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1 Introduction 

Let G be a connected complex reductive group acting on a smooth algebraic 
variety X. Then the cotangent bundle T* on X carries a canonical symplectic 
structure, and the G-action induces a moment map q~: T* ~,q*. Consider the 
Hamil tonian vector fields attached to functions of the form fo ~ with f~l l? /g*]  ~. 
In this paper we study the asymptotic behavior of the associated flow (a so-called 
invariant collective motion) and show that it possesses a symmetry with respect 
to a finite reflection group Wx. This is applied to the theory of equivariant 
embeddings of X. The approach is purely algebraic. 

More specifically: Choose any generic point e e T * .  Because the functions 
fo~b with fElI2[g*] G are in involution (i.e., their Poisson product vanishes), 
the flow through c~ is in the orbit of an abelian group A,. It is known (see 

0 [GS]) that this orbit is also the orbit for the connected isotropy group G~,). 
This implies that As is a linear algebraic group and it turns out that it is 
a torus. The projection of this orbit to X is called a flat of X and just equals 
G~ In case, X is the complexification of a symmetric space, a flat in 
our sense is the complexification of a usual flat (=maximal  totally geodesic, 
flat submanifold). 

Let X _ ) (  be a normal equivariant embedding. The main point of this paper 
is to study the closure of a generic flat in X. This will be done in two different 
steps. 

The first one is to show that a certain finite group Wx acts on them. Consider 
the family of tori e~--*A,. Although every two of these groups are isomorphic 
to each other, the family cannot in general be trivialized globally. But we show 
that it can be trivialized on a finite cover Tx of an open subset of T*. Hence, 
there is an action of a torus Ax on ~'x such that flats are just the projections 
of the orbits to X. The map of ~'x onto its image in T* is a Galois covering 
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such that its group Wx is a subquotient of the Weyl group W of G. This group 
Wx also acts on Ax (Theorem 4.1, Theorem 4.2). 

Let F ~ be the closure of re(Axe) in )( where ~ x -  Observe that F%2=Fw~ 
for every w e W  x. There is a rigidity lemma (Lemma 6.1) which says that for 
any torus action the closures of any two generic orbits are canonically isomor- 

phic. Applied to our situation, this gives an isomorphism Fa----* F~s =/~, which 

060implies: 

1.1. Theorem For ~7"x generic, the action of Wx on A x ~ F  ~ can be extended 
to ~ .  [Corollary 6.33 

The second part is as follows: For each Ax-orbit E_~/~ consider the set of 
one-parameter subgroups 2: G , ~ A x  such that lim n(2(t)&) exists and is con- 

~ O  

tained in E. Then let C~(E) be the closure of the convex cone generated by 
this set inside J f (X) ,=Hom(G, ,  Ax) | ~. Because/~ contains only finitely many 
orbits, we get a finite set of cones, a so-called fan. It is known that the normaliza- 
tion of ~ is completely determined by its fan. 

The main point is that we are able to control the limit behavior of one- 
parameter subgroups which are in a certain cone ~(X)~_Jt~(X). To describe 
this cone, let ~ ( X )  ~ be the set of all G-invariant discrete valuations (with values 
in ~)  of the field of rational functions K:=C(X). For a Borel subgroup B~_ G 
let K ~m be the multiplicative group of B-semiinvariant rational functions, i.e., 
for any f E K  ~m there is a character Zi~f(B)  with f f = z ~ ( b ) f  for all b~B. One 
can prove that each v~'U(X) ~ is completely determined by its restriction to 
K ~m. Hence, "U(X) a may be identified with a subset of Horn (K ~m, Q). 

Now we define ~ (X)  to be the set of those invariant valuations, which 
restrict to the trivial valuation on K B. These valuations are called central. Then 
-~(X) can be viewed as a subset of J~(X) as follows: Let l"x,={zllfEK~m} 
=K~m/(K*) R, This is a subgroup of ~(B), hence finitely generated free abe- 
lian. It follows from the definition, that ~ (X)  can be regarded as a subset of 
Hom(Fx, Q). Next, one shows that Fx is canonically isomorphic to the character 
group f (Ax ) ,  so one gets 

~(X) ~ Hom (Fx, Q) =Hom (f(Ax),  q)) ~ Hom (G,,, Ax) | q~ = Yl~(X). 

Having this, we prove: 

1.2. Theorem Let 2: G,,--*A x be a one-parameter subgroup of A x. Assume it 
corresponds to a valuation w ~ ( X ) .  Let Y be the center of v in X. Then for 
~ ~'x generic, the limit lim n(,~(t)~) exists and is contained in Y. [Theorem 7.3] 

t ~ O  

The main idea of proof is the use of a slice theorem, essentially due to Brion 
et al. [BLV], which describes the local structure of)(  around Y as a B-variety. 

These two theorems above combine to give a full picture of the limit behavior 
of one-parameter subgroup because we can prove: 

1.3. Theorem The cone ~Y(X) is a fundamental domain for the group Wx, i.e., 
every orbit intersects ~ ( X )  in exactly one point. [Theorem 7.4] 

This is the main theorem of this paper. Its proof is roughly as follows: It is 
known that ~ ( X ) ~ J g . ( X )  is a finitely generated convex cone. Let W~ be the 
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group generated by the reflections at the codimension-one-faces of ~(X). Then 
general functorial properties of Wx and W~ imply W~__%_ Wx, and in particular, 
that ~e(X) meets every Wx-orbit at least once. On the other hand, the first 
two theorems imply that every Wx-orbit intersects ~(X)  in at most one point. 
As a corollary we get that Wx= W~ is generated by reflections and that ~(X) 
is a simplicial cone. 

If X is spherical, i.e., X contains an open B-orbit, then K R = if; which implies 
that every invariant valuation is central. That means that Wx completely 
describes U(X) ~. But also in the general case, Wx determines at least the qualita- 
tive structure of 3v'(X)G: It is the union of simplicial cones which intersect along 
their common face ~e(X) (see [Kn4, w 9] for details). 

In this paper only the third theorem is proved in full generality, while the 
first two are only proved for varieties which 1 have named non-degenerate. There 
are three reasons to justify this: "Most" (e.g. all quasiaffine) varieties are non- 
degenerate. There are techniques (affine cones, Kostant's shifted cotangent bun- 
dles) to reduce the general case to the non-degenerate one. Finally, the proof 
in the general case is so much more involved that it would have almost doubled 
the size of this paper. But I want to mention that I have a proof for the general 
case which I will publish elsewhere. 

The surprising fact, that ~(X) is the fundamental domain of a finite group 
was, for spherical X, first proved by Brion [Br], but his construction of Wx 
was not very enlightening. The present paper is the result of my effort for a 
more geometric construction of Wx. It has been announced in [Knl] ,  a paper 
which contains the basic results on the moment map, while [Kn4] does the 
same for invariant valuations. Unfortunately, the preparation of [Kn4] took 
quite a time, during which I was able to simplify some proofs in [-Knl]. There- 
fore, the present paper is quite independent of [Knl ]  since it reproves most 
results in the non-degenerate case, It replaces the never published preprint 
[Kn2]. 

