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0. Introduction

Background
Let M" be a complete riemannian manifold with metric g, such that

(01) RiCM” é 0 .

(0.2) Vol(B,(p)) = " (Q > 0)

Fix p € M”" and let r, — oo. It follows from Gromov’s compactness theo-
rem [GLP] that the sequence of pointed rescaled manifolds, (M, p, rJ"Zg), has
a subsequence which converges in the pointed Gromov-Hausdorff topology to
a length space, M., which might, a priori depend on the sequence, {r,} and
the choice of convergent subsequence.

By Bishop’s inequality, Ricy» = 0 implies

(0.3) Vol(B.(p))/r" | .

If one grants that the volume behaves continuously in the limit, it follows that
M, is a volume cone,

(0.4) Vol(Br(poo)) = Q" .

Consideration of the Riccati equation along a geodesic suggests the follow-
ing stronger statement which is proved in [CC2].

Theorem 0.5. ([CC2)] M. is a metric cone.

*Partially supported by N.S.F. Grant #DMS9303999
*Partially supported by N.S.F. Grant #DMS9303999 and Alfred P. Sloan Fellowship



494 J. Cheeger, G. Tian

It turns out that Theorem 0.5 is actually somewhat easier to prove than the
continuity of the volume under Gromov-Hausdorff limits. The latter is proved
in [CC3].

In [BKN], a proof of Theorem 0.5 is given which works in the special
case in which M, \ poo is smooth, Ricy» = 0 and the sub-convergence of
(M”,rj’Zg, p) is in a sufficiently strong topology.

A basic question concerning M. is whether or not it is unique, i.e. is M
the same up to isometry for all {r,} and all convergent subsequences? An
example of Perelman shows that even if one imposes the additional condition
of quadratic curvature decay, this need not be the case. Note that since any
cone which is a smooth riemannian manifold outside the singular point has
quadratic curvature decay this condition is natural in our context.

Let R denote the curvature tensor.

Example 0.6. ([P]). There exist complete metrics on R* satisfying (0.1), (0.2)
and
(0.7) R@)| S er™® (r=%P)

for which uniqueness fails, although all M, are indeed metric cones.
In this paper, we consider the situation in which (0.1) is strengthened to

0.8) Ricy =0

and (0.7) is replaced by the apparently weaker condition,

0.9) [ IRM* £ A (A independent of r).
By (p\Bi(p)

In fact, (0.9) turns out to imply (0.7), given (0.2), (0.8).

Again in this case, Theorem 0.5 follows from the argument of [BKN],
and in particular, My, = C(N"~!) is Ricci flat. Our basic concern is with the
question of uniqueness.

Statement of Results

Recall that the condition that C(N"~!') is Ricci flat is equivalent to Ric; —
(n—2)j = 0, where § is the metric on the cross-section, N n=1 The linearized
deformation equation is, by definition, the equation on 4 gotten by putting
h =gy, in

d
(0.10) = Ricg, — (n— 2)dMu=0 =10

Definition 0.11. The cone, C(N"~'), is integrable if every solution of the
linearized deformation equation arises from a curve of metrics, §,, satisfying

(0.12) Ric, — (1 — 2)d, = 0.
Let Ac4(p) denote {(r,x) € C(N"")|ec < r < d}.
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Theorem 0.13. I (0.2),(0.8),(0.9) hold and some tangent cone M., =
C(N*™YY is integrable, then My, (equivalently §) is unique. Moreover,
for some compact set C, there is a diffeomorphism, ¢, from the annulus
Aeoo(p) C C(N"™ 1Y 10 M™\ C, such that

%9 —gol = |¢*g—(dr’ +r'g)|
(0.14) = o
Jfor some f > 0.

The issue of the optimal rate of convergence is dealt with later in this
introduction.

Now consider the case in which M is Kahler. Then it follows that
C(N%*-1y is Kihler as well. Let J be the almost complex structure. Observe

that #£

o hal = . =5 . .
%o r(ﬁ; = (—.‘_f—), generate a € action, where € is the universal cover-

ing group of €* = C\ 0. Call a Kihlerian cone standard if the € " action de-
scends to a ©* action. In this case, C(N"~!) is actually a complex cone with a
complex base, N*~!/S", which might be an orbifold (S' = ¥ 0 < 0 < 2n).
Note that % is a real holomorphic Killing field. Moreover, if the dimension of
the space of real holomorphic Killing fields is 1, then of necessity, all orbits
of 5 are closed (and C(N*~') can be shown to be standard).

In the complex case, there is a notion of complex integrability for cones
which plays a role analogous to that of integrability for real Ricci flat cones;
see Definition 8.1.

Theorem 0.15. Let M* be Kéhler and assume that for some tangent cone,
C(N¥*=1Y, the dimension of the space of holomorphic Killing fields is 1. Then
C(N%*~1Y is complex integrable and hence, unique.

Theorem 0.16. Under the assumptions of Theorem 0.15, if

i)y BPYNZ#=1y = 1, then B = 2k (B as in (0.14)).

ity If k # 3, the complex structure converges to that of C(N*~1Y at the
rate r~*.

As a consequence of ii) above, M* can be complex analytically compacti-
fied. This will be dealt with in [CT], where the more general case, Ricyx = 0,
is also treated.

In dim 3 some additional assumptions are required for part ii} of Theorem
0.16. Probably they always are satisfied. This will be discussed elsewhere.

We mention that for & = 2, there exist nonstandard Kéhlerian cones with
positive Ricci curvature.

Conjecture 0.17. A/l Ricci flat Kdhlerian cones are standard.

In any case, ultimately it may be possible to prove Theorems 0.15, 0.16
without the hypothesis that the dimension of the space of holomorphic Killing
fields is 1.
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Relation to previous results
If condition (0.9) is strengthened to

(0.18) SR < o0,

s
then we are in the so-called asymptotically locally Euclidian or ALE case.
Here C(N"*') is known to be unique and flat. Thus, C(N"~!) = R*"/I", where
I' is a finite group of isometries on R", acting freely outside the origin; [An],
[BKN]. Moreover, as is shown in [BKN], (0.14) hold with f = n — 1. see
[BKNT.

The argument of [BKN] uses inequalities based on (0.18), as well as some
curvature identities which hold only in very special cases. Thus, their argument
does not generalize to our case where (0.18) fails. Nonetheless, as explained
below, our method permits us to show

(0.19) Bzn;

see Theorem 5.103. By relaxing (0.18) to (0.9), we bring in many more exam-
ples, including a large family of Kahlerian ones constructed in [TY] (see also
[BK] for special cases with extra technical assumptions). Theorems 0.15 and
0.16 provide at least a partial converse to the construction of [TY], a complete
converse if one can remove the condition that the dimension of the space of
holomorphic Killing fields is 1.

Of course it is natural to ask whether Theorem 0.13 continues to hold
if the hypothesis of integrability is omitted. Indeed, the discussion of Simon
[S1], [S2], where the analogous question of the uniqueness of asymptotic lim-
its is treated for variational problems (including those for minimal surfaces
and harmonic maps) suggests that we should expect uniqueness of § without
any additional assumptions. However, without the integrability hypothesis, we
should not expect convergence at the rate »—F, but only at the slower rate

1
flog ri=#""

Our approach has considerable overlap with that of Simon, although in our
situation (unlike his) suitable monotonicity inequalities are not known and the
equation is degenerate elliptic i.e. we must get rid of the action of the diffeo-
morphism group on the space of metrics. The existence of suitable monotonicity
inequalities would provide one method for treating the nonintegrable case. We
point out that for minimal surfaces, the integrable case was first treated by
Allard-Almgren, [AA].

Sketch of the proof

In proving Theorem 0.13, we begin by considering metric g which is suffi-
ciently close in the appropriate scaled topology to a Ricci flat cone metric, go,
on an arbitrarily large (possibly semi-infinite) annulus in C(N"~'). We show
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that there exists a diffeomorphism, #, close to the identity in the appropriate
scaled topology, such that y*g is divergence free with respect to go. For the
application, it is crucial the degree of closeness required for the conclusion
to hold is independent of the size of the annulus. Since C(N"~') is noncom-
pact, this result is not quite standard and in certain exceptional cases, we must
actually use a slightly modified notion of divergence. This technical point is
mostly ignored for the remainder of this section.

Next we study the linearized deformation equation, gotten by putting & = g;
in

d .
(0.20) = (Ricy, )= = 0.

for divergence free symmetric bilinear forms on the cone, (C(N"~'),go). By
using separation of variables, we observe that the general solution of (0.20)
can be written as a sum of solutions which are of three different types,

a) growth, like r#(f > 0),

b) decay, like r (8 > 0),

¢) radially parallel.

The existence of tangent cones tells us that our solution to the nonlinear
equation, (M", g), lies as close as we like to some cone for r sufficiently large.
Therefore we must show that:

i) the behavior of solutions to the nonlinear equation which lie sufficiently
close to a cone can be modeled on that of solutions of the linearized
equation;

ii) for (M”",g) as above, the influence of the solutions of types a) and c) is
negligible.

If we take i) for granted, ii) can be seen roughly as follows.

In the presence of the integrability hypothesis, the contribution from the
radially parallel solutions, c¢), can be subtracted off (i.e. removed) by changing
the reference cone. We emphasize that when integrability does not hold, it is
these solutions which cause all the trouble.

For r sufficiently large, a given growth solution, a), lies at a definite dis-
tance from any cone. Thus, if its influence were felt at all, this would force
(M",g) to eventually lie at a definite distance from any cone as well. But this
contradicts the existence of tangent cones.

Note that since a growth solution can start out arbitrarily small, we have
no a priori control over the size of the annulus required for it to grow to
a definite size. This is why we must consider arbitrarily large annuli when
constructing # such that n*g is divergence free.

Point i) seems almost clear, provided we are considering an annulus of a
fixed size over which the norm of our solution does not vary too much. But, as
noted above, we must in actuality, deal with annuli which are arbitrarily large.
As in [S1], [S2], we use an argument based on consideration of three adjacent
annuli which (up to scaling) have a fixed size. In this context, if 1) failed to
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hold for solutions, n*g, lying arbitrarily close to our conical metric go, then
by an argument based on rescaling and elliptic estimates, we would obtain a
solution of the linearized equation with the wrong behavior; a contradiction.

In the divergence free case, (0.10) can be written as [14 = 0, where & = da
and CJ is a second order elliptic operator on N”~!. The admissible values for
the number f in (0.14), are determined by the spectrum of .

In general, [T has a finite number of negative eigenvalues, and [ = 0 actu-
ally implies § = (n — 2). In the ALE case we show that in fact § = n. If M%*
is Kahler, under the assumptions of Theorem 0.15, we show that 0 = 0, by
reducing matters to the complex base, on which the corresponding statement
is essentially known. Actually, in the Kahler case, we show f = 2k.

Outline of the paper

The remainder of the paper is divided into eight sections as follows.
. Existence of tangent cones

. The operator 8, Lygo on a cone

. Reduction to the (modified) divergence free case

The linearized equation

. The integrable case

. A special result in the nonintegrable case

. The linearized equation in the Kédhler case

Appendtx A sharp decay estimate.

8. Complex integrability and the Kahler case.

In Section 1, we observe that a slight extension of the argument of [BKN]
proves the existence of tangent cones in our situation. We state this in a more
precise form which is required for the argument sketched above, see Proposition
1.50.

In Sections 2 and 3 we reduce matters to the (modified) divergence free
case. In Section 3 (see Theorem 3.1), we apply the implicit function theorem,
based on the analysis of the relevant linearized operator carried out in Sec-
tion 2; see Theorem 2.68. This enables us to state a version of Proposition
1.50 which holds for the (modified) divergence free gauge; see Proposition
3.24. Such a result is required for Section 5.

In Section 4, we write out the linearized deformation equation, (0.11), on
a Ricci flat cone, and using separation of variables, exhibit its solutions; see
Proposition 4.65. The specific applications to Section S are explained at the
end of Section 4.

In Section 5, we prove our main result in the integrable case, Theorem
0.13. In addition, we give an essentially sharp result on the rate of convergence,
Theorem 5.78.

In Section 6 (which for the present paper represents something of a digres-
sion) assuming uniqueness of the tangent cone, we prove logarithmic conver-
gence in the most nondegenerate nonintegrable case
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Sections 7 and 8 deal with the Kéhler case. In Section 7, we show for a
standard Ricci flat cone that (modulo diffeomorphisms) all bounded infinites-
imal deformations come either from deformations of Kéhler class and decay
quadratically, or come from infinitesimal deformations of the complex structure
on the base and decay at least like »—(%—%),

In Section 8, we complete the proof of Theorem 0.15 and Theorem 0.16.

As mentioned above, in a future publication, [CT], we will study the Kéhler
case in the presence of (0.2), (0.5) when assumption (0.1), Ricyn =0, is
weakened to Ricy» = 0. We will show that in this situation, the complex
structure still behaves in asymptotically conical fashion and that one can still
construct a complex analytic compactification.

We mention that for the analysis of Section 7, we need the following basic
eigenvalue estimate which does not seem to be too well known; see however
[EM] and [DNP] p.48. (We are indebted to Michael Taylor and McKenzie
Wang for providing these references).

Let (X', §) satisfy

(0.21) Ricy— 2 (n—2)d .

Then the smallest eigenvalue, . , of the Laplacian on coclosed 1-forms satisfies

(0.22) Bz 2An-2),

with equality holding precisely for 1-forms which are dual to Killing fields and
which are pointwise eigenvectors of the Ricci tensor with eigenvalue, n — 2.
The proof of (0.22) is very short; see Theorem 7.6.

A final point of notation. Throughout the paper, @, A, will always denote
the constants in (0.2),(0.9) respectively.

1 Existence of tangent cones

In this section we prove the existence of tangent cones, (C (N"™1), o). In fact,
we require a more precise result, Proposition 1.50, which asserts the following.
Given ¢ > 0, there is a tangent cone, C(N"~!) and a gauge, ¢: Azp(p) — M"
such that in a suitable scaled norm, -
i) ¢*g is e-close to gg, somewhere on Ag r( p),
ii) ¢*g is e-almost radially parallel with respect to go,
iii) ¢*g is e-almost divergence free with respect to g.
Moreover, either
iv) near r = R’ < oo,¢*g is a definite distance, x, independent of &, away
from gy,
or
v) R = oo.

In Proposition 3.24 we will show that in iii), “e-almost divergence
free” can be replaced by “divergence free” (provided we use the modified
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divergence, d,). In Section 5, this formulation will help us, to rule out possi-
bility iv) and to obtain our main result.

Let |T|iqg denote the C** norm of tensor field, T, on a riemannian man-
ifold, (X™,§), where the norm and covariant derivatives are computed with
respect to a fixed riemannian metric, §. Note that if f: X™ — X™ is a diffeo-
morphism and if, §;(7) denotes the tensor field on the domain corresponding
to a given tensor field on the range, then

(1.1) 1Bs(T2) = Bs(TD)lkasp-g = T2 = T lksg

In particular, if f is an isometry, the two norms in (1.1) coincide.
If G, g, satisty say |92 — gilog,, < 3. then for any T of type (p.q),

(1.2) |T|k,x;y} = Cp,qlTIk.oc;q‘ lg2 — g1 lk#;‘i’ .

We begin with some notation.

Let {[X,4,]} be a sequence of isometry classes of riemannian manifolds
diffeomorphic to a fixed riemannian manifold (X™,§). We say that {[X",¢,1}
converges in the C** topology if there exists (X™,§) and diffeomorphisms,
Bi: X" — X", of class C¥+1%, such that

(13) lim 183, = dleng = 0.

