
VLDB Journal,3, 445-477 (1994), Ralf Hartmut G/iting, Editor 445 
QVLDB 

A Semantic Modeling Approach for Image Retrieval 
by Content 

Wesley W. Chu, Ion T. leong, and Ricky K. Taira 

Received July 2, 1993; revised version received, March 20, 1994; accepted May 20, 1994. 

Abstract, We introduce a semantic data model to capture the hierarchical, spatial, 
temporal, and evolutionary semantics of images in pictorial databases. This model 
mimics the user's conceptual view of the image content, providing the framework 
and guidelines for preprocessing to extract image features. Based on the model 
constructs, a spatial evolutionary query language (SEQL), which provides direct 
image object manipulation capabilities, is presented. With semantic information 
captured in the model, spatial evolutionary queries are answered efficiently. Using 
an object-oriented platform, a prototype medical-image management system was 
implemented at UCLA to demonstrate the feasibility of the proposed approach. 

Key Words. Medical, image, and multimedia databases, spatial query processing, 
temporal evolutionary query processing. 

1. Introduction 

Advances in medical imaging systems have revolutionized the acquisition of human 
images, providing views of cross sections and physiological states using a variety of 
modalities, including x-ray, computed tomography (CT), and magnetic resonance 
imaging (MRI). A medical Picture Archival and Communication System (PACS) 
infrastructure has been developed at our institution to provide efficient archival, 
retrieval, communication, and display of the large repository of digital medical images 
(Huang et al., 1988; Taira and Huang, 1989). The digital image data were acquired 
automatically by the PACS, which contains two optical disk library units, each with 
a capacity of one terabyte. At present, image retrieval in these systems is based on 
file names or artificial keys such as patient hospital identification numbers, which 
limits querying capabilities. There is a need to retrieve the images by content. 
For example, in therapy treatment planning, the therapist is often interested in 
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retrieving historical cases that demonstrate diagnostic image features (e.g., object 
density, texture, location, extent, clustering patterns, shape, and size.). 

A knowledge of the spatial content of a medical image is especially important 
in surgical or radiation therapy of brain tumors because the location of a tumor has 
profound implications for a therapeutic decision. Functional mapping of the brain 
requires the correlation of physiologic function to anatomical locations in the brain. 
The evolutionary content of a sequence of images is important when studying the 
treatment-response effects of various therapies. Also, the temporal characteristics 
of image features help describe the behavior of disease processes. For example, 
what is the normal growth rate of tumors for a given classification of patients? How 
does this growth rate change with various regimens of drug/radiation therapy? 

Several approaches have been proposed to retrieve images in pictorial databases. 
Feature indexation indexes and retrieves image objects on the basis of their features 
(Grosky and Mehrotra, 1990). Symbolic pictures use orthogonal relationships to 
encode the image objects into a 2-D string (Chang et al., 1987). As a result, 
user queries concerning the orthogonal relations of the objects can be answered. 
The information retrieval approach (Rabitti and Savino, 1991, 1992) transforms 
the image and the query into signatures. The query is answered by matching the 
signatures. These approaches are symbolic, and cannot be used to solve direct 
spatial queries that require point addressing capabilities. 

To solve direct spatial queries, spatial data structures can be used to store the 
minimum bounding boxes of the image objects (Roussopoulos et al., 1988; Gupta 
et al., 1991). Since a bounding box is an approximation of the original image 
object, representing the image object with such structures may not allow the user to 
retrieve all the answers that satisfy the query specification. Image objects can also be 
represented in point sets (Orenstein and Manola, 1988). Spatial relations among the 
image objects are dynamically determined through pixel-level manipulation during 
query processing. 

Images of biological objects are evolutionary in nature and can capture object 
states at different times. To study the spatial characteristics of an object or its growth 
pattern requires querying objects with spatial and evolutionary characteristics. Spatial 
queries deal with the spatial features and relations of image objects: 

�9 Symbolic spatial queries express the query content of image objects with specific 
spatial characteristics such as type, shape, size (e.g., area, volume, length, 
diameter), spatial relations (e.g., Separated,  Contains), and orthogonal 
relations (e.g., SouthWest, EastNorth). They allow the user to express 
the query content through alphanumeric descriptions. For example: retrieve 
images with a microadenoma 1 with a diameter of  5 m m  or larger, or retrieve images 
with a macroaclenoma invading sphenoid sinus. 

1. Microadenoma is an adenoma (brain tumor) less than 10 mm in diameter which can evolve into a 

macroadenoma 10 mm or larger. 
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�9 Direct spatial queries require point addressing capabilities of the image objects. 
They allow the user to directly manipulate the points and non-zero size 
objects in the images, and to search for spatial objects over a certain area. 
For example: retrieve images with an adenoma extending within a 20 mm radius 
from the center of the hypothalamus. 

Biological objects evolve, fuse, split, and change their spatial orientations over 
time. The therapist is often interested in retrieving historical cases that demonstrate 
diagnostic image features. Spatial evolutionary queries deal with the evolution of 
objects captured by images at different times. Consider the query, retrieve the image 
frames demonstrating a microadenoma 5 mm or larger in diameter developing inside the 
pituitary gland, which has evolved into a macroadenoma invading the sphenoid sinus in 
one year's time. 

The existing image-retrieval approaches in a large medical database have the 
following problems: 

1. Inadequate query capabilities. Previous research often focused on a specific 
application domain and supports only some forms of symbolic spatial query 
answering. However, few approaches support direct spatial query answer- 
ing (Roussopoulos et al., 1988), and even fewer support temporal spatial 
query answering (Orenstein and Manola, 1988) or temporal evolutionary 
query answering (Chu et al., 1992). None support spatial evolutionary query 
answering. 

2. Lack of semantic information. Due to the lack of definition and organization 
of image semantics, few approaches use semantic information. Data models 
in Mohan and Kashyap (1988) capture hierarchical and temporal information, 
but none capture high-level spatial evolutionary semantics or incorporate the 
features extracted from the images in the data model. 

The semantic data model, VIMSYS (Gupta et al., 1991), consists of four layers: 
IR, IO, DO, and DE. IR represents the base type of the system. IO represents the 
images and their features. DO specifies domain entities, and DE accommodates 
events defined over time. 

