Ti)). Therefore, if we let ~ be a positive integer so 
that ~ + ~i _-> 0, then for any q,~H~ I), ~o| n * q , |  q~ '"  is a regular 
section of the line bundle 

~.~ |  | ~| n~Z ~ ) =  o5| - nZt~ + ~,)T,) ~ ~ . ,1  +2~,~ 
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Thus we will have 

dim H~ I), ~| +2~,) > dim H~ (gJtn(d, I), to | = fl" n c(d) "4- O(n ~td)- 1), 

/ ~ > 0  

which is what we need to establish the theorem. 
The paper is organized as follows: Theorem 0.1 is proved in w and w Also in 

w we shall explicitly construct the desingularization 9Jtn(d, I) and discuss the 
existence of tocal universal family on 9Jt,t(d, I). w is devoted to construct symplec- 
tic forms of ~01n(d, I)  and its associated two-canonical forms. We shall finish the 
proof of Theorem 0.2 in w 

Notations 

Throughout  this paper, X will be a smooth algebraic surface over C, H will be 
a fixed ample divisor and I will be a fixed line bundle on X. We recall the definition 
of stability of torsion free sheaves. A rank r sheaf E on X is said to be stable (resp. 
semistable) provided that E is coherent, torsion free and that for any proper 
subsheaf L c E, 

1 1 
rank(L)ZL(n) < ~ z e ( n )  (resp. < ) 

holds for n sufficiently large. Here xE(n) = z(E | H | is the Hilbert polynomial 
of E. E is said to be #-semistable if whenever L c E is a proper subsheaf with 
rank(L) < rank(E), then 

1 1 
rank (L-~-~ deg (L) < deg (E) = rank (E) 

where deg(E) = ct(E) 'H. 
From now on, all schemes considered in this paper are over C. Suppose S is 

a quasi-projective scheme and that E is a family of sheaves on X • S flat over S, 
then for any closed s E S, we use Es to denote the restriction of E to the fiber X • {s} 
of X • S over s ~ S. We also use Px and Ps to denote the projection of X • S to 
X and S respectively. Occasionally, we will use Pl and Pz instead. For  any sheaf 
E and line bundle L on X, we denote by Exti(E, E @ L) ~ the traceless part of 

Exti(E, E | L). That is, the kernel of Exti(E, E | L) tr , Hi(L). 

1 Singularity of Grothendieck's Quot-scheme 

In this section, we will study the singularity of the Grothendieck's Quot-scheme. 
First of all, let us recall the definition of Quot-scheme introduced in [9]. For  any 
integer d and any component 2 ~ Pic(X), let 8(d, Z) be the set of rank two 
coherent sheaves E over X with det E e Z and c2(E) = d. For technical reason, we 
will work with the set ~(d, Z, n ) =  {E(n)[ E ~ g(d, Z)}, where E(n)= E | H | 
Clearly, tensoring H | gives a canonical identification between g(d, Z) and 
g(d, Z', n). Let ~e be the category of all separable schemes of finite type over ~. We 
fix a (coherent) locally free sheaf W. For  any S E 6 e, we let ~uot,(d,  S)(S) be the set 
of all quotient sheaves p* W ~  E on X x S fiat over S such that Es ~ 8(d, X, n) for 
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any closed s e S, where E, is the restriction of E to the fiber X x {s} over s E S. 
Clearly, ~uot,(d,  S) is a contravariant functor on the category bC 

Theorem 1.1 (Grothendieck [9]) t~uo[,(d, S) is represented by a projective scheme 
~,,(d, S). Namely, there is a quotient sheaf p* W ~  ~ on X x ~,(d, S)  fiat over 
~n(d, r, ) such that for any S e 5 ~ and any flat quotient sheaf p* W ~ F on X x S in 
~uot,(d,  X)(S), there is a unique morphism qo :S--* ~,(d, X) such that the quotient 
sheaf p* W ~ F is isomorphic to the pullback quotient sheaf p* W ~ (Ix x qg)* ~ .  

For  the purpose of studying the moduli of semistable sheaves, we are interested in 
the subset d~ X) ~ c do(d, S) of H-semistable sheaves. We also need to choose 
a special W. For  any pair (d, S), let n be a large integer so that for any E ~ do(d, X)*, 
h~(E(n)) = 0 for i > 0 and H~ = C *u generates E[7].  We then choose W o f  
Theorem 1. l to be ~ (fix and form the corresponding functor ~uot,(d,  L') and the 
Quot-scheme ~,(d, S). We further let ~,(d, 2;) ~ _c .~.(d, 2;) be the (open) subset of 
H-semistable quotient sheaves. The goal of this section is to prove 

Theorem 1.2 There is a constant C depending on (X, H, S,) such that whenever 
d > C, then 

(1) ,~,,(d, X) ~ has pure dimension 

r/(d, X, n) = 4d - 12 - 31~((9x) + N a - 1 + hl((gx); (l.1) 

(2) ~,(d, X) ~ is normal and is a l.ci. everywhere. 

As explained in the introduction, the proof of the theorem consists of two parts. 
The first is to show that under the assumption, ,~,(d, I7) ~ has the expected 
dimension q(d, X, n). The second is to apply the general deformation theory to the 
functor ~uot,(d,  Z) to show that ~.(d, Z) s~ is indeed a 1.c.i. everywhere. 

We first show that there is a constant C depending on (X, H, Z) so that 

d im~,(d ,  Z) ~ < q(d, Z, n), Vd >_ C. (1.2) 

First of all, for any closed point z e ~,(d, Z) ~ which corresponds to the quotient 
sheaf W--, E, the Zariski tangent space of ~..(d, Z) ~' at z is 

T ~ , ( d ,  Z)~ = Horn(F,  E), 

where F is the kernel of W ~  E [9]. By using R.R., Maruyama [16, p. 596] 
calculated that 

dim T ~ , ( d ,  Z) ~ = q(d, X, n) + dim Ext2(E, E) ~ (t.3) 

Further, he showed that ~.(d, ~)~ is in fact smooth at the quotient sheaf E when 
the connecting homomorphism Extl(F,  E ) ~  Ext2(E, E) is trivial. On the other 
hand, Mukai tells us that the image of this homomorphism is always contained in 
Ext2(E, E) ~ [18]. Thus ~.(d, X) ~ is smooth at z whenever Ext2(E, E) ~ is trivial. 

Now let 
~ : ~ . ( d ,  Z')~ --* do(d, X) s~ 

be the obvious map sending quotient sheaf W---~ E to E ( -  n). If we further 
divide the set g(d,,~? ~ into two subsets ,~o(d,,~) and ~'~(d,~r), where 
~o(d,  ~) ~- g(D, ,~)~ consists of stable sheaves E with vanishing Ext2(E, E) ~ and 
d~(d,X)---g(d, ,~,n?~\ .;Jo(d,X),  then the previous argument shows that 
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.~,(d, 22) ~ is smooth along ~P-~(do(d, Z)). In particular, we will have 

dim ~u-l(~'o(d, Z)) = tl(d, S, n) (1.4) 

when it is non-empty. Next, we will show that when d is large, 

dim ~ - t ( ~ ' l ( d ,  2;)) < ~l(d, S, n) - 2. (1.5) 

Clearly, (1.4) and (1.5) together imply (1.2). Since h ~  for any 
E ~ 8 ( d ,  S, n) ~, dim T a(E) < N 2 - 1. Thus (1.5) follows from the following 
lemma. 

Lemma 1.3 There is a constant Co depending on (X, H, Z) such that the number of  
moduli of  ~Cl(d, Z) is no more than 3d + Co(x/d - I2/4 + 1). 

Proof We first recall the Donaldson's generic smoothness theorem. Let ~(d,  Z) be 
the set of all rank two locally free g-semistable sheaves E with det E e Z and 
c2(E) = d that have non-vanishing extension groups ExtZ(E, E) ~ By [4, 6, 26], 
there is a constant Co depending on (X, H, Z) such that the number of moduli 
(abbreviated #rood) 

~mod,~(d, z~) ~ 3d -~ C o ( N / d  - 12/4 + 1). (1.6) 

Note that by Bogomolov inequality, ~(d,  S) is empty when d < 12/4. 
As to the proof of the lemma, we use the double dual operation to relate the set 

a l l (d ,  S) to M(d, X). More precisely, the operation that sends E to its double dual 
E vv, E vv is always locally free because X is a smooth surface, defines a map 

V : d l ( d , Z ) ~  U ~(d ' , t ) .  
d'~d 

We claim that for any V ~ M(d', S), 

#moaF ~(V)  < 3(d - d'). (1.7) 

Suppose we have already established (1.7), then 

~ mod,gl,(d, X) ~ sup { ~ m o a ~ ( d ' , Z ) + s u p { # m o a F - l ( V ) l V E ~ ( d ' , X ) } }  
12/4<_d'<d 

< sup { 3 d ' + C o ( x / d ' - 1 2 / 4 +  t ) + 3 ( d - d ' ) }  
12/4<_d'~d 

<= 3d + Co(x/d - 12/4 + 1). 

Thus Lemma 1.3 will be established if we have (1.7). Indeed, for any E ~ F- I (V) ,  
where V e ,~(d', S), E is a subsheaf of V whose quotient V/E is a sheaf (has length 
: ( V / E )  = d -  d') supported on discrete point set. Thus the question is to deter- 
mine the number of moduli of the set of all quotient sheaves V ~  Q with 
v:(Q) = d - d'. In [15], it is shown that this set has dimension exactly 3(d - d'). 
Thus # . , oa f  ~(V) < 3(d - d'). This proves Lemma 1.3 and thus (1.2). [] 

As to the local structure of.~,(d, S) "s, we will use the obstruction theory to show 
that .~,(d, Z) ss is a 1.c.i. scheme. This is accomplished by first showing that locally, 
.~,(d,Z) ~' is defined by an ideal J c C [ t ~ , . . . , t k ]  generated by at most 
k -  rl(d, Z, n) elements. Because we have already proved that dim.~,(d, S ) ~ <  
rl(d, S,, n), J is generated by exactly k -  r/(d, S, n) elements and consequently, 
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_~,(d, S) ~ is a 1.c.i. at z. To do this, we need to study the completion of local rings of 
points on ,~,(d, 2;)s~. First, let us fix some notations. Let z ~ .~,(d, 2;)~s be a closed 
point corresponding to the quotient sheaf W--. E. Let R be the local ring of z on 
_~,,(d, 22) ~ and let R be the completion of R. Let ml = dim Hom(F,  E), where F is 
the kernel of W ~  E, and let m2 = Ext2(E, E) ~ Then because Horn(F, E) is the 
Zariski tangent space of ~,(d, N)s~ at z, 

~q = c [ [ t ~  . . . . .  t , . , ] ] /Y ,  Y__ (t~ . . . . .  t,.,) ~. 

Clearly, if Theorem 1.2 is true, then J is generated by exactly m2 elements. Here, we 
first prove 

Lemma 1.4 With the notation as before, then the ideal J can be generated by at most 
m2 elements. 

In order to prove Lemma 1.4, it is natural to look at a subfunctor of Quot,(d, 2;) 
which dictates the local moduli of the quotient sheaf E. Let ~ be the category of all 
Artin local C-algebras. For  any A e (s we define Quote(A) ~ Quot,(d, Z) (Spec A) 
to be the subset of all quotient sheaves EA on X x Spec A such that EA | k(zo) = E 
as quotient sheaves of W, where Zo is the only closed point of Spec A. Clearly, 
Quot~ is a covariant functor of the category (g. We say QU~tE is pro-represented by 
a complete local Noetherian C-algebra S if 

QuotE(A) = Homio~,~ c-,lg~b~ (S, A), VA ~ cg. 

Because Quot,(d, L') is represented by the scheme ~,(d, Z) ~ and R is the local ring 
of _~,(d, 2;)'~" at z, Qnot~ is pro-represented by the complete local ring/~. 

Now we recall the obstruction theory of Quote that is needed in relating the 
structure of the /~ to the dimension of cohomology groups of E. We recall the 
following definition: 

Definition 1.5 The functor Qnot~ is said to have an obstruction theory with coeffi- 
cients in V, where V is a finite dimensional C-linear space, if the following holds: 
For any triple (A, 1, EA/~), where A e (~ is an Artin ring, I _~ A is an ideal annihi- 
lated by the maximal ideal m ~ A and EAI ~ is a quotient sheaf of W |  on 
X x Spec A/I  in Quote(A~1), there is a function oh(A, I, EA/I)~ V |  c [ has the 
following properties: 

(1) ob(A, I, Ea/1)= 0 if and only if there is a quotient sheaf EA of W |  A on 
X x SpecA flat over A that induces the quotient sheaf EA/t when restricted to 
X x Spec All .  
(2) Suppose there is another triple (A', 1', E'A,/v) as before has the property that 
f :  A ' ~  A is a surjective morphism satisfying f ( l ' )  ~_ I. let f . :  V @ I ' ~  V | I and 
f * : S p e c  A/I--* Spec A' / I '  be the induced maps. Then 

J ,  (ob(A', 1', E~,/v)) = ob(A, l,(id x f*)*E'A,/v). 

The power of the existence of an obstruction theory for QuatE is best illustrated by 
the following proposition. The proof of which can be found in [6, IV]. (See also 
[17,w 

Proposition 1.6 Assume Quote is prorepresented by ,  the complete local ring 
C [ [ q  . . . . .  t , , , ]] /J ,  where ml = dim TE-~.(d, 2;)~ and J ~- (tl . . . . .  t,,,) 2. Suppose 
Quote has an obstruction theory with coefficients in V, then J can be generated by at 
most dim V elements. 
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Back to the proof of Lemma 1.4, we see that what need to be checked is that there is 
an obstruction theory for the functor ~not~ with coefficients in ExtZ(E, E) ~ 

Lemma 1.7 There is an obstruction theory for the Artin functor ~ttotE whose 
coefficients lie in ExtZ(E, E) ~ 

Proof. The proposition is a variant of Mukai-Artamkin theorem about the defor- 
mation of arbitrary coherent sheaves on X. In the following, we give the necessary 
modification needed for our situation. The argument we proceed follows closely to 
that of [6, IV]. (See also [2, 17].) Let A be a local Artin ring, 1 _~ A be an ideal 
annihilated by the maximal ideal m. Suppose W |  ~ E n / t  is a quotient sheaf 
in ~uot~(A/1). In [2]. [6] and [18], they defined an obstruction function 
ob(A, I, EA/I) ~ ExtZ(E, E) |  whose vanishing is equivalent to the existence of 
a sheaf EA on X x Spec A fiat over Spec A which induces the sheaf EA/I when 
restricted to X • Spec A/I. Therefore, to show that ob(A, I, EA/I) is the obstruction 
function for the functor Quote, we only need to show that the quotient sheaf 
W |  A/I ~ EA/! on X • SpecA/I extends to a quotient sheaf W |  ~ EA on 
X x Spec A flat over Spec A if and only if Ea/t extends to a sheaf on X x Spec A flat 
over Spec A. One direction is obvious. The other direction is also true because of 
the following reason: Since W |  A is locally free, 

O ~ I ~ A ~ A / I ~ O  

induces the following exact sequence 

Horn( W Qc A, E a ) ~  H o m ( W  | A/l ,  EA/I)~ Hl(JUf om(W, E) G e l ) .  

