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I Introduction 

In this paper we study diophantine approximations on projective spaces of 
arbitrary dimension. Especially we give a new proof for the results of W.M. 
Schmidt. Historically diophantine approximation has been the method for prov- 
ing finiteness results in diophantine geometry. In the case of the projective line 
the fundamental result is Roth 's  theorem. This has been generalized to higher 
dimension by Schmidt. His basic result is the subspace theorem (see [$2]). How- 
ever the proof  is very complicated and involved. It relates on deep results in 
the geometry of numbers. 

Recently a new development in the theory was started by Vojta which lead 
to a breakthrough for diophantine approximations on abelian varieties. He 
found a new way to use heights and the theorem of Mordell  and Weil. His 
main insight was that on products of abelian varieties one has many more 
line bundles than just the product bundles. His discovery inspired Faltings to 
find a new general result in the theory of diophantine approximations, the prod- 
uct theorem. It very much simplifies the theory and its application to abelian 
varieties lead to some generalization of Mordell 's  conjecture (see [-Fa]). As a 
second application Faltings also gave a lower bound for the distance of a rational 
point to a hypersurface on an abelian variety. 

In the present paper we study the consequences of the product theorem 
in the more classical case of projective spaces. Here not so many line bundles 
are available as for abelian varieties. Therefore the results will be much weaker 
in general. However  in the case Schmidt is considering the result is best possible 
up to an e. The advantage in the present situation is that we do not have 
to cope with complicated line bundles as in the abelian case; this simplifies 
the proofs considerably. On the other hand the estimates one needs have to 
be much more precise. In order to obtain the best possible exponents in the 
approximation theorems we have to be very careful. 

Now let us explain our results. We fix a number field K and chose a subvar- 
iety E c n  ~" defined over  K and study the distance d,,(E; x) of a K-rational point 
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of • " \ E  to E where v is a place of K. It is natural to ask for an estimate 
of the type 

d,,(E; x) >> H(x)- K 

such that the exponent x is as small as possible. Here H(x) denotes the absolute 
Well height of x. We shall give such an estimate depending only on the geometry 
of E. It will turn out that the assertion is only non-trivial for subvarieties E 
which are not geometrically irreducible. For  example Schmidt's theorem deals 
with a linear subspace defined over a finite extension of K or equivalently with 
the K-scheme obtained by taking the union of all its conjugates. 

Our paper is organized as follows. In section 2 we give a review of the 
theory given in [Fa]. In particular we explain the product theorem. In the 
third section we define the geometric invariant. It is based on the theory Hilbert 
polynomials which leads to the definition of a probability measure associated 
with the geometry of E. In the next section we compute this invariant in the 
case of Schmidt's theorem. The basic tool here is a new theory of stability 
for vector spaces with filtration. After this we count dimensions of certain vector 
spaces which is crucial for applying Siegel's lemma which we state next. Then 
we need some results on differential operators on subvarieties of projective varie- 
ties. In particular we have to adapt  the product theorem to our situation. In 
our case we have to apply the product theorem not to products of projective 
spaces but to products of projective varieties since the proof  of our main result 
is by induction so that products of projective varieties appear and we have 
to deal with it. Then, in Sect. 8, we give our  main result and prove it there. 
After this we give applications and further results. In particular we shall show 
how the linear case can be applied in the non-linear situation. This is done 
in Sect. 9. We mention that Theorem 9.3 gives an answer to a question raised 
by Schmidt in [S1]. Then in Sect. 10 we show how the unit equation can be 
treated in our theory. In Sect. 11 we discuss the norm form equation and general- 
ize the results of Schmidt. In Sect. 12 we prove a gap principle which is useful 
in counting the number of solutions of diophantine equations. 

2 Preliminaries 

For a number field K and a rational point xe~"(K) we denote by H(x) the 
absolute Weil height of x. It is invariant under extensions of K. Its logarithm 
h(x) is the degree over the integers CK of K of the fiber of C(1) at x, divided 
by the degree [ K : Q ] .  Here the line bundle C(1) has to carry suitable hermitian 
metrics at the infinite places. Also if v is a place of K we denote by I1" II v generally 
the v-adic norm on K~, the v-adic completion of K, normalized in such a way 
that Ilpltv=p -1 if v is a finite place dividing p. Otherwise tl'llv is the usual 
norm on ~, or  ti7. In order to compensate for this we count places v with 
multiplicity if we sum over all of  them. More  precisely in such sums taken 
over all places of K we count a place v with multiplicity equal to the degree 
of Kv over ~p  if v divides p or  equal to the degree of K v over ~, if v is an 
infinite place. Equivalently we can sum over all embeddings of L into the algebra- 
ic closure of Qp or into ~ respectively. 

The theory of heights was extended in [Fa]  to varieties of arbitrary dimen- 
sion. Accordingly for any subvariety X _  F"  of the projective space which is 
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defined and irreducible over Q we can define its height h(X) which controls 
various constants relevant for X. In the special case when the dimension of 
X is zero it coincides with the height h(x) introduced above. 

The next important tool from [-Fa] is the product theorem. Let K be a 
field of characteristic zero and P = P~ • ... x P,, be a product of projective spaces 
Pj= P"J, j =  I . . . . .  m. For  positive integers dl ,  ..., d,, we consider the line bundle 
5 0 = ~ ( d l  . . . .  , din). I f f  is a global section of 5 ~ the index i(x;f) o f f  at a point 
x~P is the weighted multiplicity o f f  at a point x with weights 1/dj,j= 1 . . . . .  m. 
For any positive real number a there is a subscheme Z ,  ~_ P consisting of those 
x for which the index is at least a. If the field is algebraically closed the product 
theorem states that for any sufficiently small positive e there exists an integer 
r=r(e) depending on e with the following property. Suppose that d/dj+l>=r 
for j = 1 . . . . .  m -  1. Then for any x ~ Z~ there exist irreducible subvarieties Z j _  Pj, 
1 <j_< m, such that x ~ Z1 • ... • Z,, ___ Z,_~. Furthermore the degrees of the sub- 
varieties Z~ can be bounded by a constant depending only on e. If the field 
K is not  algebraically closed then the theorem holds over a finite extension 
of K whose degree can be bounded or over K if we allow that the Zj  are 
only K-irreducible but not necessarily geometrically irreducible. However in 
applications the Z i will tend to have a smooth K-rational point so that they 
are in fact geometrically irreducible. Also there is an arithmetic extension of 
the product theorem if K is a number field. Namely i f f  has integral coefficients 
then for suitable positive constants cl ,  c2 

d; h(Z)  < c 1 (d~ +... + d,.) + c2 ~ log 11 f 11~ 
J 

where the sum on the right hand side is over all infinite places and Nfll,, is 
any reasonable norm o f f  like the L2-norm or the maximum norm. 

In order to apply the product theorem later we need some further theory. 
For  details we refer to [Fa]. Let X ~ P "  be a projective variety of dimension 
d and defined over a number field K. Then there exists a composition n: X ~ 
of good projections. A good projection 

p: x = l P " \ { x }  - ,  ~ " -  ' 

has as center a point xel~"(K) which has a representation x=(x0  . . . . .  x,) such 
that the xj are integers bounded by [K: Q] deg (X) and such that the distances 
dr(X; x) are bounded below by a positive constant depending only deg(X) for 
all infinite places of K. After a modification the projection rt can be extended 
to a projection ~: )~ --+ ~ of integral models. 

We need also estimates for the heights of preimages of varieties. Suppose 
that Y c ~  is a proper subvariety defined over K. Then it can be defined by 
homogeneous polynomials with coefficients in K such that their logarithmic 
heights are bounded in terms of h(Y). These polynomials define also a subvariety 
Y' of ~"  whose height is bounded by a multiple of h(Y). It follows that 

h(X n Y')<c(h(X)+h(Y)) 

for some positive constant depending on the degree of X and Y. 
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Let now X~, . . . ,Xm be such varieties with Xj~_p"J. Then we have seen 
that there exist good projections n j: X i ~ P  dj, d j = d i m  X j, j =  1, ..., m. This 
can be combined to give a projection 

n: X-- ,  P ' = ~ ,  x . . . x ~  

where 

X = X I  x ... • X m ~ P = P " '  • . . . P ' ' .  

Finally we need some information about how the index behaves with respect 
to good projections. So let n: X ~ pd be again a good projection. Then there 
exists a homogeneous polynomial G with integer coefficients bounded by 
exp(cl h(X)+c2) and degree at most ( n - d )  [ K : Q ]  deg(X)  such that G does 
not vanish identically on X but annihilates the module of relative differentials 
O~md. It follows that for any differential operator D on pa of order 1 the operator  
GD extends to a differential operator on X. 

Take now again m such varieties X I . . . . .  X,, with X i_~ P"~ and put X = X~ 
x ... •  P=]P"~ • ... •  and P ' = I W  ~ • ... • Then we obtain polyno- 
mials G t . . . .  ,Gm as above. We consider a point x=(x~ . . . .  ,Xm) in X with 
Gj(xj)4:0 for j =  1 . . . . .  m. Then the index of any section f of C(t I . . . . .  t,~) on 
X can be computed with respect to the lifts of the differential operators on 
P and if g is the norm o f f  with respect to n we find that 

i(x; f )  < i(n(x); g). 

