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Abstract. We consider generic one-parameter families of diffeomorphisms on a 
manifold of arbitrary dimension, unfolding a homoclinic tangency associated to a 
sectionally dissipative saddle point (the product of any pair of eigenvalues has norm 
less than 1). We prove that such families exhibit strange attractors in a persistent 
way: for a positive Lebesgue measure set of parameter values. In the two-dimensional 
case this had been obtained in a joint work with L. Mora, based on and extending 
the results of Benedicks-Carleson on the quadratic family in the plane. 

1. Introduction 

It is a well established fact that, notwithstanding a simple and determin- 

istic formulation, natural systems very often exhibit complicated and 

apparently erratic dynamical behaviour. The mathematical study of 

such chaotic behaviour gained a renewed impetus in recent years, stim- 

ulated by the discovery of a number of notable dynamical phenomena 

such as the Lorenz-like attractors, the H6non-like attractors or Feigen- 

baum and Coullet-Tresser's cascades of bifurcations. These discoveries, 

obtained mostly in the numerical study of systems modeling natural 

phenomena, showed that  unstable (nonhyperbolic) dynamics is a much 

more common feature than it was thought at a certain stage. On the 

other hand, it was Lorenz fundamental contribution to have identified 

the sensitive dependence of orbits on their initial conditions, exhibited 

by many relevant systems, as a main source of the unpredictability of 

their dynamical behaviour. Notions such as this one are central to the 

way we now try to build-up a mathematical structure to understand 

complicated dynamics. 
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14 MARCELO VIANA 

In the one-dimensional context, a substantial comprehension of the 

mechanisms of chaotic behaviour (namely, existence of absolutely con- 

tinuous invariant measures with positive Liapounov exponent) was pro- 

vided by the works of Jakobson [Ja], Collet-Eckmann [CE], Rees [Re] 

and Benedicks-Carleson [BCI], among others. These works showed that 

such behaviour has a remarkable persistence, which must be formulated 

in measure-theoretical terms - positive Lebesgue measure in parameter  

space - rather than topological ones. 

The extension of this s tudy  to higher-dimensional systems presents 

considerable additional difficulties. In [BC2] Benedicks-Carleson were 

able to overcome many of these difficulties and prove that  the occur- 

rence of strange at t ractors  is, in the same measure-theoretical  sense, 

a persistent phenomenon in the H~non (or quadratic) family of diffeo- 

morphisms on the plane. A construction of SRB-invariant measures for 

these at t ractors  was recently given by Benedicks-Young [BY]. 

Another  application of Benedicks-Carleson's methods  was made in 

[MV], where their results were generalized to the setting of homoclinic 

bifurcations on surfaces. More precisely, it was shown that the un- 

folding of a homoclinic tangency by a generic one-parameter family 

of surface diffeomorphisms always includes the presence, for a positive 

measure set of parameter values, of strange attractors or repellers of 

H6non type. Homoclinic bifurcations are a main way for the develop- 

ment of complicated dynamics and they are observed in most relevant 

dynamical systems. Their unfolding is accompanied by a great variety 

of complex dynamical phenomena including, among others, cascades of 

period-doubting bifurcations [YA], c0existence of infinitely many peri- 

odic attractors [Ne], creation of saddle-node cycles and, as stated before, 

persistence of H6non-like attractors or repellers. We refer the reader to 

[PT] for a detailed exposition on these and related topics. 

It is this result of [MV] that we now extend to the full generality 

of homoclinic bifurcations on manifolds of arbitrary dimension. Let us 

state this in a precise form. We take f#: M --+ M,  # E R, to b e  a 

smooth  one-parameter  family of diffeomorphisms on an m-d imens iona l  

manifold M,  m _> 2, exhibiting a homoclinic tangency associated to 
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a hyperbolic fixed (or periodic) point p of f0. We assume that  f0 is 

sectionally dissipative at p, meaning that  the product  of any pair of 

eigenvalues of Dfo(p ) is less than 1 in absolute value. Then, 

T h e o r e m  A. For generic one-parameter families (f,)~ as above there is 

S C R such that 

�9 S • ( -c ,  c) has positive Lebesgue measure for every c > O; 

�9 for all # E S, f ,  exhibits nonhyperbolic strange attractors in a 

(const l#l)-neighbourhood of the orbit of tangency. 

As in [MV], we define an attractor of a t ransformation f to be a 

compact,  f - i n v a r i a n t  and transitive set A whose basin WS(A) = {z E 

M: dist(fn(z), A) --* 0 as n --* +ec}  has nonempty  interior. We call the 

a t t ractor  strange if it contains a dense orbit {fn(zl): n >_ 0} displaying 

exponential growth of the derivative: 

IIDf~(zl)ll >_ eC~ for all n > 0  and some c > 0 .  

When  proving the theorem we take the point Zl to be critical in the sense 

that  there exists a direction in the tangent  space to M at Zl which is 

exponentially contracted by both  positive and negative iterates of Df , .  

Clearly, the presence of such a point is an obstruct ion to (uniform) 

hyperbolici ty of the at tractor .  

For the proof of the theorem we assume the homoclinic tangeney 

to be quadrat ic  and to be generically unfolded by the family (fu)~. A 

few other mild (open and dense) conditions of a somewhat  technical 

nature are also used in Sections 2-3 and are s tated there. By smooth 

above we mean that  4: R • M --+ R x M,  {P(#, x) = (#, f~(x)), is a C ~ 

map; however, a much weaker requirement of differentiability should be 

sufficient for the conclusion of the theorem. It is also very likely that  the 

s ta tement  will remain true if we demand in the definition of a t t rac tor  

that  WS(A) be a full neighbourhood of A. We note, in addition, that  

our arguments and conclusions are valid even if M is oo-d imens iona l  

(a manifold over a Hilbert  space). 

We point out tha t  the assumption of sectional dissipativeness is in 

fact a necessary condition for the dynamics of the fu near the tangency 

to contain at tractors:  otherwise only a nowhere dense set of points 
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16 MARCELO VIANA 

remain in the neighbourhood of the orbit of tangency for all positive 

times. This is also related to the fact that  the strange attractors one 

encounters in this context of homoclinic bifurcations are always topolog- 

ically one-dimensional. Persistent strange attractors displaying higher- 

dimensional non-uniform expansion do not seem to have been exhibited 

yet. It is an interesting problem to give examples of such attractors 

and to describe mechanisms (bifurcations) through which they can be 

created. 

Although the global structure of the proof of Theorem A follows 

closely the arguments of [Be2] and [MV], some difficulties arise when 

extending these arguments to the present higher-dimensional setting. 

A main conceptual difference lies in the control of the geometry of the 

unstable manifold required for the construction of the critical points. 

These are always defined in nearly-straight segments of the unstable 

manifold. The two-dimensional argument is based on the simple, and 

yet crucial remark that  two such segments which are nearby, must also 

be nearly parallel, in order to avoid intersecting each other. Clearly, this 

can not be expected to hold in dimensions greater that  two. Instead, 

we derive the necessary geometric information directly from the bind- 

ing construction, in Section 7. This also requires that  our definition of 

critical point be somewhat more restrictive than in [MV], see Section 

6. Another point worth attention concerns the topological character- 

ization of the attractor, namely the fact that its basin has nonempty 

interior. In the two-dimensional situation this follows in a simple way 

from the area-dissipativeness (and the Jordan curve theorem). Here we 

have to combine this with the existence of invariant strong-contracting 

foliations and with some bound on the geometry of iterates of sections 

transverse to such foliations, see Section 3. The control of the distribu- 

tions of contracting hyperplanes, in Section 4, has been improved with 

respect to [MV]; on the other hand, in dimension greater than two these 

distributions are, in general, not integrable, see Section 5. 

This paper is organized as follows. In Section 2 we establish a renor- 

malization procedure which reduces the proof of Theorem A, to proving 
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it for a special class of families of (nearly one-dimensional) maps, which 

we call quadratic-like families. In Section 3 the attractor is exhibited 

and characterized as the closure of the unstable manifold of a hyperbolic 

saddle-point. In Sections 4-5 we develop some main tools (contractive 

hyperplanes, critical points algorithms) for proving that the attractor 

contains a dense orbit exhibiting exponential growth of the derivative. 

The global structure of this proof is described in Section 6. It consists 

of an induction argument and the content of the induction hypothesis 

is stated there. Sections 7-8 are devoted to the inductive step of the 

argument: showing that the properties in the induction hypothesis can 

be recovered at the next stage, as long as some parameter values are 

excluded. In Section 9 it is shown that a positive measure set of values 

of the parameter remain after all the exclusions. Several of the facts in 

Sections 2-9 can be proved in the same way as in two dimensions and in 

this case we just refer the reader to the corresponding results in [MV] 

or [BC2]. Apart from that, we present here the complete argument to 

prove Theorem A. 

This work corresponds to my doctoral thesis. I am grateful to Prof. 

J. Palls for his friendship and advise and to nay colleagues at IMPA for 

many pleasant discussions. I am also grateful to the hospitality of the 

Royal Institute of Technology of Stockholm, where part of this work was 

done. Finally, I acknowledge partial financial support from CNPq and 

Punda~go Calouste Gulbenkian. 

2. Renormalization. Quadratic-like families 
First we describe a higher-dimensional version of the renormalization 

scheme in [MV, See. 2]. Our argument is a natural extension of the 

two-dimensional one ([TY], [PT, Ch.3]) and so we only sketch its main 

points, leaving the details to the reader. Our definition of quadratic- 
(or Hdnon-)like family is somewhat more general than in [MV]: here 

we only require closeness to the family of quadratic endomorphisms, cf. 

(QL) below. 

Let (fu)ueR be as in the statement of Theorem A. The assumption 
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of sectionally dissipativenes implies that  Dfo  (p) has a unique expanding 

eigenvalue which we denote by a0; for our purposes it is no restriction 

to assume that  cr 0 is positive and we do so from now on. Recall also 

that  we denote ~: R x M -+ R x M ,  ~(p,  x) = (p, f s ( x ) ) .  In this section 

we assume that  the homoclinic tangency is quadrat ic  and that  it is 

generically unfolded by the family (fs)s" For simplicity we assume also 

that ,  for p small, f s  is Ck- l inear izable  in a neighbourhood of the point 

p. Here k _> 3 is a fixed integer and we also consider a constant  A > 3. 

T h e o r e m  2.1. There are l >_ 1 and a sequence On: [1/A, A] x I - A ,  A]m 

--+ R x M of C k dif feomorphisms such that as n --+ +co the sequence 

~n = 0 ~  1 o ~n+l o On converges to the map 

r x, yx, . . . , y ~ - l )  = (a, 1 - ax 2, 0 , . . . ,  o) 

in the C k topology. 

We describe the construction of On. Let (~, H)  = (~, r l l , . . .  , rlm-1) 

be C k p - d e p e n d e n t  coordinates on a neighbourhood U of p linearizing 

fs:  .fs(~, H)  = (as~ , ASH), with crs E R, A s E •(R rn-1) and I sl < x < 

= IIAsll" The assumption of sectional dissipativeness means that ,  up 

to a convenient choice of the metric, we have 0 < Asa s < 1 for p close 

to zero. Clearly, we may take {({,H):  ]I( ,HDll _< 2} to be contained in 

U and q = (1, 0 m- l )  = (1, 0 , . . .  , 0) to be a point in the orbit of tangency. 

We fix l _> 1 such that  f~(q) = (0, HO) E U and then we write 

f~(~, H)  =(c~(~ - 1) 2 +/3(~ - 1)p + 7p  2 + g .  H + vp + r, 

H0 + F ( ~  - 1) + G .  H +  V#  + R) 

where r = r(p,  ~, H)  and R = R(p ,  ~, H)  are such that  

r, R ,  Dr,  D R ,  O~r, Os~r and OssR vanish at (0, 1, 0m-l).  (1) 

The hypotheses of nondegeneracy and generic unfolding of the tangency 

amount  to having c~ r 0 and v r 0 and, up to reparametrizing ( fs )s ,  

we may suppose v = 1. For the definition of On we first consider the 

n - d e p e n d e n t  reparametrizat ion 

/] u n ( p  ) 2n 2n n n = = ~s P + gas  AsH0 - ors" (2) 
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It is easy to check that ,  given any constant A1 (we will use A1 >> 

A), for n sufficiently large un maps a small interval I3 close to # = 0 

diffeomorphically onto [-A1,A1].  We let #3 = (unlI3) -1. Then  we 

introduce (n, # ) - d e p e n d e n t  coordinates (2, 12) given by 

(r H) = 0~,.(~, ~) = (1 + ~ ; ~ ,  A~Ho + ~ ? ) ,  where p ,  = ~, ~ , ~ .  
(3) 

Now we define On: [-A1,  A1] • [-A1, All "~ --+ ]~ z M by On(", 2, 1~) = 

(# ,~ ,H)  with # = #n(U) and (~,H) = 0n,,(2,]?). A straightforward 

calculation gives for ~ = ( ~ n  I o 6~ 3+l o (~n 

2 n  - n  N o_2n~. @n(P, ;c, 15-) = (P, ozS; 2 + fl~(cr;#) + 3/(cr~/~) 2 -k zJ + gcr# p# Y + # , 

p~,nA~F2 + p~A~GA~Ho + A~GY- + p~A~Vu + p~A~R) 
(4) 

where r and R are calculated at (#, ~, H)  = ~ ( u ,  2, Y). Note that  a~#  = 
_ _  n - - 3 1 .  n (1 + crony gcr~A~H0) ~ 1 and I]pt, o-# h.]] <_ ( ~(i7~,)~ = %-23~-'v. --+ 0 

as n --+ oo. It is also clear tha t  [[p~A~GA~Ho]], [[A~GI>[[ and IIp~A~V#[[ 

converge to zero as n ~ c~. Finally, the same holds for la2nrl and 

Ji,$A;RII, as a consequence of (1) and the fact that, recall (2), (3), 
I#[, [ ~ -  1[ < coast cr~ n _< coast (tO 3 and []H]] <_ coast A~ < coast A~ 

( throughout  this section coast denotes a positive constant depending 

only on the family (f~)~). This proves that  

~3( . ,  ~, ? )  ~ $(-, ~, Y) = (-, a~ 2 + fl~ + ~ + -, 0 ~ - 1 )  

as n ~ oc (uniformly on [-A1,  All • [ -A1,  A1]'~). Moreover, the same 

kind of estimates apply to all derivatives up to order k, proving that  

this convergence holds in the C ~ topology. On the other  hand, r is 

conjugated to r by 

h: (a, z ,  Y)  ~ + 7,  - - z  ,12 . (5) 
o~ 2o~ ~ o~ 

Thus, in order to complete our construction it is now sufficient to take 

en  = ~3 o h (clearly, the domain of definition of ~3~ contains ILIA, A] • 
[ -A,  A] ~ ,  as long as A1 is large enough). 