By assumption, H i ( E ) =  0. Thus the quotient homomorphism W |  ~ Ea/l 
lifts to a homomorphism q~A: W |  ~ Ea. Because q~a @ k(0): W ~  E is a quo- 
tient homomorphism and Ea is flat over A, q~a must be surjective. Thus 
{ ~0a: W |  A ~ Ea} E QuotE(A) is the desired extension. This completes the proof 
of the Lemma 1.7. [] 

To derive a similar result for the local ring R, we need a lemma that relates the 
structure of a local ring to its completion. First, we fix some terminology. Let 
P = C[ t l  . . . . .  t , ]  be a polynomial ring, m = (tl . . . . .  t,) be the maximal ideal and 
let J ~_ (tl  . . . . .  t,) be an ideal of P. If we view J and R = P/J  as P-modules, we can 
form the m-adic completion J, fi and/~  of modules J, P and R respectively. By 
[1, w J i s  the same as the completion of J with respect to J n m. We also denote 
by Jm, Pm and R m the localization of J, P and R at m respectively. We have 

Lemma 1.8 Suppose I~ has the form 

/~ = C [ [ t ,  . . . . .  t , ] ] / ( f l  . . . . .  tin), ./1 . . . . .  fm ~ (t ,  . . . . .  t,,), 

then the local ring Jm can also be generated by m elements. 

Proof. Since we have an exact sequence of P-modules 

O ~ J ~ P - - - ~ R ~ O ,  

by [1, 10.12], their m-adic completions also fits into the exact sequence 

0 ~ f - -  fi--*/~--* 0. (1.9) 

By assumption,/~ = P/(f l  . . . . .  f,.). Thus f = (f~ . . . . .  fro). 
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Now we consider the natural homomorphism J r , ~  J. Because 
^ ^ 

Jm/Jrn" m = J / J "  ffl, where fit is the m-adic completion of the module m, we can 

find J~ . . . . .  J~ e Jm such that p(J~) - f  e ff '6t,  where p : J m ~  J. We claim that 
Jm = (J~ . . . . .  f,~). Indeed, for any f e  Jm, there is an f '  e (J~ . . . .  J~) such that 
p ( f )  - p ( f ' )  ~J . f ia .  Thus f - f '  ~ J m ' m .  Therefore, we have 

sm % (L . . . .  , L )  + J ~ ' , - .  

Because (J~ . . . . .  J~) ~_ J,~, by Nakayama's  lemma, Jr. = (J~ . . . .  J~). This com- 
pletes the proof of Lemma 1.8. [] 

Now we are ready to prove Theorem 1.2. 

P r o o f  o f  theorem 1.2 Let z c ~ , ( d ,  X y  ~ be any closed point corresponding 
to the quotient sheaf E. Let F be the kernel of W--*E.  We know 
that T ~ , ( d , X )  ~ = Hom(F,E) .  Assume mt = dim Hom (F, E) and mE= 
dim Ext2(E, E) ~ By R.R., ml - m2 = q(d, X, n). Thus by our previous arguement, 
there is a constant C depending on ( X , H , X )  such that when d > C, then 
dim.~,(d, 2;)~ <= ml - m2. 

Next, because ~,(d, X)'* is quasi-projective, we can assume that locally near z, 
~,(d, X) s~ is defined by an ideal J ~ C [ q , . . . ,  tk] with z defined by the maximal 
ideal m = ( t l , . . . ,  tk). Then lemma 1.4 and lemma 1.7 imply that the m-adic 
completion J of J is generated by at most k - (m~ - m2) = k - q(d, Z, n) elements. 
Thus, by applying Lemma 1.8, we conclude that the localization of J at m, Jm, is 
generated by at most k - q ( d , X , n )  elements. But since we know that 
dim ~,(d, 2;)~ < ~/(d, X, n), we must then have 

dim(~,(d,  Xy ~ at z) = q(d, X, n) 

and that ~,(d, X) s~ is defined by exactly k - q(d, X, n) polynomials in C [ t ~ , . . . ,  tk] 
near z. Thus, ~,(d, X)~ is a l.c.i, at z. 

It remains to prove that ~,(d, Xy ' is normal everywhere. But this is obvious 
because when d is large, ~,(d, X) ~ is smooth at codimension one points thanks to 
(1.2). Thus the theorem has been established. [] 

2 The moduli schemes of semistable sheaves 

In this section, we shall first apply Theorem 1.2 to study the singularities of the 
moduli scheme 03~u(d, l )  of rank two semistable sheaves E on X with det E = I and 
c2(E) = d. We will then study resolutions of ~Rn(d, I) and study the question 
whether there exist local (in the classical or ~tale topology) universal families on the 
resolutions. The bulk of this section is devoted to answer this question at closed 
points correspond to strictly semistable sheaves. We remark that when all sheaves 
in 9Jln(d , 1) are stable, that is the case when d is odd, then the second half of this 
section is not  needed for further study in w and ~4. 

In light of Theorem 1.2, we will first work on the moduli space 9)~n(d, X) of 
H-semistable sheaves E with det E ~ 2; and c2(E) = d. We will show that when d is 
large, ~H(d,  X) is normal and is a local complete intersection at the closed points 
that correspond to stable sheaves. As to the proof, we will realize 9J~n(d, 2;) 
as geometric invariant theory quotient of .~,(d,X) s~ by reductive group 
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G = PGL(N,  C) [7] and then deduce the properties of ~)tu(d, Z) from that of 
~.(d, Z) ss 

To work out the detail of this argument, a quick review of the construction of 
the moduli shceme 9Jlu(d, X) is in order. For any (d, X), let n be large as in Theorem 
1.2 so that for any E ~ 8(d, X, n), we have hi(E) = 0, i __> 1, and H~ generates E. 
Thus for any semistable sheaf E 6 o~(d, X, n), an identification C N ~ H~ corres- 
ponds to a unique closed point in ~n(d, X) '~ and E itself corresponds to a unique 
G orbit in ~,(d, Z) ss. Certainly, .~,(d, X) ~ is a G-scheme. In [7], Gieseker showed 
that when n is sufficiently large, a good quotient of .~,(d, X) ~ by G exists which is 
exactly the moduli space ~Jlu(d, X). To characterize all closed points of 9Jbi(d, S), 
we recall the concept of S-equivaIence cIass of semistable sheaves: For any semist- 
able sheaf E, there is a filtration 

0 = F o = F I ~  ... c F t = E  

so that Fi/Fi-1 are stable and Ze,/e,_, are proportional to Z~. Set 
gr(E) = ~ - l F i / F i - 1 .  Two sheaves E1 and Ez are said to be S-equivalent if 
gr(E1) = gr(E2). By abuse of notation, we call a closed point z E 93~n(d, X) (or 
z ~ .~,(d, X) ~s) a stable point if the corresponding sheaf E is stable. Otherwise, we 
call if strictly semistable. In the following, we will use 9)In(d, X) s (resp. ~,(d, X) s) to 
denote the subset of stable points. We put the relevant results concerning the 
quotient morphism n: ~,(d, X)~" ~ ~lJ~n(d, X) into the following proposition. The 
proof of which can be found in [7, 16]. 

Proposition 2.1 There is a ~c: ~+ ~ ~_+ depending on (X, H, X) such that Jor any 
d and n >= ~c(d), there is a good quotient of ~ Z) "~'~ by G that is isomorphic to 
~Jtu(d, Z). 9Jlu(d, X) is projective. Further, any closed point of~ltu(d, X) corresponds 
to a unique S-equivalent class of semistable sheaves in g(d, X). Finally, when 
restricted to subset of stable points, 

n:_~,(d, X)~ ~ ~Jlu(d, X)~ 

is a principle G-bundle. 

We now prove the results parallel to the Theorem 0.1 regarding the moduli 
~J~u(d, X) ~. 

Theorem 2.2 There is a universal constant C depending on (X, H, S) such that 
whenever d > C, then the moduli scheme 9Y~u(d, X) is normal and ~J~u(d, Z) ~ is a local 
complete intersection. 

ProoJi By Theorem 1.2, when d > A and n > x(d), .~,(d, Z) ~ is normal and a 1.c.i. 
Thus by universal mapping property, ~JJtu(d, 2;) is normal [19, p. 5]. Further, since 
n :~ . (d ,  S ) ~  ~lJ~n(d, X) ~ is a principle G-bundle and since ~,(d, S) ~' is a 1.c.i., 
9Jlu(d, X) s is a l.c.i, also. This establishes Theorem 2.2. [] 

So far, we have dealt solely with the moduli space of sheaves whose determi- 
nants lie in 2;. As to the moduli space !lJlu(d, I) of sheaves with det = I, it can be 
realized either as a closed subscheme of ~tn(d, X), where I e Z, or as a quotient of 
9Jln(d, X) by Pic(X) ~ To view ?Olu(d, I) as a subscheme of 93/u(d, X), we proceed as 
follows: Let 

de t0 :~ , (d  , Z)ss--* 2~ _~ Pic(X) 
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be the morphism induced by the invertible sheaf det ~ on X • .~,(d, 27)ss, where 
~- is the universal family of ~,(d, X) sS. Clearly, det e is G-equivalent, where G acts 
on r trivially. Thus detQ descends to a morphism det:gJIn(d,S) = 
~,(d, S ) ~ I / G ~  S. We define .q.R,~(d, I) = de t - l ( I ) .  We leave it to the readers to 
check that 9Jln(d, I) = de t -1( I )  is the coarse moduli space of rank two H-semi- 
stable sheaves E with det E = I and c2(E) = d. To compare the local structure of 
~lJln(d, I) with that of ~Jlu(d, S), it is easier to use the quotient morphism 

O : ~lu( d, 27)--+ ~JJ~li(d, I) 

constructed as follows: Let P be the identity component of Pic(X). P is a smooth 
group scheme. There is a canonical action 

qJ : P x 9Jln(d, S) --+ ~Jln(d , 27) 

that sends any line bundle Ls on X x S (in P) and any family of semistable sheaves 
Es on X x S (in ~lr~(d, 27)) to the family^Ls | Es. Let A c p be the discrete 
subgroup of all order two elements and let P = P/A be the quotient group scheme. 
It is easy to see that the action q~ descends to a P-action 

c~ : fi x ?OlH(d, S) --* ~JJ~tt(d, Z). 

We claim that ~ is free and the quotient ~Jlu(d, Z ) / P  is isomorphic to 9Jlu(d, I). 
Indeed, let 4~2: P • 2: ~ 2: be the P-action that sends [L]  ~ P and L' r 2: to the 

line bundle L ~= | L'. 4'z is well-defined. Clearly, there is a commutative diagram 

X 9J~H(d , 27) (id, det)) t ~ X r .  

det 
9J/, (d, 27) , 22. 

Since S is a principal bundle over X//3 = point, ~ln(d, S) is a principal bundle over 
~lh,(d, S)/P.  Therefore, ~ln(d, S ) /P  is isomorphic to the section de t - l ( l ) .  This 
completes the proof of claim. 

Finally, for large d, because 9~Rn(d, 27) is normal and P is smooth, 51.Rn(d, I) is 
normal also. Similarly, 9Jln(d, I) S is a l.c.i, because ~ln(d, 27)~ is a 1.c.i.. Thus 
Theorem 2.2 and (2) of the Theorem 0.2 have been established. The (1) of the 
Theorem 0.2 follows from (1) of Theorem 1.2 and that dim fi = h~(d)x). [] 

In the following, we shall discuss the existence of universal families (sheaves) on 
X x ~lJltt(d, I). A sheaf E on X x ~lR(d, 1) is said to be a universal family if for any 
closed point s E ~.Rn(d, 1), the restriction of E to the fiber of X x gin(d, I) over 
s e 9J/u(d, I), say E~, belongs to the S-equivalent class represented by s. It is known 
that in some cases, especially when there are strictly semistable sheaves present, the 
universal family does not exist even locally. For  our purpose, we will introduce the 
following concept: For  any scheme ~ and f :  ~B ~ 9J/n(d , 1), if there is a classical (or 
6tale) open covering {U/} of~8, a collection of sheaves Ei on X x U~ such that for 
any closed s e U~, E~., belongs to the S-equivalent class of semistable sheaves 
represented by f(s)  ~ ~l.Rn(d, I) and further, over each U~ c~ U~ there is an isomor- 
phism 

Ei lxx tu ,~uD~ 'E i l x  • (v,c,u~), 
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then we say { E~ } is a local universal family of ~]~B. In the rest of this section, we will 
construct a desingularization 931n(d, I) of 9Jln(d, 1) and study the existence of local 
universal families on fJln(d, I). As we will see, there basically are two types of 
singularities of 93/n (d, I). One type comes from the singularities of the Quot-scheme 
.~,(d, I) s~. Such singularities can be taken care of easily by using Hironaka's 
desingularization result. Another type comes from the presence of strictly semist- 
able sheaves. It turns out that in general, we can not find local universal families 
even on a resolution of these singularities. It is to circumvent this technical 
difficulty that we will use the partial desingularization of 9Jln(d, I) introduced by 
Kirwan [12]. 

Following Gieseker, any flat family of rank two torsion free quotient sheaves of 
eN Es with det Es p* I (2n) | p~ L, where L is a line 0xeN over X • S, say q ): x• = 

bundle on S, associates to a canonical section 

A2~p e H~ Horns( /~20s~N , H~ I(2n)) | p 'L ) )  

which induces a morphism 

[ ^2 ~o]: S ~ P(Hom(  A2C N, H~ 

Here we adopt the notation that P(C t) is the space of lines in C I. We denote 
M = H~ Now, if we apply the previous construction to the Quot-scheme 
~,(d, I) ss and its universal quotient family ~-, we obtain a morphism 

#:.~,(d, l)S~--o P((A2CN) v | M). (2.1) 

Proposition 2.4 (Maruyama [16]) There is a ~:~_ + -~ Z + such that when n > to(d), 
the morphism # of(2.1) is a locally closed immersion. 

Certainly, under the dual action of G on P(( ^2CN)V | M), # is G-equivariant. Now 
if we denote by P((/x 2 CN) v | M) ~ (resp. P((^2CN) ~ | M) ~) the set of Mumford 
stable (resp. semistable) points, then there is a ~c(.):2~ + - ,  Z + so that when 
n > K(d), we have 

#-I (P((^2CN)~ |  ~) = ~,(d , I )  ~ 

and 

/~- l(p((^2C~r |  ~) = ~,(d, I)  s~. 