Our model consists of two layers. The lower layer represents the related 
images and object contours in a number of stacks (Chock et al., 1984). The upper 
layer abstracts the objects from the images. In addition, semantics of the images 
are captured by modeling the relations among objects, and are expressed by the 
hierarchical, spatial, temporal, and evolutionary constructs. Our model mimics the 
user's conceptual view of the image content, providing the framework and guidelines 
for image preprocessing to extract features and relations of image objects. Based on 
the model constructs, a spatial evolutionary query language (SEQL) is developed 
to express spatial evolutionary queries, providing direct manipulation capabilities 
of image objects. Using the proposed model, we can express spatial, temporal, and 
evolutionary objects captured by a set of snapshots taken over time. Thus, queries 
with temporal, evolutionary, and spatial predicates can be answered. 
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Using Gemstone, 2 a commercial object-oriented database with ObjectWorks/ 
VisualWorks as the development environment, a prototype medical image man- 
agement system was implemented at UCLA to demonstrate the feasibility of the 
proposed approach. 

In Section 2 of this article, we describe feature extraction from images. A 
conceptual data model is presented in Section 3. The SEQL for expressing user 
queries is introduced in Section 4, and the strategy for processing SEQL queries is 
addressed in Section 5. 

2. Feature Extraction 

The PACS stores a variety of medical images including X-rays and MRI. Each image 
type has its own specialized image segmentation methods which take advantage of 
its image characteristics. The methods range from fully automatic segmentation 
software to semi-automatic computer assisted methods. Additional information is 
available through diagnosis by physicians. The advances of image segmentation 
techniques greatly influenced the design strategy of the image management system 
(to selectively extract the image information, and to organize and store it to provide 
efficient content-based retrieval). 

Preprocessing of the images consists of the following steps: 

1. Identify the objects in the images. 

2. Detect the boundaries of the objects. 

3. Obtain the spatial features and relations of the image objects. 

Current approaches can be broadly categorized, based on intensity discrimination 
(Brummer et al., 1989) or edge detection (Bart et al., 1991). The intensity approach 
assumes that a fundamental relationship exists between the pixel intensity and the 
physical substrate. However, numerous studies have shown that factors such as 
field inhomogeneity, instrumentation noise, and partial volume all contribute to 
pixel intensity fluctuation, and create uncertainty in discrimination. Current work 
in edge detection shows some degree of success (Marr and Hildreth, 1980) but, in 
general, user interaction is required. Visual interpretation plays an important part 
in correlating edges in different scales, as well as in making decisions on true or false 
edges. The lack of a rigorous means of performing both multiscale edge analysis and 
parsing has seriously limited the capability of automated segmentation. Most of the 
current work in segmentation of anatomic objects of the brain centers around wavelet 
transforms (Daubechies, 1988) and model-guided methods. However, because of 

2. We selected Gemstone  (Servio Corp.) because it has a richer type system than relational database man-  
agement  systems, which is essential to the development of  the new modeling constructs proposed in this 

article. Furthermore,  Gemstone  has a gateway to Sybase, which allows us to retrieve the  stored patient 

demographics at the  U C L A  medical center. 
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fewer objects and better contrast in X-ray images of the hand, feature extraction is 
accomplished automatically (Pietka et al., 1991a, 1991b). 

To accommodate different types of images with selected segmentation software 
in a system, we need to provide guidelines for the types of information to be 
extracted from the images and the structures to organize them so that they can be 
effectively retrieved. The types of information extracted from the images for spatial 
query answering are object contour, spatial features, and spatial relations. 

Object contours are stored as bit maps in the system. A number of spatial charac- 
teristics on the object can be derived from the contour, for example, area, volume, 
circumference, bounding box, and 3D-volume rendering (Angel, 1990). 

Spatial features, such as type, shape, area, volume, diameter, length, and circum- 
ference, describe the spatial characteristics of an image object. For example, to 
measure the circumference on a cross section of a macroadenoma, the contour 
showing its boundary is detected as shown in Figure 1. The number of pixels of 
the contour is counted and the circumference of the macroadenoma is obtained. 

Spatial relations describe the relations between a pair of spatial objects, including: 

�9 Orthogonal relations describe the directional relationships between objects, 
such as E a s t ,  South ,  and SouthEast. 

�9 Containment relations describe the relative position and the locations of 
contact between a pair of objects, such as Invades and Contains.  

The spatial relations among objects such as containment can be determined by 
computation with object contours (Angel, 1990; Mantyla, 1988). Such information 
derived from the object contours is used for answering symbolic spatial queries 
efficiently. The object contour is also essential for answering the direct spatial query 
since it provides detailed object boundary information at the pixel level. 

The number of spatial relations for n objects in an image is on the order 
of O(n2). Storing all the spatial relations not only increases the storage but also 
lengthens the time needed to search for the objects. To limit the size of storage 
of spatial features and relations, only those most frequently used are stored in the 
system. There is a storage/response time tradeoff as to what spatial features and 
relations need to be stored. 

Based on anatomical knowledge and physician diagnosis, the spatial relations 
of an object with respect to its surrounding objects can be derived; we call them the 
primary spatial relations of the objects. We use primary spatial relations to represent 
the semantics of the images in the data model. In addition, the relationships of 
abnormal objects discovered in diagnosis with respect to their adjacent objects are 
also kept in the system. Due to the relatively small number of abnormal objects 
found, we only need to maintain a small fraction of spatial relations in the system. 

To support the spatial queries that directly manipulate the image pixels and 
determine the infrequently referenced spatial relations, we need the object contours 
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Figure 1. Sagittal image on cross section of brain 

',-t $: MRBrainlmage 

The boundary of a macroadenoma (pointed by an arrow) is outlined. 

information that describes the object boundary in pixels. Although this information 
requires a large amount of storage, it is essential to answer these queries. Not 
storing object contours has the following problems: 

�9 Using an approximation of object contours such as the bounding box cannot 
provide accurate spatial query answers. 

Performing image segmentation on-the-fly is very time consuming. For exam- 
ple, to extract features on an X-ray image of the hand takes four minutes on 
a Sun Sparc II (Pietka et al., 1991a, 1991b). To scan through all the images 
and extract features during query execution is not feasible. Further, certain 
image segmentations require human expert guidance and interpretation. 

Therefore, storing high-level semantic spatial information in the database enables 
us to efficiently answer symbolic spatial queries. Further, such symbolic spatial 
information and object contours can also improve the processing efficiency of direct 
spatial queries. 

In our system, related images and object contours are stored in stacks (Chock 
et al., 1984) based on temporal or spatial correlation among images. For example, 
an MRI brain scan consisting of about 70 cross-sectional 2-D images for one patient 
is stored in one stack. A time series of X-ray hand images for the same patient 
taken at different points in time is stored in another stack. The organization of the 
semantic information will be addressed as follows. 
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3. Conceptual Data Model 

A conceptual data model is needed for high-level representation of image objects to 
capture the hierarchical, spatial, temporal, and evolutionary semantics of the images; 
to provide the framework and guidelines for the image segmentation and feature 
extraction processes; and to allow direct manipulation of the image objects. There 
are several characteristics of the medical images considered in the data model: 

�9 Similarity among medical images. Images of a body part are very similar for 
the same growth period. Therefore, object classes (object class and object 
type are used interchangeably in this article) are created to collect similar 
object instances on the same body part. 

