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Abstract.  We consider generic one-parameter families of diffeomorphisms on a
manifold of arbitrary dimension, unfolding a homoclinic tangency associated to a
sectionally dissipative saddle point (the product of any pair of eigenvalues has norm
less than 1). We prove that such families exhibit strange attractors in a persistent
way: for a positive Lebesgue measure set of parameter values. In the two-dimensional
case this had been obtained in a joint work with L. Mora, based on and extending
the results of Benedicks-Carleson on the quadratic family in the plane.

1. Introduction

It is a well established fact that, notwithstanding a simple and determin-
istic formulation, natural systems very often exhibit complicated and
apparently erratic dynamical behaviour. The mathematical study of
such chaotic behaviour gained a renewed impetus in recent years, stim-
ulated by the discovery of a number of notable dynamical phenomena.
such as the Lorenz-like attractors, the Hénon-like attractors or Feigen-
baum and Coullet-Tresser’s cascades of bifurcations. These discoveries,
obtained mostly in the numerical study of systems modeling natural
phenomena, showed that unstable (nonhyperbolic) dynamics is a much
more common feature than it was thought at a certain stage. On the
other hand, it was Lorenz fundamental contribution to have identified
the sensitive dependence of orbits on their initial conditions, exhibited
by many relevant systems, as a main source of the unpredictability of
their dynamical behaviour. Notions such as this one are central to the
way we now try to build-up a mathematical structure to understand
complicated dynamics.
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14 MARCELO VIANA

In the one-dimensional context, a substantial comprehension of the
mechanisms of chaotic behaviour (namely, existence of absolutely con-
tinuous invariant measures with positive Liapounov exponent) was pro-
vided by the works of Jakobson [Ja], Collet-Eckmann [CE], Rees [Re]
and Benedicks-Carleson [BC1], among others. These works showed that
such behaviour has a remarkable persistence, which must be formulated
in measure-theoretical terms - positive Lebesgue measure in parameter
space - rather than topological ones.

The extension of this study to higher-dimensional systems presents
considerable additional difficulties. In [BC2] Benedicks-Carleson were
able to overcome many of these difficulties and prove that the occur-
rence of strange attractors is, in the same measure-theoretical sense,
a persistent phenomenon in the Hénon (or quadratic) family of diffeo-
morphisms on the plane. A construction of SRB-invariant measures for
these attractors was recently given by Benedicks-Young [BY].

Another application of Benedicks-Carleson’s methods was made in
[MV], where their results were generalized to the setting of homoclinic
bifurcations on surfaces. More precisely, it was shown that the un-
folding of a homoclinic tangency by a generic one-parameter family
of surface diffeomorphisms always includes the presence, for a positive
measure set of parameter values, of strange attractors or repellers of
Hénon type. Homoclinic bifurcations are a main way for the develop-
ment of complicated dynamics and they are observed in most relevant
dynamical systems. Their unfolding is accompanied by a great variety
of complex dynamical phenomena including, among others, cascades of
period—doubling bifurcations [YA], coexistence of infinitely many peri-
odic attractors [Ne], creation of saddle-node cycles and, as stated before,
persistence of Hénon-like attractors or repellers. We refer the reader to
[PT] for a detailed exposition on these and related topics.

It is this result of [MV] that we now extend to the full generality
of homoclinic bifurcations on manifolds of arbitrary dimension. Let us
state this in a precise form. We take f: M — M, u € R, to be a
smooth one-parameter family of diffeomorphisms on an m—dimensional
manifold M, m > 2, exhibiting a homoclinic tangency associated to
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a hyperbolic fixed (or periodic) point p of fy. We assume that fy is
sectionally dissipative at p, meaning that the product of any pair of
eigenvalues of D fy(p) is less than 1 in absolute value. Then,

Theorem A. For generic one-parameter families (f,), as above there is
S C R such that

e SN(—e,e) has positive Lebesgue measure for every & > 0;

o forall p €S, f, erhibits nonhyperbolic strange attractors in a

(const |u])—neighbourhood of the orbit of tangency.

As in [MV], we define an attractor of a transformation f to be a
compact, f—invariant and transitive set A whose basin W*(A) = {z €
M:dist(f™(z),A) — 0 as n — +oo} has nonempty interior. We call the
attractor strange if it contains a dense orbit {f™(z1):n > 0} displaying
exponential growth of the derivative:

|IDf"(z1)]| > e forall n>0 andsome c¢>0.

When proving the theorem we take the point z1 to be critical in the sense
that there exists a direction in the tangent space to M at z; which is
exponentially contracted by both positive and negative iterates of Df,,.
Clearly, the presence of such a point is an obstruction to (uniform)
hyperbolicity of the attractor.

For the proof of the theorem we assume the homoclinic tangency
to be quadratic and to be generically unfolded by the family (fu).. A
few other mild (open and dense) conditions of a somewhat technical
nature are also used in Sections 2-3 and are stated there. By smooth
above we mean that ®: R x M — R x M, ®(u,x) = (4, fu(x)), is a C=
map; however, a much weaker requirement of differentiability should be
sufficient for the conclusion of the theorem. It is also very likely that the
statement will remain true if we demand in the definition of attractor
that W¥(A) be a full neighbourhood of A. We note, in addition, that
our arguments and conclusions are valid even if M is co—dimensional
(a manifold over a Hilbert space).

We point out that the assumption of sectional dissipativeness is in
fact a necessary condition for the dynamics of the f, near the tangency
to contain attractors: otherwise only a nowhere dense set of points
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remain in the neighbourhood of the orbit of tangency for all positive
times. This is also related to the fact that the strange attractors one
encounters in this context of homoclinic bifurcations are always topolog-
ically one-dimensional. Persistent strange attractors displaying higher-
dimensional non-uniform expansion do not seem to have been exhibited
yvet. It is an interesting problem to give examples of such attractors
and to describe mechanisms (bifurcations) through which they can be
created.

Although the global structure of the proof of Theorem A follows
closely the arguments of [BC2| and [MV], some difficulties arise when
extending these arguments to the present higher-dimensional setting.
A main conceptual difference lies in the control of the geometry of the
unstable manifold required for the construction of the critical points.
These are always defined in nearly-straight segments of the unstable
manifold. The two-dimensional argument is based on the simple, and
yet crucial remark that two such segments which are nearby, must also
be nearly parallel, in order to avoid intersecting each other. Clearly, this
can not be expected to hold in dimensions greater that two. Instead,
we derive the necessary geometric information directly from the bind-
ing construction, in Section 7. This also requires that our definition of
critical point be somewhat more restrictive than in [MV], see Section
6. Another point worth attention concerns the topological character-
ization of the attractor, namely the fact that its basin has nonempty
interior. In the two-dimensional situation this follows in a simple way
from the area-dissipativeness (and the Jordan curve theorem). Here we
have to combine this with the existence of invariant strong-contracting
foliations and with some bound on the geometry of iterates of sections
transverse to such foliations, see Section 3. The control of the distribu-
tions of contracting hyperplanes, in Section 4, has been improved with
respect to [MV]; on the other hand, in dimension greater than two these
distributions are, in general, not integrable, see Section 5.

This paper is organized as follows. In Section 2 we establish a renor-
malization procedure which reduces the proof of Theorem A, to proving
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it for a special class of families of (nearly one-dimensional} maps, which
we call quadratic-like families. In Section 3 the attractor is exhibited
and characterized as the closure of the unstable manifold of a hyperbolic
saddle-point. In Sections 4-5 we develop some main tools (contractive
hyperplanes, critical points algorithms) for proving that the attractor
contains a dense orbit exhibiting exponential growth of the derivative.
The global structure of this proof is described in Section 6. It consists
of an induction argument and the content of the induction hypothesis
is stated there. Sections 7-8 are devoted to the inductive step of the
argument: showing that the properties in the induction hypothesis can
be recovered at the next stage, as long as some parameter values are
excluded. In Section 9 it is shown that a positive measure set of values
of the parameter remain after all the exclusions. Several of the facts in
Sections 2-9 can be proved in the same way as in two dimensions and in
this case we just refer the reader to the corresponding results in [MV]
or [BC2]. Apart from that, we present here the complete argument to
prove Theorem A.

This work corresponds to my doctoral thesis. I am grateful to Prof.
J. Palis for his friendship and advise and to my colleagues at IMPA for
many pleasant discussions. I am also grateful to the hospitality of the
Royal Institute of Technology of Stockholm, where part of this work was
done. Finally, I acknowledge partial financial support from CNPq and
Fundacéao Calouste Gulbenkian.

2. Renormalization. Quadratic-like families
First we describe a higher-dimensional version of the renormalization
scheme in [MV, Sec. 2]. Our argument is a natural extension of the
two-dimensional one ([TY], [PT, Ch.3]) and so we only sketch its main
points, leaving the details to the reader. Our definition of quadratic-
(or Hénon-)like family is somewhat more general than in [MV]: here
we only require closeness to the family of quadratic endomorphisms, cf.
(QL) below.

Let (f.)uer be as in the statement of Theorem A. The assumption
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18 MARCELO VIANA

of sectionally dissipativenes implies that D fo(p) has a unique expanding
eigenvalue which we denote by oq; for our purposes it is no restriction
to assume that o( is positive and we do so from now on. Recall also
that we denote ®: R x M — R x M, ®(u, ) = (i, fu(x)). In this section
we assume that the homoclinic tangency is quadratic and that it is
generically unfolded by the family (f,),. For simplicity we assume also
that, for p small, f, is C*—linearizable in a neighbourhood of the point
p. Here k > 3 is a fixed integer and we also consider a constant A > 3.

Theorem 2.1. There are | > 1 and a sequence ©,:[1/A, A] x [-A, A"
— R x M of C* diffeomorphisms such that as n — -+oo the sequence
on =9, Logntio ©,, converges to the map

¢(aaxay17"' ’ym—l) = (0’71 _0'332707'-- 70)

in the C* topology.

We describe the construction of ©,,. Let (£, H) = (£,71,--. y,Mm_1)
be C* p—dependent coordinates on a neighbourhood U of p linearizing
fur Tul€ H) = (0,6, A H), with o, € R, A, € LR™ 1) and |0, < 1 <
Ay = ||[A4ll- The assumption of sectional dissipativeness means that, up
to a convenient choice of the metric, we have 0 < A, 0, < 1 for u close
to zero. Clearly, we may take {(&, H): |[(§, H)|| < 2} to be contained in
U and ¢ = (1,0 1) = (1,0,... ,0) to be a point in the orbit of tangency.
We fix { > 1 such that f}(g) = (0, Hp) € U and then we write

FUEH) =(a¢ -2+ BE—Du+yd+g - H+op+r,
Hy+F{-1)+G-H+Vu+R)

where r = r(u, £, H) and R = R(u, &, H) are such that
7, R, Dr,DR, O¢cr, Oy and 0y, R vanish at (0,1, Om_l). (1)

The hypotheses of nondegeneracy and generic unfolding of the tangency
amount to having o # 0 and v # 0 and, up to reparametrizing (f.).,
we may suppose v = 1. For the definition of ©,, we first consider the
n—dependent reparametrization

V=Up(u) = aznu + gagnAZHO — oy (2)

Bol. Soc. Bras. Mat., Vol. 24, N. 1, 1993
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It is easy to check that, given any constant A; (we will use 41 >
A), for n sufficiently large v, maps a small interval I,, close to u = 0
diffeomorphically onto [—Aj, A1]. We let pn, = (vp|ln) ™'

introduce (n, u)—dependent coordinates (%,Y) given by

(&, H)= én,u(i,}}) =(1+0,"%, A Ho+ p;”f’), where p,, = ou\/0,/ AL

(3)
Now we define ©,:[-A1, Aj] x [-A41,41]™ — R x M by 6,(v,%,Y) =
(u, &, H) with g = pn(v) and (&, H) = 0,,,(%,Y). A straightforward
calculation gives for ¢, = 6 1o @™t 0 8,

Then we

Balv,3,Y) = (v,0% + Balopp) + (R +v + 902" p"Y + a2,
ppo"ARFE + pRARGAT Hy + ARGY + pRATV 1+ pi AT R)

(4)
where r and R are calculated at (i, &, H) = ©,(v, 7, Y). Note that o=
(1+0,"v —gopALHo) — 1 and ||pho, ™ALl < (w/)\uay)” = aﬁ”p;” — 0
as n — oo. It is also clear that ||pALGAL Hy|, [|[ALGY || and ||} ALV ]
converge to zero as n — oo. Finally, the same holds for )aﬁ”r} and
|ppALRl, as a consequence of (1) and the fact that, recall (2), (3),
ul, |€ — 1] < const 0, < const o™ and ||[H|| < const A}, < const Af
(throughout this section const denotes a positive constant depending
only on the family (f,).). This proves that

Pn(1,7,Y) = o0, 8,Y) = (v,aF® + BT + v +v,0™ 7))

as n — oo (uniformly on [—Aj, A1) x [—A1, A1]™). Moreover, the same
kind of estimates apply to all derivatives up to order k, proving that
this convergence holds in the C* topology. On the other hand, ¢ is
conjugated to ¢ by

Thus, in order to complete our construction it is now sufficient to take
©,, = 6,, o h (clearly, the domain of definition of ©,, contains [1/4, A] x
[—A, A]™, as long as A is large enough).