These considerations show that it suffices to have a product theorem for 
multiprojective spaces in order to deduce one for products of projective varieties. 
In fact if f is a section of tC(t~ . . . . .  6,) on X with index at least cr at x e X  
then the norm g of f has index at least a at n(x). We find then a product 
variety Z'=Z'~ x ... x Z',, on P' with n(x)eZ '  and the properties already stated. 
We put Z j = n f  t Z ) a n d  Z = Z ~  x ... xZ , , .  This is a proper subvariety of X 
and contains x. Hence x is contained in a proper subvariety Z of X. The degrees 
and heights of the subvarieties can be calculated by means of the preceeding 
remarks. If on the other hand x = ( x t  . . . . .  x,,) is a point with the property that 
Gj(xj)=O for some j then we simply replace X j  by an irreducible component  
of the intersection of Xj  with the zero set of Gj which contains xj. Again this 
is a proper subvariety of X and the degree and height can be bounded easily 
in terms of h(X) and the degree of X. 

3 Graded algebras and probability 

Let R =  ( ~  R,  be a graded Noetherian algebra over a field K = R o  generated 
n>0 

by R1. Let {FJ, j > 0 }  be a decreasing sequence of graded ideals with F ~  
F ~ o R +  = (~ )R ,  and U F ~ _ F  ~+j. We assume that 0 F J = 0  and this implies 

n>=l j>O 

that on each R. we obtain a separated finite filtration. Finally we assume that 
the bigraded algebra S = g r V R  is finitely generated. We write S--- ( ~  S~ with 
S i=  FJ/Fi+ t. , j>o  
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More generally let M =  @ M, be a graded R-module with a separated filtra- 
n>_0 

tion FJ(M) by graded submodules such that U. FJ(M)~ Fi+i(MI and such that 
N = g r } ' M  is a finitely generated module over S. We write N =  @ Nd. Our 

..j>__O 

assumptions imply that M is a finitely generated R-module and the induced 
filtrations on graded submodules or quotient modules satisfy it too. 

We define the Hilbert series of M in the usual way as 

P(M;  Y)= ~ ZM(n) Y", 
n > O  

and the Hilbert series of N as 

P(N;X,  Y)= ~ )~(J',n)X j Y", 
j , n > O  

where ZM(n)= dim M, and XN(], n)= dim N,{. Let (ai, bi) for 1_<iN I be the bide- 
grees of generators for S with a~ equal to the degree coming from the filtration 
and b i from the graduation and put d = d i m  M, the Krull-dimension of M, Then 
zM(n) is a polynomial in n of degree d -  1 for n >> 1. 

Lemma 3.1 There are polynomials Pi(X, Y), Qi(X, Y), 1 -<_i<=2, with integer coeffi- 
cients such that 

2 

P(N; X,  Y)= ~, P~(X, Y)/Q,(X, Y). 
i = 1  

The polynomials Qi are products of  at most d factors of  the form 1 -  X a yb and 
the pair (a, b) is in the set of  (a~, b~) for 1 -< i< I. 

Proof The proof is by induction on the dimension of M. It is obvious for 
d = 0  since then P is a polynomial. Furthermore the Hiibert series P is additive 
on short exact sequences. Therefore we may assume that N has only one associat- 
ed prime. In fact there is a filtration N = N o = N a ~ . . . ~ N r = O  of N such that 
NJN~+, ~ S/Pi, 0 < i <  r -  1, where P i is an associated prime of N (see [Ma, Theo- 
rem 6.4]). Therefore 

P(N ; X,  Y)= ~ P(N~/N~+ , ; X ,  Y) 
i 

and the modules Ni/Ni+ 1 have only one associated prime ideal Pi each. 
If d > 0  we can find a bihomogeneous generator t of S such that tCp. Hence 

multiplication by t is injective on N and maps N, j into J+", N;,+~, where (ai, bi) 
is the degree of t. This leads to 

XN(I" + a~, n + hi) - z~(J, n) = ZN/,N (J + ai, n + bi). 

We multiply this relation by X ~+~ y,+b,. The result follows in the usual way 
on summing these equations. [] 

We note that P(M;  Y ) = P ( N ;  1, Y). The functions )~N(], n) encode much informa- 
tion about N and we shall determine their asymptotic behavior. We start with 
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the simplest case, namely tha t  N = S and S is a polynomial  algebra on r genera- 
tors. In this case P(S;  X ,  Y ) = Q ( X ,  y) - a  with Q = ( 1  - X  a' Yb')...(1 - - X  "" yb.) and  

z(J, n)= Z 1 
al  t l  + ... + a r t r = j  
b l t l  + . . .  + b r t r = n  

where ta . . . . .  tr are non-negat ive  integers. We compare  the sum with the integral 
S d F  where V(j, n) is the domain  in IR r given by a 1 x l + . . .  + a t  x r = j ,  b l X l 

V ( j , n )  

+ ... +br  x r = n ,  x l  . . . . .  x~>O and where dF is the volume element. If A denotes 
the max imum of the quot ients  ai/bi for i =  1, ..., r then V(/',n) is not  empty 
only i f j < A n .  Withou t  loss of generality we may  assume that  A = a r / b r .  The 
evaluat ion of the integral above leads up to a cons tant  to the expression 

( n - j / A )  "-2  ~ dF.  
V 

Here d F  is the volume element of the region V ~ R r  i defined by 

X t ~ O , . . . , X  r_l>=O 

and 

( A - a l / b O x l + . . . + ( A - a r _ l / b r  1)x~ 1 = 1 .  

It follows that  f o r j  fixed 

Z (J, n) = c (n - - j / A )  r -  2 + 0 (n ~- 2) 

if j--= 0 mod  a and  n = 0 mod  b where a and  b are the greatest c o m m o n  divisors 
of a~ . . . .  , ar and  of b l ,  .. . ,  b~ respectively and c is a positive constant .  The 
o(n r-z) is uniform in j .  In the remaining cases X0", n )=0 .  

We consider next an expression of the form P ( X ,  Y ) / Q ( X ,  Y) where P is 
a polynomial.  The rat ional  function again has a power series expansion with 
coefficients of the type above. 

In order  to determine the coefficients XN(J, n) we have to sum up such ra t ional  
functions but  with varying denominators .  This means  that  a and  b vary. If 
we replace them by their lowest c o m m o n  multiple a' and  b' respectively which 
is the lowest c o m m o n  mult iple of a 1 . . . . .  ai and bl . . . .  , bt respectively we get 
for )~N(J, n) once again  an expression as above where j and  n run th rough  the 
residue classes modulo  a' and  modulo  b' respectively. The following lemma 
follows immediately.  

Lemma 3.2 There exis ts  a real constant  c such that  f o r  j - 0  modulo a' and n =-0 
modulo b' we have 

zN(J, n) = c ( n - - j / A ) ' -  2 + o ( n ' -  2) 

with o(n "-  z) uniform in j. 

We now define a probabi l i ty  measure p,  on  the real line. For  x E R  we put  

p,([x,  ~ ) ) =  max(d im F ~ M, /d im M,).  
j/n>--_x 
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Then, if n --- 0 modulo b', we find that 

P , =  ~ (Zn(/,n)/zM(n)) 6:/, 
j--= 0(at) 

where g j/, is the delta function at the point j/n. The support of p, is in the 
interval [0, A] and by Lemma 3.1 

p , = c  ~ ( (1- j / (nA))r-2+o(1))n  1 6j/,, 
j=- O (a,) 

For  any continuous function ~ on [0, A] we put 

S ~ d p , = ~  cb(j/n)p,(j/n) 

where the summation is over all j with O<j /n<A.  Let p be the measure 
(1 - -x /A)r -2dx  on [0, A]. 

Then 

S ~, d p.  = c y .  ~q/n)((1 - j / ( n A ) ) ' -  2 + o(1)) n -  

and this converges to a multiple of j q~dp. 
If n :~ 0 modulo b' we make use of the fact that R is generated by homoge- 

neous elements of degree one. As before we may reduce the study of the measures 
p, to the case that M has only one associated prime ideal so that we find 
a homogeneous element t of degree one with the property that multiplication 
by t is injective on M. This multiplication induces an injection from F j M .  
into F ~ M.  + a- Since dim M = (1 + o(1)) dim M.  + 1 we find that 

p,([x,  0o))< (1 + e.) p,+ 1(Ix, ~ ) )  

for all n and with real numbers e. such that e . ~ 0  when n tends to infinity. 
For  any non-negative integer n we define k by k = [n/b']. Then 

Pkb.([x, ~ ) )  < (1 + ~'.) p . ( [x ,  00)) < (I + e,~') P~k + t)b,([x, o0)) 

for e'. and e," also tending to zero with n going to infinity. This shows that 
for n in a fixed residue class of b' the limit exists and coincides with the limit 
taken over all n with n - 0  modulo b'. Therefore the measures p, converge to 
a multiple of p independently of the residue class of b' which proves the following 

Lemma 3.3 The probability measures p,  converge in measure to a measure p~, 
which is a multiple of  p. 