�9 Differences of  imaging modalities. Different imaging modalities such as x-ray, 
CT, MRI, and PET scans can be applied to the same body part. A conceptual 
model can be used to relate different types of images of the same object that 
present different views and physical characteristics of the object. 

�9 Object evolution. Biological objects grow and evolve with time. An object in 
a certain growth stage can evolve, fuse, or split into a set of different objects. 
For example, a brain tumor may grow from small to large and/or split into 
two segments. To reflect the trend of object development, image sequences 
of evolving objects should be related together in the data model. 

To illustrate the conceptual data model, we refer to the example of a pituitary 
gland, and use the object constructs to modeI the development of an adenoma 
(main abnormality of the pituitary gland) with respect to its surrounding objects. As 
shown in Figure 2, the pituitary gland consists of several constituent objects, which 
can be modeled by hierarchical constructs. The pituitary gland is encapsulated by 
the sella turcica, which can be modeled by spatial constructs. A microadenoma 
developing in the pituitary gland may evolve into a macroadenoma over time, and 
this development can be modeled by temporal and evolutionary constructs. 

As shown in Figure 3, the conceptual data model consists of two layers. The lower 
layer represents the related images and object contours in various stacks (Chock 
et al., 1984). The upper layer abstracts the objects from the images. Semantics 
of the images are captured through the modeling of the relations among objects 
and expressed by the hierarchical, spatial, temporal, and evolutionary constructs 
(Section 3.2). 

3.1 Abstraction of Image Objects 

Depending on the image types, objects are identified from the images by segmentation 
software or expert identification, and represented in the data model. Key information 
that represents the object characteristics is extracted. Similar image object instances 
of the same body part are placed in the same class. For example, the object class 
defined for the microadenoma found in the images of our Gemstone implementation 
(Ullrnan, 1988) is: 
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Figure 2: Pituitary gland in the sella turcica 

~ \  Sphenoid 

Object subclass CMicroadenoma, 

instVarNames: #[<type,' Cshape,' tdiameter,' 

t volume, ' t eventTime, ' t contourPointer, ' t imagePointer'] 

constraints: #[#[ #type, String], 

#[ #shape, String] , 

# [ #diameter, Number] , 

#[ #volume, Number], 

#[ #eventTime, DateTime], 

# [ #contourPointer, Contour], 

#[ #imagePointer, Image]] . 

Microadenoma is a subclass of Object. The instVarNames defines the at- 

tributes: type, shape, diameter, volume, eventTime, contourPointer, and 
imagePointer for object Microadenoma. The constraints defines the type of each 
attribute. For example, volume and diameter are of type Number. 

MicroadenomaSet is an object class in which each instance is a Microadenoma, 
as shown in the follow/ng: 

Set subclass 'MicroadenomaSet' 
constraints : Microadenoma. 
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Figure 3. Two-layered data model for modeling semantics of image 
data 
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The images and object contours are stored in the stacks. The semantics of the images are 
modeled in the upper layer. 

If an image in the system contains a microadenoma, then there is an object 
instance in ~icroadenoraaSel; corresponding to that microadenoma and representing 
its features. An object class is created for each type of identifiable object in all 
the images. Thus, such data structures provide a framework and guidelines to 
extract features from all images. The object instance maintains links that point 
to its contours and images. To reduce retrieval time, semantic information on the 
objects is kept in the corresponding object classes. The image and object contours 
are stored separately in stacks which can be invoked through object pointers for 
direct spatial query processing. 

Our data model extends the conventional hierarchical object-oriented model 
by introducing additional new constructs to describe the spatial and evolutionary 
behavior of objects as described in the following sections. 

3.2 Modeling Inter-Object Relations 

3.2.1 

1. 
Hierarchical Object Constructs. 

A g g r e g a t i o n  (Figure 4; Hull and King, 1987; Kim and Chou, 1988): An object 
is composed of several constituent objects that form an "Is-part-of" hierarchy. 
For example, the growth of a pituitary gland can be described in two stages 
(Goodrich and Lee, 1987). Originally, the pituitary gland is composed of 
the infundibular process and Rathke's pouch. As it matures, it is composed 
of pituitary stalk, neurohypophysis, cleft, pars distalis, pars intermedia, and 
pars tuberalis (Figures 2 and 10). 
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Figure 4. Hierarchical object constructs 

Generalization/Specialization: 
Object O is a supertype of 
object O1, 02 ..... On. 

Aggregation: 
Object 0 is composed of 
object ol, 02 ..... om. 

Figure 5. Directional convention for spatial objects 
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2. Generalization~Specialization (Hull and King, 1987): Objects form an "Is-a" 
hierarchy. The supertypes are a more generic representation of the objects, 
while the subtypes provide a more specialized representation. The subtypes 
inherit characteristics from their supertypes. 

3.2.2 Spatial Constructs. Spatial object constructs are used to model the spatial 
relations among objects. Based on the anatomical knowledge and the physician's 
diagnosis, we model the pnmaty spatial relations among image objects, which are the 
relations of an object with respect to its surrounding objects. The spatial relations 
include orthogonal and containment relations as follows: 

Orthogonal relations describe the direction from one point to another: 

East, South, West, North, Top, Bottom, 
EastSouth, EastWest, EastNorth, EastTop, EastBottom, 

SouthWest, SouthNorth, SouthTop, SouthBottom, WestNorth, 

WestTop, WestBottom, NorthTop, NorthBottom, TopBottom, 
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EastSouthTop, EastSouthBottom, SouthWestTop, SouthWestBottom, 
WestNorthTop, WestNorthBottom, NorthEastTop, NorthEastBottom 

Containment relations describe the relative position and locations of contact among 
objects, including: 

Separated, ExteriorContact, Connects, 
Socketed, Invades, Contains, InteriorContact. 

The spatial object constructs included in our model can be divided into three 
categories: no containment, containment, and partial containment as follows: 

No containment 
1. Separated (Figure 6a): This spatial construct is used to describe two objects 

that are separated from one another. The orthogonal relation is expressed 
inside a square between both objects. The Separated relation between a pair 
of objects is symmetric. For example, the pituitary gland lies in the back 
(East) of the sphenoid sinus, and is separated from it by the sellar floor 
(Figures 2 and 10). 

2. Connects: One object connects with another at one or more locations. 
Connects is a symmetric relation that is expressed by two squares connected 
to each other (Figure 6c). The orthogonal relation between the corresponding 
objects is represented inside the square closer to O1. For example, the pituitary 
gland connects with the hypothalamus via a neural stalk (Figure 10). 

