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0. Introduction 

Backyround 

Let M ~ be a complete riemannian manifold with metric 9, such that 

(0.1) RicM,, > 0 ,  

(0.2) Vol (Br(p) )  ==_ Or" (f2 > 0) 

Fix p C M" and let r / --* oe. It follows from Gromov's  compactness theo- 

rem [GLP] that the sequence of pointed rescaled manifolds, (M, p, rf2g), has 
a subsequence which converges in the pointed Gromov-Hausdorff topology to 
a length space, Mo~, which might, a priori depend on the sequence, {0} and 
the choice of convergent subsequence. 

By Bishop's inequality, Ricw, > 0 implies 

(0.3) Vol(Br(p))/r" ~ . 

If one grants that the volume behaves continuously in the limit, it follows that 
Mo~ is a volume cone, 

(0.4) V o l ( B r ( p ~ ) )  = Qr" .  

Consideration of the Riccati equation along a geodesic suggests the follow- 
ing stronger statement which is proved in [CC2]. 

Theorem 0.5. ([CC2)] M~, is a metric cone. 
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It turns out that Theorem 0.5 is actually somewhat easier to prove than the 
continuity of the volume under Gromov-Hausdorff limits. The latter is proved 
in [CC3]. 

In [BKN], a proof of Theorem 0.5 is given which works in the special 
case in which M ~  \ p ~  is smooth, RicM,, > 0 and the sub-convergence of 
(Mn,rf29, p) is in a sufficiently strong topology. 

A basic question concerning M ~  is whether or not it is unique, i.e. is M ~  
the same up to isometry for all {rj} and all convergent subsequences? An 
example of Perelman shows that even if one imposes the additional condition 
of quadratic curvature decay, this need not be the case. Note that since any 
cone which is a smooth riemannian manifold outside the singular point has 
quadratic curvature decay this condition is natural in our context. 

Let R denote the curvature tensor. 

Example 0.6. ([P]). There exist complete metrics on R 4 satisfying (0.1), (0.2) 
and 

(0 .7)  lR(x)l < c r  - 2  ( r  = x ~ )  

for which uniqueness fails, although all M ~  are indeed metric cones. 
In this paper, we consider the situation in which (0.1) is strengthened to 

(0.8) RicM,, --= 0 

and (0.7) is replaced by the apparently weaker condition, 

(0.9) f ]R[ n/2 <= A (A independent of r ) .  
Bz,(p)\B,(p) 

In fact, (0.9) turns out to imply (0.7), given (0.2), (0.8). 
Again in this case, Theorem 0.5 follows from the argument of  [BKN], 

and in particular, M ~  = C(N "-1 ) is Ricci flat. Our basic concern is with the 
question of uniqueness. 

Statement of Results 

Recall that the condition that C(N n-I ) is Ricci flat is equivalent to Ric o - 
(n - 2)0 = 0, where 0 is the metric on the cross-section, N n-l .  The linearized 
deformation equation is, by definition, the equation on h gotten by putting 
h = 0~, in 

d 
(0.10) ~-uu(Ric0,, - (n - 2)0,)lu=0 = 0.  

Definition 0.11. The cone, C(Nn-L), is integrable if every solution of the 
linearized deformation equation arises from a curve of metrics, 0~, satisfying 

(0.12) Rico, ' - (n - 2)0u = 0 .  

Let Ac~(p) denote {(r,x) E C(N"-l)lc < r < d}. 
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Theorem 0.13. I f  (0.2),(0.8),(0.9) hold and some tangent cone M ~  = 
C(N" 1) is integrable, then Moo (equivalently ~) is unique. Moreover, 
Jot some compact set C, there is a di~eomorphism, ~, J?om the annulus 
A~,~(p) C C(N "-I ) to M" \ C, such that 

t~O*g- gol = IO*g-  ( drz +rZ,q)[ 

(0.14) = O(r -[~) 

Jor some fl > O. 

The issue of the optimal rate of convergence is dealt with later in this 
introduction. 

Now consider the case in which M 2k is K~ihler. Then it follows that 
C(N 2k-1 ) is K~ihler as well. Let J be the almost complex structure. Observe 

that ~ ~ , J  r ~  := -~, generate a ~* action, where C is the universal cover- 
\ / 

~ *  

ing group of  C* = �9 \ 0. Call a K~ihlerian cone standard if the r action de- 
scends to a ~* action. In this case, C(N ~-I ) is actually a complex cone with a 
complex base, N2k-~/S1, which might be an orbifold (S j = e2~i~ <_ 0 <- 2~:). 