Remark 2.1. Let us remark that the choice of the coefficient p, =
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0uy/0u/ A, in (3) is somewhat arbitrary: the argument works, essentially
without change, for any p, strictly in between aﬁ and o,,/\,. Moreover,
taking p, = 03 also leads to a convergent sequence @y, although in this
case the limit map is (v, %,Y) — (v, 0%+ Br+v+v+g- Y, 0’”‘1). Let
us also describe the results obtained by taking p, = 0,/A,, which are of
interest for Section 3. Generically, D fo(p) has either (I) a unique, real,
least contracting eigenvalue, or (II) a pair of complex conjugate least
contracting eigenvalues. In the first case we may write
A, = ()‘“ 0 ) with A, € R, &, € LR™ %)
0 A,

and [|A,]| < Ay = |\u|. Then the sequence @, converges to

& (v, 2, 51,02, - Um—1) — (v, Q8% + BF + 7 + v, 1 +v1,0m7),

where F' = (f1,..., fm-1) and V = (v1,... ,vy_1). In case (II) we write
AucosT  AysinT 0

Ay = (—)\g sinT  AycosT 0 ) with 7 =7, € [0,27), A, € L’(Rm_?’)
0 0 A,

and [|A,ll < A, = [|All. The same kind of calculations as before show

that in this case the C*—norm of (%, — R? o ) converges to zero as

n — 00, where R, is the rotation of angle 7 in the (g1%2)—plane and

QW Z, 71,52, U3: - -+ » Um-1) = (v, 0E*+BE+y+V, fiZ+v1, fod+vg, 0M73).

Having in mind introducing a convenient notation to be used in the

forthcoming sections, we restate the convergence of ¢, in the following

way: there is K > 0 and for each b > 0 there exists ng > 1 such that
every ¢ = (,, 1. > ng, Satisfies

e = dllck(amy) < EV. QL)

Let ¢, = n,q be defined by ¢p(a,z,Y) = (a, Yna(z,Y)) and let Dy q
denote its derivative. As an immediate consequence of (QL), the maps
@, are (strongly) sectionally dissipative. We state this explicitly. Let
|det|(u, v) = ||(u-uw)v—u(u-v)|/||u|| denote the area of the parallelogram
generated by vectors u,v € R™. Then, for n > ng, a € [1/A, A] and
u,v € R™, .

|detl{Dppu, Dpav) < Kbldet|(u, v). (SD)
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The previous arguments reduce the proof of Theorem A to proving it
for quadratic-like families, i.e. for families of diffeomorphisms ¢ = (©g)q
satisfying (QL) (and (SD)) for some sufficiently small b > 0. This is
done in Sections 4-9. Before that, in Section 3, we give a topological
characterization of the attractor, which requires revisiting the present
construction. The value of K is fixed from now on; we take K > 10
so that, in particular, ¢l < K. Moreover, we fix 1/2 < ¢ < ¢; <
co < log?2: ¢ is to be a lower bound for the rate of exponential growth
of the derivative. Our construction also involves small constants 1 >>
B> a > 6. (A minor simplification with respect to [MV] is that we
avoid the use of an extra constant &: here we always take e=«). Besides,
we fix an interval Q € (1,2) in parameter space and a large integer N
related to it (N is the first return time for the ¢,, a € Q); @ is taken
close enough to a = 2 so that N > 1/§. Finally, b is always assumed to
be small with respect to any of these constants.

3. The attractor

We keep the notations of the previous section. Let Q C (1,2) be a
compact interval and R = {(z,Y): —1 —¢1 <z < 1+¢y and |}Y| < 1}.
Here we suppose €; > 0 small with respect to 2 — ag, ag = sup(}, so
that ¢o(R) C (—1 — 1,14 &1) x {0™ 1} for all a € Q. It follows that
¢Ona(R) C interior(R) for all a € §, as long as n is sufficiently large. We
also note that ¢, , has a hyperbolic fixed point P, , in the interior of R,
which is just the continuation of the fixed point ((v/1+ da—1)/2a,0™ 1)
of ¢o. We let A, , = closure(W"(P,,)) and denote W*(A,4) = {z €
R™: dist(goﬁl,a(z), Apng) — 0 as j — 4oo}. The main result in this section
states that, as long as n is large enough, W*(A,, ) contains a nontrivial
open set.

Theorem 3.1. W*(A,, 4) has nonempty interior for all a € Q.

The proof of this theorem requires two more generic conditions on
the family (f,),, which we state below; the remaining sections are in-
dependent of these conditions. Let 1 < w < m — 1 be such that the
contractive eigenvalues of D fy(p) satisfy [A1]| = -+ = | Aw| > [Apt1] >
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< > |Apm_1]- We identify the neighbourhood U of p with an open
subset of R™ via the linearizing coordinates (£, H) and we consider
the splitting TyR™ = E* ® E¥ @& E*, E%(z) = R x {01}, E¥(2)
{0} x RY x {0m=1-w}, E5%(z) = {01T%} x R™ 1% induced by this iden-
tification. Clearly, we may take H = (n1,... ,mn—1) in such a way that
the expression of D f,(p) with respect to this splitting is

o, 0 0
Df.(p) = ( 0 Ay 0 ) with Ay € L(EY), A}, € L(E®)
0 0 A

and, up to a convenient choice of the metric on R™,
-1y-1
AL < A~ < (Al

For the proof of the next result we need the following open and dense
condition (where [ > 1 and g = (1,0™1) are as in the previous section):

Dfb(q) - (E* @ E¥) is transversal to E*° (1)
or, equivalently,
Dfo_l(f(l)(q)) - E*° is transversal to E* @ EY (2)
In what follows we denote Q = [—A, A]™

Proposition 3.2. There is 0 < 7 < 1 and for each a € (1,2) andn > 1
sufficiently large there exists a continuous splitting ToR™ = Exe @ B,
satisfying

(a) dim Ep%(2) = 1+ w and dim EJ% (2) =m — 1 —w for z € Q;

(b) Dpn,a(2)- B o(2) = B o(¢n,a(2)), ¥ = uw or ss, for z € QN L(Q);
(c) Donalz ’ESS I < 77 for 2 € Q; '
(d) (| D¢na(2) B [(Denal)| B (2) 7 | < 7 for 2 € QNipr(Q)-

Moreover, E;°, admits an integral folzatz'on Foia

Proof. We describe the construction of E;% . This follows from a stan-
dard fixed-point argument and we start with a preliminary remark. By
(2) we may write for p small Df/;l(fi(q)) - B%% = graph(i,,, VVM), with
(B, W,,) € L(E*, E*® EY). We denote by E, the parallel subbundle of
ToR™ given by E,,(z) = graph(0, W,) and fix £2 > 0 small. Suppose that
2 € QNppe(Q) and F is an (m — 1 — w)—subspace of T,R™ such that
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L(F, Eu) < &9, meaning that F = graph(u, W) with ||(u, W —W,,)| < 3.
We claim that A(D(p,;}l - F Eu) is also bounded by 5. In order to prove
this we note first that
Fy=Df, "Dy, - F
_ a Pu 3\1 wy—n s$\n (3)
= graph(__ ) U (A;,L> ’ (Au) W (Ap) )
a\o;

and hence the angle between Fy and E*® can be made arbitrarily small

by taking n sufficiently large. Therefore,
Fy = Df." - Fy = graph(ii,, W,,) with ||(f, — @, W, — W,)|| < ea.
and so the claim follows from
Dyl F = Db}, F3 = graph(~= <%ﬁ> B We) @)
"

We also note that vectors in £ are strongly expanded by Dgo;}l
||D<p;}l -v|| > const [|A}||7"|[v]| for every v € F. (5)
Observe now that

QN @) = {(@,Y):gn-(Y) < < gn+(Y)}

with g, 1 uniformly close to +/(1 + A)/a if n is large. Let an auxiliary
(m — 1 — w)— subbundle E,, on Q\gng(Q) be constructed as follows.
For z € 8 = {(2,Y):|z| = A} we set simply F,(2) = F,(2). If z €
Or = {(@,Y)z = g,s(Y)} then p,,(2) € 6% and we take E,(z) =
Dyl Eu(¢na(2)). By the claim above

L(Eu(2), By(2)) < €2 (6)

for every z € 0% U 0+. Then, clearly, Eu may be extended to a smooth
subbundle on Q\(p;}l(Q) in such a way that property (6) is preserved.
From now on E’M denotes this extension. Now we consider the space X
of all continuous (m — 1 — w)—dimensional subbundles E of TgR™ such
that

o L(Eu(2), Bu(2)) < &g for every z € Q;

o E(z) = Eu(2) for 2 € Q\¢ 0 (Q);
and define the graph-transform operator G: X — X by
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¢ (GE)(2) = Doyl Elpnal(2) if 2 € QN (Q);

o (GE)(z) = E,(z), otherwise.
The argument in the remark above shows that G is indeed well-defined,
ie. G(X) C X. Moreover, the same calculations (recall (3), (4)) also
imply that G is a contraction with respect to the sup-norm on A'. We
take E.° to be its fixed point. Properties (a) and (b) in the statement
follow immediately from our construction and property (c) is also an

easy consequence:
[1Dén.a(2)| Enla(2)|| < const [[AL]",

recall (5). On the other hand, E}" can be constructed by a dual proce-
dure (just iterating forward, instead of backwards). We get,

(Do EX2(2)) | < const [|(A2)7H]",

and property (d) follows immediately. In order to show that E}°, is
integrable, we note first that Eu may be chosen to be integrable, let .7:#
be its integral foliation. Then we consider the space X' of all foliations
F of @ whose tangent bundle TF belongs to X and define the graph
transform G: X - X by
o (GF)(z) = connected component of Dgo;}l(}" (¢n,a(2))) containing z,
if 2 € QN wpa(Q);
o (GF)(z) = Fu(z), otherwise.
This is a contraction with respect to the sup-distance between tan-
gent bundles and, clearly, the fixed point F?, of G must satisfy TF, =
Er¥,. O

Remark 3.1. For future use we note that, by construction (recall (3),

(4)),
N AS n n
Z(Ersja(z)aEu) < const <<%) +(||(Al1f)—1”“AlsL”>n+ (@) )
Pu

o

converges uniformly to zero as n — oco. Analogously, if n is large then
Ep(2) is uniformly close to E* = R? x {om-11

Remark 3.2. A standard argument from hyperbolicity theory (see [HP})

Bol. Soc. Bras. Mat., Vol. 24, N. 1, 1993



STRANGE ATTRACTORS IN HIGHER DIMENSIONS 25

shows that E. and E;°, are even Holder-continuous but we will not

need this fact here.

