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Study of dynamics of actions of unipotent subgroups on homogeneous spaces
has been attracting considerable attention for the last 30 years. One of the main
reasons for this was that some problems in number theory and, in particular,
in Diophantine approximations can be reformulated in terms of such actions.
M.S. Raghunathan made a remarkable observation that a long-standing conjec-
ture due to A. Oppenheim on values of quadratic forms at integral points can
be deduced from some results about actions of unipotent subgroups. More pre-
cisely, he formulated a conjecture that a closure of an orbit of a unipotent
subgroup in the quotient of a Lie group G by a lattice '<G is an orbit of
a bigger subgroup and noted the connection of his conjecture with Oppenheim’s
conjecture.

Oppenheim’s conjecture was proved in [Mar2] and [Mar3] (see also [D-
Mar3] and [Mar4]) where it was deduced from a theorem about orbits of
SO(2,1) in SL4(R)/SL;(Z). In later papers [D-Mar2] and [D-Mar 3], various
strengthenings of these results were obtained. In [D-Mar 3}, Raghunathan’s con-
jecture was also proved for actions of generic unipotent subgroups on the quo-
tients of G=SL(3, R) by a lattice I'<=SL(3,R). Borel and Prasad proved in
[Bo-Pra] a generalization of Oppenheim’s conjecture in a S-arithmetic setting.
The reader is referred to [Mar 6] for a general survey of the area.

Major progress in the area was made in the last years by Ratner who,
in a series of papers [R2-5], proved Raghunathan’s conjecture for a general
real Lie group G, obtained a classification of all finite invariant measures for
actions of unipotent groups U on G/I, and proved uniform distribution for
actions of one-parameter unipotent groups. The classification of the finite U-
invariant measures (measure rigidity) was obtained in [R24] and the other
results were deduced from the measure rigidity in [R 5].

The main purpose of our paper is to give a proof of measure rigidity
valid for a product of algebraic groups over local fields of characteristic zero.
The impetus for our paper is the path breaking result of M. Ratner for the
case of real Lie groups. Our proof is similar in principle to Ratner’s, but it
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is different in many aspects. In particular, we extensively use algebraic group
theory, as well as some facts about entropy of transformations of homogeneous
spaces.

We use ideas and techniques from [R 2-4] and also from [ Bo-Pra, D-Mar1-4,
Mar2-4, 6]. Let us note that some of the ideas can be tracked back to [Marl,
D1-5R1, W]

Although there are many similarities between our proof and M. Ratner’s,
(in particular, use of dynamical properties of actions of unipotent groups in
combination with ergodic theorems for actions of nilpotent groups), we think
that it would be superficial and misleading to give any specific references to
[R2-4] because of the substantial differences in approach and methods. We
would like to add that we were strongly influenced by arguments from [R3]
showing how to obtain and to use the information about the local structure
of the set of uniform convergence in the proof of measure rigidity. Inspired
by these arguments of Ratner, we finally came to our Proposition 8.3. Subse-
quently we were able to replace in our proof analogs of some of Ratner’s decisive
but intricate arguments by more transparent arguments using entropy (it seems
that a similar replacement can not be done in Ratner’s proof itself). On the
other hand, some of the most important ingredients in our approach such as:
the idea of enlarging the group preserving an ergodic invariant measure (a mini-
mal invariant subset in [Bo-Pra, D-Mar1-4, Mar2—4, 6]) by using rational maps
into the normalizers of unipotent subgroups, and the use of properties of multi-
dimensional unipotent actions derived from basic properties of polynomials
and Chevalley’s theorem, are motivated largely by [Bo-Pra, D-Marl-4,
Mar2-4, 6].

We now introduce some notation and give the formal statements of the
main results. Let 7 be a finite set and, for every ve 7, let K, be a local (ie.
nondiscrete locally compact) field of characteristic 0 and G, an algebraic group
defined over K,. Denote by G the direct product [] G,(K,) of locally compact

ved

groups. Let I' be a discrete subgroup of G and let u be a Borel probability
measure on G/I'. The group G acts by left multiplication on G/I'. Denote by
2 the (closed) subgroup of all elements of G preserving p. The measure p is
called algebraic if there exists a point xeG/I" such that the orbit X x is closed
in G/T' and u(Zx)=1. For every veJ, let U, be a unipotent K, -subgroup of
G,. Let us denote the subgroup [] U,(K,) by . The main result of this paper
is the following, ved

Theorem 1 If the measure y is U-invariant and %-ergodic, then u is algebraic.
Let H=]] H, be a subgroup of G such that every H, is generated by groups

ved
of K,-rational points of unipotent K -subgroups of G,. It is known that if
u is H-unvariant and H-ergodic, then u is V-ergodic for any maximal unipotent
subgroup V of H. (If G is a real group, this result immediately follows from
the results in [Mo]. When G contains nonarchimedean factors, the proof is
the same as in the real case.) Thus we obtain the following strengthening of
Theorem 1.

Theorem 2 With the above notation if u is H-invariant and H-ergodic, then p
is algebraic.

Theorems 1 and 2 are analogous to Ratner’s measure rigidity theorems for real
Lie groups (see [R4]). Note that in [R4], the measure rigidity for groups gener-



Actions of unipotent groups 349

ated by their unipotent subgroups is deduced from the measure rigidity for
unipotent subgroups in a different way without the use of Mautner’s phenome-
non (see [Mo]).

The paper is organized as follows: The Sects. 1-4 have auxiliary character.
After fixing in Sect. 1 the appropriate terminology and recollecting some known
facts from the theory of linear algebraic groups, we define in Sect. 2 the notion
of elements of class o/ and establish some facts related to the horospherical
subgroups and the existence of K-rational cross-sections in K-algebraic groups.
Section 3 contains the proofs of assertions we need from ergodic theory. Some
of our arguments are analogous to the arguments used in the proof of the
Borel-Wang density theorem. In Sect. 4, we prove a technical result about the
structure of algebraic groups over local fields. In Sect. 5, we introduce a special
kind of rational maps (called quasiregular maps) from a unipotent subgroup
U of G to its normalizer A4(U). In Sect. 6, we investigate the properties of
the quasiregular maps and in Sect. 7 we show that under certain conditions
there exists a quasiregular map ¢ such that the elements from Im(¢p) preserve
a given probability measure y on G/I'. (In fact, we prove this result under
the weaker assumption that I" is any closed in the Hausdorff topology subgroup
of G.) Using the results from Sects. 6-7, we prove in Sect. 8 that there exist
elements from the class o/ in G preserving yx and also having many other “nice”
properties. In Sect. 9, we prove some results about entropy of measure-preserving
transformations of G/I'. The central is Theorem 9.7 which represents interest
of its own. The proof of Theorem 9.7 is modeled over the proofs of some results
in the paper of Ledrapier and Young [Led-Y]. In Sect. 10 we complete the
proof of Theorem 1. Finally, in Sect. 11, we formulate some theorems about
closures of orbits of unipotent subgroups, uniform distribution and values of
families of quadratic forms. We shortly explain how the proofs in the real case
can be adopted to our more general setting.

Theorems 1 and 2 of this paper were announced in [Mar-To] together with
a detailed sketch of the proofs. Almost simultaneously with the appearance
of [Mar-To], the authors learned about [R7] where Ratner announced the
generalization of her results from [R4] and [RS5] for the S-arithmetic case.
In particular, she announced Theorem 1 and 2 above as well as Theorems 11.1
and 11.2 from Sect. 11 in a slightly more general setting (more precisely, for
a class of central extensions of linear groups).

1 Preliminaries

1.1 Notation and Terminology. Let J be a finite set. For ve7, let K, be a
local (i.e. nondiscrete locally compact) field of characteristic 0 with the normal-
ized absolute value | |,. Denote by K, the direct sum of all K,, ve.7. By
an extension K’y of K,y we mean a direct product of field extensions K, of
K,, ve7 . Define a function | |: Ky —»R* U {0} as follows: if xeK, then |x|
= [T Ix,l» where x, denotes the v-component of x. If K, is an algebraic extension
ved
of K, then the unique extension of | |, (resp. of | [} to an absolute value
on K (resp. on K’;) will also be denoted by | |, (resp. by | ).
By a K g-algebraic group H (resp. a K -algebraic variety M) we mean a
(formal) direct product n H, of K -algebraic groups H, (resp. a direct product
ved
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[T M, of K, algebraic varieties M,). A map f: M—>M’, where M and M'
ved
are K s-algebraic varieties, is called K ,-rational (resp. K y-regular) if f is a prod-
uct of K -rational (resp. K, regular) maps f,: M,—M,, ve. 7. Analogously we
define other similar notions such as K g-rational representation, K y-rational
character of a K s-algebraic group, K s-algebraic subgroup etc. By dim M we
mean the dimension of M that is the sum of the dimensions of M, e .

As usual V (k) denotes the set of k-rational points of a k-variety V. If K5
is an extension of Ky and M= ]| M, is a K -algebraic variety we denote

ved
the product [] M,(K}) by M(KY). We will call M(K’;) the set of K's-rational
ved

points of M or shortly the set of Ks-points of M. In case of groups, H(K')
will be called the group of K'j-rational points or the group of K'y-points of
a K 5 algebraic group H.

If M, are linear spaces defined over K, then M will be called a linear
K s-space. In this case M(K 5) is a finitely generated K ;-module. By the Grass-
mannian variety Gr(M) (resp. Gr(M(K »))) we mean the direct product of Grass-
mannian varieties Gr(M,), veJ (resp. Gr(M(K,)), ve.J"). There is a natural
structure of a projective K y-variety on Gr(M), and Gr(M)(K ) is naturally
identified with Gr(M(K ;)).

1.2 IfH=[] H,is a K s-algebraic group we denote by Lie(H) the direct product
veg

[1 Lie(H,) of the Lie algebras Lie(H,) of H,. Every Lic algebra Lie(H,) has

ved

a K,-structure. By Lie(H,(K,)) we will denote the Lie algebra of K,-rational

points of Lie(H,). Note that Lie(H,(K,)) is naturally identified with the Lie

algebra of the group H, (K,) considered as a Lie group over K,. We set

Lie(H(K7))= [ Lie(H,(K),).

ved

We will call Lie(H) (resp. Lie(H(K ;))) the Lie algebra of H (resp. H(K ;)). One
can naturally define the adjoint representation Ad of H (resp. H(K ;)) on Lie(H)
(resp. Lie(H(K 7).

Let H" (resp. Lie(H)™) denote the set of unipotent (resp. nilpotent) elements
in H (resp. in Lie(H), i.e. H® (resp. Lie(H)™) is the direct product of HY (resp.
Lie(H,)™), veZ . Denote by exp: Lie(H)™ —» H" (resp. In: H® — Lie(H)™) the
product of exponential maps exp,: Lie(H,)™ (resp. the product of logarithmic
maps In,: H® — Lie(H,)"), ve 7. Since HY (resp. Lie(H,)™) is a K,-subvariety
in H, (resp. in Lie(H,)) we have that H™ (resp. Lie(H)™) is a K, -algebraic
subvariety in H(resp. in Lie(H)). Since the maps exp, and In, are K -regular
isomorphisms and In,=exp, !, we have that exp and In are K -regular
isomorphisms and In=exp~!. We also have that the maps exp and In are H-
equivariant, i.c. exp(Ad(h) y)=hexp(y)h~" and In(hxh™Y)=Ad(h)In(x) for all
heH, yeLie(H)™ and xe H®"

1.3 By Zariski topology on a K s-algebraic variety M= || M, we mean the
ved

product of the Zariski topologies on M,, ve. 7. The variety M will be called

connected if M, is connected in the Zariski topology for every ve . We say
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that a subset X <M is Zariski dense (resp. Zariski open, Zariski closed etc.)
if X is dense (resp. open, closed etc.) in the Zariski topology. We will denote
by X the Zariski closure in M of a subset X =M. Let X cM(K ;) and f: X >N
be a K -rational (resp. K, regular) map to a K ,-algebraic variety N. Then
the restriction f'| X will be also called K ,-rational (resp. K ;-regular) map.

The topologies on the local fields K, ve.7, induce a locally compact Haus-
dorff topology on M(K,). We will refer to this topology as Hausdorff topology
on M(K,). A topology induced on M(K,) by the Zariski topology on M will
be called Zariski topology on M(K,). It is easy to see that the Zariski topology
on M(K,) is weaker than the Hausdorff topology.

By a K -algebraic subvariety of M(K ;) we mean the Zariski closed subset
of M(K) or, equivalently, the set of K -points of a K ;-algebraic subvariety
of M. Analogously we define the notion of a K -algebraic subgroup of H(K ;)
where H is a K s-algebraic group.

1.4 If k is a local field, ¢ is a finite separable extension of k and F is a /-group
then there is a natural topological isomorphism between group F(¢) and
(R, F)(k) where R,, denotes the restriction of scalars functor. Under this
isomorphism unipotent elements go to unipotent elements. On the other hand,
any local field of characteristic 0 is R, C or a finite extension of Q,. Therefore
for our purpose (study of actions of unipotent groups or groups generated by
unipotent elements) we can assume when it is necessary that 7 is a finite set
of normalized valuations of the field Q of rational numbers. Then K,,ve?,
is either R or Q, and for different v and v’ local fields K, and K, are not
isomorphic.

1.5 If A is a locally compact group, Bc 4 is a closed subgroup, and xeA4
normalizes B then by a(x, B) we denote the module of the restriction of Int(x)
to B. Thus 8(xYx~!')=a(x, B) 0(Y) where Y< B and 6 is a Haar measure on
B.

Let H be a K s-algebraic group, let L be a K -algebraic subgroup, and
let xeH(K ) normalize L. Then a(x, L(K;)) is equal to the product of the
numbers a(x,, L,(K,)), veJ . For every ve7, let us denote by Ady(x,) the
restriction of Ad(x,) to Lie(L,). Then from the standard description of Haar
measures on real and p-adic Lie groups we get that a(x,, L,(K,))=|det Ad,(x,)],-

Let us formulate some well known results about algebraic groups in terms
of K ,-algebraic groups.

1.6 Proposition (sce [Bo-Ti]) Suppose that a K, -algebraic group H acts
K s-rationally on a K ;-variety M and x is a point in M(K 5). Then

() the subset H(K ;)x is closed and open in (Hx)(K ;) and hence is locally closed
in M(K y);

(b) the natural map H(K;)/H(K,),—H(K;)x is a homeomorphism, where
H(K5),={heH(K;)|hx=x}.

1.7 Proposition (see [Bo-Ti]). Let f: F —H be a K y-morphism of K 5-algebraic
groups.

(a) The natural homomorphism F(K ;)/(Ker f)(K ;)—H(K 5) is a proper map.

(b) If Kerf is finite then f: F(K ;) —H(K 7) is a proper map.

(c) If f is an epimorphism then f: F(K ;) —H(K ;) is an open map.

L8 Proposition (see [Bo, 15.7]). Let H be a K y-algebraic group and let F be
a solvable K ;-split K y-algebraic subgroup of H (i.e. F=[] F, where F, is a

ved
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solvable K,-algebraic group split over K, for every ve7). Let f: H-HJF be
the natural K g -morphism from H to a K -variety HJF. Then f(H(K))
=(H/F)(Ky).

