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Study of dynamics of actions of unipotent subgroups on homogeneous spaces 
has been attracting considerable attention for the last 30 years. One of the main 
reasons for this was that some problems in number theory and, in particular, 
in Diophantine approximations can be reformulated in terms of such actions. 
M.S. Raghunathan made a remarkable observation that a long-standing conjec- 
ture due to A. Oppenheim on values of quadratic forms at integral points can 
be deduced from some results about actions of unipotent subgroups. More pre- 
cisely, he formulated a conjecture that a closure of an orbit of a unipotent 
subgroup in the quotient of a Lie group G by a lattice F c G  is an orbit of 
a bigger subgroup and noted the connection of his conjecture with Oppenheim's 
conjecture. 

Oppenheim's conjecture was proved in [Mar2] and [Mar3] (see also [D- 
Mar3] and [Mar4]) where it was deduced from a theorem about orbits of 
SO(2, 1) in SL3(R)/SL3(Z ). In later papers [D-Mar2] and [D-Mar3], various 
strengthenings of these results were obtained. In [D-Mar 3], Raghunathan's con- 
jecture was also proved for actions of generic unipotent subgroups on the quo- 
tients of G=SL(3, R) by a lattice FcSL(3 ,  R). Borel and Prasad proved in 
[Bo-Pra] a generalization of Oppenheim's conjecture in a S-arithmetic setting. 
The reader is referred to [Mar6] for a general survey of the area. 

Major progress in the area was made in the last years by Ratner who, 
in a series of papers [R2-5], proved Raghunathan's conjecture for a general 
real Lie group G, obtained a classification of all finite invariant measures for 
actions of unipotent groups U on G/F, and proved uniform distribution for 
actions of one-parameter unipotent groups. The classification of the finite U- 
invariant measures (measure rigidity) was obtained in [R2-4] and the other 
results were deduced from the measure rigidity in [R5]. 

The main purpose of our paper is to give a proof of measure rigidity 
valid for a product of algebraic groups over local fields of characteristic zero. 
The impetus for our paper is the path breaking result of M. Ratner for the 
case of real Lie groups. Our proof is similar in principle to Ratner's, but it 

* On leave from the Institute of Information Transmission of Russian Academy of Science 



348 G.A, Margulis and G.M. Tomanov 

is different in many aspects. In particular, we extensively use algebraic group 
theory, as well as some facts about entropy of transformations of homogeneous 
spaces. 

We use ideas and techniques from [R2-4] and also from [Bo-Pra, D-Marl-4, 
Mar2-4, 6]. Let us note that some of the ideas can be tracked back to [Marl, 
D1-5, RI, W]. 

Although there are many similarities between our proof and M. Ratner's, 
(in particular, use of dynamical properties of actions of unipotent groups in 
combination with ergodic theorems for actions of nilpotent groups), we think 
that it would be superficial and misleading to give any specific references to 
[R2-4] because of the substantial differences in approach and methods. We 
would like to add that we were strongly influenced by arguments from JR3] 
showing how to obtain and to use the information about the local structure 
of the set of uniform convergence in the proof of measure rigidity. Inspired 
by these arguments of Ratner, we finally came to our Proposition 8.3. Subse- 
quently we were able to replace in our proof analogs of some of Ratner's decisive 
but intricate arguments by more transparent arguments using entropy (it seems 
that a similar replacement can not be done in Ratner's proof itself). On the 
other hand, some of the most important ingredients in our approach such as: 
the idea of enlarging the group preserving an ergodic invariant measure (a mini- 
mal invariant subset in [Bo-Pra, D-MarlM, Mar2M, 6]) by using rational maps 
into the normalizers of unipotent subgroups, and the use of properties of multi- 
dimensional unipotent actions derived from basic properties of polynomials 
and Chevalley's theorem, are motivated largely by [Bo-Pra, D-Marl-4,  
Mar2-4, 6]. 

We now introduce some notation and give the formal statements of the 
main results. Let J-  be a finite set and, for every re  J-, let Kv be a local (i.e. 
nondiscrete locally compact) field of characteristic 0 and Go an algebraic group 
defined over Ko. Denote by G the direct product F[ Gv(Kv) of locally compact 

o ~ 3  

groups. Let P be a discrete subgroup of G and let ~ be a Borel probability 
measure on G/F. The group G acts by left multiplication on G/F. Denote by 
2; the (closed) subgroup of all elements of G preserving /~. The measure # is 
called algebraic if there exists a point x ~ G / P  such that the orbit 2;x is closed 
in G/F and ~(Sx)= 1. For every re  J,, let Uo be a unipotent Ko-subgroup of 
Gv. Let us denote the subgroup F[ Uv(Kv) by 5#. The main result of this paper 
is the following. ~ -  

Theorem 1 I f  the measure # is ql-invariant and ~ll-ergodic, then # is algebraic. 

Let H =  I-I Ho be a subgroup of G such that every Hv is generated by groups 

of K~-rational points of unipotent Kv-subgroups of Go. It is known that if 
p is H-unvariant and H-ergodic, then/~ is V-ergodic for any maximal unipotent 
subgroup V of H. (If G is a real group, this result immediately follows from 
the results in [Mo]. When G contains nonarchimedean factors, the proof is 
the same as in the real case.) Thus we obtain the following strengthening of 
Theorem 1. 

Theorem 2 With the above notation if It is H-invariant and H-ergodic, then I l 
is algebraic. 

Theorems 1 and 2 are analogous to Ratner's measure rigidity theorems for real 
Lie groups (see [R4]). Note that in [R4], the measure rigidity for groups gener- 
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ated by their unipotent subgroups is deduced from the measure rigidity for 
unipotent subgroups in a different way without the use of Mautner 's phenome- 
non (see [Mo]). 

The paper is organized as follows: The Sects. I M  have auxiliary character. 
After fixing in Sect. 1 the appropriate terminology and recollecting some known 
facts from the theory of linear algebraic groups, we define in Sect. 2 the notion 
of elements of class ,,4 and establish some facts related to the horospherical 
subgroups and the existence of K-rational cross-sections in K-algebraic groups. 
Section 3 contains the proofs of assertions we need from ergodic theory. Some 
of our arguments are analogous to the arguments used in the proof of the 
Borel-Wang density theorem. In Sect. 4, we prove a technical result about the 
structure of algebraic groups over local fields. In Sect. 5, we introduce a special 
kind of rational maps (called quasiregular maps) from a unipotent subgroup 
U of G to its normalizer JV~(U). In Sect. 6, we investigate the properties of 
the quasiregular maps and in Sect. 7 we show that under certain conditions 
there exists a quasiregular map q~ such that the elements from Im(~0) preserve 
a given probability measure /t on G/F. (In fact, we prove this result under 
the weaker assumption that F is any closed in the Hausdorff topology subgroup 
of G.) Using the results from Sects. 6-7, we prove in Sect. 8 that there exist 
elements from the class d in G preserving p and also having many other "nice" 
properties. In Sect. 9, we prove some results about entropy of measure-preserving 
transformations of G/F. The central is Theorem 9.7 which represents interest 
of its own. The proof of Theorem 9.7 is modeled over the proofs of some results 
in the paper of Ledrapier and Young [Led-Y]. In Sect. 10 we complete the 
proof of Theorem I. Finally, in Sect. 11, we formulate some theorems about 
closures of orbits of unipotent subgroups, uniform distribution and values of 
families of quadratic forms. We shortly explain how the proofs in the real case 
can be adopted to our more general setting. 

Theorems 1 and 2 of this paper were announced in [Mar-To] together with 
a detailed sketch of the proofs. Almost simultaneously with the appearance 
of [Mar-To],  the authors learned about [R7]  where Ratner announced the 
generalization of her results from [R4]  and JR5] for the S-arithmetic case. 
In particular, she announced Theorem 1 and 2 above as well as Theorems 11.1 
and 11.2 from Sect. 11 in a slightly more general setting (more precisely, for 
a class of central extensions of linear groups). 

1 Preliminaries 

1.1 Notation and Terminology. Let 3-  be a finite set. For  v~,Y-, let K~ be a 
local (i.e. nondiscrete locally compact) field of characteristic 0 with the normal- 
ized absolute value [ Iv. Denote by K~ the direct sum of all Kv, re,Y-. By 
an extension K'~ of K j- we mean a direct product of field extensions K'  v of 
Kv, w J-.  Define a function J [: K ~ - ~ R  + w{0} as follows: if x~K~- then [x] 
= I-[ [xvJv where x~ denotes the v-component of x. If K'  v is an algebraic extension 

V E J  

of Kv then the unique extension of [ [v (resp. of [ ]) to an absolute value 
on K'~ (resp. on K~-) will also be denoted by J Iv (resp. by ] [). 

By a Ks--algebraic group H (resp. a K~-algebraic variety M) we mean a 
(formal) direct product l~ I-Iv of Kv-algebraic groups H,, (resp. a direct product 

v~Sg- 
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H M~ of K:a lgebra ic  varieties M,,). A map f :  M--+ M', where M and M' 
v e J  

are K:-algebraic  varieties, is called K:-rational (resp. K:-regular) if f is a prod- 
uct of K: ra t iona l  (resp. K:regular)  maps f~: M~---, M'~, re.Y-. Analogously we 
define other similar notions such as K:-rational representation, K:-rational 
character of a K:-algebraic  group, K:-algebraic subgroup etc. By dim M we 
mean the dimension of M that is the sum of the dimensions of M,e3- .  

As usual V(k) denotes the set of k-rational points of a k-variety V. If KI~ 
is an extension of K :  and M =  I~I M~ is a K:-algebraic  variety we denote 

the product I~ M~(K'o) by M(K~-). We will call M(K~) the set of K'Trational 

points of M or shortly the set of K~-points of M. In case of groups, H(K~) 
will be called the group of K':-rational points or the group of Ki~-points of 
a K:algebraic group H. 

If M~ are linear spaces defined over K~ then M will be called a linear 
K:-space. In this case M ( K : )  is a finitely generated K:-module .  By the Grass- 
mannian variety Gr(M) (resp. Gr(M(K:)))  we mean the direct product of Grass- 
mannian varieties Gr(M~), v ~ - -  (resp. Gr(M~(K~)), v~,Y'). There is a natural 
structure of a projective K:-var ie ty  on Gr(M), and Gr (M)(K: )  is naturally 
identified with Gr(M(K~)). 

1.2 I f H  = 1-I H~ is a K:-algebraic  group we denote by Lie(H) the direct product 
V~J-  

1--I Lie(H~) of the Lie algebras Lie(Hv) of H,,. Every Lie algebra Lie(H~) has 

a K:structure.  By Lie(H~(K~)) we will denote the Lie algebra of K: ra t iona l  
points of Lie(H,). Note that Lie(Hv(K~)) is naturally identified with the Lie 
algebra of the group H,(K~) considered as a Lie group over Ko. We set 

L ie (H(K: ) )=  I-I Lie(H~(K)~)). 
rE,Y- 

We will call Lie(H) (resp. Lie(H(K:))) the Lie algebra of H (resp. H(K:)) .  One 
can naturally define the adjoint representation Ad of H (resp. H(K: ) )  on Lie(H) 
(resp. Lie(H (K:))). 

Let H (u) (resp. Lie(H) In)) denote the set of unipotent (resp. nilpotent) elements 
in H (resp. in Lie(H), i.e. H (u~ (resp. Lie(H) In)) is the direct product of H~ u) (resp. 
Lie(Hv)ln)), r e  J-. Denote by exp: Lie(H) Inl ~ H I") (resp. In: H ~) ~ Lie(H) ~n)) the 
product of exponential maps exp,: Lie(Hv) ~n) (resp. the product of logarithmic 
maps lnv: H~ ") --, Lie(H~)~)), v e J .  Since H7 ) (resp. Lie(H~) lu)) is a K,:subvariety 
in H~ (resp. in Lie(H~)) we have that H I~) (resp. Lie(H) ~")) is a K:-algebraic 
subvariety in H(resp. in Lie(H)). Since the maps exp,, and ln~ are K,,-regular 
isomorphisms and ln~=exp~ -~, we have that exp and In are K:- regular  
isomorphisms and ln--exp-~.  We also have that the maps exp and in are H- 
equivariant, i.e. exp(Ad(h) y) = h exp(y) h-  ~ and ln(hxh- 1) = Ad(h) ln(x) for all 
h e l l ,  yeLie(H) ~ and x~H ~")' 

1.3 By Zariski topology on a K:-algebraic  variety M = [-[ M~ we mean the 
r e  J -  

product of the Zariski topologies on M,,, v ~ J .  The variety M will be called 
connected if M~ is connected in the Zariski topology for every vsJ- .  We say 



Actions of unipotent groups 351 

that a subset X c M  is Zariski dense (resp. Zariski open, Zariski closed etc.) 
if X is dense (resp. open, closed etc.) in the Zariski topology. We will denote 
by X the Zariski closure in M of a subset X ~ M .  Let X c M ( K s )  and f :  X ~ N  
be a Kj - ra t iona l  (resp. Keregular) map to a Ks-algebraic variety N. Then 
the restriction f I X will be also called K~-rat ional  (resp. Ks-regular) map. 

The topologies on the local fields KL,, r e3- ,  induce a locally compact Haus- 
dorff topology on M(K~). We will refer to this topology as Hausdorff topology 
on M(K~). A topology induced on M(K~) by the Zariski topology on M will 
be called Zariski topology on M(Kv). It is easy to see that the Zariski topology 
on M(Kv)is weaker than the Hausdorff topology. 

By a Ks-algebraic subvariety of M ( K j )  we mean the Zariski closed subset 
of M ( K ~ )  or, equivalently, the set of K j -po in t s  of a K~--algebraic subvariety 
of M. Analogously we define the notion of a K~-algebraic subgroup of H ( K s )  
where H is a K~-algebraic group. 
1.4 If k is a local field, g' is a finite separable extension of k and F is a g-group 
then there is a natural topological isomorphism between group F(~) and 
(Rt/k F)(k) where Rt/k denotes the restriction of scalars functor. Under  this 
isomorphism unipotent elements go to unipotent elements. On the other hand, 
any local field of characteristic 0 is R, C or a finite extension of Qp. Therefore 
for our  purpose (study of actions of unipotent groups or groups generated by 
unipotent elements) we can assume when it is necessary that ,Y-- is a finite set 
of normalized valuations of the field Q of rational numbers. Then K,,, w.Y-,  
is either R or Qp and for different v and v' local fields K,, and Kv, are not 
isomorphic. 
1.5 If A is a locally compact group, B c A  is a closed subgroup, and x e A  
normalizes B then by c~(x, B) we denote the module of the restriction of lnt(x) 
to B. Thus O(xyx- l )=o~(x,B)  O(Y) where Y c B  and 0 is a Haar measure on 
B. 

Let H be a Ks-algebraic group, let L be a Ks-algebraic subgroup, and 
let x e H ( K f )  normalize L. Then ~(x,L(K~)) is equal to the product of the 
numbers ~(xv, Lv(K~)), v e Y .  For  every re.Y-, let us denote by AdL(Xv) the 
restriction of Ad(x~) to Lie(L~). Then from the standard description of Haar 
measures on real and p-adic Lie groups we get that e(x,,, L~(K,,)) = Idet AdL(x,,)l~. 

Let us formulate some well known results about algebraic groups in terms 
of KTalgebra ic  groups. 
1.6 Proposition (see [Bo-Ti]) Suppose that a Ks-algebraic group H acts 
K.~-rationally on a KTvar ie ty  M and x is a point in M(K~-). Then 
(a) the subset H(K~-)x is closed and open in (Hx)(Ks)  and hence is locally closed 
in M ( K s ) ;  
(b) the natural map H ( K s ) / H ( K f ) x ~ H ( K ~ ) x  is a homeomorphism, where 
H(K~)~ = {h~H(K.~)I hx = x}. 
1.7 Proposition (see [Bo-Ti]). Let f :  F ~ H be a Ks-morphism of  Ks-algebraic 
groups. 
(a) The natural homomorphism F(Ks)/(Kerf)(K.~)  ~ H(Kg-) is a proper map. 
(b) I f  K e r f  is finite then f :  F ( K f )  ~ H(K~-) is a proper map. 
(c) I f  f is an epimorphism then f :  F(Kg-) ---> H(K~)  is an open map. 
1.8 Proposition (see [Bo, 15.7]). Let H be a Ky-algebraic group and let F be 
a solvable Ka--split K~--algebraic subgroup of  H (i.e. F =  [ I  F~ where F~ is a 

v ~ ,.q- 
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solvable Kv-algebraic group split over K v for every ve~').  Let f :  H ~ H / F  be 
the natural Kg--morphism from H to a K~-variety H/F. Then f(H(Kg-)) 
=(H/F)(Kj) .  