(For definition of Mumford stability, see [19]). Let Z = P((^2CU)~ | M). By 
Mumford [19], the geometric invariant theory quotient Z~/ /G  does exist. Z~/ /G  is 
projective and further,/z induces a closed immersion 

~ :gJln(d, I ) ~  Z~/ /G.  

In [12], Kirwan described how to blow up Z along a sequence of non-singular 
G-invariant subvarieties to obtain new projective variety Z acted on~by G with 
G-equivariant morphism ~0 : Z-- ,  Z such that all semistable points of Z are auto- 
matically stable. Let Z ~ be the set of semistable points of Z. Then 
[p:Z~//G ~ Z~/~G is a partial desingularization of Z ~ / / G  in the sense that all 
singularities of Z~/ /G are finite quotient singularities. 

The scheme Z ~ is obtained as follows: (The proof of the statements below can 
be found in [12]). Since Z ~ ~ O, Z ~ \ Z  ~ + 0 if and only if there are semistable 
points z e Z ~ such that the stabilizers stab(z) c G (of z) contain non-trivial connec- 
ted reductive subgroups. Let r = max{dim stab(z)Jz e Z ~ } and let ~(r)  be a set of 
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representatives of conjugacy classes of all connected reductive subgroups R _~ G 
with dim R = r such that 

is non-empty. Then 

~B,~ S = {z e Z ~1R fixes z} (2.2) 

~ =  U G ~  (2.3) 
RegC(r) 

is a disjoint union of non-singular closed subvarieties of Z ~. Since it is G-invariant, 
the action G on Z ~ lifts to an action on the blowing-up Z,  of Z ~ along ~ and the 
G-linearization of Oz(1 ) can canonically be lifted to a G-Iinearization of ~z*(gz(k) 
( - W), where Wis the exceptional divisor of Z,  --* Z" ,  k is any integer and (.0z(1) is 
the ample line bundle on Z of which the stability of points in Z was defined. When 
k is sufficiently large, the set Z~ ~ of G-semistable points of Z~, semistable with 
respect to the G-linearization of ~Z*6z(k) ( - W), is independent of k. In [12, w 
Kirwan proved: 

Lemma 2.5 (Kirwan) (1) The complement of Z~ ~ is the proper transform of the subset 
p-~(p(~3~)) ~_ Z ~'~ where p: Zs~--* Z~/ /G is the quotient morphism. 
(2) No points of Z~ s are fixed by a reductive subgroup of G of dimension at least r, and 
a point in W ~ = Z~ ~ c~ W is fixed by a reductive subgroup R c G of dimension less 
than r if and only if it belongs to the proper transform of  the subvariety ?~B~ ~ ~_ Z ~. 

To obtain Z~, we first blow up Z ~ along ~ to get Z~. Let Z~ ~ be the set of 
semistable points of Z~ (semistable with respect to the G-linearization of ~z* (gz(k) 
( - W), k ~> 0). We then blow up Z~ ~ along ~3~_ 1 ~- Z~ ~ to get Z,_ ~, where ~3~_ ~ is 
the set of points in Z~ ~ that are fixed by some reductive subgroups R _ G of 
dimension r - 1. Then we blow up Z~ ~_ l again along ~3,_ 2 c Z~L ~, and so on until 
we obtain Z~ that has the property that no connected (non-trivial) reductive 
subgroup of G fix any semistable closed point in Z~. Then by [12], all closed points 
of Z]  ~ are stable. Now, we assume d is large so that 9J/n(d, I) is normal. Consider 
the normal subscheme .~,(d, l y  ~ _ Z ~s. Let .~.(d, I)]~ _c Z] ~ be the proper transform 
of .~,(d, I) ~ c_ Z ~. Note that because Z] = Z] ~, all G-orbits of ,~,(d, I)]~ are closed. 

Next, we seek to desingularize ~,(d, l)]S. According to Hironaka, a resolution of 
~,(d, I)]' can be derived by performing successive blowing ups along smooth 
centers contained in the singular locus of Y,(d, I)]S ___ Z] s and its blowing ups. 
Because our goal is to find local universal families on the resolution, we need to 
keep track the inclusion .~,(d, I)] ~ ~_ Z] ~ as we do blowing ups. Thus, each time we 
blow-up ~,(d, l)]S we will take a smooth G invariaut subvariety Y contained in the 
singular locus of.~.(d, I)] s and blow up .~,(d, I)]~ and Z] s along Y simultaneously to 
get '.~,(d, i)]s _c ,Z] ~. Note that since Z] ~ is smooth and has stable points only, the 
closed points of the blowing-up ',~.(d, I)]~ ~ 'Z~ s are all stable under G. Let 
~,(d, 1)~ s _c Z~ ~ be the pair of smooth schemes that is the result of this series of 
blowing-ups. By our previous argument, stab(z)c_ G is discrete for any 
z E ~.(d, I)~. Thus ~,(d, l)~oS/G is a partial resolution of 9Jlu(d, I) in the sense that 
all singularities of .~,(d, I)~oS/G are finite quotient singularities. 

In order to get a smooth resolution of ~J/n(d, I), we need to blow up .~.(d, I)~ 
further. First, we need a list of all possible stab(z) for z e .~.(d, I)~ s. We have the 
following lemma the proof  of which will be postponed until the end of this section. 
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Lemma 2.6 For any closed z E ~.(d, I)~ s, stab(z) can possibly be {e}, 7/2 and 
Z2 x Z 2 . 

We first blow up ~,(d, I)g along the subset ~/~2 _c ~.(d, I)~ s of points whose 
stabilizers are Z2 x Z2(~B= is smooth and has codimension bigger than one). Let 
~ ,  be the set of points in the blowing-up whose stabilizer is g2 (the only remaining 
possible case). We then perform one more blowing up along components of ~B1 
whose codimension are bigger than one. Let the resulting scheme be _~,(d, i)ss. 
Note that the set ~[B = {y e ~.(d, l)S~[stab(~ 4= {e}} is a smooth divisor and all 
points in ~EB have stabilizer 772. Therefore, 93~H(d, I)  = .~.(d, I)~/G is smooth. In 
particular, we obtain a desingularization ~Xu(d, I) of ~ln(d, I)c_ Z~//G" Let 
cbM:ffXn(d,l)--+~Jln(d,I), let cI)r ly~- -*~. (d , l )  ~ and let ~ : ~ . ( d , I )  '~ 
--* 931n(d, I). 

Proposition 2.7 Let ~ ~ ~lu(d, I) be any closed point, let ( E  f f - l (~)  c ~,(d, I)S~ 
and let F = stab(~). Then 
(1) F = {e} of 772, 
(2) therejs a F-invariant smooth locally closed set V c_ ~,(d, I y  ~ with ~ ~ V such that 
~: V--+gXu(d, 1) is F-invariant and further, V/F is an &ale neighborhood of 

c 9J~n(d, I). 

Proof (1) has already been established in the previous argument. As of (2), since 
.,~,(d, 1) ~ is smooth and since ,~,(d, lyS _. ~JYTln(d, I)  is a good quotient, we can apply 
the 6tale slice theorem of Luna [19, p. 152] directly to our situation to obtain the 
desired F-invariant subset V_c ~.(d, Iyfi [] 

The remainder of this section is devoted to the proof of Lemma 2.6. To 
accomplish this, we need to find a more manageable account of each blowing-up 
q~: Z~ ~ + Z ~  1- We first state the following fact: 

Lemma 2.8 Let ~ E ~ , (  d, lyS be any closed point with closed orbit G " ~. Then stab(~) 
can only be {e}, C* or PGL(2, C). More precisely, if  we denote by E, the quotient 
sheaf associated to ~, then: (1) s t ab ({ )=  {e} if  E, is stable; (2) stab({) = C* if 
Eg = F 1 O) Fz with F1 4 = F2 and (3) stab(~.) = PGL(2, C) i fE ,  = F @ F. 

Proof. [5, 16]. [] 

For  any ~ e ~.(d, Iy  ~, we know that dim s t ab ({ )<  3. Thus no blowing-up 
Z~ ~ will affect ~.(d, l y  ~ _ Z ~~ unless possibly i <  3. Let q53:Z~'--+ Z 2  be the 
blowing-up of Z2 along 

~= U ~ . ~  
Re~(3) 

and let W be the exceptional divisor. We first suppose that there are semistable 
quotient sheaves E ~ .~.(d, I y  ~ so that E = F ~ F .  Let ~ e ~,(d, l y  ~ be such 
a closed point. Since Z~ ~ Z ~ is an isomorphism along ,~,(d, I)"~, by abuse of 
notation we will view ~ ~ ~.(d, Iy  ~ as a closed point of Z]L 

Let m = N/2 and let ~o~ : C m ~  H~ be an isomorphism, q~l induces an 
isomorphism q~ = (q~, qh): C ~ ~ H~ Let {ea . . . . .  e2m} be the obvious basis of 
C 2" and let {vi}l= t be a basis of M = H~ Then ~ ~ P(( ^2 CU)~ | M) can 
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be described up to scalar by 

~=~ -T i  0 / |  |  (2.4) 

where Ti are m x m symmetric matrices defined by 

Ti.kh = (cp(ek) A ~P(em+~), vy ). 

We have 

Lemma 2.9 Let Ro = stab ( ~ ) ~ G. Then under the given choice o f  the basis o f  H ~ ( E) 
and M, Y~B]~ o c_ Z ss has the expression ~]{o = P(Vo) c~ Z ~ where 

Proof. Clearly Ro = PGL(2, C) acts on P(( A 2 C ~) v | M) via 

b Ai c 

where Ai, Bi, Ci and D i are m x m matrixes with A~, Di antisymmetric, B~ = - Ci 
and a , . . . ,  d are m x m scalar matrixes. Here B' is the transpose of B. Suppose 

s s  , w e 2BRo has the expression '~.(cAj ~') | v~ and that for some io, Aio ~ O. Then one 
checks directly that w is invariant under PGL(2, C) only if B~,C~, D~ = 0 for all i. 
But then w can not be semistable. So A~ has to be zero for all i. Similarly, D~ = 0 for 
all i. One further checks that w is invariant under PGL(2, C) implies that Bi = -- Ci 
for all i. Thus the lemma is true. 

Let N~3  = T ~ Z ~ S / T ~  be the normal vector space of ~3 ___ Z ~ at { and let 
N ~ } ~  o be the normal vector space of ~93~o ___ Z ~ at {. Note that both ~ and 
~/B~ o _ Z ~ are smooth at { [12, Corollary 5.10]. Then 031(~) c_ Wis isomorphic 
to P ( N ~ ) .  Since N ~  c Nr 

q5 3 ~(~) = P ( N ~ )  c p(N~B~o).  (2.6) 

Further, since ~B~i~o is fixed by Ro, Ro acts on P(N~-~23~o) and the inclusion (2.6) is 
Ro-equivalent. Because for any ~ e qSf*(~), stab(O _c Ro. Thus to classify those 

e ~b~- ~({) with stab(~) + {e}, it suffices to classify { e P(N~gB~o ) whose stabilizers 
stabRo(~) -- Ro are non-trivial. 

Set V be the space of N x N antisymmetric matrixes and set 

V ' = { (  T~ T1T2"]}T~ " j  

Then V = Vo ~ V~ and further, Vo is fixed by SL(2, C) and Vx is invariant under 
SL(2, C). Note that ~[B~/' o = P(Vo | M) (Lemma 2.9) and that the normal vector 
space Nr of ~3~o _~ Z ~ is isomorphic to V~ | M. Thus we only need to classify 
points of P(V~ | M) with non-trivial stabilizers in Ro. 

Lemma 2.10 Let P(V~ | M )  be the projective space acted on by PGL(2, C) as 
described. Assume ~ ~ P(Vt | M)  ~ is a semistable point (under PGL(2,  C)) such 
that stab(~) is non-trivial, then either stab(~) = 77 1 or s t a b ( O =  C*t-<772. In the 
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later case, the fixed point set is PGL(2, C) 'P(V3 | M) _~ P(V1 @ M) where 

V3= { (02 T;)  T2 antisymmetric ).  

Proof Assume that 

is a semistable point with stab(()_~ SL(2, C)/{1, - i }  non-triviaL Since ( is 
semistable under SL(2, C), then possibly after a change of the basis {vl} of M, we 

can assume rank(~ i . r~:) >= 2. Further, we can find a 9o E SL(2, C) and integers 

1 =< i < j  =< rn such that if we write go ' (  r~ ~i )" got = ( t i j ) ,  then 

tm+i,j t,,+i,,,+j/ 0 ' ~ 4= O. (2.7) 

NOW let g s stab((). Then ~ = gog9o I satisfies 

.(T~ r ~  , _, ~ . { r~  r ~ ' ~ . ,  c*.  
9"go \T~ T~) "g~ = go ~T:~ "['12) go, 2 E (2.8) 

One checks directly by using (2.7) that 0 must belongs to the subgroup 

One further checks that the fixed point set of R1 in P(V1 | M) is P(V 3 | M). Thus 
if ( e go 1P(V3 | M), stab(() = go 1 "Rx "go = C*~,<Z2. 

Now assume (r g " P ( V a |  2 (~ i  ; i  ) | vi" Then we can find 

k and 1 < i' < j '  < m so that if we write ~r~ r~1 = (sij), then 

:) 
Si'+m,j" Si'+m,j'+ra/ 

witha4=O~ t~ ) to~ ' then 

a E Ti T'~f |  0 t = 2  Z T'2 r ; ]  |  , 2 e  

and (2.10) implies that 2 = 1 and t~ = 1. Namely, ,~ = id and then 9 = id (in 

PGL(2, C)). Now suppose ~ = ( 0 to 
- t~ ~ o )' using (2.10) again, we get 2 = - 1 and 

a = - tZoC. Thus when ~r PGL(2, C)" P(V 3 | M), stab(if) = 7/2. [] 

Corollary 2.11 With the notation as before, suppose (E Z~ ~ over ~ ~ .~,(d, I) ~ with 
stab(C) = PGL(2, C) and stab(() 4= {e}, then stab(C) = 7/2 or C*t,<~_ z, 
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Proof This is clear because ~I:P(Nr ) is Ro equivariant, where 
Ro = stab(~). Since stab(() _~ stab(~) = Ro, ( e P(Nr is fixed by 9 e R o  if and 
only if r/(() is fixed by 9. Therefore, the corollary follows from Lemma 2.10. [] 

Note that the stabilizer of points of the proper transform ~.(d, I)~ s _~ Z~ ~ has 
dimension at most one. Thus ~,(d, I)~ ~ ~_ Z~ ~ is isomorphic to ~,(d, I)~. Let 
~ _ Z~ s be the set of points whose stabilizers contain C* and let Z~ be the 
blowing-up of Z~ ~ along ~Ba. 