If (C(N"~1),gp) is a metric cone, then the metric, go, is given by, go =
dr? + r?{, where § is the metric on N"~1,

Proposition 1.4. The collection [N"',§)] such that the associated cone,
(C(N"™ 1), go), satisfies (0.2),(0.8),(0.9) for fixed Q, A, is compact in the C**-
topology for all k,o. In particular, for x € 41 2(p), injrad)£ = e(n, 2, A1)

Proof The conical structure, together with (0.9) implies that (N"~!, §) satisfies

(1.5) [ R < C(n,Q,A).
NN—I

Since 7 > dim N"~!, Vol(N""!) = nQ,diam(N"~') < =, the claim is an ob-
vious consequence of the compactness theorems proved in [A1],[G],[Y].

Recall that the results of [A1],[G],[Y] referred to above, proceed by bound-
ing from below, the C¥*-harmonic radius, r, of § (equivalently, go).

On a cone, it is also convenient to introduce norms which take into account
the scalings of the cone. Let y: C(N"~') — C(N"~') be defined by y4,(x,r) =
(ux,r) be defined by Yy (x,r) = (ux,r). Put

P q
(1.6) A=) @ B W) @Y - YY) -

Let T be a tensor field of type (p,g). Define the pointwise norm |7(u,%)ke0,
at r = u, by
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(17) IT(M,)C)lk#;() = IuquAuT(lax)lk,at:O B
where the norm on the right-hand side is the C¥*-norm, with respect to gq at
(1,x). Put
(18) |T11\:a:0 = sup ‘T(u’x)lk.i;O
(u,x)

Then it is easy to check that

(19) |T|k,1;0 é c,

is equivalent to

(1.10) (VOYT(r,x)| < clk)r™", i=0,...k

(1.11) (VYT (0o S elhyr=,
where the norm on the left-hand side of (1.12) is the a-Hélder norm and V°
is the riemannian connection of go.

If T is defined for all r sufficiently large and for all such r satisfies (1.10),
we write

(1.12) TeTih.

More generally, for £ € R, write

(1.13) TeTpy,

if and only if

(1.14) rTe Tl

Thus for example, the function r itself satisfies, for all k, o

(1.15) re 7o,

For T € 7%, we put
(1.16) |T|k,1;/ = |r_/T!k,1:0
Let p € M" and let p denote the distance function from p.

Theorem 1.17. Let (M",g) satisfy (0.2),(0.8),(0.9). For all 0 < ¢ << L and
k,a, there exists c(g,¢, L,k o), such that if

(1.18) R 2 o(g,6.L, k),
there is a cone, (C(N"~"),go), satisfying (0.2),(0.8),(0.9) and an imbedding,

(1.19) ¢ AR 1rR(P) = Ar.1r(P)
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such that
(1.20) |69 — golrao < &,
(1.21) lpod —rlox < e.

Remark 1.22. Of course the metric, gy, on C(N"~1), or equivalently, the
metric § on N"”!, might a priori depend on the particular number R =
c(g,& L, k, o). Indeed, this issue is our main concern.

Corollary 1.23. For some compact set C,M" \ C is diffeomorphic to (R,o0) X
N

Corollary 1.24. (Existence of tangent metric cones). Given a sequence ¢, — 0,
L, — o0, and annuli, Ag 1,z (p) as in Theorem 1.18, there is a subsequence
(&,,L,,Ar,,L,z,(p)) such that for suitably chosen ¢, as in (1.20), the metric, §,
on N"~' can be chosen independently of ;.

Proof of Theorem 1.18. If instead of (0.9) we assumed

C
(1.25) Rl < 5

(where in (1.26) R denotes the curvature tensor) then Theorem 1.18 would fol-
low by repeating the argument of [BKN] (see also [Al], [AC], [CC2]). Given
the more general assumption (0.9), the argument requires only minor modifi-
cations. Indeed, by the convergence theorem of [A2], the rescaling argument
of [BKN] (see also [A], [AC]) yields a space, M7, which is both a volume
cone and a Ricci flat manifold with at most a finite number of singular points
on any annulus, 4,, ,(p),0 < r < r, < co. Moreover, the singularities are
all of orbifold type. A straightforward modification of the argument in [BKN]
shows that if 0B, ( p) is free of singular points, then the metric behaves coni-
cally along all radial geodesics passing through 8B, (p). If the singular set is
nonempty certain of these geodesics will end in a singular point. However, this
possibility is easily seen to be incompatible with the volume cone structure.
It follows that there are no singular points. Thus M, is a Ricci flat cone,
C(N"™"), where N"~! carries an Einstein metric, §, satisfying (0.10).

For the construction of the gauges described at the beginning of this section,
we will need some standard facts concerning the existence of divergence free
gauges in the compact case [E]. We now recall these facts and introduce some
notation.

Let (X", §) denote an arbitrary compact riemannian manifold (we use the
notation § since in the application, N"~! will play the role of X"~').

Let d; denote divergence with respect to the metric 4.

For k€ Z*,0 <a <1 there exists 0 < 1;(g,k,®) < 12(g,k,o) and
(g, k, ) = 1 with the following propetties.

For each §,, with
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(1.26) 191 = dlixg < T1(g k)

there is a diffeomorphism, 54, : X" ' — X7, of class C¥*'*, such that

(1.27) 84(n; 1) =0.

Moreover, the map, §, — 7;,, satisfies

(1.28) 15, — ng, lks2ag S (G OG) — Falkag -
and if 1d denotes the identity map,

(1.29) }774“. —ldiy205 £ C(g»ks“),éd(gl)|k—l,a;4i .
Finally, if { is a diffeomorphism such that 84({*§,) = 0 and

(1.30) 187Gt — dlimg < (g ko),
then for some isometry, 1, of g,
(1.31) Uy =g -

It is clear that 7;,7; above can be chosen such that if §, satisfies (1.27),
then

(1.32) 5,61 — Gl < T2(d, k) .

Now, fix a metric, §;, on X', We can assume that 7,(gy, ko) satisfies

. 1
(133) tl(QO’ka‘l) < gTZ(QO’k’a) .

By (1.2), (1.27), we can and will assume that 7 is so small that

(1-34) |51 - go[k,a:.zi(. s g’ J= 1,2
O T

(133) 162 = Gilkna, S 5 -

implies

(1.36) 152 - gl |k,a;d[, = 2|.‘72 - .‘71 |k.z;.ci. .

Lemma 1.37. Let §; be a sequence of metrics on Xr10<i<N < o,
such that

T
(138) G = Glkag <& < 5, iHL<N.

Then there exists N' < N and for 0 £ i < N/, diffeomorphisms, B:X""! —
X", such that By = Id and

(1.39) 6;,(BG)=0,
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(1.40) 1B7G, — Bi1Gi-1 kg, < ook 0)e

Moreover, if N/ < N £ oo,

(1.41) |ﬂ;,7|g~w7, — Jolkwg, 2 71— 2¢

Proof For i < N' £ N we define by induction the sequence of diffeomor-
phisms,

(1.42) B = Myes, = Ndy >

(1.43) B =, B,

and in general,

(1.44) Bo=n, Bt

I
Here, 7. . is the diffeomorphism in (1.28) defined with respect to the metric
=1
do (= g of (1.28)) and N’ < N is the largest (extended) integer such that for
i< N’
(1.45) (B_19. — 90|k,a;.¢io <T7T.

By the definition of 1y, it follows that 8, is well defined for i < N’ and by
definition, relation (1.40) holds. Moreover, if N’ < N, then by definition,

(146) Iﬁ;/‘,gl\// _go,kﬂ%!.o ; T
Using (1.1), (1.39) together with (1.35)—(1.37), we have for all i < N,

(1.47) Bi1G; — B kg, < 26

If (1.42) fails, then (1.47) (for i = N') contradicts (1.46). Similarly (1.47)
together with (1.29), (1.30) give (1.41).

Before proceeding to the main result of this section, we make a definition:
If U C C(N"1,g0) and y;: U — C(N"™1),j = 1,2, put for each (u,x) € U

(148) Pgo()’l(uyx)y y2(u’x))/l.ot;1 = Pgu(lk,»\ yllhts ‘/luvl YZ'/‘l)k,a 5
where Y, is as in (1.7). Also, put

(1.49) Pgo(P15 72 kst = Sup pg, (y1(s, ), v2(, X) Yy
(ux)el
Here pyy is the k,a distance from y,,y, defined with respect to the metric go.
Fix 0 < ¢ << y << 2, where y < ¢y(n,c,4,k), and ¢, A are as in (0.2),
(0.9).
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Proposition 1.50. Let M" satisfy (0.2),{0.8),(0.9). Then there exists a Ricci
flat tangent cone, (C(N"~'Y, go), satisfying (0.2),(0.8),(0.9), and R < R' with

Rl

1.51 -

(151) z > 2

and an imbedding,

(1.52) ¢ Ar v (p) — Arr(p},

such that

(1.53) 10" — golixo < X »

(1.54) min {9*g — golewo < ¢,
Appr{p)

(1-55) ) V?/[r (d)*g)|k—l,7;—l <&,

(1.56) 1060 (@™ Dk—1-1 < &

Moreover, either R’ < oo and for some c3(n, &, A,k) > 0,

(1.57) |6"g — golrage > 21 on Agr,r(P)
or

(1.58) R = oo,

(1.59) Jim | Ve (09N lko-1 =0,
(1.60) Jim 164,(¢"9) (ka1 =0

and for some sequence, r, — o0,
(1.61) lim |¢"g(r:) — go(r)lkxo =0 .
=00

Proof Fix 0 < ¢ < ¢ and L > 0 sufficiently large, to be determined later.
Choose R so large that for each annnulus, Ag sz (p), with Ry 2 R, there
exists a Ricci flat cone and a map ¢ as in (1.20).

For 0 £ i < o0, put

_d+2ly e

(162) a; 3

(1.63) I, =(a,Lla),
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and note that for i + j,[;NI; is nonempty only for j=i—1,i+ 1. Also,
anhinly = 0.
For 0 £ i < oo, choose tangent cones (C(N"!),g,) and imbeddings

(1.64) ¢1:Aa,,Lal(_[_7_) — Ag, La(P)

satisfying (1.21) with ¢ replaced by ¢,. Since an isometry between annular
domains in cones is of the form (r,x) — (r,¢x), for some isometry g of the
cross-section, we see that there exist diffeomorphisms, 4, 1: N"~! — N"~! such
that on Aa,,La,(E) nAaw|‘La,+l(£),

(1.65) P (Ud, A7) i dd iy < c8(e1)

(1.66) [ — gi!kﬂ;ﬁ, < d(er1)

where d(¢) is an increasing function, with lim,.¢ d(g) = 0.
Put

(1.67) g.=Arg,

Then {gl}, satisfies (1.39) of Lemma 1.38, we have with & replaced by d(¢)).
Thus, for y sufficiently and f;, N’ as in Lemma 1.38, we have

(1.68) g =Pg. i<N

(1.69) 52,(3)=0.

Moreover, if we put

(1.70) ¢ =Pidi A,
then the ¢ satisfy
=i

(171) Py (¢ & Idhmr < Oer) .

Now by a standard argument (compare [C], [AC]) we can slightly modify the
¢ such that on the annuli say A(1/s)L4,(4/5)4,(P), the modified qb fit together

to define 2 map

(1.72) & Asirasiay_ (p) = M" .

Let L be sufficiently large and ¢ be sufficiently small. Then it is clear
from Lemma 1.38 that (1.53)-(1.57) will hold in the case N/ < N = oo of
that lemma, and that (1.58)-(1.61) can be arranged in case N’ = N = oo.
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2 The operator Jg,Lxgo on a cone

In this section we do the linear analysis which is required for the construction
of divergence free gauges given in Section 3.

Let (C(N"1),g0) be a metric cone.

Let y be as in (1.48), (1.49). Write y € Dy, if v is defined for all (#,x)
with r sufficiently large and for some c,

(2.1) Pgo(1:4d Yy = .

Note that for the usual action of diffecomorphisms on tensors,

2.2) 9k+1,a;l . g/.lf,’az/ — a/-;z;g/ .

Let g be defined on A.q4(p) C C(N"~'). We ask whether |g — golsxo suffi-
ciently small, implies the existence of 1y € Dyt 41, With py,(1y,1d Y small,
such that
(23) 94,(1139) = 0.

For the application, it is important that the required smallness of |g — golia0
should be independent of the size of d/c, where we assume say
2.4) - =2.

The implicit function theorem approach to this question necessitates that
we analyze the linearized equation
(2.5) 51}0LXgO = *5q<>h »

where X is a vector field, Ly denotes Lie derivative and 4 is a symmetric
bilinear form. More precisely, the standard approach makes use of Hy(l,:),
where Hx(,-) is the flow generated by X. Relation (2.2) and the following
lemma (whose straightforward proof we omit), suggests that we require X &
T i 0 (25).

Lemma 2.6. If X € 9’,1[;(:,,“;1 is defined on an annulus, A..o(p) S C(N"™1)
and is tangent to the boundary, (c,N'™'), then

(2.7) Hy(t,-) € Diy141 -

Note that since in the application of (2.5), we will take h = g — gy, where
g € T2, we will have

(2.8) Sph € Ty al .
Using (2.12), (2.13) below, it is easy to check that

N . 01 1,0
(29) aguLX.‘IO- '0/-—k+],u;] - 9’1{—1,1;—] .
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Thus, we ask if there is a bounded righr inverse, (5{,0L)(go)“:3’,{,’31.&‘“1 —

0.1
7 et

It turns out that if no such inverse exists, then there exists

(2.10) X €T con

such that d,Lygo =0 and X has precisely linear growth.

The existence of such an X corresponds to the existence of certain parti-
cular eigenvalues, p, for the Laplacians on co-closed 0 and 1-forms of ¥ =l
(including the eigenvalue y = 0 on functions, which is always present); see
(2.37)+2.39).

In the cases (2.38), (2.39), the gauge condition must actually be modified,
to obtain the existence of n,.

For (2.37), which corresponds to the existence of a Killing field, a gener-
alization of (2.4) and Lemma 2.6 holds. Thus, in this case, no modification if
the gauge condition is required; see (3.3)—(3.9).

Recall that

Lygo(Y,Z) = go(Vy X, Z) +g0(Y. V2 X),
(2.11) = U"X*(Y,Z),

Il

g, Lxgo(y) >90(Ve Ve, X.Y) + go(Ve Vy X,e1)

(2.12) = go(V*V X, Y)+ go(Ric(X),Y) + go(grad div X, Y) .

Here X denotes the 1-form dual to X. Using Bochner’s formula, we see that
(2.5) is equivalent to

2.13) (d*d +2dd* — MRic, )X* = 5,k .

Because our ultimate interest is in the case Ric,, = 0, for convenience we
will study the operator (d*d + 2dd*) for go arbitrary. Then we can directly
adapt the discussion of [C].

Let d,d denote the operations of exterior differentiation and its adjoint,
for forms on the cross-section, N*~!. Then letting prime denote differentiation
with respect to r, the operators dd*,d*d on 1-forms of C(N"~') are given by

dd" (n(r,x) + x(r,x)dr) = r2dd n — dK’ ~ (n — 1y~ 'dx
+(r_2‘r”ll - 2r—3(§*’7)dr
@1 HK = (= D'+ (n = D PRy
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d*d(n(r,x) + k(r,x)dr) = —n" —(n =3y~ +r72d dn
+di’ + (n— 3y 'dx
—r_zg*n'dr
(2.15) +r2d drcdr .

For the above see [C], p. 586.
Observe that any 1-form can be written as an infinite sum of forms of the
following types and that d*d 4 2dd* preserves the types.

(2.16) f)éx)  (degp=1)

(2.17) k(rydd(x) + £(r)r~" ¢(x)dr (deg = 0)
Here,

(2.18) d¢p=0,

(2.19) Fdp=up.

It will turn out that the kernel representing the Green’s function for (2d*d +
dd*) does not decay fast enough to be defined on the subspace of 7 2;;_1
corresponding to (2.16), (2.17), unless p is greater than the values in (2.37)-
(2.39). Thus we will begin by solving (2.5) directly by variation of parameters,
when the right-hand side is a finite linear combination of forms as in (2.16),
(2.17).