1.9 Let F be a K~-algebraic subgroup of H. We say that a K~-subvariety 
L of H is a rational cross-section for H/F if eeL and the "multiplication map" 
L x F ~ H ,  (x, y)~-~xy, is a K3--isomorphism of L • F onto a Zariski open dense 
subset A of H. If A = H  then we say that L is a regular cross-section for H/F. 
The set L(K~-) will be called rational (resp. regular) cross-section for 
H(Kj ) /F(K~) .  

The following lemma easily follows from the fact that if char K =0  then 
any bijective K-morphism of normal K-varieties is a K-isomorphism. 

Lemma. Let a K j-algebraic group H act K ~-rationally on a K r vari- 
ety M. Let x e M ( K j )  and F = { h e H ] h x = x } .  Assume that H x  is Zariski dense 
in M. Then for any rational cross-section L .for H/F, the orbit map ~v--+~x, 
feL,  is a K~-biregular isomorphism of  L onto a Zariski open dense subset L x  
of M. 

1.10 Let F be a locally compact group and let ~p be a continuous automorphism 
of F. Recall that the automorphism q~ is said to be contracting if for every 
compact set L c F  and for every neighborhood U of the identity, there exists 
a positive integer m=m(L,  U) such that tp"(L) c U for all n>m. 

1.11 If X is a compact metric space and (g(X) is the space of closed non-empty 
of X subsets then there is a standard Hausdorff metric on ~(X) given by 
d(A, B)= sup {d(x,B), d(y,A)}. If Y is a locally compact a-compact metric 

xeA.yeB 

space then by Hausdorff topology on ~(Y) we mean the topology induced on 
(g(Y) by a Hausdorffmetric on ~(Y'), where Y' is the one-point compactification 
of Y 

1.12 The following lemma is a standard fact about differential maps of analytic 
varieties over local fields and it easily follows from the implicit function theorem. 

Lemma. Let K be a local field, m and r positive integers, Y a neighborhood 
of 0 in K"+ '=  Kmx K', and fl: Y ~  K" a differentiable map such that fl(0)=0. 
For every x e K ~ define fix: Y~ -~ K" by fl~ (y) = fl (x, y) where Y~ = {y e K'l(x, y) e Y}. 
Assume that the differential of flo at 0 is a surjective map from K ~ onto K t  
Then there exists an open neighborhood (91 of 0 in K"  and open neighborhoods 
(92 and (9'2 of 0 in K ~ such that for every xe(9 t the set fl~,((92) is open in K ~, 
fix ((92) ~ (9'2 and fl~ maps (92 diffeomorphicall y onto f12 ((92). 

2 Class ~f and horospherical subgroups 

2.1 Lemma. Let  K be a local field with an absolute value ] 1, let F be a K-group, 
and let geF(K) be an element diagonalizable over K. Denote by T the Zariski 
closure in F o f  the group <g> generated by g. Then the following conditions 
are equivalent: 

(a) there exists ~ e K  such that ]hi> 1 and all eigenvalues of g are integer powers 
of ~; 
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(b) T is a 1-dimensional K-split torus and [z(g)[:~ 1 .[or any (defined over K) 
nontrivial character Z of T; 
(c) T is a 1-dimensional K-split torus and the factor group T(K) / (g )  is compact. 

The proof  of the above lemma easily follows from standard results about algebra- 
ic tori (see [Bo, Chap. III]) and from the fact that the quotient of the multiplica- 
tive group K* of K by a cyclic group (~ )  generated by ~ K *  is compact 
if and only if [~[ 4: 1. 

Definition. Let g e H ( K : )  where H is a K:-a lgebra ic  group. We say that g 
is an element from the class .~r if, for every yeS-,  the v-component gveHv(Kv) 
of g satisfies one of the conditions (a)-(c) of the above lemma. 

2.2 Proposition. Let a K:-algebraic group H act K:-rationally on a projective 
K:-algebraic variety P. Let s be an element from the class .~ in H ( K : )  and 
x e P ( K : ) .  Then a sequence {s"x} converges to a point y a P ( K : )  in the Hausdorff 
topology when n ~ + oo. 

This proposition easily follows from the fact that every morphism ~: V ~ W  
of an algebraic curve into a projective algebraic variety W can be extended 
to a morphism 4: V ' ~ W  where V' is a completion of V. (It is enough to 
apply this fact to orbit maps t~-~tx,:, t~T,,, where v e f ,  x,, is the v-component 
o f x  and T~, is the Zariski closure of the group (sv) generated by the v-component 
sv of 5.) 

2.3 Lemma. Let F be a locally compact group, D c F a close subgroup and U c F 
an open subgroup. Assume that F/D is compact. Then U/U c~ D is compact. 

To prove this well known lemma, it is enough to identify U/Uc~D with the 
U-orbit  of e D e F / D  and notice that, since U is open, all U-orbits in F/D are 
open and consequently all U-orbits are closed. 

2.4 Proposition. Let S be an open subgrop of  the group of  K~-points of  a 
K:-algebraic torus. Then there exists a discrete cocompact subgroup So c S con- 
sisting of  elements from the class .4. 

Proof In view of Lemma 2.3, we can assume that S = S ( K : )  where S is a 
K: -a lgebra ic  torus. It is enough to consider the case where .Y- consists of one 
element v. Let Sa denote the maximal K : sp l i t  subtorus of the K : t o r u s  S. Since 
S(K,)/Sd(K,) is compact (see 1.7(a) and [Pra]) we can assume that S is split 
over K~. Fix an element lreK~ such that I~zl~>l. Put So={x~S(Kv) lZ(x)  is 
an integer power of ~r for every K : r a t i ona l  character Z of S}. Since S is a 
direct product of 1-dimensional K : sp l i t  tori, we easily get that S o is a discrete 
cocompact  subgroup of S(K,,) and each x~ S o is an element from the class .~'. 

2.5 Let H be a K: -a lgebra ic  subgroup of a K: -a lgebra ic  group L. Set H =  
H(Ky)  and L = L ( K : ) .  For  every g e L  normalizing L we set 

Wn + (g)= { x e t t l g " x g - "  ~ e when n -~ - oo}, 

Wu- (g)= { x e f t l g " x g - "  ~ e when n -~ + oo}, 

Zn(g)= { x e H I g x g -  l = x}. 
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Let us call Wn + (g) and Wr; (g) horospherical subgroups of  H corresponding 
to g. When this does not lead to confusion we will write W + (g), W-(g)  and 
Z(g) instead of Wn + (g), Wn- (g) and Zn(g), respectively. 

Proposition. (a)W+(g) and W-(g)  are groups of  Ke~-points of unipotent 
K~-algebraic subgroups W + (g) and W-(g)  of  H. 
(b) The Lie algebra of W+(g) (resp. of W-(g))  coincides with the linear span 
of  the set of eigenvectors x of the transjormation Ad(g) with eigenvalues 2(x) 
such that I~(x)l > 1 (resp. [)-(x)l < 1). 
(C) The subgroup Z(g) normalizes W+(g) and W-(g). Automorphisms 
Int  (g- ~) [ W + (g) and Int (g) ] W -  (g) are con tract ing. 

Proof The fact that W § (g) and W-(g)  are unipotent subgroups normalized 
by Z(g) easily follows from the definition of the sets W § (g) and W-(g). Since 
the map In: H ~ " ~ L i e ( H f f  ~ is H-equivariant and K s b i r e g u l a r  (see 1.2), we 
have that a unipotent element u of H(K~-) belongs to W+(g) (resp. W (g)) 
if and only if Ad(g ") In(u) converges to 0 when n ~ - ~  (resp. n ~  +oo). It 
remains now to notice that if A is a diagonalizable over K linear transformation 
of a finite-dimensional vector space V over a local field K with an absolute 
value [ I then the set {v~ V1A"v--* 0 when n ~ + oo} coincides with the linear 
span of the set of eigenvectors x of the transformation A with eigenvalues 2(x) 
such that 12(x)l < 1. 

2.6 Lemma. Let F be a group and let D and L be subgroups of  F. Assume 
that D c~ L = {e}. Then the multiplication map 

m: D x L - t F ,  m(d,E)=dd, 

is injective. 

Proof I fdl ,d2~D, f l ,  ~2~L and d 1 ~1=d2 f2 then ds l dl =~2E(1~Dc~L={e}.  
Hence dl =d2 and dl = f 2 ,  

2.7 Proposition. Let H be a connected K~-algebraic group and s~H(K~)  an 
element from the class ~ .  Then 

(a) the multiplication map 

m: W - ( s ) •  W+(s )~H(K~- ) ,m(w- , z ,w+)=w - zw +, 

is a K~--biregular map onto a Zariski open dense subset of H(K:r) containing e; 
(b) the subgroup N(s) generated by W+(s) and W-(s )  is a normal subgroup of 
H(K:r) and H = Z (s) N (s). 

Proof (a) It is enough to consider the case where 3- consists of one element 
v. It easily follows from Proposition 2.5 that W-(s )c~Z(s )W + (s)= {e}. On the 
other hand W-(s),  Z(s), W+(s) and Z(s)W+(s) are subgroups and 
Z(s)c~ W+(s)={e}. Therefore, in view of Lemma 2.6, the multiplication map 
m is injective. But the same is true if we replace Kv by any finite extension 
K'v = K~. Hence the multiplication map 

r~: W- (s) • Z(s) • W-qs)--* H 
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is injective. Since s is an element from the class .~r we have that if 2 is an 
eigenvalue of Ad(s) and 2 + 1  then [21v+l. From this and Proposition 2.5(b) 
we get that Lie(H) is the direct sum of Lie(W-(s)), Lie(Z(s)) and L i e ~ ) ) .  
It implies that the image of rfi is Zariski open and dense in the connected 
group H. This and the injectivity of rfi implies (a). 

(b) Since the subgroup Z(s) normalizes both W + (s) and W (s) it also norma- 
lizes N(s). Therefore Z(s) N(s) is a subgroup. But in view of(a), Z(s) N(s) contains 
a Zariski open dense subset of H(Kv). Since any Zariski open dense subset 
of H(Kv) generates H(K~) as a group we get that H(Kv)= N(s)Z(s). 

2.8 Let s~H(K:)  be an element from the class d and let U be a K~-algebraic 
subgroup of H ( K : ) .  In view of Proposition 2.2, a sequence {Ad(s ")(Lie(U)) 
= Lie(s-"  Us")} has a limit in the Grassmannian variety Gr(Lie(W + (s))) when 
n ~  + co. Denotes this limit by 50o . It is clear that 50o is a Lie subalgebra 
of Lie(W + (s)). Therefore 50o = Lie(Uo) where Uo = exp Leo is a K.r sub- 
group of W+(s). Since the logarithmic map ln: W+(s )~L ie (W+(s ) )  is 
K: -b i regula r  we get that Uo is the limit of s-" Us" in the Hausdorff topology 
when n --* + oo. Let us note that Ad(s) 50o = 5~ and s Uo s -  1 = Uo. 

Put U = (7, Uo = t?o, W + (s) = W + (s) and W -  (s) =- W -  (s). Since W + (s) and 
Uo are Int(s)-invariant unipotent K: -a lgebra ic  groups and W + (s)z  Uo it follows 
from [Bo-Spr, 9.13] that there exists an Int(s)-invariant K : - r egu la r  cross-section 
v for W + (s)/Uo. 

Proposition. (a) V is a K:- regu la r  cross-section for W + (s)/U. 
(b) Denote by p: U--*Uo the projection parallel to V (i.e. for every uEU we 
have u~ V p(u)). Then p is K:- i somorphism.  

Proof (a) We can assume that Y-=  {v}. Put W = W  + (s). Since char(K~)=0 and 
the multiplication map ~: V • U--* W, c~(x, y)= x y, is regular it is enough to 
show that for any finite extension K', of K~ the multiplication map V(K',,) 
•  is bijective. We can assume that K'~=K~. (The same proof  

can be applied for arbitrary K', because U0(K'~) is the limit of s-"U(K',,) s" 
when n --* + Go.) It follows from the construction of Uo and the implicit function 
theorem (see 1.12) that there exists an open neighborhood C of ee  W+(s) such 
that for every positive integer n every point x~(9 can be represented in a unique 
way as a product yz where y~V and z~s "Us". Let o:(xl,yl)=o:(xz,y2) 
= w e W + (s). There exists n such that the elements s -"  x i s", s - "  yg s" (where i = 1, 2) 
and s-"ws" are in (9. Since ct is s-equivariant we get that s -"xas=s-"x2s"  
and s-"y I s"=s "Yz s" and, consequently, x I =x2  and y~ =Y2. Thus ct is injective. 
Let w be an arbitrary element from W+(s). Since Int(s-1)lw~(~) is contracting 
(2.5(c)), s-"ws"e(9 for some n. Then s-"ws"=y~ Zl where y ~  Vand zles-"Us".  
Hence 

w=(s"yi s-")(s"zl s-"). 
Thus ct is surjective. 

(b) The proof  is analogous to the proof of (a). 

3 Actions of algebraic groups on measure spaces 

3.1 Let H be a K: -a lgebra ic  group acting K~--rationally on a K: -a lgebra ic  
variety M. Let F be a subgroup of H = H ( K : )  generated by unipotent 
K~--algebraic subgroups of H and elements from the class ~r 
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Lemma. Let # be a Borel F-invariant probability measure on M = M(K:) .  Then 
# is concentrated on the set of F-fixed points in M. In particular, if # is F-ergodic 
then l ~ is concentrated in a point. 

Proof Let F 1 c F  denote either a cyclic subgroup generated by an element s 
from the class ~r or a l-dimensional unipotent K~--algebraic subgroup of H. 
It is enough to show that the measure # is concentrated on the set O of F 1-fixed 
points in M. It is known that if K is a local field and the K-group G acts 
K-rationally on a K-variety X then, for any point xeX(K), the orbit map 
G(K)/G(K)x~ G(K)x is a homeomorphism where G(K)x is the stabilizer of 
x in G(K) [B-Z]. But every v-component, v e Y ,  of the K~-algebraic group 
F t, is 1-dimensional. From this and the property (c) of elements of the class 
d (see Lemma 2.1) we get that F 1 acts properly on M--f2. Now one can easily 
see that/~ is concentrated on f2. 

Corollary. Let (X, #o) be a Borel measure space on which F acts ergodically. 
Let f :  (X, l~o)~M be a Borel F-equivariant map (i.e. f ( g x ) = g f ( x )  for every 
gsF). Then f is essentially constant, that is there exists a conutf subset X o c X  
such that the restriction o f f  on Xo is constant. 

Proof Denote by # the image of #o on M. Then # is F-invariant ergodic measure 
and the assertion follows from the lemma. 

3.2 Let H be a K:-algebraic group and let F be a connected K~--algebraic 
subgroup of H such that F = F ( K : )  is generated by unipotent elements and 
elements of the class .~. Let F be a discrete subgroup of H=H(Kg-) and n: 
H ~ H/F the natural projection. 

Proposition. Let 12 be an F-invariant F-ergodic Borel probability measure on H/F 
and let M be a K:-subvariety of H such that p(n(M))>0, where M = M ( K : ) .  
Then there exists a K:-algebraic subgroup P of H and a point x e M  such that 
P = P ( K : )  contains F, P x c  M and #(n(Px))-~ 1. 

Proof Since the Zariski topology is Noetherian we may (and will) assume that 
the K:-variety M is minimal in the sense that #(n(X(Kj)))=0 for any proper 
Kg--subvariety X of M. Put Fo = {g~Flgn(M)=x(M)}. Cleary F 0 is a subgroup 
of F. In view of the minimality of M if F + F  o and g ~ F - F  o then p(n(M)n 
gn(M))=O. Since /~(n(M))>0 and the measure /~ is finite and F-invariant we 
obtain that F 0 has finite index in F. On the other hand, for every geFo we 
have g M c M F .  Since F is countable there exists y~F such that la(n(gMc~ 
MT))>0. Then by the minimality of M we get that g M c M T .  Therefore the 
quotient Fo/Ft, where F1 = {h~Fo]hM = M}, is a countable set. (To see this one 
should use the fact that the inclusion gM c M 7 implies gM = M y which is equiv- 
alent to gM=MT.)  But F is connected. Therefore /71 is Zariski dense in F 
which implies that F M = M. 