Notation. All varieties are defined over an algebraically closed field k of charac- 
teristic zero. The group G is always reductive and connected. We choose a 
Borel subgroup B~ G with unipotent radical U and maximal torus T. The Lie 
algebra of any group is usually denoted by the corresponding fraktur letter. 
The character group of a group H (or Lie algebra b) is denoted by Y'(H) (or 
.~T(t)*) = (b*)~)). If H-~ GL(V) is a representation then VIm is the set of H-eigen- 
vectors. The character for v~V ~m is ~ .  If H acts on an affine variety X then 
X//H .'= Speck I-X] u. 

2 The local structure theorem 

In this section we present a refined version of the local structure theorem of 
Brion et al. [BLV]. Let X be a normal, but not necessarily smooth G-variety. 
A B-divisor is a formal linear combination D=~ai Di where the D~ are B-stable 
prime Cartier divisors of X and the coefficients are elements of k. If they are 
in • or N then we call D integral or effective, respectively. The support of 
D is the union of those D~ with a~4~0. We also will denote it with D, when 
no confusion is possible. The stabilizer of the support of D is denoted by P [D]. 
It is a parabolic subgroup of G. 
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Being Cartier, each Di defines a line bundle (9(Di) on X with a canonical 
section ai. There is a finite covering ~ of G such that every (9(D~) can be G- 
linearized. We will, for convenience of notation, replace G by G. The sections 
a~ are eigenvectors for P[D] and hence determine infinitesimal characters 
Zo, e&r(p [D]). We define Xo,=~ a~ ;~o,. Observe, that the linearizations are unique 

up to a character of G. Therefore, also XD is only well defined up to a character of g. 
Fo r  any parabolic subgroup P let A~ be the set of roots in the unipotent 

radical of P. Consider a character )~e ~J'(p). Then we call it P-regular, if (~, c~" > 
4=0 for all c~eA +.  A B-divisor D is regular, if ZD is P[D]-regular.  There are 
plenty of them: 

2.1. Lemma Every effective B-divisor is regular. 

Proof Let D be an effective B-divisor. It induces a line bundle ~ = C(D) with 
a section a. We may assume that 5e is G-linearized. Then, P[D]  is clearly 
just the normalizer of the line ka and Zo is the character with which p[D]  
acts on it. Because the action of G on H~ L~') is locally finite, a is a highest 
weight vector and Xv is an integral dominant weight. Hence the roots of  the 
unipotent radical of P[D] are just those e such that (~o, a "  ) >0.  

"C . 
If  z is another  section of  (9(D~) then - -  is a regular function on X\D.  Hence, 

we can define a morphism ai 

~o:X\D~9*:x~-~lx  where lx(~):=~ai~(x),. 
i t 

which is well-defined up to a translation by a character of g. 
If D is an effective B-divisor, then it induces directly a line bundle C(D) 

with section ~D, character )~D and morphism 0D- Note,  that our previous defini- 
tions are compatible with these notions. 

Later  on, there may occur divisors which are not Cartier. The next lemma 
tells us that the morphism ~o is defined anyway because we may replace X 
by X \  ~ gD. 

geG 

2.2. Lemma Let X be a normal G-variety and D ~_ G a prime divisor. Then, D 
is a Cartier divisor outside Z = ~ gD. 

geG 

Proof. We may assume that  Z is empty. Let l: X r ~  X be the inclusion of the 
subset of smooth  points of X. Because D n X ~  is a Cartier divisor, it defines 
a line bundle &v on X, .  There is a finite cover (~---~G such that the action 
of (~ on X~ can be lifted to a linearization of ~v.  Therefore, G acts also on 
&a'-=t,~c,e,. Because X is normal, L is a (trivial) line bundle on X\D.  Hence 
it is a line bundle  everywhere, because Z is empty  by assumption. But that 
means  precisely that D is a Cartier divisor. [] 

N o w  we are  in the position to state the local structure theorem: 

2.3. Theorem Let X be a normal G-variety with a B-divisor D = ~  a i D i .  Assume 
that Zo is P[D]-regular. Then: i 
(a) The image o f  ~o is a single P [D]-orbit with isotropy subgroup a Levi comple- 
ment of P [D]. 
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(b) For some x o e X \ D  let 

r/o := Oo(xo), L :=Gnc , Z ,=~b o 1 (r/o). 

Then L is a Levi subgroup of  P [D] and there is an isomorphism 

L 
V [O] x X ~ X \ D .  

Proof (a) Let l 0 be a Levi complement of p = p [D] with center 3 and semisimple 
part l~. We will identify ,q* with ,q by means of an invariant scalar product. 

For  x e X \ D  let q;=~D(x). Because all ai are P[D]-eigenvectors,  we have 
~ (l~,0) p,)• = 3 @ P.. Because the eigencharacter is ZD, we actually have 

Im ~ - ~ D + P ~ .  

Here, ~o is the element in ~ which is dual to goeS*, i.e., (~o, ~)=Zo(~) holds 
for all ~M o. Therefore, the P[D]-regulari ty of ZD implies, that 1 o is the centralizer 
of ~D in g. It further follows that ~D+P, is a single P[D]-orbi t .  
(b) By (a) also L=G,o is a Levi subgroup of P[D] and ~'D induces a P[D]- 

L 

morphism X \ D ~ P [ O ] / L .  But that is equivalent to P[D] • Z - ~ X \ D  being 
an isomorphism. [] 

Because of P[DwD']=P[D]c~P[D']  there exists a B-divisor D such that 
P[D] is absolutely minimal. Let P(X),=P[D] and P,,(X) its unipotent radical. 
Hence, P(X) is the largest subgroup H~_G such that every B-stable divisor 
is H-stable. It is easy to see [Kn4, 2.5] that the definition is compatible with 
that in [ K n l ] :  

P (X)=  {geGlgBx= Bx for x e X  generic}. 

2.4 Proposition Let D be regular B-divisor with P[D]=P(X)  and let L, Z as 
in Theorem 2.3. Then the commutator subgroup/2 acts trivially on X. 

Proof Let BL:=Bc~L. Then BL-Stable divisors in X correspond to B-stable div- 
isors in X. Hence, they are L-stable. By [Su] there is a dense open L-stable 
subset XoC_X which can be equivariantly embedded into a projective space 
P(V). Consider the closure of the affine cone over Xo in F.. Let X' be its normaliza- 
tion. It has the property that every B L x k*-stable divisor is L • k*-stable. Because 
X' is normal, this implies that  every highest weight vector in k [X'] is an eigenvec- 
tor for L. Therefore, /2 acts trivially on k[X'] and hence on X' (being affine), 
So and X. [] 

Consider a situation as in the local structure theorem. Let L0-~L be the 
kernel of the action on X, and S(X):=LoP,(X ). Then, the orbits of U, S(X) 
and P~(X) on X \ D  coincide, the latter acting freely. Furthermore,  Ax:=L/L o 
=P(X)/S(X) is a torus acting effectively on S. Because k(X)~n)=k(Z) a.) we get 
for the character group 

~r (A ~) = { z~ D"e k (x)~"q. 