Example I Let R = K [ T  o . . . . .  Td] be the polynomial ring in d +  1 variables and 
f a homogeneous polynomial of degree r. We put F: R = I J where I is the ideal 
generated by f over R. The ring gr F R is generated by the images of To, ..., Ta 
and by the image of f which is in S: .  Hence A--1/r .  Since p ~ = c p  and p~ 
is normalized the constant can be determined and one obtains for it the value 
rd. The interval Ix, 1/r] has measure ( t - r x )  d and the expectation value of  p~ 
is 

1 
E ( p ~ ) = ~ d p ~  r (d+  1)" 
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We shall see tha t  this expectat ion value explains the exponents  in the general- 
ization of Roth ' s  theorem. 

Example 2 Let X_~ F n be a projective variety and assume tha t  f does not  vanish 
on  X. Then  we obta in  again a graded Ring R / I ( X )  where I (X)  is the ideal 
of X. Similar calculat ions show tha t  p~ [x, l/r] = ( 1 - r x )  dimx. The expectat ion 
value is E(p~) = 1/(r(dim X + 1)). 

In our  applications we have to consider more  generally filtrations which 
are supported by a discrete set 5 P of non-negat ive  real numbers  ra ther  than  
by non-negat ive  integers. The same considerat ions as in the proof  of Lemma 3.2 
show tha t  also in this case the probabi l i ty  measures p, converge to a measure 
p ~ .  We can  therefore relax the hypothesis  of Lemma 3.2 accordingly. 

4 Filtrations 

Let L be a field of characterist ic  0 and  V a finite dimensional  vector  space 
over  L. We  consider for real numbers  

0 ~ p 0  < P l  < " "  < P,,,< P,. + x 

a f i l tration 

V = F  v~ V ~ F  p' V ~ . . . ~ F  v~ V ~ F  pro+' V = 0  

and  define an invar iant  #(V) by 

# ( V ) =  ~ pj dim((F pJ V / F  vj+ ' V)/dim V). 

The vector space V is called semistable if for every subspace 0 4: V' ~ V with 
induced fil tration we have  I~(V')<I~(V) or equivalently tha t  I~(V)<#(V") for 
each quot ient  V" of V with 0 < dim V " <  dim V. The no ta t ion  is very similar 
to semistability of vector bundles  on curves. In fact there is a close relat ion 
and  we shall see below how this connect ion arises and how one can make  
use of it. 

First  we recall some facts which will be useful in the subsequent  discussion. 
Let 

O ~ V' --* V-* V" -* O 

be a shor t  exact sequence of vector spaces with fi l tration induced by the  fil tration 
of V a n d  with 0 < d i m  V ' < d i m  E Then  i~(V)>=l~(V') if and only if #(V")>/~(V') .  
Indeed, under  these assumpt ions  the cor responding  sequence of vector  spaces 
F ~'~ V', F p~ Vand  F pj V" is also exact so tha t  

d im(F  p~ V') = d im(F  pJ V) + d i m ( F  p~ V") 

for all j = 0 . . . . .  m + 1. this implies tha t  

d i m ( F  pj V / F  p~ , V) = d im(F  pj V'/F pj +, V') + dim(F pj V"/F pj+ ' V"). 

On mult iplying by p~ and  add ing  the resulting equat ions  we ob ta in  

(dim(V')  +d im(V") )  #(V)  = dim (V') #(V')  + dim (V ' )  #(V").  
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Now we observe that for any real numbers x', x", y', y" with x', x" > 0 and y', y" 
> 0 we have 

X' + X" > .X' 
y, + y,, = y, 

if and only if 
X t!  X l 

y,,  = y , .  

Therefore we get #(V)>#(V ' )  if and only if we have I~(V")>kt(V'). This 
is exactly what we wanted to verify. 

If 1/1 and V2 are filtered vector spaces a filtered homomorphism is a homo- 
morphism f :  t/1 ~ V2 such that f ( F  v~ VO~_F~J V2. A filtered homomorphism is 
called strict i f f ( F  pj V1)=f(V1)c~FVs V2. In other words the filtration on f (VO 
induced by the filtration of V~ coincides with the filtration induced by the filtra- 
t ion of V 2. Let V~ and V2 be semistable and f :  1/1 ~ V2 a filtered homomorphism. 
Then if/t(V1) >/~(V2) it follows that f =  0. Otherwise we would obtain a factoriza- 
tion o f f  by filtered maps 

v , ~ v ; ~ v ~ v 2  

where V~' is a quotient of V~ and V2 a subspace of V2 both endowed with the 
induced filtrations. By semistability 

~l(Vl)~_~l(Wl)=~l(V~)~l(V2) 

which is a contradiction. Furthermore if #(V0=#(V2) the homomorphism f 
is strict. 

Using this property we get a canonical Harder-Narasimhan filtration on 
V. This is a flag 

V= Vk= Vk-I = . . . =  V, = Vo=O 

of vector spaces with V~+ 1/V~ semistable and with 

~(v~+ ,/v,)< ~(v~/v~_ 0 
for all i with 1 _< i _< k - 1. 

In order to prove the existence we may assume that V is not semistable 
and we define rn to be the maximum of the numbers #(V') for all V'~_ V. Among 
the subspaces V" with I~(V")=m we choose VI such that the rank of V 1 is 
maximal. Then obviously V 1 is semistable. Furthermore we have ~ ( V 0 > # ( W )  
for each nonzero subquotient W of V/V~. In fact let W 1 be the inverse image 
of W under the canonical projection. Then rank W, > rank 1/1 and by the maxi- 
mality of V1 we get ~ (W0<#(V0 .  Using the equivalence above the inequality 
follows as stated. The uniqueness now follows easily: Let V2 be another subspace 
with /~(V2)=rn and rank V 1 = rank  V z different from V L. Then V~ + V2~ 1/1 and 
so (V 1 + Vz)/V1 is a non-zero subquotient of V/V 1 . Hence ft(V0>#((Vl + 1/2)/I/1). 
Since there exists a sequence to filtered homomorphisms 

V~-~ V~ + V~-~(V, + Vg/V, 

we obtain a contradiction to what we have demonstrated above. 
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Clearly we could also work with several filtrations {F~ J,~} indexed by w 
for 1 < w_< I. For  each w we obtain a It-invariant It~(V). We use now the invariant 

It(v)=m (v)+... + ~(v) 

and obtain a Harder-Narasimhan filtration correspondingly. We could also work 
with more general functions #(V) and all what  we need is that they satisfy 

(dim (V') + dim (V")) It (V) = dim (V') # (V') + dim (V') # (V") 

for exact sequences 

O ~ V ' ~ V ~ V "  ~ O  

of vector spaces with filtration and filtered homomorphisms.  
A particular case where several filtrations arise is obtained when V is a 

filtered vector space and G ~_ GL(V) a finite subgroup. Then we obtain filtrations 
{F~J V} for a e G  such that F~J V is the image of the subspace F pj V under a. 
Hence for each a ~ G  we get a p-invariant p,(V). The  sum of these invariants 
#,(V) over all a e G  gives a #-invariant #(V). Accordingly we obtain a canonical 
Harder-Narasimhan filtration. It is invariant under the group G. In fact the 
elements of G permute the filtration. If V'_~ V is a subspace then the image 
r(V') of V' under r~G satisfies 

z ( V ' ) ~  F f  i V~- V' c~ Ff~- ~ V. 

Hence #~(r(V'))=kt~,-,(V') and summation over a gives It(~(V'))=it(V'). It fol- 
lows that the image of a Harder-Narasimhan filtration under zEG is again 
a Harder-Narasimhan filtration. The uniqueness of the Harder-Narasimhan fil- 
tration now gives the result. 

We apply this remark in the following situation. Let  L_~ K be a finite exten- 
sion of the field K of characteristic 0 and let V be a vector space of finite 
dimension over K. We consider a filtration {F pj V} on the vector space W 
= V |  L which gives us a #-invariant on W and we define a It-invariant on 

K 

V by I t (V)=p(W) .  This is a function with the properties needed in order obtain 
a Harder-Narasimhan filtration on V. The general considerations above apply 
as follows. Let Z = H o m r ( L , K ' )  and embed W into V |  by means of the 

a e Z .  The subspaces FfJ generated by a(FP0 define a finite set of filtrations 
{Ff~} on V |  with It-invariants #, .  The Galois group G o f / (  over K acts 

K 

on V |  and has a faithful representation in G L ( V |  which permutes the 
K K 

filtration. As above we obtain a Harder-Narasimhan filtration on V @ / (  which 
K 

is invariant under the Galois group G. It is induced from a filtration on V 
which coincides with the Harder-Naras imhan filtration on V with respect to 
It since # and Z p ,  differ only by a non-zero factor. Thus semistability can 
be checked over K'. 