Put A = {deFI M d = M} and Y= M -  U M 7- One can easily deduce from 
~6 F--  A 

the minimality of M that #(~(Y))=#(~(M)). Note that FYA-- Y and Pyc~ Y=0 
for every y + F - A .  Therefore the natural map from Y/A to H/F is injective 
and we can lift the restriction of # to n(Y) to a non-zero finite F-invariant 
F-ergodic measure #o on M/A. Denote by B the Zariski closure of A in H. 
Then M B - - M  and the quotient M/B can be embedded into (H/B)(K:), where 
B is the Zariski closure of B in H. (Note that by [B-Z] this embedding is 
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a proper  map.) Clearly F acts Kg--rationally on  M/B. Denote  by v the image 
of the measure/~0 under  the na tura l  map  M/A ~ M/B.  Then v is an  F- invar iant  
ergodic measure  on M/B.  In view of Lemma 3.1 v is concentra ted on a single 
point. By the const ruct ion of v it follows that  there exists a point  z e M  such 
that  p(n(zB))=l~(n(M)). Since z B ~ M  and M is minimal  we get that  z B = M .  
Now to complete the proof  it is enough to put  x = z, P =  z B z - ~  and P = P. 

3.3 Let H, F and  n be as in 3.2. We will say tha t  a Borel probabi l i ty  measure 
/~ on HIE is Zariski  dense if there is not  a proper  K T a l g e b r a i c  subvariety 
M of H with p ( n ( M ) ) >  0 where M = M ( K f ) .  We say that  K~--algebraic subvarie- 
ties L~ and  L 2 of a Kg--algebraic variety M are transversal at x 6 L  t n L 2  if 
bo th  L 1 and  L 2 are smooth  at x and  T=(M) = T=(L0 G 7~(Lz), where Tx( ) denote  
the tangent  spaces at x. 

Next  if f2 c H / F  is a measurable  subset we set ~ ( f2 )=  {geHIg f2  c~ f2 ~ 0}. 

Lemma.  Let  p be a Borel probability measure on H/I ' .  Assume that I ~ is Zariski  
dense and Fo-invariant, where F o is an open subgroup o f  the group o f  K~-rat ional  
points F = F ( K j )  o f  a connected algebraic subgroup F c H .  Let L be a connected 
K~--algebraic subvariety o f  H containing e and transversal to F and let M be 
a proper subvariety o f  L containing e. There exists a constant c, 0 < c < 1, such 
that i f  I2 ~ HIE is a measurable set with ~ (f2) > 1 -- c, then one can f ind  a converging 
to e sequence {g,} c ~ ( f 2 ) n  (L--  M), where L = L ( K ~ )  and M = M(K~-). 

Proof  Let p ~ H / F  be a point  such that  / t ( W ) > 0  for every ne ighborhood  W 
of p. Since F and  L are t ransversal  there exist relatively compact  ne ighborhoods  
A' and B' of e in F o and  L, respectively, such that  the m ap  A ' x B ' ~ A ' B ' p ,  
( x , y ) ~ x y p  is a homeomorph ism.  (Next we will identify A'B '  with A ' B ' p  via 
this homeomorphism. )  It follows from the implicit function theorem that  there 
exist ne ighborhoods  A and  B of e in A' and  B', respectively, such that  for 
every x, y ~B there exist cont inuous  maps  fl(x, y): A x--+ A ' y  and 7 (x, y): A x--+ B' 
uniquely defined by the equa t ion  

/~(x, y)(z) = 7(x, y)(z) z 

where z e A x. 
Denote  by /~o the restrict ion of /~ to AB. Since /~ is Fo-invariant, #o = 

v,,da(x), where a is a measure  on  B and  v= is the measure  on  A x  induced 
n 

by the H a a r  measure on  A c/70 via the homeomorph i sm A ~ A x, a - 0  a x. With-  
out loss of generali ty we may (and will) assume that  v= and  r are probabi l i ty  
measures. Using the Fubini  theorem we can fix a cons tan t  e, 0 < c < l ,  such 
that  if Q c H / F  is a measurable  subset and p ( g 2 ) > # ( H / F ) - c  then a(Bo)>�88 
where B o = {x~B[ v x(~2 n A x) => ~}. Fix a sequence {Di} of measurable  subsets 
of Bo such that  a ( D i ) > 0  for all i and the diameters  of D i converge to 0 when 
i ~  ov (recall tha t  L is a measurable  space). Passing to a subsequence we can 
(and will) assume that  for every i if x, yeDi  then v r ( A y n f l ( x , y ) ( 1 2 n A x ) ) > ~ .  
(We use the fact tha t  if the diameter  of D~ is small  then the maps  fl(x, y) have 
Jacobians  relatively the Haa r  measures on A x  and A ' y  close to 1.) Assume 
that  there exists i such tha t  for all x, y ~ F~ if 13 (x, y) (z) ~ A y n ~2, where z~ A x n g2, 
then ~,(x,y)(z)~M. In light of the above  discussion and  the Fubin i  theorem 
this implies tha t  there exists a q~g2 such tha t  p ( M F q ) > O  which contradicts  
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the assumption that p is Zariski dense. Therefore for every i there exist x~, y~eD~ 
and ?(xi,Yl)(zi)eL--M. Clearly the sequence {gi=y(xl, y3(z3} possesses the 
required properties. The lemma is proved. 

4 Groups without unipotent K~-algebraic subgroups 

In this section we will assume that 3- is a finite set of normalized valuations 
of the field Q of rational numbers. Our purpose is to prove the following 

4.1 Proposition. Let H be a connected K:-algebraic group and H=H(K~-). Let 
F c H be a subgroup which is open in the Hausdorff topology and dense in the 
Zariski topology on H. Suppose that F does not contain a nontrivial unipotent 
K:-algebraic subgroup of H. Then there exists a K~-split central torus S in 
H such that the factor group F/F c~ S, S = S(K:), is compact. 

The above proposition and Proposition 2.4 immediately imply 

Corollary. Let H, H and F be the same as in Proposition 4.1. Then there exists 
a K.~-split central torus S in H and a discrete subgroup SocFC~ S such that 
F/So is a compact group and S o consists of elements from the class d .  

4.2 The proof of Proposition 4.1 uses the following lemma. 

Lemma. Let U=U(K:) ,  where U is a unipotent K:-algebraic group. Let P 
be a noncompact open (in the Hausdorff topology on U) subgroup of U. Then 
P contains a nontrivial K:-algebraic subgroup of U. 

Proof Let us prove first the lemma when J-={v} and Kv~Qp, where p is 
a prime number. Since the exponential map exp: Lie(U)~ U maps every 1- 
dimensional linear subspace of Lie(U) onto a 1-parameter subgroup of U, it 
is enough to show that the set ~ = l n ( P )  contain a 1-dimensional linear subspace 
of Lie(U). Fix a coordinate system in Lie(U) and introduce a norm I[ [L on 
Lie(U) by the formula Ilx II = sup [xilp, where xi are the coordinates of x e Lie (U). 

i 

Since exp is a diffeomorphism and P is a noncompact subgroup of U there 
exists a sequence d~e~'-{O} converging to infinity. Denote the line Qpd~ by 
{i. Passing to a subsequence and considering {:~} as a sequence of points in 
the projectivization of Lie(U) we may (and will) assume that {{~} converges 
to a line :cLie(U) .  For every positive integer n we denote M, 
--{x~Lie(U)[llx][ <p"}. For every n and i there exists an integer mi(n ) such 
that pm't"~d~eM,+~ --M,.  For every n, passing to a subsequence we can assume 
that {p~'"")d~} converges to a vector b .~:  with ][b.[[ =p". Clearly b . ~ .  Hence 
Zp b, c ~ ,  where Zp is the ring of the p-adic integers in Qp. Since {=  U Zp b, 

n>=l 

we conclude that g c , r  which proves the lemma when Y- consists of one p-adic 
valuation. 

Let ~d- contain the archimedean valuation of Q and U~ + {e}. Then P n U| 
is an open subgroup of U~. But U~ is connected in the Hausdorff topology. 
Therefore P ~ U~. 

It remains to consider the case when J" consists of nonarchimedean valua- 
tions. It is enough to show that for every x~,~, where ~ =ln(P), all v-components 
x, of x, veY-, are contained in ~. Indeed, if this is true then the proof of 
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our assertion is easily reduced to the case when ~-- consists of one nonarchime- 
dean valuation. Let x ~ .  Then Z x c , ~  and since under the diagonal embedding 
Z is dense in Z w =  I ]  Zpt,,), where p(v) is a prime number such that Kv~Qptv), 

v~.~ 
we get that Z : r x ~ .  In particular, x v ~  for each veY.  This completes the 
proof of the lemma. 

4.3 Proof of Proposition 4.1 Consider the adjoint representation Ad: 
H ~ GL(Lie(H)). Assume that there exists an element h~F which has a v-compo- 
nent h~ such that Ad(h~) has an eigenvalue ~ with ]~],~> 1. Then W+(h)+{e} 
(see 2.5). Since the automorphism Int(h-1)]W+th) is contracting (see 2.5(c)) and 
the subgroup W+(h)c~F is Int(h)-invariant and open in W+(h) we get that 
W + (h)=F. On the other hand, W+(h) is a unipotent K.y-algebraic subgroup 
of H by 2.5(a) which contradicts the proposition hypothesis. Thus for every 
h~F all eigenvalues of Ad(h,,), for all w Y ,  have absolute values equal to 1. 

Denote by R(H) the solvable radical of H (i.e. R(H) is the maximal connected 
in the Zariski topology solvable normal K f-algebraic subgroup of H) and denote 
by S the maximal split central K~-algebraic torus in H. Note that S~R(H). 
It is enough to prove that F/Fc~S is a compact group. Denote N=SR,(H) 
where R,(H) is the unipotent radical of H. Then N is a K~-algebraic subgroup 
of H and it follows from 1.7 that H/N is a group of K s p o i n t s  of a reductive 
Kjoalgebraic group. In particular, there exists a reductive K~--algebraic sub- 
group L ~ H  such that H/N_~L/Lc~N and Lc~N is a finite central subgroup 
of L. Therefore the restriction of Ad to L induces a representation G: 
H/N-> GL(Lie(H)). By the discussion in the preceding paragraph all elements 
in a(FN/N) have eigenvalues with absolute values 1. By [Pra, Lemma 1] we 
obtain that a(FN/N) is a compact group. Note that since Ker(a) is compact 
a is a proper map in view of 1.7(a). Therefore there exists a compact K ~ F  
such that F=K(Fc~N). This reduces the proof of the proposition to the case 
when H=S•  U where S is a K j-algebraic  split torus in H and U is a 
K~-algebraic unipotent  subgroup of H. Note that Uc~F has finite index in 
U c~ SF since U c~ F is an open subgroup of U, S is compactly generated and 
any discrete factor group of any open subgroup of U is a torsion group. Hence 
S(Uc~F) has finite index in SF. On the other hand, Uc~F is compact in view 
of Lemma 4.2. Therefore S is cocompact in SF, equivalently, F/F c~ S is a compact 
group. The proposition is proved. 

5 Construction of quasiregular maps 

In this section we fix a connected K f a l g e b r a i c  group H, an element seH, H 
= H ( K j ) ,  from the class d and a unipotent Ks-algebraic subgroup U in H 
such that U c W + (s). 

5.1 In view of 2.8 the sequence s-"U s" converges to a Int(s)-invariant unipotent 
K~-algebraic subgroup Uo of W+(s) when n ~  + ~ .  Besides there exists 
an Int(s)-invariant Kg--regular cross-section Vc W+ (s) when n ~  + ~ .  Be- 
sides there exists an Int(s)-invariant K~--regular cross-section Vc  W+(s) for 
both W+/Uo and W+(s)/U (see 1.8). On the other hand, by Lemma2.7(a) 
W-(s)Z(s) W+(s) is a Zariski open subset of H. Therefore L = W - ( s ) Z ( s ) V  
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is a K c-rational cross-section for both H / U  and H/Uo. Note  that L is Int(s)- 
invariant. Further we will denote by ~: H---, U o the projection onto Uo parallel 
to L and by p the restriction n[v- In view of Proposition 2.8(b) p is a 
K:r-isomorphism. 

Let us fix relatively compact neighborhoods B + and B -  of e in W + (s) and 
W-(s) ,  respectively, such that s B + s - ' = B  + and s - ' B - s ~ B  . We put B.* 
= s - " B  + s-"  and B ;  = s - " B - s " .  Obviously, the sequences {B + } and {B;-} form 
fundamental systems of neighborhoods of e in W + (s) and W-(s),  respectively. 
We define a function {+ on W+(s) (resp. 8 -  on W-(s))  by setting g '+(x)=k 
i f f x e B + - - B  + a n d # + ( e ) = - ~  ( r e s p . { - ( x ) = k i f f x e B k - - B ~ ,  a n d g - ( e ) =  k - I  

--oo). Also, for every integer n we put C , = B  + ~ Uo and A , = p - l ( C , ) .  
Let us note that since L and Uo are Int(s)-invariant the maps 7z and p com- 

mute with Int(s). F r o m  this and the definition of U0 we get 

(1) lim s - " A , s " = C  o. 

5.2 Let us fix a sequence {g,} in H converging to e. We wilI assume that 
{ g . } c L U - J V ' n ( U ) ,  where sV'n(U) denotes the normalizer of U in H. Since L 
is a K~r-rational section for H/U we can define K s r a t i o n a l  maps ~b,: U ~ L  
and co.: U ~ U by the following equation 

(2) ug. = ~.(u) o), (u). 

By a theorem of Chevalley I-Bo, 5.1] there exists a K~--rational representation 
p: H--*GL(t0), where 4~ is a sum C)  4~, of vector spaces qb t, over Kv, and 

a point qet/ ,  such that U = { x ~ H l p ( x )  q=q},  To simplify the notat ion we will 
write xq instead of p(x)q. It is easy to see that 

(3) X n ( U )  q = { ye  H q l V y=  y}. 

Fix a relatively compact neighborhood D of q in ,P. Define a sequence of integers 
{r(n)} as follows: At(,) g, q r O and A k g. q ~ D whenever k < r (n). Next, for every 
n we define maps ~. and a,:  U ~  U by the formulas 

(4) ct,(u) = p -  l (s"p(u) s-"), 

(5) a,(u)=~,(.)(u), 

for every ue  U, 
It follows from (5) and the definition of A. that for every integer k 

(6) a.(Ak) = Ak + ~(,). 

Since p: U ~ Uo is a K v-regular isomorphism the maps {a.} are also Kr 
isomorphisms. 

We put  

(7) tp. = ~ .oa . :  U ~ L .  
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Denote by fl: L ~ q )  the restriction to L of the orbit map h ~ h q ,  hEH, and 
put 

(8) go'. = / >  go.: U ~ .  

In view of (2), (7) and the equality Uq =q we get 

(9) go', (u) = fl(go,(u)) = go,(u) q = Cp,(a,(u)) q 
= (p, (a, (u)) 6o,, (a, (u)) q = a, (u) g, q. 

Hence go', is a Kg-regular  map from U to 4~. Furthermore, if we identify U 
with Lie(U) using the logarithmic map we can (and will) interpret {go',} as a 
set of K~-polynomial  maps of degrees bounded from above. (According to 
our terminology a K j -po lynomia l  map f is a set of K~-polynomial maps f~, 
v e g ,  and deg(f)  = m a x  {deg(f~)J re3--}.) 

It follows from (9) and (6) that 

(10) go;(A_ ~)~ D 

and 

(11) go',(Ao)dg D. 

It is well known that for any vector space 4)~ over a local field Kv a set of 
polynomials on 4)~ of degrees less than a constant N and uniformly bounded 
on some nonempty open subset of 4) v is relatively compact in the topology 
of uniform convergence on compact subsets. This remark and (10) imply that 
replacing {gn} by a subsequence we can (as we will) assume that there exists 
a K~--regular map go': U---, 4) such that 

(12) go'(u)= lim go'(u) 
n ~ d  

for every ue  U. Since go',(e)=g, q and g, ~ e we obtain 

(l 3) go' (e) = q. 

On the other hand, (l 1) implies that go'(Ao)r Therefore go' is a non-constant  
Kg--polynomial map. 

Since L is a rational cross-section for H / U  we get from Lemma 1.3 that 
fl is a K T r e g u l a r  isomorphism of L onto a Zariski open (in the Zariski closure 
of p(H)q in 4)) subset M containing q. But go'(U)cp(H)q.  In view of (13) we 
can define a K~-rat ional  map go: U ~ L by the formula 

(14) go = f l -  ' o (p', 

where fl-~ is defined on the Zariski open subset M of p(H)q containing q. 
It follows from the definition of go that g0(e)= e. 

5.3 Definition. Let F be a K j-algebraic  group, I a K~--algebraic subgroup of 
F(Ka-) and M a K~--algebraic variety. A K~--rational map f :  M(Kz- )~  F(K~)  
is called l-quasiregular if the map from M(K~)  to V given by x ~ ? ( f ( x ) ) p  
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is K T r e g u l a r  for every K~--rational representation 7: F ~ G L ( V )  and every 
point p~V(Ker) such that 7 ( I )p=  p. 

5.4 Let us prove that the map q~ constructed in 5.2 is U-quasiregular. 
In view of (14) and (12) we get 

(15) ~o(u)= tim ~o.(u), 

for all uE(qr and the convergence in (15) is uniform on every compact 
subset of (qr 1 (M). 