3. ExteriorContact: Two objects touch each other at one or more locations. 
The ExteriorContact relation is symmetric and is modeled by two squares 
adjacent to each other as in Figure 6b. ExteriorContact is a significant event 
in the medical domain. 

Containment 
1. Contains: An object contains another object. Contains is asymmetric and 

is expressed by two squares with one containing the other, indicating that 
O1 contains 02. The orthogonal relation from O1 to 02  is indicated in the 
inside square (Figure 6d). For example, a microadenoma may develop inside 
the pituitary gland (Figure 10). 

2. InteriorContact: An object touches the inside of the other. The orthogonal 
and containment relations are modeled by two squares with one touching 
the inside of the other (Figure 6e). For example, a microadenoma may lie 
in the inferolateral portion of the pituitary gland. 

Partial Containment 
1. Invades: This spatial construct is used to describe one object that invades 

another. The objects are represented by circles. The orthogonal relation is 
expressed inside the square closer to O1. Figure 6g indicates that O1 invades 
0 2  in a West direction. The Invades relation between a pair of objects is 
asymmetric in the sense that O1 invades 0 2  and 02  is invaded by O1. 
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Figure 6. Spatial object constructs 
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Figure 7. Spatial relation hierarchy 
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2. Socketed: To model one object encapsulating another, the orthogonal and 
containment relations need to be specified (Figure 6]) in the same way as 
the Invades relation. Socketed is also an asymmetric relation. For example, 
the pituitary gland lies in the sella turcica (Figure 10). 

As shown in Figure 7, all the spatial relations in our system are subclasses 
of Binaryl%elation. BinaryRelat ion has two attributes: source object and 
d e s t i n a t i o n  object as shown below: 

Object subclass 'BinaryKelation' 
instVarNames : #[~source, ' rdestination'] 

constraints: #[#[ #source, Object], 

#[ #destination, Object]]. 

BinaryKelation subclass ~Invades' 

instVarName s : # [ c orthogonalKelat ion ' ] 
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constraints: # [# [ #orthogonalRelation, String] ]. 

I n v a d e s  is a subclass of the B i n a r y R e l a t i o n  with an additional attribute storing 
the orthogonal relation from source to destination. The point orthogonal relation 
is also asymmetric. For example, if O1 is on top of 02,  then 0 2  is on the bot tom 
of O1. The object class Invades  stores only the orthogonal relation from source 
to destination. The orthogonal relation from destination to source is obtained by a 
method defined on the B i n a r y R e l a t i o n  class, which computes the inverse orthogonat 
relation given the source to destination relation. In our Gemstone  implementation,  
the internal structure of the storage of relations and the computation of its inverse 
are transparent  to the user. The user only sees two methods defined on the relation 
class: one returns the orthogonal relation from source to destination, and the other 
f rom destination to source. All other asymmetric spatial relations are handled in a 
similar way. 

Notice that the orthogonal relation between a pair of objects can be determined 
by the centers of the masses, the centers of  the bounding boxes of the corresponding 
objects, or by the interpretation of the domain expert. 

An object class is defined in the system that collects similar object instances corre- 
sponding to each spatial construct in the data model. For example, a macroadenoma 
may invade the sphenoid sinus (Figure 10). The object class MacroadenomaInvades  
SphenoidS inus  3 is defined to store the invasion relation between the Macroadenoma 
and the Sphenoid Sinus as follows: 

Set subclass 'MacroadenomaInvadesSphenoidSinus' 

constraints : Invades. 

Each instance in this class represents an invasion relation between the corre- 
sponding pair of macroadenoma and sphenoid sinus. All the other spatial relations 
are defined and modeled in a similar manner.  

3.2.3 Temporal relation object constructs. Now let us consider the modeling of 
inter-object temporal  relations. The constructs that represent the temporal  relations 
between an object and its supertype or its aggregated type are shown in Figure 
8. These temporal  relationships define how the characteristics of the supertypes 
are temporally inherited. Temporal inheritance deals with the way t ime-dependent  

3. An alternative approach is to define a generic invasion class to represent the invasion relations among all 
the objects. This design decision affects system performance, depending on the number of object classes and 
the number of instances in the object classes in the applications. However, invasion among different pairs 
of objects also requires different features to be represented in the system. As a result, the generic invasion 
class needs to be specialized. The total number of object classes representing the spatial relationships among 
objects in the pituitary gland area in our system such as l'lacroadenomaInvadesSphenoidSinus is around 
20. Since we capture more objects in hand images, and each object has many evolutionary stages (Tanner 
et al., 1975), the total number of object classes representing the spatial and evolutionary relationships for 
hand is around 180. 
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Figure 8. Temporal object constructs 
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characteristics of a supertype are inherited by its subtypes. The general rule is that 
an object may only inherit characteristics from other objects that exist in its own 
space-time domain (Chu et al., 1992). 

To illustrate the use of the temporal relation object constructs, we apply them 
to the model describing the growth of the pituitary gland (Figure 10). The pituitary 
gland is the result of two separate developmental processes that culminate in the 
formation of the adenohypophysis and the neurohypophysis. At the third week of 
gestation, the pituitary gland is composed of Rathke's pouch and the infundibular 
process (Figure 8c). By the end of the 20th week of gestation, the infundibular 
process develops into the neurohypophysis and the neural stalk (Figure 8b; Goodrich 
and Lee, 1987). 

3.2.4 Evolutionary Object Constructs. The existing approach models versions of 
objects (Kim and Chou, 1988). We have developed a mechanism to model the 
fission and fusion of objects (Figure 9). 

1. Evolution: The characteristics of an object may evolve with time. For example, 
a microadenoma may evolve into a macroadenoma over a period of time 
(Figure 10). 

2. Fusion: An  object may fuse with other objects to form a new object with 
different characteristics than either of the constituent objects. 

3. Fission: An  object may split into two or more independent objects. For 
example, the pituitary gland is composed of two parts: neurohypophysis and 



VLDB Journal 3 (4) Chu: Semantic Modeling for Image Retrieval by Content 459 

Figure 9. Evolutionary object constructs 
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adenohypophysis. /ks shown in Figures 2 and 10, Rathke's pouch, the origin 
of the adenohypophysis, develops in the third week of gestation and splits 
into the pars distalis; the pars tuberalis; the pars intermedia; and the cleft. 

/ks an example, adenomas in the pituitary gland are modeled with the hierarchical, 
temporal, evolutionary, and spatial object constructs as shown in Figure 10. The 
pituitary gland has long been considered the master endocrine organ. It lies at the 
base of the brain, beneath the hypothalamus, to which it is connected (Figure 6c) via 
the neural stalk, in a bony cavity known as the sella turcica (or sella). The pituitary 
gland lies behind (East; Figure 6a) the sphenoid sinus, as shown in Figures 2 and 
10. It fills (Figure 6/) approximately three-fourths of the sellar cavity. 