Remark  2.1. Let us remark tha t  ~he choice of the coefficient pu = 
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20 MARCELO VIANA 

a n ~r n in (3) is somewhat  arbitrary: the argument  works, essentially 

without  change, for any p~ strictly in between cr 2 and au/Au. Moreover, 

2 also leads to a convergent sequence ~n, al though in this taking pu = a n 

case the limit map is (u, 2, Y) H (u, a22 +/32 + 7 + u + g. Y, 0m-l). Let 

us also describe the results obtained by taking Ptz -- ~//~u, which are of 

interest for Section 3. Generically, Df0(p) has either (1) a unique, real, 

least contracting eigenvalue, or (If) a pair of complex conjugate least 

contracting eigenvalues. In the first case we may write 

0 X n with ~ E R, X n E s  m-2) 

and tlAnl] < A n = I~,]. Then the sequence ~n converges to 

r (u, 2, Yl, Y2,.. �9 , Y-~-I) ~ (u, a22 +/32 + V + u, f ] 2  + vl, 0"~-2), 

where F = ( f l , . . .  , f ro - l )  and V = (Vl, . . .  ,v,~_l). In case (II) we write 

~ A n = --A~sin7. I#cos7. with 7- = ~-~ E [0,270, X~ E s  m-a) 
0 0 An 

and [IA~II < A n = I[An[I. The same kind of calculations as before show 

that  in this case the C k - n o r m  of (~n - Rr  n o (~) converges to zero as 

n --+ cx~, where R~ is the rotat ion of angle ~- in the (~]~2)-plane and 

(~(u, ;~, Yl, Y2, Y3, �9 �9 �9 , Y.rn-1) = (r', a22+ /32+ ~+u ,  f l 2 + V l ,  f2x+v2,  0m-3). 

Having in mind introducing a convenient notat ion to be used in the 

forthcoming sections, we restate the convergence of ~n in the following 

way: there is K > 0 and for each b > 0 there exists no _> 1 such that  

every p = Pn, n > no, satisfies 

- r -< Kv% (eL)  

Let Fa = P~,a be defined by ~n(a, x, Y) = (a, ~ ,a (X,  Y)) and let D ~ , a  
denote its derivative. As an immediate consequence of (QL), the maps 

~ are (strongly) sectionally dissipative. We state this explicitly. Let 

Idet] (u, v) = II (u. u)v - u(u. v)II/tl~ll denote the area of the parallelogram 

generated by vectors u, v C R "~. Then, for n _> no, a E [l/A, A] and 

U, V E R m, 
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The previous arguments reduce the proof of Theorem A to proving it 

for quadratic-like .families, i.e. for families of diffeomorphisms 9~ = (~a)a 

satisfying (QL) (and (SD)) for some sufficiently small b > 0. This is 

done in Sections 4-9. Before that ,  in Section 3, we give a topological 

characterization of the at t ractor ,  which requires revisiting the present 

construction. The  value of K is fixed from now on; we take K >_ 10 

so that ,  in particular, 119~llck <_ K.  Moreover, we fix 1/2 < c < Cl < 

co < log 2: c is to be a lower bound for the rate of exponential  growth 

of the derivative. Our construct ion also involves small constants 1 >> 

fl >> a >> 5. (A minor simplification with respect to [MV] is tha t  we 

avoid the use of an extra  constant  e: here we always take e = a ) .  Besides, 

we fix an interval ft E (1, 2) in parameter  space and a large integer N 

related to it (N  is the first re turn t ime for the 99a, a E f t ) ;  ft is taken 

close enough to a = 2 so that  N >> 1/5. Finally, b is always assumed to 

be small with respect to any of these constants. 

3. The  attractor 

We keep the notat ions of the previous section. Let ft C (1, 2) be a 

compact  interval and R : { ( x , Y ) : - i  - c1 < x < 1 + gl and IIYll < 1}. 

Here we suppose Cl > 0 small with respect to 2 - a 0 ,  a0 = supt2, so 

that  Ca(R) C ( - 1  - Cl, 1 + el) • {0 m- l}  for all a E ft. It follows that  

%On,a(R) C interior(R) for all a E ~, as long as n is sufficiently large. We 

also note tha t  9~n,a has a hyperbolic fixed point Pn,a in the interior of /{ ,  

which is just  the continuation of the fixed point ((v q- + 4a - 1)/2a, 0 m- l )  

of Ca. We let An,a = closure(WU(Pn,a)) and denote WS(A~,a) -= {z E 
m �9 j ]R : dlst(9)n,a(z), An,a) --* 0 as j --+ +co}. The main result in this section 

states that ,  as long as n is large enough, WS(An,a) contains a nontrivial 

open set. 

Theorem 3.1. WS(An,a) has nonempty interior for all a E ft. 

The proof  of this theorem requires two more generic conditions on 

the family (fu)u, which we s tate  below; the remaining sections are in- 

dependent  of these conditions. Let 1 < w < m - 1 be such that  the 

contractive eigenvalues of Dfo(p) satisfy IAll . . . . .  [),~1 > IA~+I] -> 
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�9 .. > IA~_I[�9 We identify the ne ighbourhood U of p with an open 

subset of IR m via the linearizing coordinates (~, H) and we consider 

the spli t t ing T u R  "~ = E ~ | E ~ | E~8, E~( z )  = 1R x {0"~-l} ,E~(z)  = 
{0} x IR ~ x {0m-l-w},  ESS(z) = {01+~} x ]R m - l - ~ ,  induced by this iden- 

tification. Clearly, we may take  H = (r / l , . . .  , r/re_l) in such a way tha t  

the expression of D f u ( p )  with respect to this spli t t ing is 

( c r y 0  0 )  ~ s 
D f ~ ( p )  = 0 A~ 0 w i t h  a~ E s  A~ E s  88) 

0 0 A~ 

and, up to a convenient choice of the metric on IN ra, 

IIa;ll < I[(A~)-ll1-1 _< I[a~l] �9 

For the  proof  of the  next  result we need the following open and dense 

condit ion (where l _> 1 and q = (1, 0 m- l )  are as in the previous section): 

D r y ( q ) .  ( E  u | E w) is transversal  to E s~ (1) 

or, equivalently, 

D f o l ( f ~ ( q ) )  �9 E ~8 is transversal  to E u | E w (2) 

In what  follows we denote  Q = I -A,  A] "~. 

Propos i t ion  3.2. There is 0 < r < 1 and for  each a E (1, 2) and n > 1 

suff iciently large there exists a cont inuous  splitt ing TQR ~ = E~,~a | E~,~ 

sat is fying 
�9 7 L 2 1 )  (a) dlmE~,a(Z ) = 1 + w and dimE~S,a(Z) = 7rt - 1 - w for  z E Q; 

(b) Dg)n,a(Z)"En,a(Z ) = En,a(g)n,a(Z)), * = UW or 88, f o f  z E Qglggn,la(Q); 

(c) IID~o~,a(z)IE~%(z)H <_ r ~ f o r  z C Q; 

s, . ]E~,a(Z)) II -< f o r z  E . (d) I lD~n ,a (Z ) lEsn ,a ( z ) ] ]  [ l ( D ~ n , a ( Z )  uw - 1  T n  O N @ ; , l a ( O )  

Moreover,  E~,~ admits  an integral fol iat ion 2:~,~ 

88 Proof .  We describe the const ruct ion of Er~ #. This follows from a stan- 

dard  fixed-point a rgument  and we start  wi th  a prel iminary remark.  By 

(2) we may write for # small D f S ( g ( q ) ) .  E 88 = graph(~z/z, I/V/x), wi th  

( ~ ,  17V~) E s  88, E ~ |  We denote  by ~;, the  parallel subbundle  of 

TQR ~ given by/) l , (z)  = graph(0, I/V~) and fix g2 > 0 small�9 Suppose tha t  

z E Q n ~ , ~ ( Q )  and F is an (m - 1 - w ) - s u b s p a e e  of T z R  ~ such tha t  
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/ (F ,  G )  -< c2, meaning that F = graph(u, W) with I[(u, W -  Wu)II -< c2. 

We claim tha t  / ( D ~ l a  �9 F,/~u) is also bounded by c2. In order to prove 

this we note first that 

F2 = D f ~ n D O n , ,  " F 

graph(_ a (Pu  ~n  (3) k 4 /  u.  (A> �9 W.  

and hence the angle between F2 and E ss can be made arbitrarily small 

by taking n sufficiently large. Therefore, 

F 3 = D r ;  1. F 2 = graph(ftu, I~u) with [l(Su - s l~  u - IMu)II << c2. 

and so the claim follows from 

DcPn, 1" F = DOn, 1 .  F 3 = graph( -c~ ~" ~2~, l ~ ) .  (4) 
a 

We also note that  vectors in F are strongly expanded by D ~ ,  1 

I I D ~ a  �9 vii _> const IIa;ll-~ll~ll for every v E F. (5) 

Observe now that  

-1 Q QN~pn,a( ) = { ( x , Y ) : g ~ , - ( Y )  <_ x <_ g~,+(Y)} 

with g~,• uniformly close to :t:~/(1 + A ) / a  if n is large. Let an auxiliary 

(m - 1 - w ) -  subbundle E ,  on Q\~X, I (Q)  be constructed as follows. 

For z E 0 u = { ( x , Y ) : l x  I = A} we set s i m p l y / ) , ( z )  = /)~(z). If z 

O• = { ( x , Y ) : x  = 9n,+(Y)} then ~ , a ( Z )  E 0 *~ and we take /~#(z) = 

D ~ , l a  " .E,(~n,a(z)) .  By the claim above 

L(/~Az),/~.(z)) _ e2 (6) 

for every z E 0 ~ tO 0• Then, clearly, /~u may be extended to a smooth 

subbundle on Q\~;,Ia(Q) in such a way that property (6) is preserved. 

From now on/~ denotes this extension. Now we consider the space 2( 

of all continuous (m - 1 - w)-dimensional subbundles E of TQIR m such 

that 

�9 Z(/)~(z),/)~(z)) _< c2 for every z E Q; 

�9 E( z )  = / ~ ( z )  for z E Q\~X,I(Q); 

and define the graph-transform operator  G: 2( --+ 2( by 
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�9 (~E)(z)  = DpX,~.  E(qgn,a(Z)) if z E Q A pX,~(Q); 

�9 (GE)(z)  =/~u(z) ,  otherwise. 

The  a rgument  in the  remark  above shows tha t  ~ is indeed well-defined, 

i.e. ~(X) C X. Moreover, the  same calculations (recall (3), (4)) also 

imply tha t  G is a contract ion with respect to the  sup-norm on X. We 

take E~,~ to be its fixed point.  Proper t ies  (a) and (b) in the  s ta tement  

follow immedia te ly  from our const ruct ion and proper ty  (c) is also an 

easy consequence: 

IID~n,a(z)lm~,%(z)ll < const IIA;II n, 

recall (5). On the other  hand,  EnU,~ can be const ructed by a dual  proce-: 

dure (just i terat ing forward, instead of backwards).  We get, 

A w -1 n ]l(D~n,alEUnW, a(Z))-l[I <_ const II(u) [I , 

and proper ty  (d) follows immediately.  In order to show tha t  E~S,a is 

integrable, we note  first tha t  Eu may  be chosen to be integrable, let Y--u 

be its integral foliation. Then  we consider the space 2d of all foliations 

5 c of Q whose tangent  bundle  T~- belongs to X and define the  graph 

t ransform ~: X --~ X by 

�9 ( ~ ) ( z )  = connected componen t  of D~n,l( .~(~n,a(Z))) containing z, 

if z ~ Q n ~X)a(Q); 
�9 (~5C)(z) = flu(z), otherwise. 

This  is a contract ion wi th  respect to the sup-distance between tan- 

gent bundles and, clearly, the fixed point  U~,~ of ~ must  satisfy TJr~,~ = 

E~,%. [] 

Remark  3.1. For future  use we note  tha t ,  by const ruct ion (recall (3), 

(4)), 

Z(E~a(Z),2F, u) <_ const k ~ +(II(A~D-~IIIIA;IIP + ~" 

converges uniformly to zero as n -+ co. Analogously, if n is large then  
/~nU,Wa(Z) is uniformly close to E uw = N 2 x {0m-l}.  

Remark  3.2. A s tandard  a rgument  f rom hyperbolici ty theory (see [I-IP]) 
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STRANGE ATTRACTORS IN HIGHER DIMENSIONS 25 

shows that  En~ and E~,~ are even H61der-continuous but  we will not 

need this fact here. 

Clearly, WS(An,a) is a union of leaves of 5CnS,Sa . Therefore, the the- 

orem will be proved if we can find a transversal section of SnS,Sa which 

is contained in WS(An,a). For the sake of simplicity, we introduce here 

a last generic assumption on our family of diffeomorphisms: either (I) 

w = 1 and A1 is real or (II) w = 2 and A1, A2 are complex conjugate. 