Using (2) and (7) we get 

(16) q~. (u)= a.(u) g. b.(u), 

where b.(u)= c%(a.(u))-l. Therefore (15) can be written in the form 

(17) ~o(u) = lim a.(u) g. b.(u), 

where u~(~0')-l(M) and the convergence is uniform on every compact subset 
of (~o')-~ (M). 

Now let 7: H ~ GL(W) be a K~--rational representation and we W be such 
that 7(U) w=w. In view of(17) and the inclusion b,(U)= U 

7(~o(u)) w = lim 7(a.(u) g.) w 
n ~ c t ~  

for all uEU from a nonempty Zariski open subset of U. Note that the maps 
~,: U ~  W, u~7(a,(u)g, )w,  are Kj-regular .  Moreover, if we identify U with 
Lie(U) we obtain that {ft,} are Ky-polynomial  maps of bounded degrees and 
the restrictions of {~k,} to some nonempty open subset of U are bounded. There- 
fore the sequence {qJ,} converges to a K~--polynomial map i,e. the map from 
U to W given by x~7(~o(x))w is K~--polynomial. This proves that q~ is a U- 
quasiregular map. 

5,5 Remark. Note that in the above proof the U-quasiregularity of q) was 
deduced from (17), An arbitrary K~--rational map ~0: U -* H wilt be called strong- 
ly U-quasireguIar if there exist a sequence {a,: U ~ U} of Kg--regular maps, 
a sequence {b,: U ~ U} of K~--rational maps and a Zariski open nonempty 
subset A c U  such that q~ is defined by (17) and the convergence in (17) is 
uniform on every compact subset of A. 

6 Properties of ~p 

In this section we prove some basic properties of the U-quasiregular map q~ 
constructed in 5.2. We preserve the notations and assumptions from Sect. 5. 

6.1 Proposition. The set Im(q~) is contained in Jffx(U). Furthermore there is not 
a compact subset K c H such that Im (tp)c K U. 
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Proof The second assertion follows from (14) in Sect. 5 and the fact that q)' 
is a non-constant  K~--polynomial map. In order to prove that Im(q))c./fft1(U) 
it is enough (in view of (3), Sect. 5) to show that vq)'(u)=q~'(u) for all v, u~U, 

By (12), Sect. 5 

(1) vrp'(u)= lim vq)',(u). 

Using (9), Sect. 5 we obtain 

(2) v G ( u ) =  va.(u) g. q 
= a,(a;  l(va,(u))) g,) q = ~o~,(a, l(va,(u))). 

It follows easily from the relations (4) and (5) in Sect. 5 that for any x ~ U  
we have 

a;  1 (x) = rc' (s "(") x s~(')), 

where 7r' is the projection parallel to L of H onto U. Therefore 

(3) a21 (v a, (u)) = lr' (s -'(") v s'(") s -'(")a. (u) st(")). 

Since lira r (n)= +oo and Uo= lira s "Us" we have 

(4) lim s-r(")a,(u) s r(") = p(u). 
n ~ o o  

On the other hand, ~'(p(u))=u and lim s-r(")vs'(")=e. Therefore, in view of 
(3) and (4) we obtain "~ ~ 

(5) a21 (va.(u)) = v. u, 

where lira v, = e. 
n ~ o o  

Now since {~0',} is a sequence of K F p o l y n o m i a l  maps converging to (,0' 
(1), (2) and (5) imply 

v~0'(u)= lira q)',(v, u)= lim ~o',(u)=q)'(u). 
n ~ o o  n ~ o c  

The proof of the proposition is complete. 

6.2 The next properties of q~ will be deduced from the formula (17) in 5.2, 
i.e. from the fact that ~p is a strongly quasiregular map (see 5.4). In particular, 
we can reduce the proofs of these properties to the case when ~-- = {v}. 

6.3 Denote by F the subgroup of H generated by Im(q~) and U. In view of 
Proposition 6.1 the subgroup U is normal in F. Let H 1 be the Zariski closure 
of F in H. It is well known (see, for example, [Bo-Pra, 2.2]) that F is an open 
in the Hausdorff topology subgroup of H1. 

Proposition. With the above notation assume that if V is a unipotent K ~-algebraic 
subgroup of H1 and V c  F then V c  U. The group H1 contains a split K r-algebraic 
torus S such that 

(a) S U / U  is a central subgroup of  H1/U and the group F/F  c~SU is compact; 
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(b) there exists an element s~F  c~ S from the class d with the .following properties: 
(i) s does not centralize U, and (ii) ~(s, M)>_-1 for every K.y-algebraic subgroup 
M of  H normalized by SU. (Recall that ~(s, M) is defined in 1.5). 

The existence of a split Ks- to rus  S in H i which satisfies (a) follows from Proposi- 
tion 4.1. We are going to prove that S satisfies also (b). 

We need the following 

6.4 Lemma. The group S n Z F ( U ) ,  where ZF(U ) is the centralizer of  U in F, 
is finite. 

Proof. Note that S c~ Zn~ (U) is a normal subgroup of H1. Since H 1 is connected 
in the Zariski topology and Sc~ZH~(U ) is split Sc~ZH~(U) is central in H1. 
On the other hand, for every w g -  the torsion subgroup of the multiplicative 
group K* of K,  is finite. Therefore it is enough to prove that S does not contain 
elements of infinite order which centralize F. 

In view of 6.2 we can reduce the proof of the lemma to the case when 
y={~}. 

Let H ~ G L ( V )  where V is a vector space over K~. Let sES and s centralize 
F. Since s is diagonalizable V= ~,03 V~O ... 03 Vx~, where 2~, 22, .-., 2r are differ- 
ent eigenvalues of s and V~,, i =  1, 2 . . . . .  r, are the corresponding eigenspaces. 
Since s centralizes F we get that FV~, = Vz~ for all i, in particular, the subspaces 
V~, are SU-invariant. 

If geGL(V) we denote by gt0, i =  1, 2 . . . . .  r, the linear transformation of V~, 
given by the formula gti~=P~~ where p~ is the projection of V on V~ and 
g[v~ is the restriction of g on Val. Since Vx~ are U-invariant it follows 'from 
(17)i' Sect. 5 that for every i we have 

tp(u)t~ lim a,,(u)(i~ g~ ) b,,(u) ti), 
n ~ o o  

where u is an element from a Zariski open nonempty subset of U. Since a,(u) ~~ 
and b,(u) ti) are unipotent  elements and lim g~0 = e we obtain 

det (tp (u) ~i}) = 1. 

On the other hand det(u"))=l  for every u e U  and U and ~0(U) generate the 
Zariski dense subgroup F in H1. Therefore det(g"))= 1 for every gEH~ and 
every i =  1 . . . .  , n. In particular, det(fl)= 1 which implies that every 2i is a root 
of unity in K* i.e. s is an element of finite order. The lemma is proved. 

6.5 Proof of  Proposition 6.3. In view of 6.2 it is enough to prove the proposition 
in the particular case f =  {v}. So, assume that J =  {v} and for every positive 
integer r denote by V~ the r-th exterior power A'Lie(H) of the Lie algebra 
of H and by f, the r-th exterior power of the adjoint representation of H. 
Let M be a K~--algebraic subgroup of H normalized by the subgroup SU. 
Let r be the dimension of M. Fix a nonzero vector qM on the line ArLie(M)c  V~. 
Since SU normalizes M we have 

(6) f ,(u) qu = qM 
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for every ue  U, and 

fr(s) qM = ZM(s) qM, 

for every ssS,  where ZM(s) is a character of the torus S. In view of 1.5 

[ZM (s)l = ~(s, M) 

for every seS. Note that although the K.~-algebraic subgroups of H normalized 
by SU form, in general, an infinite set we obtain only a finite number of charac- 
ters gi = ZM,, where Mi, i = 1, 2, ..., m are Ks-algebraic  subgroups of H normal- 
ized by SU. Let r i = d i m  Mi. For  every i denote by V~ the r~-exterior power 
of Lie(H), by f~ the r~-exterior power of the adjoint representation of H and 
by q~ a nonzero vector from A"Lie(Mi). Now for every i we define a rational 
map ff~: U ~ Vii by the following formula 

~i(u)=fi(q~ qi, ue U. 

Since ~o is a quasiregular map we obtain that ~ ,  I / /2 . . . . .  ,l l/m are polynomial 
maps. In view of Lemma 6.4 it is enough to find a nontrivial element seSc~F 
from the class ~r such that I;~(s)l~> 1 for all i. Without  loss of generality we 
can (and will) assume that ;~ 4= Zj if i +j .  

By part (a) of the proposition F c~ SU is a cocompact  subgroup of F. Accord- 
ing to Corollary 4.1 Fc~S contain a closed cocompact subgroup S o consisting 
of elements from the class .~r Therefore there exists a compact set K in F 
such that F = K S o  U. In view of (6) and the centrality of the image of So in 
FlU for every i there exists a compact neighborhood C~ of qi such that if ue  U 
and q~(u)=ksw where kEK, seS  o and weU we have 

(7) ~i(u) c Zi(S) (9i 

for all u e U. Put (9' i = {c x lxe  C i, c e K, ,  Icl, _-< 1 }. Since ~i, i =  1, 2 . . . .  m, are noncon- 
stant polynomial maps there exists uo~U such that ~k~(uo)r for all i, 1 <i<m. 
It follows from (7) that Iz~(so)l > 1 for all i, where soeSo is such that ~0(Uo) 
= ko So Wo, koeK, Woe U. The proposition is proved. 

6.6 Recall that the map q~ was constructed starting from a sequence {g.} con- 
verging to e and an element s e l l  from the class .~r (see 5.2). We need some 
additional definitions and notatons related to {g,} and s. 

Definition. We say that the sequence {g,} satisfies the condition ( , )  with respect 
to s if there exists a compact  subset C in H such that s-'(")g, s'(")eC for all n. 

Next denote ~,~ = {xeHI U 0 x =  W-(s)Z(s)U0}.  Since W - ( s ) Z ( s ) i s  a sub- 
group we obtain that Uox= W-(s)Z(s)Uo if and only if W - ( s ) Z ( s ) U o x =  
W-(s)  Z(s)Uo. On the other band, for any K.y-algebraic subvariety X = H  we 
have 

{heHI X h= X} = { h e H l X  h= X}. 

Therefore ~ is a K~--algebraic subgroup of H. 
Set U - = W - ( s ) c ~ - .  Since the subgroups Uo, Z(s) and W-(s)  are Int(s)- 

invariant the subgroups ~ and U -  are also Int(s)-invariant. It follows from 
[Bo-Spr] that there exists a K~--regular Int(s)-invariant cross-section V -  for 
W - ( s ) / U - ,  where U -  is the Zariski closure of U -  in W-(s) .  We put V - =  
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V-(K.y). In view of Proposition 2.7(a) and Proposition 2.8 the set O =  
U - V - Z ( s )  VU= W -  (s) Z(s) W+ (s) is a Zariski open dense subset of H and 
for each g6f2 we have the unique decomposition 

(8) g = u -  (g) v -  (g) z(g)  v(g) u(g) = w -  (g) z(g) w(g), 

where u- (g )eU- ,  v - ( g ) e V - ,  z(g)eZ(g), v(g)eV, u(g)eU, w (g)=u-(g)  v-(g) 
and w(g)= u(g) v(g). 

It follows from (8) and the definitions of {+ and f -  in 5.1 that for every 
integer k we have 

(9) 

(10) 

(11) 

{ -  (s k w -  (g) s -  k) = { -  (w - (s k g s -  k)) = { -  (w (g)) - k, 

{+ (skw + (g) s -k) = {+ (w + (sk g s - k ) ) =  {+ (w + (g))+ k, 

sk z(g) s -k  = z(g) = z ( s k g s  - k). 

The next lemma is an easy consequence from the definitions o f{  + and { - .  

Lemma. A sequence {x,} = W• is bounded (resp. tends to e) if and only if 
the sequence { + (x,) is bounded from above (resp. tends to - oe). 

The equalities (9), (10), (11) and the above lemma imply that the sequence {g,} 
has the property ( , )  with respect to s if and only if 

(12) sup {r(n) + { - (w- (g,))} < oo. 
n 

6.7 Proposition. Suppose that at least one of the following conditions holds: 

(a) the sequence # -  (v- (g,)) - { -  (u- (g.)) is bounded from below; 
(b) ./Vn(Uo) c~ W -  (s)= {e}. 

Then the sequence {g,} has the property ( , )  with respect to s. Furthermore, 
if (a) is satisfied then Im (q0 c W + (s). 

Proof Denote {- (w-(g , ) )  by k(n). Set hn=sk(n)gns-k(n). We get from (9) that 
w-(h . )eBo-B7_~.  On the other hand, since g, ~ e we deduce from (10), (11), 
and Lemma 6.6 that lim w(h,)= lim z(h,)=e. Therefore passing to a subse- 

n ~ o  n ~ c o  

quence we can assume that 

(13) lim h,=h, 
n ~ o 3  

where h e W-(s)  and h 4= e. 
In view of the relation (1) in 5.l we have that 

(14) lira sk(n) A -k(n) sk(') = Co. 
n ~ o 9  

Without  loss of generality (choosing B small enough) we can assume that 

(15) Co h= W -  (s) Z(s) W + (s). 
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In 5.2 we introduced the K~--polynomial maps ~o'. which converge to a polyno- 
mial map (p' such that ~o'(e)=q. According to (9) in 5.2 qr for 
every ue  U. Also, by (6) in 5.2 A_k(.)= a.(A_k(.)_r(.)). Therefore, 

(16) A k(,) g. q = a,(A_k(n)_r(n)) g, q = qr 

for all n. 
Assume that the property ( , )  does not hold. Then (12) is not fulfilled and 

passing to a subsequence we can (and will) assume that 

(17) lim (r(n) + k(n))= + oo. 

In particular, the sequence {A-k~.)-r(.)} converges to {e}. Therefore 
{(p',,(A k(.)-~(.))} converges to {(p'(e)= q}. In view of (16) 

(18) l i ra  {A -k(., g, q} = {q}- 

Taking the compact neighborhood D of q in the definition of the sequence 
{r(n)} (see 5.2) small enough we can assume that 

At(,) g. c W -  (s) Z(s) VU 

for all n. In view of (17) we can also assume without restrictions that 
Ar(.)g.~A_k(.)g. for all n. Now it follows from (18) and the fact that U 
={geH{gq=q}  that 

(19) A_k(.) g . c  141.- Z.  V. U, 

where W . - c  W-(s), Z . c Z ( s )  and V.c V are compact subsets containing {e} 
and such that lim I4/.-= lim Z . =  lim V.={e}. Using (10), (ll),  Lemma6.6 

and the fact that lim k(n)= - ~ one can deduce that 
n ~ o o  

lim {s k(") V. s -k("'} = lim {s k(") Z. s -k'")} = {e} 

and lim s k(") Us-k(")= Uo. Since W + (s), Z(s) and V are Int(s)-invariant subsets 
n ~ c ~  

of H, the above considerations and (13), (14) and (19) imply that 

C o h c W - (s) Uo. 

Since Co h is Zariski dense in Uo h we obtain that 

(20) U o h c W -  (s) Uo, 

in particular, he  U -  according to the definition of U -  in 6.6. 
Assume that (a) holds i.e. the sequence E - ( v - ( g , ) ) - E - ( u - ( g . ) )  is bounded 

from below. Then it is easy to see that v - (h )~e  which contradicts the fact 
that h~U- .  Hence the condition (a) implies the property ( , )  for {g,}. Next 
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taking the compact neighborhood D of q in the definition of the sequence {r(n)} 
(see 5.2) small enough we can assume that 

A,~,~ g, = W -  (s) Z(s) L U  

where L is a compact subset of V. Conjugating this inclusion by s k~") and going 
to limits we get that C , , h ~ W - ( s ) Z ( s ) U o  where m=liminf(r(n)+k(n)) .  If 

m > - ~ ,  then C,, is Zariski dense in Uo and we have that Uo h ~ W-(s )Z(s )  Uo. 
But v-(h)W-e and, hence, hCUo (because (a) holds). Thus m=-cc,~.  Let now 
u~ qr where q~' and M are defined in 5.2. Then ~o(u)= lira ~o, (u) and ~o,(u) 
= a.(u) g. b,(u) (see 5.4). In view of (17) "~ ~ 

lim s-'(") gn St(n) = e. 
n ~ or~ 

Also it is easy to see that 

and 

lim s-~(")a,(u) s "C"~= u', u" e Uo, 
n ~ m  

lim s-r~") b, (u) s rt") = u", u" e Uo. 
n ~ c t ~  

Hence lim s -  rt.~ q~. (u) s r~") e U o. It implies that ~o (u) ~ W + (s). Thus q~ (qr 1 (M)) c 

W+(s). But M is Zariski open in p(H)q and hence, q r  is Zariski open 
and dense in U. Therefore Im(~o) c W + (s). 