~ is a real holomorphic Killing field. Moreover, if the dimension of Note that 
the space of real holomorphic Killing fields is 1, then of  necessity, all orbits 
of ~ are closed (and C(N 2k-l) c a n  be shown to be standard). 

In the complex case, there is a notion of complex integrability for cones 
which plays a role analogous to that of integrability for real Ricci flat cones; 
see Definition 8.1. 

Theorem 0.15. Let M 2k be Kiihler and assume that for  some tangent cone, 
C(N 2k- J ), the dimension of" the space o f  holomorphic Killiny fields is 1. Then 
C(N 2k-1 ) is complex integrabIe and hence, unique. 

Theorem 0.16. Under the assumptions of  Theorem 0.15, /f  
i) bl ' l(N 2k-1) = 1, then fl > 2k (fl as in (0.14)). 

ii) I f  k 4 = 3, the complex structure converges to that of  C(N 2k-l) at the 
rate r -2k. 

As a consequence of ii) above, M 2k can be complex analytically compacti- 
fled. This will be dealt with in [CT], where the more general case, Ricu2~ > 0, 
is also treated. 

In dim 3 some additional assumptions are required for part ii) of Theorem 
0.16. Probably they always are satisfied. This will be discussed elsewhere. 

We mention that for k >_ 2, there exist nonstandard K~ihlerian cones with 
positive Ricci curvature. 

Conjecture 0.17. All Ricci flat Kiihlerian cones are standard. 

In any case, ultimately it may be possible to prove Theorems 0.15, 0.16 
without the hypothesis that the dimension of  the space of  holomorphic Killing 
fields is 1. 
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Relation to previous results 

If condition (0.9) is strengthened to 

(0A8) f IRt "/2 < o , ,  

then we are m the so-called asymptotically locally Euclidian or ALE case. 
Here C(N "-1) is known to be unique and flat. Thus, C(N "-l)  -- Rn/F, where 
F is a finite group of  isometries on R n, acting freely outside the origin; [An], 
[BKN]. Moreover, as is shown in [BKN], (0.14) hold with fl > n - 1. see 
[BKN]. 

The argument of  [BKN] uses inequalities based on (0.18), as well as some 
curvature identities which hold only in very special cases. Thus, their argument 
does not generalize to our case where (0.18) fails. Nonetheless, as explained 
below, our method permits us to show 

(0.19) [:~ > n;  

see Theorem 5.103. By relaxing (0.18) to (0.9), we bring in many more exam- 
ples, including a large family of K/ihlerian ones constructed in [TY] (see also 
[BK] for special cases with extra technical assumptions). Theorems 0.15 and 
0.16 provide at least a partial converse to the construction of [TY], a complete 
converse if  one can remove the condition that the dimension of the space of 
holomorphic Killing fields is 1. 

Of course it is natural to ask whether Theorem 0.13 continues to hold 
if the hypothesis of  integrability is omitted. Indeed, the discussion of  Simon 
[S1], [$2], where the analogous question of  the uniqueness of asymptotic lim- 
its is treated for variational problems (including those for minimal surfaces 
and harmonic maps) suggests that we should expect uniqueness of ,~ without 
any additional assumptions. However, without the integrability hypothesis, we 
should not expect convergence at the rate r -~,  but only at the slower rate 

1 

Ilog rl -/~'" 
Our approach has considerable overlap with that of Simon, although in our 

situation (unlike his) suitable monotonicity inequalities are not known and the 
equation is degenerate elliptic i.e. we must get rid of the action of the diffeo- 
morphism group on the space of metrics. The existence of suitable monotonicity 
inequalities would provide one method for treating the nonintegrable case. We 
point out that for minimal surfaces, the integrable case was first treated by 
Allard-Almgren, [AA]. 

Sketch o f  the proof 

In proving Theorem 0.13, we begin by considering metric g which is suffi- 
ciently close in the appropriate scaled topology to a Ricci flat cone metric, go, 
on an arbitrarily large (possibly semi-infinite) annulus in C(N "-I ). We show 
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that there exists a diffeomorphism, t/, close to the identity in the appropriate 
scaled topology, such that q*g is divergence free with respect to 90. For the 
application, it is crucial the degree of closeness required for the conclusion 
to hold is independent of  the size of  the annulus. Since C(N n-1 ) is noncom- 
pact, this result is not quite standard and in certain exceptional cases, we must 
actually use a slightly modified notion of divergence. This technical point is 
mostly ignored for the remainder of this section. 