Figure 1 

We treat  case (I) in the following way. First,  we construct  a compact  

surface with boundary  S = Sn,a C R, transversal to the foliation 5cnS,~a 

at every point and such that  OSn,a C Wu(P~,a) 0 Ws(p~,a). Then we 

show that  for some c > 0 and every j _> 0, r > 0 and w E pJ,a(S) one 

has 

area(B(J)(w)) ~_ cr 2 i f  B!J)(w) N o(wJ,a(S)) = ~,  (7) 

where B(J)(w) denotes the closed ball in qNn,~(S), with respect to the 

riemannian metric induced by the euclidean metric of R. Finally, we 

observe that  these propert ies imply S C WS(An,a). 
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26 M A R C E L O  V I A N A  

In order to describe the  construction of S and check its transversality 

to f,J,~a it is convenient to introduce auxiliary coordinates (2, 17"), where 

2 is as before and 17 = (Yl,.. �9 , Ym-1) = ( c ~ , / ) ~ ) n ( H - A ~ H o )  �9 Note tha t  

this corresponds to taking p ,  = (a , / ,k#)  in 2.3 and then, recall Remark  

2.1, the expression of ~ + l  in coordinates (u, 2, Y) converges to 

(~: (/Y, 2, Yl, �9 �9 , ,0m-l) ~ QY, a22 +-/32 + "~ + tY, f l X +  Vl, 0 m-2) 

as n ~ oo. It is easy to check tha t  assumption (1) above implies f l r  0. 

Hence, the unstable manifolds of the periodic points of r lie in a nonde- 

generate parabola in the (2, ~)l)-plane R 2 x {0m-l}; on the other  hand, 

local stable manifolds are just  hyperplanes {2} x Nm-1. Recalling also 

that  local invariant manifolds depend continuously on the map, it is now 

easy to see that ,  cf. figure, for n sufficiently large there exist S a compact  

domain in the (2, ~ l ) - p l a n e  and g: S ~ (2, 91) ~ (Y2, �9 �9 �9 , Ym-1) close to 

the null function, such tha t  S = graph(g) has 0S C W~(Pn,a)UW~(Pn,a) .  

Observe tha t  S is transversal to the leaves of T~,~a, since it is close to 

the (2, y l ) - p l a n e  whereas EnSS a = TS~s,s a is close to / ~  = graph(0, 1 ~ )  

in (2, ]?) coordinates; this last affirmative follows directly from the fact 

that  Remark  3.1 remains valid for p ,  = (c~,/)~,). Now we re turn to 

coordinates (x, Y) and note that ,  due to the domination proper ty  in 

Proposition 3.2(d), positive iterates of 5{ are uniformly transversal to 
$ 8  . 5~,a . actually, as j --+ +oo 

]anglei(Tz~J,a(S), E~[ ( z ) )  ---+ O, uniformly on z E ~Jn,a(S). 

The uniform lower bound (7) for the area of balls follows from this, to- 

gether with Remark 3.1. Observe then that ,  by sectional dissipativeness 

(SD), area(~{,~(S)) --~ 0 and so, in view of (7), 

sup{dist(z, 0(~3<,a(S))): z E ~o3n,a(S)} ---+ 0 as j --+ +oo. 

Since 0(~{,a(S)) c Wu(P~,~) U W~(P~,a) and 

diam(0(qoJ a(S)) n Ws(Pn,a)) ~ O, 

it follows that ,  for every w E S, dist(~OJ,a(W),An,a ) "-'+ 0 as j ---+ +oo. 

This means tha t  S C W~(A~,~), as we wanted to prove. 
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SO _ 

$1 

$2 

Figure 2 

A variation of the same idea applies in case (II). We take (2, ]?) as 

above and then, according to Remark 2.1, the expression ~n of ~n+l in 

the coordinate system (u, ~, ]~) satisfies limn_+~ ll~n- Rn ~162 -- 0, where 

(f12 + Vl) cosn'r - (f2& + v2) sinn% 

(f12 + Vl) sin nT- + (f2x + v2) cos n7, 0m-3). 

Note also tha t  in the present s i tuat ion (1) implies ( f l , f 2 )  ~ (0,0). 

Therefore, for large n the  local unstable  manifold of Pn,a is close to a non- 

degenerate  ( n - d e p e n d e n t )  parabola  contained in the  (2, 91, 92)-space ,  

whereas its local stable manifold is close to a hyperplane  {2} • R "~-1. 

It follows tha t  there is a compact  domain  S in the  (x,~)l ,Y2)-space 

and a smooth  funct ion g: S ~ (2, 91, 92) H (Y3,...  , Ym-1) close to zero, 

such tha t  (cf. figure) the boundary  of S = graph(g) is the  union of 

three closed surfaces So, S1, $2 satisfying So c WS(Pn,a) and 0Si C 

W~(P,~,~) 0 WS(Pn,~) for i = 1, 2. The  same argument  as in the previous 

case shows tha t  S is transversal  to 5rnS,S~ and so we are left to prove tha t  

S C WS(A~,~). For this it is sufficient to show tha t  each Si is contained 
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28 MARCELO VIANA 

in WS(A~,a) and this is obvious if i = 0. As for S1 and $2, we may  use 

precisely the same reasoning as we did for S in case (I), once we have 

established the  analog of (7) for these two surfaces. In order to do this, 

we observe first t ha t  

(a) the angle between the tangent  space Tz~J,a(Si), z E ~J,a(Si), j > 0, 

and Eus~,(z) is uniformly small (even goes uniformly to zero, as j --+ 
+(X)). 

As in case (I), this is an immedia te  consequence of the domina t ion  prop- 

erty. Note, however, t ha t  in the  present  case E~,~ has dimension 3 and 

so (7) does not  follow from this fact alone. We claim, moreover,  t ha t  

(b) the angle between Tz~Ja(Si), z C pJ,a(Si), j > O, and the direction 

of the  x - a x i s  is uniformly small. 

Combined wi th  (a), this gives a uniform (cylindric-like) bound  on the  

geometry  of ~J a(Si), j _> 0, implying (7). The  claim can be justified as 

follows. First,  going back to the const ruct ion above, one notes tha t  Si 

may  be taken so tha t  in (2, ]?) coordinates 

(b0) the angle between TzSi, z E Si, and the direction of the x - a x i s  is 

uniformly small. 

Then  the same holds in (x, Y) coordinates,  since changing from (2, Y) 

to (x, Y) coordinates does not increase (even diminishes) angles with 

respect to the  x -d i r ec t ion .  Finally, one checks from the form of 

( 2 c ~ + / 3 # ~  +cr~O~r (-~/a)(  ~/~ua~)n(g+OHr)) 
Dpn,a= 

t ha t  for two-dimensional  subspaces whose angle to E ~ is small, the  

proper ty  in (b0) is preserved by positive iteration. In view of (a) this 

completes the  proof  of the  claim and so also of Theorem 3.1. 

4. Contractive hyperplanes 
Let, from now on, ~ = (~a)a be a quadratic-like family, i.e. a family 

of diffeomorphisms satisfying propert ies (QL) and (SD) of Section 2, 

for a sumcient ly  small b > 0. Here we construct  for such a family the  

higher-dimensional  analog of the  contract ive directions in [BC2] and 

[MV]. For a E (1, 2), Zl E R and u _> 0 we denote  M ~ = MU(a, Zl) = 
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Dqoa(Zl) and w.  = w,(a,  Zl) = M'(1 ,  0m-l ) .  Let  t be some fixed positive 

number,  v/b << t <_ 2. The point Zl is ; \ -ezpandin 9 up to time n if 

IIw ll _> ~" for all 1 _< u _< n. For such a Zl we let f ( ' )  = f ( ' ) (a ,  Zl) 

be a maximally expanding n o r m - 1  vector: [IM I( )II _> IIM~ul] for 

all u E ]R m with Ilull = 1, in particular IIM'I( ')II >_ A,. The u - t h  

contractive hyperplane at Zl is E( ' )  = E(')(a,  Zl) = { f ' ( a ,  Zl)} • Note 

that  M~E(~) = {M~f(~)} z and, by sectional dissipativeness, IlM ell _< 
(Kb/A)" for every n o r m - 1  vector e E E( ' ) .  

Lemma 4.1. There is K1 = K I ( K ,  I )  such that for every 1 <_ # < u < n 

(a) lang]el(E("), E (u)) = ]anglel(f(~), f ( ' ) )  < (K]b) ';  

(b) ]]M'e]l < (KID) u for  all e E E (u) with ]lelI = 1. 

Proof.  In order to prove (a) it is sufficient to show that  for every 2 < u < 
_ ~ - ,  ~ , , L ~ - - 1  K ~ '  n we have la.glel(E( -e), < , with K~, depending 

only on K and I.  Suppose E (~-1) ~ E( ' )  and let e (~-1) E E ( '-1),  

e(') E E( ' )  be n o r m - 1  vectors orthogonal to the intersection E("-1) F1 

E( ' ) .  We write e("-1) = c~e(') + f l f ( ' )  and then IfllA _< ]]M'e( ' - l ) l l  _< 
K ( K b / I )  "-1. Thus, 

tangle I (E(~- 1), E(~)) = langlel<e< -l), 
{Kb  

:larot   iS  7 - < V }  " 

This proves (a) and (b) is now an easy consequence. [] 

We prove that  at expanding points the contractive hyperplanes E(~) 

are nearly vertical (nearly parallel to the Y - p l a n e  {0} x IR m- l )  and, 

moreover, vectors close to the horizontal direction are nearly maximally 

expanding. For (v, V) E ]R x R m-1 we define I slope I(% V) = Ill//vll. 

Lemma 4.2. Let zl  be such that ]lMUuoll > A" for 1 < u < h a n d  some 

norm-1  vector uo. Then, defining f ( ' )  as before, 

(a) I slope l(f  (')) < K2v/b for  some I422 = K 2 ( K  , A) > 0 and every 1 <_ 

u < n ;  

(b) IIM~ull _>  IIM II for 1 <_ u <_ n and every n o r m - 1  vector u with 

{slopel(u) <_ 1/10. 

Proof.  Let Zl = (zl,Y1). The assumption IIMu011 _> A >> v ~  implies 

Bol. Soc. Bras. Mat., Vol. 24, N. 1, 1993 



30 MARCELO VIANA 

]Xll > /~/5 and  so, by (QL), Islope](f(1)) < const v/b. T h e n  the same 

holds for every f("),  1 < u < n, as a consequence of L e m m a  4.1(a). This  

proves (a). Let now u be as in (b). Then  we may write u = ae  + / 3 f  (~) 

with  e E E( ' ) ,  I s] < 1, ]/3] > 2/3 and so IiM'ui] k ( 2 / 3 ) l i M ' f ( ' ) l ] -  

(KID)">  (1/2)]]MUf(u)]]. [] 

In the  sequel we denote  ~j = ~J(~o) whenever ~0 C R and j > 1. 

L e m m a  4.3. Let zo, 40 E R and let u, v be n o r m - 1  vectors satisfying 

I[zo-4o1/_< o and II -vll _<   /orsome  <_ (A/10K2) 2. I f 1  <_ u <_ n 

is such that IIM'(a, zl)~ll _> ~ then 
(a) 1 _< HM~,(a, z l )u]]/]]M,(a,  41)v]] <_ 2 

(b) tanglel(MU(a, Zl)U, MU(a, el)v) _< (V~) 2n-" _ (y~)  n. 

In particular, (a) and (b) hold for  every 1 < u < n i f  Zl is 

A -expand ing  up to t ime n. 

Proof .  Analogous to [MV, L e m m a  6.3]. [] 

L e m m a  4.4. Let  z l ,  r E R be such that z l  is A -  expanding up to t ime 

n and ][z, - 4,]] -< a"  for  every 1 < u < n, with x/~ <_ cr <_ (A/10K2) 4. 

Then, for  i <_ u <_ n and any n o r m - 1  vectors u, v satisfying ]slope ](u) _< 

1/10, I slop~ l(v) _< i/I0, 
(a) �89 _< I[M'(a,z~)ull/lIM'(a,C~)vll <_ 2 
(b) ]anglel(M~(a , Zl)U, M ' ( a ,  41)v) _< (K4v/-~) "+1, 

for  some K 4 = / ( 4 ( K ,  A) 

Proof .  Analogous to [MV, L e m m a  6.4], recall also L e m m a  4.2 above. 
[] 

In what  follows, we denote  Z = (a, z) = (a, x, Y) E (1, 2) • R. For 

the sake of simplicity, we also use D z  = D(a,x,y ) to denote  derivation 

with respect to all variables (a, x, Y )  = (a, x, Yl,  �9 �9 �9 , Ym-1). The  main  

result in this section is 

L e m m a  4.5. There is K5 = K 5 ( K ,  A) such that, i f  z is A -expand ing  up 

to t ime n then I iDz f ( ' ) ( z ) I I  < Khv/b  for  every 1 < u < n. 

In order to prove this l emma we deduce first a few auxiliary esti- 

mates.  Let M.  denote  the adjoint  operator  of M: M . u  �9 v = u �9 M v  

for all u , v  E R ~ .  We denote  g(') = M ' f ( ' ) / i i M ' f ( ' ) [ [ .  Note tha t  
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M2-'f (') is colinear to M'f ( ' ) ,  since {MY f ( ' ) }  • = MV{f(v)} • and  

so we also have g( ')  = Mj' f ( ' ) / [ lMj ' f ( ' ) I I .  Observe, moreover,  tha t  

IlMT"f(')]l--IlM'f(')l] -1 < A- ' .  

L e m m a  4.6. There is K 6 = K6(K,  A) > 0 such that i f z  is A-expandin9 
up to time n then 

(a) IlOzf(~)(Z)]l <_ K~ and IlDzg(~)(Z)ll <_ K6 for every 1 < u < n; 
(b) HDz(MJ f(")(Z))lf <_ K~ and I[Dz(MTJ fff)(Z))ll < K~ for every 

l<_j<u<n 

Proof. Let M~ denote the map induced by M" on the bundle of 

unit spheres over (I, 2) x R: M~(Z)f : M~(Z)f/IIM~(Z)III for every 

norm-1 vector f The property m"{f(")} • = {M~f(")} • translates 

into 

A d # f ( ' )  = f ( ' ) ,  where 2%4 = M.UM ". (1) 

We let F(Z, f) = M # ( Z ) f  and use the implicit funct ion theorem in (1) 

to calculate Dzf( ' ) .  Note first t ha t  

(OsF)(Z, f).f _ Adf AdI.  Adf AdZ for j~ E {f}•  
llAdfll IlAd/[I 2 IIAdfll 

This implies 

(OfF)(Z, I(U)(Z)) = (Ad lE(~)(Z)) /llAd f(')(z)ll 
and so 

II(OsF)(Z,I(~)(Z))II <_ IIM IE(~)(Z)I[2/IIMZ(~)(Z)II2 <_ (Kb/a2) 2" << 1. 