Next we shall study the behavior of the Harder-Narasimhan filtration when 
the filtration {FPJ} is changed. If  {F p~} is another filtration with maxlp i -p) [  
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small enough then the Harder-Narasimhan filtration for {F p j} and {F p)} coin- 
cide. The same holds if one takes the filtration {U p j} instead of {F p)} for positive 
real numbers t. So again the Harder-Narasimhan filtration is stable under this 
replacement. It follows that in order to prove semistability we may always 
assume that the pj are integers. By the first remark we may replace the set 
pj, 0=<j__<m+l, by a new set p} of rational numbers close to pj and then by 
the second remark we may multiply by the least common denominator  to obtain 
a filtration whose indexes are rational integers. This does not change the Harder- 
Narasimhan filtration. 

We come now to the main result of this section. 

Theorem 4.1 If V1 and V 2 a r e  semistable then also the tensor product V 1| V 2 

is semistable. 

Before we prove the result we discuss briefly the strategy for the proof. It consists 
of using the corresponding result for vector bundles over algebraic curves 
obtained by Narasimhan and Seshadri (see [-NS]). We start with a filtered vector 
space over K and construct an algebraic curve Y over K and a vector bundle 
d ~ on Ysuch that the/ t- invariant  on V and the/~-invariant for the vector bundle 
are the same. We recall that the latter is given by 

g(do)=deg(do)/rank(do)= S cl(do)/rank(do) 
Y(~) 

where c~(g) denotes the first Chern class of g. Then we have to relate the 
corresponding Harder-Narasimhan filtrations. 

Proof of the theorem. We have seen above that we may assume that the field 
is algebraically closed. But then we have to work with several filtrations {FfJ} 
with v =  1, ..., 1 instead of one single. Furthermore we may assume that the 
real numbers pj, O<j<=m+ 1, are all integers. We choose l pairwise different 
points Xl . . . .  , x, on the projective line X = ~ ' ~  over K and fix a positive integer 
N. Let n: Y ~  X be a cyclic cover of X of degree N totally ramified over x l ,  ..-, xz. 
Let yj=~z -1 xj, l<j<l.  Starting with V we construct a vector bundle do(V) 
over Y as follows. The stalk of do(V) at y + Yl, ..., Yt is given by do(V)r--- V| 
At y = Yv for v = 1, . . . ,  I it is 

do(V)y= ~ m ;  pj FfJ(V)| 
j = o  

where m r denotes the maximal ideal in (gr, r. By construction the bundle d~ 
is equivariant with respect to Gal(Y/X)=2UNTI. We calculate its degree. It 
has a filtration such that the associated graded bundle is given by 

grdo(V) = + + (9(pj. yv)| (V)). 
v=l  j=0  

Its Chern class cl (8(V)) is equal to c l(gr do(V) and given by 

c, (C (ply~) |  
v,j 
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Since 

c~ ((9 (p;-y.) |  = p;-dim (gr~, (V)) c, ((9 (y~)) 

we get by integration 

#(o~(V)) = ~. pj dim(gr~,,(V)) deg C(yv)/dim V. 
v,j 

The right hand side is equal to the sum #(V) of/~-invariants corresponding 
to the various filtrations {Fff}. We note also that the construction commutes 
with tensor products and clearly V is semistable if 8(V) is semistable. This 
follows at once by considering submodules of g(V) induced form subspaces 
of V. Also the converse is true: First of all the Harder-Narasimhan filtration 
of g(V) is equivariant under N/N7Z. Hence it is induced from a filtration on 
the constant vector bundle V| x on X. If a subbundle g '  of V| x is not 
constant its degree is at most - 1 .  This follows from the fact that the degree 
decreases on non-constant subbundles. The subbundle ~* of d~ induced by 
~ '  has fibres 

~,* = ~ m~ ~ FP~(~'x)| 
j=0 

where x = x,,, y = Yv for v = 1 . . . .  , l and 

VPJ (g'.) = (FeJ (V) | Cx,x) n #'.. 

Similar calculations as above show that the degree of g* is given by 

deg g* = constant + N deg g '  

< constant - N. 

It follows that for N big the degree becomes negative. We deduce that for 
N big the smallest non-trivial subbundle in the Harder-Narasimhan filtration 
of g is induced by a subspace of V. If V is semistable this subspace must be 
all if V. This is what we wanted to show. 

The discussion above shows that if V t and V 2 are semistable the same holds 
for g(V1) and or By the result of Narasimhan and Seshadri (see [NS]) we 
know that s174174 is semistable and this implies that 1/1| V2 
is semistable which proves the theorem. []  

As an application let V be a filtered vector space as above. On V | we 
obtain an induced filtration so that 

#(V| 

We consider the symmetric algebra R = S [ V ]  generated by V and assume that 
V is semistable. Let I~_R be a homogeneous ideal. Then the quotient R/1 is 
finitely generated and graded. Further  the space (R/I), of elements of degree 
n is a quotient of V | Since V | is semistable we have 

t~((R/t).) > u(V | = nt~(V). 
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The fil tration on  V | induces a fil tration {F p} on the quot ient  R/I of the 
tensor algebra. Associated with it we obta in  a sequence of measures p. as in 
Sect. 1 converging to p~ .  Since 

p, (p/n) = dim (F~/Ff')/dim ((R/I ),). 
and 

It ((R/I),) = y" p dim (Fd'/Ff')/dim ((R/1),), 

where F p ~ F p' is any step in the filtration, we see tha t  

E(p.) = 1 It((R/I).) 
tl 

for all n. In the limit for n --+ oo we get 

E ( p J  : l im  1 #((R/l).) > g(V). 

In this way we have found an easy way to calculate a lower bound  for E(p~). 
The same considerat ions apply when one starts with a finite extension L _  K, 

a vector space V over K and  a fi l tration on  W =  V ( ~  L as before. One obta ins  
again a probabi l i ty  measure p~: with E(poo)>it(V). K 

5 The law of large numbers 

Let dp be a probabi l i ty  measure on the real line supported on the interval 
I of finite length. For  any measurable  set S we put  p(S)= ~ dp. The expectat ion 

s 
value and  variance are denoted by E(p) and Var(p). Fur ther  for r .>0  we let 
l i f  o be the set defined by I X -  E(p)] > t: and  XI(~) its characterist ic function. Then  

< (x -E(p) )  2 z,~ < (X-E(P))2 
Zl(e) = ~ ( ) =  ,:2 

so that  we obta in  TschebyschelYs inequali ty 

( x  E(p)) 2 ! 
p(l(O)<= ~ e2 dp =r* 2, Var(p).  

More  generally let dpl . . . . .  dp,. be probabi l i ty  measures as before. They define 
a product  measure dp~ |174  on the product  space. Its convolut ion dp 
= d p t , . . . , d p , ,  is the direct image under  the addi t ion m a p / , :  ~ , " -+IR  and  has 
support  on the interval # ( I %  Its expectat ion value is given by 

E(p)=~ X #, dp,|174 

= ~ * ( X )  dp,|174 

= E ( p , ) +  . . .  +E(p.,). 
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Similarly its variance is given by 

v ( p )  = v ( p , )  + _ .  + v ( o ~ )  

and Tschebyscheff can be written as 

p(l(rn~,))< V(p) 1 
m ~  2 m 

In applications the first factor is bounded independently of m so that the 
left hand side tends to zero with 1/m when m tends to infinity, We call this 
observation the law of large numbers. 

Our result is applied in the following situation. Let X___P" be a projective 
variety, Fd--=F(X, C(d)) and {F p} a filtration on R =  @ Fd as in Sect. 2 with 

d.>_O 
p > 0  real. Accordingly we obtain a probability measure dPd which converges 
to a limit measure dp~.  More generaqqy put X = X ~  x ... xXm with X~_IP", 
R2 = @ F(Xj,  O(d~)) and let {Ff} be a filtration on Rj. We consider 

dj>O 

and put 

Fa ...... a~ = F(X, C(dl . . . . .  d,,,)) 

R = @ F d  ...... ~ .  

Clearly R = Rl ".-." R,, is the symmetric product of the rings R~, ..., Rm. On 
R we take the product filtration IF p} such that F p is generated by elements 
of the form r~. . . . . r , ,  with r~eFj ~j and p~ 4-... +p, ,>p.  By the definition of the 
probability measures we have 

dim(F r Fd ...... dJ/dim(Fa ...... d~) = ~ dpl,d,*. . .*dp~.~ 

for any ~ in the support of the convolution measure. By Lemma 3.2 we have 

Pj, aj = P j, ~ + o(l/dj) 
in the weak topology. Hence 

~3 es~ 

dpx,d,*...*dp,,,,d = ~ dp, .~  *... *dp,,,.~ +o(1/dO+ ... +o(l/d,,,). 

If 5 > 0  is any real number the law of large numbers implies that for I E - X I  
< m e we have 

dp~.,~*...*dp,,~>_l Varp 1 
- -  f f / i ~  2 m " 

I E -  X i ~ m r ;  

On noting that 

Var (p) = Var (p~) + . . .  + Var (p,,) =< m. max (Var (p j)) 
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we find that the right hand side of the inequality above is at least 

1 - max(Var(Pr))/e 2 m. 

Furthermore if dl . . . . .  d,, are sufficiently large we see that the following 
proposition holds. 

Proposition 5.1 For d~ , . . . ,  d,, sufficiently large we have 

dim ( F ~ (p) - m~ Fd ...... d~/ F ~ (p) + "~ Fd ...... d~) > (1 -- c/m) dim (Fd ...... a,.) 

where c is a positive constant independent o f  re. 