Lemma 2.12 Let ~ ~ ~,(d, I) ~ ~_ Z ~ be any closed point with stab(i)  = C*, then for 
any ~ ~ W~ lyin9 over ~, where Wa is the exceptional divisor of .~,(d, i)]s __+ ~,(d, I)~, 
stab(() = 7/~. 

Proof The proposition can be proved similar to that of Corollary 2.10. We leave 
the proof to the readers. [] 

Lemma 2.13 With the notation as above and suppose ( ~ W~ is any closed point lyin9 
over ~ ~ W~ ~ ~,(d, I)~2 ~, where W2 is the exceptional divisor of Z~ ~ --* Z] ~. Then 
stab(() can possibly be {e}, 7/~ or 7/2 • 2~2. 

Proof Since ( ~  W1, d ims t ab (~ )>  1. By Corollary 2.11, s tab(C)= C*t><7/2. Let 
R = C * _  R~ = stab(C), let ~[3~ s be the fixed point set of R in Z~ s and let 
~31 = {z E Z~'I dim stab(z) = l}. Since every F �9 F E ..@,(d, I) ~ can be deformed to 
sheaves of the form Ft q) F~ (in .@,(d, I) ~s) with Ft # Fi for general t(at least when 
d is large), by (2) of Lemma 2.4, the projection 

~:~1 ('~ W2 ~--- Z~ s--~ ~33 ~- Zss 

has the property that ~b(~1 c~ Wz) = ~3 and that Tr and Tr W2 span TcZ~ ~. Thus 
~b,:Tr c~ W 2 ) ~  T,~)~53 is surjective. (Here, all sets involved are smooth 
thanks to [12].) Therefore the normal vector space Nr of ~ _~ Z~ ~ c~ .~,(d, I)~ s 
at r is contained in the tangent space Tr c~ ~b 1 q5(r and therefore N~31 is 
contained in the normal vector space of ~b- 1 qS(~) n ~31 ~ q5 t ~b(~), By the proof of 
Lemma 2.10, the normal vector space of 4, - ~ ~b(~) c~ ~ in 4, - ~ ~b(~) is contained in 
the normal vector space ofP(V 3 | M) in P(V~ | M) at 4. Clearly, the inclusion is 
R equivariant. Similar to the argument of Corollary 2.11, to prove the lemma, we 
only need to study the stabilizer stabR(ff) of all ( e P(V')  where V'  is the normal 
vector space of P(V3 | M) in P(V~ | M). Here R acts on P(V')  via conjugation. 

The normal vector space V' at ~ is isomorphic to (V~/V3) | M) where 

V, /V3  = { ( T ~  TO) To, T~ are antisymmetric }. 

2 (  T0 0 ) |  suppose For any w ~ (V~/V3) |  M, w = T~ 

(;0) (;0) 
t -  ~ w t -  ~ =2w,  2 ~ C * .  

Then t 4 = 1. Thus stabR(() = {e} or Z2. However stab(() ~_ C*t,<Z2. Therefore 
since stabR(() c~ C* = 7/z or {e}, the order of stab(() can only be 1, 2 or 4. We claim 
that when the order of stab(() is four, s t a b ( Q =  ZzxT/z.  Indeed, all 
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~J E C*t><7/2\C* satisfy g2 = 1. Thus there are at least two order two elements in 
stab(~). So stab(~) = Zz x Z2. This completes the proof of Lemma 2.6. [] 

3 Symplectic forms o n  ~H(d,l) 

Let 9~n(d, /)_be the desingularization of 9JlH(d,I) introduced in w and let 
9Jln(d, I)o ~- 9Jln(d, I) be the open subset of closed points lying over stable sheaves 
in ~ln(d, I). For d large, 931n(d, I)o is dense in 9Jln(d, l) thanks to the estimate (1.5). 
In this section, we assume X is a smooth minimal surface of general type with 
h~ > 1. We will explain how to construct (possibly degenerate) holomorphic 
symplectic form 

0o: Tg~u(d, I)o x Tg~H(d , t)o ~ C (3.1) 

associated to an OeH~ originated in [22]. Then we will study when such 
a section is non-degenerate at generic points of ~lH(d, I)o. If this indeed is the case, 
then :.2, 

det Oo e TgYt.(d, I )o (3.2) 

will provide us a two-canonical section of ~ffln(d, I)0. One remarkable feature of 
this section is that when d is large, it extends over ~J)]H(d, I) and further, it vanishes 
along the exceptional divisor of 9)'lH(d, I)--, 93lu(d, I). 

First, let us give a brief account of Kodaira-Spencer map of a family of sheaves 
on X which is needed in constructing the symplectic form ~o0. For  any smooth 
quasi-projective variety S and any family Es of coherent sheaves on X x S flat over 
S, we have the Kodaira-Spencer map associated to this family: 

KE~. TS 8Xtx • Es). (3.3) 

Here gxt)• s/s(Es, Es) is the relative extension sheaf over S such that for any open 
set U ~_ S, rfXt~x• Es)(U) is the Or-module Ex(x•215 Eslx• v). xE~ is 
defined as follows: We first consider a sheaf of graded algebra fq on S, where 
f#o = d)s, Nl = f2s is the sheaf of differentials and fqk = {0} for k > 2 and then form 
the associated scheme Proj c~. We let q: Proj f~ ~ S be the morphism defined by the 
homomorphism 

q: (gs -+ d)s �9 [2s, 71(f) = ( f  dsf). 

The differential ds is defined as follows: Following [EGAIV, 0.20], 
Cs(~ f2s = O s |  where 3- c Cs|  d)s is the ideal generated by 
1 | 1 7 4  1, and d s f =  1 @ f - f @  1. Clearly, pointwise, ds f |  k(s) = f - f ( s )  
(modulo raft) e f2s | k(s) for closed point s �9 S. It is easy to see that the set of closed 
points of Proj fr is isomorphic to S. Indeed, S embeds into Proj fr via the projection 
d)s (9 f# ~ d)s. Since Es is flat over S, ( lx x q)* Es is a sheaf on X x Proj f~ fiat over 
Proj ~. Thus 

0 ~ (1 x x q)*Es | J ~ (Ix x rl)*E s --* (Ix x r/)* Eix • --* 0 (3.4) 

is exact, where j is the ideal sheaf of X x S in X x Proj f#. (This is the sheaf of first 
principal part of Es given in [EGA IV].) Clearly, J = p'f2 s as r215 
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Now let 
Pet ~ Extx 1 • s(Es, Es | p~f2s) 

be the extension class defined by the exact sequence of Cx• (3.4). 
Combined with the canonical map Ext~ • s(Es, Es | p*f2s) | 6)s 
gxtlx • Es @ p*f2s), p~ then defines a section 

1 Cs gXtx• Es | p~2s), 

or equivalently, the Kodaira Spencer map 

•es : J s  ~ gxt~: • Es). (3.5) 

Here, ~--s = f2~ is the tangent bundle of S. Finally, we remark that the 
Kodaira-Spencer map ~ce s is canonical in the sence that if Fs is another family of 
sheaves on X x S that is isomorphic to Es via f :  Fs ~ Es, then 

•e = L(f)"  roe" R ( f ) -  1, (3.6) 

where L ( f ) :  Ext (E, ") ~ Ext(F,-  ) and R ( f ) :  Ext ( ", F) --* Ext( ", E) are the induced 
homomorphisms. Now we assume h~ > 1. Pick an 0 e H~ We can define 
a bilinear form Oo : g s  x Y s  - '  Cs as the compositions of K~ with the Yoneda 
product 

gxt} • Es) x gxt~ • Es) ~ gxt2• Es) (3.7) 

followed by tensoring 0 

8xt2• Es) | 2 ' gxtx • s/s(Es, Es | p* Kx) (3.8) 

and then by taking the trace 

Nxt2• Es | p* Kx) & R2ps,(p* Kx) ~- Cs. 

The bilinear form O0 was first introduced by Mukai [18] and Tyurin [25]. 

Lemma 3.1 The Mukai-Tyurin bilinear Jorm Oo is skew-symmetric. 

Proof. See [22]. [] 

There is a point-wise construction of the bilinear form O0. For  any rank two 
torsion free sheaf E on X, there is an antisymmetric bilinear map 

q~o(E) : Ext 1 (E, E) x Ext I (E, E) ~ C 

associated to 0 e H~ defined as the compositions of the following maps: 

Extl(E,  E) x Extl(E, E) & Ext2(E, E) |  Ext2( E, E | Kx) tr ,H2(Kx). 

Now let s e S be any closed point. The Kodaira-Spencer map 
Ks: T~S--* Extl(E~, E~) of the family Es at s e S then induces a bilinear form on 
T~S x T~S: 

(Ks, rs} 
C~o(E~):T~SxT~S ,Extl(E~,E~)xExtX(E~,Ed eo(E')~ C. 
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Lemma 3.2 Under the canonical restriction homomorphisms 

r~: 8 x t }  • Es) ~ Extl (E~, Es) 

and r~: J s ~  T~S, we have r~o ~cE~ = K~or~ and further, the following diagram is 
commutative: 

Oo 
9-s • :-s , (g s 

res ~ res (3.9) 
~,(G) 

T~S • T~S , C, 

Proof It is a local problem, so we can assume S is affine. The existence of r~ follows 
from [-10, III.9.3.1]. Here we have used the fact that 8xt~• Es) is defined as 
hypercohomology of a complex of (finite locally free) sheaves ~f~om( Fs, Fs), where 
F~ ~ F ~ ~ Es is a locally free resolution of Es [-8, p. 705]. Then the identity 
r~o xe~ = x~ ~ follows directly. For  the proof of the second part, we use the 
following commutative diagram 

1 x 1 ~Xtx• Es) 8Xtx• Es) -~ ~xt~• Es | p~Kx) ~ R2ps.(p~Kx) 

J. (r,, r,) ~ r~ J, res 

Ext l(E~, E~) • Extl (E~, E~) ~ Ext2(E, E | Kx) --* H2(Kx). 

Here the two left row arrows are defined as the composition of (3.7) and (3.8). The 
lemma will be established if we can show that R2ps , (p*Kx)  r~s ,HZ(Kx)  is 
surjective. But this is clear by using the base change theorem since RZps,(p*Kx)  is 
locally free. [] 

Once we have the bilinear form O0, we can take the determinant of O0 to obtain 
a homomorphism (det ~-'s) | ~ d~s. By abuse of notation, we denote the corres- 
ponding section in H~ COs ~2) by det O0. In the following, we show that this 
construction yields a two-canonical section of 9Jln(d, I)o. 

Proposition 3.3 Associated to every O~H2(Kx),  there is a Ao~ H~ I)o, 
~o | where co is the canonical bundle of gJlu(d, 1). 

Proof Let fr:~.(d, I)SS~ 9Jln(d, I) be the projection. By assumption, all closed 
points of fc- l(~ln(d,  I)o) have stabilizer {e}. Thus by applying (2) of Proposition 
2.7, there is an open covering { U } of  9271u(d, I)o by classical open sets such that over 
each U, there is a lifting Pv: U ~  .~.(d, l)S~of U ~9~n(d, I)o. Let Ev (on X x U) be 
the pull-back of the universal family of .,~,(d, I) ss. Clearly, Eu is a local universal 
family. Then by the previous construction, for any 0 ~ HZ(Kx) and any U, there is 
a two-canonical form det Oo, v e H~ ~o| (Since U's can be taken as analytic 
open subset of an 6tale neighborhood in 9Jlu(d, I)o, the previous construction is 
still valid). Now let U, V~_ ~Jin(d,l)o be two open subsets with U c~ V#: 0. 
Proposition 3.3 will be proved if we can show that 

(det O0. v)l v,~v = (det O0. v)l vn v. (3.10) 

Since this is a local problem, we only need to check (3.10) near each points  of 
U w V. Since .~,(d, I) ~ --* 9Jlu(d, I) ~ is a principal bundle, so is .~(d, I)o ~ 931n(d, I)o. 
Thus there is an f vv  : U c~ V-~ G such that when restricted to U c~ V, fvv" Pv = Pv. 
Now let z ~ U c~ V be any closed point. At a neighborhood O of z ~ U c~ V, we can 
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lift fvv to fvv : O --, GL(N,  C). Thus on X x O, we have an isomorphism 

fvv:Evlx•  ~ Evlx• 

Now let ~c and Kv be the corresponding Kodaira-Spencer maps of Ev and Ev 
respectively, then by (3.6), rCv = L(fvv)" Kv" R( fvv ) -  1 when restricted to O. There- 
fore near z, 

Oo.v = tr(Kv x Kv | 0) 

= tr(L( fvv) 'Kv 'R( fvv)  -1 x L( fvv) '~cv 'R( fvv)  -~ GO) (3.11) 

= tr(~o/x ~c v | 0) = Oo, v. 

Thus Oo, vlvn v = Oo, vlvn v and therefore (3.10) holds. [] 

To ensure that the two-canonical form det O0 so constructed is non-trivial, we 
need to check that the bilinear form O0 is non-degenerate (or det O0 is non- 
vanishing) at the general points of 9J~n(d, I)o. We quote the following observation 
made by O'Grady: 

Lemma 3.4 Let z e ~lu( d, I)o be a closed point correspondin9 to the sheaf E, then the 
symplectic form Oo is non-degenerate at z if  and only if the map 

E x t l ( E  ,E)  o |  Exta(E ,E  |  ~ (3.12) 

is an isomorphism. 

Now assume E is locally free at DEIKx], where D = 0-1(0). Then the map (3.12) 
fits into the following long exact sequence 

,Ext~ E | Kx) ~ ~ H~ ( gnd~ Eio) | Kx)-~ Ext X(E, E) ~ --* 

|  Ext I(E, E | Kx) ~ -~ H~(o~nd~ | Kx) ~ Ext2(E, E) ~ -~ 

By Donaldson's generic smoothness result, if we assume d large and E generic, then 
Ext~ E | 1 7 6  = Ext2(E, E ) ~  {0}. Further, since D is a canonical curve, 
h~176174  h~(gnd~174 Thus (3.12) is an isomorphism 
if and only if h~176 | Kx) = 0. Thus, the question whether O0 is non- 
degenerate at general z~Jln(d,  I)o has been reduced to the question whether 
h~176 | Kx) = 0 for general E~gJ~it(d, I). To this end, we observe 

Lemma 3.5 Suppose we can find a rank two locally free sheaf V on D with 
det V = l id such that h~ gnd~ V) | Kx) < I. Then there is a constant C depending 
on (X, H, I) such that for d > C, we have h~176 | Kx) < I for 9eneral 
E~gJln(d, I). 