Put

(2.20) r=e.

After performing (2.20) and the substitutions f(e’) = p(r), p'(¢) = q(t), etc.
in order to reduce to a first order system, we get a system of the form
220 U'— AU = é*K .

Here A is a matrix of constants, of size 2 x 2 for (2.16) and 4 x 4 for (2.17).

The vector valued function K is bounded in ¢ provided the inhomogeneous

term in the original equation is in 7! . This follows from the fact that for
g q kor—1

¢ and i-form, '

(2.22) 0 = U |G -

Suppose that for an invertible matrix, V, with constant entries and a diag-
onal matrix of constants, A, we have,

(2.23) M —AM =0,

where
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(2.24) M =vel.

Here the columns of V' and corresponding entries of A are eigenvectors and
corresponding eigenvalues of A.

Put
M 0
(2.25) A= ,
0 An
Ri(t)
(2.26) vk = :
Ry (1)
Define

t
‘ [e PR (s)ds A, <2
2.27) [P Risyds =S 0
~ @B R(s)ds 4 > 2

!

and set
fe(z‘;“)sRl(s)ds
(2.28) Je M y=lKds = :
S5 Ry (s)ds
Then
(2.29) U = M(t) [PV~ K(s)ds

is a solution of (2.21).
Clearly if for all j,

(2.30) A *2,

then
d’

231 —(KEWEC 055k
ds/

implies

232 de<cc2’ 0sj<k

( . ) E‘ = k €, =.] =

for some constant,

(2.33) Cr = Ci(max |A; — 2|7}, det V1),
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(with corresponding C** bounds). In the same way, for the original equation,

(2.34) (d*d+2dd*)X* =v,

we have, more generally, the following.

Lemma 2.35. Let v be a finite linear combination of forms as in (2.16) or
(2.17) such that A, %+ 2+ p holds for the equation gotten by the substitution

r=¢. Thenv € ‘72’11_9(-—1—,) implies that the solution corresponding to (2.29)
satisfies

(2.36) X €T iy

Until Section 5, we will be primarily concerned with the case p = 0 cor-
responding to (2.30).

Let p be as in (2.19). Using (2.14), (2.15) it is easy to check that the
condition in (2.30) is violated precisely when for (2.16)

(2.37) u=2mn-2),
and for (2.17)

(2.38) u=20,
or
(2.39) w=2n.

It is also easy to check that in just these cases, condition (2.10) is violated.

More precisely, in these cases, d*d + 2dd™ is not surjective from gilﬂ;l to
9‘2'11_“;_“ and (2.29) leads to a solution satisfying (rlogr)~! X* € .7'211,%0.

In the cases (2.38), (2.39), this does not suffice for our purposes.
The 1-forms corresponding to (2.37), (2.38), (2.39), which violate (2.10)
are

(2.40) e,
(2.41) rdr,
(2.42) rrdg+2r¢

(see [C], p. 586). The case (2.41), in which the form is dual to the infinitesimal
homothety, rc‘%, always occurs.

To obtain condition (2.30), we replace the operator (= d,,) by an operator
d, defined as follows. In forms as in (2.17) corresponding to (2.37), (2.38),

(2.43) O =0 — ti,— afer -
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Here, ¢ € R and i denotes interior product. In the direct sum of the remaining
spaces of forms in (2.16), (2.17), we put ¢, = 6. If X is dual to the 1-form
X* = n+ kdr, then by a straightforward computation,

(2.44) bt garkxgo = (" = 2r g 4T di) + 27 dr

By using (2.14), (2.15), it is easy to check that (2.9) and (2.30) hold for the
modified operator,

(2.45) SLygo (t # 0).

Alternatively, the forms in (2.38), (2.39) are not in the kermel of the operator
in (2.44). Hence they are not in the kernel of the operator in (2.45) either.

We mention that for the application to Ricci flat manifolds in Section 5, the
modified gauge condition defined by J, = 0 will turn out to be an intermediate
technical device. We will ultimately be able to control such solutions in the
standard gauge corresponding to 7 = 0.

The 1-form in (2.40) is dual to a Killing field, x, on C(N"~!). Equivalently,
0¢p = 0,10 = 2(n — 2),Ricy.— = (n—2), implies that ¢ is dual to a Killing
field, x(1,x) on N"~!. Since Lygo =0, r2 ¢ will be in the kernel of the operator
corresponding to (2.45), no matter what the gauge condition. In this case as
is easily checked, (2.29) leads to a solution, X*, such that (on say 4;.(p))

(2.46) (rlogr)™'X € 7,121‘1;0 ;

compare (1.15). However, since X generates a 1-parameter group of isometries,
it will turn out that a generalization of (2.4) and Lemma 2.6 holds for X™ as
in (2.46) in this case. Thus, we can work with the usual gauge condition,
dg9 = 0, on the corresponding space of forms.

We have not yet discussed boundary conditions, nor have we dealt with
infinite sums of forms in (2.16), (2.17).

For p as in (2.19), put

242i—n

24 == -
(247) a > ,

(2.48) v=+vo+u,

(2.49) atf=atv.

Here i =1 in (2.16) and i =0 in (2.17).
The solutions corresponding to (2.16) are

+

(2.50) r ¢

The solutions corresponding to (2.17) are of two types,

(2.51) rrdg 4+ atr T dr A g
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(2.52) 22 4h 4 aT e A

(compare (2.52) and (4.11)—(4.20)). Note that by subtracting off appropriate
multiples of the (—)-solutions in (2.50)—(2.52) we can modify the solution
corresponding to (2.29) to obtain a solution, u, satisfying absolute boundary
conditions

(2.53) Wy =0,

(2.54) du¥ =0,

such that (2.35) continues to hold. Here ( )V denotes normal component.

The above remarks apply essentially unchanged to the perturbed operator
in (2.45). The only difference is that the values a* change slightly (depending
on the size of 7).

For infinite sums of forms as in (2.16), (2.17) we must bring in the Green’s
function in order to solve (2.5).

We will discuss explicitly only annuli of the form 4...(p). The general
case A.4( p) is handled similarly. Alternatively, one can use a simple argument
involving a cutoff function to deduce results from the case d = co, which
suffice for the eventual application in Section 5.

We consider first, the case (2.16). For arbitrary sums of forms as in (2.16)
the Green’s function on 4, ..{p), with absolute boundary conditions at ¢ is
given by h

1 a , a,
(2.55) Ty =rn ¢,0¢, n<n
J
(see [C]). Observe that since the volume element on C(N"~') is

(2.56) Pldr Awg_y

where @,_; is the volume form on N"~!, in order even to be able to apply a
kernel f(ry,x|,r2,x2) to a form of linear decay, r~1, we should have for fixed

i,

(2.57) |z rx)] S er'™

so that

(2.58) Jr i e < 0o
1

It follows from (2.22), (2.49) that (2.57) will hold for the sum in (2.55)
provided we drop the terms with y < 2(n —2). Thus, let G be the sum in
(2.55) with the restriction g > 2(n — 2). Then it follows that G inverts d*d +
2dd* on the direct sum of the spaces of forms in (2.9) corresponding to
u>2(n—2).
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The discussion of [C], Section 6, can be adapted immediately to show that
the symmetric kernel G satisfies

(2.59) |G(r,x1,rnx) £ C-dist((r,x)), (r2, x2) ™" % < ;I— <1
2
@60) 1G] S Clin) ), <
2
where h(s) is smooth for s > 0 and as s — 0,
(2.61) h(s) = O(s*).
Here ¢ > 0 is given by
n
2.62 = i _Z
(2.62) ©T ) 2
Suppose
(2.63) k=3k{re;, w >2n-2)
satisfies
(2.64) k| £ wr!,
Then if ¢ < 1ry,
1/2r, 2ry
G| = [ [IGlIklr; ™" dr2+ [ [IGIklr3™" dr,
c N 12nN
o
(2.65) + [IGliklr5~" dr, .

2r

If %rl =< ¢, the first two integrals get replaced by an integral from ¢ to 2r;
and the estimates which follow undergo an obvious modification.

Putting s = r{/r, and using (2.60), (2.61), we see that the third integral is
bounded by

12
(2.66) wCry fh(s)sl_"/2 ds £ wery .
0

In the second integral in (2.65), we put s = rp/r; and use the fact that the
singularity in (2.59) is integrable to obtain the bound

(2.67) wCry .

The first integral in (2.65) is handled similarly and we again get the bound
wCry (for say ¢ = 1).
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Similarly, one can obtain estimates on derivatives of the form (1.11),
(1.12), by using the more precise parametrix of [C].

Finally, as above, one can adapt the discussion of [C] to handie l-forms
which are sums of those as in (2.17), with g, > 2n.

The results obtained in this section can be summarized as follows.

On A.q4(p) (with say d/jc > 2) let ¥, C J "%M“‘ denote the space of
I-forms in (2.16) for u=2(n —2). Let #", denote the corresponding space
of vector fields satisfying (2.46), whose dual 1-forms satisfy absolute boundary
conditions at (¢, N"'). Let ¥, C J ,?‘71 denote the direct sum of the 1-forms
as in (2.16), (2.17) for the remaining values of u, and let #°; C 7,13211
denote the corresponding space of vector fields whose duals satisfy absolute
boundary conditions at (¢, N"~').

Theorem 2.68. For t + 0, there exists a bounded operator
(2.69) BiLxgo) ™V @V 2> W W
such that (8,Lygo) (8. Lxgo)™" is the identity on 0‘21

In the same way we have the following; compare Lemma 2.35. Fix p > 0.
Let # C ) X +2 . denote the space of l-forms satisfying absolute boundary
conditions. Let the {%;} be as in Lemma 2.35.

Theorem 2.70. If 4; & 2+ p, there exists a bounded operator

2.71) (O Lxgo) ™ T o\, =W,

such that (8,,Lxgo)(SyLxgo)™" is the identity on 9‘,](:2;_]_‘

3 Reduction to the divergence free case

In this section we construct ¢,-free gauges and use this construction to sharpen
Proposition 1.50 (see Proposition 3.24).

By Theorem 2.68, for t =+ 0, the linear operator (5,Lxgo)”"' is bounded.
Fix such a number ¢. In what follows let 0 < « < | and d/c = 2

Theorem 3.1. There exists k(t,k) such that if (C(N""!),go) is a Ricci flat
cone and g is a metric on Ac4(p) C C(N"™1) such that

(3.2) lg ~ golkxo < w(t,k)
then there exists a diffeomorphism, 1: Aca(p) — Aca{p) such that

(3.3) m"g € T yag

and

(34) 3(n"g—g0) =0.



516 J. Cheeger, G. Tian

Moreover, if

(3.5) 1A DNk=105-1 < &,
then
(3.6) 1°9 — gleap < 6(2),

where 0(g) | and

3.7 liné oe)=0.

Proof With the notation of Theorem 2.68, let ¥ = (¥},Y;) € #") & #7,. Thus,
Yy = f(r)X, with X a Killing field for the metric gg. We denote by Ky, the

diffeomorphism

(3.8) Ky = Hy,(1,Hy,(1,4)) .
Here, Hy(t,-) is the flow generated by Y,. Hence,

oHy (1)
) Y (Hy (1,
(3.9) { b (Hy(t,"))

Hy(0,-) = 1d

The main point is to check that the flow Hy (¢,-) has properties which,
for our purposes, are just as good as those of Hy,(t,-); see (3.14). In this
connection recall that vector fields in #7; can grow more rapidly than those
in #7; see (2.46).

It follows from (3.9) that

(3.10) Hy (1) = Hx(¢f(r). ).

Since the Killing field X is tangent to N"~1, for fixed ¢,r, the map Hx(¢f(r),")
is an isometry of the corresponding cross-section. It follows that for some
constant C,

(3.11) IV He (£ (), Mksimo £ C .

ndl . .
Here V' denotes the covariant derivative for the induced metric on the cross-
section (#,N"~'). On the other hand,

5
(3.12) %Hx(f(r),-) = f'(NX(Hx f(r),")),

and by the definition of #7|, for some constant, C,

,
(3.13) = Hx(f(r),) <C,

k+1.2,0

Then by induction, one easily shows that
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(3.14) FV He(f () ko = Cr

This is the analog of Lemma 2.6.
There is a well defined map,

(3.15) BOW\ @ W) x T = @v, =T
given by
(3.16) B(1h,Y1,9) = 0/(K7g)

In fact, it follows from (3.14) that

(3.17) Hy g€ T 0.
Since Y2 € F H“ 1> it follows that Ky g € '7klrl,y.o~ Thus
(3.18) B(Y).Y9) € Ty, »

and, the map B is well-defined.
It is easy to show that B is differentiable at (¥1,Y5,¢) € (#"1 & #7,) X
'07211,0«0‘ Indeed,

(3.19) 16:(K79) — 3,(g0) = S:Ly,+vaGolk—10~1 = O([Y ")

where |¥] is computed with respect to the direct sum norm on #'; & #,. We
have

(3.20) Dy, v:)B(0,0590) = 0:Ly, 1 v,90
and by Theorem 2.68, the inverse

(3:21) (OiLy,47.90) ¥ 1DV 2 — H\ &Y,

is bounded. Therefore, by the implicit function theorem, for {g—
goli+1.00 sufficiently small, there is a diffeomorphism

(3.22) n =Ky

such that (3.3) holds. The second part of Theorem 3.1, (3.5)—(3.7) is an
obvious consequence of the proof of the implicit function theorem.

The following remark is important for the sharp decay estimate proved in
Section 5.

Remark 3.23. Suppose that in fact |¢ — golix—, is sufficiently small for p >
0. Then it is clear that subject to obvious modifications in the relevant norms,
5, can be replaced by 6y = J,, in Theorem 3.1; see Theorem 2.70. For instance,
the space in (3.3) gets replaced by 0/*2; o

Now we can strengthen Proposition 1.50. Let the notation be as in that
proposition.
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Proposition 3.24. Let M" satisfy (0.2), (0.8), (0.9). Then for any ¢,y >
0,6 < < y, there exists a Ricci flat tangent cone, (C(N""'),go). satisfying
(0.2), (0.8), (0.9), and R < R’ with

R/

(3.25) 7> 2
and an imbedding,
(3.26) ¢: App(p) — Arr/ (D),
such that
(327) |¢*g - gOI/H—l,x;O <X,
(3:28) min [¢*g ~ golks1a0 < €,

Ap m(g)
(329) | Vo (¢ Dlka—1 < €.
(3.30) 0(¢"g —go) =0.

Moreover, cither R' < oo and for some cy(n,Q, A,k) > 0,

(3.31) (679 — golerra0 > 22 on Aaw r(p)
or
(3.32) R =cc.

Proof 1t is clear from the proof of Proposition 1.50 that we can replace §,, by
d; in (1.56). Then Proposition 3.24 follows from Proposition 1.50, so modified,
and Theorem 3.1 (see in particular (3.5), (3.6)).

Remark 3.33. The reason that we had to drop the counterparts of (1.59)-
(1.61) in stating Proposition 3.24, stems from the pature of the operator in
(2.27) for the case 4; < 2 (such A; might exist). However, this will not cause
any serious problems in Section 5.
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4 The linearized equation

In this section we derive the explicit form of the linearized deformation equa-
tion on a Ricci flat cone for divergence zero symmetric bilinear forms, &, and
exhibit its solutions. A basic reference here is [B], Chapter 12. We also need
to constder the modified divergence condition of Section 2.

If {, is a 1-parameter family of diffeomorphisms, the metrics {Jgo are all
Ricci flat. Hence, symmetric tensors of the form Lygp are automatically solu-
tions of the linearized equation, (4.1), and vector fields, X, such that dLxygs = 0
(as studied in Section 2) generate divergence free solutions of (4.3). Note that
the component of a symmetric tensor field which involves dr is of the form
dr X1 Y* (where denotes symmetric tensor product). Hence, the space of
mixed components is isomorphic to the space of vector fields. Thus, it is rea-
sonable to hope that the mixed component of any divergence free solution of
(4.3) agrees with the mixed component of some Lygy, with dLygo =0. A
precise result to this effect is stated in Proposition 4.65.