19 Let F be a K -algebraic subgroup of H. We say that a K -subvariety
L of H is a rational cross-section for H/F if ee L. and the “multiplication map”
LxF—>H, (x, y)-xy, is a K y-isomorphism of L. x F onto a Zariski open dense
subset A of H. If A=H then we say that L is a regular cross-section for H/F.
The set L(K;) will be called rational (resp. regular) cross-section for
H(K;)/F(Ky).

The following lemma easily follows from the fact that if char K=0 then
any bijective K-morphism of normal K-varieties is a K-isomorphism.

Lemma. Let a K ,-algebraic group H act K s-rationally on a K s-algebraic vari-
ety M. Let xeM(K 5) and F ={heH|hx =x}. Assume that Hx is Zariski dense
in M. Then for any rational cross-section L for H/F, the orbit map £+—{x,
€L, is a Ky-biregular isomorphism of L onto a Zariski open dense subset Lx
of M.,

1.10 Let F be a locally compact group and let ¢ be a continuous automorphism
of F. Recall that the automorphism ¢ is said to be contracting if for every
compact set L< F and for every neighborbood U of the identity, there exists
a positive integer m=m(L, U) such that ¢"(L) < U for all n>m.

1.11 If X is a compact metric space and (X)) is the space of closed non-empty

of X subsets then there is a standard Hausdorff metric on 4(X) given by

d(A,B)= sup {d(x,B), d(y, A)}. If Y is a locally compact s-compact metric
xeA,yeB

space then by Hausdorff topology on ¥(Y) we mean the topology induced on

%(Y) by a Hausdorff metric on €(Y’), where Y’ is the one-point compactification

of Y.

1.12 The following lemma is a standard fact about differential maps of analytic
varieties over local fields and it easily follows from the implicit function theorem.

Lemma, Let K be a local field, m and r positive integers, Y a neighborhood
of 0 in K"*"=K™"xK", and f: Y- K" a differentiable map such that B(0)=0.
For every xe K™ define f.: Y, — K" by B.(y)=[(x, y) where Y, = {yeK"|(x, y)e Y}.
Assume that the differential of f, at 0 is a surjective map from K™ onto K'.
Then there exists an open neighborhood O, of 0 in K™ and open neighborhoods
U, and O, of O in K" such that for every xe(, the set f.(0,) is open in K,
B (0,)> 0, and B, maps O, diffeomorphically onto B,(0,).

2 Class </ and horospherical subgroups

2.1 Lemma. Let K be a local field with an absolute value| |, let F be a K-group,
and let geF(K) be an element diagonalizable over K. Denote by T the Zariski
closure in F of the group {g)> generated by g. Then the following conditions
are equivalent:

(@) there exists neK such that jn|>1 and all eigenvalues of g are integer powers

of m;
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(b) T is a 1-dimensional K-split torus and |x(g)+1 for any (defined over K)
nontrivial character y of T;

(c) T is a 1-dimensional K-split torus and the factor group T(K)/{g) is compact.

The proof of the above lemma easily follows from standard results about algebra-
ic tori (see [Bo, Chap. II1]) and from the fact that the quotient of the multiplica-
tive group K* of K by a cyclic group {a) generated by aeK* is compact
if and only if {a| 1.

Definition. Let geH(K ;) where H is a K ,-algebraic group. We say that g
is an element from the class o if, for every ve.7, the v-component g,eH, (K,)
of g satisfies one of the conditions (a)-(c) of the above lemma.

2.2 Proposition. Let a K s-algebraic group H act K g-rationally on a projective
K y-algebraic variety P. Let s be an element from the class o/ in H(K ) and
xeP(K 5). Then a sequence {s"x} converges to a point yeP(K ;) in the Hausdorff
topology when n — + 0.

This proposition easily follows from the fact that every morphism o: VW
of an algebraic curve into a projective algebraic variety W can be extended
to a morphism &: V'—>W where V' is a completion of V. (It is enough to
apply this fact to orbit maps t—tx,, teT,, where ve 7, x, is the v-component
of x and T, is the Zariski closure of the group {s,) generated by the v-component
s, of 5.)

2.3 Lemma. Let F be a locally compact group, D < F a close subgroup and U F
an open subgroup. Assume that F/D is compact. Then U/U N D is compact.

To prove this well known lemma, it is enough to identify U/U D with the
U-orbit of eDeF/D and notice that, since U is open, all U-orbits in F/D are
open and consequently all U-orbits are closed.

2.4 Proposition. Let S be an open subgrop of the group of K,-points of a
K ;-algebraic torus. Then there exists a discrete cocompact subgroup S,<S con-
sisting of elements from the class <.

Proof. In view of Lemma 2.3, we can assume that S=S(K ;) where S is a
K s-algebraic torus. It is enough to consider the case where 7 consists of one
element v. Let S; denote the maximal K ,-split subtorus of the K,-torus S. Since
S(K,)/S4(K,) is compact (see 1.7(a) and [Pra]) we can assume that S is split
over K,. Fix an element neK, such that |n|,>1. Put S;={xeS(K,)|x(x) is
an integer power of n for every K,-rational character y of S}. Since S is a
direct product of 1-dimensional K, -split tori, we easily get that S, is a discrete
cocompact subgroup of S(K,) and each xe S, is an element from the class .«¢.

2.5 Let H be a K ;-algebraic subgroup of a K s-algebraic group L. Set H=
H(K ;) and L=L(K ). For every geL normalizing L we set

Wi (g)={xeH|g"xg " —ewhenn— —oo},
Wy (g)={xeH|g"xg "—ewhenn- + o0},
Zy(g)= {erlgxg‘

t=x}.
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Let us call Wy (g) and Wy (g) horospherical subgroups of H corresponding
to g. When this does not lead to confusion we will write W*(g), W™ (g) and
Z (g) instead of Wy (g), Wy (g) and Z(g), respectively.

Proposition. (a)W*(g) and W (g) are groups of K -points of unipotent
K s-algebraic subgroups W™ (g) and W™ (g) of H.

(b) The Lie algebra of W*(g) (resp. of W™ (g)) coincides with the linear span
of the set of eigenvectors x of the transformation Ad(g) with eigenvalues A(x)
such that |A(x)]>1 (resp.|1(x)| < 1).

() The subgroup Z(g) normalizes W™ (g) and W7T(g). Automorphisms
Int(g™")|W* (g) and Int(g)| W ~ (g) are contracting.

Proof. The fact that W™ (g) and W™ (g) are unipotent subgroups normalized
by Z(g) easily follows from the definition of the sets W*(g) and W~ (g). Since
the map In: H* » Lie(H)® is H-equivariant and K ,-biregular (see 1.2), we
have that a unipotent element u of H(K ) belongs to W*{g) (resp. W™ (g))
if and only if Ad(g") In(u) converges to 0 when n— —oo (resp. n— + o0). It
remains now to notice that if A is a diagonalizable over K linear transformation
of a finite-dimensional vector space V over a local field K with an absolute
value | | then the set {veV]A"v -0 when n— + oo} coincides with the linear
span of the set of eigenvectors x of the transformation 4 with eigenvalues A(x)
such that |A(x)|< 1.

2.6 Lemma. Let F be a group and let D and L be subgroups of F. Assume
that D~ L={e}. Then the multiplication map

m: DxL—>F,m(d,{)=dZ,
is injective.
Proof. ¥ d,,d,eD, ¢, (el and d, £ =d, £, thend;'d,=¢,¢7'eDnL=1{e}.
Henced,=d, and ¢/, =/,.
2.7 Proposition. Let H be a connected K s-algebraic group and seH(K,) an

element from the class of. Then
(a) the multiplication map

m: W (X ZExWH)-»HK ), mw ,z,wH)y=w" zw",

is a Kg~biregular map onto a Zariski open dense subset of H(K ) containing e;

(b) the subgroup N(s) generated by W (s) and W™ (s) is a normal subgroup of
H(K ) and H=Z(s) N(s).

Proof. (a) Tt is enough to consider the case where J consists of one element
v. It easily follows from Proposition 2.5 that W™ (s)n Z(s) W* (s)={e}. On the
other hand W~™(s), Z(s)y W7'(s) and Z(s) W*(s) are subgroups and
Z(s)n W™ (s)={e}. Therefore, in view of Lemma 2.6, the multiplication map
m is injective. But the same is true if we replace K, by any finite extension
K,>K,. Hence the multiplication map

m W )< ZExWi(s)—H
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is injective. Since s is an clement from the class &/ we have that if 1 is an
eigenvalue of Ad(s) and A=1 then [i|,%1. From this and Proposition 2.5(b)
we get that Lie(H) is the direct sum of Lie(W ™ (s)), Lie(Z(s)) and Lie(W ™ (s)).
It implies that the image of m is Zariski open and dense in the connected
group H. This and the injectivity of m implies (a).

(b) Since the subgroup Z(s) normalizes both W * (s) and W~ (s) it also norma-
lizes N (s). Therefore Z(s) N(s) is a subgroup. But in view of (a), Z(s) N (s) contains
a Zariski open dense subset of H(K,). Since any Zariski open dense subset
of H(K,) generates H(K,) as a group we get that H(K,)=N(s) Z(s).

2.8 Let seH(K ) be an element from the class &/ and let U be a K ;-algebraic
subgroup of H(K ;). In view of Proposition 2.2, a sequence {Ad(s™")(Lie(U))
=Lie(s "Us"} has a limit in the Grassmannian variety Gr(Lie(W * (s))) when
n— +o0. Denotes this limit by %,. It is clear that %, is a Lie subalgebra
of Lie(W™ (s)). Therefore %, = Lie(U,) where Uy=exp %, is a K ;-algebraic sub-
group of W*(s). Since the logarithmic map In: W' (s)— Lie(W *(s)) is
K 7-biregular we get that U, is the limit of s™"Us" in the Hausdorff topology
when n— + co. Let us note that Ad(s) %,=% and sUy s~ ' =U,.

Put U=U, Uy=U,, W*(s)=W*(s) and W (s)=W ~(s). Since W™ (s) and
U, are Int(s)-invariant unipotent K s-algebraic groups and W™ (s) > U, it follows
from [Bo-Spr, 9.13] that there exists an Int(s)-invariant K s-regular cross-section
V for W™ (s)/U,.

Proposition. (3) V is a K,-regular cross-section for W+ (s)/U.
(b) Denote by p: U—U, the projection parallel to V (i.e. for every ueU we
have ueV p(u)). Then p is K ;-isomorphism.

Proof. (a) We can assume that 7 ={v}. Put W=W"(s). Since char(K,)=0 and
the multiplication map a: VxU—->W, a(x, y)=xy, is regular it is enough to
show that for any finite extension K| of K, the multiplication map V(K;)
x U(K,)—» W(K}) is bijective. We can assume that K,=K,. (The same proof
can be applied for arbitrary K/ because Uy(K}) is the limit of s™"U(K}) s"
when n— + c0.) It follows from the construction of U, and the implicit function
theorem (see 1.12) that there exists an open neighborhood ¢ of ee W™ (s) such
that for every positive integer n every point xe( can be represented in a unique
way as a product yz where yelV and zes "Us" Let a(x,,y)=a(x;,y;)
=we W™ (s). There exists n such that the elements s™"x;s", s "y, s" (where i=1, 2)
and s7"ws" are in . Since o is s-equivariant we get that s "x; s=5""x,s"
and s™"y, s"=s "y, s" and, consequently, x, = x, and y, =y,. Thus a is injective.
Let w be an arbitrary element from W™ (s). Since Int(s™ ')y . is contracting
(2.5(c)), s "ws"e O for some n. Then s "ws"=y, z, where y;eVand z,es "Us".
Hence

w=(s"y,; s"")(s"z, s7").
Thus « is surjective.
(b) The proof is analogous to the proof of (a).

3 Actions of algebraic groups on measure spaces

3.1 Let H be a K s-algebraic group acting K ,-rationally on a K ,-algebraic
variety M. Let F be a subgroup of H=H(K,) generated by unipotent
K s-algebraic subgroups of H and elements from the class /.
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Lemma. Let u be a Borel F-invariant probability measure on M =M(K ;). Then
u is concentrated on the set of F-fixed points in M. In particular, if pis F-ergodic
then g is concentrated in a point.

Proof. Let F; < F denote either a cyclic subgroup generated by an element s
from the class o/ or a 1-dimensional unipotent K ,-algebraic subgroup of H.
It is enough to show that the measure u is concentrated on the set Q of F,-fixed
points in M. It is known that if K is a local field and the K-group G acts
K-rationally on a K-variety X then, for any point xeX(K), the orbit map
G(K)/G(K),— G(K)x is a homeomorphism where G(K), is the stabilizer of
x in G(K) [B-Z]. But every v-component, veZ, of the K -algebraic group
F,, is 1-dimensional. From this and the property (c) of elements of the class
& (see Lemma 2.1) we get that F; acts properly on M — Q. Now one can easily
see that yu is concentrated on Q.

Corollary. Let (X, uo) be a Borel measure space on which F acts ergodically.
Let f: (X, pno) > M be a Borel F-equivariant map (i.e. f(gx)=gf(x) for every
geF). Then f is essentially constant, that is there exists a conull subset X < X
such that the restriction of f on X, is constant.

Proof. Denote by u the image of u, on M. Then p is F-invariant ergodic measure
and the assertion follows from the lemma.

3.2 Let H be a K -algebraic group and let F be a connected K ;-algebraic
subgroup of H such that F=F(K;) is generated by unipotent elements and
elements of the class .. Let I' be a discrete subgroup of H=H(K,) and 7:
H — H/T the natural projection.

Propesition. Let u be an F-invariant F-ergodic Borel probability measure on H/T’
and let M be a K z-subvariety of H such that pu(n(M))>0, where M=M(K ).
Then there exists a K y-algebraic subgroup P of H and a point xe M such that
P=P(K ) contains F, Px< M and p(n(Px))= 1.

Proof. Since the Zariski topology is Noetherian we may (and will} assume that
the K s-variety M is minimal in the sense that u(n(X(K,)))=0 for any proper
K y-subvariety X of M. Put Fy={geF|gn(M)=n(M)}. Cleary F; is a subgroup
of F. In view of the minimality of M if F+F, and geF —F, then p(n(M)n
gn{M))=0. Since u(n(M))>0 and the measure p is finite and F-invariant we
obtain that F, has finite index in F. On the other hand, for every geF, we
have gMcMT. Since I' is countable there exists yeI' such that p(n(gMn
M+9))>0. Then by the minimality of M we get that gM < My. Therefore the
quotient Fy/F,, where F,={he Fy)JhM =M}, is a countable set. (To see this one
should use the fact that the inclusion gM <My implies gM =My which is equiv-
alent to gM=My.) But F is connected. Therefore F, is Zariski dense in F
which implies that FM =M.