Clearly, W*(Ap) is a union of leaves of F%,. Therefore, the the-
orem will be proved if we can find a transversal section of 7%, which
is contained in W#(A, 4). For the sake of simplicity, we introduce here
a last generic assumption on our family of diffeomorphisms: either (I)
w =1 and Ay is real or (II) w = 2 and A, Ay are complex conjugate.

W4 (Py.a)

S

—_— W (Py.a)

3

Figure 1
We treat case (I) in the following way. First, we construct a compact
surface with boundary S = S, , C R, transversal to the foliation F3%,
at every point and such that 05n,, C W*(FP, o) U W?(P,,). Then we
show that for some ¢ > 0 and every 7 >0, » > 0 and w € @%’G(S) one

has ' '
area(BY () > er? if BY (w)na(g] .(9)) = @, )

where Bﬁj )(w) denotes the closed ball in %’G(S), with respect to the
riemannian metric induced by the euclidean metric of R. Finally, we
observe that these properties imply S C W?9(A, ).
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In order to describe the construction of S and check its transversality
to Fp%, it is convenient to introduce auxiliary coordinates (Z, Y), where
I is as before and Y = (1, ... , Um—1) = (0,,/ )" (H — A} Hp). Note that
this corresponds to taking p, = (0,/\,) in 2.3 and then, recall Remark
2.1, the expression of ®* 1 in coordinates (v,%,Y) converges to

6: (8,0, 1) o (v, 087 + BF +y v, i + 0, 077F)

as n — oo. It is easy to check that assumption (1) above implies fi # 0.
Hence, the unstable manifolds of the periodic points of ¢ lie in a nonde-
generate parabola in the (%, 71)—plane R? x {0™~11; on the other hand,
local stable manifolds are just hyperplanes {Z} x R™1. Recalling also
that local invariant manifolds depend continuously on the map, it is now
easy to see that, cf. figure, for n sufficiently large there exist S a compact
domain in the (Z,71)—plane and ¢: S > (%,71) — (72, ... , Jm_1) close to
the null function, such that S = graph(g) has 05 C WH¥(P, o) UW?(Ppq).
Observe that S is transversal to the leaves of 7%, since it is close to
the (Z,71)—plane whereas ES5, = TF55, is close to ), = graph(0, W)
in (Z,Y) coordinates; this last affirmative follows directly from the fact
that Remark 3.1 remains valid for p, = (o,/A,). Now we return to
coordinates (z,Y) and note that, due to the domination property in
Proposition 3.2(d), positive iterates of S are uniformly transversal to
Foiut actually, as j — +oo

|angle|(T. ¢}, ,(S), Exe(z)) — 0, uniformly on z € ¢, ,(S).

The uniform lower bound (7) for the area of balls follows from this, to-
gether with Remark 3.1. Observe then that, by sectional dissipativeness
(SD), area(¢?, ,(S)) — 0 and so, in view of (7),

sup{dist(z, 0(¢), ,(9))): 2 € ¢}, ,(S)} — 0 as j — +oo.
Since 8(p, 4(S)) C W¥(Pra) UW*(Pnq) and
diam(D(}, 4(5)) N W*(Pna)) — 0,

it follows that, for every w € S, dist((p%’a(w),/\n,a) — 0 as j — +oc0.
This means that S C W#(A, 4), as we wanted to prove.
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Figure 2

A variation of the same idea applies in case (II). We take (%,Y) as
above and then, according to Remark 2.1, the expression @, of " in
the coordinate system (v, z, V) satisfies limp_,o0 ||Pr — BP0 @] = 0, where

R0 ¢: (1, 2,91, -+ »Um-1) — (1/,04:%2 + 08z +v+v,

(f1Z + v1) cosnT — (fo& + v9) sinnT,

(f1Z + v1)sinnT + (foZ + v9) cosnT, Om_?’).
Note also that in the present situation (1) implies (f1, f2) # (0,0).
Therefore, for large n the local unstable manifold of P, , is close to a non-
degenerate (n—dependent) parabola contained in the (&, g1, g2)—space,
whereas its local stable manifold is close to a hyperplane {Z} x R™L,
It follows that there is a compact domain S in the (%,71,%72)—space
and a smooth function g: S 3 (&,71,72) — (3, .- , Jm_1) close to zero,
such that (cf. figure) the boundary of S = graph(g) is the union of
three closed surfaces Sp, S, So satisfying So C W¥(F,q) and 95; C
WY(Ppa) UW?*(Pyq) for i = 1,2. The same argument as in the previous
case shows that S is transversal to 7%, and so we are left to prove that
S C W#(Apq). For this it is sufficient to show that each S; is contained
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in W*(A,,) and this is obvious if ¢ = 0. As for S1 and So, we may use
precisely the same reasoning as we did for S in case (I), once we have
established the analog of (7) for these two surfaces. In order to do this,
we observe first that
(a) the angle between the tangent space Tchfw(Si), z € ga%,a(Si), j>0,
and EZS (2) is uniformly small (even goes uniformly to zero, as j —
+00).
As in case (I), this is an immediate consequence of the domination prop-
erty. Note, however, that in the present case E;’; has dimension 3 and
so (7) does not follow from this fact alone. We claim, moreover, that
(b) the angle between T}, ,(S:), 2z € ), ,(Si), j > 0, and the direction
of the x—axis is uniformly small.
Combined with (a), this gives a uniform (cylindric-like) bound on the
geometry of (p%’a(Si), J >0, implying (7). The claim can be justified as
follows. First, going back to the construction above, one notes that .S;
may be taken so that in (%,Y) coordinates
(bg) the angle between T.,5;, z € S;, and the direction of the x—axis is
uniformly small.
Then the same holds in (z,Y) coordinates, since changing from (z,Y)
to (z,Y) coordinates does not increase (even diminishes) angles with
respect to the z—direction. Finally, one checks from the form of

Do 20 + Buoy, + o Ogr (—a/a)(v/Auou)™(g + Onr)
Prn,a= (—a/a)(/ou /A ) AL (F + O:R) A%(G + OuR)

that for two-dimensional subspaces whose angle to E** is small, the
property in (bg) is preserved by positive iteration. In view of (a) this
completes the proof of the claim and so also of Theorem 3.1.

4. Contractive hyperplanes

Let, from now on, ¢ = (p,), be a quadratic-like family, i.e. a family
of diffeomorphisms satisfying properties (QL) and (SD) of Section 2,
for a sufficiently small b > 0. Here we construct for such a family the
higher-dimensional analog of the contractive directions in [BC2] and
[MV]. For a € (1,2), 21 € R and v > 0 we denote MY = M¥(a,z) =
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DY (z1) and w, = w,(a,z1) = M¥(1,0™1). Let X be some fixed positive
number, vb < A < 2. The point z1 is A—expanding up to time n if
|w,|| > N forall 1 < v < n. For such a 2z we let f0) = f()(a, )
be a maximally expanding norm—1 vector: ||MYf™)| > ||MYu) for
all w € R™ with |ju|| = 1, in particular |[M¥f®)| > A. The v—th
contractive hyperplane at z1 is EW) = E(”)(a, z1) = {f”(a,z1)}*. Note
that MYE®) = {M" f()}+ and, by sectional dissipativeness, ||M?e|| <
(Kb/\)¥ for every norm—1 vector e € EW).

Lemma 4.1. There is K1 = Kl(K )\) uch that for every 1 < p<v<n

(8) [angle] (B, E®)) = |angle|(£), £*)) < (K1b)¥;

(b) |MFe|| < (K1b)* for all e € E(") with ||e]| = 1.

Proof. In order to prove (a) it is sufficient to show that for every 2 < v <

n we have |angle|(E¢-1) EW)y < K’ (K”b)”_1 with K7, K{ depending
only on K and A. Suppose EW 7& E®) and let e-1) ¢ E(”_l),

e®) € E™ be norm—1 vectors orthogonal to the intersection Ev-1)n

EW). We write e(*=Y) = ae) 1+ 8f() and then |B|\” < [Mrel-D| <

K(Kb/)\)*~1. Thus,

langle| (B¢, E®)) = |angle] (e, )

— facran 2] < 2K (K
arctan )\ )\2

This proves (a) and (b) is now an easy consequence. [
We prove that at expanding points the contractive hyperplanes E )
are nearly vertical (nearly parallel to the Y—plane {0} x Rm_l) and,

moreover, vectors close to the horizontal direction are nearly maximally
expanding. For (v, V) € R x R™! we define | slope (v, V) = \V/v.

Lemma 4.2. Let z1 be such that ||MYug|| > N for 1 <v < n-and some

norm—1 vector ug. Then, defining f(” ) as before,

(a) |slope [(f)) < Kov/b for some Ky = Ko(K,)\) > 0 and every 1 <
v<mn;

(b) || MYu| > %HM"H for 1 < v < n and every norm—1 vector u with
| slope | (u) < 1/10.

Proof. Let z; = (x1,Y1). The assumption ||Mup| > A > +/b implies
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|z1| > A/5 and so, by (QL), |slope |(f(!)) < const v/b. Then the same
holds for every f(*), 1 < v < n, as a consequence of Lemma 4.1(a). This
proves (a). Let now u be as in (b). Then we may write u = ae + Bfw)
with e € EM, |a| < 1, |8] > 2/3 and so | M ul| > 2/3)|M* @] —
(K1b) > (1/2)|M¥ f¥)). O

In the sequel we denote &; = ¢4 (&) whenever £ € R and j > 1.

Lemma 4.3. Let zg,({g € R and let u,v be norm—1 vectors satisfying
||lz0 — (ol < 0" and |lu—v|| < o™ for some o < (A\/10K?)2. If1<v <n
is such that ||M¥(a, z1)u|| > N\ then
(2) 3 < [[M¥(a,z)ull/IM (@, Cr)vl < 2
(b) {angle|(M"(a, 21)u, M*(a,(1)v) < (/0)*" " < (o)™

In particular, (a) and (b) hold for every 1 < v < n if z1 is

X—expanding up to time n.

Proof. Analogous to [MV, Lemma 6.3]. O

Lemma 4.4. Let z1,(; € R be such that z1 is A—ezxpanding up to time
n and ||z, — || < 0¥ for every 1 < v < n, with vb < 0 < (A\/10K%)%.
Then, for 1 < v < n and any norm—1 vectors u, v satisfying |slope |(u) <
1/10, | slope |(v) < 1/10,
(2) § <MY (e, 21)ull/| M (a, )] < 2
(b) |angle|(M*(a, 21)u, M (a, (1)v) < (K4y/0)" L,
for some Ky = K4(K, A)
Proof. Analogous to [MV, Lemma 6.4], recall also Lemma 4.2 above.
O
In what follows, we denote Z = (a,2) = (a,2,Y) € (1,2) x R. For
the sake of simplicity, we also use Dz = Dy, y) to denote derivation
with respect to all variables (a,z,Y) = (a,2,¥1,..- ,Ym—1)- The main
result in this section is

Lemma 4.5. There is Ky = K5(K, \) such that, if z is A—expanding up
to time n then | Dz f¥)(Z)|| < K5v/b for every 1 < v < n.

In order to prove this lemma we deduce first a few auxiliary esti-
mates. Let M, denote the adjoint operator of M: M,u-v = u - Mv
for all u,v € R™. We denote g*) = M”f(”)/”M”f(”)H. Note that
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M7 f@) is colinear to MY f®) | since {M*fON}+ = M*{f) L and
so we also have g®) = M7 ) /||M7 f()||. Observe, moreover, that
|7 f = e p O <A

Lemma 4.6. There is Kg = Kg(K, A) > 0 such that if z is A—expanding
up to time n then
(a) HDZf(”)(Z)ll < K¢ and ||ng(”)(Z)|| < K§ for every 1 <v <n;
(b) |D2(MIFPNZ)| < Ky and ||Dz(M9f(2))|| < K§ for every

1<y<v<n
Proof. Let M 7’_;5 denote the map induced by M” on the bundle of
unit spheres over (1,2) x R: M4 (Z)f = MY (D) f/| MY (Z)f]|| for every
norm—1 vector f. The property M*{f()}+ = {M¥f(")}+ translates
into

M#f(”) = ) where M = MIM"Y. (1)
We let F'(Z, f) = My (Z)f and use the implicit function theorem in (1)
to calculate Dy f (), Note first that
Mf  Mf-Mf Mf

O DE = T~ g T U

This implies
O F)Z, f7(2) = (MIEM () [|mF¥)(2)]
and so

1@ F)(Z, fW(2))|| < M |BW 22/ M @ (2))% < (/2P < 1.