Proposition 4.65 is required for the sharp results on the rate of convergence;
see Theorem 5.78. The qualitative properties of solutions of the linearized
equation (see Corollary 4.86) are used in the proof of Theorem 0.13.

For any Ricci flat metric, the linearized deformation equation is

@.1) (VV7* —26%6 — 2R)h — Hess trh — 0 .

Here * denotes adjoint and tr denotes trace. The adjoint and the trace are
computed with respect to the background metric. Also, R(x,y) = [V,, V,]
— Vixy and

(4.2) Rh(x,p} = =3 h(Rix,e)y,e) .

Thus (4.1) coincides with [B], (12.28") although our definitions of R and R
are the negatives of those used in [B]; (1.1) and p. 52.

In case 6k = 0, (4.1) reduces to
(4.3) (V*V —2R)h — Hess trh=0.

Before looking at (4.3) for the case of cones, we begin with some general
remarks.
Note that

4.4) tr VVh=U"V trh.

Also, if Ricy, = Agg is constant, it is easy to check that

(4.5) {r(Rh) = Atch.

Hence, if Ric,, = 0, taking the trace in (4.3) gives



520 J. Cheeger, G. Tian

(4.6) 2V h=0.
Now putting # =/ + 1 (trh)go, and

(4.7) M= (V*V —2R),

we see that relation (4.3) is equivalent to (4.6), together with

(4.8) (A = Hess trk .

As noted above, since the condition of being Ricci flat is invariant under
diffeommorphisms, it is clear that for any X, Lygo satisfies (4.1). Also

(49) tI‘(LXg()) =20X .
Thus if
(4.10) oLlxgo =0,

or equivalently, (d*d + 2dd*)X* =0, then X satisfies (4.3) and by (4.6),
2d*X* is harmonic.

To find a solution of (4.9) with 20X = u, a prescribed harmonic function,
we can attempt to proceed as follows. Let v satisfy

1

4.11) Av = Eu .

Then

(4.12) 2d*(dvy=u,
. 1

(4.13) dd*(dv) = Edu .

Also, since u is harmonic,

(4.14) d*(du)=0.
Suppose 6,y are 2-forms satisfying

1
(4.15) d*0 = —du,

4
(4.16) Ay =0,
(4.17) dy=d0=0.
Then

(4.18) (d*d +2dd*Ydv—d*y) =0,
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(4.19) 2d*(dv — d* ) = u

and we can put

(4.20) X =(dv—-d"y)".

If the underlying manifold is a Ricci flat cone, then v, 0,y as above exist
and dv — d*y is a form of the type occurring in (2.52). It is neither closed
nor coclosed (unlike the forms in (2.50), (2.51) which are both closed and
coclosed). Thus, for Ricci flat cones, any solution of (4.3) can be written as
h + Lxgo, with X as in (4.20) and h satisfying 64 = 0 and

4.21) Oh=0,

(4.22) tth=0.

We now concentrate on (4.21), (4.22) for 4 with éh = 0.

Let ¥ denote the riemannian connection with respect to the induced metric
on (r,N*~'"yC C(N"'). Let P:T(1,N"™") = T(r,N"~") denote the identifi-
cation of tangent bundles induced by parallel translation along radial geodesics.
Put

(4.23) T=pPvp,
Then
(4.24) V=r'v.

Also, let V 5 A (— trace) be defined with respect to the induced metric on
(,N"~') and let ' denote exterior differentiation on (r, N"~!). Then if

P P,
P3P,
Pd' P,
- Pir'P!,

Il

2120 loa <R
Il

(4.25)

we have

[N
~ =
|
~
|
— S

l

SR O
1
~
!

(4.26)

Let e be tangent to (r,N"~') and let e* be its dual 1-form. Let n be a
1-form such that
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(4.27) 7 (i) =0,

or

(4.28) Va/gr n= 0.
Then
(4.29) Vet =r""(V 1 —nleydr),
(4.30) V.dr=r"le*,
4.31) v 0 _ dr =0

. ofor or =Vgir ar = U,
Let %,el,...,e,,_], be a local orthonormal basis satisfying
(4.32) Ve, =0

at some fixed point, (»,x), and
(4.33) Veore=0.
Then at the point where (4.32) holds,

(4.34) S Ve e=—(n- 1)r—% .

Put

(4.35) o Bom=wi @+ Qw .

We now compute the expression in (4.3) for & = f(r)m Xl 3, with #y, #, as
in (4.27), (4.28).

Z Ve, Ve, (m ) = Z Ve, Ve, n X,

(4.36) Ve, mBE Ve, m + &V, V, 12

Ve Ve, n;

fl

P! Ve (V0 — (e dr)

(4.37) P2 (A, = 28n,dr — 1),

Il

Z V'e1 1’]1 Ve, a2 = r—2 (;_ﬁ_eﬁl S~7—e,r’2 - Eﬂrrlz dr

(4.38) =V, B dr + fi(m B ;) dr @ dr) ,
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(4.39) VearVer U Bm) = g By,
(4.40) = Ve e(fmBu)=r"f'n&Ey.
Thus,

VIV (mBm) = (—f" =D f e (T 4 2)m B
+2r 2 5 B ) ® dr
(4.41) —2r 2 fue(n o) dr @ dr .

(See (4.53) below for §(n X 15).)
Next observe that on a cone,

(4.42) <R(, ), §> —0

(for all choices of the remaining arguments) and that for x,y,z tangent to
(rN"1),

(4.43) R(x, p)z = R'(x, y)z +r 3 ({x,2)y — (p,2)x) .
Then

(4.44)  R(fm B ) =r2f Ry Bopg + i B gz — 0 B 2)g) -
Now let B be a sum of forms of type #, Xl #,. Then by (4.41), (4.44),

O(fB) = (—f" —(n— 1y~ f +r72fD)B
+2r 2 fH(B)G 4 2r 2 £O(B) ® dr
(4.45) —2r 2 ft(B)dr R dr .

Now consider # = k(r)t X dr with 7 as in (4.27), (4.28). Then

(4.46) YV, (k0)E V, dr =r k(¥ "t — 1 R dr),

~ sym - . . . L
where V' © = L.+§, is the symmetrized covariant derivative,

(4.47) V=YV, iRe.
Also,
(4.48) N VeV, dr=—(n— 1)y 2dr.

Since, by (4.43), I%h = 0 in this case, with (4.37) we get
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O ®dry = —2r- %"
[k — (=1 K+ r 2TV + 0+ )]} B dr
(4.49) + 4 S dr @ dr .

Last, consider & = £(r) ¢(x)dr ® dr. Then
(4.50) S V., (¢ddr)® V., dr = r72(¢pg+dp R dr),

and with (4.48) we get

O(/¢pdr@dr) = ~2r2t¢§—2r"2¢de R dr
+ (=" —(n=1)"'
(4.5 + VT 320 — D)bdr @ dr .

Next we compute o2 for /4 as in the three cases above.

(B ) = 3 Ve menz+mle) Ve, m2
(4.52) + Ve, mle)m +ma(e) Ve, m .
Thus, for B as in (4.45)

(4.53) S(fB)=r""fo(B) - r~' f(B)dr .

|

Mkt ®dr) = k3. V, t(e;)dr +1(e)) Ve, dr +(V,, dr)e)r + k',

(4.54) = K+ ke +r~k(br)dr .
Stpdrodry = TPV, drie)dr+/'¢pdr,
(4.55) = (' +(n -1 )pdr

Now we consider a solution of (4.3), which is a sum of the three types
previously considered and satisfies in addition,

(4.56) Sh=0,

4.57) tth= fu(B)+¢p=0.
Then we easily find that (4.3) is equivalent to
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(4.58) (—=f" —(n— Dy f 41 2 fONB = 4r G+ 2r %Y T,

(4.59) (=K —(n+ Dr K +r (T T -~ (n—2)))c = 2r2d ¢,

(4.60) (="~ + 3 4 r (T = 2m))p =0,
(4.61) FU B ki + KT =0,
(4.62) O+ +r kb =0.

At this point we emphasize that in reconciling the results of the present
section with those of Section 2, we must bear in mind that in Section 2 we
used polar coordinates in order to trivialize the tangent bundle in the radial
direction, while in the present section we used parallel translation in the radial
direction for this purpose; compare e.g. (2.22), (4.25), (4.26).

Let ¢ in (4.60) be as in (2.18), (2.19). Then it is easy to check that for
a*t as in (2.49),

(4.63) P2

are the two solutions of (4.60). The corresponding solution of the full system
(4.57)-(4.62) is Lygo where X* is the dual of the form in (2.51).

Similarly, Lxgo with X* the dual of the form in (2.50) is the solution of
(4.57)—~(4.62) with /¢ = 0 and 1 playing the role of ¢ in (2.50).

Note that the forms (2.42) give rise to the radially parallel solutions of
(4.57)—(4.62). The form in (2.41) gives the radially parallel solution (h = gg)
of (4.3) with trk = 2.

Remark 4.64. Corresponding to (2.41), we get Lyg = 0, since in this case X
is a Killing field. Thus, we do not obtain a solution to (4.58)—(4.62). Note
that in this instance, dr [X] T does define a radially parallel solution of (4.58)—
(4.60) (equivalently of (4.3)) which, however, does not have divergence zero.
In fact, even if we were to introduce a tangential component B, (4.61) could
not be satisfied since 48 is orthogonal to the space of Killing fields.

The computations of this section can now be summarized as follows.

Proposition 4.65. If —(1 — n/2)* is not an eigenvalue of 0, then every solu-
tion h of (4.1) satisfying oh = 0, can be written uniquely as a sum

(4.66) h=Lygo+ S B,
i
where each B, satisfies

(4.67) (—f" =(n=1"" ' +r2f)B, =0.



526 J. Cheeger, G. Tian

(4.68) trB, =0,

(4.69) 5B, =8B, =0.
If —(1 —n/2)? is an eigenvalue of £), then a solution of the form r'=#/2
log ¥B must be included on the right hand side of (4.36).

Remark 4.70. Let us note that (I = 0 implies that for b~ as in (4.66),
4.71) b~ £2-n.

Proposition 4.65 has several consequences which are used in Section S.
Before stating these, we introduce some notation.

For fixed r, let us define a symmetric bilinear form on tensor fields of
C(N"™ 1 over (r, N"~') by

(4.72) (i gy =0~ [ (B k) d volye-t
(rNi— 1y

where

(4.73) (hy, ha)

denotes the usual pointwise inner product.
Now consider the modified equation

(478) (V*V —210%i,-1/5, — 2R)h — Hess trh == Clh — Hess trh = 0

It will suffice from now on to assume that |f| is small. As in Proposition 4.65
we find that solutions occur in pairs of the form

(4.75) T
or exceptionally,
(4.76) 0T, PP logrT;

where 7; is a symmetric bilinear form with {T;} orthonormal with respect to

((,)) and
4.77) Voo T =0

Corollary 4.78. For t sufficiently small, the only radially parallel solutions of
(4.74) are of the form fB, where f is a constant function,

(4.79) CB=0,
and B satisfies (4.68), (4.69).
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Proof For t + 0, the solutions which are perturbations of those in (2.41),
(2.42) are no longer radially parallel (compare (2.45)). Since it is clear that
for ¢ sufficiently small, the solutions of (4.74) with 8,/ are small perturbations
of those in (4.67), our claim follows.

Note that since the operators G, _ﬁ‘*_\?— (n—2) and i*i — 2n, which
appear on the left-hand sides of (4.58) are not necessarily positive semidefinite,
we might not have 7 = 0 for some finite number of B in (4.75) (see also
(4.76)). For such values of i we get solutions of the following types.

(4.80) (e +dr®HT, BT < B <0
(4.81) (cr® +dirP logn)T,, B = pE
(4.82) (e’ +drPT, Re pr <0, B =

In (4.82), Im BF + 0.

We will group the solutions in (4.80)—(4.82) together with the remaining
- solutions and call a linear combination of such solutions a | solution. The
remaining + solutions will be called 1 solutions. Thus, any solution, %, of
(4.74) can be decomposed as
(4.83) h=hy+h +h,

where kg represents the radially parallel component.

For our purposes in Section 5 it will be necessary to specify a precise
sense in which the solutions, /|, are norm decreasing.

Define the modified L,-norm of h over an annulus, 4,4(p), by

b
(4.84) liles = SHR1*F" ar

where ||h]j? is defined as in (4.72).

For B, as in (4.75), (4.76), put

(4.85) B = min B .

B £0

Corollary 4.86. Given 0 < i/ < f, there exists £ such that for all a > 0 and
L=/

(4.87) Watlllzazza = L 1111 lata »

(4.88) ailllarza = L7 1A asa -
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Proof Since {T;} is orthonormal, if we did not have to take into account the
solutions in (4.80)—(4.82), this would be obvious from (4.75), (4.77). The
solutions in (4.80)—(4.82) are handled by the following proposition whose
elementary proof we omit; compare however [S1], [S2].

Proposition 4.89. Let f,(r) denote any of the functions in (4.80)—(4.82)
(where c,,d, are arbitrary). Given 0 < B’ < —p¥, there exists £ = £(B,, B},
B > 0, such that fora > 0 and L 2 ¢,

g ,La
(4.90) [y tdr < L7 [ f2nyrtar.
La a

5 The integrable case

In this section, by using an argument from [S1], [S2] we prove Theorem 0.13,
which asserts uniqueness of the tangent cone under the assumption that some
tangent cone is integrable. By a small extension of the argument we obtain
an essentially sharp estimate for the rate of convergence, »—#, in terms of the
spectrum of the operator, ﬁ, on the cross section.

Consider a gauge as in Proposition 3.24. Thus ¢*g is a Ricci flat metric
over an annulus, Ag & (p) C C(N"™"), for some tangent cone, (C(N"~'), go).
Moreover, 6,(¢*g —g) = 0.

Let g; be a second Ricci flat metric defined on Az (p), satistying

(5. Si(g1 —go) =0.

In the application, g; will be a suitable Ricci flat cone metric,

(5.2) g1 =dr* +r°G, .
If we put

(5.3) h=¢"g—q1,
then

(54) Sh=0.

Subject to (5.4), the equation

(5.5) Ricg,4n — Ricg, =0,

is a nonlinear elliptic equation on A, which, for 2 small, we can view as a
perturbation of the linearized equation (4.74). More precisely, we have
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Lemma 5.6.
(5.7) Ricy, 14 — Ricy,, = Uh — Hess tr h 4+ F(go, g1, h)

where

IF(go,91,Mkao £ C{lg1 = Golumo + [kl V2 hli—2m—2
(58) + [| 1% (QI - .‘]0)‘/(—1.01;—! + I 14 hlk—l,a;—l]l v h|k—1,1;—1}

Proof In local coordinates the Christoffel symbols of g; + % are given by

1
(5.9) Iy = E(gl + 1) Chypie + hoiy = hgr)
where
(5.10) (g + 1)) = (g + 1))~
Note also that
(5.11) Ric(gy +h)y = Iy — T, + TyTly — T,

From this, (5.8) follows in a straightforward manner.

Fix an annulus 4,5(p). The modified L,-norm of A over 4,,(p) is defined
as in (4.84). Note that if

(5.12) q=a 2y (h),
with i, as in (1.6), then

(5.13) Allla.a = lHiglll.c

The basic elliptic estimate for this section is the following.

Lemma 5.14. There is a small number, y = y(n,Q,A), such that if g\ —
golkao < 1, then for any solution h of (5.7) with |hlxae = X

3
(5.15) G @lso < cn, 2 AKAlllaa

Proof By (5.13), it suffices to counsider the case, @ = 1, for which the result
follows from standard elliptic theory; see [GT], Chapter 6.