Put A={del|Md=M} and Y=M— |] My. One can easily deduce from

yel'— 4

the minimality of M that u(z(Y)}=u(n(M)). Note that FYA=Y and I'yn Y=9
for every yel'—A. Therefore the natural map from Y/4 to H/I' is injective
and we can lift the restriction of u to n(Y) to a non-zero finite F-invariant
F-ergodic measure pu, on M/A. Denote by B the Zariski closure of 4 in H.
Then MB=M and the quotient M/B can be embedded into (H/B)(K 5), where
B is the Zariski closure of B in H. (Note that by [B-Z] this embedding is
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a proper map.) Clearly F acts K s-rationally on M/B. Denote by v the image
of the measure y, under the natural map M/4 — M/B. Then v is an F-invariant
ergodic measure on M/B. In view of Lemma 3.1 v is concentrated on a single
point. By the construction of v it follows that there exists a point ze M such
that p(n(zB))=p(n(M)). Since zB<=M and M is minimal we get that zB=M.
Now to complete the proof it is enough to put x=z, P=zBz ! and P=P.

3.3 Let H, I" and = be as in 3.2. We will say that a Borel probability measure
w on H/I' is Zariski dense if there is not a proper K j-algebraic subvariety
M of H with u(n(M))>0 where M =M(K ;). We say that K ,-algebraic subvarie-
ties L, and L, of a K -algebraic variety M are transversal at xel, nL, if
both L, and L, are smooth at x and T, (M) = T,(L,) ® T.(L,), where T,( ) denote
the tangent spaces at x.

Next if Q<= H/I" is a measurable subset we set ¥(Q)={geH|gQnQ+0}.

Lemma. Let y be a Borel probability measure on H/T'. Assume that p is Zariski
dense and Fy-invariant, where F, is an open subgroup of the group of K s-rational
points F=F(K ;) of a connected algebraic subgroup F «H. Let L be a connected
K ;-algebraic subvariety of H containing e and transversal to F and let M be
a proper subvariety of L containing e. There exists a constant ¢, 0<c<1, such
that if Q< H/T is a measurable set with u(Q)>1—c, then one can find a converging
to e sequence {g,} = ¥ (2)n(L— M), where L=L(K ) and M =M(K ;).

Proof. Let peH/I" be a point such that g(W)>0 for every neighborhood W
of p. Since F and L are transversal there exist relatively compact neighborhoods
A’ and B’ of e in F, and L, respectively, such that the map A'x B'—> A"B'p,
(x,y)—=xyp is a homeomorphism. (Next we will identify A’B" with A'B'p via
this homeomorphism.) It follows from the implicit function theorem that there
exist neighborhoods 4 and B of ¢ in 4" and B, respectively, such that for
every x, ye B there exist continuous maps fi(x, y): Ax— A"y and y(x,y}: Ax—> B
uniquely defined by the equation

Bix, y)(@)=7(x, y)(z) z
where ze A x.
Denote by p, the restriction of u to AB. Since y is Fy-invariant, po=
f vyda(x), where o is a measure on B and v, is the measure on Ax induced
B

by the Haar measure on A < F; via the homeomorphism A — Ax, a — ax. With-
out loss of generality we may (and will) assume that v, and ¢ are probability
measures. Using the Fubini theorem we can fix a constant ¢, 0<c<1, such
that if Q< H/I' is a measurable subset and p(€2)>u(H/I')—c then o¢(By)>3
where B,={xeB|v,(2nAx)=%}. Fix a sequence {D;} of measurable subsets
of B, such that ¢(D;)>0 for all i and the diameters of D; converge to 0 when
i— oo (recall that L is a measurable space). Passing to a subsequence we can
(and will) assume that for every i if x, yeD, then v,(Ayn B(x, (RN Ax))>3.
(We use the fact that if the diameter of D; is small then the maps f(x, y) have
Jacobians relatively the Haar measures on Ax and A4’y close to 1.) Assume
that there exists i such that for all x, yeF; if B(x, y)(z)e Ay N Q, where ze Ax N Q,
then y(x, y)(z)e M. In light of the above discussion and the Fubini theorem
this implies that there exists a ge® such that u(MFg)>0 which contradicts
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the assumption that p is Zariski dense. Therefore for every i there exist x;, y,e D,
and y(x;, y)(z)eL— M. Clearly the sequence {g;=7(x;, y)(z)} possesses the
required properties. The lemma is proved.

4 Groups without unipotent K -algebraic subgroups

In this section we will assume that J is a finite set of normalized valuations
of the field Q of rational numbers. Our purpose is to prove the following

4.1 Proposition. Let H be a connected K s-algebraic group and H=H(K ;). Let
FcH be a subgroup which is open in the Hausdorff topology and dense in the
Zariski topology on H. Suppose that F does not contain a nontrivial unipotent
K s-algebraic subgroup of H. Then there exists a K g-split central torus S in
H such that the factor group F/F NS, S=S(K), is compact.

The above proposition and Proposition 2.4 immediately imply

Corollary. Let H, H and F be the same as in Proposition 4.1. Then there exists
a K-split central torus S in H and a discrete subgroup Sy F S such that
F/S, is a compact group and S, consists of elements from the class <.

4.2 The proof of Proposition 4.1 uses the following lemma.

Lemma. Let U=U(K), where U is a unipotent K s-algebraic group. Let P
be a noncompact open (in the Hausdorff topology on U) subgroup of U. Then
P contains a nontrivial K s-algebraic subgroup of U.

Proof. Let us prove first the lemma when J ={v} and K,~Q,, where p is
a prime number. Since the exponential map exp: Lie(U)— U maps every 1-
dimensional linear subspace of Lie(U) onto a l-parameter subgroup of U, it
is enough to show that the set 2 =In(P) contain a 1-dimensional linear subspace
of Lie(U). Fix a coordinate system in Lie{(U) and introduce a norm || | on
Lie(U) by the formula [|x{| =sup|xi,, where x; are the coordinates of xeLie(U).

Since exp is a diffeomorphism and P is a noncompact subgroup of U there
exists a sequence d;e#—{0} converging to infinity. Denote the line Q,d; by
¢;. Passing to a subsequence and considering {/;} as a sequence of points in
the projectivization of Lie(U) we may (and will) assume that {¢;} converges
to a line /cLie(U). For every positive integer n we denote M,
={xeLie(U)||x|| <p"}. For every n and i there exists an integer m;(n) such
that p™™d.eM,,, —M,. For every n, passing to a subsequence we can assume
that {p™"d;} converges to a vector b,e¢ with ||b,|| =p". Clearly b,e®. Hence
2,b,c P, where Z,, is the ring of the p-adic integers in Q,. Since /= |} Z, b,
nz1
we conclude that £ = 2, which proves the lemma when Z consists of one p-adic
valuation.

Let 7 contain the archimedean valuation of Q and U, #+{e}. Then PnU,
is an open subgroup of U,. But U, is connected in the Hausdorff topology.
Therefore PoU,,.

It remains to consider the case when 7 consists of nonarchimedean valua-
tions. It is enough to show that for every xe 2, where 2 =In(P), all v-components
x, of x, ve7, are contained in #. Indeed, if this is true then the proof of



Actions of unipotent groups 359

our assertion is easily reduced to the case when J consists of one nonarchime-
dean valuation. Let xe#. Then Z x = % and since under the diagonal embedding
Zis densein Zy= [] Z,,, where p(v) is a prime number such that K,=Q,,,

ved

we get that Z, x < 2. In particular, x,e# for ecach ve7. This completes the
proof of the lemma.

4.3 Proof of Proposition 4.1 Consider the adjoint representation Ad:
H — GL(Lie(H)). Assume that there exists an element he F which has a v-compo-
nent h, such that Ad(h,) has an eigenvalue « with |e|,>1. Then W™ (h) =+ {e}
(see 2.5). Since the automorphism Int(h~!)|y -, is contracting (see 2.5(c)) and
the subgroup W™ (W)~ F is Int(h)-invariant and open in W™ (h) we get that
W*(h)=F. On the other hand, W™ (h) is a unipotent K s-algebraic subgroup
of H by 2.5(a) which contradicts the proposition hypothesis. Thus for every
heF all eigenvalues of Ad(h,), for all ve 7, have absolute values equal to 1.

Denote by R(H) the solvable radical of H (i.e. R(H) is the maximal connected
in the Zariski topology solvable normal K ;-algebraic subgroup of H) and denote
by S the maximal split central K ;-algebraic torus in H. Note that S< R(H).
It is enough to prove that F/FnS is a compact group. Denote N=SR,(H)
where R, (H) is the unipotent radical of H. Then N is a K s-algebraic subgroup
of H and it follows from 1.7 that H/N is a group of K -points of a reductive
K s-algebraic group. In particular, there exists a reductive K ,-algebraic sub-
group Lo H such that H/IN~L/LnN and LNN is a finite central subgroup
of L. Therefore the restriction of Ad to L induces a representation o:
H/N — GL(Lie(H)). By the discussion in the preceding paragraph all elements
in 6(FN/N) have eigenvalues with absolute values 1. By [Pra, Lemma 1] we
obtain that ¢(FN/N) is a compact group. Note that since Ker(o) is compact
¢ is a proper map in view of 1.7(a). Therefore there exists a compact K< F
such that F=K(FnN). This reduces the proof of the proposition to the case
when H=SxU where § is a K -algebraic split torus in H and U is a
K s-algebraic unipotent subgroup of H. Note that U F has finite index in
UnSF since UNF is an open subgroup of U, S is compactly generated and
any discrete factor group of any open subgroup of U is a torsion group. Hence
S(U n F) has finite index in SF. On the other hand, U F is compact in view
of Lemma 4.2. Therefore S is cocompact in SF, equivalently, F/F n S is a compact
group. The proposition is proved.

5 Construction of quasiregular maps

In this section we fix a connected K ;-algebraic group H, an element se H, H
=H(K ), from the class ./ and a unipotent K ;-algebraic subgroup U in H
such that Uc W * (s).

5.1 In view of 2.8 the sequence s~ "U 5" converges to a Int(s)-invariant unipotent
K s-algebraic subgroup U, of W*(s) when n— +oco. Besides there exists
an Int(s)-invariant K -regular cross-section V=W ™*(s) when n— +oco. Be-
sides there exists an Int(s}-invariant K -regular cross-section V<= W™*(s) for
both W*/U, and W7 (s)/U (see 1.8). On the other hand, by Lemma 2.7(a)
W™ (s) Z(s) W*(s) is a Zariski open subset of H. Therefore L=W " (s) Z(s) V
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is a K -rational cross-section for both H/U and H/U,. Note that L is Int(s)-
invariant. Further we will denote by n: H — U, the projection onto U, parallel
to L and by p the restriction n|y;. In view of Proposition 2.8(b) p is a
K s-isomorphism.

Let us fix relatively compact neighborhoods B* and B~ of e in W™ (s) and
W~ (s), respectively, such that sB*s '>B* and 5"'B s>B~. We put B,
=s "B s "and B, =s "B~ s". Obviously, the sequences {B;} and {B, } form
fundamental systems of neighborhoods of e in W*(s) and W ™ (s), respectively.
We define a function #* on W™ (s) (resp. £~ on W™ (s)) by setting ¢+ (x)=k
iff xeB — B, and /¥ (e)= —co (resp. £~ (x)=k iff xeB, —B;_, and £~ (¢)=
— o0). Also, for every integer n we put C,=B,” " U, and 4,=p }(C,).

Let us note that since L and U, are Int(s)-invariant the maps © and p com-
mute with Int(s). From this and the definition of U, we get

(1 lim s™"A4,s"=C,.

n—+w©

5.2 Let us fix a sequence {g,} in H converging to ¢. We will assume that
{g.} = LU — #{(U), where A4L(U) denotes the normalizer of U in H. Since L
is a K -rational section for H/U we can define K -rational maps ¢,: U—L
and w,: U - U by the following equation

@ Ugp= Pnltt) 0, (1)

By a theorem of Chevalley [Bo, 5.1] there exists a K ,-rational representation

p: H— GL(®), where ¢ is a sum P @, of vector spaces @, over K,, and
ved .

a point ge® such that U= {xeH|p(x) g=¢}. To simplify the notation we will

write xg instead of p(x) q. It is easy to see that

3 AuU)g={yeHq|Uy=y}.
Fix a relatively compact neighborhood D of ¢ in &. Define a sequence of integers

{r(m)} as follows: 4, g,q¢ D and A4, g, 9= D whenever k <r(n). Next, for every
n we define maps a, and a,: U — U by the formulas

@ : a(w)=p~ ' (s"p(w)s™"),
(5) a, (u) = ar(n)(u)’

for every ueU.
It follows from (5) and the definition of A, that for every integer k

(6) an(Ak)=Ak+r(n)'
Since p: U — Uy is a K y-regular isomorphism the maps {a,} are also K ,-regular
isomorphisms.

We put

(N @n=Gpoa,: UL,
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Denote by f: L— @ the restriction to L of the orbit map h—hgq, heH, and
put

(®) u=Pog,: U
In view of (2), (7) and the equality Ug=gq we get

©) ()= Bl@u(t)) = ¢, (1) g= Pn(a, () q
= @n(an (u)) w" (a'l (u)) q = a'l (u) gﬂ q'

Hence ¢, is a K -regular map from U to @. Furthermore, if we identify U
with Lie(U) using the logarithmic map we can (and will) interpret {¢,} as a
set of K -polynomial maps of degrees bounded from above. (According to
our terminology a K s-polynomial map f is a set of K,-polynomial maps f,,
ved, and deg(f)=max {deg(f,)|veT }.)

It follows from (9) and (6) that

(10) ou(A-)=D
and
(11) @n(Ao)ED.

It is well known that for any vector space @, over a local field K, a set of
polynomials on @, of degrees less than a constant N and uniformly bounded
on some nonempty open subset of @, is relatively compact in the topology
of uniform convergence on compact subsets. This remark and (10) imply that
replacing {g,} by a subsequence we can (as we will) assume that there exists
a K ,-regular map ¢’: U — @ such that

(12) ¢'()= lim @, ()

for every ue U. Since ¢,(¢)=g, g and g, — e we obtain
(13) @'(e)=gq.

On the other hand, (11) implies that ¢’(4,)¢ D. Therefore ¢’ is a non-constant
K ;-polynomial map.

Since L is a rational cross-section for H/U we get from Lemma 1.3 that
B is a K ;-regular isomorphism of L onto a Zariski open (in the Zariski closure
of p(H)q in @) subset M containing g. But ¢’ (U)cp(H)q. In view of (13) we
can define a K, -rational map ¢: U — L by the formula

(14) e=p""oq,

where 7! is defined on the Zariski open subset M of p(H)q containing g.
It follows from the definition of ¢ that ¢(e)=e.

5.3 Definition. Let F be a K ;-algebraic group, I a K s-algebraic subgroup of
F(K;) and M a K s-algebraic variety. A K ;-rational map f: M(K ) - F(K )
is called I-quasiregular if the map from M(Ky) to V given by x—y(f(x)p
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is Kg-regular for every K -rational representation y: F - GL(V) and every
point pe V(K 5) such that y(I) p=p.