To prove that (b) also implies the property ( . )  first note that 

E= {x~HI Uox= W- (s) Uo} 

is a K.~--algebraic subgroup of H. Indeed, the inclusion Uo x c W -  (s) Uo is equiv- 
alent to the inclusion W -  (s) U o x c W -  (s) U 0 which is equivalent to the equality 
W -  (s) U 0 x = W -  (s) Uo. Therefore E is a K.~--algebraic subgroup of H. Fix a 
Borel subgroup P of M containing Uo and denote by P, its unipotent radical. 
Since P c W -  (s) Uo and W -  (s) Uo is a Zariski open subset of W -  (s) Uo contain- 
ing e we deduce that the set (Pc~ W-(s))Uo is Zariski dense in P. Hence the 
quotient group P/P,  contains a Zariski dense subset of unipotent elements. 
Therefore P = P , .  This implies that every Borel subgroup of E is unipotent. 
Hence E is a unipotent Kj -a lgebra ic  group. We denote E = E ( K ~ ) .  In view 
of (20)beE. Since h e W - ( s ) - { e }  we have that E+Uo.  This implies that 
�9 A/'r(Uo)* Uo (because in a nilpotent group the normalizer of a proper subgroup 
F is not equal to F). Using the same argument as above we obtain that 
(,Ar~(Uo)c~W-(s))Uo is a Zariski dense subgroup of JV~(Uo). Therefore 
W -  (s)~,A/e(Uo)* {e} which proves (b) in view of the assumption that the proper- 
ty (*) does not hold. 

The proposit ion is proved. 

6.8 The next lemma shows that  if the group H is sufficiently large then given 
a unipotent Ks-a lgebra ic  subgroup U of H we can always find an element 
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s e l l  from the class .~r such that U~ W+(s) and ~A/n(U0)ca W-(s)={e} where 
U = U(Kg-). 

Lemma. Let U be a unipotent K g--algebraic subgroup of L =  [ I  Lv, where L~ 
ve,~ 

= S L m .  Then there exists an element seL (where L = L ( K ~ ) ) f r o m  class d such 
that U ~ W~ (s) and 

~'c(Uo) ~ WE (S) = {e}. 

Proof It is enough to prove the lemma in the case when 3-- contains only 
one element�9 Denote by 50 the Lie algebra of U and by V the vector space 
K~ ~ For  every k > 0  let (50kv) be the linear subspace of V spanned by 
{gl g2---gk(v)lgi ~s v~ V}. (If k = 0 we put V= (Lf  ~ V).) Since 5 ~ is isomorphic 
to a subalgebra of the Lie algebra of all strictly upper triangular matrices in 
SL(mv, K~) we obtain a decreasing sequence of subspaces 

v=(~v )=  . . .=(s ' - '  v )  = ( ~ r  v )  = {o}, 

where ( 5 0 r - 1 V ) + { 0 } .  For  every i = 1 , 2  . . . . .  r fix a subspace V~ such that 
(Y ' - iv )=(50r- i+~ V ) @ V / .  Then V= I/1 @ Vz@...@V~. Choose an element 
s from the class d such that for every i, s acts as a multiplication by a constant 
)~i o n  V/ and 2i2i-_11 = c  where c does not  depend on i and Iclv> 1. Fix a basis 
in V which consists of the bases of 1/1,1/2 . . . . .  V~ taken in the same order. If 
h is an endomorphism of V we will denote re(h) the matrix corresponding to 
h in this basis. A trivial computat ion shows that for every ue  U 

r e ( u )  = 

t 
l U12 U13 

... Ulr 
0 U23 ... Uar 

0 0 . . .  ur ~r 

o o . . .  ; /  

where uij is a matrix corresponding to an endomorphism from V~ to Vj, and 

(21) lim c"m(s-nusn)= 
n~oc 

(i  u12 ~ ' 0 U23 ... 0 

0 0 ... u, ~r 
0 0 ... 

The matrix in (21) defines an element from the Lie algebra ~o of /do. It 
follows from (21) that for every k the subspace (50okV) of V spanned by 
{glgz...gk(v)]gi~50o, v~V} coincides with (50kv) .  Let g~JV~(Uo). Then 
g50o g -  1 _ 50o. Therefore 

g ( ~ o  k V) = (g50o k V ) = ( g ~ ' ~ g - ' g V ) = ( ~ o  k V). 
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Since g (A ~ V) = ( d  k V) we obtain 

o '  g12 ... g,,) 
g 2 2  " ' "  g 2 r  . 

re(g)= \ ; 0 ... grr/  

An easy computation shows that for every x~Lie(W-(s)),  

m(x) = 
x21 0 ... 0 

~ x31 x32 ... 0 

\ X r l  X r  2 . . .  X r r -  1 

This implies that JVL(U0)C~ WL-(S)= {e}. The lemma is proved. 

7 Basic Lemma 

7.1 Let X be a second countable locally compact unimodular  group and let 
0 be its Haar measure. Let V be a separable complete metric space with Borel 
probability measure /~. Assume that X acts continuously on V and that X 
preserves #. Let # = ~ #r be the decomposition of # into X-invariant  X-ergodic 

Y 

probability measures i% where y is identified with a point from a measure 
space (Y, a). For  xE V, we denote by y(x) the corresponding point from (Y, a). 

Definition. A sequence of measurable non-null  sets A , c X  is called averaging 
net if for the action of X on  (V,/~) the following analog of the Birkhoff individual 
ergodic theorem is valid: i f f  is a continuous function on V with compact support 
then 

1 
(1) lim 0 ~ . )  ~ f ( g x )  dO(g)= ~ f (h)  d#,~.)(h) 

n ~ ~ 1t.n V 

for almost all x ~ V. 
The following result directly follows from ITem, Corollary 3.2, Chap. 6]. 

Proposition. Let A,  be a sequence o f  measurable non-null subsets in X. Then 
{A~} is an averaging net if  the following conditions hold: 

(i) lim O(A. AgA , )  0 for  every g~X,  where A~AgA .  denotes the symmetric 
. .  + O ( A . )  

difference between A, and gA, ;  
(ii) {A,} is increasing; 

O(A21 A,) 
(iii) sup < oo. 

1 ~ .  < + O ( A . )  

7.2 Next we are going to apply Proposition 7.1 to our original situation. Recall 
that H is a K~--algebraic group, U and Uo are unipotent K:r-algebraic sup- 
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groups of H=H(K~),  s is an element from the class d such that U= W+(s) 
and Uo= lim s-"Us". Also, recall the following notations from 5.1 and 5.2: 

n~+oo 

L= W - ( s ) Z ( s )V  is an Int(s)-invariant Ky-rat ional  cross-section both for H/U 
and H/Uo, p: U--*Uo is the projection of U on Uo parallel to L and ~,: U ~ U  
is a K j - regular  isomorphism of K~-algebraic varieties given by (4), Sect. 5. 

Lemma. Let F be a closed subgroup of H and # a U-invariant Borel probability 
measure on H/F. Let A be a relatively compact measurable non-null subset of 
U. Then {A,=~.(A)} is an averaging net. (Further on, {A,} will be call averaging 
net corresponding to A.) 

Proof Assume that A is such that either (a) Ai+ 1 ~ Ai for every i >  1, or (b) Ai n Aj 

= 0  whenever i+j. We put A , = A ,  in case (a) and A . =  ~ Ai in case (b). Let 
i=1 

us show that {4,} satisfies the conditions (i)-(iii) of Proposition 7.1. For  every 
n the Jacobian J(~,) of the map ~,: U ~ U is constant. Therefore 

(2) 
O(4, AgA.)  0(0t~ -1 4,)  A ctn- 1(g,4,) 

0(4.) 0(~.-' 4.) 

for every geU,  and 

0 ( 4 : '  4 . )  _ ( ~ .  1 ( 4 ;  ~ Y..)) 
(3) o(Z).) 0(~2 4.)) 

It is easy to see that 0(ct,-1 (4,))> O(A) and for every g 

lim 0(~- 1 (4,) A ~-  1 (g  Z~n)) = 0. 

This, in view of (2), proves (i). On the other hand, taking into account (3) and 

the fact that 0 ~,-~(A, -~ 4,) is a relatively compact set we obtain (iii). Since 
n = l  

{4,} is increasing it follows from Proposition 7.1 that {4,} is an averaging net. 
Let c=J(0q)  and d=O(A). Then c"=J(0q), dc"=O(A.) and O(A.)=d(c+c 2 

0(~.) c 
+ . . . + c  ). (Recall that Aic~Aj=O if i+j.) Since c > l  we get lim - - = - -  

, 4~  O(A,) c - 1  
and lira - 0 ( 4 " - 0 -  i Since A , = , 7 1 . - 4 , _ ~  the above relations and the fact 

. ~ oo O ( A . )  c -  1" 

that {4.} is an averaging net imply that {A.} is also an averaging net. 
Let A be an arbitrary relatively compact measurable non-null subset of U. 

Recall that the automorphism Int(s-~)lw ~s) is contracting. From this and the 
definition of ct. (see (4), Sect. 5) one easily gets that if x e U  and x + e  (resp. x=e) 
then there exists a compact neighborhood A' of x such that ai(A')c~cti(A')=O 
when i+j  (resp. {~ti(A')} is increasing). Since A is a relatively compact measur- 
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able set this implies that there exist measurable non-null subsets A (1), A (2), . . . ,  
of A with the following properties: 

0 A (~ =0,  A(~ if i#=j, 

and for every i {~.(A"))} is either increasing or c~.(A(i))nctm(A(i))=O when n=l=m. 
It follows from the above discussion that {~,(A(i))} is an averaging net for every 
i, 1 < i < ~ .  Now using an elementary argument one can conclude that {A,} 
is an averaging net. The lemma is proved. 

7.3 Let A c U  be a relatively compact, measurable, non-null set and {A.} be 
the corresponding to A averaging net. 

Definition. We say that M cH/F is a set of uniform convergence relative to {A,} 
if for every ~ > 0 and every continuous function f on H/F with compact support 
there exists a positive number N(e,f) such that for all xeM and n>N(e,f) we 
have 

(4) j i(gx) 0(g)- I S(h)...,(h) 
n H I E  

Lemma. Let ~,>0. There exists a measurable subset M cH/F  with /x(M)> 1--e 
which is a set of uniform convergence relative to {A,=~,(A)} for each relatively 
compact measurable non-null subset A of U. 
Proof. Since the Hausdorff topology on U is second countable there exists a 
sequence {B~) of open relatively compact subsets of U such that for every q > 0 
and every relatively compact measurable non-null subset A of U there exists 
a positive integer n with O(B. AA)<q. Fix a sequence of positive numbers e~ 

such that ~ e,~ <e.  Using Lemma 7.2, the Egoroff theorem and the fact that 
i = 1  

the space Co(H/F) of continuous functions on H/F with compact support contains 
a countable everywhere dense subset, a standard argument shows that for every 
i there exists a set of uniform convergence M~ relative to {B~..=~.(Bg)} with 

/x(M~) > 1 --ev Put M= N My Let us prove that M is a set of uniform convergence 
i = l  

relative to {A, = ~,(A)}, where A is an arbitrary relatively compact non-null subset 
of U. Assume the contrary, i.e. there exist a function feCo(U/F), an increasing 
sequence of positive integers n~, a sequence x~eM and a positive constant d such 
that 

1 ! f(gx~)dO(g)- ~ f(h)d!ar~;,,)(h)>d, (5) ~ ~ ,  -/~ 

for all i. Choosing B,. such that O(AAB.) is sufficiently small we deduce from 
the fact that f has compact support that for all i 

(6) O~A) ~ f (o~,,,(g) x,) d O ( g ) - ~  J. f (ez,,,(g) x,) dO(g) < d. 
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Note that 

(7) 

and 

(8) 

1 
O(A) ~A f(c~. (g) X~) d0(g) .... . .  1 ~ J(gxi) d0(g) ' O(A.) A n  i 

1 1 
O(B,.) J f(~t.,(g)xi)dO(g)= O(B.,,.,) ~ f(gxi)dO(g)" 

On the other hand, in view of the choice of M taking i large enough we obtain 

S f (gx i )dO(g)-  S f(h)d#,,=o(h) < d ,  
Bm,n i H/F 

which, after taking into account (6), (7) and (8), contradicts (5). The lemma is 
proved. 

7.4 let f :  U ~ U be a K:- ra t ional  map. Using the logarithmic map and fixing 
a basis in the Lie algebra Lie(U) we get a coordinate system on U. By degree 
of f we mean the maximum of the degrees of nominators and the denominators 
of the K: - ra t iona l  functions which determine f in this coordinate system. 

Lemma. Let {f,,: U ~ U} be a sequence of K:-rational maps, ~# a Zariski open 
and dense subset of U and f :  U ~ U a K:-rational isomorphism such that J'],~ 
is a biregular map from ,/g to f(JCl). Assume that the degrees of f .  are bounded 
and that the sequence {.f.} converges to f uniformly on compact subsets of  ~/ .  
Then for any x e J g  there exist a neighborhood (9= of  x and a neighborhood ~'~ 
of f ( x )  such that for all sufficiently large n, f.((gx)~U= and the restriction of f .  
to (9 x is a diffeomorphism of  (9 x onto f,(6x). 

To prove the above lemma one should apply Lemma 1.12 and the following 
observation. Let ~bd(U) be the set of all K: - ra t iona l  maps from U to U with 
degrees less than d. Then there exists a positive integer m, a K:- ra t iona l  map 
F: K } x U ~ U  and a K: - regu la r  map ~ :  ~d(U)--*K~ such that for every 
f~cbd(U), F(a(f),  x )= f ( x )  on a Zariski open dense subset of U. 

7.5 Basic Lemma. Let M be a set of uniJbrm convergence relative to every averaging 
net {A.} corresponding to a relatively compact non-null subset A c U. Let {x,} 
be a sequence in M converging to x e M .  Let {g.} be a sequence of elements in 
H - ~ H ( U )  which satisfies the condition (*) with respect to s (see 6.6). Suppose 
that g . x . e M  for all n. Let qo be a U-quasiregular map corresponding to {g.} 
and constructed in 5.2. Then the ergodic component #y~x) is Im(q))-invariant. 

Proof We will use the notation of Sect. 5. Recall that q~ was constructed as 
a limit of K: - ra t iona l  maps ~o,: U --. U. To prove the lemma we need to establish 
some additional facts about ~0, and q~. Set w,=s- 'r162 ~"~. Since {g,} satisfies 
the condition ( . )  with respect to s, passing to a subsequence we can (as we 
will) assume that w. converges to an element we W-(s). Define a K:- ra t iona l  
map 6: U ~  U by the formula 

(9) p (u) w e Lp (6 (u)), 

where L = W -  (s) Z(s) Vand p: U ~ U o is a projection parallel to L (see 5.1). 
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In view of (2) and (7) in 5.2, for every n there exists a K f-rat ional  map 
5,: U --. U such that 

(10) an (u) gn = q~n (u) an (5n (U)). 

Note that (a) lira s-"tn)a,(x) s't")=p(x) for every x~U, (b) q~, are K~-rational 
n ~ c t ~  

maps from U to L, and (c) if x e L  and the sequence s-nxs n tends to an element 
y~H when n --* ~ then y~ W- (s) Z(s) (because W -  (s) Z(s) is a closed Int(s)-invar- 
iant subgroup of H and Int(s-1)lv acts as a contracting automorphism of V). 
This and (10) imply that the element 

p(u)w= lim s--r(n)an(U)g,,s r(n) 

is contained in W-(s )Z ( s )V  for every u from the Zariski open subset 

j /~r (qr  1 (M) (for the definition of (qV)- a (M) see 5.2). Therefore 

(11) Uo w= W -  (s) Z(s) Uo 

and the sequence {6n} of K j - ra t ional  maps converges to 6 uniformly on compact 
subsets of .M. (Note that since the degrees of the K f-rat ional  maps {~On} and 
{an} are bounded (see Sect. 5) we get from (10) that the degrees of {6n} are also 
bounded.) 

It follows from (11) that W-(s)Z(s)  U o is Int(w)-invariant. Since the multiplica- 
tion map W - ( s ) x Z ( s ) •  ( w - , z , u ) ~ w - z u ,  is a K j -  
isomorphism onto a Zariski open dense subset of W - ( s ) Z  (s) U o and the subgroup 
W-(s) Z(s) is Int(w)-invariant we obtain that the projection of w-~Uw onto U0 
parallel to W=a-(s) Z(s) is a K~-rational isomorphism. This, in view of (9), implies 
that 6 is a K~--rational isomorphism of K.~--algebraic varieties. 