6 Siegel's lemma 

In the construction of the auxiliary polynimial we shall need a modification 
of the results obtained by Bombieri and Vaaler in their paper [BV] which 
is the general reference for this section. Let L be a number field of degree 
r over the rationals, N a positive integer and W c L  N a subspace of dimension 
M < N  which we assume to be generated by elements with height at most H. 
Then by Theorem 9 together with (2.6) in the paper quoted above we find a 
basis w~ . . . .  , WN-M of the orthogonal complement W 1 of W in (CL) N such that 

N - M  

l ~  H(wt)<=C(L) N-M HM 
1=1  

for some constant C(L)  which can be given explicitly. It depends only on L. 
Here (9 L denotes as usual the ring of integers of L. 

More generally let W~, . . . ,  Vr be such subspaces and M~, ..., M~ their dimen- 
sions. Then Wj • has a basis wr~ in (CL) N, l=  1, . . . ,  N - M  r, such that the above 
inequalities hold with w~, M and H replaced by wrj, M r an Hj respectively. 
Let Yl . . . . .  YM be a maximal linearly independent subset of the vectors wit, 
1 < j  < s, l < l < M r. Then, since the height is at least 1, 

M s N - M  s 

H H(yk)<= [ I  1-I H ( w j t ) < C ( L )  r'(N Mj) [ I  HMJ" 
k = l  j = l  I = 1  j = l  

The orthogonal complement of the space generated by y~ . . . .  , YM is 
W t c~ . . .n  W~. If r M < N  then by Theorem 12 in [BV] we get N - r M  linearly 
independent vectors Xl . . . .  , XN rM in 7ZNc~ W~ c~ ... c~ W~ such that 

N - r M  

Iq  H(x,)<=C(L) N- 'M+'(N-Mj)  ( I  HMJ" 
1=1  j = l  

This leads to the following version of Siegel's lemma. 
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Proposition 6.1 Suppose that the Codimension M o f  the subspace W 1 c~ ... c~ Vr 
satisfies O < r M  <N.  Then there exists an element O#:x67ZN c~ W 1 c~ ... c~ W~ such 
that 

maxj(Ixsl) ~ C.(H~*...HsM~) 1/(N rM). 

Here C is a positive constant which depends only on the f ield L. 

7 Differential operators 

Let X K -  ~"  be a projective variety of d imension d defined over a number  field 
K with ring of integers (9~. We denote  by X the closure of XK in IP" over 
(9 K and  we consider a good project ion ~: X ~ P = ~ .  This is a ra t ional  map  
which is not  defined at the intersections of X with the centers of projections. 
However  there exists a modification )~ ~ X such that  ~ becomes regular on  
X. By Corol lary 2.14 of [Fa ]  there also exists a homogeneous  polynomial  G 
of degree at most  ( n - d )  I - K : ~ ]  d e g ( X )  such that  G annihi lates  the module  
of relative differentials f2}c/e. Moreover  the polynomial  G can be choosen in 
such a way tha t  the coefficients of G are ra t ional  integers with absolute values 
at mos t  equal  to exp(cl h(X)+c2)  and  such that  G does not  vanish identically 
on X. Dualizing and taking global sections we see that  for every der ivat ion 
t3 on  P the der ivat ion Gc~ extends to a der ivat ion ~t? on )7 such that  n .  ~ =  GO. 

We assume now that  all associated prime ideals of X have characterist ic 
0. Let  x be a point  in X((gK) and 01 . . . . .  t?~ any derivat ions on X. For  non-  
negative integers z~ . . . .  , z t with z~ + ... + z~ = ~ we consider the differential opera- 
tor  

D = ( ~ I / T  1 !).. "(~[r !) '  

Let J be the ideal sheaf of x , d > O  an integer and  f6F(X,J~.d)(d)) .  Then 
O(f ) (x )  is a well-defined section of the fibre of C(d) at  x. 

L e m m a  7.1 The section D( f ) ( x )  is in C K. 

Proof  We choose an affine ne ighborhood  U of x in X. Then U = Spec R where 
R = CK [Ti . . . . .  T,]/I for some ideal I. Here T~ . . . . .  T, are independent  variables. 
The der ivat ions t?~ on U can be lifted to derivat ions ~'j of CK[T~ . . . . .  T,] which 
we can  express as 

~J = Z a,j ~/o T, 

with aii~CK I T  1 . . . . .  T,]. They satisfy ~ ( I )  =0 .  In this way D lifts to a differential 
opera tor  D on COt[T1, ...,  7,]. Over U the line bundle  (9(d) becomes trivial 
so tha t  d)(d)=Cv.h for some section h over U. Hence we may  write f in the 
form f=~o .h  for some igoR. Again (p can be lifted to an element ~b in 
( g r i T  x . . . . .  T,]. Since f is in F(X,J~.~(d))  we find that  tp is in I~, where Ix 
is the ideal of x in R. If ]'~ denotes  the ideal of x in ~0r [T~ . . . .  , T,] then plainly 
qSeT~,. We may assume also that  for j =  1 . . . . .  n we have Tj(x)=0.  If this is 
not  the case we just  replace Tj by Tj-- Tj(x), 1 < j < n .  Therefore we can write 
t~ as 

~ = E b ,  ...... , T~' ... Td" 



Diophantine approximations on projective spaces 125 

where bg ...... g,~(9 K and  the sum is over all sets i~, ..., i, with it + . . . + i , ~ T .  It 
follows that  D((o)(x) is a l inear combina t ion  of the bi ...... i. with i 1 + . . .  + i , = r .  
Hence 

Of(x)  = b(Co)(x), h(x)eC~K. [] 

We also need a sharpening of the previous lemma. For  this let again n : X  ~ P 
be a good project ion and F the norm of G. Then F defines a subvariety Yc P 
such that  n is 6tale on X \ n - ~ ( Y ) .  We assume tha t  x E X ( K )  and that  n ( x ) = y r  Y, 
Then for every place v of K the v-adic distance dr(y, Y)  from y to Y satisfies 

dr(y, Y)>> IIF(y)[Iv/I[FHv. 

Hence there exists a ball B v a round  y of radius p~=dv(y, Y) such that  on the 
set Z = ~ - 1 ( B ~ )  the morph i sm ~z is 6tale. It follows that  over B v there exists 
a section a of ~ with a ( y ) = x .  We put  B=a(Bv) .  Then over B the line bundle  
~J(1) becomes trivial. We may choose a section h of the restriction of (9(1) to 
/~ such that  on /~ we have (9(l)=(_9B.h. This section can be choosen in such 
a way that  its no rm satisfies 1 =< Ilh[[-<2. As a consequence every section of 
G0(1) over /~  can be written as 

f=go.h 

with some analytic function go such tha t  

Igol,, ==- [I f I1,, 

For  a set a~ . . . .  , ad of non-negat ive  integers we put  a= (a~  . . . .  , ad) and define 
the differential opera tor  

A (a) = ((0/0 z l)"'/a 1 !)...(((3/0 Zd)O"/ad !). 

Lemma 7.2 Le t  got . . . .  , got be analytic in the unit multidisc o f  dimension d with 
supremum norm ]lgojl[ < 1, j =  1, . . . ,  I. For non-negative integers b~, . . . ,  b t with b 
= bx + . . .  + bt we consider the product 9 = go]'.., go~'. Then, i f  a = a 1 + . . .  + ad, we 
have 

[A (a) go (0)1 < 2 ab+" ~ I ]  [r bj- e'l 

where the sum is over all sets o f  non-negative integers a~ ~ , . . . ,  a~a with a~ j + . . .  
+ atj = aj and the product is over all j with aj 1 + ... + aid = ey <= bj. 

Proof. The proof  follows from Lemma 6.2 in [Fa] .  First  one observes that  it 
follows from the hypothesis  tha t  

I((O/,~z)"/a !) gob(0)l =< 1 

if a > b. Then one proves the result in the case I = 1 by induct ion on the n u m b e r  
of variables. In the case 1> 1 the result follows using Leibnitz '  rule. [ ]  

We remark  that  the inequali ty of Lemma 7.2 also holds for p-adic analytic 
functions in even a sharper  form. In fact the factor 2 db+~ can be omit ted  and  
the sum can be replaced by the maximum. Also we remark  that  a similar result 
holds when go is replaces by a product  ~o I .go with some ho lomorphic  function 
got such tha t  the supremum norm is bounded  by I. The only change is tha t  
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the sum is over all sets of non-negative integers a ~  . . . .  , aid with a w + . . .  +a~i 
<a j, 1 <j<=d. Again the remarks above apply in the non-archimedean case. 
Also all the theory holds with (9(1) replaced by (9(d) for some d >  1. Further 
it can be extended easily to schemes of the form X = X t  x .,. x X , ,  and line 
bundles of the shape (9(d~ . . . .  , d,,). 