Moreover,
. DzM(Z,f) Mf-DzM(Z,f) Mf
O FWZ. \Z = —
OzENZ DE = =157 Mm@
implying

1(02F)(Z, FUZ)| < | DzM(-, FP @)/ I MF (2)| < (KNP,

where we also use the fact that |DzM| < (|¢llc2)® < K?. As a
consequence,

K 2v
IDz ) (Z)|| = |02 F o (Id — 8;F) 1|2, f)(2)) < 2 (T) 7
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proving the first part of (a). The second part follows from the same
argument applied to (MY MY )#g(y) = g(”). On the other hand,

|Dz(M? f¥)(2))|| < |DzM(Dze?Y(2), MI~LF) (Z)) ||+
+ M@ H2) N D2(MI ) (2)))|
< K% 4+ K||Dz (M1 ) (2))]..
By recurrence we find
IDz(MI N Z)| < K¥ + - 4 K9y oKI (KNP,

which proves the first part of (b). Finally, the second part is be proved
by & similar argument, starting with M;jf(”) = MV=igl¥) HM:”f(”) || =
M=g®) /M ). O

Proof of Lemma 4.5. Throughout the proof const denotes a positive

constant depending only on K and A. First, we verify the conclusion of
the lemma for v = 1. Observe that (2) gives for f = O = sz

1)y _ DzMZ, 1Y) (DzMZ, 1Y) )
(OzF)(Z, "7 = RTOIE TOIE FARPINC)

where M = M, M. It follows from (QL) that we may write

M = M+ £ with M = (p(“’“’”) 0

m—~1
0 O>GE(R><]R )

and
I€]lor < const V.

On the other hand, by Lemma 4.2, f 1) i (const v/b)—close to the hori-
zontal direction. Using these facts in (3) we obtain ||(8zF)(Z, f(D)|| <
const v/b and then the proof of Lemma 4.6 gives ||[Dzf(1)|| < const v/b.
Now the lemma will follow if we prove that

1Dz < IDzfY)|| + (const 8%, forevery 1<y <n—1 5

and we proceed to do this. Let f(”‘H) = (f(”"H) : f(”)) f(”) + A with
r) € E®). Then

Dyt = (p)  # 0y Do) o DD L p )y #0) 4 Do),
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Clearly, [t . f®)| < 1 and ||f)| < 1. On the other hand, f®)
Dz f® =0 because || f*)|| = 1. This, together with Lemmas 4.1(a) and
4.6(a), gives

17D Dy £ < (const BY - | Dz ™| < (const b)”.
Moreover, the same argument applies to |Dzf w+1) . ¢ (”)|, proving that
DD - ) < eonst B (6)

Now we are left to estimate | Dzh*)|. Let

(% 1) a=lprsey

Ay = (Bihcijem-1: {9 — {FO3,

be the matrix of MY with respect to fixed orthogonal frames

{9 2),u1(2),- .. \um_1(2)} and {f®)(2),e1(Z),... em-1(2)}

satisfying | Dzuil, ||Dzeil| < const ¥. Then we write

and

h(l’) =hier+--+hm_1€m_1

and take R(¥) = hiui + -+ + hpy_1Um_1 € M}jE(”) to be such that
M7V O o (D L )y Ao £0) 4 R Clearly, A = MYR®) or
equivalently,

hi = | MY W) Za* VB for 1<i<m—1. (7)

Note that [|A*)|| < const ¥, since |M7if@|| = [[MIfFO|-1 < A0 It
is also clear that |MYf()|| < const *. Moreover, Lemma 4.6 implies
| DA™)|| < const ¥ and || D(||M¥ f®)|})|| < const ¥. We claim, in addition,
that

la. Al < (comst b)” and || Dz{a.Ay)|| < (const b)”. (8)
Taking derivatives in (7) and using all these estimates we get

1Dzh®) || < (const b)”.

Together with (6) this concludes the proof of (5). Therefore, we have
reduced the proof of the lemma to that of (8). Let (M},)1<rs<m be
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the matrix of MY with respect to the canonical basis of R™. Each
(0xli5), 1 < 4,5 < m — 1, may be written as a linear combination
a, Ay =3 Crsun HY (1, 8, u,v), where H”(r, s, u,v)= (M} M, — M}, M)
and |Crsyy| < const ¥, || DzCrsu|| < const ¥. Now,
HY(r,s,u,v) = ZHl(r,i,u,j)H”_l(i,s,j,’u)
1<J
and, by (QL),(SD),
|H(r,4,u, )| < const b

and

| DzH(r,3,u, )| < const b

for every (r,4,u, ). Hence, by induction on v,
|HY (r, s,u,v)|| < (const b)”
and
|DHY (r,s,u,v)|| < (const b)”.
This implies (8) and completes our argument. O

The same type of argument applies to the second order derivative,
giving
Lemma 4.7. There is K7 = K7(K,\) > 0 such that if z is A—expanding
up to time n then | D% fW)(Z)|| < K7v/b for every 1 < v < n.

Finally, we also prove the following result, to be used in Section 8.
Lemma 4.8. There is Kg = Kg(K,)\) > 0 such that |Dz(M'e)(Z)| <
(Kgb)! for every 1 < i < v < n and any norm—1 vector field e(Z) with
e(Z) € EW)(Z) and | Dze(2)| < 1.

Proof. We write e = (e - f(i)) f(i) + 7@ with B9 € E() and then
Dz(M'e) = (- %) Dz(M* V) + D(e- &) M* £ + Dy(MRY)).
We have |[M*f®|| < const ! and |IDZz(MEFOY]| < const . Méreover,
le- f (i)] < (const b)?, as a consequence of Lemma 4.1. As in the proof of
Lemma 4.5, we check that, forevery 1 < j <mn-—1, f(j+1) = cjf(j)+h(j)
with |¢;| € [1— (const b)?, 1], || D,cj|| < (const b)Y, Hh(j)H < (const b)’ and
|IDzhW)|| < (const b)YJ. It follows that f( = ¢f®) + b with Al <
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(const bY* and || Dzhl|| < (const bY". Then ||Dz(e- fO)|| = |[Dzle- b)|| <
(const b)’. Finally, in order to estimate || Dz (M 2lfL(i))H, we let

(5 2)s a= M0 and as (O — (O3,
be the matrix of M? with respect to orthogonal frames {f (i)(Z ),e1(Z),
em-1(2)} and {g(Z),u1(2),. .. ,um_1(Z)} as before. Then

MR = ()| M £ )
and now the same argument as in the proof of Lemma 4.5 gives
| Dz (MiEDY|| < (const b)-.

Altogether, this shows that ||Dz(M'e)| < (const b)* as we wanted to
prove. O

5. Critical points

Here we describe the algorithms to be used in the construction of critical
points in W*(FP,). As explained in the Introduction, a main difference
with respect to the two-dimensional situation results from the fact that,
in the present setting, nearby disjoint segments of W*(P,) need not have
nearby tangent directions. Because of this, closeness of the tangent
directions must be taken as an independent assumption here, see (2)
below, and then be deduced directly from the binding construction, see
Section 7.

5.1 Generation zero

We make use of the following notions. Let Zy be the point of W*(P,) N
{(z,Y):z = 0} closest to P, in W¥(P,) and, for j > 1, let 2; = ¢4 (20).
We define Gy = [21,29] C W"(F,) and G4 = ¢3(Gp) \ Gg4_1for g > 1.
Points z € G, are said to be of generation g. We assume that ¢ = (¢q)q
is close enough to the quadratic family ¢ so that the intersections of Gy
and G1 with {(z,Y):|z| < 1 - 68p}, bg = 5(2 — supQ), are b—flat curves,
i.e graphs of functions YV:z +— Y(z) with ||Y||, [[Y]| < b'/%. A point
7y € WY (F,) is a v—th critical approzimation if W*(F,) is tangent to
the v—th contractive hyperplane E®) (z1) at 21 = @4(zp) and, moreover,
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the p” —neighbourhood of zg in W*(P,), denoted by v(zg, p*), is a b—flat
curve. The notation zOV always corresponds to such a point. In Section
6 we fix the value of p but here we only need 0 < b < p < 1/2.

It is easy to see that G contains a 1—st critical approximation near
x = 0. In fact, let z — 2g(z) = (z, Y (z)) parametrize Go N {(z,Y): |z| <
1 —6g}. The tangent direction to p.(Go) at z1(z) = pa(20(z)) is given
by

t(z) = (a(z) + Blz0) - Y (2), [(20) + Alzo) - Y (=),

where

Diga = (lof ﬁ) € L(R x R™ 1),

For z = 0 we have |t(0)- (U (21(0))] < [|£(0)]| < 2K+/b, by (QL). Note that
Lemma 4.5 implies [t(z) - Do (fW(z1(2)))| < const /b for every |z| < 1.
Now, #(xz) = (—2a,0™ 1) + e(z) with ||e(z)| < const b and so |¢(x) -
f (1)(21(90))[ > (3a/2), since f(l) is nearly horizontal at zi(z). Therefore,
for b > 0 sufficiently small, | D, (t(z) - fD(z1(z)))| > a > 1. It follows
that t%l?re is 21 with ]3:(1)] < 2K+/bsuch that t(x(l))-f(l)(zl(a;(l))) =0,
1

ie. zy’' = 7 (1)} is a 1—st critical approximation. Clearly the same
0 Yy

argument applies also to G, starting with @wg = G1 N {(z,Y):z = 0},
(1)

and we denote by wy ’ the corresponding critical approximation.

5.2 Precision increasing

()

The same basic idea permits to show that, whenever z;’ is a v—th

(») (V))

critical approximation and z{’ = (2 ) is expanding up to time

(v + 1), there exists a (v + 1)—st approximation z[()VH) near zéy). We
think of z[()"),z(()'/H) as approximations to the same critical point of
©wq. Let v(zg, p*) be parametrized by z — zg(z) = (z,Y(z)) and let
zéy) = zo(:c(”)). By definition t(:v(”)) . f(”)(zgj)) = 0 and so lt(x(”)) .
f(VJrl)(ng))] < 2K(K1b)¥, according to Lemma 4.1(a). As before, we get
|D,(t(z)- fT) (21(x)))| > 1 and so there is 2"+ with |ac(”) —:E(U+1)l <
2K (K1b)¥ such that zéH_l) = zO(x(”+1)) is a (v + 1)—st critical approx-
imation.