This shows that A x does not  depend on the particular choice of D. 
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3 P o l a r i z e d  c o t a n g e n t  ve c t or s  

Assume that X is smooth. Then the cotangent bundle g: T* ~ X  is a vector 
bundle. The G-action induces the moment map 

~:  T*---} g*: e~--}/~ where /~(~)=ct(r 

Assume that D is a principal B-divisor, i.e., D = ~ b j [ J ) ]  where bjek and [J)] 
J 

is the principal divisor attached to a rational function f j ek (X)  ~B). Then the 
map 00 factors through the moment  map: In fact, define 

0": X \ D  -~ r*: x ~ - ~  b i f j (x)-l(dfj)  x. 
J 

Then ~f(x)=(df)x(~) implies 0 , =  ~ , 0 " .  It is easily checked that 0"  is P [D]- 
equivariant. Note that it can be expressed formally as 0"  = d log l~ f~ .  

J 
This map will be our link between the geometries of X and T*. Unfortunate- 

ly, there are cases when there exists no regular principal divisor with 
P [D] = P(X), e.g., for X = G/B every principal B-divisor is trivial but P(X)= B. 
This leads to the following 

D e f i n i t i o n .  A G-variety X is called non-degenerate if there is a principal B-divisor 
D such that )(D is P(X)-regular. 

Note, that P(X)-regularity of ZD implies P[D] =P(X).  In fact, P(X) is con- 
tained in P[D] by minimality and contains it by regularity. There are many 
non-degenerate varieties, e.g.: 

3.1. Lemma Every quasiaffine G-variety is non-degenerate. 

Proof. Let D be any B-divisor of a quasiaffine G-variety X with P[D]=P(X).  
Then there is f ~ k [ X ]  (B) vanishing on the support of D. Hence, P [ [ f ] ]  =P (X)  
and [ f ]  is regular because it is effective. [] 

Let f l  . . . . .  f ,  sk(X)  cm be a transcendence basis of k(X) t: and let Do. '=U [fi]. 
For  any s-tuple _b~U let D(_b):=~ bj[f j] .  Then we get the map J 

J 

0"  : (X\Do) • A ~ ~ T*:(x, b)~-~ O*~b)(x). 

Suppose X is non-degenerate. Then all U-orbits in X\Do  will have the same 
dimension by Proposition 2.4. Consider 

X o ' = { x e X \  Do[(d f t) . . . . . .  (d f~)~ are linearly independent}. 

Because the f~ form a transcendence basis of k(X) v this set is not  empty and 
for any x e X o  the common kernel of the (dfj)~ is the tangent space to the 
orbit Ux. Hence, 0"  induces an isomorphism of Xo • A" onto 

C .'= ~ - 1 (U • n ;~ - 1 ( X  o) = {~  E T* Ix = ~ (a)E X o a n d  �9 (u x)  = 0 } .  
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In particular, we get 

codim C = dim Tx* - (dim X + tr. deg k (X) v) = dim X - dim X = dim P, (X). 

Before I proceed let me set up some notation. Sometimes we will identify 
g and g* by means of an invariant scalar product. Let L be a Levi complement 
of P=P(X)  and let L0 be the intersection of L with S=S(X).  We identify the 
Lie algebra of Ax with the orthogonal complement a of l o in l. Let P = P(X)-  
be the parabolic opposite to P with P ca P -  = L. Let a' ~ a* be the set of P-regular 
elements. It is the complement of finitely many hyperplanes. 

3.2. Theorem Let X be non-degenerate. Then G. C is dense in T*. 

Proof By the local structure theorem, the generic U- and S-orbits in X coincide. 
Hence, 4)(C)_c ~• aGp,,. Because a* is spanned by the characters Zi+, the com- 
position C --. n G p ,  ~ a is surjective. Via P,,, every element of a r x p, can be moved 
into a r. This shows that the generic P,-orbit of C contains an element c~ with 
~,=~,(~)ea r. 

Consider the map between tangent spaces dq~: T~(T*)-+g. Then 
d4~(T~(C)) ~_ c_ nq)p, while d + ( p ,  c~)= [p2,  +] = py .  The last equality again holds 
because + is regular. Hence, C and P,- c~ intersect transversally in cc This shows 
dim P,- .  C = dim P,- + dim C = dim T*, which implies the assertion. [] 

3.3. Corollary Let X be non-degenerate. Then cI)(T*)= G. a*. 

This recovers [Knl ,  5.4] for non-degenerate varieties. Note, that by the same 
theorem, the last two statements are definitely wrong for degenerate varieties. 

The Weyl group W o f  g acts also on t*. Let N(n*),={weWIwa*=a*} and 
let W(a*) be the image of N(a*) in the automorphism group of a*. Then the 
map a"+t*/W is unramified and its image can be identified with a~/W(a*). 
Consider the following diagram: 

T},&." 

Xo x T* 

~'---* G/Lx a ~ ~ a" 

2 
, G n *  - ,+> . .,iZl,] VV. / 

Here, the arrow 1 is the map (gL, ~)~-+g~ and arrow 2 uses the Chevalley 
isomorphism g*G ~ t*/W. It easy to see that the right and hence also the left 
hand square is cartesian. Finally, the main point is that 0* lifts to t} by setting 
~(x, _b)=(0*(x), 7~mb)). Here A~_~A + is the preimage of a r by the surjective linear 
map A + ~ a* : _b~-~Xm~) = y" bj X~,. 

J 
The set Z,=T* x a' is smooth, but in general not connected. Thus, 

l*/W 

singles out a specific component  which we denote by Tx. Its elements are called 
polarized cotangent vectors. The group W(a*) permutes the components of Z 
transitively. The subgroup Wx~-W(a*) of those elements which map ~'x into 
itself is called the little Weyl group of X. It acts freely on ~'x and the map 
1"x/Wx ~ T~ is an open embedding. 
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A little Weyl group has been already defined in [Knl] .  These definitions 
are compatible: 

3.4. Lemma Let X be non-degenerate. Then Wx is the same as defined in [Knl] .  

Proof To see this, choose a linear section z of A~+ a* and x E X  o and let 

a: a~--~• ~X0• '~---~ 'I'x �9 

This is a section of 7~: Tx + a' which composed with 7"x + T* gives the map 
in [-Knl, 6.2]. The existence of # implies that the generic fibers of tp and 

therefore also of ~x/Wx ~ C/Wx are connected. This implies that k[C/Wx] is 
integrally closed in kiT*],  hence equals the variety Lx of [Knl ,  6]. This shows 
the claim. [] 

4 Flats 

Consider the composed map ~'x ~ G/L x a r~  G/L and let Z and ~ be the pre- 
image of eL and P, eL respectively. Then we have 

L P L 
C = P x ~  and ~ x = G x C = G x Z .  

The set P~eL x a'~_ G/L x a* is mapped isomorphically onto a ' •  Pu---9*- Hence, 
the map C c~ ~-  t (Xo) + C ~_ Tx* is an open embedding (where ~: ~ + X is the 
canonical projection). This implies that 

~: Xo x A~% (~ 

is an open embedding. Because ~ -  ~(~)---~A~ is a parameterized family of slices 
as in Theorem 2.3, the Levi group L acts also on s only via its quotient Ax. 
In particular, the generic isotropy group of Tx and that of ~ is conjugated 
to L0. This is a new proof of [Knl ,  8.2] for non-degenerate varieties. 