5.4 Let us prove that the map ¢ constructed in 5.2 is U-quasiregular.
In view of (14) and (12) we get

(15) ¢ (W)= lim ¢, (),

for all ue(p"™1{(M) and the convergence in (15} is uniform on every compact
subset of (@)~ ' (M).
Using (2) and (7) we get

(16) @n(uy=a,(u) g, b, (),
where b,(u)=w,(a,(u)) . Therefore (15) can be written in the form

(17) @)= lim a,(u) g, b,(u),

where ue(¢’)” (M) and the convergence is uniform on every compact subset
of (¢') "' (M).

Now let y: H > GL(W) be a K ,-rational representation and we W be such
that y(U) w=w. In view of (17) and the inclusion b,(U)c U

Yp@)w=lim y(a,(u) g, w

for all ueU from a nonempty Zariski open subset of U. Note that the maps
Yo U W, u>y(a,(u)g,)w, are K -regular. Moreover, if we identify U with
Lie(U) we obtain that {i,} are K -polynomial maps of bounded degrees and
the restrictions of {i/,} to some nonempty open subset of U are bounded. There-
fore the sequence {y,} converges to a K -polynomial map i.e. the map from
U to W given by x — y(¢(x))w is K -polynomial. This proves that ¢ is a U-
quasiregular map.

5.5 Remark. Note that in the above proof the U-quasiregularity of ¢ was
deduced from (17). An arbitrary K ,-rational map ¢: U — H will be called strong-
ly U-quasiregular if there exist a sequence {a,: U— U} of K -regular maps,
a sequence {b,: U U} of K -rational maps and a Zariski open nonempty
subset A< U such that ¢ is defined by (17) and the convergence in (17} is
uniform on every compact subset of 4.

6 Properties of ¢

In this section we prove some basic properties of the U-quasiregular map ¢
constructed in 5.2. We preserve the notations and assumptions from Sect. 5.

6.1 Proposition. The set Im(¢) is contained in Ng(U). Furthermore there is not
a compact subset K < H such that Im(p)< KU.
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Proof. The second assertion follows from (14) in Sect. 5 and the fact that ¢’
is a non-constant K s-polynomial map. In order to prove that Im(p)c A5 (U)
it is enough (in view of (3), Sect. 5) to show that v¢'(u)= ¢’ (u) for all v, ue U,

By (12), Sect. 5

(1) ve'(u)= lim ve,(u).

n=+ o

Using (9), Sect. 5 we obtain

2 v, (W=va,(u)g,q
=a,(a, ' (va,(w) g,) 4= @n(a, ' (va,W).
It follows easily from the relations (4) and (5) in Sect. 5 that for any xeU
we have
a; 1 (x) — n/(sfr(n)xsr(n))’

where 7’ is the projection parallel to L of H onto U. Therefore
(3) a; 'wa,w)=n"(s "M ®s g (4) s"™).

Since lim r(n)= + o0 and Uy = lim s "Us" we have

n— o L Badies

(4) lim s™"™a,(u) s =p(u).

n— oo

On the other hand, '(p(u)=u and lim s "™ps"™ =e. Therefore, in view of
(3) and (4) we obtain ne

5) a, H(va,(u)=v,u,
where lim v,=e.

Now since {¢;} is a sequence of K -polynomial maps converging to ¢’
(1), (2) and (5) imply

v’ (u)=1lim ¢,(v, u)= lim ¢, ()= o' ().

The proof of the proposition is complete.

6.2 The next properties of ¢ will be deduced from the formula (17) in 5.2,
ie. from the fact that ¢ is a strongly quasiregular map (see 5.4). In particular,
we can reduce the proofs of these properties to the case when 7 = {v}.

6.3 Denote by F the subgroup of H generated by Im(p) and U. In view of
Proposition 6.1 the subgroup U is normal in F. Let H, be the Zariski closure
of F in H. It is well known (see, for example, [Bo-Pra, 2.2]) that F is an open
in the Hausdorff topology subgroup of H,.

Proposition, With the above notation assume that if V is a unipotent K 5-algebraic
subgroup of H, and V< F then V< U. The group H, contains a split K 5-algebraic
torus S such that

(a) SU/U is a central subgroup of H,/U and the group F/F nSU is compact;
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(b) there exists an element se F NS from the class o/ with the following properties:
() s does not centralize U, and (i) a(s, M)=1 for every K s-algebraic subgroup
M of H normalized by SU. (Recall that a(s, M) is defined in 1.5).

The existence of a split K;-torus S in H, which satisfies (a) follows from Proposi-
tion 4.1. We are going to prove that S satisfies also (b).
We need the following

6.4 Lemma. The group SN Zg(U), where Zg(U) is the centralizer of U in F,
is finite.

Proof. Note that S~ Zy, (U) is a normal subgroup of H,. Since H, is connected
in the Zariski topology and SnZy (U) is split SNnZy, (U) is central in H,.
On the other hand, for every veZ the torsion subgroup of the multiplicative
group K¥ of K, is finite. Therefore it is enough to prove that S does not contain
elements of infinite order which centralize F.

In view of 6.2 we can reduce the proof of the lemma to the case when
T ={v}.

Let H,=GL(V) where V is a vector space over K,. Let se§ and s centralize
F. Since s is diagonalizable V=V, @V,,®... ®V,,, where 1,, 4,, ..., 4, are differ-
ent eigenvalues of s and V,,,i=1,2,...,r, are the corresponding eigenspaces.
Since s centralizes F we get that FV,; =V, for all i, in particular, the subspaces
V,, are SU-invariant.

If ge GL(V) we denote by g, i=1,2, ..., r, the linear transformation of ¥,
given by the formula g =p;o glv,, where p, is the projection of V on V,, and
g|‘,/1 is the restriction of g on V,1 Since V), are U-invariant it follows from
(17), Sect. 5 that for every i we have

@)= lim a,(u)?g? b, w)?,
n—ao

where u is an element from a Zariski open nonempty subset of U. Since a,(w)"
and b, (1) are unipotent elements and lim g{”=e we obtain

n— o

det(pu)?)=1.

On the other hand det(u™)=1 for every ueU and U and ¢(U) generate the
Zariski dense subgroup F in H,. Therefore det(g™) =1 for every geH, and
every i=1,...,n. In particular, det(s)=1 which implies that every 4; is a root
of unity in K} i.e. s is an element of finite order. The lemma is proved.

6.5 Proof of Proposition 6.3. In view of 6.2 it is enough to prove the proposition
in the particular case 7 ={v}. So, assume that J = {v} and for every positive
integer r denote by V, the r-th exterior power A"Lie(H) of the Lie algebra
of H and by f, the r-th exterior power of the adjoint representation of H.
Let M be a K ,-algebraic subgroup of H normalized by the subgroup SU.
Let r be the dimension of M. Fix a nonzero vector g,, on the line A Lie(M)< V.
Since SU normalizes M we have

(©) ‘ S W) qu=qu
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for every ue U, and
S8) o= 2 (9) g

for every se S, where y,,(s) is a character of the torus S. In view of 1.5

s (s) =als, M)

for every seS. Note that although the K ;-algebraic subgroups of H normalized
by SU form, in general, an infinite set we obtain only a finite number of charac-
ters x; = xar,» where M;,i=1,2,...,m are K ;-algebraic subgroups of H normal-
ized by SU. Let r;=dim M,;. For every i denote by V, the ri-exterior power
of Lie(H), by f; the ri-exterior power of the adjoint representation of H and
by gq; a nonzero vector from A" Lie(M;). Now for every i we define a rational
map ¥;: U - V; by the following formula

Viw=filpw) g, ueU.

Since ¢ is a quasiregular map we obtain that ¢, y,,, ..., ¥, are polynomial
maps. In view of Lemma 6.4 it is enough to find a nontrivial element se SN F
from the class ¢ such that |y(s)|,=1 for all i, Without loss of generality we
can (and will) assume that y;=y; if i=].

By part (a) of the proposition F nSU is a cocompact subgroup of F. Accord-
ing to Corollary 4.1 Fn S contain a closed cocompact subgroup S, consisting
of elements from the class .of. Therefore there exists a compact set K in F
such that F=KS, U. In view of (6) and the centrality of the image of S, in
F/U for every i there exists a compact neighborhood @; of g; such that if ueU
and @(u)=ksw where ke K, seS, and weU we have

(7 W) < x:(s) O;

forallueU. Put Oj={cx|xe@;, ceK,,|c|,<1}. Since ;,i=1,2, ...m, are noncon-
stant polynomial maps there exists uoe U such that ¥, (u0)¢(9 for alli, 1=i<m.
It follows from (7) that |y;(sg)]=1 for all i, where syeSq is such that ¢(ug)
=k So Wo, ko€ K, woe U. The proposition is proved.

6.6 Recall that the map ¢ was constructed starting from a sequence {g,} con-
verging to ¢ and an element seH from the class &/ (see 5.2). We need some
additional definitions and notatons related to {g,} and s.

Definition. We say that the sequence {g,} satisfies the condition (%) with respect
to s if there exists a compact subset C in H such that s "™ g, s"®eC for all n.

Next denote # ={xeH|Uyx= W (s} Z(s) Uy}. Since W (s) Z(s) is a sub-
group we obtain that Uyx< W™ (s) Z(s) U, if and only if W™ (s) Z(s) Uy x<
W~ (s) Z(s) Uy. On the other hand, for any K ,-algebraic subvariety X <« H we
have

{heH|Xhc X} ={heH|X h=X).

Therefore # is a K ;-algebraic subgroup of H.

Set U =W (s)nZ. Since the subgroups Uy, Z(s) and W™ (s) are Int(s)-
invariant the subgroups &# and U~ are also Int(s)-invariant. Tt follows from
[Bo-Spr] that there exists a K s-regular Int(s)-invariant cross-section V~ for
W™ (s)/U", where U~ is the Zariski closure of U™ in W™ (s). We put V™ =



366 G.A. Margulis and G.M. Tomanov

V7 (Kg). In view of Proposition 2.7(a) and Proposition 2.8 the set Q=
UV ZE)VU=W (s)Z(s) W*(s) is a Zariski open dense subset of H and
for each geQ we have the unique decomposition

(®) g=u" (g v (g)z(g)v(ghu(g)=w" (g) z(g) w(g),

where u™(g)eU™, v (g)eV ™, z{g)eZ(g), v(g)eV, u(g)el, w (g)=u"(g) v (g)
and w(g)=u(g) v(g).

It follows from (8) and the definitions of /¥ and #~ in 5.1 that for every
integer k we have

©) £ W (g)sTH =4 (W (s*gsTI)=¢"(w () —k,
(10) (W (g)s T =0T (W (s*gsT) =T (W (@) +k,
(11 s“z(g) s =z(g)=z(s"gs™").

The next lemma is an easy consequence from the definitions of ¥ and 7.

Lemma. A sequence {x,} = W=(s) is bounded (resp. tends to e) if and only if
the sequence £ * (x,) is bounded from above (resp. tends to — o).

The equalities (9), (10), (11) and the above lemma imply that the sequence {g,}
has the property (*) with respect to s if and only if

(12) sup{r(n)+¢ " (w™ (g,)} < oo.

6.7 Proposition. Suppose that at least one of the following conditions holds:

(a) the sequence £~ (v~ (g,))— £ (u™ (g,)) is bounded from below;
(b) N (Ug) n W™ (s)={e}.

Then the sequence {g,} has the property (x) with respect to s. Furthermore,
if (a) is satisfied then Im(p)c W™ (s).

Proof. Denote ¢~ (w™(g,) by k(n). Set h,=s""g,s " We get from (9) that
w™ (h,)eBy —BZ,. On the other hand, since g,— e we deduce from (10), (11),
and Lemma 6.6 that lim w(h,)= lim z(h,)=e¢. Therefore passing to a subse-

quence we can assume that

(13) lim h,=h,

n— o

where he W™ (s) and h=+e.
In view of the relation (1) in 5.1 we have that

(14) lim $“® A _, . #0=C,.

n—=w

Without loss of generality (choosing B small enough) we can assume that

(15) Cohc W™ (S)Z(s) W (s).
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In 5.2 we introduced the K s-polynomial maps ¢, which converge to a polyno-
mial map ¢ such that ¢'(e)=gq. According to (9) in 5.2 ¢,(u)=a,(u)g,q for
every ue U. Also, by (6)in 5.2 A_; 4y =a,(A _ i —rw)- Therefore,

(16) A kny &n qzan(A~k(n)—r(n)) &nqd= (p;l(A-r(n)Ak(n))

for all n.

Assume that the property (x) does not hold. Then (12) is not fulfilled and
passing to a subsequence we can (and will) assume that

(17) lim (r(n)+ k@)=

In particular, the sequence {A_,_,m) converges to {e}. Therefore
{94 ~rm)} cOnverges to {¢’'(e)=q}. In view of (16)

(18) nliqrr;{AAk(,,) g4} =14q}-

Taking the compact neighborhood D of ¢ in the definition of the sequence
{r(n)} (see 5.2) small enough we can assume that

Ar(n) gnc W;(S) Z(S) VU

for all n. In view of (17) we can also assume without restrictions that
Ay 8n 2 A —jmy &, for all n. Now it follows from (18) and the fact that U
={geH|gg=gq} that

(19) A—k(n) & VVnk Zn Vn Uv

where W," <« W™ (s), Z cZ(s) and V,<V are compact subsets containing {e}
and such that l1m w,~ 11m Z,= hm V,={e}. Using (10), (11), Lemma 6.6

and the fact that hm k(n)—- — oo one can deduce that

n— o

lim {Smn)Vns—k(n)} = lim {Skm Z"S-k(n)} ={e}

n— o n— oo

and lim $*®Us %™ =y,. Since W* (s), Z(s) and V are Int(s}-invariant subsets

n—o

of H, the above considerations and (13), (14) and (19) imply that

CohcW () U,.
Since C, h is Zariski dense in Uy h we obtain that
20) Up he W) Ty,

in particular, he U™ according to the definition of U~ in 6.6.