Let 6 > 0 be a small number and 2 C (1,2) be an interval close to
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a = 2 in the parameter space. We define N > 1 to be the maximum
integer such that z;,w; € {(z,Y):|z] > 26} for every 1 < j < N.
Observe that N can be made arbitrarily large by taking Q close to a = 2
and b small. Then the construction above applies to the approximations

z(gl),w(()ll) obgained in sectlion 5, yielding sequences zél), z((J2), e ,z(()le)
and w(() ),w(() ), e ,w((,N~ ) , in Gy and G1, respectively. Note that the

@ .0

2y, wy’, are indeed expansive up to time N — 1:

Lemma 5.1. Given 0 < ¢y < log2 and 6 > 0 small then, for a close 2
and b sufficiently small, the following holds. Let v be a norm—1 vector
with |slope |(v) < 1/10 and let z; = (z;,Y;), 0 < i < k+1, be a segment
of orbit of @, satisfying |z;| > 6 for 1 <i < k. Then
(a) | slope [(Dgi(21) v) < KB and | Dgi(z1) o] > alai]| Dgi (zx) ol
for every 1 <i <k and some K = K(K,§);
(b) If |zg| < 6 or |zpy1| < & then |Dypk(z1) - v| > ek,
Proof. Analogous to [MV, Lemma 7.2], [BC2, Lemma 4.6]. O
For future use we let Cy, = {zék_l),wék_l)} for2<k<N-1.
5.3 Higher generations
Critical approximations of generation g > 1 are constructed using lower
generation ones as starting points, in the following way. Let C(gy) be a
v—th critical approximation. We assume that dy) is A—expanding up
to time v and ¥ = W(C(()V),E) is b—flat, £ > 2p”. Let v = ~v(zg,¥) be
another b—flat segment of W*(P, ,), satisfying

dist(zg, C(()V)) < %min{p”,a”}, (1)

where o < (A\/10K?2)2. By Lemma 4.3, all the points in ¢4(y(zg, 0")) are
also expanding up to time v. We assume, moreover, that the tangent
directions to @, (%) and ¢, () satisfy

I v 1 |2
janglel ({26, t(z0) < min{p”, 0"}, (2)
where C(()V) = (56(()”), f’o('/)) and zg = (zg, Yp). By definition,
i@y 1) =o.
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From (1), (2) and Lemma 4.5 we get

t(@o) - £¥)(21)] < lt(wo) — HES)] + | (z1) - £ ) lEES)

1
< <§ + const \/E> min{p”, 0¥} < min{p”, 0" }.
Hence, in the same way as before, there is z((]") = (a:g/),Yby)) € v a

critical approximation with la:(()y) — zo| < min{p”, 0" }.

5.4 Contractive distributions

The natural substitute for the contractive vector fields of [BC2] and
[MV] in our present setting are the distributions of contractive hyper-
planes F () defined in Section 4. However, here we have to circumvent
the problem that these distributions may not integrable. This is done in
the following way. Let z = (2,Y) be A—expanding up to time n. Then,
by Lemma 4.2, the contractive hyperplanes E (”)(z) are nearly vertical.
For 1 < v < n and any norm—1 vector V € Rm_l, we let eg}/) (z) be the
unique vector of the form (v, V) in EW (z)

Lemma 5.2. For every 1 <v <n and V € R™* with |V| =1,

(a) Janglel(el?’ (), el ) (2)) < (Kgb)", Ko = Ko(K,)

(b) The vector field eg/) admits an integral curve [—bY/4 b14 5t —
) ) with T)(0) = 2.

Proof. Write eg}/_l)( )= (v1,V) and egj) (z) = (vg, V) and let (1, F7) and

(1, F5) be colinear to f(” 1) ( )} and F) (z), respectively. From (v;, V) -

(1, F;) = 0 and Lemma 4.1 we get

Janglel (e (2), el (2)) < lu1 — va|| < ||FL — Fal < 2(K1b)",

This proves (a) and (b) can now be proved by the same argument as in
[BC2, Lemma 5.8] or [MV, Section 7C]. O

Notice that I‘S—/) has the form I‘g}/)(t) = (z,v(1),Y +tV). Sup-
pose now that z = (z,Y) is such that |z| < 1 — 2§y. By construction,
GiN{(z,Y):|z] <1—6p} is a b—fat curve. Moreover, it is contained in
{(z,Y):||Y]| < const v/}, as a consequence of (QL) and Lipschitz depen-
dence of unstable manifolds on the dynamics, see e.g. [MV, Proposition
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7.1]. It follows that for some V the curve ng ) intersects GG in a point
n. Since dist(%(n), ¢%(2)) < const Vb (const b)Y for 0 < v < n, we may
apply Lemma 4.4 to z; = 2, (; = 1 and ¢ = const Vb, to conclude that

%HDsOZ(n) -vll < | Dyg(2) - ull < 2|| D) - | (3)
langle| (D% (1) - v, Dy (2) - u) < (const 61/4)V+1 (4)

for every 1 < v < n and any norm—1 vectors u and v with slope < 1/10.
In particular this holds for u = (1, Om_l) and v =tangent to G at .

6. The induction

The proof of Theorem A is based on the construction of a sequence (Cy)x,
of subsets of W*(P,) with the following properties. Each Cj, is formed
by a finite (although unbounded) number of (kK — 1)—st critical approx-
imations and the image zik_l) = goa(z(()k_l)) of every z((]k_l) € C is
e“—expanding up to time k. The precision increasing procedure of Sec-
tion 5.2 defines “canonical” one-to-one maps C, — Ci41, z(()k_l) — zék),
via which we may think of every Cj as a subset of Cx11. Then, each
limit point z1 = limg_, o ¢a(z§k)) is e—expanding for all positive times
and it is a critical value of ¢, in the sense that the tangent direction
to W¥(P,) at z1 is (exponentially) contracted by all positive iterates of
Dy,. The construction of each Ci requires a certain number of assump-
tions on the parameter, which are satisfied only by a subset Sy, of values
of a € Q. Then we show that S, = (> Sk has positive Lebesgue
measure. Finally, for almost every a € S, the orbit of some critical
value z; as above is dense in A, = closure(W"(F,)).

The objective of this section is to describe the induction procedure
through which the critical sets Cy, are constructed. This procedure was
already initiated in Section 5.2, where the Cx, £ < N — 1, were defined.
The inductive step, to be presented in Sections 6-8, is rather elaborate.
It requires a detailed description of the operations performed at the
previous stages of the construction, including the knowledge of several
additional properties of the critical sets obtained during those stages.

All this information must be part of the induction hypothesis, which,
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as a consequence, has a rather long statement. Here we give the precise
content of this statement and describe a few other notions and auxiliary
constructions involved in the induction. This follows closely [MV, Sec.
8] where more detailed motivation can be found. Parameter dependence
is of secondary importance at this point and so, for the sake of notational
simplicity, we omit reference to a in most instances below.

Let n > N. We assume that a set Cy consisting of (k — 1)—st critical
approximations of generation g < 6k has been defined for every 1 < k <
n — 1. Here
20 log(10K2)

7= 00 = T gm)

1

We fix a small number 8 > 0 and say that a point &y is bound to Cy, (up

to time k) if there is z(()k_l) € Ck, such that for every 1 < j <k
k k-1
1€ — 2 VN < he ™, with by =2-2 3 (P/4) € (1,2). (B
1

By assumption, the image {1 = ¢q4(&o) of any such & is e°—expanding

1 2
po = <—10k2> . @)
(k-1)

Given 2 € Cg, its pek—neighbourhood in W*(F,), is assumed to bea

up to time k. We fix

b—flat curve. Recall that we denote this neighbourhood by fy(zo , pO kY.
If z(() 1 is of generation g > 1 we assume, in addition, that

o 019(v(z"™Y, ) is contained in {(z,Y):|z| < 1 — 6o} NGy and

e any vector ¢ tangent to it is expanded by Dpd1: || D~ 1t|| > ||t||.
Here, as before, g = 5(2 — sup ). Every Cry1 is derived from Ci in the
following way.

(o) Let C;_ q be the set of all k—th critical approximations z(()k) obtained

(k1)

from the elements z; of Cy, via the algorithm of Section 5.2. Note

that z(k 2 and zék) have the same generation ¢ < 6k and, moreover,
k
(}‘5) (kl) <4KK k1<(1>
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Observe that the first inequality also implies
k) 6(k+1 k-1
v(zé ),po( ) c v(z(() ) o).

(B) Let C;,q consist of all the k—th critical approximations z(()k) of gen-

eration 0k < g < 0(k+1) for which 'y(z(gk), pg(k+l)) has the properties
stated above and which can be obtained by applying the algorithm
of Section 5.3 to points Qék) € Cj.y1, with the additional requirement
that .
4 - P <0< () ()
(v) Then we take Cyy1 =Cpy 1 UCH 1.

Remark 6.1. Note that C;, | is empty if (0, 6(k +1)] contains no integer
numbers. In particular, for k < 1/6 the critical set Cj consists only of
the points z(()khl) and w(()k_l) corresponding (by increase of precision) to
the critical approximations in G, G1 found in Sections 5.1 and 5.2. In
this case we also replace pgk by 1/2 in the definition above.

The estimates of the parameter exclusions, to be performed in Sec-
tion 9, are based on the fact that the exponential rate of growth of the
number of points in C; can be made arbitrarily small by taking b small.

This is proved in the same way as (1) in [MV, Sec. 8].

ok
Lemma 6.1. #C, < 8 (%) for all k.

Remark 6.2. In order to estimate these parameter exclusions we also
need a parametrized version of the conditions in (3) above. This is also
part of our definition of the critical sets but we postpone its statement
until Section 9, where it fits more naturally.

We start the inductive step of our construction by defining C,, from
Cn_1, according to the procedure above. Then (3) and (4) (recall also
our definition of hy) assure that any point (g which is bound to C, is also
bound to C,,_1. Hence, by induction, its image (7 is e—expanding up to
time (n—1). Proving that (for many values of the parameter a) such a (;
is also e®—expanding at time n is the main part of the induction. Before
that, we must introduce a few other notions which play an important
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role in the argument. It is part of our induction hypothesis that such
notions have been defined for all times < n — 1 in the way described
below.

First we consider returns, binding points and binding periods. Recall
that 6 > 0 is a small constant. Roughly, a return of a point &y is an
iterate v > 1 for which &, € {(z,Y):]|z,| < 6}. To every such v we
assign a convenient element (g of Ci, some k < v, close to £, which we
call the binding point of &,. Then the binding period associated to v is
the maximal interval of time [v + 1, v + p| during which the orbits of &,
and (j remain close to each other, in the sense that ||&,4+; — ;|| < e™%
for all 1 < j <p, 8> 0 asmall fixed number.

The precise definition is by recurrence. Let n > N and assume that
for every 1 < k < n — 1 and every point & bound to Cg, the returns
v € [1,k] of £y have been defined and that a binding point ng € U3 C;
and a binding period [v+1, v+ p] have been associated to each return v.
Let now &y be bound to C,, (and so also to C,_1). Suppose first that n
belongs to some binding period associated to a return v < n of . Take
such v maximum and let (g5 be the binding point of &,. By definition,
n is a (bound) return for & if (n — v) is a return for g and the binding
point of &, is the same as that of {,,_,,. Moreover, the binding period of
&n is [n+ 1,n 4+ p] if the binding period of (,,_, is [n —v+1,n—v + ).
Suppose now that no binding period associated to a previous return of
&y contains n. By definition, n is a {free)return for &g if |z,| < 6. Then,
we take the binding point {5 € C, in such a way that a certain set of
properties are satisfied. These properties are to be listed in (H1) below,
after the necessary language has been introduced. Again, it is part of
our induction hypothesis that these properties hold for all previous free
returns. A construction of such a point (g is given in Section 7. The
binding period [n+ 1, n+ p] corresponding to the free return n is defined
as follows. First, we let ¢ be the maximum integer such that

) 1 > )
éntj — Gll < he™, h= 15 &P (—50K26_°‘]> €(0,1), (B2
1

for all 1 < j < g. Then we take p < ¢ to be maximum such that p+1is a
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free iterate (i.e. it is neither a return nor part of a binding period) of &,.
Observe that this is well defined, since &, is bounded to {y (and so also
to Cq) up to time ¢ and, as we will show, ¢ < n. In this way, the time
n + p+ 1 immediately after a binding period is always a free iterate for
&o- All the binding periods associated to returns v < n — 1 are assumed
to be given in this way and to satisfy a few other properties whose
statement we postpone to (H2). Section 8 is dedicated to showing that
these properties also hold for all the binding periods starting at time n.

Actually, Sections 7 and 8 already require some restriction on the
values of the parameter a. Given a return v of a point & we define
du (&) = ||&w —o|| where (g is the binding point of §,. (For completeness,
we also set d, (&) = |zu|, & = (z,,Y,) when v not a return). We assume
that whenever 1 < k < n is a free return of a point zy € Cj, then

dp(zx) > e™®*,  where « is another small constant. (BA)

Note that for & = n this will be defined only after we have found the
corresponding binding point (g, see Definition 7.2.