Moreover, 

(OzF)(Z, f)Z - 

implying 

DzA4(Z, f) .Mf .  DzM(Z ,  f) M f  
] }M f ] l  H M  fII 2 IIM fll 

(2) 

H(OzY)<Z,/~)(z))ll ~ IIDzM(.,/~)(Z))IIIliM/~)(Z)II ~ <H/~,)2< 
where we also use the  fact t ha t  IIDzMII <_ (11~11c2) 2~ _< K2U. As a 

consequence, 
2u 

lIDz/ ) z)ll : llOz o (Id OsF) 1111z <2 
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proving the first part of (a). The second part follows from the same 

argument applied to (MUMV)~g(U) = g (u). On the other hand, , / # -  

IIDz(MJI(')(Z))II < IIDzM(Dz~J-I(Z),MJ-l f(")(Z))Ir+ 
+ [IM(~J-l(Z))l]plDz(MJ-lf(~)(Z))fl 

< K29 + KIIDz(MJ-lf(~)(Z))II. 

By recurrence we find 

IlDz(MJ f(~)(Z))ll < K2J +. . .  + K j+l + 2KJ(K//~) 2u, 

which proves the first part of (b). Finally, the second part is be proved 

by a similar argument, starting with M2-Jf@) = M~.-Jg(")]]Mj'f(~) II = 
M~,-Jg(~)/IIM" f(~)II. [] 

Proof  of  Lemma 4.5. Throughout the proof const denotes a positive 

constant depending only on K and ~. First, we verify the conclusion of 
the lemma for u = 1. Observe that  (2) gives for f = f(1) = f(1)(Z) 

Dz3d(Z, f(1)) (Dz3/I(Z, f(1)) ) (OzF)(Z,f(1))2= [[Mf(1)l] 2 _ ~, ~ ) [ - ~  . f(1)_ f(1), (3) 

where A/ /=  M.M. It follows from (QL) that  we may write 

2td = f 4 + g  w i t h f d =  (P(a,x ) O) 0 0 E s  • R ra-1) 

and 

IIEIIcl _< const v% 

On the other hand, by Lemma 4.2, f(1) is (const x/b)-close to the hori- 

zontal direction. Using these facts in (3) we obtain II(OzF)(Z, f(1))l [ _< 
const ~ and then the proof of Lemma 4.6 gives IIDzf (1) II <- const v~. 
Now the lemma will follow if we prove that  

ItDzf ('+1) II <- ltDzf (') 11 + (const b)', for every 1 < u < n - 1 5 

and we proceed to do this. Let f ( ,+ l )  = (f(u+l) . f ( , ) )  f(u) + h(U) with 
h(') c E( ' ) .  Then 

Dzf(,+l) = ( f ( , + l ) .  f(u)) Dzf ( ,  ) + Dz(f@+l) . f(,)) f(~) + Dzh(,). 
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Clearly, If (u+l) �9 f ( ' ) l  -< 1 and Ilf(')ll _< 1. On the  other  hand,  f(") �9 

D z f  (') = 0 because IIf(')II -- 1. This,  together  with Lemmas  4.1(a) and 

4.6(a), gives 

If ('+1) �9 Dzf ( ' ) l  <_ (const b) ~'. IIDzf(~')ll <_ (const b) ~. 

Moreover, the same a rgument  applies to IDzf(~'+1) �9 fb')1, proving tha t  

IlDz(f (u+l)" f('))[I < (const b)". (6) 

Now we are left to es t imate  liD• Let 

(o o) A, ' c~, = IlM~'f(~')ll-1 

and 

A, = (Aij)l<_i,j<_m-l: {g(v)} • ~ {f(v)}Z, 

be the mat r ix  of M," wi th  respect to fixed or thogonal  frames 

{9(~)(Z), u l ( Z ) , . . .  , Um-l(Z)} and { f ( ' ) (Z) ,  e l ( Z ) , . . .  , em_l(Z)} 

satisfying IlOzuil[, IlDzei[I <_ const ~. Then  we write 

h (~') = hlel  + "" + h ,~_ le~_ l  

and take h( ')  = h l ~ a l  + . . .  + hm_lUm_l E M',E( ' )  to be such tha t  

M,~,f(~,+l) = (f(u+l)  . f(u)) M2-~,f(~,) + ~(,). Clearly, h( ' )  = M, 'h  (~) or, 

equivalently, 
m 

hi = IIMUf(L')tl Z ( c ~ . A i j ) h j  for 1 < i < m - 1. (7) 
j = l  

Note tha t  Ilh(')]l _< const ", since t lM,  if(i)ll = HMif(i)l1-1 _< A -i.  It 

is also clear tha t  [[M"N(~')[[ <_ const ~. Moreover, L e m m a  4.6 implies 

I lo~(~) II -< const ~ a n d  [[D([[M~f(~) [I)[I <- const ~. We  claim, in addit ion,  

that 

lc~.Aijl < (const b) ~ and ]IDz(c~,Aij)II < (const b) ". (8) 

Taking derivatives in (7) and using all these est imates we get 

liD• h(~')ll <- (const b)'. 

Together  with (6) this concludes the  proof  of (5). Therefore, we have 

reduced the proof  of the  l emma to tha t  of (8). Let (Mr be 

Bol. Soc. Bras. Mat., Vol. 24, N. 1, 1993 



34 MARCELO VIANA 

the matr ix  of M "  with respect to the canonical basis of ]R m. Each 

( C t , / k i j ) ,  1 ~ i , j  _< m - 1, may  be wr i t ten  as a linear combinat ion  

c~.Aij = ~ CrsuvH" (r, s, u, v), where H" (r, s, u, v) = ( M ~ s M ~ v - M ~ M ~ , )  

and IC~u~l _< const u, I IDzCr~II  <_ const u. Now, 

H ' ( r , s , u , v )  = ~ H l ( r , i , u , j ) H ' - l ( i , s , j , v )  
i < j  

and, by (QL),(SD), 

and 

]Hl(r, i ,  u,j)] < const b 

IIDzHI(r, i, u,j)ll ~ const b 

for every (r, i, u, j) .  Hence, by induct ion on u, 

IlH" (r, s, u, v)l[ < (const b) ~ 

and 

IIDH~" (r, s, u, v)[I ~ (const b) ~. 

This implies (8) and completes our argument .  [] 

The  same type  of a rgument  applies to the  second order derivative, 

giving 

L e m m a  4.7. There is K 7 = KT(K,  A) > 0 such that if  z is A-expanding 

up to time n then IID2zf(')(Z)l] < KTv/b for every 1 < u < n. 

Finally, we also prove the following result, to be used in Section 8. 

L e m m a  4.8. There is KS = K8(K,  A) > 0 such that IIDz(Mie)(Z)]l <_ 

(Ksb) i for every 1 < i < , < n and any norm-1  vector field e(Z) with 
e(Z) E E( ' ) (Z )  and IIDze(Z)ll < 1. 

Proof .  We write e = (e. f(i)) f(i) +/z(i) with/z(i) E E (i) and then  

D z ( M i e )  = (e. f(i)) D z ( M i f ( i ) )  + D z ( e .  f(i)) Mi f ( i )  + Dz(Mi~( i ) ) .  

We have ]lMif(i)ll < const i and IIDz(Mif(i))[ I < const i. Moreover, 

le. f(i) I <_ (const b) i, as a consequence of L e m m a  4.1. As in the proof  of 

Lemma  4.5, we check tha t ,  for every 1 _< j < n -  1, f ( j+ l )  = cj f( j )  +h(j) 
with ]cjl E [ 1 -  (co nst b)J, 1], IIDzcjll <_ (const b)J, ]]h(J)ll <_ (const b) j and 

IIDzh(J)][ < (const b)J. It  follows tha t  f ( i ) =  Of(") + lz with  I[/~]1 < 
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(con~t b) ~ and HDzAll _< (const b)% Then IIDz(c./(~))11 = IIDz(c. h)ll -< 
(const b) i. Finally, in order to est imate IIDz(Mih(i))ll, we let 

( a  O )  ,[M/f(/) {f(i)}• {g(i) 0 ' ~ = II a n d  zx: > } ' ,  

be the matrix of M ~ with respect to orthogonal frames {f( i ) (z) ,  e l (Z) ,  

. . . ,  e,~_l(Z)} and {g(i)(Z),ul(Z),... ,~trn_l(Z)} as before. Then 

Mgh(O = (a / ' )h  (g) /II Mif(i) II 

and now the same argument as in the proof of Lemma 4.5 gives 

IIDz(M~a(~))t] <_ (const b) i. 

Altogether, this shows that  IIDz(M%)I[ <_ (const b) i as we wanted to 

prove. [] 

5. Critical po ints  

Here we describe the algorithms to be used in the construction of critical 

points in W~(Pa). As explained in the Introduction,  a main difference 

with respect to the two-dimensional situation results from the fact that,  

in the present setting, nearby disjoint segments of W~(Pa) need not have 

nearby tangent  directions. Because of this, closeness of the tangent  

directions must be taken as an independent assumption here, see (2) 

below, and then be deduced directly from the binding construction, see 

Section 7. 

5.1 Generation zero 

We make use of the following notions. Let 20 be the point of W~(Pa) N 
{(x, Y): x = 0} closest to P~ in W~(P~) and, for j ~ 1, let ~:j = p~(z0). 

We define GO = [zl, z2] c W~(Pa) and Gg = ~ ( G 0 )  \ Gg_lfor g >_ 1. 

Points z E G g  are said to be of generation g. We assume that  ~ = (qaa)a 

is close enough to the quadratic family r so that  the intersections of Go 

and G1 with {(x, Y): Ix[ < 1 - 50}, 50 = 5(2 - sup Q), are b-fiat curves, 
i.e graphs of functions Y:x  ~ Y(x) with [[Y[], [[YII -< bU4. A point 

zo E Wu(P~) is a u- th  critical approximation if WU(pa) is tangent  to 

the u - t h  contractive hyperplane E(u) (zl) at Zl = qZa(ZO) and, moreover, 
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the  p " - n e i g h b o u r h o o d  of z0 in Wu(Pa), denoted  by "Y(z0, f ) ,  is a b - f ia t  

curve. The  nota t ion  z0 ~)" always corresponds to such a point.  In Section 

6 we fix the  value of p bu t  here we only need 0 < b << p < 1/2. 

It is easy to see tha t  GO contains a 1 - s t  critical approximat ion  near 

x = 0. In fact, let x H zo(x) = (x,Y(x))  parametr ize  Go C~ {(x,Y): Izl _< 

1 - 60}. The  tangent  direction to ~a(GO) at Zl(X) = ~a(zo(x)) is given 

by 

t(x) = (~(~o) + ~(zo) �9 r(zo) + A(zo) �9 Y(x)), 

where 
D ~ a =  ( ~  ~ )  Es215 

For x = 0 we have [t(o).f(1)(zl(O))[ < Irt(0)ll _< 2Kv~,  by (QL). Note tha t  

L e m m a  4.5 implies It(x). Dx(f(1)(zL(x)))[ <_ const v/b for every [xl _< 1. 

Now, t(z) = ( -2a ,  0 "~-1) + e(x) with IIc(~)ll _< toner b and so It(z) �9 

f(1)(Zl(X)) I > (3a/2), since f ( i )  is nearly horizontal  at Zl(X). Therefore,  

for b > 0 sufficiently small, I D x ( t ( x )  �9 f ( 1 ) ( z l ( x ) ) ) l  > a > 1. It  follows 

tha t  there is x(1) wi th  Ix(1) ] < 2 K v ~  such tha t  t(x(1)).f(1)(Zl(X(1))) = O, 
~1) (x(1)) 1 - s t  critical approximation.  Clearly the  same i.e. z = z0 is a 

a rgument  applies also to G1, s tar t ing with G0 = G1 N {(x, Y): x = 0}, 

and  we denote  by w~ 1) the  corresponding critical approximat ion.  

5.2 Precision increasing 

The  same basic idea permi ts  to show that ,  whenever z is a u - t h  

critical approximat ion  and z~ ") : ~ga(Z~ u)) is expanding up to t ime 
(.+1) z(.). (u + 1), there exists a (u + 1 ) - s t  approximat ion  z 0 near We 

th ink  of z~) ,z~  u+l) as approximat ions  to the  same critical point of 

~a. Let 7(z0, p~) be parametr ized  by x H zo(x) = (x, Y(x)) and let 

z~ v) = z0(x(~)). By definition t(x(~)) �9 f(~)(z~ ~)) = 0 and so I t ( x ( ' ) )  . 

f (~+l)(z~)) l  _< 2K(Klb) ~, according to L e m m a  4.1(a). As before, we get 

[Dx(t(x).f("+m)(za(x)))l > 1 and so there is x (u+l) with Ix(") -x (~+l ) [  <_ 

2K(Klb) ~ such tha t  z~ ~+1) = zo(x(~+l)) is a (u + 1 ) - s t  critical approx- 

imation.  

Let 6 > 0 be a small number  and f~ C (1, 2) be an interval close to 
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a = 2 in the parameter space. We define N _> 1 to be the maximum 

integer such that  z j , w j  E {(x,Y):lxl _> 25} for every 1 _< j < N. 