In order to reduce the verification of assertions about sufficiently smali
solutions of the nonlinear equation, (5.5), to the verification of correspond-
ing assertions about the linear equation, (4.74), we will use an argument by
contradiction based on the following Lemma 5.18.

Let {¢;} be a sequence of gauges as in Proposition 3.24 relative to a fixed
tangent cone, (C(N"~1),go), such that for the sequence of constants, y;, of that
proposition,
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(5.16) lim y; =0.

=00

Let g, be a sequence of Ricci flat cones such that

(5.17) oi(¢ — g0) =0,

(5.18) {9i — golkeo < 1 -

The norm in (5.16) is the uniform norm. Put

(5.19) h.=¢ig-g..

Fix L > 0. For j = 0,1,2, consider the annuli

(5.20) Apia,pa{P) CAr, g (P)
Here R;,R! are as in Proposition 3.24. Put

(5.21) gi = a2y (h) .
Lemma 5.22. If for some fixed ¢ > 0,

(5.23) cllthillla,za, Z Mhilllanza, + Ailllza, 0, »
then for
(5.24) ki =gl 9. »

. . 2
there is a convergent subsequence, in T )%,

(5.25) k, —k,

on any annulus, A A p), with a < b < ¢ < La. Moreover, k satisfies

(5.26) Ok —Hesstrk =0,

(5.27) Sk =0.

Proof In view of (5.15) relation (5.25) follows from standard compactness re-
sults. Then (5.26) is a direct consquence of (5.8), (5.16), (5.20). Finally, (5.27)
is clear.

In the next lemma, we isolate a property of solutions of (4.74). By means
of Lemma 5.18, we will show that it holds for sufficiently small solutions
of (5.5) as well.

Let k be an arbitrary solution of (4.74) satisfying

(5.28) Sk =0.
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As in (4.83), we write

(5.29) k=ki+k +ko,
where for 8 as in (4.86), (4.87) we have

(5.30) B=p1)>0.

Lemma 5.31. Given 0 < ' < B, there exists L such that if
(5.32) Wkl = L7kl

then

(5.33) Wkl 2 L)1k S

and if

(5.34) NIkllz2e < LIRS 5

then

(5.35) Wkl < L7 -

Moreover, if

(5.36) k=0,

then at least one of (5.33), (5.35) holds (whether or not at least one
of (5.32), (5.34) holds).

Proof 1If (5.32) holds, then

(et 117 22+ R 2+ WkoI1, 12) 2 L2

(537) Nk 13 L+ ey 117 + kol 117 )

Since ko is radially parallel and we can assume that (4.87) holds, this gives

(5.38) erlliF 2 @ = Dk 2 + kol 1) -
Together with (5.29), we get

v

kG, 2 LzﬁlllkTHlfu,

L2
1P IHkIIILLz-

(5.39) 4

v

Then, by taking L so large that
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, )2l
2A4—p"
(5.40) L Z

the first assertion follows. The proof of the second assertion is entirely similar.
Finally, if (5.36) holds then
1
(541) Wkl 2 §|Hk”lL,LZ

implies

L
k7 2 Tllikllli,u,

(5.42) 2 Pl
provided
(5.43) 2 2 4,
Similarly,

1
(5.44) [yl e 2 '2'H|k”|L,L2 ,
implies
(5.45) kG 2 < 271K,

provided (5.43) holds. This suffices to complete the proof.
We now return to the situation of Proposition 3.24 and we continue to

assume (5.1)-(5.4). We assume in addition, that
(5.46) l91 — golkao < x -
Let B/ > 0, L > 0 be as in Lemma 5.31. For j = 0,1,2, let

(547) AL'a.L/”a(E) CAR.R’(E) .

Over, Ay, p+14( p) let © denote orthogonal projection on the subspace,
ker(C), — Hess t)|4.q,124( p), With respect to the inner product defining ||| ||[zq 120
As in (5.28), put
(5.48) (mh) = (mh); 4+ (mh); + (mh), .

Finally, let ¢, A be as in (0.2), (0.9).
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Proposition 5.49. There exists y(n,2,A) > 0, such that if y < y(n,c,A),
then if

(5.50) WAlezza = L2111 lavta »
then

(5.51) Walllzazia 2 L Wallla 22 »
and if

(5.52) Walllara < L7 NAN g 10 »
then

(5.53) Wallaz2a < L7 1]1A]l0.La »

Moreover, if

(5.54) (th)y =0,
at least one of (5.51), (5.53) holds.

Proof In view of Proposition 1.6, it suffices to prove the claim for y <
X(N" o).

Note that the inequalities in Proposition 5.49 hold if and only if they hold
when # is multiplied by a nonzero constant.

Assume there exists a sequence of gauges, ¢;, and solutions, 4;, for which
the constants y,, satisfy lim,_, y, = 0, but none of the assertions the propo-
sition fails. Then, using the rescaling construction of Lemma 5.22 we produce
a solution of (4.74) with a property contradicting the corresponding assertion
of Lemma 5.31. This suffices to complete the proof.

Remark 5.55. The first part of Proposition 5.49 says roughly that if 4 starts to
grow at a definite rate then it continues to grow at at least that rate. Similarly,
if somewhere / decays at a definite rate, then previously it decays at at least
that rate.

The last essential preliminary that is required for the proof of Theorem 0.13
is the assertion that g; can be chosen such that A = ¢*g — g, satisfies (5.54),
(mh)e. At this point the integrability condition enters.

Lemma 5.56. Let (C(N"~'),g0) be a tangent cone which is integrable. Then
if x < x(n,Q,A,L), for any annulus, A 1.(p) C Arr(p), there is a Ricci flat
cone metric, gy, satisfying (5.1), such that (5.54) holds. Moreover, if

(5.57) 16" g — gollliarza = 1
then

(5.58) g1 = golllzar2a < 2Mn(d"g ~ goWMiLa.r2a -
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Proof The integrability assumption implies that the set of metrics, g, satisfying
(5.59) Ric; =0,

(5.60) 8,9=0,

has a natural smooth manifold structure near g,; see [B]; chapter 12E. Here
we have put gy = dr? + *§,. Let % be a sufficiently small Euclidean neigh-
borhood of §,. The tangent space to % at §, is naturally identified with

(5.61) A ={BekerD|6B=0,trB=0}.

Let B, be an orthonormal basis for ¢~ with respect to the natural inner product.
The map ¥: % — 2 defined by

(5.62) ¥(g)=3(g, B)B

is smooth. Moreover, with the above identifications, it is easy to see that the
differential of ¥ is the identity map. Thus, our claim follows from the implicit
function theorem together with (5.15).

Proof of Theorem 0.13. Consider a gauge as in Proposition 3.24. Take ¢ < <
¥ << x(n,,A4) as in Proposition 5.49. Let L be as in Proposition 5.49.
First we show that by choosing y, ¢ sufficiently small, we can guarantee
that R/ = co.
By (3.29), (3.31) together with (5.15) we see that there exists c¢3 =
c3(n, , A, L, &), such that

(5.63) No*g — gollli-1ar e 2 o3 -
By (3.28) and (3.29), there is a j = 10, such that

1 . I
(5.64) Too©X = Né*g — golllp-vromr 1~p = 205

We can assume that y is so small that we can apply Lemma 5.56 to obtain
g1, such that if 1 = ¢*g ~ g1, then over Ayorip 1-1p(p), (mh)o =0 and

* . 1
Hlgi = gollle-vsvrr, - £ 201¢%g — gollle =G + Drr-e £ =Cax

40
(5.65)
Then (5.64) and (5.65) imply
. 1
(5.66) Ho*g — gilll- 2 105 -

If (5.50) holds, then Proposition 5.49 implies that for i < j,

(5.67) Al v Z 2 (VAo s
where h = ¢*g — g;. But from (3.29) and Lemma 5.14 we easily get
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(5.68) WAill-2pr, -1 + c(m)e(log L)' = J[[Al]]L-1pr 0 -

which, for ¢ sufficiently small, contradicts (5.66), (5.67). Therefore, (5.50)
does not hold. Similarly, one can show that (5.52) does not hold, either. Then,
since (mh)y = 0, by using the last statement in Proposition 5.44, we get a
contradiction. Thus, R’ = oo.

Now consider a sequence of annuli 4;., ;+1,(p), i =0,1,2,---, and a cor-
responding sequence, g,, such that for -

(569) hr = ¢*g — >
we have,
(5.70) (nth)y=0.

By reasoning as above, we can assume that (5.53) holds for all i.
After passing to a subsequence, we can assume that for some Ricci flat
cone, goc,

(5.71) lim g, ~gliwo =0 (o <2).

If it is not the case that

(5.72) Jim [l gg e =0

then as above, using (5.51) and the implication, (5.50) implies (5.51), we
contradict (3.27).

Thus, (5.72) holds and by using Proposition 5.49 inductively and standard
elliptic estimates, (see Lemma 5.14) we find that for some ¢ > 0,

(5.73) 169 = goolimo < ™.
Finally, since gq is a tangent cone, by (1.31), (1.32), we find that

(5.74) Joo = o -

This completes the proof of Theorem 0.13.

The decay estimate proved so far is not optimal. We now show how to
improve this estimate to obtain one which is essentially optimal.

To begin with, by Theorem 0.13 and Remark 3.23, after modifying ¢ by
a suitable diffeomorphism, we can assume that for some ' > 0,

(5.75) G 9ET m_p s
(5.76) N g)=0.

In (5.75), (5.76) we continue to denote the modified metric by ¢*g.
Let #* B be as in (4.66) and put
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5.77 b = min|b*
(5.77) Jmin 5%
Theorem 5.78. For all 0 < b’ < b, there exists a gauge, ¢y, such that

(5.79) 659 — golkao = OC),

(5.80) 559 =0.

Moreover, if ¥’B is a solution of (4.67), (4.68) and r® logrB is not a solution,
then b’ can be replaced by b in (5.79) and (5.80).

Proof Let ¢*g, go, B be as in Theorem 0.13. Put h = ¢*g — go. Then by
(5.8) we have

(5.81) O#4 — Hesstrh = F(h)
where
(5.82) F(hY€ T2 ap

As in Section 2 (see in particular (2.20)~(2.33) and Theorem 2.69), we
can find h; satisfying

(5.83) Ohs ~ Hesstrhy = F(h)
and
(5.84) (logr)™'hs € FU2_p.

It follows that

(5.85) (O - Hesstr)(h — h3) = 0.
As in (4.75), (4.76), we can write

(5.86) h= if,»(rm(x) .

Here the T,(x) are radially parallel symmetric bilinear forms as in (4.58)—
(4.60) (some of which may involve dr) which are orthonormal with respect
to the inner product in (4.72).

Then as in Section 4 we can find 4, such that for fixed subset, say 4 C Z7,

(587 b= X AT = Ter ™,

ic€d i€d

(where e.g. ¢ =a; —2 as in (4.63)).

(5.88) (O~ Hesstr)(h—hy — h3) =0,
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and, at worst,

(3.89) (Iogry ™' € 7% mintop ) -
where hy = h — hy — h3. Thus,

(590) h = h] + hz + h3
and in (5.87),

(5.51) ¢ *0,
implies
(5.92) min{24 .6} > || = §,

where b is as  (5.77).
By Corollary 4.65 and Theorem 2.70, we can choose 4 such that

(5.93) hy = Lxgo ,
where
(5.94) X €T p

Let Ky be the diffeomorphism generated by taking the flow of X to time 1.
Then it follows easily from (5.92) and (5.93) that

(595) K}(g(]) - L/\/g(] € 7/(3:32(‘_ min{2p’,b} ;

compare (2.2), Lemma 2.6 and (3.19). Similarly, in view of (5.84), (5.89),
{5.93) and (5.94),

(5.96) (ogr)™(Kigo — 4" 9) € T3 vintaws

this implies

(5.97) (logr) ™' (K2x b9 = 90) € T2 _ 1 ioapry

If 28’ = b, then the theorem is proved. If 2§’ < b, we redefine A to be
K*  ¢*g — go. This new £ still satisfies (5.81) and (5.82). Thus we can proceed
as above with [’ replaced by 2’ — ¢ for some sufficiently small ¢ > 0.

By an obvious induction we can compliete the proof.

We close this section by explaining the relation of our results to thase of
(BKN} in the ALE case. [a this case the tangent cone, C(N"~'} is of the farm
R"/I". Thus, any solution of {4.3) on C(N""') can be lified 1o a soltion A,
on R". In view of Theorem 578, in studying the optimal rate of decay we can
restrict attention to those b with trh = 0k = 0.

Since trh = 0, the components of A are just harmonic functions. Thus,
the rate of decay is at least »~", since this is the Green’s function ie. the
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homogeneous, decay solution which decays most slowly. However, such a
homogeneous solution is of the form

(5.98) FrT
where
(5.99) VI=0.

Moreover, (5.99) implies

(5.100) T 0,

and as an easy consequence,

(5.101) ST £0.

it follows that for homogeneous decay solutions satisfying trh = o = 0,

(5.102) h(r)| € o',

since this is the rate of decay for homogeneous harmonic functions, which,
apart from the Green’s function decay most slowly. However, the existence of
such a function corresponds to y=n—1 in (2.47)—(2.50) (where i = 0). By
Obata’s Theorem, this can only happen if C(N"~!) = R". Then, clearly M" is
isometric to R" as well. Thus, with Theorem 5.78 we get (compare [BKN]).

Theorem 5.103. If M" is an ALE space, then b = n.

6 A special result in the nonintegrable case

In this section, we show that if a manifold (M", g) satisfying (0.2), (0.8), (0.9)
has a unique tangent cone which (as opposed to being integrable) is maximally
nonintegrable in a suitable sense, then (M",g) converges to its tangent cone

1
at the rate O (logr)’

Let (C(N"! ).go) be a Ricci-flat metric cone, In this section, we will write
Z for the operator {1-Hess tr, since this operator occurs repeatedly. Also, where
previously we wrote ¢*g, here we just write g.

Consider a one-parameter family of cone metrics g, = dr? 4 #*§,, and the
formal expansion

(6.1) d, = Go +shy +s*hy + -

Then at least farmally, the Einstein equation Ric(g,) = (n — 2)g, reduces to a
sequence of recursive equations,

(6.2) Phi = Efhy, - hi_y), i=1,2--
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where Z is computed with respect to go = g. Here, Ey =0, and E, is a poly-
nomial in the Ay, hy,-- -,k and their derivatives up to second order. In fact,
it is well-known that (C(N"'),go) is integrable if and only if for any % in
keer’, one can solve (6.2), inductively for hy, hs3,---; see [B], Section [2F.
Equivalently, on N"~!,

(6.3) E(hy,-- h_)lker & i=23,-

Definition 6.4. We say (C(N""1),gq) is maximally nonintegrable if there ex-
ists A € ker? such that for all & =+ 0,h € ker 7

(6.5) [ (Ex(h).h) >0

Nr—t

In case dim ker.Z = 1, the maximal nonintegrability simply means that for
heker? h + 0,

(6.6) J(Ea(h),h) # 0.
N

Clearly, a maximally nonintegrable cone is locally rigid. The purpose of
this section is to prove

Theorem 6.7. Let (C(N""'),g0) be a maximally nonintegrable Ricci-flat
cone, and g be a complete Ricci-flat metric on C(N"~') with &;9 = 0. Sup-
pose that g converges to go as r — oo. Then for all k, «, there is a constant
C, possibly depending on gy, such that

(6.8) 9 = golkao(r) S % for r>1.

Remark 6.9. We believe that the estimate in (6.8) is optimal for a maximally
nonintegrable cone and a general Ricci-flat metric g which is asymptotic to go.