Next we study the linearized deformation equation, gotten by putting h = g~ 
in 

d 
(0.20) ~uu(Ricq,,)l~=o = 0 ,  

for divergence Jiee symmetric bilinear forms on the cone, (C(N "-1),9o). By 
using separation of variables, we observe that the general solution of (0.20) 
can be written as a sum of  solutions which are of three different types, 

a) growth, like rl~([3 > 0), 
b) decay, like r-t~(/~ > 0), 
c) radially parallel. 
The existence of tangent cones tells us that our solution to the nonlinear 

equation, (M",y) ,  lies as close as we like to some cone for r sufficiently large. 
Therefore we must show that: 

i) the behavior of solutions to the nonlinear equation which lie sufficiently 
close to a cone can be modeled on that of solutions of the linearized 
equation; 

ii) for (Mn,9) as above, the influence of  the solutions of types a) and c) is 
negligible. 

If  we take i) for granted, ii) can be seen roughly as follows. 
In the presence of the integrability hypothesis, the contribution from the 

radially parallel solutions, c), can be subtracted off (i.e. removed) by changing 
the reference cone. We emphasize that when integrability does not hold, it is 
these solutions which cause all the trouble. 

For r sufficiently large, a given growth solution, a), lies at a definite dis- 
tance from an), cone. Thus, if its influence were felt at all, this would force 
(M",,q) to eventually lie at a definite distance from any cone as well. But this 
contradicts the existence of tangent cones. 

Note that since a growth solution can start out arbitrarily small, we have 
no a priori control over the size of the annulus required for it to grow to 
a definite size. This is why we must consider arbitrarily large annuli when 
constructing q such that q*q is divergence free. 

Point i) seems almost clear, provided we are considering an annulus of  a 
fixed size over which the norm of our solution does not vary too much. But, as 
noted above, we must in actuality, deal with annuli which are arbitrarily large. 
As in [SI], [$2], we use an argument based on consideration of three adjacent 
annuli which (up to scaling) have a fixed size. In this context, if  i) failed to 
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hold for solutions, q'O, lying arbitrarily close to our conical metric go, then 
by an argument based on rescaling and elliptic estimates, we would obtain a 
solution of the linearized equation with the wrong behavior; a contradiction. 

In the divergence free case, (0.10) can be written as f]/~ = 0, where/~ = 9o 
and ~ is a second order elliptic operator on N "-1. The admissible values for 
the number fl in (0.14), are determined by the spectrum of [~. 

In general, ~ has a finite number of negative eigenvalues, and [~ > 0 actu- 
ally implies fl > (n - 2). In the ALE case we show that in fact fi > n. I f M  2k 
is K/ihler, under the assumptions of Theorem 0.15, we show that ~ > 0, by 
reducing matters to the complex base, on which the corresponding statement 
is essentially known. Actually, in the K/ihler case, we show /~ > 2k. 

Outline of the paper 

The remainder of  the paper is divided into eight sections as follows. 
1. Existence of tangent cones 

2. The operator 6u~,Lxgo on a cone 
3. Reduction to the (modified) divergence free case 

4. The linearized equation 
5. The integrable case 

6. A special result in the nonintegrable case 

7. The linearized equation in the Kiihler case 

Appendix A sharp decay estimate. 

8. Complex integrability and the Kfihler case. 

In Section 1, we observe that a slight extension of  the argument of [BKN] 
proves the existence of tangent cones in our situation. We state this in a more 
precise form which is required for the argument sketched above, see Proposition 
1.50. 

In Sections 2 and 3 we reduce matters to the (modified) divergence free 
case. In Section 3 (see Theorem 3.1), we apply the implicit function theorem, 
based on the analysis of the relevant linearized operator carried out in Sec- 
tion 2; see Theorem 2.68. This enables us to state a version of Proposition 
1.50 which holds for the (modified) divergence free gauge; see Proposition 
3.24. Such a result is required for Section 5. 

In Section 4, we write out the linearized deformation equation, (0.11), on 
a Ricci flat cone, and using separation of  variables, exhibit its solutions; see 
Proposition 4.65. The specific applications to Section 5 are explained at the 
end of Section 4. 