L 
Because Ax is abelian this induces an Ax-action on ~'x = G x Z by a. [g, ~] ,= 

I-g, a~]. It commutes with the action of G, but not with that of Wx as we will 
see later. There is another description of the Ax-action which does not refer 
to a particular choice of L: By means of ,~ each element ~c~x determines 
a coset gLeG/L,  hence a homomorphism 

~p~: Ge~(a~=gLg- x __~ L_.~ Ax. 

Note, that ~0~ does not depend on the particular choice of g in its coset. Then 
we have the formula 

a . ~ = t ~  with any lift fi of a in G~t~). 

Of course, it suffices to check this for ~e~  where it is just the definition. It 
also shows ker q~a _~ G~ with equality for generic ~. Thus we get a homomorphism 

0~: Ax ~ G~,~/G~ 
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which is an isomorphism for generic ~. 
Let A be any connected group acting on a symplectic variety Z and let 

~ : Z ~ a *  be a morphism. Then every ~Ea induces two vector fields on Z:  
The first one, ~, ,  is induced by the A-action. The second is the Hamiltonian 
vector field H!~ attached to the function l~(x)=q~(x)(~). Then q~ is called a 
moment map ~t these two vector fields coincide: ~ , = H ~ c  The existence of a 
moment map has (among others) two important consequences: 
1. Every Hamiltonian vector field is an infinitesimal symplectomorphism. Hence, 
the A-action preserves the symplectic structure of Z. 
2. The A-action is uniquely determined by q~. 
We apply this to ~'x which carries as an &ale cover of 7"* a canonical symplectic 
structure. 

4.1. Theorem The morphism t P : ' I ~ a *  is a moment map for the Ax-action on 
Tx, In particular, this action is symplectic. 

Proof Without loss of generality let ~2E,~. Choose ~E~ which, considered as 
an element of 1_~ g, we denote by ~. Consider the commutative diagram 

~'x 4, , G / L x c t ,  ' a  ~ 

Zx �9 ~ ~ .  ) 

By definition of the Ax-action we have ~a=~-~. The well known fact that q~ 
is a moment  map implies ~-~=(Hl~)~. Hence we have to show (HI~)~=(H/~)~ or 
equivalently (dl~)a=(dle) a. This follows from the fact that ~ and ( (cons idered  
as linear functions on a* and ,q*, respectively) induce the same covector in 
the point (eL, ~(&)) of G/L x a ~. [] 

4.2. Theorem There is a Wx-action on A x which is compatible with that on ax = Lie 
A x. With this action we have 

w ( a . ~ ) = w a . w ~  forall  wEWx,  aEAx, r 

i.e., there is an action of (Wx~<Ax) • G on 7"x. 

Proof Let wE Wx and aE 7'x generic. Because the actions of W x and G commute 
we have G~, = Ga and G ~ )  = G~a). Now we define the action of w on A x by 

O-I  

This automorphism is independent of 02 by the rigidity of automorphisms of 
a torus [Sp, 2.5.10] and the irreducibility of Tx. Let dEGe~t~_G be a lift of 
O~(a). Then, by definition, it is also a lift of Ow~(wa). Hence we get 

w a . w ~ = ~ w ~ = w ? t a = w ( a . ~ ) .  

That the two actions on ax are the same follows from Theorem 4.1: w(~,) 
= w Hz~= Htw~. [] 
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Definition. Let ~: i " x ~ X  be the projection and ~ T x -  Then F~,=~(Ax.o~) is 
called a fiat of X and the map ~ :  A x ~ F~ : a ~ ~ (a. ~) a polarization of it. 

Observe that F~,=F~, i.e., as a set F~ depends only on the image ct~T*. 
In fact, it can also be described entirely in terms of Tx* as F~ = n(G~t,)ct). 

5 Twisted flats 

Next we will describe how to deal with degenerate varieties. For  this and for 
another purpose (proof of Theorem 7.4) we need the following 

5.1. Theorem Let p: X ~ X  be an G-equivariant principal H-bundle, where H 
is a torus. Assume that k()~) 8= k(X) B, i.e., H acts trivially on k(.~) ~. Then 
1. P (X)=  P(X). 
2. There is a canonical exact sequence 

I ~ H ~ A ~ : ~ A x ~  I. 

3. Assume X is non-degenerate. Then, the little Weft group W~ fixes H pointwise. 
In particular it acts on A x. 

L 

Proof. Let X o = P ( X )  x Z as in the local structure Theorem 2.3 and put ~ , =  
L 

p - l ( Z )  and Y[o:=p-I(Xo)=G • Z. Choose ~ Z  generic and let x=p(:~). Then 
the orbit map g~--~gYc induces a morphism co: L x ~ p - l ( x ) = H Y c = H .  Because 
H is a torus and r 1, this map is a homomorphism on L ~ (see [KKV, 
1.2]). In par t icular , /2_ L ~ acts trivially on Z. This implies P()7)= P(X). 

Because X and )7 have the same field of B-invariants, the image of to is 
dense, hence equals H. This implies H=HYc~LYc=A~  with quotient L x = A x .  
This shows the exact sequence. It is easy to see that the H-action on Z coincides 
with that induced by H___A~. This implies the commutativity of the diagram 

1 l 
T* "b*- 

Because all maps are Wx-equivariant, the little Weyl group acts trivially on 
t) = Lie H. []  

Let now X be any smooth but  possibly degenerate variety. Choose an effec- 
tive B-divisor D with P[D]=P(X) .  It is regular by Lemma 2.1. Replace it by 
a multiple such that (9 (D) carries a G-linearization. Then 

p: L:=Specx(~(Y(nD) ~ X 

is the geometric realization of the line bundle (9(D) where the zero-section is 
removed. In particular, it is a principal k*-bundle. Let a ,  be the canonical 
section of (9(D). Then a a e k [ L  ], hence p- l (D)  is a principal B-divisor. This 
shows that L is non-degenerate. 

A little bit more generally, we choose once and for all a principal H-bundle 
p : . ~ X ,  where H is a torus and such that )~ is non-degenerate. To force 
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k ( X ) 8 = k ( X )  B, we replace G by the product G x H, the second factor acting 
trivially on X. We define W x , = W  x. We will see later (Corollary 7.5) that this 
definition is independent of the choice of )~ and is compatible with that in [Kn l ] .  

Any d~e~ gives rise to a map A x - - , X :  a~-,poMa.(O. Because it is H-invar- 
iant, it factors through Ax =Ax /H.  

Definition. This map ~ : A x ~ X  is called a twisted (polarized) f ia t  of X. The 
map ~,: 7"~ x A x - ~ X  is the generic f lat  (with respect to 37). 