Remark 6.10. It should be possible to generalize the arguments in the proof
of Theorem 6.7 to prove the uniqueness of tangent cones for a complete Ricci
flat manifold in case some tangent cone (C(N"~'),go) satisfies the following.
The set,

(6.11) EIl = {h € ket Z|Es(h)Lker L, k|l 2ny =1},

is a smooth submanifold in Siker?: = {h € kerZ| ||Ali;2v) = 1}. Moreover,
any k in El is integrable, and E, satisfies a nondegeneracy condition analogous
to that in Definition 6.4, in directions normal to EL

In proving Theorem 6.7, it is more convenient to work with the cylindrical
coordinates (,x) € RT x N*~! = C(N"~1), where ¢ = logr. For any object T
in polar coordinates, we denote by T° the correspondence of T in cylindrical
coordinates. For instance, we have
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1 1 .
(6.12) ¢ = =9 g5 = 290 = ar+q,
(6.13) r=g—go, Ki=4"—4g5,
Also, if we put
(6.14) PH = Ricg i) — Ricpy =0,

(6.15) |2 — Lh|cnn S {0l (VEVH | cimzs + | VB [um

where

(6.16) L = (O, — Hesstr)(r?h°) .
Fix u > 0. For L as in Lemma 5.31. Set
4; = {@x)logu+(i—1)logL <t < logu+iloglL}
(6.17) = {@x)tel}
Also, put
(6.18) AN = [1APdvoly, .,
A

and
(6.19) @I = [ 1) dvoly, .

Nr1~l

Finally, put

(6.20) B =V k.

Let #’ be as in Lemma 5.31 and let 0 < 6 < 1. The following lemma can
be proved by arguments just like those which were used in Section §; see also
[S1], Lemma 3.3.

Lemma 6.21. There exists yo = xo(n,0,8',L) such that if h* satisfies (6.14)
and

(6.22) |hc|cz.|,2 <x <X,

then

(6.23) 0 % (1A liv2 = P ENA i1
implies

(6.24) Alllies 2 P HIA Nz »
and

(6.25) 0 % [J1A)|liss < P sz
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implies

(6.26) Wi llesa S €7 MR -
If neither (6.24) nor (6.26) holds, then for all t,,t:,t € I,

(6.27) [EE) < (1 + 0)|F()|
(6.28) A ()l < 0]la()]] -

Moreover, if in this case we write h° = h§ + kS, where for every t € I3, h§ €
ker% and k5 is orthogonal to kerZ, then

(6.29) (Il = OllATI -

Note that ln the last statement in Lemma 6.21, for each ¢ we regard ele-
ments of ker# as symmetric tensor fields on C(N"~") = (0,00) x N"~, via
the natural identification.

Proof of Theorem 6.7. By standard elliptic estimates, it will suffice to prove
(6.8) for the case k =2, o= 1/2.

Since g converges to ¢y, by standard elliptic estimates, given 0 < § < <
o, there exists # > 0, such that for any ¢ = 1,

(6.30) ()] iz < 6.

Define 4, as in (6.17) using % in place of up. Thus, using the implication,
(6.22) implies (6.23) and induction, it follows that the conclusion (6.23) cannot
hold.

Next suppose that there is a sequence {/, };»1 with limi, = co for which
(6.26) holds. Then by using (6.26) inductively, we get for all i = 1,

(631) ANl < e PR llmy < -+ < e PRY 1R

Hence, h° decays exponentially. Equivalently, /# decays at the order r—* and
Theorem 6.7 and follows.

Therefore, we can assume that after changing ¢, if necessary, (6.27)-(6.29)
hold for all #1#, t = ty, and |t — 12| £ L.

Differentiating the equation (6.13) with respect to ¢, we obtain (with obvi-
ous notation)

(6.32) 0=Lyhe—b5« VPR —b5 - Vh —b5 -k
where for some constant, C,

(633) max{|b§|czl 2, |b§|c' 12, lbglcmﬂz} § Clhc|cz.|,z .

As a consequence, we can repeat the argument of Lemma 6.21 with A°
replaced by A¢. Thus, all conclusions of that lemma hold for /¢ as well.
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Now, if ||°(¢)]| decays exponentially, so does ||4°(¢)||. But this contradicts
the above assumption on ||A°(¢)||. Therefore, by applying Lemma 6.21 to A°,
we get that for all #,5,t = o and | — | £ L,

(6.34) @) < oAl .
(6.35) el = (1 + OlF )] -
As in (6.29), we write

(6.36) W =K + K,
where :

(6.37) ZH =0,
(6.38) B Lker? .

Then equation (6.14) is of the form
(6.39)  Lyhs = QU)+hy +b - hi+a- V2 +ar - Vhy+ads - h

(again with obvious notation) where b is a constant tensor, Q(4{) depends
only on S,

(6.40) |Q(h€)|c“l"2 < C|h€|éz| 25
and
(6.41) max é {ldllcz'fzs‘dZ{CL”’la~3iC“~‘ z} é Clhcicz,l‘z .

By (6.27), (6.28), (6.30), (6.34), together with standard elliptic estimates,
we find that for ¢t = + 1,

(6.42) ()| ce < CO + S)H@)| -

By (6.29) together with standard elliptic estimates, to prove Theorem 6.7,
it suffices to show that

(6.43) el < <

In this connection, note that (6.42) is actually a qualitative improvement of
(6.29). 1t is used below in verifying (6.43).

By the maximal nonintegrability assumption, there exists k € Siker.Z such
that (6.5) holds with k in place of 4;.

Put

(6.44) f&y= [ (k).

er—l
Then it follows from (6.14), that
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645)  fO)+uf@)= f(Ez(h Lk)+ [ 0= (KPP + |k

Nu—]

where ¢ > 0. By using (6.42) and the choice of k, we get

FO +uf@y = clkol*.
=

(6.46) ef(t),

where ¢ is a positive constant. However, (6.34) implies
(6:47) @)l < 017 -
Thus, if 8 < u/2, then for ¢ = 4 + 1,

(6.48) LIz efey > 0.

Since lim,_ o, f(t) =0, f(t) < 0 for ¢ = t, + 1. Dividing both sides of
(6.48) by f*(¢) and integrating over the interval [ty + 1,1], we get

(6.49) L™ 4 f+ 1) 2 =0 -1).
Equivalently,
650) SO = 1) < : -0 (1)

' - SEC 1) flo+ ) i)

If dim ker.Z = 1 and then ||A(¢)|| = | f(2)], the theorem is proved.
In the general case, it is easy to see that for any k in a small neighborhood
of k,

(6.51) [ (Ex(h),k) >0 on Siker?.
Nn—l

Then the above argument shows that for all ¢+ = # + 1,

(6.52) f (hf,k)g(t)dvolg| <

Nlt‘)

From this, it is easy to deduce that for 1 = £ + 1

(6.53) I Of =

~|Q

Thus, the theorem follows.
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7. The linearized equation in the Kiihler case

In this section and the next we consider the case in which M% is a Kihler
manifold of complex dimension k. Then if C(N%*~") is a tangent cone as in
Section 1, it is clear that C(N%~') admits a natural Ricci flat Kéhler structure.
Our aim in this section is to discuss the rate of decay of infinitesimal Kéhler
Einstein deformations, and the rate of decay of infinitesimal deformations of
the complex structure. We also derive the results necessary for the proof given
in Section 8, that (given the assumptions of Theorem 0.15) tangent cones
are complex integrable. To do this, we show that matters can be reduced to
considerations on the complex base of C(N%~1).

Let J denote the complex structure on a Ricci flat Kahler cone, C(N%#~1).
Thus, V J = 0. If we put

0 0
7.1) P =J <r5;> R
(7.2 ~10 e 2]
2) (r 5@) =0,
then,
(7.3) Jdry=-0.

Let "B be as (4.66). In showing that matters can be reduced to con-
siderations on the complex base, a major step is to show that B (ﬁ, <) =0
provided —2k < b* < 0. This is accomplished somewhat indirectly, as we
now explain.

According to [B] p. 363, if we define the action of J on symmetric bilinear
forms by

(7.4) Jh(v,w) = h(Ju,dw) ,

then ker (1 is J invariant. The results of this section are obtained by analyzing
the action of the involution J in our situation.
Let us put

(1.5) kerol) = {k € kerJltrh =0, 6h =0} .

In fact, kerg(] is properly contained in kerlJ. However we will show that the
action of J preserves the subspace of kergl] that we are interested in study-
ing i.e. the one spanned by those % € kerg(3 which are homogeneous satisfy
cr~%* < |h| € ¢, and for which additional integrability conditions, (7.63)-
(7.66), hold. In the application to Theorems 0.15 and 0.16, the integrability
conditions will automatically be satisfied.

Additionally, we will show that the space spanned by the homogeneous so-
lutions of the form Lygy in (4.66), where cr—% < |Lygo| £ ¢, is J-invariant.
But, as is easy to check, the decomposition in (4.66) is orthogonal for the
J-invariant inner product in (4.70). Thus, the space of solutions r”iB, with
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2k < b* £ 0, is J-invariant as well. Since by definition, B (£, - ) =0, we
getB(a%, . ) =40.

In order to analyze the action on solutions of the form V*"” X™* = Lygq,
the following eigenvalue estimate is required; compare [EM], [DNP].

Theorem 7.6. Let X"~' be compact, with
(1.7) Ricys 1 2 (n—2)g .
Then the first eigenvalue, p, of the Laplacian on coclosed 1-forms satisfies

(7.8) t Z2n-2).

Equality holds if and only if ¥ is dual to a Killing field which is also an
eigenvector of Ric with eigenvalue (n — 2).

Proof. 1f y is an arbitrary I-form, the Bochner Weitzenbock formula gives

(7.9) ldy? + 16y * = | Vyl® + (Rick ) .
Write
(7.10) Vy=VSy+ Sy,

where the superscripts denote symmetric and skew symmetric parts respec-
tively. (Thus, in the notation of Section 4, V5= % Vsymy Under the usual
identification between 2-forms and skew symmetric 2-tensors,

(7.11) %dwﬁVSSl//-

Note however, that this identification is not norm preserving for the norms in
(7.9), (7.10), and in fact,

(7.12) Ll =1 v yp
Then by (7.9),

(713) S + |3 = | S g+ Rictv)

from which our claim immediately follows.

Recall, that the harmonic functions on a cone can be written as a sum of
functions of the form

(7.14) e,

where

(7.15) A4¢ = p¢



546 J. Cheeger, G. Tian

and q is as in (2.47)~(2.49). In our case, Ricyz—1 = 2(k — 1)§ and by Obata’s
theorem, g > 0 implies

(7.16) p2%k—1
(7.17) a” £1-2k,
—1

v

with equality only for N2—1 = §2¢—1,
The harmonic 1-forms on C(N%~') can be written as sums of forms of
the following three types. Namely

(7.18) dr"¢) (¢ €A
where ¢ is as in (7.14);

(7.19) rp (¢l
where

(7.20) 5p=0,
(7.21) 4¢p =ug;

and last of all,
(1.22) P dg 4 aT e T dr N (¢ € A%)
where ¢ is in (7.14).

Lemma 7.23. Let W be a homogeneous harmonic I-form on C(N*~1), such
that, | < cr, for r 2 1. Then either

(7.24) [¥] < o'~

where equality holds if and only if Y|(1, N*~') is dual to a Killing field on
N#=1 or

(7.25) csW)<er (rz1)

If N¥=1 is not isometric to the unit sphere, S*~1, then for some ¢ > 0,
the form in (7.25) actually satisfies

(7.26) . at S| Ler.
Lemma 7.27. If  is homogeneous and for some ¢ > 0,

(7.28) cEW et ¢z

then vy is as in (7.18) and hence exact. Moreover, if

(7.29) W=c =zl
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then W is a sum of exact forms as in (7.18) (the case p = 4k) and (7.22)
(the case u = 0) and forms as in (7.19) which are dual to Killing fields.

In the case of (7.22), ¢ is the constant function and the harmonic 1-form
is a multiple of

(7.30) rdr=d (%ﬂ)

Given Theorem 7.6 and (7.17), the proofs of the above two lemmas follow
from the definitions, (2.47)~2.49), by inspection.

In view of Lemmas 7.23 and 7.27, the following lemma has obvious im-
plications for our discussion.

Let ¢ be a 1-form on an arbitrary Kéhler manifold.

Lemma 7.31. If

(7.32) dJp) =0,
then
(7.33) (Vrm ) =0,

If W is dual to a Killing field

(7.34) (V¥ =0.
Proof. If (7.32) holds, then

(1.35) V=5

and

Vix y(UJY) = Vix JY(Y),

= Vy HUX),
(7.36) = - Vr¥X),
which clearly implies (7.33).

If Jy is dual to a Killing field,
(7.37) Ut =0
and
Vix 9(JY) = Ve JY(Y),

= — Vy HJX),

(7.38) = Vrvx),

which implies (7.34).
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Let ¥ & #  the decomposition of the space of harmonic 1-forms of
C(N*-1Y satisfying (7.25) into exact forms and forms dual to Killing fields
fixing the singular point, as guaranteed by Lemma 7.27. Let n: ¥ @ #" — ¥
be the projection. From Lemma 7.23, Lemma 7.27 and Lemma 7.31 we im-
mediately obtain

Corollary 7.39. The subspace of keryD spanned by those V"™ \y which are
homogeneous and which for some ¢ > 0, satisfy
(7.40) FTE U Y < ¢,
is J-invariant.
If for some ¢ > 8,
(7.41) o < VY| Lo,
then V'™ is skew hermitian.
If ¥ is homogeneous and has linear growth, then
(7.42) (vorm gt =0
if and only if

(7.43) yen(J?Y).
Moreover,
(7.44) (v III)SH -0

if and only if

(7.45) yen(JW).

We now show that subspace of kergl] consisting of those A, satisfy-
ing cr~* < |h] £ ¢ and the integrability conditions, (7.63)~(7.66), is also
J-invariant. To this end, we recall the characterizations of the hermitian and
skew hermitian elements of kerg(J; [B], p. 362.

Let

(7.46) h=h" 055

denote the decomposition of # into its hermitian and skew hermitian parts,
corresponding to the +1, —1, eigenspaces for the action of J. If 4 is an
endomorphism and k(, ) is a bilinear form we put

(747) koA(x,y) =k(x,Ay) .

Then for & as above,

(7.48) h=ht,
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if and only if hoJ is skew symmetric i.e. hoJ is a 2-form, if and only if
hod = (hoJ). Also, if we define / by

(7.49) gol=holJ,

we can regard / as a 1-form with values in tangent vectors. Then

(7.50) h=hn"¥

if and only if for all X,I(X) = J(I(JX)), in other words, if and only if [ is

the real part of a unique T'? valued form of type (0,1). Here we use the

splitting of the tangent bundle into its holomorphic and antiholomorphic parts.
With this terminology we have for all £,

(7.51) S(koJ)=6kol .
Moreover, if 4 = d& + dd, then A € ker O if and only if

(7.52) W oJ e ker 4
On the other hand,

(7.53) o = —JiT
and if d = 0+ 0, then A" € ker O if and only if

(7.54) 1€ ker (30 +8°9).

At this point, we require some additional assumptions on those 4 € ker [J
satisfying o0k = 0 which we consider. These assumptions hold automatically
for the solutions required in our applications.

Let & € ker U, with 6% = 0, be of the form

: ge — 4§
. ] —_——— = N
(7.55) lim — h
where g, — ¢,(V*YR: -V R,i =0,1,.... Here, g, is Ricci flat and Kéhler
with respect to the complex structure, J,, where J; — J.
Assume in addition that
L= d
(7.56) lim —— =J
£—0 &
exists.
Note that & = Lygo (as in (4.66)) automatically implies (7.55), (7.56).
Thus, given % € ker [l with 04 = 0 satisfying (7.55), (7.56) we can write

(7.57) h=hy+ Lxgo

where hq € kerg[] satisfies (7.55), (7.56). Therefore, since the action of J pre-
serves trace, in what follows (and for the application) it will suffice to assume
(= hy) € kero[s.
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As in (7.10), let A = 4% + 45 denote the decomposition of the endomor-
phism A into its symmetric and skew symmetric parts. Note that

(7.58) N A o SR S L
(7.59) JP 57 =S+ Jys
Thus, from

(7.60) JI+Ji=0,

it follows that

(7.61) Ji5 il =o,

(7.62) Ji% 4%y =0,

Recall that w, = g,(J;) is the Kéhler form of g,. Since ¢ is skew symmet-
ric, we get

— = hoJ+god
(7.63) = W ol +goJ”,

which corresponds to the decomposition,

(7.64) o= o + ™

together with

(7.65) B oJ +g0J° =0.