Observe that  N can be made arbitrarily large by taking f~ close to a = 2 

and b small. Then the construction above applies to the approximations 
z~l), w~ 1) obtained in section 5, yielding sequences z~ 1), z~2) , . . . ,  z~ N- l )  

and w(1)0' w(2)0 " ' "  , W~ N-l) ,  in GO and G1, respectively. Note that  the 

z[ i) , w[ i) , are indeed expansive up to time N -  1: 

Lemma5.1 .  Given O < co < log2 a n d 6  > 0 small then, for  a c lose2 

and b sufficiently small, the following holds. Let v be a n o r m - 1  vector 

with I slope I(v) _< 1/10 and let z~ = (xi, Y/), 0 < i < k + 1, be a segment 

of  orbit of qpa satisfying lxil >_ 5 for  1 < i < k. Then 

(a) I slope I(D~/~(Zl) �9 v) <_ [(v/-b and I[U~(Zl)"  vH > alxil HD~5-1(Zl) �9 ~11 

for  every 1 < i < k and some K = K ( K ,  5); 

(b) zf Ix01 < 6 or IXk+ll < (5 then [D~ak(Zt) �9 v I _> e k~0. 

Proof.  Analogous to [MV, Lemma 7.2], [BC2, Lemma  4.6]. [] 

For future use we let Ck = {z , w } for 2 _< k _< N - 1. 

5.3 Higher generations 
Critical approximations of generation g > 1 are constructed using lower 

generation ones as starting points, in the following way. Let (~') be a 

u - t h  critical approximation. We assume that  (~)  is A-expanding up 

to t ime u and a/ = 7 ( ~  v),g) is b-flat ,  g _> 2p ~. Let 7 = 7(z0, g) be 
another b-f lat  segment of W~(Pn,a), satisfying 

1 min{pU ' (7u} ' (1) dist(z0, r _< 

where cr _< (A/10K2) 2. By Lemma 4.3, all the points in ~a('Y(z0, r are 

also expanding up to time u. We assume, moreover, that  the tangent 

directions to ~a(~) and ~a('Y) satisfy 

langlel([(~u)), t(xo)) < 1 min{pU ' crU} ' (2) 
- - 2  

where ~-~') = ( :~) ,  I)0(~') ) and zo = (x0, rO). By definition, 
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From (1), (2) and Lemma 4.5 we get 

I t ( xo ) .  f O ' ) ( z l ) ]  _< I t (xo)  - t (~))r  + ] fO ' ) (z~)  - f (~ ' ) ( (~) l lZ(~g~)) l  

_< ( ~ + e o n s t v / b )  min{pU, crU}<min{pU, a~}. 

Hence, in the same way as before, there is z~ ~) = (z~ y), Y0 (u)) E ~/ 

critical approximation with Ix~ ~) - z0] _< min{p ~, an}. 

5.4 Contractive distributions 

The natural  substi tute for the contractive vector fields of [BC2] and 

[MV] in our present setting are the distributions of contractive hyper- 

planes E(~) defined in Section 4, However, here we have to circumvent 

the problem that  these distributions may not integrable. This is done in 

the following way. Let z = (x, Y) be A-expanding  up to time n. Then, 

by Lemma 4.2, the contractive hyperplanes E@)(z)  are nearly vertical. 

For 1 < u < n and any n o r m - 1  vector V E R m- l ,  we let etv~)(z)-- be the 

unique vector of the form (v, V) in E(")(z) .  

Lemma 5.2. For every 1 < u < n and V E R rn-1 with IlVll = 1, 
(~-1) 

(a) langl~l(~(v~)(~), e v (~)) _< (Kgby, K9 = Kg(K, A) 

(b) The vector field e(v ~) admits an integral curve [-b 1/4, b 1/4] 9 t ~-+ 

r(~ ~)(t) with r(~ ~)(0) = ~ .  

(~-1) e (~)(z) @2, V) and let (1,/71) and Proof. Write e V (z) = (Vl, V) and = 

(1, F2) be colinear to f ( ' - l ) ( z )  and f (~)(z) ,  respectively. From (vi, V ) .  

(1, Fi) = 0 and Lemma 4.1 we get 

[angle ], (~-i), , (~) ~ev ~ ) , e v  (~)) _< IlVl -v211 < ]IF1 -F21[ < 2(Klb) u, 

This proves (a) and (b) can now be proved by the same argument as in 

[BC2, L e m m a  5.8] or [MV, Section 7C]. [] 

Notice that  r(v ~) has the form F (v)(t) = ( z , , v ( t ) , Y  + tV) .  Sup- 

pose now that  z = (x, Y) is such that  Ixr < 1 - 250. By construction, 

G1 C~ {(z, Y): ]z[ < 1 - 6o} is a b-f la t  curve. Moreover, it is contained in 

{(x, Y): IIYII _< eonst v~}, as a consequence of (QL) and Lipschitz depen- 

dence of unstable manifolds on the dynamics, see e.g. [MV, Proposit ion 
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7.1]. It follows tha t  for some V the curve r(v n) intersects G1 in a point 

r/. Since d is t (~(~) ,  ~ ( z ) )  _< const V~ (const b) ~ for 0 <_ u _< n, we may 

apply Lemma 4.4 to Zl = z, ~1 = r / a n d  cr = const v/b, to conclude that  

~ HD~(~)  �9 vii -< liDoS(z) " ull <- 21tD~(~)"  vii (3) 

]anglel(D~"(~). v, D~X(z ) �9 u) < (const bl/4) "+1 (4) 

for every 1 < u < n and any n o r m - 1  vectors u and v with slope _< 1/10. 

In particular this holds for u = (1, 0 "~-1) and v =tangent  to G1 at 7- 

6. T h e  i n d u c t i o n  

The proof of Theorem A is based on the construction of a sequence (Ck)k 

of subsets of W~'(P~) with the following properties. Each Ck is formed 

by a finite (although unbounded)  number  of (k - 1 ) - s t  critical approx- 

imations and the image z~ k-l)" = ~(z0/k-1))" of every z0 ~k-1)" E Ck is 

cO-expanding up to t ime k. The precision increasing procedure of Sec- 

tion 5.2 defines "canonical" one-to-one maps Ck > Ck+l, z0 tk-1)" ~-+ z0 tk) ," 

via which we may think of every Ck as a subset of Ck+l. Then, each 

limit point z 1 = limk-.oo ~a(Z~ k))" is cO-expanding for all positive times 

and it is a critical value of ~ in the sense tha t  the tangent  direction 

to WU(pa) at Zl is (exponentially) contracted by all positive i terates of 

DtD~. The construction of each Ck requires a certain number of assump- 

tions on the parameter ,  which are satisfied only by a subset Sk of values 

of a E f~. Then  we show that  Soo = r/k_>l sk has positive Lebesgue 

measure. Finally, for almost every a E Soo the orbit of some critical 

value Zl as above is dense in Aa = closure(WU(pa)). 
The objective of this section is to describe the induction procedure 

through which the critical sets Ck are constructed. This procedure was 

already initiated in Section 5.2, where the Ck, k _< N - 1, were defined. 

The inductive step, to be presented in Sections 6-8, is ra ther  elaborate. 

It requires a detailed description of the operations performed at the 

previous stages of the construction, including the knowledge of several 

additional properties of the critical sets obtained during those stages. 

All this information must  be part  of the induction hypothesis, which, 
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as a consequence, has a ra ther  long s ta tement .  Here we give the  precise 

content  of this s t a tement  and describe a few other  notions and auxiliary 

construct ions involved in the  induction.  This  follows closely [MV, Sec. 

8] where more detai led mot ivat ion can be found. Pa ramete r  dependence  

is of secondary impor tance  at this point  and so, for the  sake of nota t ional  

simplicity, we omit  reference to a in most  instances below. 

Let n _> N.  We assume tha t  a set Ck consisting of ( k -  1)--st critical 

approximat ions  of generat ion g <- Ok has been defined for every 1 _< k _< 

n -  1. Here 
20 log(10K 2) 

0 = O(b) - log(l/b) (1) 

We fix a small number /3  > 0 and say tha t  a point  40 is bound to Ck (up 
~k-1) 

to t ime k) if there is z E Ck such tha t  for every 1 ~ j _< k 

k - 1  
_ ( k - l )  

II~j - zj II <- hk e - z j ,  with hk = 2 - 2 ~ ( e Z / 4 )  i E (1, 2). (B1) 
1 

By assumption,  the image 41 = ~ ( 4 0 )  of any such 40 is cO-expanding 

up to t ime k. We fix 

p 0  = �9 ( 2 )  

Given z~ k-l)  E Ck, its p~k-ne ighbourhood  in WU(pa),  is assumed to be a 

b- f la t  curve. Recall t ha t  we denote  this ne ighbourhood by 7(z~k-l! p~k). 
~k-1) 

If z is of generat ion g > 1 we assume, in addit ion,  tha t  
1 - 9 . .  (k-l) �9 ~a t~z0  , pgk)) is contained in {(x, Y): Ixf < 1 - 50} n a l  and 

�9 any vector t tangent  to it is expanded  by D~ga-l: ] t D ~ - l t l l  >_ Iltll. 

Here, as before, 50 = 5(2 - sup ft). Every Ck+l is derived from Ck in the 

following way. 

(a) Let C~+ 1 be the  set of all k - t h  critical approximat ions  z~ k) obta ined 

from the elements Zo/k-1)" of Ck via the  a lgor i thm of Section 5.2. Note 

tha t  zo~k" 1) and Zo ~k)" have the  same generat ion g <- Ok and, moreover,  

llz~/r z;~-1)ll <_ 4K(Klb)  k-1 _< ~ . (3) 
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Observe tha t  the first inequality also implies 

(/3) Let C~'+1 consist of all the k - t h  critical approximations z~ k) of gen- 

eration Ok < g < O(k+l) for which 7(Zo~k)" p~(k+l))- has the properties 

stated above and which can be obtained by applying the algorithm 

of Section 5.3 to points 4~ k) C C~+1, with the additional requirement 

that 

]]z~ k ) -  4~k)ll <_ b g/lO <_ - ~  (4) 

(V) Then we take Ck+l = C~+ 10  C~'+I. 

Remark 6.1. Note that C~+1 is empty if (Ok, 0(k + 1)] contains no integer 

numbers. In particular, for k < 1/0 the critical set Ck consists only of 

the points z~ k-l) and w~ k-l) corresponding (by increase of precision) to 

the critical approximations in Go, G1 found in Sections 5.1 and 5.2. In 

this case we also replace p0k by 1/2 in the definition above. 

The estimates of the parameter exclusions, to be performed in Sec- 

tion 9, are based on the fact that the exponential rate of growth of the 

number of points in Ck can be made arbitrarily small by taking b small. 
This is proved in the same way as (1) in [MV, See. 8]. 

_ (K~Ok for all k. L e m m a  6.1.  ~r < 8 \ Po / 

Remark 6.2. In order to estimate these parameter exclusions we also 

need a parametrized version of the conditions in (/3) above. This is also 

part of our definition of the critical sets but we postpone its statement 

until Section 9, where it fits more naturally. 

We start the inductive step of our construction by defining C~ from 

C~_I, according to the procedure above. Then (3) and (4) (recall also 

our definition of hk) assure that any point 40 which is bound to C~ is also 
bound to Cn-1. Hence, by induction, its image 41 is eC-expanding up to 

time ( n -  1). Proving that (for many values of the parameter a) such a 41 
is also eC-expanding at time n is the main part of the induction. Before 

that, we must introduce a few other notions which play an important 
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role in the argument. It is par t  of our induction hypothesis tha t  such 

notions have been defined for all t imes _< n - 1 in the way described 

below. 

First  we consider returns, binding points and binding periods. Recall 

that 5 > 0 is a small constant. Roughly, a return of a point 40 is an 

iterate u _> 1 for which ~u E {(x, Y): ]xul < 6}. To every such u we 

assign a convenient element 40 of Ck, some k _< u, close to ~u, which we 

call the binding point of iv. Then the binding period associated to u is 

the maximal interval of time [u + i, u + p] during which the orbits of ~u 

and 40 remain close to each other, in the sense that ]]~+j - ~jll <- e-~j 

for all 1 _< j _< p,/3 > 0 a small fixed number. 

The precise definition is by recurrence. Let n _> N and assume that 

for every 1 ~ k < n - 1 and every point 40 bound to Ck, the returns 

u E [1, k] of 40 have been defined and that  a binding point ~70 E [_J~ Ci 

and a binding period [u + 1, u +p] have been associated to each return u. 

Let now @ be bound to g~ (and so also to g~_l).  Suppose first that  n 

belongs to some binding period associated to a return u < n of 40. Take 

such u maximum and let @ be the binding point of ~ .  By definition, 

n is a (bound) return for 40 if (n - u) is a return for 40 and the binding 

point of in is the same as tha t  of ~n-, .  Moreover, the binding period of 

~ is In + 1, n + p] if the binding period of 4n- .  is [n - u + 1, n - u + p]. 

Suppose now tha t  no binding period associated to a previous re turn of 

40 contMns a. By definition, n is a (free)return for 40 if Ixnl < 6. Then, 

we take the binding point 40 E Cn in such a way that  a certain set of 

properties are satisfied. These properties are to be listed in (H1) below, 

after the necessary language has been introduced. Again, it is part  of 

our induction hypothesis that  these properties hold for all previous free 

returns. A construction of such a point 40 is given in Section 7. The 

binding period In + 1, n +p] corresponding to the free return n is defined 

as follows. First, we let q be the maximum integer such that  

i -50KZ (0, i), (B2) ll .+j- jll < h -'J h=--exp 
-- ' I0 1 

for all I _< j _< q. Then we take p _< q to be maximum such that p+l is a 
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flee iterate (i.e. it is neither a return nor par t  of a binding period) of ~n. 

Observe that  this is well defined, since ~n is bounded to 40 (and so also 

to Cq) up to t ime q and, as we will show, q < n. In this way, the t ime 

n + p + 1 immediately after a binding period is always a free i terate for 

@. All the binding periods associated to returns u _< n -  1 are assumed 

to be given in this way and to satisfy a few other properties whose 

s ta tement  we pos tpone to (H2). Section 8 is dedicated to showing that  

these properties also hold for all the binding periods start ing at t ime n. 

Actually, Sections 7 and 8 already require some restriction on the 

values of the parameter  a. Given a return u of a point ~0 we define 

d~ (@) = I I ~ -  4011 where 40 is the binding point of ~ .  (For completeness, 

we also set d~(~0) = Iz~l, ~ = (x~,Y~) when u not a return). We assume 

that  whenever 1 < k < n is a free return of a point z0 E Ck then 

dk(zk) >_ e -~,  where  c~ is another small constant.  (BA) 

Note that  for k = n this will be defined only after we have found the 

corresponding binding point 40, see Definition 7.2. 