On a degenerate variety there are no untwisted flats. But even for non- 
degenerate varieties there may be more twisted flats than ordinary ones: Let 
G=GL2(k),  To:=diag(*, 1) and T,=diag( , ,  *). Put q ) : . ~ = G / T o ~ X = G / T .  Then 
a flat of X through the base point is the orbit of a generic isotropy group 

t• of t •  ; ) w h i c h  is just (~ ba). Hence, there is only one flat. But 0 - 1  * : ) .  

So the isotropy subgroup may be every maximal torus of G, i.e., any orbit 
of a one parameter subgroup of G is a twisted flat. 

6 The closure of a flat 

We are interested in the closure of flats. For  this we need the following rigidity 
lemma. Recall, that an action of a connected algebraic group on a variety X 
is called locally linear if every point of X has a stable open neighborhood which 
can be equivariantly embedded into a projective space. Normality of X implies 
local linearity by a result of Sumihiro [Su]. Therefore, any stable subvariety 
of a normal variety is locally linear. 

6.1. Lemma Let A be a torus, Z a locally linear A-variety, ~p : Z -~ S an A-invariant 
morphism and a:S- -*Z  a section of q~. Assume, that S is irreducible and that 
,for every s e S  the orbit Aa(s) is open and dense in the .fiber Z~.'=tp-l(s). Then 
there is a unique non-empty open subset S' ~_ S which is maximal with the Jbllowing 
property: 

Choose any so e S'. Then there is a unique A-equivariant S-isomorphism 

Z x S ' ~ Z ~ o X S '  
S 

such that a(s) is mapped for all seS '  to (a(So), s). 

Proof Uniqueness is clear because Aa(s) is dense in Zs, for every s~S. For 
that reason, the union of all S' with the property above has this property. 
Hence there exists a unique maximal such subset if there exists any, 

It remains to show existence. Because A is a torus and the action is locally 
linear, Z can be covered by A-stable affine open subsets [Su]. Hence, again 
by uniqueness, we may assume that Z is affine. Consider the quotient Z//A 
= Spec k [Z]  A. Then q~ factors through Z//A and Z//A --* S is birational. Because 
of the section a it is an isomorphism, i.e., k[S] = k [Z] A. 

For a character %el(A) ,  let k[Z]x  be the corresponding space of eigenfunc- 
tions. Let .g,={;~e.Y((A)lk[Z]x+O }. This is a finitely generated monoid. For  
7.e J / c h o o s e  any non-zero gek[Z]x .  Let g0(z).'=g(atp(z)). Then g0~k[Z]  ~ and 
fx ,=g/goek(Z)x  is a rational function with the property fxl~s) = - 1. Because A a(s) 
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is dense in Z~, the function fx is uniquely determined by this property, hence 
independent of the choice of g. For  the same reason, we have f x f ,= f~+,  for 
all Z, tls=r Because ,//g is finitely generated, we can replace S and Z by affine 
open subsets, such that all fx are regular functions. 

Let gek[Z]x.  Because every fiber of q~ contains a dense orbit, we have 
k(z)A= k(S). Hence g/fzEk(S). But then it is actually regular, because (g/f~)l~ts> 
=g[~(s) is. This shows that k[S]--,k[Z]x:g~--~gfx is an isomorphism for every 
Z e ~ ' -  Hence we get an isomorphism k [S] @ k  [Jg] -+ k [Z] or equivalently a 

k 

trivialization Z -~ S x F where F is the torus embedding Speck [Jg]. [] 
6.2. Corollary Let X be a smooth G-variety and X'-+ X a normal equivariant 
embedding. Then there exists a unique equivariant embedding Ax ~ Ay~ (the closure 
of a generic twisted flat) and a non-empty open subset S' c_ 7} such that the follow- 
ing holds: 

There is a unique closed embedding S' x Ax--* S' x X such that every (~, a)~S' 
x A n is mapped to (~, (a(a)). 

Furthermore, S' can be chosen to be stable under G, Ax and Wx. 
Proof Let Z 0 be the closure of the image of 

'~X x Ax  --+ T~ x X :  (d~, a)~.-~(& ~s,(a)). 

Then there is a non-empty open subset S_c ~'x such that the fibers of Zo ~ Tx 
are, over S, exactly the closures of flats. The section is given by a(~)= (&, p o ~(&)). 
Then the existence of S' follows from the preceding lemma. It is easily checked 
that Zo is stable under G, At ,  and Wx, and that rp is equivariant. Hence, if 
we choose S' to be maximal, then it is unique and stable under all three 
groups. [] 
6.3. Corollary The action of  Wx on A x extends to Ax. 
Finally, let me explain the case of a symmetric variety X =  G/H. Here G is 
semisimple and H is the set of fixed points of an involution OeAut G. Let 
,q= D~P be the decomposition into eigenspaces of 0. Then b is the Lie algebra 

H 
of H and p can be identified with b • hence T * = G  x p. Choose a generic 

~ep. Then G~H/Hc_X is a flat of X, Choose a 0-stable torus Tc_G~. Then 
the flat is isomorphic to A x = T/(Tc~ H). The space a = g ~ n  p =~Lie An is called 
a Cartan subspace of p. It is known that every semisimple element of p is 
conjugated by H to an element of a. This shows that all flats in X are conjugate 
to each other. Furthermore,  W x coincides with NG(T)/C~(T), the little Weyl 
group of X (see e.g. [ K n l ,  p. 17/18]). This shows that the Wx-action on the 
flat is induced by NG(T). These are the facts which make symmetric varieties 
so accessible. In general, neither are the flats conjugated to each other, nor 
is the Wx-action on them induced by elements of G. 

7 Central valuations 

Let X" be a normal  embedding of X. The last step is to identify the closure 
,4x of the generic flat. I can do that  only in special cases. We recall some 
not ion of [Kn4].  Let X be a G-variety and K=k(X) .  
Definition. A valuation v of k(X) with values in Q is called central if it is G- 
invariant and vanishes on all non-zero elements of K s. Let ~e(X) be the set 
of central valuations. 
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For spherical varieties K B equals k. Hence in this case all q-valuations 
are central. 

There is a short exact sequence 

1 ,(KB) • ,K  (n) f ~ x J , f ( A x )  ,1. 

By [Kn4, 3.6] every G-invariant valuation is uniquely determined by its restric- 
tion to K (BI. The restriction of a central valuation factors through ~(Ax).  Hence, 
there is an injection ~ ( X ) ~  ~(X) :=Hom(~ ' (Ax ) ,  I1~). Usually, we will identify 
~ (X)  with its image. Note that ~ ( X )  is a tl~-vector space of dimension rk X. 

7.1. Theorem [Kn4, 6.5] The subset Lr (X)~_,~, (X) is a finitely generated convex 
cone with non-empty interior. 

The geometric meaning of central valuations is expressed in the next theorem. 

7.2. Theorem Let X be a normal G-variety. 
I. The valuation Vz induced by a G-stable prime divisor Z c X is central if and 
only if X and Z have the same complexity [Kn4, 7.3]. 
2. Let v be a non-trivial central valuation of X. Then there exists a smooth G-variety 
which is G-birational to X together with a G-stable prime divisor Z such that 
Vz is a multiple of  v [Kn4, 4.4 and 7.2]. 