Now we define folding periods. Heuristically, these are intervals [v +
1,v + 1] corresponding to the time it takes for a fold in W*(P,) created
at a return v to get flattened near the orbit of the point. The formal
definition is, again, somewhat involved. As for the binding periods, we
want folding periods to form a partially ordered family. We also want to
assure that at time (v +1+ 1) the point is in V = {(z,Y): |z < 126}
Note that given any z we have ¢’ (z) € V for some 0 < ¢ < 4. We
consider in detail the case when n is a free return for a point £y bound
to Cp,. This is extended to bound returns occurring at time n in precisely
the same way as we did before for the binding period. Moreover, the
same constructions and conclusions are supposed to apply to all returns
v < k of points bound to Cx, k <n — 1. Let s > 1 be defined by

¢ = s {0108/ nlE0) ) -

log(1/b)
Then the folding period is [n + 1,n + [], where [ < s is the maximum
integer such that &,,;41 € V and [ +1 is a fold-free iterate (it is neither
a return nor inside a folding period) of &,. Note that these notions are
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already defined for &, at this stage: (BA) implies s < n and it is easy
to check that &, is bound to its binding point (g up to time s. Let us
also state explicitly the following property of folding periods:

1D (Ent1) - ell < (VB)dn(€0)? for every e € BV (£,11), |lef = 1. (6)

This is a direct consequence of Lemma 4.1 together with the fact that

[o 8  5log(1/dn(€))
=2 log(1/b)

In order to justify this last affirmative we note first that, up to choosing

2

0, (2 — a) and b sufficiently small, we may suppose that any point takes
at least (say) 20 iterates in between two consecutive returns. Then case
s < 20 above is obvious and from now on we suppose s > 20. By the
definition and the inductive information on folding periods we have that,
either [ > s — 4 or else there exists a folding period [p + 1, + lg] of &,
with [+ 1 =y~ 1and g+ Iy > s. In the first case the conclusion
follows immediately; in the second one we note that, by (BA), iy <
max{10cp/ log(1/b),4} and so s — I < lp +2 < 10as/log(1/b) + 6 < s/2.
This completes our argument.

Now we present the higher-dimensional form of the splitting algo-
rithm in [BC2], [MV]. For 0 < u < k < n—1 and £ bound to Cj we
decompose w, = w,(£1) = wy, + 0, in the following way.

1. Let wg = wp = (1,0’”_1) and gg = 0.

2. For p > 1, let @, = Dpy(€) -wy—1 and 6, = Dpa(Ey) - 0pu-1-

3. If p is a return for &, split w, = G, (1,0m_1) + ayue, with e, a
norm—1 vector in the [—th contractive hyperplane E® (£1), | =length
of the folding period. Then take w, = @, — aue, = B, (1, 0™~y and
Op = 0p+ pey.

4. If p coincides with the end of s > 1 folding periods, p = py + 11 =
cee= ps + s, let wy = @+ 307 %iDSszi(fuﬁl)eui and 0, = G, —
54 0, D ()6

5. If neither (3) nor (4) apply (by construction they never apply simul-
taneously), set w, = &, and o, = 7.

At this point, we are in a position to state our remaining inductive
hypotheses on the construction of binding points and binding periods.
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Recall that we restrict ourselves to parameter values for which (BA) is
satisfied at every free return.
(H1) For k <n—1, & a point bound to Cx and v < k a return of &,
a binding point {y € (s C;) is defined, in such a way that

1BE)] [lwe (&)l
4480 < LT T Ty S v @
| (€1)] < 5EVb|lw,_1(€1)] 8)

If v = k and it is a free return then we can even take slightly
better factors (3a/2), (5a/2) in (7) and 4K+/b in (8).

(H2) For £k < n — 1 and &; a point bound to C, the binding period
[V + 1,v + p| associated to a return v < k satisfies p < 5av < v.
Moreover, there are 7,7 > 0 depending only on K,« and 8,

such that
1 [wy+; (&) ,
< <mforo<j<p-—1 9)
1B (€0 w3 (€] (
[wytp(€) Il du (o) > 1 ePHD(e1/3) (10)

||wu(§1)”

where (1 = ©q((p) and (p is the binding point of &,.
As we said in Section 2, we fix 1/2 < ¢ < ¢1 < ¢y < log2. The
following consequences of our assumptions are derived in the same way

as in the two-dimensional case.

Lemma 6.2.
(a) (MV, Lemma 8.1]) For 0 < u <k <n—1 and & bound to C

| slope |(w, (£1)) < Kvb, K = K(K, ).

(b) (MV, Lemma 8.2]) Given any 0 < u < k < n—1, there are fold-free

iterates p1 < p < po such that

10ap
—w < 4l
po —p1 < maX{log(l/b) }

Moreover, for any free iterate v > pu,
50(v — p)log K 4}
SR o/ S N O

— <
2 =y < ma { B

Bol. Soc. Bras. Mat., Vol. 24, N. 1, 1993



46 MARCELO VIANA

(c) (see (6),(7),(9) in MV, Sec. 8]) Let u be a return for a point &
bound to C, with 1 < p < k < n —1, and let p be the length of
the corresponding binding period. Then, denoting by (g the binding
point of &,

() P> gk los du(6o) L
(i) Nutpt1 — Cprall 2 he=2PFH1),

(d) ([BC2, Lemma 7.6],[MV, Lemma 8.4]) For0 < u<v<k<n-—1

and &y bound to Cy

. lwi EDI
H"‘JU(gl)“Z N<JSV<||WJ'—1(€1)H) ku(€1)||

2 minu<j§1/(a dj(&O)) ’ ”wu(fl)”

(e) ([BC2, Lemma 7.7|, [MV, Lemma 8.3]) For 1 < u<k<n-1 and
&o bound to Cy

K06 w6l < Ju(€) < K |lwu(€)

(f) ((BC2, Lemma 7.13],[MV, Lemma 9.4]) For 1<pu<v<k<n-1
and &y bound to Cy, if (v + 1) is a free iterate of & then

lwy (€0)]| = K ~Pet=9/10|y, &)

In particular, part (c)(i) implies that binding periods are much longer
than the corresponding folding periods. Note also that the hypothesis
of (f) makes sense for v = k too: it just means that every binding period
starting in [1, k] also ends in [1, k].

We close this section by observing that, once the above properties
have been extended to k = n, and up to an additional restriction on the
parameter values, it follows that & = ¢4(&o), every & bound to C,, is
e‘—expansive at time n. In order to see this, let 1] <1y < -+ < vy, < n
be the free returns of &y. For each v = v;, p = p;

’ﬁ” lwi ) _ o€l du(éo)  llwn (€Dl
G

- > 1
wi—1(&)| [l (€D dy(0)llwy—1(€1)]| —

by (H1) and (H2). Here we use the fact that, according to Lemma
6.2(c), the binding period can be made large by taking 6 small, while
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keeping o and (3 fixed. On the other hand, denoting u = v;41 and
f=p—w+p+1),
fI lwil)ll _ Nwp-1ED)l _ lwe-1(&)]]

= - > efof
vipi1 Wit €D low+p €I Tlwetp €N —

as a consequence of Lemma 5.1. Hence, lwy,(&1)|| > exp(egFrla, &) —an)
where
s-1

3
F.(a,&) = n—Zpi, resp. I(a,&y) = vs — Zpi if vg<n<vs+ps
1 1

is the total free time and the term —an accounts for the period (vs; +
Ps, 1], resp. [Vs,n]. We retain only the parameter values for which

Fu(a,z0) = (1 — a)n (FA)

for every zg € Cp, (and so for every £y bound to C,). Up to assuming
4a < (¢g — ¢), it follows that |lwnp(&)]] > elco=2a)n > o(et2a)n  Thep,
using Lemma 6.2(e) for k = n, we get ||w,(&1)|| > €, as we wanted to

prove.

7. Returns. Binding Points

Let n be a free return for a point £ bound to C,. We describe here the
construction of the binding point (g of £,. The main concern in this
construction is to get

|angle|(£n — ¢0,7(C0)), langle|(wn_1(£1), ¥(¢0)) < [1€n — <ol

where v C W*(F,) is a b—flat segment centered at (3. We say that
(€n,wn-1(€1)) and ({o,¥((n)) are in tangential position. Once this has
been obtained, an essentially 1—dimensional calculation permits to de-
duce the properties corresponding to the hypothesis (H1).

Definition 7.1. Fiz Ay = (§/2)%. Then 1 <r < n is a favourable iterate
for zg € Cy, if

1. r is a fold-free iterate for zy;

2. zr € {(z,Y):]z| <1—260};

3. dj(z) = )%H forall0<j<n—r—1.
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Lemma 7.1. If n is a free return for zy € C, then there are 1 = my <
mo < - < mg < n, withm;r1 <3m,; for1 <i<s—1andn < 3ms,
such that each n —m,; is a favourable iterate for zy.

Proof. Analogous to [MV, Lemmas 9.1, 9.2]. O
The following consequence is deduced in the same way as (8) in [MV,
Sec. 9].

Corollary 7.2. For 1 <14 < s, zn_pm, i (Mo/K)P—expanding up to time
m;.

This means that we may apply Lemma 5.2 in order to get, for each
1 €1 < s, an integral contracting curve I‘T‘Zi passing through Zn—m, and

cutting G7 in a point 17([;]. We let fy([)i] = fy(n([]i}, pgli) and denote also
nH = o)) and AH = @i ().

Lemma 7.3. For each1 <3 <s, 7([;] is contained in {(z,Y):|z| < 1—6p}
and so it is b—flat. On the other hand, 7[i] is also b—flat and | Dg “t|| >
||t|| for every tangent vector t of 7([)1]’ implying that v > 'y(n[i], pgbi).

Proof. Fix 1 < ¢ < s and let, for simplicity, m = m;, vg = 7([;], v = 'y[i],

no = n([)i] and 7 = n[i]. We write z; = (z,Y;), 7 > 0, and g = (560,170).

Since 1“7‘21' is nearly vertical we may suppose |Zg — ZTn-m| < (6g/2). On
the other hand, it is easy to see that (1 — |z;41]) < 41 — |z;]) + 2(2 —a)
for every j. Since 1 — |Zp—pm| > 10(2 — a) and 1 — |z,| > 1/2, it follows
that (1 — |2Zp_pm|) > 1/4™T1. Then

do 1 N 3 bo

E—m_z(l—un—mn——zf%

1*|£0|‘98121—|xn—m"’ 2

and this proves the first part of the lemma. By Lemma 6.2(a)

Wp—m-1(21) = Wpom-1(21)

has slope < 1/10. Hence, we may apply 5.3, 5.4, to u = 4g(ng) = a
norm—1 vector tangent to vy at ng and *

v = Wy_m-1(21)/ | Wn_m-1(21)||
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and get
IDe (o) - Yool = llwn—1(z0)|l/2llwn_m-1(21)ll (1)
|anglel( DT (n0) - Yo(no), wn_1(21)) < (comst b4)™ T < const Vb

(2)
Now (1), Lemma 4.3 (with A =1 and v = m) and Lemma 6.2(f) (with
v=k=n—-land p=n-—m—1) give

IDGE) 30O 2 ge™ 0 2 Lhor very €0, @)
at least if m is large; if m is small we also get || Do (&) - y0(E)]] > 1,
directly from Lemma 5.1. On the other hand, (2) and Lemma 6.2(a)
imply
| slope [(Dg"(10) - A0 (o)) < const Vb. (4)
In order to conclude the proof it is now sufficient to show that the
curvature of v satisfies k(y) < const vb. Let v = ¢i(y0) and then
Yi+1 = Dea(¥5) and §41 = Dga(¥;) + D*pq - (,%;). From k(v) =
167 - 477 = 3¢ - DI = ldetl (3, 5)/ 19 we get

) - ( I )3 <ldet|(D<pa('Y:s),Dsoa(%))

411 145113
s |det|<Dsoa<vj>,D%awj,w»)
1145113
and so
|det|(D90a(;7j)aDSOa(;)"j))
k(v; 1)§K-< 12 k(vi)+ L;
) = 5 el 7))t
with
sl )
411l
and .
L; = |det|(Depa(t;), D2pa(t;, t;)), t; = #n
J
Now, (QL) implies L; < const v/b and thus, using also (SD),
m—1
F(m) = (Kb0) ™ Ky -+ Ko k(o) +Y_ (Kb)™ 7K, 1 -+ K (const Vb).
0

Bol. Soc. Bras. Mat., Vol. 24, N. 1, 1993



50 MARCELO VIANA

Finally, by Lemma 6.2(f),
Koy Kj = (150l /[3ml)? < (const eU=m)/10)3

and replacing above we conclude that k(v,,) < const v/b. O

Let also my = 0, nl% = G4 N {r = z,} and A0 = 7(77[0],1/2).
Note that V[i] C Ggi, 9 = 1+ my, and g;y1 < 3g; — 2 for all 4 >
0. Note, moreover, that up to by taking é and b sufficiently small we
may always assume that 7(77[0],/)0) contains the critical approximation
w(()n_l) € Cp NG, recall Sections 5.1 and 5.2.