Now we define folding periods. Heuristically, these are intervals [u + 

1, u + 11 corresponding to the t ime it takes for a fold in W~(Pa) created 

at a return u to get flattened near the orbit of the point. The formal 

definition is, again, somewhat  involved. As for the binding periods, we 

want folding periods to form a partially ordered family. We also want to 

assure tha t  at  t ime (u + l + 1) the point  is in l~ = {(x, Y): Ixl _< 1 - 250}. 

Note that  given any z we have ~ ( z )  E V for some 0 _< i < 4. We 

consider in detail the case when n is a free return for a point ~0 bound  

to Cn. This is extended to bound returns occurring at t ime n in precisely 

the same way as we did before for the binding period. Moreover, the 

same constructions and conclusions are supposed to apply to all returns 

u _< k of points bound to Ck, k _< n - 1. Let s _> 1 be defined by 

{ lOlog(l/dn(~O)) } 
s = max log(l/b) ,4 . (5) 

Then the folding period is In + 1, n + 1], where I < s is the maximum 

integer such tha t  ~ + z + l  E l)  and l + 1 is a fold-free iterate (it is neither 

a return nor inside a folding period) of ~ ,  Note that  these notions are 
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already defined for & at this stage: (BA) implies s << n and it is easy 

to check that  & is bound  to its binding point ~0 up to t ime s. Let us 

also s ta te  explicitly the following proper ty  of folding periods: 

l IID a(&+l). ell _< 2 for every e E E ( 0 ( & + I ) ,  Ilell = 1. (6) 

This is a direct consequence of Lemma 4.1 together with the fact that  

5 l>S>_ 
- 2 - l o g ( 1 / b )  

In order to just ify this last affirmative we note first that ,  up to choosing 

5, (2 - a) and b sufficiently small, we may suppose that  any point takes 

at least (say) 20 iterates in between two consecutive returns. Then case 

s < 20 above is obvious and from now on we suppose s > 20. By  the 

definition and the inductive information on folding periods we have that ,  

either l > s - 4 or else there exists a folding period [# + 1, # +/0] of & 

with l + l  = # -  1 and # + l o  _> s. In the first case the conclusion 

follows immediately; in the second one we note that ,  by (BA), lo < 

max{10a#/ log( i /b) ,  4} and so s - l _< lo + 2 _< lOozs/log(l/b) + 6 < s/2. 

This completes our argument.  

Now we present the higher-dimensional form of the splitting algo- 

r i thm in [BC2], [MV]. For 0 < # < k < n - 1 and ~0 bound to Ck we 

decompose w~ = w~(&) = w, + cr~ in the following way. 

1. Let wo = w0 = (1, 0 "~-1) and cr 0 = 0. 

2. For # _> 1, let Du = D~a(~t~ ) �9 cot~_ 1 and ~ = D(fla(~l~ ) �9 crlz_ 1. 
3. If # is a return for ~0, split Du = /3~ (1,0 m- l )  + a~e~ with e~ a 

n o r m - 1  vector in t h e / - t h  contractive hyperplane E(t) (&), 1 =length 

of the folding period. Then take c% = aS~ - a~e~ =/3~ (1, 0 m- l )  and 

o-# = ~ #  -]- ozt~ett. 

4. If # coincides with the end of s _> 1 folding periods, # = #1 + 11 = 

. . . .  #s + ls, let w u = wu + ~ aui ~ (~t~i+l)e#i and a u = c?u - 

s D ~i 

5. If neither (3) nor (4) apply (by construction they never apply simul- 

taneously),  set w.  = D. and ~r~ = ~. .  

At this point, we are in a position to state our remaining inductive 

hypotheses on the construction of binding points and binding periods. 
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Recall tha t  we restrict ourselves to parameter  values for which (BA) is 

satisfied at every free return.  

(H1) For k _< n - 1, ~0 a point bound to Ck and v < k a re turn of ~0, 

a binding point 40 E (U~ Ci) is defined, in such a way tha t  

ad~,(~o) <_ i[~,_l(~l)] ] -I1~.-1(~1)11 -< 3ad~'(~c~ (7) 

_< 5K#b II .-l( l)ll (8) 

If u = k and it is a free return then we can even take slightly 

better factors (3a/2), (5a/2) in (7) and 4Kv~ in (8). 

(H2) For k <_ n- 1 and ~0 a point bound to Ck, the binding period 

[u + i, u + p] associated to a return u _< k satisfies p _< 5c~u < p. 

Moreover, there are 71,7-2 > 0 depending only on K, c~ and /~, 

such that 

1 < [[wv+j(~l)ll _< 7-1 for 0 _< j _< p -- 1 (9) 
71 --[flv(~l)lllWj(41)[[ 

I1  +p(r d.(~O) > 7-2 e(p+l)(cl/3) (10) 
II  ( l)lr 

where 41 ---- ~a(40) and 40 is the binding point of {~. 

As we said in Section 2, we fix 1/2 < c < Cl < co < log2. The 

following consequences of our assumptions are derived in the same way 

as in the two-dimensional case. 

Lemma 6.2. 

(a) ([MV, L e m m a  8.1]) For 0 <_ # < k < n -  1 and ~o bound to Ck 

I saope <- R,/b,  K = R(K,  

(b) ([MV, L e m m a  8.2]) Given any 0 <_ # < k < n - l ,  there are fold-free 

iterates #1 < # < #2 such that 

# 2 - - # 1  --<max log(i /b) '4  . 

Moreover, for any free iterate v > #, 

} " 2  - - / - t l  --~ m a x  "i-og('~/~ , 4  . 
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(c) (see (6),(7),(9) in [MV, Sec. 8]) Let ft be a return for a point ~0 

bound to Ck, with 1 <_ # <_ k <_ n -  1, and let p be the length of 

the corresponding binding period. Then, denoting by r the binding 

point of ~ ,  

(i) p ~_ ~ i o g d , ( ~ 0 ) - l ;  

(ii) I]~/~+p+l -- (p+IH --> he-2fl(P+l). 

(d) ([BC2, L e m m a  7.6],[MV, L e m m a  8.4]) For 0 <_ p < u <_ k <_ n -  1 

and ~0 bound to Ck 

{ II~j(r ). I1~,({1)11 I1~.(~1)11 _> min~<~<~ \l l~j-](r 
min,<j_<~(a dj (~0)) �9 liw~(~l)II. 

(e) ([BC2, L e m m a  7.7], [MV, L e m m a  8.3]) For 1 < # < k < n - 1 and 

~0 bound to Ck 

K-%-~" I I~ . (~ ) I I  _< I1~.({1)11 _< K%2~"11~#({])11. 
(f) ([BC2, L e m m a  7.13],[MV, L e m m a  9.4]) For i <_ # < u <_ k <_ n - 1 

and ~0 bound to Ck, if  (u + 1) is a free iterate of ~0 then 

11~(r -> K-%("-")/l~ 
In particular, part (c) (i) implies that  binding periods are much longer 

than the corresponding folding periods. Note also that  the hypothesis 

of (f) makes sense for u = k too: it just  means tha t  every binding period 

starting in [1, k] also ends in [1, k]. 

We close this section by observing that,  once the above properties 

have been extended to k = n, and up to an additional restriction on the 

parameter  values, it follows that  ~1 = 9~a(~0), every ~0 bound to C~, is 

eC-expansive at time n. In order to see this, let ul < u2 < . . .  < us _< n 

be the free returns of ~0. For each u = u/, p = Pi 

" + P  I1~(r _ II~,+p(~l)ll d . ( r  I1~.(r _~ 1 

~ I1~i-~(r I1~,(r d,(~o)ll~,-l(~l)ll 
by (H1) and (H2). Here we use the fact that,  according to Lemma 

6.2(c), the binding period can be made large by taking 6 small, while 
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keeping c~ and /3 fixed. On the other hand, denoting # = Piq-1 and 

f = # - ( u + p + l ) ,  

~+p+a I I ~ i - l ( ~ l ) l ]  I1~,+~(~1)11 I I ~ - §  - 

a s a  consequence of Lemma 5.1. Hence, ltWn({1)ll _> exp(coFn(a,  {O)-c~n) 

where 

8 8--1 

Fn(a, ~0) = n - ~ P i ,  resp. F~(a, {o) = Us - ~-~Pi if u~ _< n < us +P~ 
1 1 

is the total free t ime and the te rm - a n  accounts for the period (us + 

p~, n], resp. [u~, n]. We retain only the parameter  values for which 

F~(a, zo) >_ (1 - a ) n  ( F A )  

for every zo E Cn (and so for every ~0 bound to Cn). Up to assuming 

4c~ _< (co - e), it follows tha t  ][Wn(~l)ll -> e(c~ -> e (c+2~)~. Then, 

using Lemma 6.2(e) for k = n, we get iiw~(gl)ll > e %  as we wanted to 

prove. 

7. Returns. Binding Points 
Let n be a free re turn for a point ~0 bound to Cn. We describe here the 

construction of the binding point ~0 of ~ i  The main concern in this 

construction is to get 

langle i (~  - r +(~0)) ,  I ~ n g l e i ( ~ - l ( ~ l ) ,  +(r << II~ - ~0il 

where "y C WU(Pa)  is a b- f ia t  segment centered at ~0. We say that  

( ~ ,  cZ~_l(~l)) and (~0, ~/(~0)) are in tangential  posi t ion.  Once this has 

been obtained, an essentially 1-dimensional  calculation permits to de- 

duce the properties corresponding to the hypothesis (H1). 

Definition 7.1. Fix  A0 = (5/2) 2. Then  1 < r < n is a favourable iterate 

fo r  zo E Cn i f  

1. r is a fold-free iterate fo r  zo; 

2. zr ~ { (x ,  Y): Ixl < 1 - 250};  

3. dj(zr) >/N~) + 1  f o r  all 0 <_ j <_ n - r - 1. 
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L e m m a  7.1. I f  n is a free return for zo E C~ then there are 1 = ml  < 

m2 < ' "  < ms <_ n, with mi+l  <_ 3mi for  l < i < s - 1  and n <_ 3ms, 

such that each n - mi is a favourable iterate for zo. 

Proof .  Analogous to [MV, L e m m a s  9.1, 9.2]. [] 

The  following consequence is deduced in the same way as (8) in [MV, 

Sec. 9]. 

Corol lary 7.2. For 1 < i < s, Z n _ m i  is (Ao/K)5-expanding up to time 

rrt i . 

This means tha t  we may  apply L e m m a  5.2 in order to get, for each 
m i 1 < i < s, an integral contract ing curve Fv/ passing th rough  Zn_mi and 

cut t ing G1 i n s  point  r/~ i] We let 7~ i] 7(rj~ i], mi �9 = P0 ) and denote  also 

 iij = a n d  = 

L e m m a  7.3. For each 1 < i < s, 7~ i] is contained in { ( x , Y ) : l x  I <_ 1 - 5 0 }  
D mi and so it is b-f iat .  On the other hand, 7 [~] is also b - f ia t  and I1 Pa tll >_ 

Htll for every tangent vector t of T~ i], implying that 7[ i] D 7(r~[i], poi). 

Proof .  Fix 1 < i < s and let, for simplicity, m = mi,  70 = 7~ i] , .y = .y[i], 

770 = r/~ i] and r / =  r?[ i] . We write zy = (xj, Yj), j > 0, and r/0 = (20,120). 
m i Since F~  is nearly vertical we may  suppose [20 - an-m[ < (60/2). On 

the  other  hand,  it is easy to see tha t  (1 - I X j + l l )  <_ 4(1 - I x j [ ) +  2(2 - a )  

for every j .  Since 1 - Ixn_~l >_ 10(2 - a) and 1 - Ixn[ _> 1/2, it follows 

tha t  ( 1 -  IXn_ml) >_ 1/4 m+l.  Then  

1 --[XO[-  p~n > 1 --Jan-m] 
5o 1 3 50 > 50 

4m+2 > - l a n - m I ) -  7 - 

and this proves the first part of the lemma. By Lemma 6.2(a) 

W n _ m _ l  ( Z l )  = C O n _ m _ l  ( Z l )  

has slope < 1/10. Hence, we may apply 5.3, 5.4, to  u = ~0(~/0) = a 

n o r m - 1  vector tangent  to 70 at r/0 a n d '  

V = Wn_m_l(Zl)/]]Wn_m_l(Zl)ll 
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and  get 

I lD~2(~0) .  %(~0)11 2 Ilwn-l(Zl)ll/21lwn_.~_l(zl)ll (1) 

IangleI(D~am(r]o) �9 a/o(r/o),Wn_l(Zl)) <_ (const bl/4) m+l <_ const v ~  
(2.) 