Consider A = A x  as an A-variety by left translation. Then we obviously have 
~ ( A ) = ) f ( X ) .  Recall the classification of normal torus embeddings [TE, O]: 
The normal affine equivariant embeddings of A are classified by finitely generated 
strictly convex subcones oK_ x4f(A). Let A(~) be the embedding determined by 
the cone cg. The orbits of A((s corresponds to the faces of cs At the moment, 
we are only interested in the case where cg=•+ v is a ray. Hence, A(v)= A(Q+ v) 
has two orbits: The open one and one of codirnension one. Because all rays 
are admitted we have ~ ( A ) =  Jr(X). 

7.3. Theorem Let X ~ R a normal equivariant embedding and Z c_~ a prime 
divisor such that V=Vz is central. Then for all w e W x  and generic ~7"~ there 
is a (unique) open Ax-embedding A ( w v ) ~  A x = ~  such that the closed orbit is 
mapped into Z. 

Proof Because Wx acts on Ax we may assume w= 1. By shrinking X and X 
we may also assume that X is smooth and that Z = X \ X .  

Choose a transcendence basis f f i k ( X )  ~m of k(J~) U and let ~ : )~ \O  
x A ~  C__. Tx be the open embedding as in Sect. 4. Because G.C is dense in 
Tx it suffices to consider flats F~ with ~ in the image of $. We also fix _beA~. 

The group G contains the structure group H of)~ --* X. Hence every B-divisor 
of 3~ is the preimage of a unique B-divisor of X which does not contain Z 
in its support. Let /)(_b) be the B-divisor corresponding this way to D(b_) 
= ~ b j [ f j ] .  Let D ~ X  be the union of the supports of the [fj] and let 

J 
D ,=p(D)~ X. Then we get the following commutative diagram: 

)~\D r 7"~ 
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Observe, that/3 does not contain Z, i.e., Z intersects X\ /3  non-trivially. 
Fix Xo~7,\O and let gL be the image of ~(Xo, _b) in G/L. Then L(_b),=g Lg- 1 

is the isotropy group of ~o(~)(p(xo)) which is equipped with a homomorphism 
L(b_)---~A x. Let S(_b) be the fiber of ~ot~) through P(Xo). Then, by the local 
structure theorem, this induces an isomorphism 

L(b} 
P(X) • X ( b ) ~ X \ O .  

The group L(b) acts on Z(_b) only via its quotient A = A x  and the orbits in 
X c~ Z(b) are just twisted flats. Hence, it suffices to prove the theorem for the 
A-orbit closures in X(b). 

Because A is a torus there is an A-stable affine subset Xo_~X(_b ) such that 
Zo :=Z c~ 27 0 is non-empty and all orbits in Z o are closed (see e.g. [-Kn4, 2.10]). 
Consider the categorical quotient q:Xo--~ 27o//A. Now we use the main assump- 
tion, namely that v z is central, i.e., it vanishes on all B-invariant rational func- 
tions. Because k(X)B=k(Xo) A, this implies that Zo-~Xo//A is surjective and 
k(Xo) a =k(Z0) A= Quot k[Xo//A]. Hence the generic fiber of q contains a dense 
orbit. This implies that the generic fiber is an affine A-embedding with a closed 
orbit of codimension one, namely the intersection with Z. Therefore, the induced 
valuation corresponds to V=Vz. This shows that the generic orbit closure in 
s contains ,4(v) such that the closed orbit is in Z. [] 

Now we are in the position to prove the main result of this paper. 

7.4. Theorem The action of the little Weyl group Wx on J r (X)= Hom(SF(Ax), ~)  
is generated by reflections and Lr (X) is one of its Weft chambers. In particular, 
~ ( X )  is a simplicial cone and a fundamental domain of W x. 

Proof We know that .~(X) is a finitely generated cone with non-empty interior. 
Thus it suffices to show two things: 
A: The reflections at faces of codimension one of ~q(X) are contained in W x. 
B: Each Wx-orbit intersects ~ ( X )  in at most one point. 
A: This is a consequence of functorial properties. By [-Kn4, 8.1.4], ~()7) is 
the preimage of ~ ( X )  in ~'ff(2). By replacing X with )~ we may assume that 
X is non-degenerate. Choose v e ~ ( X )  in the relative interior of a face of codimen- 
sion one. Let )f be a smooth G-variety, G-birational to X, which contains a 
prime divisor Z such that the valuation v z is a multiple of v. Let N=Ne(Z)  
be its normal bundle. Then P(X)=P(Z)~_P(N) (by e.g. [Kn4, 2.13, 2.6]). By 
[Kn4, 7.4] the equality ~ff(N)= ~ ( X )  holds. This implies P(N)= P(X) and that 
N is non-degenerate, By the same theorem, ~(N) is the cone generated by 
~(X) and - v. Hence ~(N) is a half space whose boundary ~ is the hyperplane 
spanned by the chosen face. From ~e(N)4= Yg(X) follows N 4: G. N v I-Kn4, 8.5]. 
This implies that Wu is non-trivial [Knl,  9A]. 

By [Kn4, 8.2] there is a torus H___Aut~N with k(N)n~_k(N) ~t and such 
that 2 =  Horn (f(H),  Q). Then Theorem 5.1 implies that W N fixes ,~ pointwise. 
Hence WN consists of the identity and the reflection at ~ .  

There is a flat deformation Y~A 1 such that the generic fiber is )( and 
the zerofiber is N (see e.g. [Fu, w Then we have WN~_Wr and Wr=Wx 
by [Knl,  6.5, and 4.] respectively. This shows the claim. 
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B: Assume, there is v + w. v ~ Lr(X), w ~ Wx. Let )( be G-birational to X containing 
two disjoint invariant divisors Z1 and Z2 whose valuations are proportional 
to v and wv, respectively. Then the closure Ax of a generic twisted flat contains 
A(wv) whose closed orbit is both in Z 1 and in Zz, a contradiction. [] 

In [Knl ]  a little Weyl group has been defined for arbitrary G-varieties. 

7.5. Corollary The definition of Wx is independent of the choice of ,,Y and coincides 
with that of  [Knl].  

Proof Wx is uniquely determined by ~(X) whose definition does not depend 
on the choice of )~. This shows the first claim. For the second let Wk be the 
little Weyl group as defined in [-Knl]. We know already Wk = Wx = Wx because 
)7 is non-degenerate (Lemma 3.4). Furthermore, W;: ~_ WS:= Wx by [Knl,  6.5:1]. 
Finally, the whole reasoning of part A of the proof above applies also to Wk. 
The only thing one has to observe is that statement and proof of Theorem 5.1.3 
are also valid without the non-degeneracy assumption for the Weyl groups 
as defined in [Knl].  Hence, W~ contains all reflections at faces of "~e(X), which 
shows Wx = W~ ~_ W~. [] 

Here are some applications for an arbitrary normal G-variety X. Recall 
that the center of a valuation v is the largest closed subvariety Y with v((%, y)>_ 0. 

Definition. A source of X is a non-empty subvariety Y~_X which is the center 
of a central valuation. 