Assume that (a) holds ie. the sequence £~ (v~ (g,))—¢~ (1™ (g,) is bounded
from below. Then it is easy to see that v~ (h)+e which contradicts the fact
that he U~. Hence the condition (a) implies the property (x) for {g,}. Next
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taking the compact neighborhood D of g in the definition of the sequence {r(n)}
(see 5.2) small enough we can assume that

Ar(n) 8x & W_(S)Z(S) LU

where L is a compact subset of V. Conjugating this inclusion by s*® and going
to limits we get that C,h=W (s) Z(s) U, where m=lim inf(r(n)+k(n)). If

m> — oo, then C,, is Zariski dense in U, and we have that Uyhc W™ (s) Z(s) U,.
But v~ (h)%e and, hence, h¢ U, (because (a) holds). Thus m= —o0. Let now
ueq@’” 1(M) where ¢’ and M are defined in 5.2. Then (p(u)— lun @,(u) and @,(u)
=a,(u) g, b,(u) (see 5.4). In view of (17)

lim s™"™g, 5™ =e.

n—=+o
Also it is easy to see that

,,ILHJO s () TP =u, u' e Uy,
and
lim s7"™p, (u) s"™ =u", u" e U,.

n—= 0

Hence lim s "™ g, (u) s"™eU,. It implies that ¢(u)e W*(s). Thus ¢(¢’'~ (M) c

W*(s). But M is Zariski open in p(H)q and hence, ¢’ '(M) is Zariski open
and dense in U. Therefore Im(p)< W™ (s).
To prove that (b) also implies the property (*) first note that

E={xeH|Uyxc W~ (s) Uy}

is a K s-algebraic subgroup of H. Indeed, the inclusion Uy x = W™ (s) U, is equiv-
alent to the inclusion W~ (s) Uy x< W™ (s) U, which is equivalent to the equality
W™ (s) Uy x=W™ (s) U,. Therefore E is a K -algebraic subgroup of H. Fix a
Borel subgroup P of M containing U, and denote by P, its unipotent radical.
Since P W™ (s) U, and W~ (s) U, is a Zariski open subset of W™~ (s} U, contain-
ing e we deduce that the set (PAW ™ (s)) U, is Zariski dense in P. Hence the
quotient group P/P, contains a Zariski dense subset of unipotent elements.
Therefore P=P,. This implies that every Borel subgroup of E is unipotent.
Hence E is a unipotent K -algebraic group. We denote E=E(K ). In view
of (20)heE. Since he W~ (s)—{e} we have that E4U,. This implies that
Ne(Up) =+ U, (because in a nilpotent group the normalizer of a proper subgroup
F is not equal to F). Using the same argument as above we obtain that
(VU)W (s)) U, is a Zariski dense subgroup of A3(U,). Therefore
W (s}~ Az (Up) =+ {e} which proves (b} in view of the assumption that the proper-
ty (x) does not hold.
The proposition is proved.

6.8 The next lemma shows that if the group H is sufficiently large then given
a unipotent K s-algebraic subgroup U of H we can always find an element



Actions of unipotent groups 369

seH from the class & such that U= W™ (s) and AU} W™ (s)={e} where
U=U(K).

Lemma. Let U be a unipotent K s-algebraic subgroup of L= [] L,, where L,
ved

=8L,, . Then there exists an element se L (where L=L (K z)} from class s/ such

that Uc W' (s) and

N U)Wy (5)={e}.

Proof. It is enough to prove the lemma in the case when 7 contains only
one element. Denote by & the Lie algebra of U and by V the vector space
K. For every k=0 let (#*V) be the linear subspace of V spanned by
{g185...8:(0)|gie &, veV}. (If k=0 we put V= Z°V>)) Since £ is isomorphic
to a subalgebra of the Lie algebra of all strictly upper triangular matrices in
SL(m,, K,) we obtain a decreasing sequence of subspaces

VolLV)o..o(¥ ! VyoK&Vy={0},

where (¥""'V)+{0}. For every i=1,2,...,r fix a subspace V; such that
(L WVy=(L T VYPV. Then V=V, ®V,@...@V,. Choose an element
s from the class o7 such that for every i, s acts as a multiplication by a constant
A; on V; and A; 2}, =c¢ where ¢ does not depend on i and |c|,> 1. Fix a basis
in V which consists of the bases of V,,V,, ..., ¥, taken in the same order. If
h is an endomorphism of V we will denote m(h) the matrix corresponding to
h in this basis. A trivial computation shows that for every ueU

0wy, uys ... Uy,

0 0 wuyy ... Uy,
mu=1{ - - - . s

0 0 0 ... u_q,

0 0 o .. 0

where u;; is a matrix corresponding to an endomorphism from V; to ¥}, and

0 u, 0 ... 0
. 0 uy, 0
21 lim ¢"m(s™"us") = . ]
0 0 0 ... u_4
0 0 o .. 0

The matrix in (21) defines an element from the Lie algebra % of U,. It
follows from (21) that for every k the subspace {(%fV) of V spanned by
{2:8;...8:0)|gi€ %, veV} coincides with (¥*V)>. Let ge#;(U,). Then
8% g~ =%, Therefore

gL VY=g L V)= g Lg 'gV>=LLV).
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Since g (F* V> = L*V> we obtain

811 812 -+ 8ir
m(g)= 8?2 g.2r
0 0 ... g,

An easy computation shows that for every xeLie(W ™ (s)),

0 0o .. 0 0
X0 O ... 0 0
mx)=1{ x3; X3, ... 0 0
Xr1 X2 s Xpp—a 0

This implies that A7 (Uy) ~ W, (s)={e}. The lemma is proved.

7 Basic Lemma

7.1 Let X be a second countable locally compact unimodular group and let
0 be its Haar measure. Let 1 be a separable complete metric space with Borel
probability measure p. Assume that X acts continuously on V and that X
preserves . Let u= | p, be the decomposition of u into X-invariant X-ergodic

Y
probability measures y,, where y is identified with a point from a measure
space (Y, 0). For xe ¥, we denote by y(x) the corresponding point from (Y, o).

Definition. A sequence of measurable non-null sets 4, X is called averaging
net if for the action of X on (¥, p) the following analog of the Birkhoff individual
ergodic theorem is valid: if f is a continuous function on ¥V with compact support
then

1) lim

1
lim s § flgx)dO(g)= [ f(h)duyuh)

Ap v

for almost all xe V.
The following result directly follows from [Tem, Corollary 3.2, Chap. 6].

Proposition. Let A, be a sequence of measurable non-null subsets in X. Then
{A,} is an averaging net if the following conditions hold:

. .. 8(A,4g4,)
W lm =)
difference between A, and g A,;

(ii) {A,} is increasing;
i) sup SUde A
1§,,E @ O(An)
7.2 Next we are going to apply Proposition 7.1 to our original situation. Recall
that H is a K -algebraic group, U and U, are unipotent K ,-algebraic sup-

=0 for every ge X, where A, Ag A, denotes the symmetric
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groups of H=H(K), s is an element from the class .o/ such that Uc W™*(s)

and Uy= lim s "Us" Also, recall the following notations from 5.1 and 5.2:
n—>+ow

L=W~(s)Z(s) V is an Int(s)-invariant K,-rational cross-section both for H/U

and H/U,, p: U — U, is the projection of U on U, parallel to L and «,: U—>U

is a K z-regular isomorphism of K ,-algebraic varieties given by (4), Sect. 5.

Lemma. Let I' be a closed subgroup of H and u a U-invariant Borel probability
measure on H/I'. Let A be a relatively compact measurable non-null subset of
U. Then {A,=w,(A)} is an averaging net. (Further on, {A,} will be call averaging
net corresponding to A.)

Proof. Assume that A is such that either (a) 4;, (> A4; for every i= 1, or (b) 4, 4;

=@ whenever i%j. We put 4,=A, in case (a) and 4,= | 4; in case (b). Let
i=1

us show that {4,} satisfies the conditions (i}(iii) of Proposition 7.1. For every

n the Jacobian J(a,) of the map «,: U — U is constant. Therefore

) 0,45 4) 0@ A)Aa; (gA)
@ bA) 0 Ay

for every ge U, and

3 04, ' 4) _ (o, "(4, ' 4)
® o) 06 (L)

It is easy to sec that 6z, ' (4,))=6(A) and for every g

lim 0(o; *(A,) Ao, ' (g4,)=0.

n—w

This, in view of {2), proves (i). On the other hand, taking into account (3) and

the fact that ) «; (4, ' 4,) is a relatively compact set we obtain (iii). Since
n=1
{4,} is increasing it follows from Proposition 7.1 that {4,} is an averaging net.

Let ¢c=J(x,) and d=6(A). Then "=J(x,), dc"=6(A4,) and ()(?‘1>z)z=cl(c+c2
+...4+C"). (liecall that 4;nA;=@ if i+j) Since c>1 we get lim 9(An;=ci1
and lim 6(A,-,) =~L. Since 4,=A4,—A,_, the above relations and the fact

n- o Q(An) c—1
that {4,} is an averaging net imply that {4,} is also an averaging net.

Let A be an arbitrary relatively compact measurable non-null subset of U.
Recall that the automorphism Int(s™')|y - is contracting. From this and the
definition of «, (see (4), Sect. 5) one easily gets that if xeU and x++e (resp. x=¢)
then there exists a compact neighborhood A’ of x such that a,(A)No;(A)=0
when i#j (resp. {a;(4")} is increasing). Since A is a relatively compact measur-
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able set this implies that there exist measurable non-null subsets A", 4%, ...,
of A with the following properties:

9(A—UA“>)=0, AP AV =G i ik,

i=1

and for every i {a,(4")} is either increasing or «,(A¥) e, (A?)=0 when n+m.
It follows from the above discussion that {a,(A®)} is an averaging net for every
i, I<i<oo. Now using an elementary argument one can conclude that {4,}
is an averaging net. The lemma is proved.

7.3 Let AcU be a relatively compact, measurable, non-null set and {4,} be
the corresponding to A averaging net.

Definition. We say that M H/I" is a set of uniform convergence relative to {A,}
if for every >0 and every continuous function f on H/I' with compact support
there exists a positive number N(e,f) such that for all xe M and n> N{e,f) we
have

@) If(gX)dH @~ | fduymh)<e

HIT

O(A ) 4

Lemma. Let ¢>0. There exists a measurable subset M H/I' with u(M)>1—¢
which is a set of uniform convergence relative to {A,=a,(A)} for each relatively
compact measurable non-null subset A of U.

Proof. Since the Hausdorff topology on U is second countable there exists a
sequence {B;} of open relatively compact subsets of U such that for every n>0
and every relatively compact measurable non-null subset A of U there exists
a positive integer n with 0(B,4A4)<#n. Fix a sequence of positive numbers ¢;

o
such that Y e <e Using Lemma 7.2, the Egoroff theorem and the fact that
i=1
the space C,(H/I') of continuous functions on H/I” with compact support contains
a countable everywhere dense subset, a standard argument shows that for every
i there exists a set of uniform convergence M; relative to {B;,=o,(B)} with

o
wM)>1—¢ . Put M= ﬂ M;. Let us prove that M is a set of uniform convergence
i=1
relative to {A4,=a,(4)}, where A4 is an arbitrary relatively compact non-null subset
of U. Assume the contrary, ie. there exist a function feCo(U/I), an increasing
sequence of positive integers n;, a sequence x;€ M and a positive constant d such
that

(5 § flgx)do@)— [ fh)dp,e,l( h).>d,

.0 (A4s) 4, HIT

for all i. Choosing B,, such that §(44B,) is sufficiently small we deduce from
the fact that f has compact support that for all i

d
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Note that
1
™ 745 (o, (8) x;) dO(g)= »—-(»;1 )Af flgx)do(g)
and
1
(8) G(B ) .f f(O( (g d@(g) H(Bm.ni) ij“n‘_ f(gxn)dg(g)

On the other hand, in view of the choice of M taking i large enough we obtain

1
/B(T'T)‘ j fgx dg(g)_ ‘f fh)d.uy(x,)(h)

Brn; H/T

which, after taking into account (6), (7) and (8), contradicts (5). The lemma is
proved.

7.4 let f: U—>U be a K,-rational map. Using the logarithmic map and fixing
a basis in the Lie algebra Lie(U) we get a coordinate system on U. By degree
of f we mean the maximum of the degrees of nominators and the denominators
of the K ,-rational functions which determine f in this coordinate system.

Lemma. Let {f,: U— U} be a sequence of K -rational maps, # a Zariski open
and dense subset of U and f: U—U a Kg-rational isomorphism such that f],
is a biregular map from # to f(#). Assume that the degrees of f, are bounded
and that the sequence {f,} converges to f uniformly on compact subsets of M.
Then for any xe.# there exist a neighborhood O, of x and a neighborhood O
of f(x) such that for all sufficiently large n, f,(0,)> O, and the restriction of f,
to 0. is a diffeomorphism of O, onto f,(C.).

To prove the above lemma one should apply Lemma 1.12 and the following
observation. Let @,(U) be the set of all Kz -rational maps from U to U with
degrees less than d. Then there exists a positive integer m, a K y-rational map
F: K3 xU—-U and a Kjregular map a: ¢,(U)— K% such that for every
fe®,(U), F(a(f), x)=f(x) on a Zariski open dense subset of U.

7.5 Basic Lemma. Let M be a set of uniform convergence relative to every averaging
net {A,} corresponding to a relatively compact non-null subset AcU. Let {x,}
be a sequence in M converging to xeM. Let {g,} be a sequence of elements in
H— Ay (U) which satisfies the condition () with respect to s (see 6.6). Suppose
that g,x,eM for all n. Let ¢ be a U-quasiregular map corresponding to {g,}
and constructed in 5.2. Then the ergodic component i, is Im(@)-invariant.

Proof. We will use the notation of Sect. 5. Recall that ¢ was constructed as
a limit of K ;-rational maps ¢,: U - U. To prove the lemma we need to establish
some additional facts about ¢, and ¢. Set w,=s"""g,s*™. Since {g,} satisfies
the condition (*) with respect to s, passing to a subsequence we can (as we
will) assume that w, converges to an element we W™ (s). Define a K -rational
map 6: U — U by the formula

©) p(u) weLp(d (),
where L= W (s) Z(s) Vand p: U — U}, is a projection parallel to L (see 5.1).
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In view of (2) and (7) in 5.2, for every n there exists a K -rational map
6,: U — U such that

(109) Ay (U) gn =00 (1) 2, (3, ().
Note that (a) lim s~ g, (x) s"®=p(x) for every xeU, (b) ¢, are K -rational

maps from U to L, and (c) if xeL and the sequence s "xs" tends to an element
yeH when n— oo then ye W™ (s) Z(s) (because W™ (s) Z(s) is a closed Int(s)-invar-
iant subgroup of H and Int(s™!)|, acts as a coniracting automorphism of V).
This and (10) imply that the element

pwyw= lim s ™™g, (u)g,s™
n—=>+ o

is contained in W7 (s)Z(s)V for every u from the Zariski open subset
M E (@)1 (M) (for the definition of (¢')~ (M) see 5.2). Therefore

(11 Uywe W (3)Z(s) U,

and the sequence {8,} of K -rational maps converges to 8 uniformly on compact
subsets of .#. (Note that since the degrees of the K -rational maps {¢,} and
{a,} are bounded (see Sect. 5) we get from (10) that the degrees of {3,} are also
bounded.)

It follows from (11) that W~ (s) Z(s) U, is Int(w)-invariant. Since the multiplica-
tion map W ()X Z()xUg->W (9 Z($5) Uy, W ,z,u)»w zu, is a Kg-
isomorphism onto a Zariski open dense subset of W™ (s) Z(s) U, and the subgroup
W™ (s) Z(s) is Int(w)-invariant we obtain that the projection of w™'Uw onto U,
parallel to W~ 1(s) Z(s) is a K ,-rational isomorphism. This, in view of (9), implies
that ¢ is a K y-rational isomorphism of K ;-algebraic varieties.

Now let uge.#. Put g=@(u,). We need to prove that the ergodic component
Uy 18 g-invariant. This is equivalent to the fact that for all continuous functions
fon H/I" with compact support we have

(12) I Sfydpy= [ ) dp,e(h),

HIr HIT

where fi(h)=f(qh).