Now (1), Lemma 4.3 (with ~, = 1 a n d ,  = ,~) and Lemma 6 .2(0  (with 
u = k = n -  1 and  # = n -  m -  1) give 

I ID~(~) .  %(r -> 4@5 era/10 -> 1 for every  r E 3`0, (3) 

at  least if m is large; if m is small  we also get IID~a~(~). %(~)11 -> ~, 
direc t ly  f rom L e m m a  5.1. On  the  o ther  hand ,  (2) and  L e m m a  6.2(a) 

imply  

I slope I ( D ~ ( ~ 0 ) "  %(W0)) < const v/b. (4) 

In order  to conclude the  proof  it is now sufficient to show tha t  the  

curva tu re  of 3' satisfies k(3') _< const x/b. Let  3'j = ~a(3'0) and  then  

a/j+l = D~a(a/j) and  ~ j+ l  = Dcpa(~/j) + D2~a �9 (a/j, a/j). From k(3') = 

II(a/" a/)~ - a/(a/ ~)ll/lla/ll 4 = Idetl(a/, ~)/lla/ll 3 we get 

( Ha/Jll )3(ldetl(D~=(a/J),D~(:?J)) 
]~(3"J+l) = Ita/j+etl Ila/jll 3 

Idet I (D~(a / j ) ,  D2~(a/j, a/j)) "~ 
+ ) 

and  so 

wi th  

and  

\['ldetl(D~(a/J)'D~a@J))Ul~l k.y j a)j) " ) - - -  t3`j) k(3`j+l) < Kj | ~_~75_~_., , + nj 

( Ila/jll)a 

J 

Lj=ldetl(D~a(t j)  D2~a(tj,tj)), t j -  a/j 
' Ila/hl[ 

Now, (QL) implies nj < const X/~ and  thus,  using also (SD), 

m--1  

k(7~) = (Kb)mKm-1 "'" KO k("/O) + ~  (Kb)m-l -JK~_t  "'" Kj  (const v@). 
0 
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Finally, by Lemma 6.2(f), 

K m - l ' ' "  KN = (ll,~jtl/ll,~rnll) 3 ~ (const e ( J - m ) / l O )  3 

and replacing above we conclude that  k(7,~ ) _< const v/-b. [] 

Let also m o =  0, 7 [0] = G I •  {x = x~} and 7[ ~ = 7(~[~ 

Note that  7[ i] C Ggi, gi = l + m i ,  and gi+l <- 3 g i -  2 for all i _> 

0. Note, moreover, that  up to by taking 5 and b sufficiently small we 

may always assume that  7(~ [0], Po) contains the critical approximation 
(n-l) 

w 0 E C~ N G1, recall Sections 5.1 and 5.2. 

Definition 7.2. Let k >_ 0 be max imum such that gk <_ On and ~/(r] [k] , p~k) 

contains some element Co,k of Cn. The binding point of z~ is CO = @,k. 

As we said in Section 6, we restrict ourselves to the parameter  values 

for which this construction yields (BA) dn(zO) = Ilzn - COIl >- e-~".  The 

measure of the set of parameters  excluded by this condition is est imated 

in Section 9. 

Lemma 7.4. For k > 0 as in definition above 

and 

[[z~ - ~][k] [[ < b3/8dn(zO) 

langle[ (w~_l (Zl), ~/[k] (~][k])) ~ b3/8dn(zO). 

In particular, there is a b - f i a t  curve 7 ~ passing through ~0 and z~ and 

tangent to 7[ k] at Co and to w~_l(Zl) at Zn. 

Proof.  By construction, 

IlZn - ~[i]11 ~ (const b)mi(const v~) ~_ b 3/8+gi/10 

for all i > 0. Moreover, 5.4 yields 

langlel (w~_ x (zl), ~/[i] (v[i])) _< (const b l /4 )  gi ~ b 3/8+gi /10 

at least if gi >_ 2, i.e. i _> 1. Actually, the same conclusion holds also for 

i = 0, as a consequence of Lemma 6.2(a) and the fact that  G1 varies in a 

Lipschitz fashion with the map. Therefore, the lemma will be proved if 

we show that  dn(zO) >_ b gk/lO. For gk >- (On/3) this follows immediately 
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from (BA) and our definition of 0, see Section 6, equation 6.1. For 

9k < (On~3) we even have the much stronger inequality 

dn(zO) > p3ogk (5) 

We prove (5) as follows: assuming that  it does not hold we show that  

~(r/[k+l],pok+l ) contains a p o i n t  ~n-1)  e Cn; since g~+l <- On, this 

contradicts the choice of k. First, we take # > 1 such that  O# < 9k+1 <_ 
0(#+1) and let ~ n - 1 ) ~ n - 2 ) , . . . ,  ~;/z-I-1)~;#)be the sequence of critical 

approximations in ~y[k] obtained by decreasing the precision of ~n-1)  = 

@. Note that  r E Ci+l for all # < i < n - I because ~ - 1 )  E Cn and 

gk _< 0(# + 1). We claim that  there is 20 E "T [k+l] such that  

114 ~) - 2:011 < (const v@)gk and (6) 
I~ngl~l(+[kl (r +[k+l] (ZO)) ~-- (const V~) gk. 

We postpone the justification of (6) and proceed to complete the proof 

of the lemma. The claim means that  we are in a position to use the 

algorithm of Section 5.3, with A = 1 and p = a = P0, in order to 

construct a # - t h  critical approximation ~ )  E .y[k+l]. Notice indeed 
1 p that  (const v~)gk < 2P0, as a consequence of our definition of 0. It is 

H easy to check that  ~u) C C,+ 1. observe, in particular, that  we get 

II~ " ) -  ~")II _< 4(~o~t ,/S)~ 
_< 2p~ 
< (1/4K)" 

and so equation (4) of section 6 holds. It follows that  .y[k+l] contains 

also the point ~n-1)  E Cn obtained by increasing the precision of ~u).  

Actually, since we are supposing that  (5) does not hold, 

11~; n - l )  -- ~][k+l]ll --~ H ~  n - l )  -- C(n-1)tl + IlC~ ~-1) - z~ll + Ilz~ - ~[k+]]ll 

< 2~ + 2(~on~t b)" + ~ k  + (co~t b)~k+~ (con~t v% 
< pgO k+l , 

where we also use # >> 9k+1 and gk+l <-- 3gk -- 2. This means that  

~ - 1 )  E 7(~?[k+1], p~k+l), contradicting the maximali ty of k. 
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/znmk+l 

~Ua ~ 0 2  

~y [k+l] r~ [k+l] 20 

Figure 3 

Finally, we prove the claim above. The  fact tha t  we have to bound  

bo th  the  distance and the angle requires a more delicate a rgument  t han  

tha t  in the two-dimensional  case. Let ~0 be a horizontal  s traight  segment 

of length 2P0 k+l centered at z~_,~k+ 1 and let ~ = p~k+l  (%). It follows 

from the a rgument  in Section 5.4 tha t  for every ~0 E "~ there exists 

~0 E 7[k+l] such tha t  [1~0 - ~0 II and Jangle I (~(~0), ~[k+l] (~0)) are bounded  

by (const v/b)gk+ 1 . Therefore, in order to prove (6) it is sufficient to show 

tha t  it holds if ~0 E ~,[k+l] is replaced by (some) z0 E ~. Note now that ,  

according to (3), 

m k II~z~ k] - ~-~k(<~") ) [ I  -< l id k] - <~'~)11 -< p~k + (const b)# < po - (r) 

Hence, we can use the procedure in Section 5.4 to construct  the  mk-th 
contract ive lines F/v r%)- passing th rough  ~0 [u).- In view of 5.3, 5.4, our 

a rgument  will be complete  if we show tha t  ~1 = ~k+l-rnk(~/O) in- 

tersects some of the Ftv ink)- . We do this in the  following way. The  

same reasoning as in (4) above shows tha t  ~1 is nearly horizontal: 

[slope I(~/1) < const v/b. Hence, we can take a nearly horizontal  curve 
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~2 D ~1 with radius _> 2p~ k around Zn-r%. Then, by (7), "~2 intersects 

some Ptv"@- in a point ~ and we are left to show that, actually, ~ E ~1. 

We take 50 = m ~  (~) and then 

_< (const b)r% (const V~) + (const b)" + p~gk 

< pgo k+i . 

Using once more the reasoning of (4), we get that "~ is also a nearly 

horizontal curve. Moreover, we find as in (3) that vectors tangent to ~0 

are expanded by D~r%+l, so that the radius of ~ around z~ is larger 

than p0 k+l . Altogether, this implies that ~0 E ~ and so ~ E ~1. [] 

At this point the estimates corresponding to (H1) can be obtained 

in just the same way as in the two-dimensional setting. 

Lemma 7.5. Let ~0 be bound to C~ and n be a return for ~o. 

(a) ([MV, Lemma 9.6, Corollary 10.4]) I f  n is a free r e tu rn  then  

lan(Zl)l < 4KV@llWn_l(Zl)ll 

and 
[9 (zl)l 5a 

~dn(z0)  < < ~-dn(z0) 
--[ICdn_l(Zl)[ I - 

(b) ([MV, Lemma 9.7]) I f  n is a bound return then 

and 

8. Binding periods 
The part of our inductive step dealing with the information on binding 

periods (induction hypothesis (H2)) is performed in Lemma 8.1 below. 

This segment of our construction requires no new relevant ingredient: 

the arguments of [MV, See. 10] are independent of the dimension of 

the ambient manifold and so they apply in the present context to prove 
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this lemma.  As in [MV], we express our  d is tor t ion es t imates  in te rms 

of 
t2 

1 

L e m m a  8 . 1 .  

(a) ( [MV, L e m m a  10.2]) Let qO and CO be bound up to time # <_ k to a 

same element z 0 of Ok, k < n. Then, for all 1 < u < # 

IIc~"(~l)ll < ~xp SK d~(@) 
II .(C;1)II - I 

and 

l ang le I(wu (ql), w.  (~1)) -~ 2b l /40 .  �9 

(b) ( [MV, Coro l l a ry  10.3]) Let n be a return for zo E Cn, ~0 be the 

binding point of z~ and p be the length of the corresponding binding 

period. For every 1 _< u < min{p, 5 ]og(1/dn(zo))} 

1 I I~§ 
- -  < _<T1 
~-] -[G,~(zl)l[l~.(~l)ll 

7-1 = TI(K~a, 3) = 2 e •  ~ eJ(~-Z)). Moreover, where the 

same holds for every point {o which remains bound to zo up to time 

n + u .  

(c) ( [MV, L e m m a  10.5]) Let qO and @ be bound up to time # <_ k to a 

same element zo of C~, k <_ n. Then, for all 1 < u < # 

IIw"(r/1)ll < exp 8 K e  2a" d ~ 0 )  and 
[ I w . ( ~ : l ) l l  - 1 

I nglel(w.( l), < 4e2 "b 1/4 d~(G) 
(d) ( [MV, L e m m a  10.6]) Let 0 < G < 25 and [O, cr] ~ s ~-+ r/o(s ) = 

(xo 4- s , Y ( x o  • s)) be a b - f ia t  curve with @ = r/o(O ) E dk, k <_ n. 

Let p < k - 1 be such that 

IIq,(s) - ~,11 <- he-Z" for every 0 < s < cr and i < ,  < #. 

(i) Then IIw,(~])llc ~2 _< e - z "  for all 0 < u < p - 1. 
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(ii) If, in addition, Ilwu(~l)llcr 2 < h2e - 2 ~  then 

l ib,+l(s) - ~,+111 ~ he-2/3(#+1) 

for  all 0 < s < ~. 

(e) ([MV, Corol la ry  10.7]) Let n be a return for  z 0 E Cn and let p be 

the length of the corresponding binding period. Then 

p <_ 2/clog(1/dn(~O)) < Scan. 

Moreover, for  any point ~o which remains bound to zo up to time 

n + p  

IlaJn+p(~l)lidn(~O) >_ m2eCl(p+l)/3llwn(~l)l I 

where ~-2 = ~-2(K, a,/3) = h/(2~-1). 

Recall t ha t  we have defined h = ~ exp ( - 5 0 K  ~ F  e -aj)  in Section 

6. We also note tha t  (e) gives p < 5 log(1/d~(~0)) and so the  conclusion 

of (b) really holds for every 1 < u < p. 

9. Parameter dependence.  Exclusions 
Now we develop the main  tools (part i t ions and uniformity of a - d e r i -  

vatives) for proving tha t  a set of parameters  wi th  positive Lebesgue 

measure remains after all the  exclusions de te rmined  by condit ions (BA) 

and (FA). This  is also done in an induct ive way and the  initial step 

involves the  points  z0 t~)' E GO and wt0 ~)' E G1 of Sections 5.1 and 5.2. 

? Lemma9.1. Given 1 <_ i <_ N - l ,  z and w are 

a ~ ~ Moreover, ll~ ~/(a/ll _< oonst v~ and IIw~ ~/(a/ll -< oonst v~ for all 
a E f ~ .  

Proof .  Let the  curve Go(a)N {(x, Y): [x[ _< 1/2} be parametr ized  by x ~-+ 

zo(a, x) = (x, Y(a ,  x)). Note tha t  IlOxYll < const v/b, as a consequence 

of (QL) and the  Lipschitz dependence  of invariant manifolds on the  

map.  Let also t (a ,x)  = D~a(zo(a,x))  . (1 ,0xY(a ,x) ) .  Then  z~i)(a) = 

(x(a), Y(a ,  x(a))) where x(a) is defined implicit ly by 

F(a , x )  = t ( a , x ) ,  f(i)(a, z l (a , z ) )  = O, z l (a , x )  = ~a(ZO(a,x)). 
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Recall from Sections 5.1 and 5.2 tha t  ]x(a)l < const v/b. It follows, using 

(QL) once more, 

IlOat(a, x(a))ll <- eonst v~  and II0xt(a, x(a)) - ( -2a ,  0 "~-1)11 -< const v/b. 

Hence, by L e m m a  4.5 and recalling also tha t  f(i) is nearly horizontal,  

]OaF(a,x(a)) I <_ const v/b and IOxF(a,x(a))l ~ 2a > 1. 

This proves the  l emma for z~ i) and the  same argument  applies to w~ i). 
[] 

(0 (i) ~ R m, 1 < i < N,  defined by We consider the  curves z 0 ,w 0 : --+ 

this Iemma. Up to this point  we left the  compact  interval ~t C (1, 2) 

essentially arbi t rary (except for being close to a = 2) but  now we fix it 

in such a way tha t  the  first re turn  N is an escape situation for these 

critical curves: (see [MV, Sec. 3]) 

length(z~i)(~)) > v/~ and length(w~i)(~)) _> V~. 

For n < N our set of good paramete r  values is, simply, Sn = f~. 

Let us describe the  paramete r  exclusion procedure.  At stage n > N 

we assume tha t  for each k _< n - 1 a subset Sk of ft has been defined. 