8 The main result 

We shall now apply the techniques developed in the preceding sections. Let 
K~_L be number fields and let N be a finite set of places of L. For  each wEN 
we fix a finite index set I w and choose for each ~EI~ a non-zero homogeneous 
polynomial fw., in n +  1 variables T o . . . . .  T, with coefficients in L. For  each 
pair w,e with w e n  and e ~ l ~  we let cw. ,>0 be a real number. Finally for 
each place w of L we fix a w-adic norm on the line bundle (9(1) which extends 
the standard p-adic or real norm. The norms on (9(1) induce norms on the 
powers of (9(1) which we denote all by ]]']}w. We intend to show that there 
are only finitely many K-rational points x =(x0: . . . :x ,)  in IP"(K) which satisfy 
the system of inequalities 

(1) Ilfw,,ll~,<H(x) -c~." we~,ctel~, .  

We shall first consider the case that all fw,, are linear forms and we put V 
=F(P~,(9(1)) and VL=V|  For  any fixed place w in N and any positive 

K 

real number p we consider the subspace of V L generated by the linear forms 
f~., for which c~,~ > p. In this way we get a finite set of subspaces 

VL=W ~  W l ~ . . . = w ~ w  ~+1=0 

of VL. We define pj=-p~.j as the minimum of the numbers Cw.~ taken over the 
indices a given by the generators of W j for 0 < j  =<e. If W ~ is not generated 
by the fw.,, acid ,  we put p 0 = P ~ . o = 0  and also we put p~+~=p~+ 1. In this 
way we get for each wEN a filtration as in Sect. 3. For  w e n  we take the trivial 
filtration given by 

VL=F~ =0.  

The results of Sect. 2 apply and we obtain for each place w of L an invariant 
/ ~ = # ~ ( V )  with i ~ = 0  for wr ~. We assume now that the filtrations are jointly 
semistable. This means that for each non-zero proper subspace Wc Vwe have 

Z .~(w)<=Y. u~(v). 
~a w 

Here the sum is over all places of w counted with multiplicities according 
to the conventions we made in Sect. l. 

Theorem 8,1 Assume that all fw., are linear and that they define a jointly semistable 
filtration on V. Assume furthermore that ~ #w(V)> [L:  II~] where the sum is over 

w 

all places of L counted with multiplicities. Then the number of  points xEP"(K) 
with (1) is finite. 
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Let us remark that the result is sharp in the sense that (1) always has infinitely 
many solutions if ~ #w(V)< [L: Q]. This follows from an elementary counting 

w 

argument as in the easy part of Theorem 2A in [$2]. 
Before we prove the result we discuss briefly how the hypothesis of the 

theorem behaves with respect to finite field extensions E~_L. Let ~ '  be the 
set of places w' of /2 which extend the places w of L in ~ .  We define new 
linear forms and exponents byf,~, ~ =fw,~ and cw,,~ = cw,~ if w' divides w. Then 

II/~,,~(x)ll~, -= IIf~,=(x)llw ,= ]lf~,,~(x)ll~ < H (x) . . . . . .  

for W e N '  and c~aI~ = I~,. Furthermore we have 

E ~,(v)= It: r]. E ~w(V) 

so that the left hand side exceeds [ E : ~ ]  if and only if the second factor on 
the right hand side exceeds [L: ~ ] .  We may therefore freely make finite field 
extensions without changing the hypothesis. 

We begin now with the proof  of the theorem and assume that there are 
infinitely many solutions. Let e>O be a sufficiently small real number and r 
sufficiently large as in Faltings' product theorem. Then we choose a set x~, ..., x,, 
of solutions of (1) with the following properties. If hj denotes the logarithmic 
Weil height of xj we require that ha is sufficiently large and that 

(2) h j+ l ~r h j ,  . /=1 . . . . .  m - 1 .  

Depending on this choice of solutions we choose positive integers d~ . . . .  , d,.. 
To begin with let dx be so large that 

(3) 

and define d i for j = 2 ,  ..., m by 

(4) 

Then clearly 

and, as a consequence, 

for l < j < m - - 1 .  

Inductive proposition 8.2 

Edl hi >-_hm 

d.=[d~ hl]+ 
J [ h ~ J  1. 

dl h l < d j h j < ( l + e )  d~ hi 

dj + l h~ + 1 < (1 + ~) dj hj 

For each j with O < j < m n  there exist positive real 
numbers 7, ca, c2 and a product variety 

Z = Z 1  x ... x Z~_~(~)  m 

of dimension at most m n - j  defined over K which contains (x 1 . . . . .  x,,). Further- 
more the degree of Z i is at most cl for 1 <_ i <- m and 

(5) dl h(ZO+ ... +din h(Zm)<c2(dl + ... +dm) 

where h(Zi) is the height of Zi, 1 <_i<_m. 



128 G. Faltings and G. Wiistholz 

The inductive proposition implies the theorem. Namely for j = m n  we get Z 
=(x  I . . . . .  x,,) and (5) implies that 

hi=h(x~)<c3~- , l<i<_m, 

for some positive constant c 3. It follows that hi < c3 which contradicts the choice 
of x l .  

We turn now to the proof of the inductive proposition. For  j = 0  we may 
put ~ = Ca = c2 = 1 and Z~= F" for t < i < m. Therefore we may assume that the 
inductive proposition is proved for j and we are going to verify it for j +  l. 
Also we may assume that (xl,  .,., xm) is a smooth point. 

If  the product variety Z constructed for j has dimension strictly less than 
n m - j  then Z also satisfies the inductive proposition for j +  1 with the same 
choice of constants. Otherwise dim Z = m n - j  and we put X~=Z~, i= 1, ..., m, 
and X =  XI • -.. • X,,. Let u0 . . . . .  u. be homogeneous coordinates on F"  and 
let x~j be the restriction of pr* uj to X. Our aim is to construct a global section 
04: feF(X  | L, C(d~ . . . . .  d,,)) such that f has sufficiently big positive index at 

x=(x~ . . . . .  x,,). To achieve this the section f is constructed in such a way that 
for each w e ~ '  it can be written as a linear combination with coefficients in 
7 /of  monomials of the form 

(6) [I  x,~ k~'~" H pr* ( f ~ . j  ..... 
i , j  i ,  ct 

such that 

(7) ~ j  .... i.cw,ffdi> mv~ 
i,0t 

where the vw are real numbers with ~ / z  w > ~ vw = r > [L: Q].  We also want that 
the coefficients of the monomials in (6) have absolute values at most exp(c4(d 1 
+...+din)). This will be a consequence of Siegers lemma. In order to apply 
it we have to count the conditions and unknowns by the techniques from Sect. 3. 
In our  situation the filtration Fw is induced on the homogeneous coordinate 
ring of X from the filtrations on the homogeneous coordinate rings of Xi, 
i =  1, ..., m. They are obtained from the linear formsf~,~ in the way as described 
at the beginning of the section. 

In Sect. 1 we have associated with these data a probability measure P~,i,w 
for each pair i,w with l < i < m ,  w ~ .  The stability assumption implies that 
the sum of the expectation values of all P~.i.w is at least ~ Pw > r. Choose 8 > 0 
sufficiently small and let E~, denote the sum over all i with l _ < i < m  of the 
expectation values of Po~,~,w. If we put 

F = F ( X  | L, (9(d1 . . . . .  d,)) 
K 

we see from Proposition 6.1 
least 

V F Ew-"a r has dimension at that the space . , = _ w  

(1 - O (l/m)) dim F.  
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Taking the intersection W of all Vw for w~9  ~ we see tha t  the dimension of 
W is at  least 

(1 - 6) dim F 

provided that  m is sufficiently large. 
By Siegel's lemma we find a non-zero  sec t ionf~  W. It is conta ined in Fe'~- '6F 

for each w e ~  so that  (7) is satisfied since 6 was choosen small enough. 
We shall next show that  the section f has a sufficiently big positive index 

at x = (x l  . . . .  , Xm).  We fix a place w ~ .  By construct ion f is in Few-"6F. 
Now we consider good project ions 7 t j : X j ~  p j=  ~,a~,.]= 1 . . . . .  m, and  obta in  

a project ion r~: X ~ P '  where P '=P1  x ... x P,,. The theory in Sect. 7 applies and  
we get for each j with l<__j<m a homogeneous  polynomial  Fj wich defines 
a subscheme Yj~Pj such that  rcj is 6tale outside Yj. If ~z(xi)6Y ~ for some i we 
replace Xi by an irreducible componen t  Z i of ~,:-l(y/) which contains xi. For  
j 4  = i we put  Z j = X j .  Then Z = Z 1 x ... x Zm satisfies the hypothesis  of the induc- 
tive proposi t ion  with constants  cl and  c 2 which can be easily determined. There- 
fore we may assume that  Xj  is smooth  in xj and that  ~i is 6tale in xj for 
all j. Hence we get balls Bj, w for we ,#  a round  yj=r t / (xj )  and sections % of 
~zj over Bj, w. The radius of the ball Bj, w can be taken equal to the distance 
dw(Yi, Yi) which is at least exp(c 5 h(xj)+c6) for some effective constants  c5 and  
c6. We put  /~j=aj(B/.~,), /~=/31 x .., x/~m and B = B I , ~  x ... x Bm,~. We choose 
~ >  0 sufficiently small compared  with e. and we want to show that  the index 
a of the section f is at  least ~c. For  this we consider a differential opera tor  
on B of the form 

D = I]  (((~/~3 zzj)"J/tlj !) 

where the t~j are non-negat ive  integers such tha t  with t i = ~ t i j  we have 

t I t m 

dt + . - . + - d ~ = ~ .  