Let Ac.# be a compact neighborhood of u, in U such that {¢,} and {,}
converge to ¢ and 4, respectively, uniformly on 4. Put B=4(4) and B(n)=3,{A)-
It follows from Lemma 7.4 that

(13) lim 8(BAB(n))=0.

Lemma 7.4 also implies that without loss of generality we can (and will) assume

that there exists a compact subset B such that B>Bu{ | B(n)) and the
sequence {5, '} converges uniformly to 6! on B. =1

Let f be a continuous function on H/I' with compact support. For every
n we put A,=o,(4) and B,=a,(B). In view of Lemma 7.2 {4,} and {B,} are
averaging nets corresponding to 4 and B, respectively. Since a,(4)= A, (s¢€
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(5), Sect. 5) and the Jacobian of the K, -biregular map a,: U-U is constant,
in view of {10) we obtain

L

gy | /@8 x) 400

A

9 Gy I S x)dow=

Argm

1
) J S (@n(u) a, (3, () x,) d O (u).
Let £¢>0. Choosing A small enough we can find n,> 0 such that for all n>n,
1 1
(15) \TA) § S (@) @,(3,(u)) xn)dg(u)~5@ § £ (@0, ) x,) dOw)| <&
A 4

Since f? is bounded and the Jacobian of §, converges uniformly to the Jacobian
of 6 on A, substituting v=4,(u), using (13) and replacing (if necessary) A by
a smaller neighborhood of u,, one can easily see that there exists a constant
ny = ng such that for all n=n, we have

(16) )G(A) § £(a,(8, () x,) dO(u)~ § fU(an0) x,) dO()| <e

H(B

Therefore, in view of (14), (15) and (16)

(17) ‘ | flug,x,)dou)— <2¢

4 de
0(4rw) 4, e(B,(n,),,f FHux) d8t)

r(n)

for all n>n, (we use again that the Jacobian of a, is constant).
On the other hand, M is a set of uniform convergence for both {4,} and
{B,}. Therefore there exists a constant N (e, f) such that if r(n)= N (¢,f) then

)d0(u)— nd hl<
‘6<A,(n,) J S 00— § T B diys B <

and

1 'I
’?(Er;,)—) B,If) fHux,) d0(u)—H{r U d g (B) <

Hence for all n such that n>n, and r{n)> N(e,f), in view of (17), we obtain

[ S0 gyt~ | fq<h>duy<xn,(h)\<4a.

H/T HIT

So, to complete the proof, it is enough to show that if f is a continuous function
on H/I' with compact support and {z,} is a sequence from M converging to
z€M then

hm § f(h dﬂ)’(ln)(h)- j f(h)dtuy(z)( )

n= oo g Hr
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Let ¢, >0 and N(g,f) be such that if n> N (g;,f) then

(18)

— § S dpyeh)

H/r

<

for every ze M.
Choosing n large enough, since z, — z and f has compact support, we get

iH(A) jfuz,,)d@

)

<&.

Now, in view of (18)

i j f(h)dﬂy(z,,)(h j. S d:uy(z)(h)‘<28]>
HIT Hir

which completes the proof of the assertion and with this the proof of the Basic
Lemma.

8 Applications of the Basic Lemma and of the properties of ¢

8.1 Let G=G(K ), where G is a connected K s-algebraic group, % a unipotent
K s-algebraic subgroup of G, I' a discrete subgroup of G, and u a Borel probability
%-invariant and %-ergodic measure on G/I'.

Up to the end of Sect. 8 we will assume that the measure p is Zariski dense (see
3.3), % is a maximal subgroup in the class of all unipotent K ,-algebraic subgroups
of G preserving p and % is not a normal subgroup of G.

Let se Ny(%) be an element from the class of preserving p. Denote by U*(s)
the maximal K y-algebraic subgroup of We (s) preserving 4. Since Su=u the ele-
ment s normalizes U™ (s) We set F (s)={geG|U" (s) g is contained in the Zariski
closure of Wg (s) Zg(s) U* (s)} and U ()= (5)n W5 (s). It follows from the dis-
cussion in 6.6 that & (s) and U~ (s) are K -algebraic subgroups of G. (Note
that & (s) coincides with the group # introduced in 6.6 if we substitute U™ (s)
by U, from 6.6.)

We claim that # (s) contains #. Indeed, denote by R the subgroup of G
generated by % and U™(s). Let R be the Zariski closure of R in G. Then R
is open in the Hausdorff topology of R [Bo-Pra, 2.2] and R is Int(s)}-invariant.
Therefore, R~ W (s) is open Int(s)-invariant subgroup of R~ W, ' (s). Since
Int(s™!) acts as a contraction on W (s) we obtain that R W (s)=Rn W' (s).
But R n W, (s) preserves u and contains U * (s). In view of the definition of U* (s),
this implies that R~ W' (s)= U * (s). By Proposition 2.7

Re(Ws (5)nR(Zs(5)nRY(WG (N R).

Thus R<(Wy (5) Z4(s) U™ (s). Hence % < % (s).

As in 6.6 one can write Wy (s)=V* (s} U* (s) and Wy (s)=U"(s) V ~(s), where
V*(s) and V™ (s) are Kg-rational sections for Wg (s)/U*(s) and Wy (s)/U ™ ()
respectively. In view of Proposition 2.7, there exists a Zariski open subset of
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G containing e such that every element g from this subset has a unique repre-
sentation g=u"(g)v (2} z(g) v" (g)u* (g), where u™(g)eU™(s), v (g)eV ™ (s),
z2(g)eZg(s), v™ (e V7 (s) and u™ (g)e U™ (s).

8.2 Proposition. With the above notation and assumption, let N <G be a subgroup
which is maximal in the class of normal subgroups of G preserving u and generated
by unipotent K s-algebraic subgroups of G. Assume that % & N. Then there exists
a WU -quasiregular map @: U — Ng(%) such that

(i) Im() consists of elements preserving u;
(i) if F is the subgroup of G generated by U and lm (@) then F contains an element
s from the class </ with the following properties:

@ U™ (s)*{e};

(b) als, Z(shz 1;

(¢) if N(s) denotes the subgroup of G generated by Wi (s) and Wg (s) then
N(s)/N(s)n N is an infinite group.

Proof. Let us embed G in a K s-algebraic group H=[] H,, where H,=SL,,
ved

According to Lemma 6.8, there exists an element te H, H=H(K) from the class

o/ such that #<Wy(@®) and ANGU)nWyt)={e}, where U=

lim ¢ "9 ¢". Given a relatively compact non-null subset A% we will denote

n—+ow

by {A,} the averaging net corresponding to A as defined in 7.2 (ie. 4,=0,(A)).
In view of Lemma 7.3, for every ¢>0 there exists a measurable subset M, < H/T’
with p(M,)>1—¢ which is a set of uniform convergence for all averaging nets
{A,} corresponding to relatively compact non-null subsets 4 <%. (Note that G/T’
is contained in H/T, so the measure u on G/I' can be also considered as a measure
on H/I')

Denote by N the Zariski closure of N in G. It follows from the Levi decomposi-
tion of G that there is a connected K s-algebraic subvariety L of G which contains
e and is transversal to N at e and has the following property: r(L) is a normal
K s-algebraic subgroup of G/R,(G) and G/R,(G) is an almost direct product
of r(N) and r(L) where R,(G) is the unipotent radical of G and r: G — G/R,(G)
is the natural epimorphism.

Put P= AG(%). Let us show that P 3 L, where L=L(K ;). Assume the contrary.
Then the set LN normalizes the group #N. Since LN is Zariski dense in G
this implies that G normalizes the Zariski closure E of %N in G. Therefore G
normalizes the subgroup E* of E generated by all unipotent elements of E. But
%N has finite index in E. Therefore %N contains all unipotent K s -algebraic
subgroups of E i.e. E* =%N. In view of the maximality of N we obtain that
N o9 which contradicts our hypothesis. Therefore PP L.

It follows from Lemma 3.3 that for all sufficiently small ¢ there exists
a converging to e sequence {g,)c¥M)n(L—P), where ¥(M,)=
{xeG|xM,nM,# ¢}. Denote by ¢: # — H the quasiregular map correspond-
ing to {g,} (see 5.2). Since {g,} =G, the formula (17) in 5.2 implies that Im(p)=G.
On the other hand, it follows from Proposition 6.7 and the choice of ¢ that
the sequence {g,} has the property (*) with respect to t. Using the Basic Lemma,
we deduce that Im(p) preserves u. This proves (i). Denote by F the subgroup
generated by Im(¢) and %. Then F is contained in A (%) (Proposition 6.1) and
it is open in its Zariski closure in G. By virtue of our assumptions about
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4 (see 8.1), if V is a unipotent K ,-algebraic subgroup of G and V< F then
V<. Now Proposition 6.3 implies that there exists a split K -torus S in the
Zariski closure F of F in G such that (a) F/FAS% is a compact group and
(b) there exists an element seSNF from the class .o such that U” (s)+{e} and
(s, D)= 1 for every K -algebraic subgroup D of G normalized by SU. According
to 8.1, % <% (s). On the other hand, since SN F commutes with s we obtain
that S A F normalizes Wy (s), Z 5(s) and Wg (s). In view of the definition of U™ (s)
in 8.1, it follows that SN F normalizes U™ (s) and, therefore, S~ F normalizes
F (s). Since SN F is Zariski dense in S, we get that S normalizes & (s). Hence
afs, #(s))= 1. So, we have proved that s has the properties (a) and (b) in the
formulation of the proposition.

Since {r(g)}<=r(L) and r(L) is a normal subgroup of the reductive group
G/R,(G) it follows from (17) in 5.2, that (S~ F) = r(L). Note that r- ¢ is a strongly
quasiregular map. Therefore, in view of 6.2 and Lemma 6.4, r(s) does not centralize
r(%). This implies that the subgroup N(s) generated by Wy (s) and Wy (s) has
nontrivial projection into r(L) which proves that s has the property (c). The
proposition is proved.

8.3 Proposition. Let se NG (%), s+e, be an element from the class of preserving
w. For every >0, there exists a compact subset M, < G/I" with u(M,)>1—z¢ such
that if {g;} is a sequence of elements from G—Ag(U™ (s)) converging to e and
giM,AM_ ¢ for all i then the sequence £~ (v (g))—¢ (u”(g)) tends to — o
when i tends to + co. (Recall that the function {~: W7 (s)— Z has been defined
in 5.1.)

Proof. Put U=U"(s) and %° =% n Z4(s). Denote by R the closure in the Haus-
dorfl topology of G of the subgroup generated by #° and s. It follows from
the generalized Mautner Lemma [Mar6, Lemma 3] that R acts ergodically on
(G/I', ). Let u= ] u, dv(y) be the decomposition of 1 into U-invariant U-ergodic
x,v)

probability measures p,, where yeY and (Y, v) is a finite mesure space. If xeG/T,
we will denote by y(x} the corresponding point from (¥, v).

For every Borel probability measure ¢ on G/I' we denote by W, the maximal
K s-algebraic subgroup of W' (s) preserving o. It is easy to see that if 6= lim g;
and the sequence In(W,) converges to a K s-subspace L of Lie(Wy (s)) then
exp LcW,. From this and the compactness of the Grassmannian variety
Gr(Lie(W; (s))) one can easily get that (1) if ¢=1lim ¢; then dim W,

2lim dim W,; (2) the map o+In(W,) is continuous on the set {g|dim W, =/}
for every £. Therefore, the following assertion is true

(A) The map or>In(W,) from the space of Borel probability measures on
G/I" into Gr(Lie(Wg" (s))) is Borel.

Set W,=W,_,. Since R normalizes % we have that for every geR the equality
Hyen =Hgyw 18 true for almost all xeG/I'. Therefore, for every geR we have
that W, ,=gW, g~ ! for almost all xeG/F".

Denote by Q the space of all K s-algebraic subgroups of W (s). Then the
above remark implies that the map f: (G/I, ) —Q, x~ W,, is R-equivariant.
Since the logarithmic map defines an imbedding of Q into Gr(Lie(W5' (), it
follows from the assertion (A) that f is a Borel map. Now, in view of Corollary
3.1 and the ergodicity of the action of R on (G/I', u) we get that f is essentially
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constant. Therefore, there exists a conull subset M= G/I' such that W, =U for
all xe M.

For every £¢>0 fix a compact subset M,= M, such that u(M,)>1-¢ and
M, is a set of uniform convergence for all averaging nets {A4,} corresponding
to non-null relatively compact subsets 4 of U. Let g;e G—.A;(U) be a sequence
converging to e and g;M,nM,+¢ for all i. Assume that the sequence
{£/~(w™ (g)—¢"(u (g;))} does not tend to — oo when i — oco. Passing to a subse-
quence, we will assume (without loss of generality) that the sequence is bounded
from below and that for every i there exists an x;e M, such that g, x;e M, and
lim x;=x where xe M,. By Proposition 6.7, the sequence {g;} satisfies the proper-

ty (*) with respect to s. Let ¢ be a U-quasiregular map corresponding to {g;}
and constructed in 5.2. Tt follows from Basic Lemma, Proposition 6.1 and Proposi-
tion 6.7 that Im(¢) = W' (s)~ A(U) and that Im(p) preserves the ergodic compo-
nent p,,,. Let F be the subgroup generated by U and Im(¢) and F be the
Zariski closure of F in W' (s). Note that F/U is a group of K g -rational ponts
points of a K s-algebraic group (Proposition 1.8) and that F/U is a noncompact
open subgroup of F/U (see 6.3 and Proposition 6.1). In view of Proposition 4.1,
this implies that F/U contains a nontrivial unipotent K s-algebraic subgroup
of F/U. Since F preserves Hyx)» We obtain that W, +U which contradicts the
fact that xe M. The proposition is proved.

8.4 Corollary. Let s=e be an element from the class of preserving p and s€ N(U).
Then there exists a conull subset M G/I" such that M ~"Wg (syxc U™ (s) x for
every xe M.

Proof. For every ¢>0, let M, be a subset of G/I' as given by Proposition 8.3.

Let u= j 1, dp(z) be the decomposition of u into {s)-ergodic components,
(Z.p)

where (s> denotes the cyclic subgroup generated by s. As usual, if xeM,, we

will denote by z(x) the corresponding point from (Z, p).

For every ze(Z, p) denote by C, the intersection Supp(u,) N M, where Supp(u,)
denotes the support of v,. Let 6 =p {ze(Z, p)| 1,(C,)= 3} Then using Fubini’s theo-
rem, 5+3(i—8)=1—e Whence 1-623e Let M, ={xeM |p, »(C,,)23%} and
M| ={xeM,|v,({Co) S5} It is easy to see that u(M;)=2¢ Hence p(M)z1
—3e. It follows from the Birkhoff ergodicity theorem, that there exists a measur-
able subset M, =M, with u(M,—M,)=0 which has the following property: if
7 denotes the characteristic function of M, then for every xe M, the sequence

o > x(s'x) tends to a number greater than or

equal to 3.