The symptoms of an adenoma depend on its position with respect to its surround- 
ing brain structures. As shown in Figure 10, microadenomas develop inside (Figure 
6d) the pituitary gland, and may cause endocrinological disorders. Microadenomas 
may also evolve (Figure 9) into infrasellar macroadenomas which invade (Figure 6g) 
the sphenoid sinus. 

Based on the model constructs, we present a query language that can express 
the spatial evolutionary content of the images. The model shown in Figure 10 helps 
formulate the user queries in the following section. 

4. Spatial Evolutionary Query Language 

Conventional query languages lack the capability to query the spatial evolutionary 
nature of medical images (Snodgrass, 1987; Roussopoulos et al., 1988; Kim, 1989; 
Navathe and Ahmed, 1989). To remedy this, we propose SEQL, which operates on 
the spatial evolutionary domains of medical images. In addition to alphanumeric 
predicates, SEQL contains constructs to specify spatial, temporal, and evolutionary 
conditions. The spatial operators specify the spatial relations, the temporal operators 
specify the data at a specific point in time, and the evolutionary operators specify the 
evolutionary object sequences of interest. A SEQL query consists of the following 
seven optional clauses: 

[CONTEXT a_view] 
[CONSTRUCT a_view] 
[WHERE clauses] 
[WHICH clauses] 
[WHEN clauses] 
[SELECT clauses] 
[0perat ions] 

CONTEXT references the view created by the user. CONSTRUCT creates a view cus- 
tomized to the interests of the individual user. WHERE clauses describe the selection 
criteria using spatial and traditional arithmetic predicates. WHICH clauses describe 
the evolutionary processes among object types. WHEN clauses select the appropriate 
snapshot of the database. SELECT selects the desired data items. Operations specify 
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the system or user-defined operations, such as display, rotate, and superimpose on 
the selected data. The full text of the query language in Backus-Naur form is given 
in the appendix. 

4.1 Construct Clauses 

CONSTRUCT creates a database view customized to the interest of the individual user. 
The view can be specified by its intentional pattern and extensional pattern types. 
For example, to construct a view for patients of age 18 or older, we have: 

CONSTRUCT 

ViewAdultPatient = ( Patient [ age >= 18 ]) 

We can refer to the above view by using the following clause: 

CONTEXT ViewAdultPat lent 

4.2 Where Clauses 

WHERE clauses restrict the extensional patterns that satisfy certain conditions. Spatial 
conditions and conventional alphanumeric predicates can be specified in WHERE 
clauses. Comparison conditions involving aggregation functions such as COUNT and 
AVG are also allowed. The alphanumeric predicates used in our model are similar 
to those in the relational model. For example, to select the ,asian patients from 
the database, we have: 

WHERE Patient ethnicGroup=' 'Asian' ' 

The WHERE clauses allow the user to directly manipulate the spatial objects derived 
from the images in the system. Some constant spatial objects such as points, line 
segments, circles, spheres, and rectangles with certain sizes can also be constructed 
in the system to help formulate the query. 

4.2.1 Symbolic Spatial Feature Predicate. Spatial feature queries involve the spatial 
characteristics of the image objects, while spatial relation queries deal with the 
orthogonal and containment relations. 

By inspecting the object classes, the user knows what spatial features are available 
for querying and, hence, if the user wants to retrieve the images with a microadenoma 
of 5ram or larger in diameter, the user writes the following predicate: 

WHERE Microadenoma diameter >= 5 mm 

4.2.2 Symbolic Spatial Relation Predicate. The user can also query on the orthogo- 
nal relations among objects. For example, to retrieve images of the macroadenoma 
that is on top of the sphenoid sinus, the user writes: 
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WHERE Macroadenoma center ON_TOP_OF SphenoidSinus center 

Querying can also be performed on the containment relations of the image objects. 
To retrieve the image of a macroadenoma that invades the sphenoid sinus, the user 
writes: 

WHERE Macroadenoma INVADES SphenoidSinus 

4.2.3 Direct Spatial Predicate. Direct spatial queries requiring point addressing 
capabilities that directly search for objects over a certain area of the image can 
also be described in SEQL. For example, to retrieve the images in which the 
macroadenoma extends within a 20 mm radius from the center of the hypothalamus, 
the user writes: 

WHERE Macroadenoma INTERSECTS SPHERE( Hypothalamus center, 20 mm) 

SPHERE(point, radius) is used to construct a sphere in the 3-D space from a certain 
point with a certain radius. The WHERE clauses may be combined with other clauses 
for querying database contents. 

4.3 When Clauses 

The WHEN clause selects the appropriate snapshot of the data of interest at a particular 
point in time. We now discuss the temporal operators. 

Temporal functions manipulate time points: START_TIME, END_TIME, EVENT_TIME, 

and RECORD_TIME. They are the operators used in the query language to retrieve 

the start time, end time, event time, and record time of objects. 

Temporal ordering functions. Temporal ordering of an object history sorts the object 
versions in ascending order, based on their time stamps so that retrieval of object 
versions in a specific order can be specified, including FIRST, LAST, N_th, PRIOR, 
and NEXT. 

Temporal interval comparison operators'. To specify a more complex temporal con- 
dition, the interval specified in the WHEN clause may be subjected to temporal 
interval comparison operators (Snodgrass, 1987; Navathe and Aaamed, 1989), such 
as PRECEDES, FOLLOWS, and DURING. These operators specify how the intervals 
following the WHEN clauses are related to some other time intervals. The time point 
comparison operators such as BEFORE and AFTER are also included. 

4.4 Which Clauses 

The WHICH clause describes various evolutionary processes on a set of evolving objects. 
The evolution of hand bones, such as the metacarpal, provides a good example on 
the use of evolutionary operators. The evolution of the thumb metacarpal can be 
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Figure 11. Fused tabular bone for the thumb metacarpal 
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described in eight stages from stage B to stage I (Figure 11). 4 The thumb metacarpal 
is fused from two pieces of bones, the epiphysis and the unfused tabular bone, into a 
fused tabular bone in Stages H and I. There are three kinds of evolutionary processes 
in general: evolution, fusion, and fission. A discussion of each evolutionary process 
follows. 