Definition 7.2. Let k > 0 be mazimum such that g < 6n and fy(n[k],pgk)
contains some element (o i of C. The binding point of z, is (o = (o k-

As we said in Section 6, we restrict ourselves to the parameter values
for which this construction yields (BA) d,,(29) = ||zn — (ol| = e~ *". The
measure of the set of parameters excluded by this condition is estimated
in Section 9.

Lemma 7.4. For k > 0 as in definition above
20 = 0 < 6%5dn(20)
and
Janglel (wn1(21), (1)) < 6%/ (z0).

In particular, there is a b—flat curve ' passing through (g and z, and

&

tangent to | at Co and to wn,_1(21) at zp.

Proof. By construction,
120 — 0| < (const b)™i (const Vb) < b3/8+9i/10
for all i > 0. Moreover, 5.4 yields
langle](wn_1(21), ¥ (7)) < (const b1/4)% < p3/8+9i/10

at least if g; > 2, i.e. i > 1. Actually, the same conclusion holds also for
i = 0, as a consequence of Lemma 6.2(a) and the fact that G varies in a
Lipschitz fashion with the map. Therefore, the lemma will be proved if
we show that d,(zg) > b9k/10 . For g, > (On/3) this follows immediately
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from (BA) and our definition of 6, see Section 6, equation 6.1. For
gk < (An/3) we even have the much stronger inequality

3
dn(z0) > Py *- (5)
We prove (5) as follows: assuming that it does not hold we show that
fy(n[k+1],pgk+1) contains a point Eén_l) € Cp; since g1 < On, this

contradicts the choice of k. First, we take p > 1 such that Ou < gp11 <
O(p+1) and let Cén_l) C(n 2) - ,C(()“+1), Qé“) be the sequence of critical
(n=1)

approximations in fy[ | obtained by decreasing the precision of (j =

(o- Note that C(()i) € Ciyq for all p <4 <n—1 because Cén_l) € C, and
gr < A(p+1). We claim that there is zg € q/[kH] such that

166 (’u) ~ 7zl < (const Vby%  and

Jangle] (181 (¢), 4+ (20)) < (const vB)%.

We postpone the justification of (6) and proceed to complete the proof

(6)

of the lemma. The claim means that we are in a position to use the
algorithm of Section 5.3, with A = 1 and p = o = pg, in order to
construct a pu—th critical approximation f((]” ) € 'y[k+1]. Notice indeed
that (const vb)% < %pg , as a consequence of our definition of 8. It is

easy to check that Eé” ) € CZ 41: observe, in particular, that we get

||5(()“) - Cé“)ll < 4(const \/l;)gk
< 2pj
< (1/4K)*

and so equation (4) of section 6 holds. It follows that v/**1 contains

(n-1)

also the point 60 € C,, obtained by increasing the precision of Zé“ )

Actually, since we are supposing that (5) does not hold,

Hz(gn—l) k+l ” < ” (n 1) (n—l)” + ”CO Zn“ + Hzn _ n[k-i—l]”
< 2pf + 2(const b)* + po k 4 (const b)™k+1 (const \/5)

41

< :00 ’

where we also use p > gpy1 and grr1 < 3gx — 2. This means that

5871—1) € ~(nlkt1] 9k+1)

» Po , contradicting the maximality of k.
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Figure 3

Finally, we prove the claim above. The fact that we have to bound
both the distance and the angle requires a more delicate argument than
that in the two-dimensional case. Let 4 be a horizontal straight segment
of length 2,03’““+1 centered at zn_m,,, and let § = Yo (7). Tt follows
from the argument in Section 5.4 that for every Zy € ¥ there exists
%o € 1] such that ||Zg—Zo|| and |angle|(¥(Zo), 7% (zg)) are bounded
by (const v/b)%+1. Therefore, in order to prove (6) it is sufficient to show
that it holds if zg € fy[kH] is replaced by (some) Zy € 4. Note now that,

according to (3),

—my,

||77([)k] — a (Cé”))H < |t — CO“)II < pek + (const by < pg k. (7)

Hence, we can use the procedure in Section 5.4 to construct the my—th
contractive lines Fg}n K passing through {é“). In view of 5.3, 5.4, our
argument will be complete if we show that 41 = @T“l_mk(%) in-
tersects some of the I‘g/mk). We do this in the following way. The
same reasoning as in (4) above shows that #; is nearly horizontal:

| slope |(71) < const v/b. Hence, we can take a nearly horizontal curve
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A9 D A1 with radius > 2p(g)k around zp—m, . Then, by (7), 72 intersects

some I‘Sn K in a point £ and we are left to show that, actually, £ € 4.

We take Zy = @Tk (¢) and then

. . -1 -1
120 = zall < 120 = &1+ 1166 = ¢ PN+ 116" = 2l
< (const b)™k (const Vb) + (const b)* + pggk
< pgk+1_
Using once more the reasoning of (4), we get that 4 is also a nearly
horizontal curve. Moreover, we find as in (3) that vectors tangent to g
are expanded by Dy™k+1, so that the radius of 4 around z, is larger
than p‘gk“. Altogether, this implies that 3y € ¥ and so £ € 47. O
At this point the estimates corresponding to (H1) can be obtained
in just the same way as in the two-dimensional setting.

Lemma 7.5. Let & be bound to C,, and n be a return for &.
(a) ([MV, Lemma 9.6, Corollary 10.4]) If n is a free return then

lan(21)] < AKVb|wn_1(21)]|

and | |
3a Bn(21) 5a
—dp(z0) < ——————— < —
2 "0 = Gl = 2
(b) (IMV, Lemma 9.7]) If n is a bound return then

dn(20)

| (€1)] < BEVD|w,_1(€1)]

and

ady,(&) < _1BnlEnl < 3adn(&1)

= wn-1 (€0

8. Binding periods

The part of our inductive step dealing with the information on binding
periods (induction hypothesis (H2)) is performed in Lemma 8.1 below.
This segment of our construction requires no new relevant ingredient:
the arguments of [MV, Sec. 10] are independent of the dimension of
the ambient manifold and so they apply in the present context to prove
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this lemma. As in [MV], we express our distortion estimates in terms

of ,
O, = 0y(no, Co) = Z b(yﬂs)/4H775 — Gsl|-
1
Lemma 8.1.
(a) ([MV, Lemma 10.2]) Let ng and {y be bound up to time p <k to a

same element zg of Cx, k < n. Then, forall 1 <v <p
lloow ()| ( )
T < 8K
Joncoll = Z

|angle| (wy (11), wu (¢1)) < 26110,

and

([MV, Corollary 10.3]) Let n be a return for zg € Cn, (o be the
binding point of z, and p be the length of the corresponding binding
period. For every 1 < v < min{p,5log(1/d,(20))}

1 lwntu(21)]]

1= Bl €Ol =

where 71 = T (K, , ) = 2exp <1OOK S0 el O‘_ﬂ)). Moreover, the
same holds for every point £y which remains bound to zy up to time

n+v.
(IMV, Lemma 10.5]) Let ng and (g be bound up to time u <k to a
same element zy of Cx, k < mn. Then, for all1 <v <pu

v

“wl/(nl)H 2av O
= < ex K _ d
T (ol = p(8 ‘ ;ds@o)) o

langle|(w, (M), w, (1)) < 462““61/42 (Co)

((MV, Lemma 10.6]) Let 0 < o < 26 and [0,0] 5 s — mls) =
(xg + 8, Y (o = s)) be a b—flat curve with (g = no(0) € Cg, k < n.
Let 1 < k —1 be such that

170(s) — || < he™ for every0< s <o and1<v < p.

(i) Then \|w,,(§1)”02 <e forallo<v<pu-—1.
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(il) If, in addition, |w,(C1)|o? < h2e 258 then

||77u+1(3) - C;H-lH < he—2P(u+1)

forall0<s<o.
(e) ([MV, Corollary 10.7]) Let n be a return for zy € C, and let p be
the length of the corresponding binding period. Then

p < 2/clog(1/dn(8p)) < 5an.

Moreover, for any point & which remains bound to zg up to time
n+p

wn-tp(€0) | dn(0) > T2e TN wy, (&1))|

where 7o = To(K, o, 8) = h/(271).

Recall that we have defined h = %0 exp (—50K 37" e~) in Section
6. We also note that (e) gives p < 5log(1/d,(£p)) and so the conclusion
of (b) really holds for every 1 < v <p.

9. Parameter dependence. Exclusions

Now we develop the main tools (partitions and uniformity of a—deri-
vatives) for proving that a set of parameters with positive Lebesgue
measure remains after all the exclusions determined by conditions (BA)
and (FA). This is also done in an inductive way and the initial step
involves the points z(()i) € Gg and w(()i) € (1 of Sections 5.1 and 5.2.
Lemma 9.1. Given 1 <¢ < N —1, z((]i) and w(()i) are defined for every
a € Q. Moreover, Hz'“(()i)(a)H < const Vb and Hw(()i) (a)|| < const Vb for all
a < .

Proof. Let the curve Gg(a)N{(z,Y):|z| < 1/2} be parametrized by z
z0(a, ) = (z,Y(a,z)). Note that ||8,Y| < const v/b, as a consequence
of (QL) and the Lipschitz dependence of invariant manifolds on the
map. Let also t(a,z) = Dyg(20(a,z)) - (1,0, (a,z)). Then z(()i)(a) =
(z(a), Y (a,z(a))) where z(a) is defined implicitly by

F(a,z) =t(a,z) - f(i) (a,z1(a,x)) =0, z1(a,z)=w(20(a,x)).
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Recall from Sections 5.1 and 5.2 that |z(a)| < const v/b. Tt follows, using
(QL) once more,

|8at(a, z(a))|| < const Vb and ||8,t(a,z(a)) — (—2a, 0™ 1| < const Vb.
Hence, by Lemma 4.5 and recalling also that f () is nearly horizontal,

|8, F(a,z(a))| < const Vb and |8, F(a,z(a))| ~ 2a > 1.
This proves the lemma for z(()i) and the same argument applies to w(()i) .
[l
We consider the curves zé),wé) 0 — R™, 1 <i< N, defined by
this lemma. Up to this point we left the compact interval Q C (1,2)
essentially arbitrary (except for being close to a = 2) but now we fix it
in such a way that the first return N is an escape situation for these

critical curves: (see [MV Sec. 3|)
length(z ) > V6 and length(w0 ) > V8.