Let x;,x,e M, and x,=wx; where we Wy (s). Assume that v~ (w)=e. In view
of the above property of M,, there exists an increasing sequence of positive
integers {n;} such that s"x,s"x,eM, for all i. Put g,—s"‘ws"" Clearly, s"x,
=g,s"x, for all i and hm g;=e. Note that g, A5(U" (5) for every i. Indeed,

if g;e A6(U™ (5)) then we VG(U (s)), because A5(U * (s)) is Int(s)-invariant. Hence,
we U™ (s), contradicting the assumption that v~ (w)se. By Proposition 8.3, the
sequence {¢~ (v (g))—¢ " (u” (g;)} tends to —co when i— co. On the other hand,
if v (w)= ¢, then one can easily deduce from (9) in 6.6 that the sequence is bounded
from below. So, the assumption that v~ (w)#e leads to contradiction and, there-
fore, W S)xnM,cU™ (s)x for every xeM,. Recall
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that p(M,)=1-3e. Now, passing to a limit when ¢—0, it is easy to obtain a
conull subset M such that W (s)xnM c U™ (s) x for all xeM. The corollary
is proved.

9 Entropy of translations of homogeneous spaces

In this section, G and I' denote the same as in Sect. 8. We fix an element se€G
from the class o/ and write W™ =W; (s), Z=Zg(s) and W* =W (s). Let u be
a Borel s-invariant probability measure on G/I.

We can consider G as a K -algebraic subgroup of GL,(K;). The absolute
values | |, on K, induce a norm || | on the ring of K -endomorphisms
End(K?%). Define a metric p’ on End(K") by the formula p'(A, B)= || 4A— B}. Since
GL,(K;)=End(K,) the metric p’ induces a metric on G which we denote also
by p'. Let us fix a right invariant metric p on G such that on every compact
subset Lo G the metrics p|, and p’|, are equivalent in a sense that their ratio
is bounded. This metric induces a metric on G/I' which will also be denoted
by p.

9.1 Fix a point peG/I" such that every neighborhood of p in G/I' has positive
measure u. Fix relatively compact neighborhoods B and C' of ¢ in W~ and
ZW respectively, such that the map

xr>xp,xeD ¥ B C,

is a homeomorphism onto an open subset D% D' p of G/TI'. We write C=C'p.

Lemma. Assume that diam(sX s ') < {5 diam(X) for every X = B'. For every ceC,
there exists a containing c subset E, of W™ ¢ such that:

(1) E.cBc;

(2) E. is open in W™ ¢ (in the orbit topology) and the subset E % U E, is open
in G/T; ceC
(3) whenever S"E.NE=% ¢, ceC, n>0, we have S"E,c E.

Proof. We can assume that B’ is a sphere of radius a/2 centered at e, ie. B
={xe W~ p(e, x)<%}. Let B, denote the sphere in W™ or radius 5 centered

ate.

For every ceC we define the set E, as follows: xeE, if and only if there
exists a nonnegative integer p, a sequence {co=c, ¢,,...,c,} of elements in C
and sequence {ny=0, n,,...,n,} of nonnegative integers such that xes™ B, ¢, and
s"-1Bgc;_ NS Bycd ¢ for every 1<i<p. The minimal p for which such
sequences exist will be denoted by p(x).

It easily follows from the above definition that E, has the properties (2) and
(3). Let us prove (1) by induction on p(x). The assertion is trivial if p(x)=0.
Assume that (1) is proved for every yeE,, deC, with p(y)<k—1. Let xe E,, p(x)
=k>0 and let {co=ccy,....,¢} and {ne=0, ny,....,n} be corre-
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sponding sequences. Let n=n;=min{n,,...,n}. Recall that B'd,nB'd,=¢ if
d,,d,eC, d,+d,. From this and the induction assumption, we get that n>0.
The induction assumption also implies that

) k
) s "Byc;cB¢; and |Js"T" By, B¢,
i=1

i=j

But n>0, diam(B)<a and diam(sX s~ ") <+ diam(X) for every X — B'. Therefore

k a
diam | { } s™ B, c,-)gf.
i=1 10

This implies that

k k
diam( J s" B, ci>§diam(BO c0)+diam( (J s" By c,-)éi-kﬁ- <2
Y o 107102

k

But the union |} 5™ B, ¢; contains both ¢ and x. Hence xe B'c.
i=0

9.2 Lemma. Let M be a relatively compact open subset in a K z-analytic variety
V. If u is a probability measure on M and q: M —(0,1) is such that logg is
u-integrable, then there exists a countable partition 2 of M with entropy H(?)< w©
such that, if P(x) denotes the atom of # containing x, then diam 2(x) < q(x).

The above lemma is an analog for K s-analytic varieties of Lemma 2 in [Ma]
and its proof is virtualy the same.

9.3 We will use the standard terminology and results from ergodic theory (see
[Roh]).

Definition. We say that a measurable partition ¢ of the measure space (G/I, u)
is subordinate to a closed subgroup V of G if for almost all (with respect to
u) xeG/I', we have

(a) £(x)= Vx where £(x) denotes, as usual, the element of & containing x;

(b) £(x) is relatively compact in Vx in the orbit topology.

(c) £(x) contains a neighborhood of x in Vx.

Let n and #' be measurable partitions of (G/I', u). We write y <" if #(x)>4'(x)
for almost all (with respect to u) xeG/I. We define a partition gy, geG, by
gMx)=gln(g™ " x).

Proposition. Assume that u is s-ergodic. Then there exists a measurable partition
1 of the measure space (G/T, ) with the following properties:

(i) #n is subordinate to W™ ;

(ii) # is s-invariant, i.e. n S sy;

(iii) the mean conditional entropy H(sn|n) is equal to the entropy h(s, p) of the
automorpism x+>sx, xe G/I', of the measure space (G/T, p).

Proof. Let E, and E denote the ‘same as in Lemma 9.1. Denote by n: E—C
the natural projection (n(x)=c if x€E). We set n(x)=E,,, for every xeE.
It is enough to find a countable measurable partition ¢ of (G/I', 1) such that
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H(é) < o0 and n(x)=¢7 (x) for almost all xe E where £~ = \/ s~ "¢ is the product
n=0

of the partitions s™"¢,0<n<oo. Indeed, let us set y=¢7. It is clear that # is

s-invariant. The set of xeG/I" for which properties (a) and (b) (resp. (c)) in the

definition of a subordinate partition are satisfied is s~ -invariant (resp. s-invariant)

and contains E. But u(E)>0 and u is s-ergodic. Therefore, n~ is subordinate

to W™. To check the property (iii) it is enough to show that the partition &= \/
s*¢ is the partition into points (see [Roh, Sect.9]). We have that &~ (x)
=n{x)=B-B " !'x if xeE. On the other hand, the automorphism Int(s)y - is
contracting. Therefore, & (x)={x} if s™"x€E for infinitely many positive n. But
H(E)>0 and p is s-ergodic. Hence £,(x)= x for almost all x.

Let us construct the desired partition £ For xeE, let n(x) be the smallest
positive integer n such that s" xe E. Since ¢(E) >0 and p is s-invariant and s-ergodic,
we get (using standard arguments from ergodic theory) that

(1) { n(x)dutx)=1.

E

Define a probability measure ' on C by

oy e X))
o) M(X)——M#(E) ,XceC.

Property (3) of the family {E.|ceC} implies that n(x) is constant on every E,,
ceC. Therefore, in view of (1) and (2)

3) | nie)dp (c)< co.
C

There exists A>1 such that p(sg,, sg,)<Ap(g,,g,) for all g,,2,€G. Since the
function n(c) is ¢'-integrable, one can find a positive function g(c)< 1™ "9, ceC,
such that the function log g{c) is y'-integrable and the y'-essential infinum ess icnf
q(c)is 0. ce
The multiplication map W™ x ZW™* - G, (x, y) — xy, is a diffcomorphism onto
an open subset of G. Therefore replacing, if necessary, B and C’ by smaller
subsets we can find ¢> 0 such that (a) ||gl| £2 p(n(x), n(y)) whenever x, yeE, y=gx,
geZW’ and ||g| <¢; (b)if x, ye C there exists ge ZW™ such that y=gx and | gl <e.
Since the function log q(c) is y'-integrable, there exists a countable measurable

partition 2 of C such that H(#)< o and diam W(x)<%q(x) for almost all xeC
(see 9.2). Now we define a countable measurable partition ¢ of G/T" by

_(n'(@P(x)) if xeE
é(")_{ (G/N—E  if x¢E.

Since H(#) < oo, we get using (2) that H(¢) < oo. It remains to show that n(x)=¢(s)
for almost all xeE. It follows from the property (3) of the family
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{E.} that n(z)<{(z). Let x and y be elements in E with & (x)=¢7 (). Since
n(z)c &(z) we can assume that x, yeC. Then y=gx where geZW™* and |g| <e.
Set x,=x, y, =y, g, =g and define by induction

X1 =8 0, Yo | = 5"y, iy =870 gy 70N,
A trivial induction argument shows that

4) Yie= 8k X
Let us prove that

4 lgell <zq(mlxy))  forall kz0.

If k=1, the inequality (5) is true because diam ?]’(x)<§q(n(x)) and Z(x)=2(y).
Assume that (5) is proved for k. Then

Igi+ 1l = Is"% g ™m0 | < Jr5) g, | Se 2" g(m(x ) Se.

Then since x;+ 1 and Y41 =gk+1 X+ belong to the same element of the partition

¢ (because &7 (x)=E7(y)) and diam W(n(xk))ggqn(xk)) we get from the defini-
tion of £> 0 that (5) is true for k+ 1.
Since the measure p is s-ergodic and ess infg(c)=0 we have that

lim inf g(r(x))=0 for almost all xeE. On the other hand, if heZW* and h=+e
k— o

then e is not a limit point of the sequence {s" hs™"|{n20}. Therefore (5) implies
that g=e and x=y.

Remark. 1t follows from the construction of n that for almost all xeG/I" the
map W~ - W™ x, w—wx, is bijective. Indeed, let xeG/I" be such that the set
of positive integers I ={n|s"eE} is infinite. Let W, be a relatively compact subset
of W~. Since the automorphism Int(s)|y - is contracting, we get s"Wyx
=s"W,s "s"xcE for large enough nel. Therefore, the map w—wx, weW,, is
bijective for every relatively compact W,. This proves our assertion.

9.4 Lemma (see [ Led-Str, Proposition 2.2]). Let T be an automorphism of a measure
space (X, ¢), a(X)< o0, and let | be a positive finite measurable function defined
on X such that

logy fofTeL1 (X,0), where log; (a)==min(log, a,0).

Then
{ log, foT dp=0.
x f

9.5 Lemma. Let V be a closed subgroup of W™ normalized by s and n be a measur-
able partition of (G/I', p) subordinate to V. Assume that 4 <sn, and that for almost
all xe G/T', the conditional measure u, ,, of p on n(x) is proportional to the restriction
to n(x) of a V-invariant measure on Vx. Then the measure y is V-invariant.
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Proof. The measure u induces in a standard way conditional measures p, ,, on
the orbits Vx. These measures are defined and unique up to a proportionality
for almost all xeX. From the assumption about u,, we get that for almost
all xeG/TI', the restriction of u., to n(x) is proportional to the restriction of
the V-invariant measure. Thus the uniqueness of p, , and the s-invariance of
u imply that the restriction of p, , to (s~ "#)(x) is proportional to the restriction
of the V-invariant measure. On the other hand, since the automorphism Int(s), -
is contracting, we have that U (s7"n)(x)=Vx for almost all xeX. Therefore
0<nzw

the measures p, , are V-invariant and, hence, the measure p is V-invariant.

9.6 Proposition. Let V be a closed subgroup of W™ normalized by s and let n
be a s-invariant measurable partition of (G/T", u) subordinate to V.

() If p is V-invariant, then H(sn|y)=log,a(s™', V) where H(sn|y) is the mean
conditional entropy and a(s, V) is defined in 1.5.

@) H(snln=log, a(s™, V). The equality H(sn|n)=log, a(s~ !, V) implies that Vu
=

Proof. Since n<syn for almost all xeG/I" we have a partition #, of n(x) such
that 7,.(y)=(sn)(y) for almost all yen(x). Denote by 7 the Haar measure on V.
Since n{x)=Vx,1 induces a measure on #(x) which we will denote also by t.
Put L(x)=1(n{x)) and 1,=1/L(x), xe G/T". Note that on #(x) we have a conditional
probability measure y, induced by p. Put p(x)=1,(1,(s)) and r(x)= p.(n,.(x)). Then

. - . Lis 'x)o™! -
since 7,(x)=s(n(s” ' x)) one easily sees that p(x)= T’ where a=a(S™', V)
(see 1.5). Since n is a measurable partition subordinate to ¥, L(x) is a positive

1
finite measurable function. Note that p(x)<1. Therefore log; L(z (x)x) LN G/T, p).
In view of Lemma 9.4, we obtain
(6) — | log, p(x)du(x)=log, o
G/T

Assume that p is V-invariant. Then p,=1, for almost all xeG/T, in particular,
p(x)=r(x) for almost all xeG/T". But

(7 — | log, r(x)du(x)=H(sn|n).
G/r

This in view of (6) proves (i).
Let Y(x), 1 <i< oo, denote the elements of the countable partition 7, of 7(x).
Then we have

®) § logap()du(n)— § log,r(y)du(y)
n{x) n(x)

s :(¥i(x))
—-; 8 W) X 1 (Y;(x)).
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We have that

=+

© PERCAOEY
and
(10) T w)=1

(In (9), we can have inequality because apriori it is possible that the measure
7, of n(x)— (J Yi(x) is positive). From (8}, (9) and (10), using the convexity
1Sifw

of log we get that

| logsp(du (< | log, r(y)du.(y)
n(x) n{x)

and the equality holds if and only if p(y)=r(y) ie. T,.(n.(y)=p.(n.ly)) for all
yen(x). Now using integration over the quotient space (G/T', p)/n of the measure
space (G/I', ) by # we get from (6) and (7) that H(sy|y)<log, « and the equality
holds if and only if 7, ({s#)(x)) = i, ((s#)(x)) for almost all xeG/I".

Assume that H(sn|n)=log, a(s™!, V). Then H(s*y|n)=log, a(s % V) for every
k>0. Using the same argument as above and replacing s by s*, we get that
7. (5*7)(x)) = i1, (s*n)(x)) for any k>0 and almost all xeG/I". On the other hand
since 5 is subordinate to V and the automorphism Int(s) is contracting on V

el

we have that \/ s*y is the partition into points. Hence y, =1, for almost all
k=1

xeG/I. In view of Lemma 9.5, it implies that u is V-invariant.

9.7 Theorem. Assume that the element s acts ergodically on the measure space
(G/I', ). Let V be a closed subgroup of W~ normalized by s. Put a=a(s™", V).

(i) If wis V-invariant, then h(s, p) = log, o.

(ii) Assume that there exists a subset ¥ <=G/I' with u-measure 1 such that
VAW~ xcVx for every xe¥. Then h(s, u)<log,(x) and the equality implies that
W is V-invariant.