7.6. Corollary Let Ax be the closure of a generic twisted fiat and w:Ct~(X). 
Then there is a morphism of embeddings ,4(v)~ Ax if and only if the unique 
valuation w r e n ( X ) ,  for w~Wx, has a non-empty center in X. In this case the 
closed orbit of  A(v) is mapped into this center. 

Proof We may assume w= 1. Let X ~  X1 be an equivariant completion (see 
[Su]). Then v has a non-empty center Y in X1. Choose a G-variety X birational 
to X which contains a divisor Z with Vz = v and such that there is a morphism 
)7 ~ X~. This morphism maps Z dominantly to Y Hence, there is a morphism 
A(v)_ A~ ~ ,4x if and only of Y~ X :~ 0. [] 

7.7. Corollary Each G-variety X contains only a finite number of  sources and 
Ax meets each one o f  them. 

Proof The number of orbits in ,4x is finite. [] 

7.8. Corollary 1. The closure of a generic twisted flat is complete if and only 
if every valuation ve.~((X) has a non-empty center in X. 

2. The generic twisted fiat is closed if and only if X contains no proper source. 

The next result has been proved by Brion for spherical varieties with an entirely 
different method (unpublished). 

7.9. Corollary Let X be a normal affine variety, containing a proper source. 
Then there exist a non-trivial G-stable non-negative grading of k IX]. 

Proof The embedding/Ix is affine. Hence its normalization is given by a cone 
~?_~y~qX). This cone must be Wx-stable. Because ,4x meets Y it cannot be 
trivial. Hence, there is v + 0 in the relative interior of cr But then Vo.= ~ w v 

w~Wx 
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is Wx-invariant and also in the interior of cg, hence non-zero and contained 
in N ( X ) n - ~ ( X ) .  To this Vo corresponds a one parameter subgroup 
H_~AutaX by [Kn4, 8.2], which induces an invariant grading. The generic 
orbit of H is non-closed in the closure of a generic flat, hence in X, i.e., the 
gradingis non-negative. [] 

Remark. The corollary is most useful in the spherical case: A normal affine 
non-homogeneous spherical variety is graded. 

8 Toroidal sources 

The reasoning in the preceding section allows various generalizations which 
we didn't include there in order to prove Theorem 7.4 as soon as possible. 
Let Y~_X be a G-stable subvariety. Then we denote by .~-(Y) the set of all 
prime divisors D _~ X with Y ~ D, B. D = D but G- D 4: D. See [Kn4] for the rele- 
vance of this notion. 

8.1. Theorem Let X ~  X be an embedding and Y~_X a source with g ( Y ) = 0 .  
Then there is a P(X)-stable open subset Xo ~-X with X o n Y 4:0 and 
(a) The quotient r, o ,=Xo/P~(X) exists and L acts on it only via Ax. 

L 

(b) For every b_~A~ there is an isomorphism P(X) x Z o ~ , Xo such that the 
generic Ax-orbits are mapped to twisted flats. 
(c) Conversely, there is a non-empty open subset V of ~F~: with: For every ~ 6 V  
there is a b_ such that the twisted f lat  F~ is the image of  an Ax-orbit as in (b). 

Proof  Same as the first part of the proof of Theorem 7.3, together with the 
following remark: Let/3'(_b) be the B-divisor of)(  which one obtains by omitting 
all G-stable components and let 13' its support. Then by assumption X o ' . = X \ D '  
will intersect Y non-trivially and ~pb~l_bl differs from ~'bl_b) only by translation 
with a character ofg. [] 

With this theorem we are left with the study of the Ax-variety 2? o. The 
best thing which can happen is when Zo is isomorphic to A x V with some 
torus embedding A. Therefore, we define: 

Definition. A source Y in a normal G-variety X is called toroidal if ~ ( Y ) =  0 
and each G-stable prime divisor of X containing Y is central. Let ~ x ( Y ) - ~  (X) 
be the set of valuations attached to these divisors. 

Let Y c X  be a toroidal source. Then the local ring (gx, r is uniquely deter- 
mined by 3ex(Y ) [Kn4, 3.8]. 

8.2. Theorem Let X , - * X  be a normal embedding and let Y~_X be a toroidal 
source. 
(a) There is a normal affine Ax-embedding A with closed orbit Z such that ~A(Z)  
= ~ x ( Y )  and which is contained in the closure of the generic fiat. 
(b) The closure ~ of  a generic f ia t  is transversal to Y, i.e., there is a smooth 
variety V, a point ve  V and an open embedding A x V ~  X such that fi~ x {v} ~ / ~  
and such that Z x V maps onto an open subset of  Y. 

Proof By Theorem 8.1 is suffices to study Zo,=(YC~Xo)/P,(X) inside Zo. The 
proof is very similar to the second part of that of Theorem 7.3. Again, we 
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may assume that So is affine and that Z o consists of closed orbits. Because 
every B-stable divisor containing Y is central, it follows that every Ax-invariant 
rational function is defined in Zo. This implies that the generic fiber of q:So 

X,o//A x contains a dense orbit. Because principal bundles for a torus are locally 
trivial in the Zariski topology, there is a rational section ~r of So---~So//Ax, 
such that the image of a is contained in the union of the open orbits. Then 
by Lemma 6.1 we may shrink S O such that it is isomorphic to ,4• V where 
/1 is the generic fiber and V= So//A x. From this all assertions follow. [] 

Now, we can use the theory of torus embeddings to conclude: Let Y ~ X  
be a toroidal source. Then ~ x ( Y )  is finite. Let ~x(Y)c_Yf(X)  be the convex 
cone generated by ~x(Y). Then the elements of ~x(Y)  apn exactly the extremal 
rays of Cgx(Y ). In particular, (gx. r is uniquely determined also by ~x(Y). It is 
easy to see that if X is quasihomogeneous then a source Y is toroidal if and 
only if ~ ( Y ) = 0 .  The reason is that Y is contained under these assumptions 
in only a finite number  of B-stable prime divisors. 

8.3. Corollary Let X ~ X be a normal equivariant embedding such that all sources 
are toroidal. Let q~ be the set of ~x,(Y)c_~'~(X) where Y runs through all sources 
of X. Then the closure of a generic flat is normal and is given as an Ax-embedding 
by the fan Wx 5. 

Next I want to improve Corollary 6.2. Remember the map ~x ~ a*x. Let a~ ~ a~ 
be the largest open subset over which all fibers are irreducible. This set is not  
empty (see proof of Lemma 3.4). 

8.4. Theorem Let X c_ X be a normal embedding and assume that for every source 
Y in X the set g ( Y )  is empty. Then an open subset S'c_ i"x can be ,found having 

. . . .  t - - >  r �9 r r  the propertzes of Corollary 6.2, and addtttonally that the tmage of S a~ contains a~. 