We assume, moreover,  tha t  for each a0 E Sk and ~k-1)  E Ck(ao) there 

rk+l 1] and interval w exist an i terate u E t 2 , k +  an C f t w i t h K  -3"/2_< 

length(w) <_ e -2~/3 ,  such tha t  

�9 admits  a smooth  cont inuat ion to w (as a critical approxima- 

tion) satisfying I I~- l ) (a ) l ]  _< E~ b~/15 + E~  bJ/3 -< bl/20 for all 

a E w (here g = generat ion of ~k-1)  and ~ denotes derivative wi th  

respect to the pa ramete r  a); 

�9 ~;k-1)(a) satisfies all the condit ions of Section 6 ((BA), (FA), expan- 

siveness, binding and folding estimates,  etc) for all a E w and all 

i terates _< u - 1; 

�9 t ime u is an escape s i tuat ion for ~k -1 ) :w  --+ R "~. 

We also s tate  the  remaining condit ions in our definition of criti- 

cal sets, recall Remark  6.2. Let a0 C Sk and r E Ck(ao), z~ k) E 
C}r (a0), be as in (fl), Section 6. Let w be the  paramete r  interval as- 

sociated to r as above. It  is par t  of our definition of Ck+l tha t  
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the algorithm defining z~k)r from (~k) remains valid for all a E w and, 

moreover, equation (4) of section 6 holds on the whole w: 

Ilz~)(a)-~)(a)ll<_bg/~~ ~ forevery a ~ w .  (1) 

Remark 9.1. Naturally, we must take these additional assumptions in 

consideration in the proof of Lemma 7.4. More precisely, we must check 

that ~) satisfies the conditions above, in order to be able to conclude 
1! that it belongs to Cp+ I. It is crucial here that, while the parameter 

range to be dealt with is smaller than const P, some const < i, the 

construction of P) 0gly involves iterates up to gk+l ~ 0#. We ex- 

plain this in more detail. Let ~0 be the horizontal straight line seg- 

ment of radius po k+l around Yo = Zn--r%+a(ao). Note that if w is 

the parameter interval associated to ~) then length(w) _< e -(~+I)/6 _< 

e(-1/6~ I . It follows from an easy calculation that for any a E w 

the point Yo is 9~a - (/~5/2k5)-expanding up to time ink+l, the tan- 

gent vectors of ~0 are (i/2)-expanded by the derivative of 99a mk+1 and, 
gk moreover, we have [lqo~nk+1-rnk(yo) -- Zn_rnk(ao)ll ~ PO " Now we prove 

gk 
that llqDamk(~t~)(a))- 99a?k(~t~)(a0))ll ~ P0 for every a E w. Let 

S ~ s ~-~ ~(a,s) = (s,H(a,s)) ~ Gl(a) be a smooth parametrization, 

-~k (~(~.)(a0), p~)) with ~(a0, so) = P a o k ( ~ ) ( a 0 ) )  and ~(a0, S) = ~a 0 
Note that  II~(a, s) - ~(a0, s)ll, I]Os~(a, s) - Os~(ao, s)ll <_ const length(w). 

It follows, in the same way as before, that  for every (a, s) E w • 
m k S the tangent  vector O~4(a, s) is (1 /2) -expanded  by Dpa and, also, 

m k IID~mkOs~(a, s) - D~ao O~(ao, s)[ I << 1. Since 7(~U)(a0) , p~k) is b-flat ,  
m k we conclude that  for every a E w the curve ~ (~(a, S)) is close to being 

rn  k 
straight and horizontal: I slope I ( D ~  Os~(a, s)) <_ 1/10 for every s E S. 

rn  k m k 
Thus, II%o~ (~(a,s)) - ~a (~(a, so))ll >_ lls - sol. On the other hand, 

gk 
II4~)(~)- 4~')(a0)II _< b~/2~ ~e'gth(w) << ~0 

and so it must be 99amk(~) (a)) = ~(a, 80(a)) for some Iso(a)--sOl ~ JO k. 

Altogether, this assures that the algorithm defining ~) from ~t~) re- 

mains valid on the whole w and gives II~ ")(~)-4~")(a)ll _< (~o~st V~)~k _< 
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bgk+ 1/10 for every a E co. 

Let now a0 E S~_I and z~ n- l )  E Cn(aO). Take ~n-2)  E Cn-l(a0) 

to be related to z 0 in the sense of (c~), (/3), Section 6, and let u E 

[~, n] and co C ft be associated to {~-2) .  The next lemma recovers 
~ -1 )  for z the bound on the norm of a-der iva t ives  contained in the 

inductive information above. 

(n- l)  
Lemma 9.2. Let 9 = generation of z o . Then 

g n 

H~0(a)]l _< ~ bi/15 + ~ ~/3 _< bl/20 for all a E co. 
1 1 

( n - l )  Proof.  By definition, ~n-1)(a)  and z 0 (a) are defined and satisfy 

I I ~ n - 1 ) ( a ) -  ~n-2)(a)l  I _< (const b) n-2 <_ b n/2 and 
(2) 

(a )  - _< bg/lO 

for all a E co. Let S ~ s ~ ~(a,s) = (s ,H(a,s))  E Gl(a) be a 

smooth parametrization, with ~(a0, S) = ~lo9(7(zo(ao), p~)~)). We also 

let x ~ (x ,Y (a ,x ) )  parametrize (z~-l)(a),p~) ~) and write ~(a,s) = 

~ga-l(~(a, s)) = (x(a, s ) ,Y(a ,x (a ,  s))). The same argument  as in the 

remark above shows that  D~p~- l o ~  ( a, s) = O~ ( a, s) satisfies 

IIDJa-lO {(a,s)ll >  llO  (a,s)ll > 1 
- -  - -  2 

and 

I slope I(D~ga-lOs~(a, s)) _< 1/10. 

for every (a,s) E co x S. As a consequence, IO, x(a,s)l > 1/4. 0 n  

the other hand, clearly, IlD(a,s)(ll, IlD~a,~)(ll, IlD~a,s)(ll _< eonst g and, 

in view of the previous estimate, this implies IIDia,x)Y[I _< const g for 

i = 1, 2, 3. Recall that  z~n-1)(a) = (xo(a), Y(a,  xo(a))) is determined by 

the equation 

O~pa(XO, Y(a, x0))(1, OxY(a, xO))" f(n-1)(a,  ~a(x0, Y(a, x0))) = 0. 

Then, using also Lemmas 4.5 and 4.7, an implicit function argument  
yields x0(a) _< const g and so II~n-1)(a)ll _< const 9. In the same way 
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we prove that ii~n_2)(a)ll,../ H(~n-1)(a)II~ _< const g. In particular,  for 

every a E w, ll~0[n-l)(a)" - ~0tn-2) (a) _< const g. Since we also have 

length(w) >_ K -3n/4, we are in a position to use Hadamard's lemma 

(see [BC2, L e m m a  8.7]), to conclude tha t  

II~0(n-1)(a)- ~n-2)(a) l  } < (const bl/2) n < b n/3. (3) 

Now we distinguish two cases. Ct then z; "-l)(a)  = 
and so the  l emma is a consequence of (3) and the  induct ion hypotheses.  

(n-l) ,, ~n-1)(a) and If z 0 E C n then  we also apply Hadamard ' s  l emma to z 

c~n-1)(a). From I I ~ n - 1 ) ( a ) -  ~n-1)(a) l  I < const g and the  second par t  

of (2) we get 

112~-1)(a) -  ~ - l ) ( a ) l  I < (const bl/lO) g <_ b g/15. (4) 

Observe tha t  in this case g > generat ion of ~ - 2 ) .  Hence, the l emma 

follows from (3), (4) and the  induct ion hypotheses.  [] 
(n-l) R.~ 

From now on we take z0 = z 0 :co --~ to be as above. In order 

to describe and es t imate  the  exclusions of pa ramete r  values necessary 

for (BA) and (FA) to hold for z0, we int roduce part i t ions 7)j(zo) and 

subsets Sj(zo) of co, u - 1  _< j _< n, as follows. For j = u - l w e  set 

T)j(zo) = {w} and Sj(ZO) ---- CO. Let u _< j _< n and c~ E ~ ) j _ l ( Z 0 ) ,  with 

co C Sj_l(ZO). We say tha t  j is a return situation for z0 Ic~ if it is a 

re turn  for some zo(a), a E ~. We call a re turn  s i tuat ion free if it does 

not  belong to any binding period of zo(a), a E c~. A free re turn  s i tuat ion 

is called essential if A(~) = { l l z j ( a ) -  z011: a E ~} contains some interval 

e - 1  
Ir,i = e - r  + 7 - [ i  -- 1, i), 1 < i < r 2, r > I log (5[. 

Here ~0 = ~0(a0) is the  binding point  of zo(ao), any fixed a0 E c~. By 

definition, 

(a) if j is an essential re turn  s i tuat ion then  the  elements of Pj(zo) con- 

ta ined in c~ are the  connected components  of the  sets COr, i and & 

defined by (see also remark  below) 

a E CO~,i ": :" A(a) = I l z j ( a )  - z01] E Ir,i and & = ~ \ [-J~,i w~,i 
(b) otherwise, & E Pj(zo).  
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Remark 9.2. This  definition requires a few comments .  Observe first 

that ,  due to (1), zo(a) is bound  to @(a) up to t ime n and so all the 

notions (returns, binding periods) involved in the  definition are indeed 

defined (by induction).  We also make the following convention: for an 

interval a/  in a par t i t ion 7)l(z~), all the returns,  binding periods and 

folding periods dur ing [1, 1] are independent  of a E a/. Note tha t  this is 

only a slight ad jus tment  in the definitions, not affecting the est imates 

in Section 6. Indeed, by construct ion,  logdi(zo(a)), 1 < i < l, is nearly 

constant  on cJ (formally speaking, this last affirmative is also par t  of 

the induction).  Note also tha t  the  par t icular  choice of a0 E c~ above is 

irrelevant, because [ l~0(a)-  ~0(a0)ll-< bl/201ength(~) << e-C~J. Finally, 

for every interval ~ '  E 7-)j(zo) having a re turn  at t ime j, we need A(~ t) 

to contain some Ir,i (and to be contained in at most  three of these 

intervals). This  requires the  following exception in the definition of 

the ~r,i in (a) above: if a connected component  w" of A-l( I r , i )  has 

A(w") ~ I~,i, instead of taking it to be an element of Pj(zo), we join it 

to a nearby A-l(/~,l)  to form the corresponding ws,t. 

We take (Sj(zo) \ Sj_l(zo)) N ~ to be the union of the following 

intervals in 7)j(z0): 

(BA) the  connected components  of all ~r,i C ~ wi th  r > j a  and 

(FA) all the  ~'  E Pj(zo) for which the  total  number  of free i terates in 

[1, J] is < (1 -- oz)j. 

If u < (n + 1)/2 we also exclude from Sn(zo) the  a / E  P,~(zo) which 

have no escape s i tuat ion dur ing (u, n]. This  assures tha t  the  induct ion 

hypotheses  s ta ted  earlier in this section are completely recovered for zo 

at t ime n. 

A main ingredient in the  es t imat ion of the to ta l  measure  of the 

excluded intervals is the fact t ha t  at free re turn  s i tuat ions ~j (a) is nearly 

horizontal  and nearly uniform on c~. This  is the content  of par t  (d) of 

the l emma below, whose proof  is contained in [MV, See. 11]. As in 

there, we denote  wj(a) = wj(a, zl(a)) and a~j(a) = a~j_l(a, zl(a)). 

Lemma 9.3. 

(a) ([MV, L e m m a  11.3], [BC2, L e m m a s  8.1, 8.4]) For every u <_ j <_ n 
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and co E Pj - l ( zo) ,  co c Sj_l(ZO), we have 

* < ]lej(a)ll _<100fo allaeZ. 
1 0 0 -  I]"j-l(a)ll 

If j is a free iterate we also have langlel(~j(a),wj_l(a)) <_ b 1/4. 

(b) ([MV, Corol lary  11.4]) For every , <_ j < n and CO E ~j(zo) , CO C 
Sj_l(ZO) , we have K -3j/2 <_ length(c0) _< e -2cj/3. 

(c) ([MV, L e m m a  11.5]) There is 7-3 = T3(K, o~,/3, 6) > 0 such that if  

j E [u,n] is a free return situation f o r &  c 7)j_l(ZO), & C Sj_l(ZO), 

then for all al, a2 E 

I l W j - l t a l ) l l  
< T3 and ]anglel(wj_l(al), Wj_l(a2)) < 5b 1/4. 

[ I W j - l ( a 2 ) [ I  

(d) ([MV, Corol lary  11.6]) There is 7- 4 = 7-4(K, a,/3, 6) > 0 such that if  

j E [u,n] is a free return situation for & C Pj_l(ZO), c~ C Sj_l(Z0), 

then for all al, a2 E co 

II j(al)ll -< 7-4 and I  gl l( j(al),  j(a2)) _< lob 1/4. 
II j(a2)ll 

At this point the measure of the excluded set can be est imated in pre- 

cisely the same way as in [MV, Sec. 12]. A crucial fact here is tha t  each 

of the excluding rules above eliminates an exponentially small set of pa- 

rameter  values. More precisely, it follows from the same arguments  as in 

[BC2, Sec. 21 or [MV, Sec. 3] tha t  m(Sj(zo)\@_l(ZO) ) <_ Ale -a lJm(w) ,  

with A1 and c~1 depending on K, a,/3, 6 but  not on N or b. Summing 

over all u _< j < n, we find m(Sn(zo) \ w) < A2e-2a2nm(aJ), for some 

A2 and a2 independent  of N and b. On the other hand, by Lemma 6.1, 

the number  of critical points we have to consider at each stage does not 

increase too fast: we set Sn = Sn-1 \ ([-Jzo (Sn(zo) \ co)) and then 

m(S ,~ \S~_ l )<SA2e -2C~2n(K)~  

if b is sufficiently small. Hence, S~ = Nn_>N S~ has positive Lebesgue 

measure 

m(Soo) >_ m(f~) ( 1 -  n>_NE A2e-a2n) > 0, 
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as long as N is also large enough (i.e. ft is close enough to a = 2). 

Finally, the reasoning in [BC2, Sec. 10] extends, in a s traightforward 

way, to the present  set t ing to show tha t  for almost  every a E S ~  the  orbit  

of the critical point  zo(a) of generat ion zero (say) is dense in Wu(pa). 
This completes the proof  of Theorem A. 
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