Proof. According to Propostion 9.3, there exists a measurable s-invariant subordi-
nate to W~ partition g of (G/T, ) such that H(sy|n)=h(s, p). Let xeG/I" be
such that the map wr—wx, we W™, is bijective. (In view of Remark 9.3, the set
of all xeG/I'" with this property is conull) Set #'(x)=Vxnn(x). Then ' is a
measurable s-invariant partition of (G/I',p) subordinate to V. Since
h(s, )= H(s#'|#'), the part (i) of the theorem follows from the equality H(s#'|n')
=log,(x) (Proposition 9.6 (i)).

Now assume that ¥ n W™ x< Vx for every x from a conull subset ¥ < G/I.
Then # and #’ coincide on ¥ (ie. n(x) ¥ =1 (x) V). Hence H(sn|n)=H(sn'|x).
By Proposition 9.3(iii), A(s, #)=H(sn|n). Using Proposition 9.6(ii} we obtain that
h(s, )<log, « and the equality implies that u is V-invariant. The theorem is
proved.
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10 Proof of Theorem 1

Let G=G(K ), where G is a K s-algebraic, % a unipotent K ,-algebraic subgroup
of G, I' a discrete subgroup of G and u a Borel probability #-ergodic #-invariant
measure on G/I.

We need the following simple

10.1 Lemma. If there exists a closed (in the Hausdorff topology) normal unimodular
subgroup N of G such that u is N-invariant and N-ergodic then u is algebraic.

Proof. Let m: G- G/I" be the natural projection. Denote by ' the lifting of u
to G ie.
KX)= [ ax(0du®y)

G/T

where ay(y) is the number of elements in n7' () n X. Then y'I'=y. On the other
hand Ny’ =y, and since the subgroup N is unimodular and normal in G, i’ N =y’
Thus p' NI' =y and hence y' F =’ where F <G is the closure of NI in the Haus-
dorff topology. Since p is N-ergodic, we have that y' is F-ergodic. From this,
we get that y' is a F-invariant measure on a coset gF. Hence u is algebraic
(here we use that FoTI).

10.2 Proposition 2.7(a) easily implies the following.

Lemma. Let s€G be an element from the class </ and let H be a K -algebraic
subgroup of G normalized by s. Then

as, H)y=a(s, Wi (s))als, Wy (s)).

10.3 In proving Theorem 1, we may (and will) assume the following: (i) % is
a maximal subgroup in the class of all unipotent K ,-algebraic subgroups of
G preserving u; (i) the measure p is Zariski dense, ie. G does not contain a
proper K s-algebraic subvariety M of G such that yu(n(M))>0 (in view of Proposi-
tion 3.2); (iii) the K s-algebraic group G is connected (in view of (ii)); (iv) G
does not contain a normal unimodular subgroup N of G such that y is N-invariant
and N-ergodic (in view of Lemma 10.1).

104 Let N be the maximal subgroup in the class of all normal subgroups of
G preserving u and generated by unipotent K ,-algebraic subgroups of G. (A
standard argument from the theory of linear algebraic groups shows that N is
closed in the Hausdorff topology on G.) In view of assumption (iv) in 10.3, we
have that % ¢ N. According to Proposition 8.2, there exists a #-quasiregular
map ¢: U — Ag(¥) such that Im(¢p) consists of elements preserving u and the
subgroup F generated by % and Im(¢) contains an element from the class &/
such that: (1) U* (s)*{e}, (2) als, F (s)) =1, (3) N(s)/N(s)n N is an infinite group,
where N(s) is the (normal) subgroup generated by W (s) and W (s). (We use
the notation from Sect. 8).

Denote |det Ad k|, heG, by d(h). Since q)(u)—hm a,(u) g, b,(u), the elements

a,(u) and b,(u) are unipotent, d(h)=1 if h is umpotent and lim g,=1, we
have that e

d(o)= lim d(a,w)d(g,) dib,(w)=1
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Thus a(g, G)=1 for every gelm(¢) and, consequently, for all ge F. In particular,
a(s, G)=1.

10.5 Now the proof of Theorem 1 can be completed in three steps.

Stepl In view of 8.4, there exists a conull subset of M such that
MW (s)x<U™(s)x forevery xe M. Let u= | p.dp(z) be the decomposition
(Z.p)

of p into {s)-ergodic components. It follows from Mautner’s lemma [Mar6, Lem-
ma 3, p. 317 that every {s)-ergodic component is U™ (s)-invariant. By Fubini’s
theorem, p,(M)=1 for almost all (with respect to p) {s>-ergodic components
1. Fix an {s)-ergodic component p, of the measure u with the property pu (M)=1.
Since h(s, u,)=h(s~", i,), Theorem 9.7 implies

log, a(s, U () Sh(s, p) Slogy (s ™!, U™ (5)).
But
als™ LU (s)=uls, U (s) "

and in view of Lemma 9.2
1) als, () =o(s, U (shals, U (= 1.

Therefore
his, p)=logya(s ™1, U™ (s)).

It follows from Theorem 9.7(ii), that y_ is a U™ (s)-invariant measure. Therefore
the measure u is U™ (s)}-invariant.

Step 2 Assume that U~ (s)F W (s). This, in view of the definition of U™ (s) in
8.1, implies that U (s) is not a normal subgroup of G. It follows from Lemma 3.3
that there exist a constant ¢, 0<c<1, such that if Q= G/I" is a measurable set
with u(Q)>1—c then there exists a converging to e sequence {g,} = ¥(£2) such
that

{8a} S(V7(9) Zg(5) We' (5)—(Z(5) W' (s) 0 AG(U T ()N P(Q).

Then 7~ (v (g,))> — o0 and ¢~ (u (g,))= —oc. This, in view of Proposition 8.3,
leads to contradiction. Thus U~ (s)= W~ (s), and hence, u is Wy (s)-invariant.
Step 3 In view of 10.2 we have that

) a(s, G)=als, Wg' (s)) auls, W (s)=1.

The restriction of the automorphism Int(s™') to W™(s) is contracting. But
U™ (s)c W*(s). Therefore a(s, U (s)) Sa(s, W*(s)) and the equality holds if and
only if U*(s)=W™(s). From this, (1) and (2) and the equality U~ (s)=W " (s)
we get that U™ (s)= W™ (s). Therefore, u is N(s)-invariant which contradicts the
maximality of N and the choice of 5. The theorem is proved.

11 Some applications

We formulate in this section some theorems about closures of orbits of unipotent
subgroups, uniform distribution and values of families of quadratic forms. These
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results, are analogs of corresponding results for real Lie groups (see [D-Mar 5, 6;
R5,6]). We will give only indications what should be changed in the proofs
for the real case to get the proofs for the case of K -algebraic groups. As for
real Lie groups the description of finite measures invariant and ergodic relative
to unipotent subgroups is used in a major way. Another important ingredient
is an analog of Dani’s theorem about the finiteness of ergodic measures invariant
under actions of unipotent subgroups.

As in Sect. 10, let G=G(K ) where G is a K ,-algebraic group, # a unipotent
K s-algebraic subgroup of G, and I a discrete subgroup of G.

11.1 Theorem. Assume that I' is a lattice in G, i.e. the volume of G/I' with respect
to the Haar measure is finite. Then, for any xe G/I', there exists a closed subgroup
L=L(x)cG containing % such that the closure of the orbit % x coincides with
Lx.

This theorem which is an analog of Theorem A in [R 5], is easily deduced from
Theorem 11.2 and Proposition 11.3. Note that Theorem 11.2 is an analog of Theo-
rem B in [R 5] and Proposition 11.3 is an analog of Proposition 2.1 in [D-Mar6]
and Theorem 1.1 in [R 5].

11.2 Theorem (Uniform distribution) Let ve T and let % = {u(t)|te K,} be a one-
parameter unipotent K s-algebraic subgroup of G,(K,). Denote by o, the Haar
measure on K,. Let A be a Borel relatively compact subset of K, with ¢,(A)>0.
Assume that I is a lattice in G. Then for any xe G/I", there exists a closed subgroup
L=L(x)=G containing % such that closure of the orbit % x coincides with Lx,
Lx admits L-invariant Borel probability measure 8 and

ITI -m|T|u f fu@®) x)do,(t)= j S doy

for any bounded continuous function { on G/T.

Note that for one-parameter %, Theorem 11.2 is a stronger version of Theo-
rem 11.1. Theorem 11.2 is an easy consequence of Theorem 1 and Theorems 11.4
and 11.6 formulated below.

11.3 Proposition. Denote by C the set of all closed subgroups H of G such that
HNT is a lattice in H and the Zariski closures of HNT and H coincide. Then
C is countable.

11.4 Theorem. Let % = {u(t)|teK,} and o, be the same as in Theorem 11.2. Assume
that T is a lattice in G. Let F be a compact subset of G/I" and let ¢>0 be given.
Then there exists a compact subset M of G/T" such that for any xe F and B>0

o,({teK lltl,<B and u(t)xeM})=(1—¢)B.

This theorem is an analog of Theorem 6.1 in [D-Mar6] and Proposition 1.3
in [R 5]. Let us make some remarks about the proof.

It is easy to make a reduction to the case where the groups G, are semisimple
and have no K s-anisotropic factors. Then, in view of the arithmeticity theorem,
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cither rank G & Y rankg, G,=1 or I' is an arithmetic subgroup of G. In
ved

the former case, we can assume that G is a real group (because as it is well

known, any lattice in a p-adic Lie group is cocompact) and we can use results

from [D4] and [D5] (see also Theorem 6.1 in [D-Mar6]). If I' is arithmetic,

one can assume that I'=SL,(Q(S)) and G=]] SL,(Q,) where S is a containing

peS

oo finite set of valuations of Q and Q(S) denote the ring of S-integers in Q.
Then if Q(S)=7Z, Theorem 11.4 is essentially Theorem 3.2 in [D5]. In the general
case, we can use the same type of arguments as in [D2] and [D5] and also
as in the proof of Theorem 1 in [Marl] (which can be considered as a weak
version of Theorem 2.1 in [D2]). These arguments are based on some properties
of polynomials and on the study of maps of some partially ordered sets into
the space of polynomials.

11.5 Theorem. Let H be a subgroup of G generated by unipotent K ;-algebraic
subgroups of G contained in H. Let v be a locally finite H-invariant measure on
G/I'. Assume that T is a lattice in G. Then there exist Borel H-invariant subsets

X, 1Si<oo, such that v(X)<oo for all i and G/I'=\) X,. In particular, every
i=1

locally finite H-ergodic H-invariant measure on G/I is finite.

For unipotent H, Theorem 11.5 is easily deduced from Theorem 11.4. One can
reduce the general case to the case of unipotent H using analogs for K ,-algebraic
groups of Moore’s results on Mautner phenomenon (see [Mo]).

11.6 As in [D-Mar6] for any closed subgroup W of G we denote by S(W)
the set of all xeG/I' for which there exists a proper closed subgroup H of G
containing W such that H x admits a finite H-invariant measure; under this condi-
tion Hx is automatically a proper closed subset of G/I'. We put 4(W)=
G/ —S(W).

Theorem. Let W be a subgroup of G generated by unipotent K s-algebraic sub-groups
of G contained in W. Let F be a compact subset of 4(W). Assume that T is a
lattice in G. Then for any ¢>0, there exists a neighborhood Q of S(W) such that
for any one-parameter {u(t)} of G, where teK,, ve 7, any xeF and any B2 0

o,{teK,||t|l, < B,u(t) xeQ} <¢B.

The proof of the above theorem is analogous to the proof of Theorem 1 in [D-
Maré6] and is independent of the results on invariant measures.

11.7 The following theorem is an analog of Theorem 2 in [D-Mar6] and can
be considered as a generalization of Theorem 11.2.

Theorem. Assume that I' is a lattice in G. Let 0 be the G-invariant probability
measure on G/I'. Let veJ and let {ut)}, teK,, be a sequence of one-parameter
unipotent K s-algebraic subgroups of G converging to a unipotent one-parameter
K g-algebraic subgroup {u(t)}, teK,; that is, u(t)>u(t) for all t. Let {x;} be
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a sequence in G/I' converging to a point in 4({u(t)}), let A and o, denote the
same as in Theorem 11.2, and let {T;} be a sequence in K, such that |T), tends
to infinity. Then for any bounded continuous function f on G/T’

fim § fu@®x)do,m= [ f(y)doy).

i I’Izlv T: A Gr

11.8 We will use some notation and terminology from [Bo-Pra]. Let k be a
number field. For every place v of k, let k, denote the completion of k at o.
Let S be a finite set of places of k containing the set S, of archimedean ones,
ks the direct sum of the field k (seS) and g the ring of S-integers of k.

Let F be a quadratic form on k§. Equivalently, F can be viewed as a collection
F(seS), where F, is a quadratic form on k. We say that F is non-degenerate
(resp. isotropics) if each F, is non-degenerate (resp. isotropic). The form F will
be said to be rational (over k) if it is a multiple of a form on k" ie. if there
exists a form F, on k" and A invertible in kg such that F=A1F,, and irrational
otherwise.

We have that ¢} is a cocompact lattice in k§. Let 0 be the Haar measure
on k? such that the volume of k%/(’§ with respect to 0 is 1.

Let Qq4(n) denote the space of non-degenerate indefinite quadratic forms on
k%. The space Qg(n) has a natural locally compact topology given by pointwise
convergence as functions on k%.

The following theorem is a generalization of Corollary 5 in [D-Mar6]. The
proof is based on some modifications of Theorem 11.7 and is analogous to the
proof of Corollary 5 in [D-Mar6].

Theorem. Let M be a compact subset of Qg(n) and let Q be a relatively compact
neighborhood of 0 in k%. Then we have the following :

(i) for any relatively compact open subset I in kg and a>0 there exists a finite
subset L of M such that each quadratic form FeL is rational and for any compact
subset C of M — L there exists ro>0 such that for all F in C and all t={t}eks
with |t ;> rq (as usual |x|; denotes the value of seS at xe Kg),

l{zetQn | F(n)el}|2 (1 —a) 0({vetQ|F)el});

(i) if n2S5, for every ¢>0 there exist ¢>0 and ry>0 such that for all F={F}eM
and t={t}ekg with |t|;>r,

l{z={z}etQn BB, <e}]
2 cO({v= (v} eQI|E@) <e)}.

11.9 Tt is possible to prove analogs for algebraic groups over local fields of
other results about actions of unipotent groups on homogeneous spaces of real
Lie groups. In particular, it is possible to prove analogs of recent results of Mozes
and Shah about limits of invariant measures.
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Note added in proofs

Recently the authors obtained some generalizations and corollaries from Theorem 2. In these
results, G is a group from a class of central extensions of Kg-algebraic groups, I' is a closed
subgroup of G and H is a subgroup from a class of closed subgroups of G. In particular,
we reduce the question about algebraicity of an H-invariant, H-ergodic, probability measure
u on G/T to the case where H is a central extension of a split algebraic torus. Using known
results about Mautner phenomenon, we also obtaine simple argument deducing the measure
rigidity for general real Lie groups from the measure rigidity for real algebraic groups.