Of course we have in addition,

(7.66) do=10,

since for all ¢,

(7.67) do,=0.

Lemma 7.68. On C(N*-1), let w satisfy (7.63)-(7.66). If

(7.69) o] £ ¢
then
(7.70) o =P+ Ba

where
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(7.71) AB, =0,
(1.72) 58 =0,
(1.73) Bl < or %,

Proof. So as not to disrupt the continuity of the presentation, here we will
verify (7.73) with the exponent —2k replaced by 2 — 2k. The shaper statement
will be proved in the Appendix at the end of this section. There we will
actually show that « itself is harmonic (see (7A.18)) and is the sum of a
radially parallel harmonic form and one which decays no slower than cr—2*,

Let B, denote the sum of the homogeneous components of the harmonic
form & whose norms are bounded by cr?~%* (r 2 1). Put fy = — . It
will suffice to observe that in our situation every homogeneous harmonic form,
B, on C(N*-1), with cr?=% < |B| £ c, satisfies 6 = 0.

The harmonic 2-forms on a cone are of four types; see [C] Section 3. Two
of these are analogous to those appearing in (7.18), (7.19) and hence, are of
divergence zero. The remaining two types are of the form

(7.74) PG T A n g (pe A

(7.75) P drAdg (¢ e A°)

By definition g > 0 and hence a* > 0 in (7.75). Thus, for a = a*, the
form in (7.75) is not bounded in norm for » = 1. Similarly, by Theorem 7.6
(or already by Bochner’s Theorem) a* > 0 in (7.74). Hence, for a = a*, the
form in (7.74) is not bounded in norm for r = 1.

On the other hand, by (7.17), a=a~ in (7.75) implies a < 1 —2k. By
(7.24), a=a~ in (7.74) implies a < 2 — 2k. This completes the proof.

The following proposition is an immediate consequence of (7.72), (7.73).

Proposition 7.76. If h € kergO is homogeneous, satisfies (7.63)—(7.66) and

(777 e F <l L (rz 1)
then
(7.78) Jh e kerg].

Equivalently, W, hSF € kergD) and satisfy (7.63)~(7.66).

Now we can easily verify the J-invariance of the subspace of kero[],
spanned by the r”iB, satisfying (7.63) — (7.66), and (7.77).
Now let ({,)) be the inner product defined in (4.72). Note that clearly,

(7.79) (i, ha)) = ((Jhi,Jha)) .
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Lemma 7.80. On the subspace of keryO satisfying (7.63)—(7.66) and (7.77),
the orthogonal complement of the subspace spanned by the bilinear forms,
VS, is the subspace spanned by those ¥ B such that

(7.81) B(ﬁ, .>=0,
or

(7.82) rB=0,

(7.83) SB=0.

Proof. If (X,£)=0, Vier X =0, then (as in (4.29), (4.30)), the tangent

> r

component of

(7.84) o (f(r)X + u(r,x)ﬁ)
or

is

(7.85) FOVX + ulrxwg

It is clear from (7.85) that the subspaces in question are orthogonal. By Propo-
sition 4.65 they also span.
Given B as above, write

(7.86) B=B"+O0X 1+u®0® 0,

where,

O G Y S
(7.87) B (5,-)_3 (ae’ )w ,
0 0

Let the bilinear form, V™ i, be as in Corollary 7.39.

Corollary 7.89. If h € kergll is homogeneous and satisfies (7.63)~(7.66) and
(7.77), then

(7.90) h=U"" g+ B,
where B satisfies (7.86)—(7.88) and
(7.91) B=r"B.

Proof. This is an immediate consequence of (4.66), Corollary 7.39, Proposition
7.76, (7.79) and Lemma 7.80.
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As a consequence of the discussion so far, we also obtain a homological
description of the Hermitian symmetric elements of kergl] having slow decay.
Let TPN%~1  TN?%*-! denote the subspace orthogonal to %

Theorem 7.92. Let h = h'! € keryO satisfy (7.63)~(7.66) and (7.77). Then

(7.93) h=V""y +B
where Jyr is dual to a Killing field and

(7.94) B=BoJ
satisfies
(7.95) dp=68=0
0 0
(7.96) [3(5,.):/}<%,.):0’
(7.97) BITPN¥= is of type (1.1)
(7.98) Veor (FPB) =0
(7.99) Lowf =0.

Proof. In view of Corollary 7.89 it suffices to characterize those B such that
B = B? and B = B". By (7.62), (7.63)

(7.100) B=BoJ=—a,

where & satisfies (7.66). From Lemma 7.27, together with considerations of
homogeneity, it follows that we can assume that either

ax B
(7.101) » (5, . > =0
(7.102) Viser (FPa)) =0
or
(7.103) & = d(r* )

where r2¢ as in (7.19) is dual to a Killing field (compare the discussion after
(7.166)).
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In the former case, (7.101) together with & (£,) = 0 implies (7.96). The
J-invariance of the space of forms satisfying (7.96), (7.98) implies that we
can assume that (7.97) holds. Moreover, since

(7.104) LijeoB = igjoo dB + digpoal

(7.99) holds as well.

In case (7.103) holds, the conclusion follows from Lemma 7.31 (see
(7.34)). This completes the proof.

We now consider the remaining case of skew Hermitian elements of kerg[],
satisfying (7.63)—(7.66) and (7.77).

As mentioned after (7.50), if & is skew Hermitian it can be regarded as the
real part of a 70 valued (0,1)-form. The integrability condition correspond-
ing to (7.63), (7.64), (7.65) is the condition that this form is d-closed. An
equivalent way of expressing this condition is the following.

Let J be as in (7.56), and regard J as a real 1-form with values in tangent
vectors. Let dJ be the exterior derivative of this 1-form. Here, we use the rie-
mannian connection on the coefficient bundle (in this case, the tangent bundle)
in defining the operator d. Let ()% be the sum of the type (2,0) and (0,2)
components of the 2-form d.Jj i.c. the skew Hermitian part with respect to the
first two slots.

Lemma 7.105. ) 5 s
(7.106) dIYH =@y =@j" y"=0.

Proof. Differentiating (7.1) gives

(7.107) VJ=JV_-VJ.
Thus,
di(X,Y) = VxJ(¥)- VyJ(X)
= J(VxY) = VyUY) = J(VyX)+ Vy(X)
(7.108) = VyX — VyJY,
where we have used
(7.109) Vi¥Y —VyX =0,

which follows from the fact that riemannian connections have torsion zero.
Letting SH denote the skew Hermitian part in the first two slots, we get

2@dNXY) = VydX — VxJY + VpX — Vi ¥,
(7.110) =0,

where again we use (7.107). Replacing J by JS in (7.107) and the relations
which follow, gives



Euclidean volume growth and quadratic curvature decay 555

(7.111) @i’y =o,

which easily implies (7.106).

The condition, (7.106) imposes an additional constraint on elements of the
form r—°B, with B = B® = B, see Proposition 7.131. We now proceed to
derive this constraint.

Let B = B’ and put

(7.112) SBXY) = %(B(JX, Y)-BX.JY)),

(7.113) FHBX Y)Y = %(B(JX, Y)+ B(X,JY)).

Then gH, ¢ define almost complex structures on the Hermitian, respec-
tively skew Hermitian, bilinear forms. Moreover,

(7.114) FHBSH — gSHpH — ¢

so that ¢ = ¢ + #57 is an almost complex structure on the space of all B
as above.

Note that if

0 i)
(7.115) <Y’@>:<Z’§§>:O

and
é

(7.116) [5@, Y} =0,
then

~ 0

(VawZ,Y) = %@, Y)+(JZ,Y)

d

(7.117) = <[%,Z} +JZ,Y>

Also, if Zy,Z, satisfy (7.80), then

~ ¢
(7.118) <Vz.22,%> =(Z1,Jy) .
Hence
0
(7.119) <[Z1,Zz],%> =2Z,,J2) .

From the above we easily find that if ¢ is a I-form such that
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o i
(7.120) r<5> :r<%> =0,

(7.121) Vg/@r‘r———o,

then at » = 1,

(7.122) Ve=Vl1-@0+0 9Lyt —J1)—~10dr
Now let

(7.123) B=RB"=pB%"

and

(7.124) Voor B=0.

Locally we can write
(7.125) FB=r"% 1,001,
where 1, are 1-forms satisfying (7.120), (7.121). From (7.122), we obtain at

r=1,

Vet = VVE®)
+[‘JT@@-{-@@(Lg/a{;‘t—.]f)—‘[@d}’]@‘[
(7.126) +[-ITR19O0+0R1R(Lyyt—Jt) —T1RTQdr]

from which we find that the component of V (t @ 1) which involves @ in the
first two slots is

(7.127) O N [Looot @1+ 1@ (Lot — Jo)]

while the component involving dr in these slots is

(7.128) drAn(T®1).

Thus, the component involving & of in the first two slots, of dSH¥, ® 1 is
(7.129) %@ A(Lojoo — 291 )Zf:“ ®1 = %@ A L.a/ao;ri ® 1

where we have used (7.114), and B = B¥. Similarly, it follows that for B as

in (7.123), (7.124), the component of d/(»~°B) involving @ in the first two
slots is (at r = 1)

1
(7.130) E@/\(La/ao —c#)B

From (7.113) together with (7.65) we now conclude
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Proposition 7.131. Let B = B" = B and let r—B satisfy

(7.132) aH(r—°By=0.
Then
(7.133) LyzoB =c #MB .

Recall that we have made no assumption concerning the closedness of the
. 0 .
orbits of the vector field 0 Nonetheless, for V' a sufficiently small open set

about x € N*~!, we can consider the space whose points are the components
(V' N O)°, of (UN ) where € ranges over the orbits whose intersection with
U is nonempty. This local quotient space ¥ inherits a well defined Kahler-
Einstein structure.

According to {B], p.363 the linearized deformation operator on V', when
restricted to skew Hermitian deformations, can be identified with the operator
36+380; compare (7.54). Let us denote the horizontal lift of this operator to
N%*=1 by [P and let 517,(5* )° denote the horizontal lifts of the operators &,0 .
Then, as is standard,

(7134) [ (@*B.B)Y= [ (8B.&B)+((F VBT YB) 2 0.
N;’A—V NZI\rl
Proposition 7.135. Let B = (B®)" and let r—°B be as in Proposition 7.131.

Let r—“B € kergD and (1B = UB. Assume that the complex dimension, k, is
2 4. Then if ¢ 2 0, in fact

(7.136) c=0,
(7.137) LyyB =0,
(7.138) 0°B=0.

Proof. Let t satisfy (7.120), (7.121). Then

(7.139) Vajeot = Lejot — Jr,

i

VooV aent @1 (LajaoLejont — 2JLejapt — 7) M=
+ 2(Lejaot — Jt) @ (Lgjat — Jt)
LoyjeoLojan(r @ 1) — 2t ®@ T — JT @ J1)

(7.140) = 2Lyen(t @ TS, + ) — 2Lejeo(t @ T)( - ,J)

il

Thus,
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(7.141) ﬁa/an%a/anl‘f = (LyeoLajop — 4Lojo0 ¥ —4)B .
Similarly, using (7.122) we get

(7.142) Vo1 =Vt v —Ji(e,)
Ve Ve(t®1)
=[V2VE ¢ —2J(VE t)(e)® — Jr(e, ) Je,)* | E ©
(7.143) +2AVE 1 — Ji(e)0) ® (V) v — Ji(e)@),

from which it follows that
(7.144) SV VB =A"B-25"¢B X @-2B

Finally, if we define R® to be the horizontal lift of the curvature tensor on
the base, by a straightforward computation,

2 ob
(7.145) RB=R -3B.
If, for the moment, we grant (7.145) and use (7.141), (7.144), then from
the definition of (J (see (4.2), (4.7)) we get
(7.146) OB =B — (LsjapLajeo — oo #)B —28° B K @

However, since

(7.147) divv 4B =10,

we get

(7.148) OB =0°B — (LyjpoLeson — 4Lejon #)B .
Also,

(7.149) OB = uB,

and with Proposition 7.131,

(7.150) p=p+c —4c,
where by (7.134),

(7.151) £pz0.
On the other hand, it follows from (4.58) that
(7.152) —c=at Vol +pu

where
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(7.153) 0= —;
compare (2.47)—2.50). From (7.152) we get

(7.154) c+2uc=p.
Combining this with (7.150) and using (7.151) gives

(7.155) 2a+2)=pz0.
However, £ = 4 implies

(7.156) a+2 <0,
and hence by (7.147},

(7.157) c
This gives (7.130)—(7.132).
We now return to the computation of R B. Recall (see (4.2)) that

A
=

RB(x, y)

il

2k-2
- ; B(R(x’et)y7ei)

~ 0 0
2 (* ) )
%2

- ; B(R(x,e)y,€,)

- T (R(x,e)y,€,)Ble )
L

il

(7.158)

If x, y € TPN%~1, our claim is a direct consequence of O’Neill’s formula
for the curvature of riemannian submersions, together with (7.120).

Ifyzgg-,

- o 0 0
(7.159) <R(x,e,')%,e,> = <R(x,e,—)%,ej> + <x/\ ei,a—o /\ej> s

where as usual, R is the curvature tensor of C(N%~!). Then

0 0
R(r,e,-)% = R(x,e;)./ (5>
0
J[R(r,e,»)g]
(7.160) =0
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Also,

0, x+ L ori=%j
(7.161) <er,,é% /\ej> — { or { %)

L, x=g,i=j
Thus,

= ¢ b a2k —1
(7.162) RB 70" =0 (xeT°N )
2 0 0

This completes the proof.

In the exceptional case k = 2, the real cross-section, N* of C(N?) of ne-
cessity has constant curvature. Then it follows that we are essentially reduced
to the ALE case considered in [BKN]. Further details, together with the case
by case discussion (compare [T]) required if k£ =3 will be given elsewhere.

Finally, we consider homogeneous skew symmetric infintesimal deforma-
tions of complex structure which satisfy the decay condition

(7.164) o <P ge r2 1)

As in (7.57) it is easy to reduce our considerations to the case trh = 0.

By (7.63), every such deformation corresponds to the skew Hermitian part
of a closed and coclosed 2-form, § = —so By Lemma 7.68 (see also Remark
7A.49), the form f is either of type 1, r* ¢, (¢ € A?) or type 2, d(r* ¢),(¢ €
AN,

In the former case, since f§ is closed,

(7.165) B=9¢

(7.166) dp=3¢p=0.

In the latter (type 2) case, we consider the decomposition ¥~ & #” of the
harmonic 1-forms which occurred in Lemma 7.48, Corollary 7.56. It is easy
to check that when we apply d, the roles of the forms are the reverse of what
they are when we apply V**™. Thus, the conclusion is that d(J¥") is just the
space of type 2 skew Hermitian 2-forms, while d(J#") is space of type 2
Hermitian 2-forms. o

Therefore, in the type 2 case, it suffices to assume J =J and that

(7.167) dUVy (X Y) = g(X,JY),

for some Killing field V. Then, choosing VX =V ¥ =0 at y € C(N*~1),
we have
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g X Ly YY) = gX,Vp JY=Vp V-JVyY+J VrX),
= gXJ VyV-Vuy V),
= g(Vy V.X)+g(Vx V,JY),
= dJV'IXY),
(7.168) = g(X.JY).
Thus,
(7.169) J=1LyJ.