4.4.1 Evolution. The condition objectdypel EVOLVED_FKOM objectdype2 selects all 
single-step evolutionary sequences in which an object instance of object_type2 evolves 
into an object instance of object_type1. For example, applying the single-step evolution 
operator EVOLVED_FKOM in the following WHICH clause 

WHICH ThumbMetacarpalEpiphysisStageF 

EVOLVED_FROM ThumbMetacarpalEpiphysisStageE 

onto the objects in Figure 11 selects the evolutionary sequences for John and Mary 

4. The  development  of hand bones goes through several stages. We model each stage as an object class 

to allow us retrieve and manipula te  information at different stages. For more  detailed discussions, the  
interested reader is referred to Tanner et al. (1975). 
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Figure 12. Evolution operators for thumb metacarpal 
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from stage E to stage F for the epiphysis of the thumb metacarpal as shown in 
Figure 12a. 

The condition object_type1 EVOLVED+_FROM object_type2 selects all multiple step 
evolutionary sequences in which an object instance of starting object_type2 evolves 
into another object instance of object_type1 in the evolutionary net. For example, 
an X-ray taken of Patient Joy at age 8 is an object instance in stage E. The fact 
that she did not have another one age 12, is an object instance in stage G. Using 
the EVOLVED+_FKOM in the following WHICH clause 

WHICH ThumbMetacarpalEpiphysisStageG 

EVOLVED+_FRSM ThumbMetacarpalEpiphysisStageE 

selects the evolutionary sequences for John and Joy on the evolutionary net from 
stage E to stage G as shown in Figure 12b. 

The condition "object_type1 EVOLVED*_FKOM object_type2" selects all single- and 
multiple-step evolutionary sequences in which an object instance evolves into another 
object instance in the evolutionary net where object_type2 evolves into object_type1 
as follows: 

WHICH ThumbMetacarpalEpiphysisStageG 

EVOLVED*_FKOM ThumbMetacarpalEpiphysisStageE 

selects the sequences for John, Mary, and Joy from stage E to stage G, as shown 
in Figure 12c. 

4.4.2 Fusion. The operator FUSED FKOM selects the evolutionary sequences in an 
evolutionary net where a fusion process of several objects occurs. For example, 

WHICH ThumbMetacarpalFusedTabularBoneStageH 

FUSED_FROM 

ThumbMetacarpalEpiphysisStageG, 

ThulabMetacarpalUnfusedTabularBoneStageG 
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Figure 13. Fusion operators 
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Epiphysis and unfused tabular bone are fused into fused tabular bone for thumb metacarpal. 

selects the single-step evolutionary sequence for Joy (Figure 13a). 
We can define the multiple step fusion operators, FUSED+_FI~0M and FUSED*_FROM 

in the same manner as the multiple step evolution operators. For example, 

WHICH ThumbMetacarpalFusedTabularBoneStageI 

FUSED+_FKOM 

ThumbMetaearpalEpiphysisStageG, 

ThumbMetacarpalUnfusedTabularBoneStageG 

selects the multiple-step evolutionary sequence for John (Figure 13b). 
The condition "object_type FUSED*_FROM object_type1, object Jype 2, ..., object_type ~ " 

selects all the evolutionary sequences with a fusion process in the evolutionary net 
from object_type1, object_type2, ..., and object_typek to object.type. For example, 

WHICH ThumbMetacarpalFusedTabularBoneStageI 

FUSED*_FROM 

ThumbMetacarpalEpiphysisStageF, 

ThumbMetacarpalUnfusedTabularBoneStageF 

selects the evolutionary sequences with a fusion for John, Mary, and Joy as shown 
in Figure 13c. 
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4.4.3 Fission. Similarly, there are three operators to describe the fission processes: 
SPLIT FROM, SPLIT+ FROM, and SPLIT*_FROM that are used to select the evolu- 
tionary sequences where an object splits into several objects. The fission condition 
"object_typel, object_type2, .... object_typek SPLIT FROM object_type" selects all single- 
step evolutionary sequences with a fission in the evolutionary net from object_type 
to object.lypel, objectdype2, ..., and objectdypek. SPLIT+_FROM and SPLIT*_FROM are 
defined similarly. 

4.5 Select Clauses 

The SELECT clause identifies the attributes and object types that are to be operated 
on by the specified operations. It eliminates attributes and classes that are not 
relevant to the operations. 

The operations in the Operations clauses can be either system-defined or user- 
defined data, image manipulation, or visualization operations (Chock et al., 1984), 
such as movieJoop, display, contour, rotate, and superimpose. 

4.6 Sample Query 

In this section, we present a sample query to illustrate the use of SEQL constructs 
to express certain clinical queries associated with radiographic findings in diagnostic 
images. 

Sample query: Retrieve the image frames showing a microadenoma 5 m m  or larger in di- 
ameter which is developing inside the pituitary gland, which has evolved into a macroade- 
noma invading the sphenoid sinus, and which has extended within a 20 m m  radius o f  the 
hypothalamus in one year's time. 

This query involves an evolving adenoma and its adjacent objects. Based on the 
object relations captured in the data model (Figure 10), as well as the object classes 
and their relations defined for each object, the sample query can be translated into 
the following SEQL query by using the AFTER, EVOLVED_FROM, CONTAINS, and 
INVADES operators: 

WHEN 

WHICH 

WHERE 

SELECT 

DISPLAY 

Microadenoma EVENT_TIME + i year AFTER 

Macroadenoma EVENT_TIME 

Macroadenoma EVOLVED_FROM Microadenoma 

PituitaryGland CONTAINS Microadenoma diameter >= 5 mm AND 

Macreadenoma INVADES SphenoidSinus AND 

Macroadenoma INTERSECTS SPHEKE(Hypothalamns center,20 mm) 

Image 
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Figure 14. Computation DAG for the sample query 
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5. Processing SEQL Queries 

The major challenge of processing SEQL queries in large pictorial databases is 
maintaining efficiency while providing spatial and evolutionary querying capabilities. 
A SEQL query is first parsed and transformed into a computation directed acyclic 
graph (DAG; Fischer and LeBlanc, 1988) which represents the execution sequence 
of the query. The computation DAG for the sample query is shown in Figure 14. 

The inner nodes in the DAG represent the operators of the query such 
as the INTERSECTS, SPHERE, AFTER, EVOLVED_FROM, INVADES, CONTAINS, and 
> = ,  while the leaf nodes represent the data input to those operators. The op- 
erators in the query are classified into four types: arithmetic and symbolic spatial 
operators, evolutionary operators, temporal operators, and direct spatial operators, 
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which correspond to their respective clauses in the query. There is a method defined 
for each operator in the SEQL query. Therefore, to generate the software code 
for the DAG, the query processor associates the operators in the DAG with their 
corresponding methods. The processing of the query starts from the terminal nodes 
and gradually moves upward. 