Proof Let y c ~  be a source and Xo as in Theorem 8.1. Let A be the closure 
of a generic Ax-orbit in Xo/P,(X). It follows from that theorem that there is 
an open subset S ( Y ) ~  with S(Y)--~a~ such that A~,F~ for all ~eS(Y). Now 
set S' := n ws(Y)  where w runs through Wx and Y through all sources. Then 

w , u  

S' has all required properties because the intersection of finitely many non-empty 
open subsets is non-empty on an irreducible variety. [] 

In general, the set S' will depend on the embedding X and no flat may 
be good for all X. But let X be a homogeneous spherical variety with an embed- 
ding X'~, )?. Then every valuation is central, hence every orbit of )~ is a source, 
and the condition of Theorem 8.4 means that no B-stable divisor of X contains 
a G-orbit in its closure. These embeddings are called toroidal (comp. [BL, 2.1]). 
Now we get really specific flats with a good behavior, independently of )?: 

8.5. Corollary Let X = G/H be spherical and X a toroidal embedding. Let S' c_ ~x 
be the preimage of a~" and let Ax be the closure of a generic twisted flat. Then 
the morphism S ' x  A x ~ S ' •  X: (~,a)~-~(~, (~(a)) extends to a closed embedding 
S' x A~-* S' x ,~. 

Proof Because ,17 is also spherical, we can identify the parameter space A~ 
with ax*. Then the existence of the open embedding 
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shows that each fiber of ~ :  ~ a ~  contains an open G-orbit. This implies 
that each fiber F of ~: S' ~ G/L • ct~ contains an open, hence dense Ax-orbit. 
The image of this dense orbit in )~ is a flat. Because )~ is homogeneous, this 
subspace is closed (Corollary 7.8). Hence all fibers F are homogeneous. Then 
the assertion follows from Theorem 8.4. [] 

9 Logarithmic and twisted cotangent bundles 

In this section we discuss some variants of the cotangent bundle. Let me assume 
that X = ) 7  is non-degenerate. Flats are the images in X of the Ax-orbits in 
Tx and we studied their closure in certain embeddings X. It is convenient to 
have the same closure for the orbits themselves. This is possible by extending 
the bundles T* and ~'x to all of X. Just taking Tx ~ doesn't work, one reason 
being, that it is not a vector bundle if X is not smooth. 

Assume again that every source of X is toroidal. Let D ~  X be the union 
of all central divisors. Then let f28 [D] be the sheaf of differential forms with 
logarithmic singularities along D, i.e., it is locally generated by f2 x together 
with sections of the form f -  i d f  where f is a rational function having its poles 
and zeros in D (see [O, 3.1]). Let Tx~[D]=SpecxS*f2x[D] v be the geometric 
realization of f28 [D]. 

9.1. Theorem Let X be non-degenerate and X ~ X an equivariant normal embed- 
ding such that every source is toroidal. 
(a) The moment map T* ~ g* extends to T* I-D] ~ g*. In particular, ~Fx [D] is 
defined as an irreducible component of  Tx~[D] • crux. 

t,/W 

(b) There is a non-empty G-stable open subset Xo ~_X, meeting every source, 
such that Tx ~ [D] is a vector bundle over Xo. 
(c) For ote~'x generic, let A be the closure of  the orbit Ax(t in Tx[-D]. Then 
r~: A -~ X is a closed embedding, hence an isomorphism onto a flat. 

Proof. (a) Let ~eg and fEr be an invertible function on some open subset 
V~_X. Because D is G-stable we have Coo(~,f)>VOoO r) for every component 
of D. Hence, f -  1 d f ( ~ , ) = f -  1 ~ , f  regular along D, i.e., the moment map extends. 

(b) Let y c _ X  be a source and let A:=A(cg(Y)). Then there is a smooth 
variety V such that V x A is isomorphic to an open subset of X which intersects 
Y non-trivially (Theorem 8.2). Let D o : = A \ A  x the boundary. Then V x Do corre- 
sponds to D. This reduces the assertion to the case of the torus embedding 
,4. Then f2 8 [Do] is spanned by ~(- t d_x where g is a character of Ax [O, Proposi- 
tion 3.1]. This means that T~' [Do] = A • a* is just the trivial bundle, in particular 
a vector bundle. 

(c) By the same reasoning it suffices to study ,4. Then ~z [Do] = Tff[Do] = 
/1 x a* proves the claim. [] 

The most important application is again for spherical varieties. A spherical 
variety is called toroidal if all orbits (=  sources) are toroidal. These are classified 
by fans ~ which are supported in &r(X) (see [Kn3] for details). Let Wx~ be 
the fan consisting of all cones w~ where we Wx and cge~. 

9.2. Corollary Let X be a non-degenerate toroidal spherical variety corresponding 
to a fan ~. Consider the moment map on the logarithmic cotangent bundle 
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T* [D] --+ 9". Then the fiber over any element of  a" is the disjoint union of varieties 
isomorphic to the Ax-embedding corresponding to the fan W x ~. 

Proof It suffices to prove that for ~:  Tx[D] ~ G/L x a*. The proof of Corol- 
lary 8.5 showed that every fiber over G/L x a "  is irreducible with dense Ax-orbit. 
Then Corollary 8.3 and Theorem 9.1 imply that the fiber is the torus embedding 
attached to Wx ~. [] 

That the fibers are in general not connected is due to the fact that Wx may 
not equal the normalizer W(a*). The number of components is always equal 
to the index of Wx inside W(a*). The corollary is a weak version for spherical 
varieties of a theorem of Abeasis [Ab]. There, all fibers of the moment map 
for symmetric varieties over semisimple points are described. 

Finally let me mention a slight reformulation of the theory. To make the 
theory work also for degenerate varieties, we applied our theorems to the cotan- 
gent bundle of an auxiliary space )~. With a reformulation it is possible to 
do this the other way round, namely to keep X but to replace Tr by another 
bundle namely a twisted (or shifted) cotangent bundle introduced by Ginzburg 
and Kostant  (see [BB, Sect. 2] for details). This has the advantage that the 
group H disappears (almost). Remember  H _  G by definition and the short exact 
sequence 

0~a*+ax*+b*~0. 

Hence we have the diagram 

1 1 
a~ ' b*. 

Both vertical arrows are H-invariant and H acts freely on the fibers (because 
it acts already freely on .~). Choose 2eb*. Then one defines the twisted cotangent 
bundle as TxZ,=q-~(2)/H and analogously its polarized form ~x ~. It is easily 
verified that Tx ~ ~ X is a bundle which is locally isomorphic to T*. Furthermore,  
the symplectic structure of Tx* induces one on Tx ~ (Hamiltonian reduction). Note, 
that G acts on Tx ~ via its quotient G = G/H (the group we started with). Similarly, 
on ~x ~ only A x = A t / H  is acting. We call the image in X of an Ax-orbit in 
Tx ~ a fiat with twist 2. 

The moment  map on Tff descends to a moment map Tx ~ -~ ~*. We call Tx ~ 
non-degenerate if 2 is contained in the image of a~ r o h * .  Then Theorem 8.4 
implies 

9.3. Theorem Let Tx ~ be non-degenerate and X ~ X an ambedding. Then the 
closure in 2 of a generic flat with twist 2 is Wx-symmetric and contains A(wc~(Y)) 
for all we Wx and every toroidal source Y ~_ X. 

Finally, there is also a logarithmic-twisted version of this theorem, whose state- 
ment and proof  I leave to the reader. 
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