Therefore, the type 2 skew symmetric infinitesimal deformations are inessential.

Since as we have already seen, the space of harmonic 2-forms of type 2 is
J-invariant, by arguing as in Lemma 7.80, it follows that the same holds for
the 2-forms of type 1. Thus, for such a form f, (as in (7.165), (7.166)) we
have

0
(7.170) ﬁ(T, -):o.
o6
By (7.104) together with df8 = 0, as in (7.99), we get
(7.171) Lijoof =0
as well.

Thus, for the case in which ¥ = N%*~1/S! is a Kahler-Einstein manifold
(necessarily of positive Ricci curvature) by a well known theorem of Bochner,
[GH], Y admits no nonvanishing holomorphic p-forms. Since § is a sum of
forms of type (2,0) and (0,2), this gives

(7.172) f=0.
In fact, as in (7.134), we find that this holds in the general case as well.
Thus we get

Theorem 7.173. All homogeneous skew symmetric infinitesimal complex de-
Sformations satisfying (7.164) are as in (7.169), and hence, are inessential.

Appendix: A sharp decay estimate

Recall that in proving Lemma 7.68, we only proved a weakened version of
(7.73), in which the exponent —2k replaced by 2 — 2k. Here we prove (7.73)
itself.

Throughout this Appendix we assume that (7.56) and its consequences
(7.63)—(7.66) hold. We also assume

(TA.1) wrh=0.

In the following lemma the underlying manifold can be an arbitrary Kéhler
manifold.
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Lemma 7A.2.
(7A.3) Jor=0.

Proof: Since

(7A4) HhoJ)=0,
we have
(7TA5) (o) =3 g(e, Ve, 5

Fix a point p. Let Ve, =0,V Y = 0 at p, where Y is a vector field and {e,}
is a local orthonormal frame field. Then

Tg(e, Ve, J(V)) = 2g(en Ve ¥Y) = Ve JY)
1
= —EZ{V& h(Y,Je,)—!— Vy h(ei,Je,)— Vje, h(@i, Y)}
1
(7A.6) _EZ{VE' h(JY,e))+ Vyy he,e)— Vo, he,JY)},

where we have used the standard formula for the variation of the riemannian
connection, together with (7.107). Since trh = 0, the fifth term on the right
hand side of (7A.6) vanishes. Also, since % is symmetric, the fourth and sixth
terms cancel. Using the substitution, e¢; — Je;, we see that the second term
vanishes and the first and third terms are each equal to 6(4 o J). Thus,

Il

(—~@) = 28(holJ),
(TA.7) = 28(-0"),

from which our claim immediately follows.

Corollary 7A.8.

(7A.9) dAd =0
(7A.10) i =0
(7TA.11) A = A

Proof> Equations (7A.9), (7A.11) follow from (7.66), and (7.63) together with
(7.52) (and J4 = AJ). Also, by (7.52), (7.170),
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S4d> = — Aoy,
248(hoJ),
264(hoJ),
(7A.12) =0.

If we now restrict attention to the case C(N*~1), it follows that Ac is a
sum of forms of type 2, as in (2.51), and possibly a type 1 form as in (7.170).
However, as we have already observed, there are no such type 1 forms in our
situation (see (7.172)).

Proposition 7A.13. On C(N*~') a skew Hermitian type 2 harmonic form,

(7A.14) ridg +ar*ldrn g,
satisfies
k
>
(7A.15) @z —

Since [ < ¢ implies |dw| £ cr~? (see (7.55)) we immediately get

Corollary 7A.16. On C(N*~1), if |o| £ ¢ then

(7A.17) A =0.

To prove Proposition 7A.13, we need the following integral formula. Let
Z be a vector field on N2~ with

0
(7A.18) <z,%> =0.

Let (VZ)! denote the restriction of the bilinear form (V Z,) to the sub
bundle, 7?N%-1 C TN%*-! and let {e,} be a local orthonormal frame field
for TPN21,

Proposition 7A.19.

[ WP = {((JJ*+J*J)Z*,Z*>

NU-—1 Nll—l

(7A.20) — (2 - 1)|zZP - ’ [5—09-,2] +JZ

)
Proof:

T (VeZe) = V2P - TV Ze)
i 1y

(7A21 5,220 —V~7Z£2
21 e %0 7% 30
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Since
(1A22) v 7, 2N g
’ 6/
by using (7.117), (7.118) and Bochner’s formula, the lemma easily follows.

Proof of Proposition 74.13. Since drA® is Hermitian symmetric, it follows
that

0
(7A.23) ¢ <@> =0.
Also, from
(TA24) (@ A %) =—adrAN¢
we get
(TA25) 6¢ _d) = —al¢ .

Since ﬁ is Killing, putting ¢ = Z*, we have

(7A.26) [%,Z] =—alZ,

Now

(1A27) (dd" +d )¢ = uo

and

(7TA.28) @ —20a—-p=0,

where

(7A.29) w=2—k;

see (2.47)-(2.51). Since the expression (7A.20) is nonnegative, the proposition
follows easily from (7A.26)-(7A.28) and (7A.20).

By the part of the proof of Lemma 7.68 which was completed in Section
7, in proving (7.73), we can certainly assume || = O(1). Thus, by (7.66)
and (7A.17), w is the sum of type 2 harmonic form as in (as in (7A.15))
and of type 4 harmonic forms (as in (7.75)). However, from Lemma 7.23,
Lemma 7.27 it follows that for a type 2 harmonic form whose nomm decays to
zero at oo, we must have a = a~. Then as consequence of (7.17), the rate of
decay is no slower than ¢r~2. So for our purposes, we can assume that the
homogeneous components of & whose rate of decay is slower than r~2, are
all of type 4 i.e. of the form r*t'dr Ad¢.
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We now show that these components actually vanish. In view of the absence
of type 2 harmonic forms in the above range, it follows from (7A.3) that for
each type 4 component, J(r*"'dr A d¢) is of type 1 ie. is as in (2.50). To
complete the proof of (7.73), we must show that this additional condition
implies a— < —2k, or equivalently,

(7A.30) L= 4k
Since dr A @ is J-invariant, it follows from what has just been observed
that
0
(TA31) —d’ =0.
o6
Thus, Z = grad ¢ is tangent to T°N*~!  and satisfies

%9
Unfortunately (unlike what took place earlier) (7A.20), (7A.32) do not
yield (7A.30). For this, we will require an additional integral formula.

(TA.32) [0 Z] =0.

Proposition 7A.33. Let Z be tangent to T°N*~'. Then

(1A34) [ (V2 J(VZP)y = | {2klZ|2+(2k—2)<[a%,Z}JZ>}.

N2—I N™—1

Proof. We have

(Ve Z,e))(V i Z,Je)) = ei({Z,e}{V e Z,Je))) — (Z,6,)(V .V e, Z,Je;)

(7A.35) ~(Z,e)){(V 1,2,V Je))

Since

(7A.36) (Z,e)(VieZJe)) = J(VZY(e,Z),

(TA37) S Zoe)(Vie ZJe)) = Y. — (VizJZ,e)
j i

it follows that the first term on the right hand side of (7A.35) is a divergence.
Hence its integral vanishes.
The second term on the right hand side of (7A.35) equals

. 1~
(7A.38) - %Z(R(ei,Jei)Z,JZ) = 5Vie.se12.J2)

By the Jacobi identity,
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——%Z(ﬁ(e,«,]ei)Z,JZ) = YAR(Z e) e, JZ)

i

S {R(Z, 1) Je;, JZ) ~ (Z,Je;){ei, Jz) + (Z,JZ){e,, Je;)

(7A.39) >~ (R(Z e, Z) + |2

I

where R denotes the curvature tensor of C(N%*~!). Since C(N%*~1!) is a Ricci
flat cone, the quantity in (7A.35) becomes

— J a 2

= <R (z,~69> —69,Z> +1z17,

— 0 a 2
= —<R (z, ae) 5,JZ> +zP2,

(7A.40) — iz,

Also, since

(7A41) ler, Jei] = Veode, ~ Ve 1= ~2-§é ,

we get

1 ~ .
=52 Viese1ZJZ) = (2k =~ 2){Ve0Z,JZ) ,
i

on-a(i o {[§.4))

Thus, the second term on the right-hand side of (7A.35) becomes

(7A.42)

(7A.43) k- 1D)|Z)*.
Finally, using (7.118), we find that the third term on the right hand side
of (7A.35) equals
(7A.44) |z)?.
By (7A.38),(7A41), (7TA.43), (TA.44), the lemma follows.

. d . . .
Since the group generated by —, acts by isometries which preserve

TPN%*-1 and commute with J|T*N* !, the space of vector fields, Z, tan-
gent to T?PN%~1 can be decomposed as a direct sum of subspaces, Z; (for a
certain countable set of A) such that z € &, if and only if

8
(TA.45) [%,z] =iJZ.
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Corollary 7A.46. Let Z € Z;. Then

[ (@dd +d dyz*,z*)

N —

vz =
N

N
(7A47) — (4 = 2K)A + 1D)|Z)?

[ VY H? = < [ (dd +d dz',z*)

N~ N2A=

(TA48) — (8 + 2k + D)2

N[

Now we observe that (7A.32) and (7A.48) immediately yield (7A.30). As
previously noted, this suffices to complete the proof of (7.73).

Remark 7A4.49. Note that we have actually shown that @ itself is the sum of
a radially parallel harmonic form and one which decays at a rate no slower
that 2,

8. Complex integrability and the Kéhler case

In this section we prove Theorem 0.15 and Theorem 0.16.

Recall that in the Kéhler case, solutions of the linearized equation which
arise as rescaled limits of the nonlinear equation, Ricy, = 0, satisfy the inte-
grability conditions, (7.63) — (7.66). Also, for k = 3, it follows from Theorem
7.92, and Proposition (7.135) that the radially paralle]l solutions which satisfy
these integrability conditions and which are annihilated by J, (¢ % 0) satisfy
B = (B")SH, as well as (7.137), (7.138).

As in Theorems 0.15 and 0.16, we assume that the dimension of the space
of holomorphic Killing fields on (C(N%="),go) is L. This implies in particular
that C(N""") is a standard complex cone, with complex base, ¥ = N%*~1/s!,
which might be an orbifold.

Before proceeding further, we will recall some relevant definitions pertain-
ing to orbifolds.

Let (,4") be a compact Kahler Einstein orbifold, ¥ = N2~1/§'. Each
point of y has a neighborhood of the form, U/I", where I is a finite group
acting by biholomorphisms, and for some imbedding, ¢ : U — C*~!, ¢oT o
¢~! C U(k — 1), the unitary group of C¥~'. The triple, (U, I, ¢) is called a
local uniformizing chart.

Denote by Sing(Y) the set of singular points of Y. By definition, the Kéhler
metric, ¢°, is a metric on Y \ Sing(Y) such that for any local uniformizing
chart, (U, T, ¢), the pullback extends to a smooth metric on U. Similarly one
can introduce tensors of arbitrary type on Y, where in actuality, all computa-
tions are performed with equivariant objects on U.
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Below, we will use some facts which, at least in the case of smooth man-
ifolds, are well known. Their extension to the orbifold case is straightforward,
given the above remarks.

The skew Hermitian solutions, B, as above, correspond to orbifold symmet-
ric infinitesimal deformations of the complex strucure of Y; compare Section
7.

Definition 8.1. The cone (C(N*1),gq), is complex integrable, if every such
infinitesimal deformation is tangent to a curve of Kihler Ricci flat orbifold
metrics on Y.

Proof of Theorem 0.15 By using an obvious variant of the discussion of Sec-
tion 5, it is clear that to prove uniqueness of the tangent cone in the Kahler
case, it suffices to verify that some tangent cone, is complex integrable. We
now proceed with the verification under the assumption that the dimension of
the space of holomorphic Killing fields on (C(N*~'),g) is 1. As a conse-
quence, the orbifold Y admits no holomorphic Killing field, or equivalently,
since Y is Kahler Einstein, no holomorphic field whatsoever.

Let B as above determine a TYI'O—vaIued (0,1)-form on Y as in (7.39),
(7.40). We denote this form by ¢. Thus, ¢ determines an infinitesimal orbifold
deformation of complex structure.

We now observe that the obstruction space for the problem of orbifold
deformation of the complex structure on Y is trivial; compare [B], p. 350.

Lemma 8.2. The cohomology group H*(Y,T. ;’0) vanishes.

Proof. By the Serre duality theorem,

H'(4Ty) = By () ),
(83) = H2(1Q°(Ky))

il

where Ky is the canonical line bundle over Y, i.e. Ky = A*(7}°)*. Since the
first Chern class, ci(Y) is represented by a positive (1,1)-form, by the Kodaira
vanishing theorem, (see [GH])

(8.4) H=2(Y,Q,°(Ky)) = 0.
It follows from Lemma 8.2 that for ¢ as above, there is a smooth family

of integrable orbifold almost complex structures, J;, on Y, with

(8.5) Jo=J,

(8.6) Jo=¢.

It remains to show that the Kihler-Einstein orbifold metric, g°, on ¥ can
be deformed in the direction, B. In other words, to find a smooth family of
Kéhler-Einstein orbifold metrics on (Y,J;).
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Let g? be a smooth family of Kihler orbifold metrics on (¥,J;) with Kéhler
form w?, such that gb = g”. Consider the complex Monge-Ampere equations

= _ .
(8.7 (! + 820, ) = &/ ~H (b )
subject to the condition

b
(8.8) ol + 83,4, >0,
where f; is defined on (¥,J;) by

(8.9) Ric(g?) — 2ke, = &8, f;,

Here Ric(g}) denotes the Ricci form of 4, and
(8.10) S/ =Dty =0.
Y

Note that fj = 0 since g(b) = ¢* is Kéhler-Einstein.
If (8.7), (8.8) has a solution ¢,, then we can produce a Kéahler-Einstein
orbifold metric, g, by defining its Kahler form to be

(8.11) ol + 08, .

Therefore, the complex integrability is equivalent to the solvability of (8.9) for
¢t small.

Theorem 8.12. If' Y has no nonvanishing holomorphic vector field then (8.7),
(8.8) is solvable for t small.

Proof. By the Implicit Function Theorem, it suffices to show that the lineariza-
tion of (8.7) at 7 = 0 is invertible. Differentiating (8.7) with respect to ¢ at
t = 0, we obtain

(8.13) DsEW )00y = A — 2k,

where for ¢ small, £ is the operator

(8.14) E:(—¢¢) x CO(Y) = CY2(y),
given by

b A k
(8.15) E(t,¢)=1og(“"—:”a§’fkﬂ)— 42k
Here
(8.16) CH2(yy={¢ € CP'A(Y)|w + 8,6, > 0}

Note that £(r,¢) = 0 if and only if ¢ satisfies (8.7).
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We claim that DyE|(gp) has no nontrivial elements in its kernel. In fact, if

(8.17) D¢E(l//)|(0’()) =0,

then by the Bochner identity, g’flpj is a holomorphic vector field on Y, the
existence of which contradicts our assumption. This suffices to complete the
proof of Theorem 8.12 and hence, of Theorem 0.15 as well.

Proof of Theorem 0.16. As mentioned in the introduction, the discussion of
the complex analytic compactification will be deferred to [CT]. Statement i)
follows from Theorem 7.93 and Proposition 7.135, by the argument used to
prove Theorem 5.78. The part of statement ii) concerning the rate of conver-
gence of the complex structure follows similarly from Proposition 7.135 and
Theorem 7.173.

Example 8.18. According to [N], [T], the Fermat hypersurfaces of degree d in
CP", where 5 +1 < d < n+1, admit Kéhler Einstein metrics with ¢; > 0.
For & =z 3, these admit no holomorphic fields. Thus, the complex cones on
these varieties provide explicit examples to which our results apply.
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