Now let Uo~// .  Put q=  qg(Uo). We need to prove that the ergodic component 
/~r(~) is q-invariant. This is equivalent to the fact that for all continuous functions 
f on H/F with compact support we have 

(12) ~ f(h)d#r(x)(h)= ~ fq(h)dl~r(x)(h), 
H/F H/F 

where fq (h) = f (q h). 
Let A = de' be a compact neighborhood of Uo in U such that {~0n} and {6n} 

converge to ~o and 5, respectively, uniformly on A. Put B = 6(A) and B(n)= 6,(A). 
It follows from Lemma 7.4 that 

(13) lim O(BAB(n))=O. 

Lemma 7.4 also implies that without loss of generality we can (and will) assume 

that there exists a compact subset B such that B ~ B w ( U  B(n)l and the 
sequence {6~- 1 } converges uniformly to 6-1 on B. ~'--- 1 / 

Let f be a continuous function on H/F with compact support. For  every 
n we put A,=g , (A)  and B,=~,(B). In  view of Lemma 7.2 {An} and {Bn} are 
averaging nets corresponding to A and B, respectively. Since an(A)=A,(,) (see 
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(5), Sect. 5) and the Jacobian of the K:biregular  map a.: U--*U is constant, 
in view of (10) we obtain 

(14) 1 S f(ug.x.)dO(u)=o~ ~ f(a.(u)g.x.)dO(u) 
0 (A.~.)) J.<.~ 

1 
-- f f(q~.(u) a.(f.(u)) x.) dO(u). O(A) 

Let e > 0. Choosing A small enough we can find n o > 0 such that for all n > no 

Since fq is bounded and the Jacobian of ~. converges uniformly to the Jacobian 
of 6 on A, substituting v=f.(u), using (13) and replacing (if necessary) A by 
a smaller neighborhood of Uo, one can easily see that there exists a constant 
hi>no such that for all n>n~ we have 

(16) 

Therefore, in view of (14), (15) and (16) 

(17) ~ ~ f ( u g . x . ) d O ( u ) - - - -  
At(n) 

1 fq(ux.) dO(u) O(B,<,.)) I 
Br(n) 

< 2 e  

for all n > nl (we use again that the Jacobian of a. is constant). 
On the other hand, M is a set of uniform convergence for both {A.} and 

{B.}. Therefore there exists a constant N(c,f) such that if r(n)> N(e,f) then 

and 

~ f(ug.x.)dO(u)- ~ f(h)dl~yt~.x.)(h) <~: 
At(n) HiE 

Hence for all n such that n > n 1 and r(n)> N(e,f), in view of (17), we obtain 

r f(h) d/tr~g.x.)(h)- S fq(h) d/tr~x.)(h) < 4e. 
H H/F 

So, to complete the proof, it is enough to show that i f f  is a continuous function 
on H/F with compact support and {z.} is a sequence from M converging to 
zEM then 

lim S f(h)d#rlz.)(h)= ~ f(h)dt~ylz)( h)" 
n ~ + ~ H/F H/F 
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Let e 1 > 0 and N(e I , f)  be such that if n > N (el , f)  then 

ds) ~ ~. f(ue)dO(u)- I f(h)d~,,.(~j(h) <~., 
An I1/F 

for every ~EM. 
Choosing n large enough, since z, ~ z and f has compact support, we get 

O~A,) ~ f (uz") dO(u)- O~A,) ~, f (uz)dO(u) <~q. 

Now, in view of (18) 

I ~ f(h)dl~rt=o(h) - ~ f(h)dmt~)(h)l<2e,, 
H/F H/I" 

which completes the proof of the assertion and with this the proof of the Basic 
Lemma. 

8 Applications of the Basic Lemma and of the properties of q~ 

8.t Let G = G ( K f ) ,  where G is a connected Kg--algebraic group, ~agg a unipotent 
K~--algebraic subgroup of G, F a discrete subgroup of G, and/~ a Borel probability 
q/-invariant and q/-ergodic measure on G/F. 

Up to the end of Sect. 8 we will assume that the measure t~ is Zariski dense (see 
3.3), q/ is a maximal subgroup in the class of all unipotent K ~--algebraic subgroups 
of G preserving # and ~ll is not a normal subgroup of G. 

Let seJV'~(~ be an element from the class d preserving /~. Denote by U+(s) 
the maximal K~--algebraic subgroup of W~,(s) preserving/~. Since s#=/~ the ele- 
ment s normalizes U + (s). We set o~(s)= {g~GI U + (s)g is contained in the Zariski 
closure of W~ (s) ZG(s ) U + (s)} and U - ( s ) =  ~ (s)n WG-(s). It follows from the dis- 
cussion in 6.6 that ~,~(s) and U-(s) are K~--algebraic subgroups of G. (Note 
that ,~-(s)coincides with the group .~" introduced in 6.6 if we substitute U+(s) 
by Uo from 6.6.) 

We  claim that ~ ( s )  contains q/. Indeed, denote by R the subgroup of G 
generated by ~ and U + (s). Let /~ be the Zariski closure of R in G. Then R 
is open in the Hausdorff topology of /~ [Bo-Pra, 2.2] and R is Int(s)-invariant. 
Therefore, RnW~(s )  is open Int(s)-invariant subgroup of /~nW~+(s). Since 
Int(s-1) acts as a contraction on Wa + (s) we obtain that R n WG + ( s )= /~n  Wa + (s). 
But R n W~(s) preserves # and contains U + (s). In view of the definition of U + (s), 
this implies that /~  n W~ + (s) = U + (s). By Proposition 2.7 

17 c (w~- (s) n R)(Z~ (s) n R)(W~ + (s) n R). 

Thus ~ c(W~ (s) Z~(s) U + (s). Hence ~ ~ o~(s). 
As  in 6.6 one can write W J  (s) = V + (s) U + (s) and WG- (s) = U -  (s) V- (s), where 

V + (s) and V-  (s) are K~r-rational sections for WJ (s)/U § (s) and W~ (s)/U- (s), 
respectively. In view of Proposition 2.7, there exists a Zariski open subset of 
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G containing e such that every element g from this subset has a unique repre- 
sentation g = u -  (g) v- (g) z(g) v + (g) u + (g), where u-  (g)E U-  (s), v-  (g)e V- (s), 
z(g)~ZG(s), v + (g)e V + (s) and u + (g)e U + (s). 

8.2 Proposition. With the above notation and assumption, let N c G be a subgroup 
which is maximal in the class of  normal subgroups of  G preserving # and generated 
by unipotent Ks-algebraic subgroups of G. Assume that ~ dg N. Then there exists 
a ~ll-quasiregular map q~: ~ll ~ .Ara(oll) such that 

(i) Im(q~) consists of  elements preserving I~; 
(ii) if F is the subgroup of G generated by rill and Im(~0) then F contains an element 
s from the class ~ with the following properties: 

(a) U + (s) 4: {e}; 
(b) a(s, o~-(s))__> 1; 
(c) /f N(s) denotes the subgroup of G generated by WJ(s) and W~(s) then 
N(s)/N (s)n N is an infinite group. 

Proof Let us embed G in a Ksa lgebra ic  group H =  1[] Hv, where Hv=SL,, ,  
~.~ 

According to Lemma 6.8, there exists an element t~H, H=H(K~-)  from the class 
d such that 9/~  W d (t) and ./V~1t (Uo) n Wn- (t) = {e}, where U o = 

lira t-"o~'t ". Given a relatively compact non-null subset AcO# we will denote 

by {A,} the averaging net corresponding to A as defined in 7.2 (i.e. A,=ct,(A)). 
In view of Lemma 7.3, for every e > 0  there exists a measurable subset M~cH/F  
with / a ( M 3 > l - ~  which is a set of uniform convergence for all averaging nets 
{A,} corresponding to relatively compact non-null subsets A =q/. (Note that G/F 
is contained in H/F, so the measure/~ on G/F can be also considered as a measure 
on H/F.) 

Denote by N the Zariski closure of N in G. It follows from the Levi decomposi- 
tion of G that there is a connected K~-algebraic subvariety L of G which contains 
e and is transversal to N at e and has the following property: r(L) is a normal 
Ka--algebraic subgroup of G/R,(G) and G/R,(G) is an almost direct product 
of r(N) and r(L) where R,(G) is the unipotent radical of G and r: G--+ G/R,(G) 
is the natural epimorphism. 

Put P = JV'G(~). Let us show that P z~ L, where L = L(K.~r). Assume the contrary. 
Then the set LN normalizes the group ~#N. Since LN is Zariski dense in G 
this implies that G normalizes the Zariski closure E of ~/r in G, Therefore G 
normalizes the subgroup E + of E generated by all unipotent elements of E. But 
~llN has finite index in E. Therefore qgN contains all unipotent K~-algebraic 
subgroups of E i.e. E + = ~ N .  In view of the maximality of N we obtain that 
N ~ q/which contradicts our hypothesis. Therefore P z~ L. 

It follows from Lemma 3.3 that for all sufficiently small e there exists 
a converging to e sequence {g,}~ ~(M~)n (L -P) ,  where ~ ( M 3 =  
{xeGJxM~nM~e~} .  Denote by q~: q Z ~ H  the quasiregular map correspond- 
ing to {g,} (see 5.2). Since {g,} ~ G, the formula (17) in 5.2 implies that Im(~p)c G. 
On the other hand, it follows from Proposition 6.7 and the choice of t that 
the sequence {g,} has the property ( . )  with respect to t. Using the Basic Lemma, 
we deduce that Im(~0) preserves /~. This proves (i). Denote by F the subgroup 
generated by Im(~o) and og. Then F is contained in o~c,(0/l) (Proposition 6.1) and 
it is open in its Zariski closure in G. By virtue of our assumptions about 
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q/ (see 8.1), if V is a unipotent Kg--algebraic subgroup of G and V c F  then 
VcO//. Now Proposition 6.3 implies that there exists a split K: - to rus  S in the 
Zariski closure P of F in G such that (a) F/F ~ S ~  is a compact group and 
(b) there exists an element s ES ~ F from the class ~1 such that U + (s)~ {e} and 
e(s, D)> 1 for every KTalgebraic  subgroup D of G normalized by SU. According 
to 8.1, ~  On the other hand, since S n F  commutes with s we obtain 
that S n F normalizes W~ (s), ZG(s ) and Wcl (s). In view of the definition of U + (s) 
in 8.1, it follows that S n F  normalizes U+(s) and, therefore, S c~F normalizes 
~(s) .  Since S n F  is Zariski dense in S, we get that S normalizes ~(s) .  Hence 
c~(s,.~-(s))> l. So, we have proved that s has the properties (a) and (b) in the 
formulation of the proposition. 

Since {r(gi)}cr(L ) and r(L) is a normal subgroup of the reductive group 
G/R,(G) it follows from (17) in 5.2, that r(S c~ F) c r(L). Note that r o @ is a strongly 
quasiregular map. Therefore, in view of 6.2 and Lemma 6.4, r(s) does not centralize 
r(~g). This implies that the subgroup N(s) generated by W~ + (s) and Wa-(s) has 
nontrivial projection into r(L) which proves that s has the property (c). The 
proposition is proved. 

8.3 Proposition. Let s~JV~(~ll), s~e ,  be an element from the class ,~ preserving 
p. For every e>O, there exists a compact subset M~c  G/F with It(M~)> l - ~ ,  such 
that if  {gi} is a sequence of elements from G--dV'G(U+(s)) converging to e and 
gi M~n  Mr 4=dp for all i then the sequence { - ( v - ( g i ) ) - : - ( u - ( g l ) )  tends to - o o  
when i tends to + c~. (Recall that the fi~nction : -  : W -  (s) -~ Z has been defined 
in 5.1.) 

Proof. Put U =  U + (s) and q/o =q /nZ~(s ) .  Denote by R the closure in the Haus- 
dorff topology of G of the subgroup generated by ago and s. It follows from 
the generalized Mautner Lemma [Mar6, Lemma 3] that R acts ergodically on 
(G/F, It). Let It= ~ Itrdv(y) be the decomposition of It into U-invariant U-ergodic 

( Y , v )  

probability measures #y, where y~ Y and (Y, v) is a finite mesure space. If xeG/F,  
we will denote by y(x) the corresponding point from (Y, v). 

For  every Borel probability measure cr on G/F we denote by Wo the maximal 
KTalgebraie  subgroup of W~ + (s) preserving a. It is easy to see that if a = lim a~ 

i ~ o z  

and the sequence ln(W,) converges to a K~r-subspace L of Lie(WG+(s)) then 
e x p L c  W,. From this and the compactness of the Grassmannian variety 
Gr(Lie(WJ(s))) one can easily get that (1) if a = l i m  ai then dim W~ 

>li-m dim W~,; (2) the map a~--~ln(W~) is continuous on the set {a[dim W~=:} 
for every :.  Therefore, the following assertion is true 

(A) The map crw~,tn(W~) from the space of Borel probability measures on 
G/f' into Gr(Lie(WJ (s))) is Borel. 

Set W~= W,~ ~. Since R normalizes ~h' we have that for every geR the equality 
�9 x 

Itrtg~)=Itgy~) is true for almost all xeG/F .  Therefore, for every g~R we have 
that Vr g14~ g-  ~ for almost all x~Gff ' .  

Denote by f2 the space of all K~--algebraic subgroups of Wa + (s). Then the 
above remark implies that the map f :  (G/F, I t )~  fL x ~ W~, is R-equivariant. 
Since the logarithmic map defines an imbedding of f2 into Gr(Lie(W~+(s))), it 
follows from the assertion (A) that f is a Boret map. Now, in view of Corollary 
3.1 and the ergodicity of the action of R on (G/F, It) we get that f is essentially 
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constant. Therefore, there exists a conull subset Mo~G/F such that W~=U for 
all xeMo. 

For every e > 0  fix a compact subset M~,~M o such that /~(M~)> 1--e. and 
M~ is a set of uniform convergence for all averaging nets {A,} corresponding 
to non-null relatively compact subsets A of U. Let gi~G-./V~(U) be a sequence 
converging to e and giM~c~M~4:d? for all i. Assume that the sequence 
{:-  (v- (gi))-:-  (u- (gi))} does not tend to - ~ when i -~ oo. Passing to a subse- 
quence, we will assume (without loss of generality) that the sequence is bounded 
from below and that for every i there exists an xi~M~ such that gixi~M~ and 
lim xi=x where xEM~. By Proposition 6.7, the sequence {gi} satisfies the proper- 
i ~  
ty (*) with respect to s. Let ~0 be a U-quasiregular map corresponding to {g~} 
and constructed in 5.2. It follows from Basic Lemma, Proposition 6.1 and Proposi- 
tion 6.7 that Im(r Wt + (s)c~ JV~(U) and that Im (q~) preserves the ergodic compo- 
nent /ty(x ). Let F be the subgroup generated by U and Im(~0) and P be the 
Zariski closure of F in W +(s). Note that F/U is a group of K:- ra t ional  ponts 
points of a K:-algebraic group (Proposition 1.8) and that F/U is a noncompact 
open subgroup of FlU (see 6.3 and Proposition 6.1). In view of Proposition 4.1, 
this implies that F/U contains a nontrivial unipotent K:-algebraic subgroup 
of FlU. Since F preserves #m), we obtain that Wx4:U which contradicts the 
fact that x~Mo. The proposition is proved. 

8.4 Corollary. Let s 4: e be an element from the class ,~ preserving/~ and s~.~(~("?l). 
Then there exists a conull subset M ~ G/F such that M c~ W~ (s) x ~ U- (s) x for 
every x ~ M. 

Proof For every e > 0, let M~ be a subset of G/F as given by Proposition 8.3. 
Let # =  ~ IGdp(z) be the decomposition o f / t  into (s)-ergodic components, 

(z,p) 

where ( s )  denotes the cyclic subgroup generated by s. As usual, if x~M~, we 
will denote by z(x) the corresponding point from (Z, p). 