For n < N our set of good parameter values is, simply, S, = Q.
Let us describe the parameter exclusion procedure. At stage n > N
we assume that for each & < n — 1 a subset S; of Q has been defined.
We assume, moreover, that for each ag € Sy and C[()k_l) € Cg(ag) there
exist an iterate v € [k;—l, k + 1] and an interval w C  with K —3v/2 <
length{w) < e72%/3_ such that

. ((()k_l) admits a smooth continuation to w (as a critical approxima-

tion) satisfying " D (@)l| < £ 6715 + SF 09/3 < b/ for all

1) and ¢ denotes derivative with

a € w (here g = generation of ((()k

respect to the parameter a);

. (ék_l) (a) satisfies all the conditions of Section 6 ((BA), (FA), expan-
siveness, binding and folding estimates, etc) for all @ € w and all
iterates < v —1;

e time v is an escape situation for C(gk_l): w— R™,

We also state the remaining conditions in our definition of criti-
cal sets, recall Remark 6.2. Let ag € S and C(gk_l) € Cplag), z(()k) S
Ci11(ap), be as in (B), Section 6. Let w be the parameter interval as-
(k-1)

sociated to on as above. It is part of our definition of Cxi; that
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the algorithm defining z((]k) from ((()k) remains valid for all ¢ € w and,
moreover, equation (4) of section 6 holds on the whole w:

k
Hz(()k)(a) — C(()k)(a)H < p9/10 < (ﬁ) for every a € w. (1)

Remark 9.1. Naturally, we must take these additional assumptions in
consideration in the proof of Lemma 7.4. More precisely, we must check
that Eé” ) satisfies the conditions above, in order to be able to conclude
that it belongs to C/ ;. It is crucial here that, while the parameter
range to be dealt Wlth is smaller than const #, some const < 1, the
construction of CO only involves iterates up to gp+1 ~ Ou. We ex-
plain this in more detail. Let 4y be the horizontal straight line seg-
ment of radius pgk“ around yg = Zn—my_ (apg). Note that if w is

the parameter interval associated to C(()“ ) then length(w) < e~ (ut1)/6 <
160911 1t follows from an easy calculation that for any a € w
the point yg is ¢, — ()\8 / 2k®)—expanding up to time mk+1, the tan-
gent vectors of 4y are (1/2) expanded by the derivative of ¢, o FHL and,

moreover, we have ||, FT1"

k(yo) — Zn-m, (a0)| < pok. Now we prove
that |j¢q (”)( ) — (((”) (ag))|| < pg’“ for every a € w. Let

§S3s8m— f(a s) = (s H(a s))} € G1(a) be a smooth parametrlzatlon,

with £(ag, s0) = sﬂao £(¢§" (a0)) and €(ag, ) = wag *(1(C (a0), pEF))-
Note that [|£(a, s) — &(ag, s)||, ||0s&(a, ) — Os&(ap, 8)|| < const length(w).
It follows, in the same way as before, that for every (a,s) € w X
S the tangent vector d,é(a,s) is (1/2)—expanded by Degg Fand, also,
IDpa 05t (a, ) — Depakds(ag, s)|| < 1. Since v(C (ag), pi¥) is b—fat,
we conclude that for every a € w the curve @an (&(a, S)) is close to being
straight and horizontal: |slope |(Dypq ¥85€(a, s)) < 1/10 for every s € S.
Thus, ||¢a *(£(a, ) — pa *(£(a, so)|l > %|s — 8p|- On the other hand,

1c4 @) — ¢ (ag) | < Y2 length(w) < ok

and so it must be gogmk((é“) (@) = &(a, s0(a)) for some |sp(a)—so| < pgk.
Altogether, this assures that the algorithm defining z(()“ ) from C(()” )
mains valid on the whole w and gives HZ((]” ) (a)—C(g“ ) (a)|| < (const vb)% <
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b9+1/10 for every a € w.

Let now ag € S,_1 and z(()n_l) € Cp(ag). Take §0n 2) € Cp_1(ag)

to be related to z(()n_l) in the sense of (a), (5), Section 6, and let v €
[5,n] and w C Q be associated to C(()n_2). The next lemma recovers

(n-1

for 2 ) the bound on the norm of a—derivatives contained in the

inductive information above.

Lemma 9.2. Let g = generation of z(n_l). Then

20(a)l <sz/15+257/3<b1/20 for alla € w.

Proof. By definition, C(gn_l)(a) and z(()n—l)(a) are defined and satisfy

C -6
| On 1) 10 @
i <a>—<0 o)l <v¥/

for all @ € w. Let § 3 s — &(a,s) = (s,H(a,s)) 6 Gi(a) be a

smooth parametrization, with £(ag, S) = goéo_g (v(z0(ag), p )) We also

let x — (z,Y(a,z)) parametrize (z(()n_l)(a),po ) and write ((a,s) =

("=2) ()| < (const b)* 2 < b2 and

gog_l(f(a, §)) = (z(a,s),Y(a,z(a,s))). The same argument as in the
remark above shows that D@g_lasf (a, s) = 0s((a, s) satisfies
_ 1 1
| g 0ut (. 5)l| > 5106 )] = 5
and
| slope | (DI~ 8,€(a, 5)) < 1/10.

for every (a,s) € w x S. As a consequence, |0sx(a,s)| > 1/4. On
the other hand, clearly, || D, (||, ]]D(a S)CH HD(a S)CH < const 9 and,

in view of the previous estimate, this implies ”Dzaw Y|l < const 9 for

i = 1,2,3. Recall that z(()n_l)(a) = (zg(a), Y(a, zg(a))) is determined by
the equation

Dya(20,Y (@, 20))(1, 8:Y (a, 20)) - £V (4, pa(z0, Y (a, 20))) = 0.

Then, using also Lemmas 4.5 and 4.7, an implicit function argument
yields Zg(a) < const 9 and so H,'é(()n_l)(a)ﬂ < const 9. In the same way
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we prove that ||€(()n_2)(a)H, ||C((]n_1)(a)H < const 9. In particular, for
every ¢ € w, Ilién_l)(a) - é(()n_2)(a)|| < const 9. Since we also have
length(w) > K34 we are in a position to use Hadamard’s lemma,
(see [BC2, Lemma 8.7]), to conclude that

e
(n-1

Now we distinguish two cases. If z((]n_l) € C,, then z; ) (a) = Cén_l)(a)
and so the lemma is a consequence of (3) and the induction hypotheses.

- 1) CO (G)H < {const b1/2)” < p/3. 3)

If z(gn_l) € C] then we also apply Hadamard’s lemma to z(()n_l)(a) and
Qén_l)(a). From H'z"(()n_l)(a) — é(gn_l)(a)ll < const 9 and the second part
of (2) we get

125 @) — & @) < (const 51109 < 39715 "
(n-2)

Observe that in this case g > generation of Con . Hence, the lemma
follows from (3), (4) and the induction hypotheses. O

From now on we take zg = zon_l): w — R™ to be as above. In order
to describe and estimate the exclusions of parameter values necessary
for (BA) and (FA) to hold for zg, we introduce partitions P;(zg) and
subsets S;(zg) of w, v —1 < j < n, as follows. For j = v — 1 we set
Pj(zp) = {w} and Sj(zp) = w. Let v < j < n and @ € P;_1(2p), with
@ C Sj_1(zp). We say that j is a return situation for zg|w if it is a
return for some zp(a), a € 0. We call a return situation free if it does
not belong to any binding period of zg(a), a € w. A free return situation
is called essential if A(w) = {||2;(a) — Zo]: @ € @} contains some interval

€ . . .
Ii=e"+ [t —1,1), 1§z§r2,r>|log6|.

1 T2

Here zy = zg(ap) is the binding point of zg(ag), any fixed ag € @. By

definition,

(a) if j is an essential return situation then the elements of P;(zp) con-
tained in & are the connected components of the sets w,; and @
defined by (see also remark below)

a € wy; <> Aa) = |[z5(a) — 2]l € I; and © =\ U,; wri

(b) otherwise, @ € P;(zp).
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Remark 9.2. This definition requires a few comments. Observe first
that, due to (1), zg(a) is bound to {g(a) up to time n and so all the
notions (returns, binding periods) involved in the definition are indeed
defined (by induction). We also make the following convention: for an
interval w’ in a partition Pj(zp), all the returns, binding periods and
folding periods during [1,[] are independent of a € «’. Note that this is
only a slight adjustment in the definitions, not affecting the estimates
in Section 6. Indeed, by construction, logd;(zg(a)), 1 < ¢ <[, is nearly
constant on «’ (formally speaking, this last affirmative is also part of
the induction). Note also that the particular choice of ag € @ above is
irrelevant, because [Zg(a) — Zg(ag)|| < b/?0length(w) < e~%. Finally,
for every interval w’ € P;(zg) having a return at time j, we need A(w’)
to contain some I,; (and to be contained in at most three of these
intervals). This requires the following exception in the definition of
the w,; in (a) above: if a connected component w” of A‘l(Im) has
A(Ww") # I,.;, instead of taking it to be an element of P;(zp), we join it
to a nearby A~1(T, s,1) to form the corresponding w ;.

We take (Sj(z0) \ Sj_1(20)) N @ to be the union of the following
intervals in P;(2g):
(BA) the connected components of all w,; C @ with r > jo and
(FA) all the ' € Pj(2p) for which the total number of free iterates in
[1,7]is < (1 — a)j.

If v < (n+1)/2 we also exclude from Sy, (zg) the w’ € P,(29) which
have no escape situation during (v,n]. This assures that the induction
hypotheses stated earlier in this section are completely recovered for zg
at time n.

A main ingredient in the estimation of the total measure of the
excluded intervals is the fact that at free return situations 2;(a) is nearly
horizontal and nearly uniform on @. This is the content of part (d) of
the lemma below, whose proof is contained in [MV, Sec. 11]. As in
there, we denote w;(a) = w;(a, 21(a)) and w;(a) = w;_1(a, 21(a)).

Lemma 9.3.
(a) ((MV, Lemma 11.3], [BC2, Lemmas 8.1, 8.4]) For everyv < j <mn
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and w € P;_1(2), w C S;_1(20), we have

1
— < NE@l <100 for all a € @.
100~ {Jw;_1(a)]|

If j is a free iterate we also have |angle|(%;(a), w;_1(a)) < pl/4,

(b) (IMV, Corollary 11.4]) For every v < j < n and @ € Pj(zp), @ C
S;_1(zp), we have K=39/2 < length(@) < e2¢9/3,

(¢) (MV, Lemma 11.5]) There is 13 = 13(K, o, 3,6) > 0 such that if
J € [v,n] is a free return situation for @ € P;_1(zp), @ C S;_1(z0),
then for all a1,a9 € @

[wj-1(a1)]|
lwj_1(a2)]|

(d) ([MV, Corollary 11.6]) There is 74 = 4(K, v, 3,8) > 0 such that if
J € [v,n] is a free return situation for & € P;_1(20), @ C S;_1(20),

< 73 and 1angle\(wj_1(a1),wj_l(ag)) < 544,

then for all ay,a9 € @
I&(an)ll 74 and |angle|(2;(a1), 2;(ag)) < 1064,
112 (a2) |
At this point the measure of the excluded set can be estimated in pre-
cisely the same way as in [MV, Sec. 12]. A crucial fact here is that each
of the excluding rules above eliminates an exponentially small set of pa-
rameter values. More precisely, it follows from the same arguments as in
[BC2, Sec. 2] or [MV, Sec. 3] that m(S;(20)\S;_1(20)) < A1e~*Im(w),
with A1 and a1 depending on K, «, 3, (5 but not on N or b. Summing
over all v < j < n, we find m(Sp(zp) \ w) < Age= 222 (), for some
Ay and a9 independent of N and b. On the other hand, by Lemma 6.1,
the number of critical points we have to consider at each stage does not
increase too fast: we set S, = S,_1\ (U, (Sn(20) \w)) and then

K Hn
(S \ Sp_1) < 8Age=202" (p—) m(Q) < Age*m(Q)
0

if b is sufficiently small. Hence, S, = (,>n Sn has positive Lebesgue

measure

m(Sy) > m(Q) (1 — Z Aze"o‘2n> > 0,

n>N
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as long as N is also large enough (i.e. © is close enough to a = 2).

Finally, the reasoning in [BC2, Sec. 10| extends, in a straightforward
way, to the present setting to show that for almost every a € S, the orbit
of the critical point zg(a) of generation zero (say) is dense in W¥(P,).
This completes the proof of Theorem A.
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