Proof By Donaldson's generic smoothness result [4, 26], we can assume that there 
is a constant C such that for d >  C, Ext2(E,E(  - D)) ~  {0} for general 
E ~ 9J~n(d, I). We can also assume that the general sheaves E in 9J~n(d, I) are locally 
free (which follows from the estimate (1.7) and the Theorem 0.1). Thus, we will have 

Ext , (E ,  E) ~ ~ Ext~(EID, EID) ~ 

is surjective for general E. We fix such a general E. 
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Let V be the given vector bundle on D with d e t V = l  tD and 
h~176  | Kx) < l. We claim that there is a smooth affine curve S, So, sl eS  
and a locally free sheaf Fs on D • S of determinant p*l lo  such that F~o = V and 
Fs, = E w. Indeed, let L be a very ample line bundle on D so that both EID | L and 
V | L are generated by global sections. Then V(as well as E I D) belongs to the exact 
sequence 

O ~ L  1 ~  V_ ,L |  " 

In particular, there are so, s l ~ Ext~ (L | I I D, L - 1 )  whose corresponding exten- 
sion sheaves are isomorphic to Vand EID respectively. Since Ext 1 (L | Iro , L 1) is 
affine, we can choose S to be a line in E x t l ( L  | l lo,  L 1) containing So and sl. 
Thus the claim has been established. 

Because h~(Snd~174 l, by upper-semicontinuity of cohomology 
groups, for general s eS, h~( , fnd~174 Kx)<= I. Therefore, the lemma will be 
established if we can show that there is a deformation Et, t e T is a curve, of E such 
that for general t e T, Et is isomorphic to general F,. 

Let s e m~ 1 - m~, be uniformizing parameter of S. Let Rk = Spec 112 [s]/(s k) c_ S. 
We claim that for any k > 2, there is a sheaf ER on X x Rk flat over Rk that induces 
E when restricted to the closed X c X x Rk such that Ek I D • Rk ~ Fs I D • g~. Indeed, 
if we have already found Ek- x, then the obstruction to the existence of Ek lies in 
Ext2(E, E(--  D)) ~ which is zero by our assumption on E. Thus Ek exists for all k. 
Therefore, we can find an irreducible curve S' in ~Oln(d, I) containing E such that 
for general s' ~ S', E~,ID is isomorphic to a general Fs, s e S. In other words, we have 
h~ ~nd~ | Kx) < I. This completes the proof of Lemma 3.5. [~ 

The existence problem of the desired vector bundles on D is largely solved by 
the following proposition: 

Proposition 3.6 Let X be a minimal surface of  general type and let D6[Kxl  be 
a reduced canonical divisor. Then for any line bundle I on X,  there is at least one rank 
two vector bundle V over D ofde t  V =I ID  such that h~ gnd~ | Kx) < 1. 

The case when D is smooth was first established by Beauville [3] and by [-22]. 
Because the argument for the general case is quite independent from the the rest of 
this paper, we will include the proof of this proposition in the Appendix. 

Now we are ready to prove 

Proposition 3.7 Assume X is a surface of general type admitting a reduced canonical 
divisor D ~ [ K x [ and assume Z((gx) + I . I is even, then there is a constant C depending 
on ( X, H, I) such that for any d >= C and for general E EgJln(d, I), we have 

h~ gnd~174  Kx) = O . 

Proof Let C be the constant given by the Lemma 3.5 and Theorem 0.1. Then 
by Lemma 3.5 and Proposition 3.6, for d > C  and Ee~JJlu(d,I) general, 
ExtZ(E, E) ~ = {0} and h~ gnd~ | Kx)  =< 1. On  the other hand, the as- 
sumption Z(Ox)+ I - I  = even implies that ~)OIn(d, I) is of even dimension. Thus 
Lemma 3.1 implies that the kernel of Ext 1 (E, E) ~ ~ Ext 1 (E, E | Kx)  ~ is of even 
dimension. Namely, h~ ~fnd~ | Kx)  is even. Thus it must be zero because 
it is no more than 1. This completes the proof of the proposition. 

To this end, we know that under the assumption of Proposition 3.7, 
the symplectic form O0 (on ~ln(d, I)o) is non-degenerate at general points. Thus 
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the section 

Ao = det OosH~ I)o, e9 | 

is non-trivial at each irreducible component of ~l~t(d, 1)o. For our study, we will 
show that when d is large, it extends over 931u(d,l) to section 
Ao ~ H~ d, I), ~o| We will also show that the extended section/10 vanishes 
along the exceptional divisor W of ~ : ~ u ( d ,  I ) ~  ~l~(d, I). We state it as a prop- 
osition. 

Proposition 3.8 Assume d >> O, then there is an extension Ao ~ H ~ d, I), o9 | of 
Ao having the property that /1ol W =  0, where W is the exceptional divisor of 
~P: ~lu(d, I ) ~ 9Jlu( d, I). 

Proof. Let ~ e ~ u ( d ,  I) be any closed point over a singular point ~P(~) of 9J~u(d, I). 
First we assume that 7'(~) corresponds to a stable sheaf. Let U ~_ ~lu(d, I) be 
a classical neighborhood of ~ e~tu(d ,  I) so that a local universal family Ev exists 
on X • U. By Lemma 3.2, we have following commutative diagram, 

O0(O 
T c U x T ~ U  ~ 

Ext~(Er162162162 '~" , ~ . 

Clearly, Ao(~)= 0 when det O0(~)= 0 and when xr Tr ~ Ext l (Eo  E~) is not 
injective. Since 9JlH(d, I) is normal, we have dim 7 j l ~ (~ )  > 1. Further, since 
Er is stable, Ev restricted to X •  is a constant family. Thus 
Kr162 1 ~(r = 0. Therefore, 

Ao(~.) = det O0(~) = 0 .  (3.13) 

Next we consider the case when 7~(r I) corresponds to a strictly semist- 
able sheaf. By Proposition 2.7, there is a group F, F = {e} or 7/2, a F-invariant 
smooth (analytic) variety [7 and a (classical) neighborhood U of ~ E 9Jlttld, 1) such 
that [7IF = U and such that there is a local universal family E~7 on X • 17 with 
a F-linearization. Now consider the Muk~-Tyur in  bilinear form 0o((7) on /7  asso- 
ciated to the family EtT. By (3.1 1), det O0(U) is invariant under F and thus descends 
to a meromorphic two-canonical form/10 on U. We need to show that/ i0 is indeed 
regular. 

We consider the case where F = ~2. F = {e} can be settledsimilarly. Since 
[7 ~ U is a Galois quotient branched over a smooth divisor S ~_ U, Ao is regular if 
detO0(Q) has vanishing order at least two along S and /10 vanishes at r if 
det 690(U) has vanishing order at least four along S. Let (~  S be a general closed 
point. We again consider the following diagram 

Exta(Eo Er • Ext l (Eo E;) ~oo~e,l ~ . 

We claim that if 

dimker {x~: T ~ 7 ~  Extl(E~, E~)} > 4, (3.14) 
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then det O0([7)e co ~2@ m~94, where m~ is the ideal sheaf of ff e 0. In fact, (3.14) 
implies that the value of the antisymmetric bilinear form O0(U) at ~, considered as 
a k x k scalar matrix, has at least 4 zero eigenvalues. Thus by choosing an 
appropriate local frame of T[7, we can assume 

0 

where A is a (k - 4) x (k - 4) antisymmetric matrix. In other words, we have 

( 00) o0(tT)= 0 + B ,  

where B e m ~  k• Therefore, we must have det O0(U)eog~2 | m ~  4 . 
To this end, we only need to establish (3.14) by assuming d large. Let 

: U ~_ ~,(d ,  I) ~ ~ 9Jln(d, I) be the induced map. Then by (1) of Lemma 2.3, for 
any ~ e ~ -1 (~(~)), Er = gr(E~) is a direct sum of stable sheaves. Thus the subfam- 
ily of Et7 parameterized by the set ~-l(~k(~)) is also a constant family. Hence 

T~(~ 1(~,(~))) _~ ker{tc: T~LT~ Ext I(E~, Er . (3.15) 

If we can show that for large d, we always have d imO-l (~b(f f ) )>4,  then 
(3.14) holds and consequently, A0 is regular and/10 Iw = 0. Indeed, the set of closed 
points in 931n(d, I) correspond to strictly semistable sheaves are parameterized by 
sheaves F1 ~ F2, where c~(Fx). H = c1(F2). H = �89 I and z(F1) = z(F2). Let 
li = g(F~"~/Fi). Then because d = 11 + l; + Cl(F~).c~(F2) and c~(F~) + 
c~(Fa) = I, by Hodge index theorem, 

12 
l~ +12 < d - -  

4"  

Thus the number of moduli of the set of split semistable sheaves is at most 

(hl((-gx) + 211) + (h~((gx) + 2/2) < 2d + 2hl(d)x) - �89 2 ~ 4d - 12 - 3Z(Ox), 

for d>>0 .  

Because S _~ U is of codimension one, for general ( e  S, dim ~-l(~k(())  > 4 when 
d is large. Therefore, the proposition has been established. [] 

4 Canonical sheaf of the moduli scheme 

In the last section, we will first relate the dualizing sheaf of the resolution ~Y~n(d, I) 
to a determinant line bundle on 9J/~t(d, I). We will then show that the space of 
sections of the k-th tensor product of this determinant line bundle has maximal 
growth rate. Finally, by using the special sections constructed in w we will prove 
that the moduli schemes 9Jllt(d, I) are of general type under the constraint in 
Theorem 0.2 provided that d is sufficiently large. 
~ In the following, we assume d is sufficiently large so that 9Jln(d, I) is normal. Let 

~gl~(d, I) and .~,(d, 1)SSbe the resolution of ~Jlln(d, I) and .~,(d, I) s~ introduced in 
w where fJ ln(d , I )  = -~n(d, l)SS/G and G = PGL(N, •). Let ~ be the family of 
sheaves on X x ~,(d, I) ss that is the pull-back of the universal quotient family on 
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X • ~,(d, I) ~s. By using a finite length locally free resolution of 8 (which exists 
because ~ is flat over ,,~,(d, I)SS), one checks that the complex of sheaves 

8xt'x • g)  0 (4.1) 

is a perfect complex on ~,(d, I) ~s. Here the subscript X • Q/Q is an abbreviation of 
X x ~,(d, l)s~/~,(d, I)SL Thus according to [13] (see [15] also), there is a deter- 
minant  line bundle 

det (SXt'x • 8) ~ (4.2) 

of the complex (4.1) on ~,(d, I) Ss. 

Lemma 4.1 det ( gx t  ~• 8)  ~ is a G-line bundle on ~,( d, I) ~s. 

Proof In general 8 does not admit a G-linearization. However, if we think of 
.~,(d,I) ss as a GL(N,I/2) scheme, where GL(N, II;) acts on ~ , (d , l )  s~ via 
GL(N, IE)--. PGL(N, II~), then there is a canonical GL(N, lI;)-linearization of 8. 
Thus det(gxt~:• ~ is a GL(N, IE) line bundle. To show that the 
GL(N, ~)-action descends to a G-action it suffices to show that the group 
112" _~ GL(N, t1~) acts trivially on det(Sxtj~• 8)~ 

Indeed, for any sheaf E on X with g = c - i d : E - ~  E, cEC*,  the induced 
homomorphism on the similar complex (4.1), say 

g~ : Ext , (E,  E) ~ --* Ext , (E,  E) ~ 

is identity. Thus 

det(g.) :  | Ext , (E,  E) ~ --" | A Ext , (E,  E) ~ 
i = 0  i = 0  

is also an identity homomorphism. Now by combining the base change property of 
the determinant [13] and the smoothness of ,~,(d, I) "~s, we conclude that the 112" 
action on the line bundle (4.2) is trivial. Therefore the GL(N,  I1~) descends to 
G-action on the line bundle (4.2). [] 

In the following, we denote the G-bundle det(Sxt ~ • Q/Q (8, g)o) by Det/Q(8, 8). 
Our next task is to study when the line bundle Det/Q(8, 8) descends to 9Jlu(d, I). 
We need the following descent lemma of Kempf: 

Lemma 4.2 (Descent lemma) For any G-vector bundle V on ,~,( d, I ) ~, V descends to 
ff'Jln( d, I) if and only if for every closed point ~ e.g.(d, I ) ~ with closed orbit G. ~, the 
stabilizer stab(~) ~ G of ~ acts trivially on Vr 

Proof See [5]. [] 

Recall that for any closed ~e~, (d ,  I) ~, G-~ is always closed and further, if 
s tab(O is non-trivial, then stab(~) is 7/2. 

Lemma 4.3 For any closed ~ , ( d ,  I) ~, stab(~) acts trivially on 
Det/e(8, 8)  | k(~). 

Proof According to w if stab(()  is nontrivial, then the induced action on E by 
s t a b ( ~ ) = ~ 2  is generated either by (~ _ ~  or by 
( + o  ~) : F 0) F ~ F ~) F. Here, 88 = F1 q) F2 or F ~ F. We will check the case 
where g ~ stab(~) has the form (~ o ). The other case can be proved similarly. First 
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note that 

Exti(g~, d~) ~ = Exti(Fl ,  F2) {~ Exti(F2, Fx) G 

(Exti(F1, F1) G Exti(Fz, Fz))/Hi((gx)) 

and that Exti(F1, F2) @ Exti(F2, F1) (resp. (Exti(F1, F1) �9 Exti(F2, F2))/ 
Hi((~x)) is the eigenspace of the homomorphism 

g~, : Exti(g~, 6~) ~ ---} Exti(go 6~) ~ 

with eigenvalue --1 (resp. 1). Since x(Ext '(Fa,  F2) )+  z(Ext '(F2,  F~)) is even, 
det(9.) acts as identity on 

| Ext ' (g  o 8~) 
i = 0  

Therefore by base change, 

det(g.)  :det (gxt~• Q/Q(g, g)o) | k(~) ~ det(gxt~ • Q/o(g, 6~) ~ | k(~) 

is the identity homomorphism. [] 

Now we can apply the descent lemma to the G-bundle Det/Q(g, g) to obtain 
a descent line bundle on 9J~H(d, I). We denote the descended line bundle by 
Detm(8, 6~). Our next proposition shows that Detm(~, 6 ~) is very close to the 
canonical line bundle of 9XH(d, I). 

Proposition 4.4 Let to be the canonical line bundle offJ~n(d, I) and let W ~_ ~n (d ,  I) 
be the exceptional divisor o f  ~H(d,  I ) ~  93~u(d, I). Then the restriction of 
Detm(o r g)  to the open set ~1~(d, I) \  W is isomorphic to the canonical line bundle 
co o f t en(d ,  I). 