5,1 Arithmetic and Symbolic Spatial Predicate Processing 

Processing alphanumeric operators such as > =  is made very straightforward by 
translating them into the corresponding operators in Gemstone. To process the 
symbolic spatial operators, a method performs table lookup through alphanumeric 
comparisons on the corresponding object classes that store the symbolic spatial 
information. For example, to search for the microadenoma 5ram or larger in 
diameter, the object class MicroadenomaSet (defined in Section 3) is searched, 
the diameter of each microadenoma instance in MicroadenomaSet is compared, 
and qualified object instances are retained for further processing. The operator 
INVADES is mapped to a search operation on object classes representing the invasion 
among objects, if the invasion relations exist. Otherwise, the operator is mapped 
to a direct spatial search on the image object. Therefore, to process the symbolic 
spatial relation INVADES, the object class MacroadenomaInvadesSphenoidSinus is 
searched. Since every instance in MacroadenomaInvadesSphenoidSinus represents 
a macroadenoma invading the sphenoid sinus, all of the instances are returned for 
evolutionary predicate processing. 

5.2 Evolutionary Predicate Processing 

A method is defined for each evolutionary operator. Each operator takes instances 
from two or more object classes as inputs, and returns the evolving object instances. 
For example, to locate a microadenoma evolving into a macroadenoma over time 
using the EVOLVED_FROM operator (Figure 14) after applying the arithmetic and 
symbolic spatial operators, the corresponding method will examine the qualified 
object instances in both object classes Microadenoma and Macroadenoma and verify 
whether there is an evolutionary link (object pointer) among them. Next, the 
qualified evolving object instances will be returned. For more discussion on the 
evolutionary query processing, the interested reader is referred to Chu et al (1992). 

5.3 Temporal Predicate Processing 

Once the evolutionary object instances are returned, temporal operators are ap- 
plied to select the appropriate temporal objects and compare their time intervals. 
For example, in the sample query, the event time of the microadenoma and the 
macroadenoma are compared to determine whether the evolution took place in less 
than one year's time. 
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5.4 Direct Spatial Predicate Processing 

The direct spatial search is performed through the manipulation of the image object 
at pixel level. We use a spatial indexing technique, the R*-tree, to speed up the 
retrieval of image objects. 5 The R*-tree (Beckmann et al., 1990) is an enhanced 
version of the R-tree. It is a page-based spatial indexing scheme that stores the 
bounding boxes of the image objects. An indexing tree is built for all the instances 
in an object class that require spatial indexing. At present, there are two R*-trees 
in our system, one for hand images and one for brain images. We have more than 
200 hand images and approximately 20 identified objects in each image. The total 
storage of the R*-tree for hand images is less than 100 KB, with a utilization around 
70%. Because we have fewer brain images stored in the system, the total storage 
of the R*-tree for brain images is around 50 KB. The R*-tree is implemented in C 
and is fully integrated with Gemstone. 

Using the spatial indexing technique, we speed up the retrieval of image object 
candidates for further examination with direct spatial operators. Similar to the other 
operators, a method is defined for each direct spatial operator on the appropriate 
image object classes. 

For example, to determine whether a macroadenoma is within a 20 mm radius 
from the hypothalamus, the center of the hypothalamus is retrieved, and a sphere 
with a 20 mm radius is created at the hypothalamus center. Then, all macroadenomas 
with a bounding box overlapping that of the sphere are retrieved. To confirm an 
intersection, a pixel-level operation determines whether any point on the boundary 
of the macroadenoma occupies the same position as the sphere. 

At the end of the query execution, all the images that satisfy the query predicates 
are returned. Figure 15 portrays the returned image frames (actual screen output) 
from our system after launching the sample query. 

6. Implementation 

A prototype image management system has been implemented to demonstrate the 
feasibility of the proposed approach. Since 1991, we have been building the pro- 
totype with a commercial object-oriented database, Gemstone, with VisualWorks 
as the data modeling and user interface development environment. Currently, the 
system runs on a Sparc 10 with 4 GB disk storage. Using VisualWorks, we have 
also developed a graphical interface, PICQUERY+ (Cardenas et al., 1993), with 
pull-down menu and "point and click" features, for querying the database in a 
user-friendly manner. PICQUERY+ uses a tabular user interface. It also employs 
a hierarchical window system and graphical representation of objects (e.g., icons). 

5. If the image objects are not  properly registered, then certain registration calibration of the images is 
needed  to assure the accurate use of the R*-tree. 



470 

Figure 15. Returned image frames 
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Buttons are included in the query window to perform such functions as schema and 
object display and query confirmation. 

At present, the prototype system has a few hundred hand X-ray and MRI brain 
scan image studies. Feature extraction for hand X-rays was performed automatically 
for patients between the ages of 3 and 11 years (Pietka et al., 1991b). To extract 
features from brain MRI images, we use a commercially available MRI image 
segmentation and rendering system from ISG Corporation on many routine inter- 
ventional brain procedures. Contours of objects showing good signal-to-noise ratios 
can often be automatically acquired using available minimum/maximum threshold- 
ing methods. The system also includes a semi-automatic region growing program 
after specification of an initial seed point, and manual contouring by hand outlining 
object boundaries. A comprehensive set of tools exists to edit (i.e., remove and 
splice) existing contours. 

The time to process a query depends on the complexity of the query and 
the size of the database involved. In our system, all the images reside on the 
disk. The response time ranges from 2 seconds to 15 seconds, with an average 
of 5 seconds. Due to the small size of our current database, we did not observe 
significant improvement on response time when using the R*-tree, as compared to 
sequential scanning. The display of images requires an additional 5 to 30 seconds, 
depending on the size and number of images. 

The response time for a much larger system will depend on the size of the 
database and the query optimization in use. The scalability of our system is still 
under investigation. 

7. Future Work 

We plan to apply the proposed approach to model breast cancer and to manage 
mamogram databases. Our approach can also be used to represent evolutionary 
spatial objects in geographical information system (GIS) applications. 

Further, medical queries are often conceptual and expressed in imprecise medical 
terms, for example, "retrieve the images demonstrating a brain tumor one gyrus 
away from the central sulcus." Current query processing accepts only precisely 
specified queries and only provides exact answers. This requires users to fully 
understand the problem domain and the database contents. The system returns null 
information if the exact answer is not available. To remedy these shortcomings, it 
is necessary to employ cooperative query answering (Chu and Chen, 1992), which 
provides approximate and associative answers that are relevant to the original query, 
even though not explicitly asked for by the user. 

8. Conclusion 

In this article, a semantic data model was introduced to capture the hierarchical, 
spatial, temporal, and evolutionary semantics of the images. The model mimics the 
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user's conceptual view of the image content, providing the framework and guidelines 
for image preprocessing to extract the features and relations of image objects. Based 
on the model constructs, a new query language, SEQL, is presented to express spatial 

J 
evolutionary queries, providing direct manipulation Capabilities of image objects. 
With semantic information captured in the model, spatial evolutionary queries are 
answered efficiently. The model constructs proposed are general, and also can 
be applied to other domains such as breast cancer modeling and geographical 
information systems. 