We multiply D by Gt~' ... G~ - and  then the resulting differential opera tor /~  extends 
to X. The restrict ion o f / ~ f  to x is a well-defined integral section of the fibre 
of F~ ~ ' " ~ - ~  over x where we have put  cw = max,(c~.,). Every differential opera- 
tor on  X can be expressed as a l inear combina t ion  of such differential operators.  

We now write (Df)(x) as a l inear combina t ion  of monomia l s  of the form 

r *  Jw.~.i I I P  i .fw..(x) 

for non-negat ive  integers j~,,,~ with 

~ j ' , ~ , ~ c ~ , J d i > = E ~ - m 6 - c ~ a .  

For  w e ~  the norms of these monomia l s  at w do not  exeed 

I ] / 4 ( x ~ )  - ~ j ~  . . . . . . . .  �9 
i 

If we replace H(x3 by H(xO a'/a' the product  is a t  most  equal  to 

H (xl)-(E~-m'~-c~a)d, . 



130 G. Faltings and G. Wfistholz 

The absolute values of the coefficients of the monomials are bounded by 
exp(cv(dl+...+dm)). For w r  the absolute values of (/3jO(x) are at most 
exp(cs(d~+...+dm)) for the archimedean places and at most 1 for the non- 
archimedean places. Here we use Lemma 7.1. 

If we take the product over all absolute values of (Df)(x) we find that for 
a and 6 sufficiently small 

1 < H ( x 0  ([L:Q1+~-Z~)a'. 

The right hand side is less than one provided that ~ E w > [ L : ~ ] + e  so that 
we finally find that a is bounded below by some positive multiple c9 e, of e. 
Since by semistability ~ Ew > Y',Pw the hypothesis shows that the above inequali- 
ty holds. 

We apply now the product theorem in the way as explained at the end 
of Sect. 1 and find a product variety 

Z = Z 1 x . . .  X Z m ~ _ ( p n ) m  

which has the required properties. This finishes the proof of the inductive propo- 
sition and also completes the proof of Theorem 8.1. 

Let us remark that we proved actually the more general result that for 
any subscheme X___P" the set of xeX(K) with (1) is finite. This remark will 
be useful in the further applications. 

9 Further results and comments  

We shall now discuss first what happens without the assumption on the semista- 
bility. Let V= K To~...~KT, with independent variables To . . . . .  T, and with 
the filtrations given by the linear forms fw.,, w ~ ,  ~e l  w, on VL= V| L. We 

K 

consider the first non-trivial step in the Harder-Narasimhan filtration of V. It 
is given by a semistable subspace W~_ V. Let P = P ( V )  be the projective space 
consisting of one dimensional quotient spaces of V. The subspace W corresponds 
to a projection 

~: P ( v ) \ P ( v / w )  --, P ( w )  

from an open set of P(V). The induced filtration on W is jointly semistable. 
We consider the set of fw., which lie in W| L. We assume that /~(W) 

K 

> [L:~].  Then there are only finitely many points ~z(x)eP(W)(K). For x running 
throught the K-rational points in a fixed fibre y = n(x) the height tends to infinity. 
On the other hand there is some fw.~ W| L with cw,,>0 which is a non-zero 

constant on the fibre of y because of semistability of W. Therefore there are 
only finitely many K-rational points in each fibre for which the projection is 
defined and (1) holds. 

For the remaining points one applies induction to the quotient V/W. We 
obtain therefore 
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Theorem 9.1 Assume that all f,~,~, wE~ ,  c~el~, are linear and let W ~  V denote 
the first non-trivial step in the Harder-Narasimhan filtration associated with the 
filtration given by the fw,~. Assume furthermore that 

where the sum is over all places of L counted with multiplicities. Then there are 
only finitely many K-rational points x6F(V) (K)  with (1) which are not in F(V/  
VO(K). 

By the construction of W we always have #(W)>=#(V) so that in particular 
the assertion of Theorem 9.1 holds for rational points x in the complement 
of a proper linear subspace. This leads to the following version of Schmidrs 
subspace theorem. 

Corollary 9.2 7here are.finitely many proper subspace W c  V such that the set 
of K-rational points xe~" (K)  which are not in IP(V/W) and which satisfy 

H H IIf~,,~(x)ll~,<H(x) ( .+,) tL:~]-a 
we~  ~ e l ~  

is finite. 

Proof Put 6=2e. If the set is infinite we find real numbers c,,,,, w s ~ ,  ctelw, 
such that ~ Cw,~ > (n + 1)[L: Q]  + e, and infinitely many K-rational points in the 
set such that 

We find that 

Ilfw,~(x)llw<H(x)-Cw.% we~,c~eI~.  

u(v)  = Y~ c~,J(n+ 1)> [L: Q] 

and this contradicts Theorem 9.1. [] 

F rom the corollary one easily deduces Schlickewei's extension of Schmidrs 
subspace theorem which also includes finite places. 

Let us explain how Theorem 8.1 implies Roth 's  theorem. We choose an 
algebraic number c~ not in II~ and consider the linear form 

f = T o - ~ T  ~ 

in two variables T o and 7~. For  L we take any finite Galois extension of K = Q  
which contains e. For  one infinite place w of L we let fw be equal to f and 

be any real number greater than 2. The other infinite places are all conjugate 
to w under GaI(L/~)  and we choose the conjugate to f there. More precisely, 
if w' is another place of L then there exists some 7eGaI(L/Q) such that 

IIxlFw,=ll~,-l xllw, xeL .  

We choose fw, = i f =  To-7(a) T 1 . If x e K  we have 

11 fw,(x)llw, = Hff(x)llw ,= ]]7(f(x))llw, = H f(x)llw, 
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Since ct is irrational the stability assumption is satisfied and then all #,~(V) 
are equal to x/2. This implies that 

~, Pw (V) = x [L: ~-1/2 > [L: ~3- 

and Theorem 8.1 implies Roth's theorem. 
Finally we turn to forms of higher degree. We shall reduce this to the case 

of linear forms. However here the results are probably not best possible but 
only the best which can be shown by our methods. The fw,~ define a filtration 
{F p} on the polynomial ring in n +  1 variables so that we obtain measures 
p~ with expectation values E(pw). 

Theorem 9.3 Assume that ~ E(p~)>[L:@] where the sum is over all places of  
L with multiplicities. Then the set of  points x~P"(K)  which satisfy (1) is not 
Zariski-dense in ~". The same holds if we replace F" by any closed subscheme 
and the p,~ by the measures defined with respect to the coordinate ring of" the 
subseheme. 

Proof Without  loss of generality we may assume that the forms fw., all have 
degree r. Let i: F " ~ F  N be the r-fold Segre embedding given by monomials 
of degree r. Then i* (9(1)-(9(r) andfw, ,= i*  Lw,, for sections Lw., in F (~  N, (9(1)). 
Furthermore the system of inequalities (I) translate into 

Cw.~ 

I[Lw,=(i(x))[l~ < H (i(x)) r , 

w ~ ,  ~ l w .  The linear forms Lw.~ define a filtration {G p'} on 

R = ~ F(F  ~, i* C (t)) 
t > o  

with weights p'. The filtrations are related by 

G p / r  _ _  1 7 p  
t - - l r t  

so that the measures P,,w,t corresponding to the G-filtration and the measures 
Pw.,, corresponding to the F-filtration agree and this implies that 

p I 
e(p ..... )=Y~-~7 

Taking limits we find that E(p . . . . .  )=  E(pw,~). Therefore 

E(p,.,,) = ~, E(pw) > [L: 

for p,,w = P . . . . .  and Pw = Pw. ~. By Theorem 9.1 the result follows, []  
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10 The unit equation 

Let V be a vector space over K of dimension n +  1 generated by T o . . . . .  T, 
and S a finite set. For  each v~S let w~, be a weight function defined on the 
set T o . . . .  , T, and with non-negative real values such that 

Z wo(~)= 1 
v~S 

for j = 0 . . . . .  n and 
m!n w,(Tj) = 0. 

3 

We put Vj=K-Tj ,  O<j<n, and define filtrations {Ff} for v~S by 

F?V= | vj. 
wt,(Tj)>-p 

Here p~{w,(T~); O<j<n}. Each Vj is a semistable filtered vector space with 
p(Vj) = ~ %(T~)= 1. Therefore V is a semistable filtered vector space with 

y e s  

~,(v) = l+f y Z wo(~)= 1. 
v j 

We denote by pj the vector with components w~(Tj) for v~S. Then two compo- 
nents V i and Vj of V are isomorphic as filtered vector spaces if and only if 
p i=  pj. Let 27 be the set of vectors pj. We put 

v.= + vj 
j ~ l ~  

for a 6 Z  where I~ is the set of/" with p j = a .  This gives a direct decomposition 

v = |  

of Vinto isotypic components V, for which we also have #(V,) = 1. For  a subspace 
W _  V and for a~27 we define W,= Wn V,. Then we have W =  | W, if and 

only if #(W) = I. 
We consider the quotient ~'= V/K(To+ ... + 7",). Since V is semistable all 

quotients of ~" have p-invariant >1.  Therefore the slopes P(~+I /~ ) in  the 
Harder-Narasimhan filtration 

v = K = K _ , ~ . . . ~ v I = V o = O  

are at least 1. If p ( ~ + l / ~ ) = l  for some i then i = k - I  since the slopes are 
strictly decreasing in i. Hence /~(~'/~_ 1)= 1. But then #(V/W)= 1 if W is the 
inverse image of ~ _  1 in V under the canonical projection. Since #(V) = 1 and 
since 

(dim V) #(V) = dim(V/W) p(V/W) + dim W/I~(W) 
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we get #(W)---- 1. We decompose W into its isotypic components 

w=Qw.. 