0 ss Proof Consider the complex (4.2) over ~ , ( d , I ) .  When restricted to 
~(~tu(d, I ) \ W )  ~_ .~,(d, I)~S, gXt~x• g)o = {0} for i = O, 2 and 

gxt~ • ~/Q(6 ~, 6~) ~ (4.3) 

is locally free. (We remark that since g x t ' ( .  , .) is defined as hypercohomology of 
complex of locally free sheaves, the base change theorem still holds in this setting 
[10, III.12.11].) One checks that (4.3) is a G-bundle and thus descends to a vector 
bundle over 9)~n(d, I ) \ W  by descent lemma. We claim that the descent of 
gxt~ • ~, g)0 is isomorphic to the tangent bundle T(~ln(d,  I ) \W) .  Indeed, let 
~ be the kernel of ~n (_gx• then by [2,9,18], the tangent bundle of 
fc - ~ ( ~fJlH( d, I )\ W) ~_ ,~,( d, I) ~ is the kernel of the composition 

i~:A, OOmx•215 tr 1 . ~/a(g, g)--~R pQ.((gx• 

Clearly, the image sheaf 

Yt~omx • Q/Q( (9~x ~Q, g)  ~ Ker(/~) (4.4) 

is the relative tangent bundle of the fibration ff:ff l ( ~ n ( d , l ) \ W ) ~  
(~J~n(d, 1)\W. Thus the descent of the cokernel of (4.4) is isomorphic to the tangent 
bundle TOJln(d, I)\ W). By the vanishing of gxt  ~ • e/e(g, g)o, i = 0, 2, the cokernel 
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of (4.4) is isomorphic to (4.3). So the descent of gxtlx • e/Q(g, 6~) ~ is isomorphic to 
T(~ln(d,  I ) \  W). This implies that the descent of the determinant line bundle (4.2), 
which is canonically isomorphic to the dual of the determinant of the descent of 
(4.3), is isomorphic to the restriction of co to ~lu(d, I ) \  W. Thus the proposition is 
established. [] 

Corollary 4.5 Let Wi = 1 . . . .  I be irreducible components of W. Then there are 
integers aa . . . . .  at such that c~ -= Detm(g,  ~ ) ( ~  ai Wi). 

Proof~This follows from the fact that both ~o and Det/M(g, g) are locally free and 
that ~ n ( d ,  I) is smooth. [] 

To show that ~ n ( d ,  I) is of general type, we need to show that the space 
H~ I), r174 has maximal growth rate. As explained in the introduction, 
our first step is to show that the space H~ I), Detm(8,  g)| has maximal 
growth rate. Because our argument is based on the assumption that X is a general 
type surface, at some point, we need to relate the line bundle Det/M(tf, ~) directly to 
canonical divisors of X. We have the following relation: 

Proposition 4.6 For any divisor D 6lrK x I, let Det/Q(8, glD) be the determinant line 
bundle o f  the perfect complex Nxtx • Q/Q(g, gl D)0' where or is the restriction of o r to 
D x .~,(d, I) ~. Then 

Det/Q(~f, $1o) ~ Det/Q(~, ~)| 2r) 

as G-bundles. 

We will prove Proposition 4.6 by first establishing the following lemmas: 

Lemma 4.7 Let Px : X • ~,(d, 1) ~ ~ X be the projection. Then the complex 

g x t x  • c2/Q(o e, g | p * Kx) ~ (4.5) 

is a perfect complex whose determinant line bundle Det/e(d ~ g | p* K x ) descends to 
a line bundle over 9)ln(d, I). I f  we denoted the descent by Detm(g ~ g | p~Kx), then 

Det/M(g, go | p*Kx)  ~ (Det/M(o ~, g))  i . 

Proof. The proof of the first part is a direct consequence of Lemma 4.2 and 4.3. To 
establish the isomorphism, we apply the duality theorem to the (smooth) projective 
morphism P2 l11, p.210] to conclude that there is a complex of finite locally free 
sheaves of finite length, say N ,  such that the complex (4.5) is quasi-isomorphic to 
~" while the complex (4.1) is quasi-isomorphic to the comples ~Ufom(N', (9). Thus 
by [13], 

Det/Q(ef, o ~ | p*Kx)  ~ Det/Q(g, o r - 1 . (4.6) 

Therefore their descents satisfy the same identity. [] 

Lemma 4.8 Assume A and B are two effective divisors such that Kx  = (9(A -- B), 
then 

Det/e(g,  ~lA) | Det/e(g, o~1~) - 1 = Det /e (g  ' o~)| (4.7) 

as G-bundles. 
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Proof Since 8 is a family of torsion free sheaves on X • .~,(d, I) ss flat over 
.~,(d, I) s~, by the local criteria of flatness, the sequence 

O ~ 8 | 1 7 4 1 7 4  (4.8) 

is exact. (4.8) induces a long exact sequence 

8xtix • o/a(8, 8 | P*~Px(- B)) ~ ~ 8Xtix• a/q(8, 8 | p*Kx) ~ -~ 

8Xt~x• (8 | p~Kx)IA) ~ -~ 8Xt~x+'~2/O(8, 8 | p*Cx(-- B)) ~ 

which gives rise to a triangle of complexes of sheaves 

8Xt'x xQ/Q(8, 8 | p* Cx(-- B)) ~ ~ 8xt zx • 8 | p* Kx) ~ 

gxt  jc • g, ( g | p* Kx)IA) ~ �9 

Then by [13], the determinant line bundle of the respective complexes satisfy 

Detm(8, 8 | p*Kx) = Det/Q(8, (8  | p*Kx)tA) | Det/Q(8, 8 | p~Ox(-- B)). 
(4.9) 

Similarly, by considering the long exact sequence induced by the short exact 
sequence 

O~ 8 | p~Qx(- B)~ 8-~ 81B~ 0, 

we obtain another triangle of complexes. 

8Xt'x• 8 | p*(fix(- B)) ~ -~ 8xt'x• 8) 0 ~ 8xt'x• 8w) ~ 

and an identity of their determinant line bundles 

Det/e(8, 8 | p*(gx(- B)) = Det/q(8, 8) | Det/e(8, gin) - l 

Thus combined with (4.9) and Lemma 4.7, we have 

Det/e(8, 8) |  2) = Det/o(8, 8)  - 1 | Det/Q(8, 8 | p*Kx) 

= Det/Q(8, gin) - x | Det/Q(8, (8  | p*Kx)IA) �9 

Thus the lemma follows from 

Lemma 4.9 For any curve A c_ X, the G-bundle Det/Q(8, 81A | p *AL) is independent 
of the choice of L e  Pic(A). 

Proof We only need to show that for any effective Cartier divisor C _ A, 

Det/Q(8, 81A ) ~ Det/0(8, 81A | p](gA(C)) 

as G-bundles. Let 0~ ~ ~o  --" 8 be a length two locally free resolution of d. Then 
the exact sequence 

0 ~ ~i1,4 -'* '~ila | P]OA(C) -* ~ilc --* 0 

induces a triangle of complexes 

8xt] • ~.lA) "-* 8 x t j  • !~.lA | p*OA(C)) ~ 8xt'A • "~.lc) 
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and the identity 

Det/q(~. ,  ~.IA | P*(gA(C)) = Det/q(~. ,  ~.l,t) | Det/Q(~., ~.Lc). (4.10) 

Since the first and the second terms in (4.10) are the line bundles 
Det/Q(8, 6~lA | (gA(C)) and Det/Q(O ~, 6~lA) respectively, the lemma will be estab- 
lished if we can show that Det/Q(~., ~ . lc)  = Co. But this is obvious because 

gxt'a • e /e(~. ,  ~ . lc)  = ~om(~l.,  ~.lc) 

which of course has trivial determinant. Thus the lemma has been established.[] 

We quote one more lemma whose proof appear in [15]. 

Lemma 4.10 Let Co, C1 and C2 be smooth divisors Of X so that Co is linearly 
equivalent to C1 + C2. Then as G-bundles, 

Det/e(~, glco) ~- Det/q(~, glcl) | Det/e(g,  ~flc2) �9 

Remark. Though the lemma is stated and proved for smooth divisors of X in [15], 
it is indeed true for any divisors Co ~ C1 + C2. 

Proof of  Proposition 4.6 First of all, by choosing smooth divisor A and B so that 
Kx = (9x(A - B), we obtain the isomorphism (4.7). Then we can apply (4.9) and 
(4.10) to deduce Proposition 4.6. [] 

Now we demonstrate how to construct global sections of co | by using the 
Corollary 4.5 after Donaldson [4]. In the rest of this paper, we assume X is 
a minimal surface of general type. For  any smooth D ~lrKxl, we consider the set 

~,(d, l)SS[D] = {sE~,(d, l)SSl8 ~ is stable and g~ID is semistable}. 

Clearly, if we let 9JID(2, I) be the moduli space or rank two semistable vector 
bundles on D with determinant I I D, then the restriction to D x ~,(d, I) ~ [D ] of the 
universal family d ~ induces a morphism 

~0o:-g,(d, I ? ' [ D ]  --, ~J~(2, 1). (4.11) 

We remark that qo, is G-equivalent, where G acts on ~D(2, I) trivially. We have the 
following result of Donaldson, 

Lemma 4.11 There is an ample line bundle 5g D on 93lo(2, I) such that 

~p*(SeD) ~ Det/Q(g, g l . )  - '  I~.(d, I ) ~ [ D ]  . (4.12) 

Further, this isomorphism is G-equivariant, where G acts on ~D trivially. 

Proof We first remark that since over ~.(d, I)~ [D ], g l .  is locally free, the restric- 
tion to ~.(d, I ) ~ [ O ]  of the complex of sheaves 

gXt'x• glD) ~ (4.13) 

is isomorphic to the complex of sheaves 

R" pQ,( gnd~ elo)) . 

Now let q/~'~ be the functor that sends any separable finite type scheme S over C to 
the set of all families of rank two semistable vector bundels Fs on D x S over S with 
d e t F  s = p*(Iio ) | p 'L ,  L e  Pic(S), where two Fs and F} are considered identical 
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if Fs ~- F's | p~L' for some L ' e  Pic(S). q/~,x is coarsely represented by the projec- 
tive scheme 93lo(2, I). Next, for any scheme S and any family of semistable vector 
bundles Fs E ql ~'l(S), we assign to it the line bundle 

det (R'ps, gnd O(Fs)) e Pic (S) . (4.14) 

Clearly, if Fs -~ F} | p~L for some L e Pic(S), then de t (R 'ps ,  o~nd~ is canoni- 
cally isomorphic to det(R'ps,  gnd~ Thus combined with the base change 
property, (4.14) defines an element in P ic (q /2 ' t ) - the  Picard group of the functor 
q/~'t [5]. It is shown, for instance using Lemma 4.2, that the line bundle (4.14) is 
indeed the pull-back of a line bundel on 93/z~(2, I). We denote the inverse of this line 
bundle by 5av. Then (4.12) follows from the universality of the line bundle 5~ 
Finally, the ampleness of the line bundle ~ D  follows from [3]. [] 

Up to this point, we are able to construct a lot of G-invariant sections of 
Det/Q(g, glD) | on .~,(d,l)~S[D] by appealing this restriction technique. 
Namely, for any positive integer m and any veH~ I), ~q~m), q0*(v) is 
a G-invariant section of Det /e(& d~ | over .~,(d, I )~[D] .  Our next task is to 
show that all of them extend canonically to .~,(d, I) ~. 

Lemma 4.12 Let D~lrKxl be a 9eneral smooth divisor. Then any section ~o*(v), 
vEH~ I ) , ~ m ) ,  extends uniquely to a section in H~ ~s, 
Det/Q(d ~, ~'lo)| m)). 

Proof. We first consider a special case. Suppose S is a smooth affine curve, p E S, F is 
a rank two locally free sheaf on D x S  with de tF=p*l iD  such that Fs are 
semistable for all closed sE S\p. We let det(R'ps,, fnd~ be the determinant line 
bundle on S. By the proof of Lemma 4.9, the morphism ~p : S\p ~ 931D(2, I) (induced 
by the family F) has the property 

(P*(~q?D) ~ det ( R'ps,  ~f nd~ ( F ) )l-s'~p �9 

Now let veH~ I), ~ o  ~) be any section and let r176 
det(R'ps, gnd~ | ~)) be the pull-back section. We claim that q~*(v) extends 
to a regular section (p*(v) ~ on S. 

Indeed, since 9Y~0(2, I) is complete, after possibly taking a base change n : S--, S, 
there is a locally free sheaf F on D x S  such that the restriction of F to 
D x ( ; f \ n -  l(p)) is isomorphic to ~*(FID xts\-I) where ~ :D x S-~ D x S, and such 
that F~ is semistable for all s e S. Let q5 = ~o o n : S \~  - l(p) ._, 93~o(2, I) and let ~*(v) 
be the pull-back section (over g \~ -~ (p ) )  based on the isomorphism 

(o*(~o) ~ det(R'ps,  gnd~ 

By base change property of the determinant line bundles, 

n* det( R'ps, gnd~ | ~- det( R'pg.$nd~ F)) | 

and (}*(v) = n*q~*(v). Thus q0*(v) extends if and only if ~s,(V) extends. Therefore, 
without loss of generality, we can assume S = S. Clearly, F belongs to the exact 
sequence 

O~ F--* F--, A--*O, (4.15) 

where A is a torsion sheaf supported on D x p. Dualizing the sequence (4.15), we get 

0--, F ~ --, F~ ~ a ' - ~  0 .  (4.16) 
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By tensoring (4.16) by ff and tensoring (4.15) by F v , we get 

0 ~ FV | f - *  FV | iO-* A' | i~-* 0 ; (4.17) 

0 - * F  ~ |  v |  ~ |  (4.18) 

Now we apply the functor det(R'ps , ( .  )) to the exact sequence (4.17) and (4.18) to 
get 

de t (R 'ps , (F  v | F)) = det(R'ps , (F ~ | F.)) | de t (R 'ps , (F v | A)) 

= de t (R 'ps , (F  v @ F)) |  de t (R 'ps , (A '  | F)) 1 

| de t (R 'ps , (F ~ | A ) ) .  

Since de t (R 'ps , (F  v | F)) = det(R'ps,o~nd~ we have 

det( R'ps,  gnd~ F)) = det( R'ps ,  gnd~ f))(lp),  

where I = z (F  ~ | A) - z(A'  | 1~). Thus 

det(R 'ps ,gnd~ | = det (R 'ps ,gnd~174 - mlp) . (4.19) 

Clearly, the morphism q~:S-* ~ID(2, I) induced by the family f coincides 
with q0 when restricted to S\p and further, the pull-back section 
~ , (v )~HO(S ,  det(R.ps, o~ndO(l~))| coincides with q~*(v) over S\p via the 
isomorphism (4.19). Thus, ~o*(v) extends if 

l = z(F v | A) - z(A' |  < 0 .  (4.20) 

We prove (4.20) by induction on the length d(Al~oxs) where xo6D is a general 
closed point. Since F s is locally free, without loss of generality, we can assume 
rankD A | k(p) = 1. Thus rankoA'  | k(p) = 1 also, Since F | k(p) is semistable, 
we must have degoA | k(p) < �89 Therefore, z(FV | A @ k(p)) G 2Z((9o). 
Similarly, z ( A ' |  F |  k(p)) > 2Z((flo). Hence 

z (F  ~ | A | k(p)) - z(A'  | F |  k(p)) < 0 .  