A prototype image management system has been .implemented at UCLA to 
demonstrate the feasibility of the proposed approach. The system has been built with 
a commercial object-oriented database, Gemstone, w!th ObjectWorks/VisualWorks 
as the data modeling and user interface development environment. The system 
runs on Sun Sparc 10 workstations. Our preliminary experience suggests that the 
proposed approach can be a feasible and effective way to retrieve images by content 
for large pictorial databases. 
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Appendix 

F o r m ~  syntax of the SEQL in BNF: 

query_block ::= [CONTEXT view_variable] 

[CONSTRUCT_view] 

[WHERE_clauses] 

[WHICH_clauses] 

[WHEN_clauses] 

[SELECT_clauses] 

[Operations] 

CONSTRUCT_view ::= CONSTRUCT [view_variable =] subdatabase 

subdatabase ::= ( object_and_its_attributes 
I [more_object_and_attributes] [subdatabase] ) 

more_object_and_attributes ::= more_object_and_attributes 
object_and_its_attributes I object_and_its_attributes 

object_and_its_attributes ::= object_name[ ~[' attributes ~]' ] 
attributes ::= [attributes,] selected_attributes 

I [attributes,] attribute_predicates 
selected_attributes ::= attribute_name 

I selected_attributes, attribute_name 
attribute_predicates ::= attribute_term 

I attribute_predicate OR attribute_term 
attribute_term ::= attribute_term AND attribute_fac [ attribute_fac 
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attribute_fac ::= [NOT] attribute_prim 

attribute_prime ::= attribute_name comp_op primitive_constant 

WHERE_clause ::= WHERE booleanl 

booleanl ::= bool_terml I booleanl OR bool_terml 

bool_terml ::= bool_terml AND bool_facl I bool_facl 

bool_facl ::= [NOT] bool_priml 

bool_priml ::= spatial_predicates I arithematic_predicate I booleanl 

arithematic_predicate ::= expl comp_op expl 

expl ::= arith_term I expl add_op arith_term 

arith_term ::= arith_fac I arith_term mult_op arith_fac 

arith_fac ::= [add_op] primaryl 

primaryl ::= numeric_constant I objects_~nd_attributes 

I aggregatedterms 
comp_op ::= > I < r >= I <= I = I != 

add_op ::= + I - 

mult_op ::= * I / 

spatial_predicates ::= spatial_objects 

spatial_relations spatial_objects 

spatial_objects ::= objects I points I lines 

I spheres I rectangles 

point ::= c(, numeric_constant c,, numeric_constant 

C,,numeric_constant c), 

lines ::= LINE'(' point c , point ')' 

spheres ::= SPHERE c(, point( numeric constant c), 

rectangles ::= RECTANGLE ((' point (,' point c), 

spatial relations ::= directionalrelation I distance relation 

I containment_relation 

directional relation ::= C0N_'direction(_0F' 

direction ::= single direction I double direction I triple_direction 

single direction ::= EAST I SOUTH I WEST I NORTH I TOP I BOTTOM 

double_direction ::= SOUTH_EAST I EAST_NORTH I EASTTOP I EAST BOTTOM 

I SOUTHWEST I SOUTH_TOP I SOUTH_BOTTOM 

I NORTH_WEST I WEST T0P I WEST BOTTOM 

I NORTH TOP I NORTH BOTTOM 

triple direction ::= SOUTHEASTTOP I EAST NORTH T0P I SOUTH WEST TOP 

I NORTHWESTTOP I SOUTH_EASTBOTTOM J EAST_NGRTH_BOTTOM 

f SOUTHWESTBOTTOM I NORTH_WESTBOTTOM 

distance_relation ::= IS A DISTANCE OF numericconstant FROM 

containment_relation ::= IS passive relation BY I active_relation 

passive_relation ::= SEPARATED I SOCKETED I CONTAINED I INVADED 

active relation ::= EXTERIOR_CONTACTS I INTERIOR_CONTACTS 

I CONNECTS WITH I CONTAINS I INVADES I INTERSECTS 
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WHICH_clause ::= WHICH boolean2 

boolean2 ::= bool term2 I boolean20~ bool term2 

bool term2 ::= bool_term2 AND bool_fac2 I bool fac2 

bool_fac2 ::= [NOT] bool prim2 

boolprim2 ::= boolean2 1 evolutionary_predicate 

evolutionary_predicate ::= objects evolutionary operator objects 

evolutionary operator= EVOLVED_INTO I EVOLVED*_INTO I EVOLVED+_INTO 

I FUSED FROM I FUSED*_FKOM I FUSED+ F~gM 

I SPLIT_INTO I SPLIT* INTO I SPLIT+ INTO 

WHEN clause ::= WHEN boolean3 

boolean3 ::= boolterm3 I boolean30~ bool_term3 

bool_term3 ::= bool_fac3 I bool term3 AND bool_fac3 

bool_fac3 ::= [NOT] bool prim3 

bool_prim3 ::= pred3 I boolean3 
pred3 ::= expS tem_comp_op exp3 

exp3 ::= [temporal_sequence] objectsandattributes 

I temporal_constant 
temporal constant ::= time_point 

I el'time_point, time_pointC] ' I numeric constant 

time_point ::= time_factor add op temporal_constant 

time_granularity 

time_factor:= objects and attributes I NOW 

I temporal constant time_granularity 

tem_comp op ::= DURING I OVERLAPS I MEETS I EQUIVALENT 

I ADJACENT I FOLLOWS I P~ECEDES I BEFORE I AFTE~ 

time_granularity := years I months I weeks I days 

I hours I minutes I seconds 
temporal_sequence ::= FIRST IN] I LAST EN] I Nth IN] I PRIO~ I NEXT 

time_point functions ::= START_TIME I END TIME I EVENT TIME 

I ~ECgRD_TIME 

SELECT clauses ::= SELECT terms 

terms ::= Kterms,] objects_and attributes 

I [terms,] aggregated_terms 
aggregatedterms ::= aggregation function(objects_and_attributes) 

aggregation_function ::= COUNT I MAX I MINI AVG I SUM 
objects_and_attributes ::= query_block I objects I attributes 

objects ::= object I objects, object 
attributes ::= attribute I attributes, attribute 

Operations ::= image_operator[C( ' objects_and_attributesC) '] 

[parameter_list] 
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image_operator ::= PAN i ROTATE [ ZOOM [ SUPERIMPOSE i MASK 

[ COLOR TRANSFORMATION I PROJECT [ THRESHOLDING 
I BOUNDARY [ MOVIE_L00P I DISPLAY I user_defined_function 