For  every z~(Z, p) denote by C~ the intersection Supp(/G) c~ M~ where Supp(/z~) 
denotes the support of v~. Let 3 = p {z~(Z, P) It~=(C,) => 2}. Then using Fubini's theo- 
rem, 6+2(i--6)>1--e. Whence 1 -6>3e . .  Let M~={x~M~[l~(x)(C~(x))> 2} and 
m'~={x~m~]v~(x)(C~(~,))<_z}. It is easy to see that /t(m',)>2e. Hence ~(M0>I 
- 3 e .  It follows from the Birkhoff ergodicity theorem, that there exists a measur- 
able subset M2~  M1 with ~t(M~--M2)=0 which has the following property: if 
Z denotes the characteristic function of M2 then for every x ~ . M  2 the sequence 
1 " 

i~ "-' ~(six) tends to a number greater than or 

equal to 2. 
Let x l, x2 ~ M2 and x2 = w x i where w ~ W~- (s). Assume that v-  (w) 4: e. In view 

of the above property of M 2, there exists an increasing sequence of positive 
integers {n~} such that s"'x~,s"'x2eM2 for all i. Put gi=s"'ws "'. Clearly, s"'x 2 
=gis"'xa for all i and lira gi=e. Note that giCJVG(U+(s)) for every i. Indeed, 

if g ie~G(U + (s)) then we,U~(U + (s)), because ~V~(U + (s))is Int(s)-invariant. Hence, 
~v~ U-(s), contradicting the assumption that v-(w)#:e. By Proposition 8.3, the 
sequence { : - (v - (g l ) ) - : - (u - (g l ) ) }  tends to - o ~  when i ~  ~ .  On the other hand, 
if v-  (w) 4= e, then one can easily deduce from (9) in 6.6 that the sequence is bounded 
from below. So, the assumption that v-(w)4: e leads to contradiction and, there- 
fore, Via- (s) x ~ M~ ~ U -  (s) x for every x ~ M2. Recall 
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that #(M2)>1-3~.  Now, passing to a limit when e--*0, it is easy to obtain a 
conull subset M such that W ~ ( s ) x c ~ M c U - ( s ) x  for all xeM.  The corollary 
is proved. 

9 Entropy of translations of homogeneous spaces 

In this section, G and F denote the same as in Sect. 8. We fix an element seG 
from the class d and write W - =  Wa-(s), Z=Z~(s) and W+=W~(s). Let # be 
a Borel s-invariant probability measure on G/F. 

We can consider G as a Ks-algebraic subgroup of GL, (Kf) .  The absolute 
values I [~ on K~ induce a norm ]1 [L on the ring of K~--endomorphisms 
End(K~-). Define a metric p' on End(K~-) by the formula p'(A, B)= Ik A - B  N. Since 
G L , ( K ~ ) ~ E n d ( K ~ )  the metric p' induces a metric on G which we denote also 
by p'. Let us fix a right invariant metric p on G such that on every compact 
subset L c G the metrics p [L and P'IL are equivalent in a sense that their ratio 
is bounded. This metric induces a metric on G/F which will also be denoted 
by p. 

9.1 Fix a point p~G/F such that every neighborhood of p in G/F has positive 
measure /t. Fix relatively compact neighborhoods B' and C' of e in W -  and 
Z W  § respectively, such that the map 

x~---~xp, xeD'%f B'C ', 

is a homeomorphism onto an open subset D %f D'p of G/F. We write C- -C 'p .  

Lemma. Assume that diam(sX s-1)=< ~ d iam(X)for  every X c B'. For every c ~ C, 
there exists a containing c subset Ec of W -  c such that: 

(1) Ec~B' c; 

(2) Ec is open in W - c  (in the orbit topology) and the subset E ~f U E,. is open 
in G/F; c~c 
(3) whenever s" Ecc~ E:# dp, ceC, n>0,  we have g' Ec c E. 

Proof. We can assume that B' is a sphere of radius a/2 centered at e, i.e. B' 

= { x ~ W - [ p ( e , x ) < ~ } .  Let Bo denote the sphere in W -  or radius ~to centered 

at e. 
For  every c~C we define the set Ec as follows: x~E~ if and only if there 

exists a nonnegative integer p, a sequence {Co=C, ct . . . . .  cp} of elements in C 
and sequence {n0=0, n l ,  .... np} of nonnegative integers such that x~s"'B o cp and 
s'~-lBoci_lc~s~Boq~q~ for every l<i<=p. The minimal p for which such 
sequences exist will be denoted by p(x). 

It easily follows from the above definition that E~ has the properties (2) and 
(3). Let us prove (1) by induction on p(x). The assertion is trivial if p(x)=0. 
Assume that (1) is proved for every y~Ed, deC, with p(y )<k-1 .  Let x~E~, p(x) 
= k > 0  and let {co=c,c 1 .. . . .  Ck} and {n0=0, nl ..... nk} be corre- 
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sponding sequences. Let n = n j = m i n { n  I . . . . .  nk}. Recall that B'dlnB'd2=c~ if 
da,d2~C, dt@d 2. From this and the induction assumption, we get that n>0 .  
The induction assumption also implies that 

j k 

U s"~- " B o c i ~ B ' c j  and U s " ' -  "B 0c/~B'cJ .  
i=1 i=j 

But n > 0, diana (B') < a and diam (sX s-  l) < ~ diam (X) for every X = B'. Therefore 
/ k \ 

diam ( U " < 
a 

, i = l s ' B ~  lO" 

This implies that 

diam U s"~Bo c <diam(Boco)+diam U s'Boci)<=~O+ lO-<5. 
\ i = 1  i = 1  

k 

But the union [)  s"'B o ci contains both c and x. Hence xeB 'c .  
i = O  

9.2 Lemma. Let M be a relatively compact open subset in a K~-analytic variety 
V. I f  I~ is a probability measure on M and q: M--*(0, 1) is such that logq is 
I~-integrable, then there exists a countable partition ~ of M with entropy H (~) < 
such that, ~ ~ (x )  denotes the atom of ~ containing x, then diam ~(x)<q(x) .  

The above lemma is an analog for Ky-analytic varieties of Lemma 2 in [Ma] 
and its proof is virtualy the same. 

9.3 We will use the standard terminology and results from ergodic theory (see 
[Roh]). 

Definition. We say that a measurable partition ~ of the measure space (G/F, #) 
is subordinate to a closed subgroup V of G if for almost all (with respect to 
p) x~G/F,  we have 

(a) ~(x)c Vx where ~(x) denotes, as usual, the element of ~ containing x; 
(b) ~(x) is relatively compact in Vx in the orbit topology. 
(c) ~(x) contains a neighborhood of x in Vx. 
Let t /and r/' be measurable partitions of (G/F, I~). We write q _< t/' if t/(x)~ t/'(x) 

for almost all (with respect to #) x~G/F.  We define a partition gq, g~G, by 
(g ,7)(x) = g (q (g - ' x)) .  

Proposition. Assume that # is s-ergodic. Then there exists a measurable partition 
tl of  the measure space (G/F, I ~) with the following properties: 

(i) ~l is subordinate to W -  ; 
(ii) rl is s-invariant, i.e. tl< stl; 
(iii) the mean conditional entropy H(sqltl) is equal to the entropy h(s, I~) of  the 

automorpism x~-~s x, x6G/F,  of  the measure space (G/F, I~). 

Proof Let Ec and E denote the "same as in Lemma9.1. Denote by ~: E ~ C  
the natural projection (n(x)=c if xeEc). We set tl(x)=E,~x) for every xeE .  
It is enough to find a countable measurable partition ~ of (G/F, It) such that 
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s 
H(~)< ~ and q(x)=~-(x)  for almost all xeE  where 4 - =  V s-"~ is the product 

n = O  

of the partitions s - " r  Indeed, let us set r /=~- .  It is clear that q is 
s-invariant. The set of xeG/F for which properties (a) and (b) (resp. (c)) in the 
definition of a subordinate partition are satisfied is s 1-invariant (resp. s-invariant) 
and contains E. But /~(E)>0 and # is s-ergodic. Therefore, q -  is subordinate 

to W- .  To check the property (iii) it is enough to show that the partition r = V 

sk~ is the partition into points (see [Roh, Sect. 9]). We have that ~-(x) 
=q(x )cB ' .B ' - l x  if xEE. On the other hand, the automorphism Int(s)lw is 
contracting. Therefore, ~(x)={x} if s - "xeE  for infinitely many positive n. But 
/~(E) > 0 and # is s-ergodic. Hence r x for almost all x. 

Let us construct the desired partition ~. For xeE, let n(x) be the smallest 
positive integer n such that s"x e E. Since/t (E) > 0 and g is s-invariant and s-ergodic, 
we get (using standard arguments from ergodic theory) that 

(1) j n(x)dp(x)= 1. 
E 

Define a probability measure p' on C by 

(2) if(X) = if(n- ' (X)), X ~ C. 
#(E) 

Property (3) of the family {EclceC} implies that n(x) is constant on every E~, 
c e C. Therefore, in view of (1) and (2) 

(3) ~ n(c) dff(c)< oo. 
C 

There exists 2>1  such that p(sgl, sgz)<2p(gt,g2) for all g~,gzeG. Since the 
function n(c) is ff-integrable, one can find a positive function q(c)<2 -"to), ceC, 
such that the function log q(c) is ff-integrable and the #-essential infinum ess inf 
q(c) is 0. c~c 

The multiplication map W-  x Z W  + ~ G, (x, y) --* xy, is a diffeomorphism onto 
an open subset of G. Therefore replacing, if necessary, B' and C' by smaller 
subsets we can find e > 0 such that (a) I I g II < 2p (n(x), n(y)) whenever x, y6 E, y = g x, 
geZW'  and HgH <e;  (b) if x, yeC there exists g e Z W  + such that y=gx  and [Ig[] <e. 

Since the function log q(c) is p'-integrable, there exists a countable measurable 

partition .~ of C such that H ( ~ ) <  oo and diam ~(x)<~q(x)  for almost all x eC  

(see 9.2). Now we define a countable measurable partition ~ of G/F by 

~, , f~-l(~(zt(x)))  if xeE 
tx )=~  (G/F)-E if xCE. 

Since H ( ~ ) <  0% we get using (2) that H (r oo. It remains to show that r/(x)= ~ (s) 
for almost all xeE. It follows from the property (3) of the family 
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{E~} that q(z)c~(z) .  Let x and y be elements in E with ~- (x)= r  (y). Since 
r l (z)cr  ) we can assume that x, y e C .  Then y = g x  where g e Z W  + and I[gl[ <e.. 
Set xl =x ,  y~ =y,  g~ = g  and define by induction 

Xk + 1 = Sn(Xk) Xk , Yk  + 1 = Sn(Xk) y k  , gk+ 1 = Sn(Xk) gk  s -- ntxk)" 

A trivial induction argument shows that 

(4) Yk = gk Xk. 

Let us prove that 

(5) Ilgkll <cq(rc(Xk)) forall k=>O. 

If k=  1, the inequality (5) is true because diam ~ ( x ) <  2q(Tr(x)) and , '~(x)=~(y). 

Assume that (5) is proved for k. Then 

Ilgk+ 1]1 = IIs"(Xk)gk s-"(X~)ll <,~"~)Ilgdl <=g2"(X~)q(~(Xk))<e. 

Then since Xk + 1 and yg + 1 = gk + 1 Xk +1 belong to the same element of the partition 

(because { -  (x) = ~-  (y)) and diam ~(Tr(Xk)) < ~ q 7t(Xk)) we get from the defini- 
tion of e > 0 that (5) is true for k + 1. z ,  

Since the measure p is s-ergodic and ess in fq (c )=0  we have that 
ccC 

lim infq(~(Xk))=O for almost all x e E .  On the other hand, if h e Z W  + and h + e  
k + o v ,  

then e is not a limit point of the sequence {s"hs-" ln>O}.  Therefore (5) implies 
that g = e and x = y. 

Remark. It follows from the construction of r/ that for almost all x e G / F  the 
map W - ~  W x, w ~ w x ,  is bijective. Indeed, let x ~ G / F  be such that the set 
of positive integers I =  {nls"~E} is infinite. Let W 0 be a relatively compact subset 
of W- .  Since the automorphism lnt(s)lw- is contracting, we get s "Wox  
=s" W o s - " s " x c E  for large enough n~l.  Therefore, the map wF--~wx, w ~ W  o, is 
bijective for every relatively compact W o. This proves our assertion. 

9.4 Lemma (see [Led-Str, Proposition 2.2]). Let Tbe  an automorphism o f  a measure 
space (X, a), or(X)< oo, and let f be a positive f inite measurable function defined 
on X such that 

log]  ~ T ~ L I ( X , a ) ,  where log~(a)-min(log2a,0) .  
J 

Then 

9.5 Lemma. Let V be a closed subgroup of  W -  normalized by s and q be a measur- 
able partition o f  (G/F, I~) subordinate to V. Assume that rl <sq,  and that for  almost 
all x e G/F, the conditional measure i~x, ~ of  p on q (x) is proportional to the restriction 
to q(x) o f  a V-invariant measure on Vx. Then the measure # is V-invariant. 
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Proof The measure # induces in a standard way conditional measures Itx,v on 
the orbits Vx. These measures are defined and unique up to a proportionality 
for almost all x~X. From the assumption about Itx,, we get that for almost 
all x~G/F, the restriction of #x.v to t/(x) is proportional to the restriction of 
the V-invariant measure. Thus the uniqueness of It~,v and the s-invariance of 
It imply that the restriction of P~,v to (s-"q)(x) is proportional to the restriction 
of the V-invariant measure. On the other hand, since the automorphism Int(s)lv 
is contracting, we have that U (s-"~l)(x) = Vx for almost all x~X. Therefore 

O__<n<~ 

the measures #x,v are V-invariant and, hence, the measure It is V-invariant. 

9.6 Proposition. Let V be a closed subgroup of W-  normalized by s and let rl 
be a s-invariant measurable partition of (G/F, It) subordinate to V. 
(i) I f  It is V-invariant, then H(srllq)=log2c~(s - t ,  V) where H(sql~/) is the mean 
conditional entropy and c~(s, V) is defined in 1.5. 
(ii) H(s~llrl)<logz ~(s -1, V). The equality H(sqlq)=log2 a(s -1, V) implies that VIt 

Proof Since q < s q  for almost all x~G/F we have a partition qx of r/(x) such 
that rl~(y)=(sq)(y) for almost all y~q(x). Denote by : the Haar  measure on V. 
Since tl(x)~Vx, z induces a measure on t/(x) which we will denote also by r. 
Put L(x)= z (t/(x)) and rx = z/L(x), x ~ G/F. Note that on tl (x) we have a conditional 
probability measure It~ induced by It. Put p(x)= **(qx(S)) and r(x)= Itx(~l~(X)). Then 

sincerl~(x)=s(rl(s-lx))oneeasilyseesthatp(x) L(s- lx)  ~ : , w h e r e e = ~ ( S - i , V )  
L(x) 

(see 1.5). Since r/ is a measurable partition subordinate to V, L(x) is a positive 
L(s- l x) rl . . . . .  

finite measurable function. Note  that p(x)~ 1. Therefore logy ~ E c  t o / t ,  It1. 

In view of Lemma 9.4, we obtain 

(6)  - ~ log2p(x)dit(x)=log2~. 
G/F 

Assume that # is V-invariant. Then #x=rx  for almost all xeG/F, in particular, 
p(x)= r(x) for almost all xEG/F. But 

(7)  - ~ l o g 2 r ( x ) d # ( x ) = H ( s q l q ) .  
G/F 

This in view of (6) proves (i). 
Let Y~(x), 1 < i <  0% denote the elements of the countable partition r/~ of r/(x). 

Then we have 

(8) log2 p(y) d itx(y)- S l~ r(y) d #x(y ) 
~(x) ~(x) 

~A ~(X)) "V.." "" 
= ~, logz ~ i t ~ A  ,tx}t.  

i = 1  
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We have that 

(9) ~, zx(Y/(x))< 1 
i = 1  

and 

(10) ~ #x(Y~(x))= 1. 

(In (9), we can have inequality because apriori  it is possible that the measure 
�9 x of ~/(x)- ~ Y/(x) is positive). From (8), (9) and (10), using the convexity 

l_< i_<~ 

of log we get that 

log2 p(y)d#~(y)<= ~ log2 r(y)d#x(y) 
~/(x) ~t(x) 

and the equality holds if and only if p(y)=r(y) i.e. zx(qx(y))=#xOl~(y)) for all 
y~q(x). Now using integration over the quotient space (G/F, #)/q of the measure 
space (G/F, #) by ~/we get from (6) and (7) that H(sqiq)<log2 ~ and the equality 
holds if and only if ~x ((s q) (x)) ~ #2 ((s q) (x)) for almost all x ~ G/F. 

Assume that H (s q [ ~/) = log 2 c~ (s- ', V). Then H (s k q [ q) = log 2 ~ (s k, V) for every 
k>0 .  Using the same argument as above and replacing s by s k, we get that 
rx((Skq)(X))=#~((skq)(X)) for any k > 0  and almost all x~G/F. On the other hand 
since q is subordinate to V and the automorphism Int(s) is contracting on V 

we have that V skq is the partition into points. Hence #x= rx for almost all 
k = l  

xeG/F. In view of Lemma 9.5, it implies that # is V-invariant. 

9.7 Theorem. Assume that the element s acts ergodically on the measure space 
(G/F, #). Let V be a closed subgroup of W-  normalized by s. Put ~ = ~(s- l, V). 

(i) / f #  is V-invariant, then h(s, #) > logz ~. 