Next, let F' be the kernel of F-* A | k(p). F' belongs to the exact sequence 

O -* F -* F' --* B -* O 

II r 

0-* f - *  F-*  A - * O .  

Clearly, A/B ~- A | k(p), so d(Bl~oxs) < d(Al~oxs). By induction hypothesis, 
z(F ~ | 1 7 4  So 

z (F  ~ | A) - X(A' | ff) = z (F  v | 1 7 4 1 7 4 1 7 4  

+ z ( F  ~ @ B ) - Z ( B ' |  f f ) < O .  

Therefore, qg*(v) extends to a regular section over S. 
Now we prove the extension lemma. We first let ~,(d, l)SS[Kx] be the open 

subset of ~, (d , I )  ~ consisting of Kx-semistable quotient sheaves and let 
= .~,(d, l )~ \~ , (d ,  l )~'[Kx].  By [23], ~ is a closed subset of .~,(d, I) ~ of 

codimension at least one when d >> 0. Let ~IBa . . . . .  ~]~Bt be irreducible components 
of ~13 that have codimension one. By choosing D ~ I rKxl general, we can assume 
g~lO is locally free for general se~B~ . . . . .  ~s Now we apply the Bogomolov's 
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result which says that if E is/~-semistable with respect to Kx and r > 2d + 1, then 
for smooth D e[rKx [, E I o is semistable provided that E I o is locally free. Therefore, 
if we assume d large, r > 2d + 1 and D general, the compliment of.~,(d, I ) ss [o]  in 
.~,(d, l)SS[Kx] has codimension at least two. (We know that when d is large, the 
general points of .~,(d, I) s~ corresponds to locally free sheaves.) Take a smooth 
curve S, p ~ S, and a morphism/~ : S ~ .~, (d, I) ss so that p (S\p) c ~,  (d, I) ss [ O ] and 
#(p)~2131 is general. Let Fs be the pull-hack of g via /~. By shrinking p e S  if 
necessary, we can assume FslD is locally free. Then 

#*Det/Q(g, gl o) = det( R'ps,  gnd~ Fsl o)) �9 

Thus by the previous argument, the pull-back section/~* ~0*(v) extends to a regular 
section over S. Since .~,(d, I) ss is smooth, q~*(v) is regular along ~3i. Therefore, 
q~*(v) extends over .~,(d, l)SS. [] 

Clearly, the extensions of ~p*(v) ex are G-invariant. Thus they descend to 
sections in 

H~ I),  Det/u(g, glD) |  �9 

Therefore, by Lemma 4.7 and 4.8, we proved 

Proposition 4.13 For any m > 0 and general D ~ IrKx[, there is a homomorphism 

pm: n~ I), ~~ ~ H~ I), Det/M(r g)| 

that is induced by isomorphisms in Lemma 4.11 and 4.12. 

Proposition 4.14 Suppose ( X, H) is a minimal surface of general type and I e Pic(X) 
is a line bundle has the property that cl (I) .  Z is even for any ( -  2)-exceptional curve 
Z of X, then there is a constant C depending on (X, H, 1) such that for any d > C and 
any irreducible component M ~_ ~lu(d, 1), 

h~ Det/M(g, g ) |  = C" m c(a) + O(m c(d)- 1) 

with c > 0 and c(d) = dim ff)ln(d, I). 

Proof Let Q _~ ~,(d, I) s~ be the irreducible components corresponding to M and 
let ~po:Q~gJID(2, I), D~[rKxt general, be the rational map (4.ll). Then by 
Proposition 4.13. 

h~ Det/M(g, ~)| > c .m  O + O(m~-l),  c > 0 ,  

where/3 = dim ~PD(Q). 
We claim that dim ~oD(Q) = dim ~JJln(d, I) when r is large. Indeed, let Y be the 

canonical model of X and let Z ~_ X be the exceptional divisor of f :  X--, Y. Then 
for large d and general E 6 M, Ext z (E, E ( -  Z)) o = {0}. Thus by the assumption on 
the degrees of E along components of Z, Eiz - C~ 2. Now let E, F be two general 
members of M, then (E ~ | F)lz ~ C~ 4. We claim that t h e n f . ( E  ~ | F) is locally 
free. Indeed, for any ~nteger k, assume (E ~ | F)lkz g 0 ~  4, then because 

h ' ( Z , ( E  ~ |  ( -  kZ)) = h ~  ~ |  + 1)Z)) 

= h~ (gz((k + 1)Z) .4) = O, 

H~ + 1)Z, (E v | F)[tk + t)Z) ~ H~ kZ, ( Ev | F)lkZ) 
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is surjective. Therefore, (E v @F)lkZ = 0 ~  4 for any k by induction on k. In 
particular, ./'.(E ~ | F) is locally free over Yby [10, 3.11]. Next, since Ky is ample 
on Y, we can choose r large so that for any locally free E, Fe~IH(d, 1) with 
f . (  E ~ | F) locally free, h a ( Y , f . (  E ~ | F ) ( -  rK~) ) = 0. Now let E, F e ?OIH( d, I) 
be any two stable locally free sheaves. Assume E I o ~ FI o, D e lrKxl general. Since 

H~ Y,J',(E ~ | F ) ) ~  H ~  E ~ | F)) = H~ E ~ | F) =# {0} 

is surjective, there is a non-trivial homomorphism g : E ~ F. Since E and F are 
stable, E ~ F .  Thus q):~,(d, 1)~/G--,~JU't(D) is generically one-to-one. So 
dim q~D(-~.(d, I) "~) = dim g)lH(d, I). [] 

Now we prove the main theorem: 

Theorem 4.15 Let (X, H) be any smooth minimal surface of general type and I a line 
bundle on X such that c1( I) .  Z is even for any (-2)-exceptional curve Z of X and 
that Z((gx) + 12 is even. Suppose there is a reduced D E IKxl, then there is a constant 
C depending on (X, H, I) such that fi)r any d > C, ?OIn(d, I) is of general type. 

Proof. According to Corollary 4.5, the canonical line bundle o5 = Det/M(8, 8)  
( ~  al W~). On the other hand, under the assumption on X and 1, the two-canonical 
section AD constructed in w is non-trivial at each irreducible component 
M c ~ln(d, I) and is indeed a section of co| when d is sufficiently large, 
where W is the exceptional divisor of ~[u(d,l)--*gJlH(d,l). Now let 
c~ = max { -  ai}. Then there is an injective homomorphism 

HO(M, Det/M(r g)| _~ H~ CO |  + 2c0m ) 

kD U 

v ~ v |  ~m . 

It is well-defined because v e H ~ 1 7 4  while / I ~ m E H ~  
~O| - emW)). Thus for m >> 0, 

dim H~ o) | + 2~)m) > dim H~ Det/M(g, d~) | 

=c.m~n~+O(m~r 1), c > 0 .  

Thus, the theorem and the Theorem 0.2 has been established. [] 

The requirement that there is a reduced D ~ t Kxl is a technical condition. All we 
need is a result similar to Proposition 3.6 for arbitrary canonical curves. The 
condition that )~(Ox) + I2 is even should not be necessary. One indication along 
this line is that if we assume h~ > 3, then we can choose three general 0~, 0z 
and 03 e H ~  to form three symplectic forms O~.  Then it is likely that 

O0, O0~ 

will be non-degenerate at general points of ~0l,(d, I). Thus its determinant will 
provide us the desired pluri-canonical section in proving Theorem 0.2 in the 
general case. The author conjectures 

Conjecture. For any smooth minimal algebraic surface ( X, H) of  general type and 
any ,fixed line bundle I such that c l ( l ) . Z  are even for any (-2)-exceptional 
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curve Z, then there is a constant C dependin 9 on ( X, H, I) such that whenever d > C, 
then O)ln(d, I) is of general type. 

The techniques developed in this paper can be employed to study the Kodai ra  
dimension of the moduli  9Jln(d, I) for other surfaces. For  example, when 
~c(X) = - co and - rKx, r > 0, is effective, then one easily sees tha t  9Y/n(d, I)  will 
have Kodai ra  dimension - co. For  X with Kx = Ox, ~c(gJ/11(d, 1)) = 0 because 
Proposi t ion 3.8 provides us a two-canonical  form on a desingularization of 
9?iln(d, I). When to(X) = 0 while Kx 4: (gx, one checks that  K(?gln(d, l)) < 0 and 
the equality holds if 9Jlo(d, I) is smooth. 

5 Appendix 

In this appendix, we are going to prove the following proposition: 

Proposition 5.1 Let X be a minimal surface of general type and let C e l K x l  be 
a reduced canonical divisor. Then for any line bundle I on C, there is at least one rank 
two locally free sheaf E on C with det E = 1 such that 

h~ r176 | Kx) _-< 1 . (5.1) 

The tactic used in at tacking this problem follows closely with tha t  of Mumford  in 
his study of Prym variety 1-21]. We outline the proof  briefly here. For  simplicity, we 
assume C is irreducible. First  of all, let E be a sheaf as in Proposi t ion 5.1 and  let 
x E C be a general closed point.  We consider an elementary t ransformat ion F of 
E by the exact sequence 

0--* F ~  E ~  112x~ 0 .  (5.2) 

By a careful study o fH~176  | Kx), we can show that for general homomor-  
phism E ~ Irx, 

h ~ 1 6 2 1 7 6 1 7 4  1, if h~176174 1 ; 
h~176 | Kx)  = [ 1, if h~162176 | Kx) = 0 . 

Thus if h~176 | Kx) ~ O, we can actually decrease it by replacing E with F. 
One draw back of this maneuver  is that  since det F = I ( -  x), F is not what  we 
want. The solution to this is to perform elementary t ransformat ion one more time. 
More  precisely, we construct E '  by the following exact sequence 

0 ~  E ' ~  F ~  IEy--, 0 .  

The same argument  shows that  in any case ,  we will either have 
h~176 ') | Kx)  < h~162176 | Kx) or it is alregdy < 1. Finally, let A be an 
invertible sheaf on  C such that  A | = d)c(X + y)j Then- the  sheaf E'  @ A has 
de terminant  I. Therefore, if we begin with a genet:al sheaf E, E must  satisfy (5.1). 

F rom now on, we always assume C e iKxl is reduced, I is an invertible sheaf on 
C and except when ment ioned is made to the contrary,  all sheaves considered are 
rank two locally free sheaves on C. Before we prove Proposi t ion 5.1, we first state 
the following results: 

Lemma 5.2 Let Et be a family of locally free sheaves on C with det E~ = I, t ~ T. 
Suppose the parameter space T is connected, then h~ end~ ( Et) | K x ) is constant 
modulo 2. 
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Proof The case when C is smooth was established in [3, 22]. By a careful study of 
their proofs, one sees that the only thing needs to be checked in order to generalize 
their proofs to the reduced curve case is that one can define a residue map 
Coc(D)/r ~ ~, where D is a reduced effective Cartier divisor of C, such that for any 
0cH~  ~x~DResx(g)= 0 and when R e s x ( g ) = 0  for any x~D, then 
g~H~ But this certainly can be achieved by the exact sequence 

Ho((oc)__. Ho(~c(D))~ HO((oc(O)/cOc) rcs n l(cOc) = ~ . 

We leave the detail of the proof to the readers. [~ 

Lemma 5.3 Let e) c be the dualizing sheaf of C, let D be any Cartier divisor on C and 
let S ~_ C be any irreducible component. Then f the restriction homomorphism 
H~ C, O~c(- D ) ) ~ H~ S, ~Oc(- D)) is trivial, then for general closed point x ~ S, 

H~ + x ) ) ~  C(D + x)l:, 

is surjective. 

Proo]i Assume H~ (9(D + x))--* (9(D + x)l x is trivial, then H~ (9(D + x)) = 
H~ By R.R. and duality, we then have h~ coc(-D))= h~ 
( O c ( - D -  x ) ) +  1. But since we have assumed that H~ O c ( - D ) ) ~  H~ 
coo(-  O)) is trivial, we must have h~ C0c(- O)) = h~ ~Oc(- D - x)), a contra- 
diction. [] 

We also need the following technical lemma: 

Lemma 5.4 Let C = DI + D2 be a splitting (D2 may be empty) and let S ~_ D1 be an 
irreducible component. Suppose E is a rank two locally .free sheaf on C and suppose 
F is defined by the exact sequence 

O~F--+E ~ x , ~ x ~ O ,  (5.3) 

where x ~ S and q~ are general closed point and homomorphism respectively. Then 

h~176 < h~ oVnd~ 

unless the restriction homomorphism 

R~,s:H~176 + D2))---~ H~ gnd~ + D2)) (5.4) 

is trivial. In this case, we have h~ ~nd~ <= h~ gnd~ + 1 . 

Proof Let r =  h~176 and let r0 = h~ Because the 
dualizing sheaf OO~ = Kxl o~(D1) = (gD~(2D~ + D2), by R.R. and Serre duality, 

Homo,(E,  E(DI + O2)) = z(DI, E ~ | E(D1 + Dz)) + Ext ~o,(E, E(D1 + DE)) 

= 2Dl'D2 + r + r o . 

We first assume that for general x e S and q~, 

Homo~ (E, E(D1 + Dz)) -o Hom(E, ~ )  = ~ 2  (5.5) 
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is surjective. Then dim HomD,(E, F(D1 + D2))  = 2D1 "D2 -k- r + r o -- 2. By R.R. 
and Serre duality, we have 

dim Homm(F,  E( D1)) = z(D1, F ~ | E( D1)) + Extg~(F, E( D1)) = r + ro . 

Since H o m m ( F , F ( D O ) ~ H o m m ( F , E ( D O )  is injective, we must have 
h~ gnd(F)(D1))  < r + ro. Or equivalently, h~ 8nd~  < 
h~ gnd~ 

Next we consider the case where RE, s (cf. (5.4)) is non-trivial while the 
homomorphism in (5.5) has image ~ for generic x and ~0~. Note that then 

I m { H ~  (gD,(D1 + D 2 ) ) ~  n ~  (9,,(D, + D2))} = {0}. (5.6) 

For  similar reason as before, we have d imHomm(E,F(Dm + D2))= 
2D~ .D2 + r + r0 -- 1 and by R.R. and duality, we have dim Homo,(F ,  E ( D , ) ) =  
r + r o +  l. Thus 

d imH~ gnd~  < r + 1 . 