In Section 5, we prove our main result in the integrable case, Theorem 
0.13. In addition, we give an essentially sharp result on the rate of  convergence, 
Theorem 5.78. 

In Section 6 (which for the present paper represents something of a digres- 
sion) assuming uniqueness of  the tangent cone, we prove logarithmic conver- 
gence in the most nondegenerate nonintegrable case 
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Sections 7 and 8 deal with the K/ihler case. In Section 7, we show for a 
standard Ricci flat cone that (modulo diffeomorphisms) all bounded infinites- 
imal deformations come either from deformations of Kiihler class and decay 
quadratically, or come from infinitesimal deformations of  the complex structure 
on the base and decay at least like r 12k ~). 

In Section 8, we complete the proof of Theorem 0.15 and Theorem 0.16. 
As mentioned above, in a future publication, [CT], we will study the K/ihler 

case in the presence of (0.2), (0.5) when assumption (0.1), RicM,,--0, is 
weakened to Ricg,, :> 0. We will show that in this situation, the complex 
structure still behaves in asymptotically conical fashion and that one can still 
construct a complex analytic compactification. 

We mention that for the analysis of Section 7, we need the following basic 
eigenvalue estimate which does not seem to be too well known; see however 
[EM] and [DNP] p.48. (We are indebted to Michael Taylor and McKenzie 
Wang for providing these references). 

Let (X" - l ,~ )  satisfy 

(0.21) Ricx .... > (n - 2),~. 

Then the smallest eigenvalue, -gl' of the Laplacian on coclosed l-forms satisfies 

(0.22) -~t > 2(n - 2 ) ,  

with equality holding precisely for 1-forms which are dual to Killing fields and 
which are pointwise eigenvectors of the Ricci tensor with eigenvalue, n - 2. 
The proof of (0.22) is very short; see Theorem 7.6. 

A final point of notation. Throughout the paper, ~2, A, will always denote 
the constants in (0.2),(0.9) respectively. 

1 Existence of tangent cones 

In this section we prove the existence of tangent cones, (C(N n-I ),go). In fact, 
we require a more precise result, Proposition 1.50, which asserts the following. 
Given e > 0, there is a tangent cone, C(N "- l )  and a gauge, O:AR,R'(p) --* M n 
such that in a suitable scaled norm, 

i) ~b*g is e-close to go, somewhere on AR, R'(__p), 
ii) O*g is e-almost radially parallel with respect to go, 

iii) ~b*g is e-almost divergence free with respect to go. 
Moreover, either 
iv) near r = R  p < oo, O*g is a definite distance, Z, independent of e, away 
from go, 
or 
v) R ! = D o .  

In Proposition 3.24 we will show that in iii), "e-almost divergence 
free" can be replaced by "divergence free" (provided we use the modified 
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divergence, 6t). In Section 5, this formulation will help us, to rule out possi- 
bility iv) and to obtain our main result. 

Let ITIk,,,a denote the C k'~ norm of tensor field, T, on a riemannian man- 
ifold, (Xm,.0), where the norm and covariant derivatives are computed with 
respect to a fixed riemannian metric, 0. Note that i f /3 :X m ---~X '~ is a diffeo- 
morphism and if, /3~(T) denotes the tensor field on the domain corresponding 
to a given tensor field on the range, then 

(1 .1)  13~(7"2) -/~(T~)l, ,~;r~*~ = 17": - T~ I~,~;0 

In particular, if/3 is an isometry, the two norms in (1.1) coincide. 
If  gt,02 satisfy say [92 -gl[o,o;o, < �89 then for any T of  type (p ,q) ,  

(1 .2)  ITIk,~;~, ~ C p , u l T k ~ ; u ,  t,q2 - ,q~ [k,~;4, �9 

We begin with some notation. 
Let {[x,m,.~,]} be a sequence of  isometry classes of riemannian manifolds 

diffeomorphic to a fixed riemannian manifold (xm, o). We say that {[x,m,9,]} 
converges in the C k'~ topology if  there exists (xm, o) and diffeomorphisms, 
fl,:X m--+ ~i m, of class C k+l'", such that 

(1.3) lira [[3*0, - glk,~..q = 0.  
t ~ o o  

If (C(N~-I) ,9o) is a metric cone, then the metric, 90, is given by, 9o = 
dr 2 + r20, where ~ is the metric on N n-l.  