(ii) Assume that there exists a subset 7"cG/F with #-measure 1 such that 
7" ~ W -  x c Vx for every x ~ ~. Then h (s, I~) <= log2 (~) and the equality implies that 
I~ is V-invariant. 

Proof According to Propostion 9.3, there exists a measurable s-invariant subordi- 
nate to W partition q of (G/F,#) such that H(sqlq)=h(s,#). Let x e G / F  be 
such that the map w~--~wx, w e W - ,  is bijective. (In view of Remark 9.3, the set 
of all x~G/F with this property is conull.) Set q'(x)=Vxc~q(x). Then r/' is a 
measurable s-invariant partition of (G/F, I~) subordinate to V. Since 
h(s, #) > H(s q'[ q'), the part  (i) of the theorem follows from the equality H (sq'l q') 
= log2(e ) (Proposition 9.6 (i)). 

Now assume that 7' n W -  x ~ Vx for every x from a conull subset 7" c G/F. 
Then q and q' coincide on 7* (i.e. r/(x)c~ 7*=q'(x)c~ 7"). Hence H(sqlq)=H(sq' lq '  ). 
By Proposition 9.3(iii), h(s, #)= H(sqlq). Using Proposition 9.6(ii) we obtain that 
h(s,/~)<log2~ and the equality implies that /~ is V-invariant. The theorem is 
proved. 
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10 Proof of Theorem 1 

Let G = G(Kj ) ,  where G is a K~r-algebraic, Y/a unipotent K j-algebraic subgroup 
of G, F a discrete subgroup of G and ~ a Borel probability ~ ~//-invariant 
measure on G/F. 

We need the following simple 

10.1 Lemma. I f  there exists a closed (in the Hausdorff topology) normal unimodular 
subgroup N of G such that # is N-invariant and N-ergodic then p is algebraic. 

Proof. Let n: G ~ G / F  be the natural projection. Denote by #' the lifting of/~ 
to G i.e. 

# ' (X)= 5 ax(y)dt~(y ) 
G/F 

where ax(y) is the number of elements in 7z-1 (y)c~ X. Then/~ 'F = #'. On the other 
hand N/1'= #', and since the subgroup N is unimodular and normal in G, ~t'N =/~'. 
Thus p' NF = #' and hence/~' F = p' where F c G is the closure of NF in the Haus- 
dorff topology. Since # is N-ergodic, we have that p' is F-ergodic. From this, 
we get that #' is a F-invariant measure on a coset gF. Hence ~t is algebraic 
(here we use that F = F). 

10.2 Proposition 2.7(a) easily implies the following. 

Lemma. Let seG be an element from the class ~r and let H be a Kj-algebraic 
subgroup of G normalized by s. Then 

~(s, H) = e(s, Wt[ (s)) :t(s, Wt[ (s)). 

10.3 In proving Theorem 1, we may (and will) assume the following: (i) ~// is 
a maximal subgroup in the class of all unipotent Ksa lgebra ic  subgroups of 
G preserving p; (ii) the measure # is Zariski dense, i.e. G does not contain a 
proper K~--algebraic subvariety M of G such that /~(n(M))>0 (in view of Proposi- 
tion 3.2); (iii) the Kg--algebraic group G is connected (in view of (ii)); (iv) G 
does not contain a normal unimodular subgroup N of G such that/~ is N-invariant 
and N-ergodic (in view of Lemma 10.1). 

10.4 Let N be the maximal subgroup in the class of all normal subgroups of 
G preserving ~ and generated by unipotent Ky-algebraic subgroups of G. (A 
standard argument from the theory of linear algebraic groups shows that N is 
closed in the Hausdorff topology on G.) In view of assumption (iv) in 10.3, we 
have that q/OgN. According to Proposition 8.2, there exists a ~#-quasiregular 
map ~0:~/1 ~ JVa(q/) such that Im((p) consists of elements preserving/~ and the 
subgroup F generated by ~ and Im(tp) contains an element from the class ,zr 
such that: (1) U + (s)@ {e}, (2) ct(s, o ~ (s))>1, (3) N(s)/N(s)c~ N is an infinite group, 
where N(s) is the (normal) subgroup generated by W~(s) and We7 (s). (We use 
the notation from Sect. 8). 

Denote Idet Ad hi, beG, by d(h). Since ~0(u)= lira a.(u) g. b,(u), the elements 

a,(u) and b.(u) are unipotent, d(h)= 1 if h is unipotent, and lim g , =  1, we 
have that . ~ o~ 

d((p(u)) = lira d(a.(u)) d(g,) d(b.(u))= 1. 
n ~  oo 
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Thus c~(g, G)= 1 for every gEIm(q~) and, consequently, for all geF .  In particular, 
e(s, G)= 1. 

10.5 Now the proof of Theorem 1 can be completed in three steps. 

Step l In view of 8.4, there exists a conull subset of M such that 
Mc~ W ~ ( s ) x c  U- ( s )x  for every x e M .  Let/~= S I~dp(z) be the decomposition 

(Z,p) 
of/~ into (s)-ergodic components. It follows from Mautner's lemma [Mar6, Lem- 
ma 3, p. 31] that every (s)-ergodic component is U +(s)-invariant. By Fubini's 
theorem, / ~ ( M ) = I  for almost all (with respect to p) (s)-ergodic components 
/~z. Fix an (s)-ergodic component /~  of the measure/~ with the property/t~(M) = 1. 
Since h(s, #~)= h(s-1, ijz) ' Theorem 9.7 implies 

log2 ct(s, U + (s)) <= h(s, ~ )  <= log2 c~(s- l, U -  (s)). 
But 

O~(S 1 U-  (S))=O~(S, U-(S)) 1 

and in view of Lemma 9.2 

(1) cr (s, Y (s)) = co(s, U + (s)) co(s, U (s)) > I. 

Therefore 

h(s,l~)=logz c~( s 1, U-(s)). 

It follows from Theorem 9.7(ii), that /~ is a U -  (s)-invariant measure. Therefore 
the measure # is U -  (s)-invariant. 

Step 2 Assume that U-(s)4=W~(s). This, in view of the definition of U-(s) in 
8.1, implies that U + (s) is not a normal subgroup of G. It follows from Lemma 3.3 
that there exist a constant c, 0 < c < 1, such that if f 2c  G/F is a measurable set 
with /~(f2)> 1 - c  then there exists a converging to e sequence {g,} c ~u(f2) such 
that 

{ g, } = ( V - (s) Z~ (s) W, ,+, (s) -- (Z ,; (s) W d (s) u ,J~; (U + (s)))) ~ q' (~?). 

Then • ( v - ( g , ) ) > - c o  and E - ( u - ( g , ) ) = - o e .  This, in view of Proposition 8.3, 
leads to contradiction. Thus U -  (s) = W -  (s), and hence,/~ is WG- (s)-invariant. 
Step 3 In view of 10.2 we have that 

(2) e(s, G) = c~(s, W~ + (s)) c~(s, W~- (s)) = 1. 

The restriction of the automorphism Int(s -1) to W+(s) is contracting. But 
U + (s) c W + (s). Therefore c~(s, U + (s)) < e(s, W + (s)) and the equality holds if and 
only if U +(s)= W+(s). From this, (1) and (2) and the equality U - ( s ) =  W-(s) 
we get that U+(s)= W + (s). Therefore, g is N(s)-invariant which contradicts the 
maximality of N and the choice of s. The theorem is proved. 

11 Some applications 

We formulate in this section some theorems about closures of orbits of unipotent 
subgroups, uniform distribution and values of families of quadratic forms. These 



388 G.A. Margulis and G.M. Tomanov 

results, are analogs of corresponding results for real Lie groups (see [D-Mar 5, 6; 
R5, 6]). We will give only indications what should be changed in the proofs 
for the real case to get the proofs for the case of K~--algebraic groups. As for 
real Lie groups the description of finite measures invariant and ergodic relative 
to unipotent subgroups is used in a major way. Another important ingredient 
is an analog of Dani's theorem about the finiteness of ergodic measures invariant 
under actions of unipotent subgroups. 

As in Sect. 10, let G = G(K~-) where G is a K ~-algebraic group, q/a  unipotent 
K~--algebraic subgroup of G, and F a discrete subgroup of G. 

11.1 Theorem. Assume that F is a lattice in G, i.e. the volume of G/F with respect 
to the Haar measure is finite. Then, for any x~G/F, there exists a closed subgroup 
L= L(x)c G containing rill such that the closure of the orbit ~ coincides with 
Lx. 

This theorem which is an analog of Theorem A in [R 5], is easily deduced from 
Theorem 11.2 and Proposition 11.3. Note that Theorem 11.2 is an analog of Theo- 
rem B in [R 5] and Proposition 11.3 is an analog of Proposition 2.1 in [D-Mar6] 
and Theorem 1.1 in [RS]. 

11.2 Theorem (Uniform distribution) Let v~--  and let ~ {u(t)l teK~} be a one- 
parameter unipotent K j-algebraic subgroup of G~(Kv). Denote by a~ the Haar 
measure on Kv. Let A be a Borel relatively compact subset of K~ with ao(A)>0. 
Assume that F is a lattice in G. Then for any x6G/F, there exists a closed subgroup 
L = L ( x ) c G  containing og such that closure of the orbit oTlx coincides with Lx, 
Lx admits L-invariant Borel probability measure 0 and 

lim ~l-~ 7A f(u(t)x)dcr~(t): ~ f(y)dO(y) 
L x  

for any bounded continuous function f on G/F, 

Note that for one-parameter ql, Theorem 11.2 is a stronger version of Theo- 
rem 11. l. Theorem 11.2 is an easy consequence of Theorem 1 and Theorems 11.4 
and 11.6 formulated below. 

11.3 Proposition. Denote by C the set of all closed subgroups H of G such that 
H n F is a lattice in H and the Zariski closures of H n F and H coincide. Then 
C is countable. 

11.4 Theorem. Let q/= {u(t)l tcK,,} and av be the same as in Theorem 11.2. Assume 
that F is a lattice in G. Let F be a compact subset of G/F and let e > 0 be given. 
Then there exists a compact subset M of G/F such that for any xe F and B > 0 

trv({t~K~litl~<B and u(t)x~M})>(1--~;)B. 

This theorem is an analog of Theorem 6.1 in [D-Mar6] and Proposition 1.3 
in [R 5]. Let us make some remarks about the proof. 

It is easy to make a reduction to the case where the groups G v are semisimple 
and have no K~-anisotropic factors. Then, in view of the arithmeticity theorem, 
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either rank G ~ f  ~ rankK~ G v = l  or F is an arithmetic subgroup of G. In 

the former case, we can assume that G is a real group (because as it is well 
known, any lattice in a p-adic Lie group is cocompact) and we can use results 
from [D4]  and [DS] (see also Theorem 6.1 in [D-Mar6]). If F is arithmetic, 
one can assume that F=SL, (Q(S))  and G =  I~ SL,(Q,) where S is a containing 

p~S 

oo finite set of valuations of Q and Q(S) denote the ring of S-integers in Q. 
Then if Q(S)= Z, Theorem 11.4 is essentially Theorem 3.2 in [D 51. In the general 
case, we can use the same type of arguments as in [D2]  and [D5] and also 
as in the proof of Theorem 1 in [Mar l ]  (which can be considered as a weak 
version of Theorem 2.1 in [D2]). These arguments are based on some properties 
of polynomials and on the study of maps of some partially ordered sets into 
the space of polynomials. 

11.5 Theorem. Let H be a subgroup of G generated by unipotent K~-algebraic 
subgroups of  G contained in H. Let v be a locally .finite H-invariant measure on 
G/F. Assume that F is a lattice in G. Then there exist Borel H-invariant subsets 

Xi, 1 < i < o %  such that v(Xi)< ~ for all i and G/F= 0 Xi. In particular, every 
i--1 

locally finite H-ergodic H-invariant measure on G/F is finite. 

For unipotent H, Theorem 11.5 is easily deduced from Theorem 11.4. One can 
reduce the general case to the case of unipotent H using analogs for Ks-algebraic 
groups of Moore 's  results on Mautner phenomenon (see [Mo]). 

11.6 As in [D-Mar6]  for any closed subgroup W of G we denote by S(W) 
the set of all x~G/F for which there exists a proper closed subgroup H of G 
containing W such that H x  admits a finite H-invariant measure; under this condi- 
tion H x  is automatically a proper closed subset of G/F. We put i f (W)= 
G/F-- S(W). 

Theorem. Let W be a subgroup of G generated by unipotent K~--algebraic sub-groups 
of G contained in W. Let F be a compact subset of ~(W). Assume that F is a 
lattice in G. Then for any e>O, there exists a neighborhood f2 of  S(W) such that 
for any one-parameter {u(t)} of G, where teK~, vr any x~F  and any B>O 

a.{t~Kol Itl~< B, u(t) xe(2} <e,B. 

The proof of the above theorem is analogous to the proof of Theorem 1 in [D- 
Mar6]  and is independent of the results on invariant measures. 

11.7 The following theorem is an analog of Theorem 2 in [D-Mar6]  and can 
be considered as a generalization of Theorem 11.2. 

Theorem. Assume that F is a lattice in G. Let 0 be the G-invariant probability 
measure on G/F. Let ve.~- and let {ui(t)}, teKv,  be a sequence of one-parameter 
unipotent Ko--algebraic subgroups of G converging to a unipotent one-parameter 
K r-algebraic subgroup {u(t)}, t~Kv; that is, ui(t)-~u(t)for all t. Let {x~} be 
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a sequence in G/F converging to a point in ff({u(t)}), let A and a~ denote the 
same as in Theorem 11.2, and let {Ti} be a sequence in Kv such that IT~I~ tends 
to infinity. Then for any bounded continuous function f on G/F 

lim 1 ~ 1 ~ 1 ~  ~ f(u~(t)x3dcr~(t)= ~ f(y)dO(y). 
TiA G/F 

11.8 We will use some notation and terminology from [Bo-Pra]. Let k be a 
number field. For  every place v of k, let kv denote the completion of k at v. 
Let S be a finite set of places of k containing the set S,~ of archimedean ones, 
ks the direct sum of the field k~(ssS) and 6's the ring of S-integers of k. 

Let F be a quadratic form on ~ .  Equivalently, F can be viewed as a collection 
F~(s~S), where F~ is a quadratic form on kT. We say that F is non-degenerate 
(resp. isotropics) if each F s is non-degenerate (resp. isotropic). The form F will 
be said to be rational (over k) if it is a multiple of a form on k", i.e. if there 
exists a form F 0 on k" and 2 invertible in k s such that F = 2 F o ,  and irrational 
otherwise. 

We have that (9,". is a cocompact lattice in k}. Let 0 be the Haar measure 
on k} such that the volume of k}/C} with respect to 0 is 1. 

Let Qs(n) denote the space of non-degenerate indefinite quadratic forms on 
k~,. The space Qs(n) has a natural locally compact topology given by pointwise 
convergence as functions on k}. 

The following theorem is a generalization of Corollary 5 in l-D-Mar6]. The 
proof is based on some modifications of Theorem 11.7 and is analogous to the 
proof of Corollary 5 in [D-Mar6] .  

Theorem. Let M be a compact subset of  Qs(n) and let f2 be a relatively compact 
neighborhood of 0 in k}. Then we have the following: 

(i) for any relatively compact open subset I in k s and c(>0 there exists a finite 
subset L of M such that each quadratic form F e L  is rational and Jbr any compact 
subset C of M - L  there exists ro>0  such that for all F in C and all t={t~}~ks 
with Iql~>ro (as usual [xl~ denotes the value of seS  at x e  Ks), 

I { z ~ t O ~ l  F(z)~I}l~(1 -cO O({v+tt2lF(v)~I}); 

(ii)/f  n > 5, for every ~ > 0 there exist c > 0 and r o > 0 such that for all F = {F~} ~M 
and t= {q}eks with [ql&r,  

>_cO({v= {v~} e to l  I~(v,OI <~)}. 

11.9 It is possible to prove analogs for algebraic groups over local fields of 
other results about actions of unipotent groups on homogeneous spaces of real 
Lie groups. In particular, it is possible to prove analogs of recent results of Mozes 
and Shah about limits of invariant measures. 
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Note added in proofs 

Recently the authors obtained some generalizations and corollaries from Theorem 2. In these 
results, G is a group from a class of central extensions of Kg-algebraic groups, F is a closed 
subgroup of G and H is a subgroup from a class of closed subgroups of G. In particular, 
we reduce the question about algebraicity of an H-invariant, H-ergodic, probability measure 
,u on G/F to the case where H is a central extension of a split algebraic torus. Using known 
results aboul Mautner phenomenon, we also obtaine simple argument deducing the measure 
rigidity for general real Lie groups from the measure rigidity for reaI algebraic groups. 