It remains to show that the equality does not occur when x e S and ~0~ are general. 
Namely, we need to show that the homomorphism 

a: Homm(F,  F(D~))--+ Hom,~(F,  E(D~)) (5,7) 

is not surjective. Here is our argument: We first consider the filtration 
E ( -  x) c F c E and the induced filtration 

H o m , , ( F ,  F(D, ) )2~  HomD,(F, E(D,))  ~ HomD~(E(-  x), E ( D , ) ) .  (5.8) 

Under a fixed trivialization Ex = (-gs~,~ 2 and the compatible trivialization 
E(Ol)x = (9~2, we assume ~o~ has the form ~o~ = (~): Ex = (9s,x~)2 _ .+  ~l.~x,-- where t e ~ .  
Then we can find a local trivialization Fx = (9~, 2 so that inclusion F~ ~ Ex is given 
by 

- - t  lX1. (9 .2__  * ~2 
j .  S,x (gS, x 

0 

where ~ is the uniformizing parameter of S at x. Thus the inclusion E ( -  x) ~ F is of 
the form 

0 1 . ( 9 ~ . ~ ( 9  2 
~ t 

where the trivialization E ( - x ) x =  (9~,~ is compatible to E x =  C ~ .  Let 
f e  H o m e , ( E ( -  x), E(D~ )). Clearly, f e  lm { fl} (cf. (5.8)) if 

t \ f 2 ,  f22 \ J l t  ./'12 

is regular. Namely, 

f21(x) -- t f t l ( x )  = O, f2z (x )  -- t f l z (X)  = O. (5.9) 
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Because for general t, (5.9) imposes two conditions on f Thus, dim coker { fl } = 2. 
On the other hand,  

dim Homo,(F ,  E(DI))  - dim Homol(E,  E(DI)) = (r + ro + 1) - (r + ro) = 1 . 

Therefore, 

dim H o m o , ( E ( -  x), E(OI))/HOmol(E, E(Dl))  = 3 . 

In other  words, there are non-trivial  (al~, a le ,  a21, az2)EIl~'* such that  for any 
f e  H o m o , ( E ( -  x), E(D1)), 

a l l f l l ( x )  + a12f12(x) + a21f21(x) + a22f22(x) = O . 

Now assume h~ gnd~ = r + 1, then the homomorph i sm :~ (cf. (5.7)) 
must  be surjective. That  is, for .,re Homo,  ( E ( -  x), E(D1)) with ./'e Im { fl }, we must  
have 

regular. Thus f automatical ly satisfies one more  constrain: 

Therefore, bo th  

J~i (x)  + t f~2(x) = O . 

I all 17/12 a21 a22 t (a a ) 0 1 0  
- -  t 0 1 0 and 0 - t 0 1 

0 - t  0 1 1 t 0 0 

are of rank  3 for general t. An easy argument  shows that  this is possible only if 

a12 = a21 = 0, all = a 2 2  . 

Namely, for any f e H o m o l ( E ( - x ) ,  E(DI)), t r ( f ( x ) )  = 0. But this is impossible 
because by Lemma 5.3, H ~  (9(D1 + x ) ) ~  (9(D + x)l x is surjective thanks  to 
(5.6). Therefore we have established the first par t  of the Lemma 5.4. The conclusion 
that  when RE, s is trivial, h~ gnd~ < h~ gnd~ + 1 can be 
treated similarly. We leave it to the readers. [] 

We state and prove the following known fact. 

Lemma 5.5 For any smooth points x, y of C in the same irreducible component 
S ~_ C, there is an invertiable sheafA on C so that A | "~ (gclX + y). 

Proof It suffices to show that  there is an invertible sheaf A on C so tha t  
A | ~ (gc(X - y). First note that  the set of line bundles on C is isomorphic to 
Hi(C ,  (9*) which fits into the exact sequence 

u ' ( c ,  (9c)-~ n ' ( c ,  ~,)-~ H2(C, 7z) . 

Clearly, c l ( C c ( x -  y)) = 0. Thus (gc (X-  y) belongs to the image of 
H~(C, (9c ) - ,HI (C , (gc ) .  On the other  hand,  Hl(C, (gc)  is a l inear space. 
Thus  there is an A e H ~ ( C ,  (9c) such that  2A corresponds to the line bundle  
(9c(X - y). [] 
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Proof of Proposition 5.1 Let E be a rank two vector bundle with det E = I that 
attains the minimum value h~ o~nd~ | Kx) among all vector bundles of the 
same type. We first show that for any irreducible component S ___ C, the image of 
the restriction homomorphism 

RE.s : H~ C, ~nd~ E) | Kx) ~ H~ S, ~nd~ E) | K x) (5.10) 

has dimension at most one. Indeed, suppose dim Im { R~, s } > 2. We let x 1, x2 ~ S be 
two general closed points and let ~0i: E ~ ~x, be general homomorphism. Then by 
applying Lemma 5.4, with F = ker { E--~ ~ } ~  , we have h~ ~nd~ | Kx) =< 
h~ gnd~ | Kx). On the other hand, thanks to Lemma 5.2, one checks easily 
that 

h~ gnd~174176  gnd~174 = - I mod(2) .  (5.11) 

Thus we must have 

h~ gnd~ | Kx) <= h~ gnd~ | Kx) - l . (5.12) 

There are two possible situations: The first is when the strict inequality holds in 
(5.12). In this case, we apply Lemma 5.4 to E ' =  ker { F 24 ~ } ~ F to get 

h~ oCnd~ ') | Kx) < h~ o~nd~ | Kx) + 1 

< h~ o~nd~ | K x ) -  I . 

Now if we let A be the line bundle with A | = Cc(x + y), E' | A has determinant 
I. This certainly violates our assumption that h~ gnd~ Kx) is minimal. 
The second case is when h~ ~nd~ Kx)= h~ ~nd~174 K x ) -  1. By 
our construction, the kernel of 

Rf.s : H~ C, ~nd~ F) | Kx) --* H~ o~nd~ F) | Kx) 

is isomorphic to the kernel of 

Re, s: H~ C, ~nd~ E) | K x) --* H~ o~nd~ E) | K x) �9 

Hence, d imlm{Re.s}  = dimlm{RE,  s} - 1 > 1. Thus if we apply Lemma 5.4 to 

5~2 tr~ ~ the sheaf E '  = kert--* ,c~ 2 ~, we get 

h~ gnd~ ') | Kx) < h~ gnd~ | Kx) -- 2. 

This again violates our assumption on E. Therefore, dim im{Rv~.s} < 1 for any 
irreducible component S of C. 

Now assume h~ gnd~174 Kx)> 2. By our previous argument, this is 
possible only when all sections f~H~ gnd~174 have the property 
that f - ~ ( 0 )  contains at least one irreducible component of C. Let 
fEH~ o~nd~174 Kx) and let C = D~ + D2 be the splitting so that Jio2 = 0 
while f is non trivial at general points of DI. Possibly by replacing f with other 
sections and shrinking D1 accordingly, we can assume that f can not be expressed 
as the sum off1 ,f2 ~H~ o~nd~ | Kx) such that supp(f l )  and supp(f2) have 
no common components. We fix such an f and the corresponding splitting 
C = DI + Dz. Note that then h~  o~nd~ | Kx ( -  D2)) = 1. 
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We now claim that  there is at least one irreducible component  S _~ D1 such that  

dim Im { R'E.s:H~ gnd~ @ Kx) ~ H~ gnd~ | Kx)} > 2. 
(5.13) 

Indeed, because .re H~ D1, gnd~ E) | K x ( -  D2)) and that  K x ( -  D2)I ol c Kxlol, 
f l i f t s  to a n f e H ~  gnd~174 Kx) which is non-trivial  a long any irreducible 
componen t  of D1. In general, it is possible t h a t  ) 7 =  01 + 82, where 
,ql,92eH~ gnd~174 while supp(81) and supp(gz) have no common  
components.  Let D1 = $1 + �9 �9 �9 + Sk be the maximal splitting so tha t  there are 
81eH~ gnd~ | Kx) such that  f =  8x + . �9 �9 + 8~ and that  supp(s i )  = S~. 
By our assumption of f, this is possible only if D2" Si > 0 for all i. (Otherwise, 
f itself can be written as 91 + 82 with 81,82 eH~ gnd~ | Kx(-- D2)) and 
supp(81) has no common  components  with supp(82). ) Note  that  when k = 1, 
D1 �9 D2 > 0 since X is of general type. Therefore 

h~ gnd~ | Kx) = z(D~, gnd~174 Kx) + h~ gnd~174 Kx( -02) )  

= 3 D 1 . D  2 + 1 > k - t -  1 . 

In particular, there is at least one ~ H ~ 1 7 6 1 7 4  Kx) that  cannot  be 
expressed as linear combinat ion of 81 . . . .  gk. Let S ~ D1 be the component  such 
that  ~-Is is non-trivial. Then S is the component  satisfying (5.13). 

Now let Xl, x2~S be two general closed points and  let ~0~:E~ I/2~, be general 

homomorphism.  Let F = ker{ E 2 + ~  }. Then by Lemma 5.4, (5.11) and the fact 

tha t  dim Im {(Re.s} = 1, 

h~ 8nd~ | Kx) = h~ gnd~ | Kx) -- 1 . 

Clearly, then we must  have h~ gnd~ | Kx(-- D2)) = 0 because Im {Rv, s} 
= {0}. Next, by R.R. and the Serre duality, h~176174 - 

h~ gnd~ | Kx) = 1. Finally, because the kernels of 

R'E,s : H~ ( D1, ~nd~ E) | K x) ~ H~ S, gnd~ ( E) | K x ) 

R'v.s: H~ gnd~ | Kx) ~ H~ gnd~ | Kx) 

are isomorphic, 

d i m l m { R ~ . s }  = d i m l m {R ~ , s }  -- 1 > 1 . 

Therefore, we can apply Lemma 5.4 to the sheaf E '  = ker { F ~ 112x2 } to obtain 

h ~ 1 7 6  ') | K x ( -  D2)) < h~ ~nd~ | K x ( -  D2)) = 0 . 

Therefore, 

h~ oVnd~ ') | Kx) < h~ gnd~ | Kx) . 

Combined with Lemma 5.5, this contradicts  to our  assumption on E and thus 
completes the proof  of Proposi t ion 5.1. [] 

Acknowled,qment. The author acknowledges that the current work benefited greatly from talk with 
A. Beauville, S.Y. Cheng, D. Gieseker, R. Lazarsfeld, J. Kollar and S.T. Yau. The author is grateful 
to R. Friedman for letting the author read the manuscript of his unpublished book. The 



40 J. Li 

manuscript influenced greatly on the final version of w He also thanks the referee for his various 
suggestions and comments. The author also likes to express his gratitude to the hospitality of the 
Mathematics department in UCLA. This paper is partially supported by NSF grant DMS89- 
04922. 

References 

1. Atiyah, M.F., MacDonald, L.G.: Introduction to Commutative Algebra. Reading, MA: 
Addison-Wesley 1969 

2. Artamkin, I.V.: On deformation of sheaves. Math. USSR, Izv. 32 (no. 3), 663-668 (1989) 
3. Beauville, A.: Fibres de rang deux sur une courbe, fibr6 d6terminant et fonctions th~ta. II Bull. 

Soc. Math. Fr. 119 (no. 3), 259-292 (1991) 
4. Donaldson, S.K.: Polynomial invariants for smooth four-manifolds. Topology 29(no. 3), 

257-315 (1986) 
5. Drezet, J.-M., Narasimhan, M.S.: Group de Picard des varietes de modules de fibres semis- 

tables sur les coubes algebriques. Invent. Math. 97, 5344 (1989) 
6. Friedman, R.: Vector bundles over surfaces (to be published) 
7. Gieseker, D: On the moduli of vector bundles on the algebraic surface. Ann. Math. 106, 45 60 

0977) 
8. Griffith, P., Harris, J.: Principles of algebraic geometry. New York: Witey-lnlerscience 1978 
9. Grothendieck, A.: Techniques de construction et th6or6mes d'existence en g6om6trie 

alg6brique IV: les sch6mas de Hilbert. S6min. Bourbaki (1960 61) 
10. Hartshorne, R.: Algebraic geometry. (Grad. Texts Math., Vol. 52) Berlin Heidelberg New 

York: Springer 1977 
11. Hartshorne, R.: Residues and duality. (Lect. Notes Math., Vol. 20) Berlin Heidelberg New 

York: Springer 1966 
12. Kirwan, F.C.: Partial desingularizations of quotients of nonsingular varieties and their Betti 

numbers. Ann. Math. 122, 41-85 (1985) 
13. Knudsen, F., Mumford, D.: The projectivity ofthe moduli space ofstable curves. I. Prelimina- 

ries on 'det' and 'div'. Math. Scand. 39, 19-55 (1976) 
14. Laudal, O.A.: Formal Moduli of Algebraic Structures. (Lect. Notes Math., Vol. 754) Berlin 

Heidelberg New York: Springer 1979 
15. Li, J.: Algebraic geometric interpretation of Donaldson's polynomial invariants. J. Differ. 

Geom. 37, 417 466 (1993) 
16. Maruyama, M.: Moduli of stable sheaves I, II. J. Math. Kyoto Univ. 17, 9t-126 (1977); 

J. Math. Kyoto Univ. 18, 557-.614 (1978) 
17. Mort, S.: Projective manifolds with ample tangent bundles. Ann. Math., 110, 593-606 (1979) 
18. Mukai, S.: Symplectic structure on the moduli space of sheaves on an Abelian or K3 surfaces. 

Invent. Math. 77, 101 t16 (1984) 
19. Mumford, D.: Geometric Invariant Theory. Berlin Heidelberg New York: Springer 1982 
20. Mumford, D.: The red book of Varieties and schemes. (Lect. Notes Math., Vol. 1358) Berlin 

Heidelberg New York: Springer 1980 
21. Mumford, D.: Theta characteristics of an algebraic curve. Ann. ScL l~c. Norm. Super 4, 

181-192 (1971) 
22. O'Grady, K.G.: Algebro-geometric analogues of Donaldson's polynomials. Invent. Math. 

107, 351 395 (1992) 
23. Qin, Z.: Birational properties of moduli spaces of stable locally free rank-2 sheaves on 

algebraic surfaces. Manuscripta Math. 72, 163--180 (1991) 
24. Qin, Z.: Moduli spaces of stable rank-:2 bundles on ruled surfaces. Invent. Math. 110 (no. 3), 

615-626 (1992) 
25. Tyurim A.N: Symptectic structures on the moduli variety of vector bundles on an algebraic 

surface with Po 4: O. Izv. Akad. Nauk. SSSR, Ser. Mat. 52, 149 195 (1978) 
26. Zuo, K.: Generic smoothness of the moduli of rank two stable bundles over an algebraic 

surface. (Preprint) 