By definition W contains To + . . .  + T,. It follows that Wu contains ~ T/ where 
the sum is over I u. The minimal such subspace W which can occur is the space 
generated by the elements ~ Tj for a~Z.  Furthermore the condition that 

jcl~ 

mini w~(Tj)=0 implies that not all pj are equal. Hence we obtain strict subspaces. 
We apply now the theory to the unit equation. Let ~ be a finite set of 

places of a number field K including all the infinite places and let U be the 
set of ~-uni ts  of K. We are looking for the solutions x = ( x o ,  ..., x,) in U ~§ 
such that 

X o + . . . + x , = 0 .  

To determine them, let To, ..., T, be coodinate functions on K "+1. They 
generate a vector space V over K. We have 

Ixj lv  j = 1 n, 
1l Tj(x)/i~= Ihxbl~- . . . . .  

where Hxllv=maxlxjlv. Since xfiU for j = 0  . . . .  , n we have HxH,,=I for v r  
and by the product formula 

H II Tj(x)L]w=H(x) -tK:~I. 

We define weights pw(Tfl by 

I I T1 (x) ll w = n (x) - pwl rj}tK:~l. 

They satisfy 

pw(Tj)= 1, j = 0  . . . . .  n, 

and 

mjn (pw(T~)) = 0, w ~ .  
J 

As before we denote by ~" by the quotient of V by the subspace generated 
by T O + . . .  + T,. This corresponds to an injection 

i: P ( P ) ~ F ( v ) = P  ~ 

and x induces a point ~EP'(K) which is in the image of i. The weights pw(Tj) 
define a filtration on V with #-invariant 

1 y pwlr )= # ( v ) - - - ~ i  
w e ~  j = O  
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The fil tration induces a fil tration on F" with 

n 

In fact any n out of the sections to . . . .  , t ,  given by tj = i* Tj are linearly indepen- 
dent  and therefore only the n largest weights mat ter  for any fixed weN.  Since 
the smallest weight is zero the result follows. If ~" is semistable then by Theo- 
rem 8.1 there are only finitely many  solutions. Otherwise we look at the Harder-  
N a r a s i m h a n  fil tration of V. If all slopes are greater than  l again we get only 
finitely many  solutions. In the remaining case we find tha t  by the general theory 
up to finitely many exeptions at  least one proper  subsum of x 0 + . . .  + x,  must  
vanish. 

11 Norm forms 

Let again K be a n u m b e r  field, L~_K a finite field extension and X___P" a 
projective variety over K with r = d i m  X. We fix an integer l > r +  1 and  positive 
integers dl . . . .  , dr. L e t f j  be a non-zero section in F(X | L, C(dj)) for j =  1 . . . . .  l 

K 

such that  for any subset T c { 1 ,  ..., l} with I T l = r + l  the sections f j , jE  T, have 
no c o m m o n  zero on  X. Also let N be a finite set of places of L including 
the infinite places and  let (9 be the ring of N-integers. We consider the equat ion 

l 

(8) H f~(x) = c 
j = l  

for O+c~L with xeX(K) .  We are interested in the solutions x 
= ( x  o . . . . .  x , )~C "+1 with xeX(K) .  We assume that  D > ( I - 1 ) d  where D = ~ d  i 
and d=max(dj). 

J 

Theorem 11.1 The solutions in X(K) of(8) which can be represented in the Jbrm 
x =(x0,  ...,  x,)6C "+ 1 lie infinitely many hypersurfaces. The number of these hyper- 
surfaces can be bounded effectively, 

Proof Let 5 > 0  be a real n u m b e r  such that  (1-3e, )O > ( l - l )  d and x be such 
a solution. Then  for w e n  

l 

H II fj(x)ll w = Iclw Ilxll~ ~% 
j = l  

We assume that  the height of x is sufficiently large. Then there exist real numbers  
Pj.w with 

- P s  II f~(x)tl~ < H ( x )  . ~  
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pj, w> 1 - e l L :  ff)] ~ dj 
j ,w  j 

l~ lmin  (pj, w)l < e [ L : ~ ]  D/d 
w j 

For  each w let Twc {1 . . . . .  l} be a subset with Irwl = r +  1 and such that ~Pi, w/dj 
J 

is maximal where the sum is over a l l j e  Tw. Then the ring 

e =  @ F(X | L, C(t)) 
t>O K 

is finite over the ring S generated by elementsf~, j~  T,~. It follows that 

R = Se I @... @Se N 

for some N_> 1 and elements ej~R. Let {Fw p} be the filtration on R defined 
by the f j ,  j = 1 . . . . .  I. The filtration gives a probability measure Px, w as usual. 
It induces a filtration on S and we have 

(Px,w) > ~ - T  ~ pj' ' '/di" E 
je  Tw 

We put and obtain P~.w = pj.w/dj 

, < I - 1  

\ r ] j g : j ( w )  T i e r  \ I j 6 r w  

where in the double sum we sum over all Tc{1  . . . . .  l} with ] T l = r + l  and 
with j(w)~ T. Here j(w) is any fixed index with Pjt w~,w = m!n (pj, w). It follows that  

J 

, > r + l  
Z P~,w=7~-i~ Z P),~- 

j~Tw j C j ( w )  

Furthermore the minimum of the function 

~, Pj, w/dj 
j ,w  

under the side conditions above is bounded from below by (I--2e)[L:Q]D/d. 
Therefore we find that 

~. E(Px, w)> EL: ~3 .  
w 

The theorem now follows from Theorem 9.3. []  
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As an  applicat ion we take 04:f~F(X | L,C(d)) and let f~, j = l  . . . .  , l be 
K 

the conjugates o f f  Then we find that  the solution of 

N o r m ( f )  = e 

with 0 ~= c~ K lie in finitely many hypersurfaces. 

12 The gap principle 

Let K ~ L be n u m b e r  fields and  ,~ a finite set of places of L. For  independent  
variables T O . . . . .  T, we put  V = K T o ~ . . . G K T  . and we let fw,~, cr . . . . .  n, be 
a basis for V |  L for each w e ~ .  

K 
We fix a positive real number  p. For  any set of non-negat ive  real numbers  

p . . . .  w e ~ ,  c~=0, ...,  n, we put  

1 

We consider the set of points  in ~(V)(K) with 

(9) 

R < H ( x ) < R  I+p, 

where R is a positive real n u m b e r  and the Pw,, are any set of non-negat ive  
real numbers  with 

(10) ,u>(1 + 2p)I-L: ~ ] .  

Theorem 12.1 There exist positive constants R o and N depending effectively only 
on p and [ L : ~ ]  such that for R>Ro the set of solutions of (9) is contained 
in a union of at most N hyperplanes. 

Proof We always may assume tha t  the set of vectors p with components  p . . . .  
w e ~ ,  c~=0 . . . .  , n, for which there exists a solution of (9) under  the condi t ion 
(10) is conta ined in the compact  region defined by 

(1 + 2 p ) [ L : ~ ]  < # < ( 1  + 3 p ) [ L : Q ] .  

By compactness  there exists a finite set of vectors p' in the compact  region 
such tha t  any solut ion of (9) with  (10) is already a solution for some p' in 
the finite set provided that  we replace 2p  in (10) by some p' with p<p'<2p.  
Let p' wi th  componen t s  p~,,,, w E ~ ,  ~ = 0  . . . .  ,n, be in the finite set and  
x ~~ . . . . .  x ~"~ solutions of (9) for this p'. Then  

and 
tFdet(xta~llw < Ildet (fw,~(x(a)))ll w 

II act  (fw,~(xtP~)) II w < H Ilxtt~)llw" R -  z,p;~., 
# 
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for w e ~ .  Therefore 

] ]  [idet (x(a))j] ~ R(1 +o)(n+ 1)[L:~I- z~.,p:~., 

where the product  is taken over all places of  L with the usual convent ion and  
where the sum is over  all w 6 ~ .  Since 

Z p',,=(n + 1)~ 
w , ~ t  

we find tha t  the exponent  of R is negative. Therefore the right hand  side becomes 
less than  one so tha t  det(x(a))=0. This implies t ha t  the solutions with fixed 
p' are all conta ined  in a fixed hyperplane. This  proves the theorem. [ ]  

We should remark  also tha t  the result easily extends to the case where 
thefw,,  are non-linear.  
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