Proposition 1.4. The collection [Nn-l,~] such that the associated cone, 
(C(N"-I  ), 9o ), satisfies (0.2), (0.8), (0.9) for  f ixed (2, A, is compact in the C k'~- 
topoloqy Jor all k, ~. In particular, for x E A 1,2 (P), inj rad x > ~;(n, (2, A)  

Proof  The conical structure, together with (0.9) implies that (N "-1 , 0) satisfies 

(1.S) f 1/~["/2 < C(n ,O ,A) .  
N,~- 

Since n > dim N " - I , V o l ( N  n-I)  > nfLdiam(N "-1) < ~, the claim is an ob- 
vious consequence of the compactness theorems proved in [A1],[G],[Y]. 

Recall that the results of [A1 ],[G],[Y] referred to above, proceed by bound- 
ing from below, the Ck'~-harmonic radius, r/4, of 0 (equivalently, 9o). 

On a cone, it is also convenient to introduce norms which take into account 
the scalings of  the cone. Let ~,: C(N "- l  ) --+ C(N "-1 ) be defined by ~ ( x , r )  = 
(ux, r)  be defined by ~,(x,r) = (ux, r). Put 

P q 

(1.6) Au = ( ~ - , ) .  | �9 �9 - Q (@-,),Q(~b* | - �9 - | ~b~*) . 

Let T be a tensor field of  type (p ,q) .  Define the pointwise norm [T(u,x)tk.~;o, 
at r - - u ,  by 
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(1.7) ] T (u ,x  )lk,~: o = luP-q AuT(1 , x  )lk,~;o , 

where the norm on the r ight-hand side is the Ck'~-norm, with respect  to go at 
(1,x).  Put 

(1.8) ITlk,~;o = sup IT(u,x)lk.~;o 
(u,~) 

Then it is easy to check that 

(1.9) 

is equivalent  to 

(1.10) 

(1.11) 

ITlk,~;o < c ,  

I (W~ < c (k ) r  ', i = 0 . . . . .  k 

t(gT~ <= c(k )r - (k+~ , 

where the norm on the left-hand side o f  (1.12) is the ~-H61der norm and V "~ 
is the r iemannian connect ion o f  g0. 

I f  T is defined for all r sufficiently large and for all such r satisfies (1.10),  
we write 

(1.12) 

More generally, for # c R, write 

(1.13) 

if  and only if  

ff'-p,q 
T E , k,~,O " 

~ ' -p ,q  

~ - P , q  (1.14) r - I T  E , k,~;0 �9 

Thus for example,  the function r i tself  satisfies, for all k, 

~-0,0 ( 1 . 1 5 )  r E , k,~;L 

For T C ~P'q  '~ k,~/, we put 

(1.16) Irl~,~;~ = Ir-/Tl~,~:o 

Let p E M n and let p denote the distance function from p.  

T h e o r e m  1.17. Le t  ( M " , g )  satisJ)~ (0 .2) , (0 .8) , (0 .9) .  For all O < c < < L and  
k,~, there exis ts  c (g ,~ ,L ,k ,~) ,  such that  i f  

( l . 18 )  R > c ( g , e , L , k , ~ ) ,  

there is a cone, ( C ( N  " - I ) , go ) ,  satisJying (0 .2) , (0 .8) , (0 .9)  and an imbedding, 

(1.19) 4~: A R,LR( P_) --~ A R, Ln( p ) 
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such that 

(1.20) [0*g - g01k,~;0 < ~, 

(1.21) jpo~b-rl0,~;I < ~. 

Remark 1.22. Of course the metric, g0, on C(Nn-1), or equivalently, the 
metric 0 on N ~-~, might a priori depend on the particular number R > 
c(g,~,L,k, cQ. Indeed, this issue is our main concern. 

Corollary 1.23. For some compact set C ,M n \ C is" diffeomorphic to (R, oc) x 
N n-I" 

Corollary 1.24. (Existence of tangent metric cones). Given a sequence ~, ~ O, 
L~ ~ oc, and annuli, AR, Z,R,(p) as in Theorem 1.18, there is a subsequence 
(e.j,Lj,AR,,L,R,(p)) such that for suitably chosen O, as in (l.20), the metric, O, 
on N n-j can be chosen independently o f  j. 

Proof  o f  Theorem 1.18. If instead of (0.9) we assumed 

c 
(1.25) Iel _-< ?5 

(where in (1.26) R denotes the curvature tensor) then Theorem 1.18 would fol- 
low by repeating the argument of [BKN] (see also [A1], [AC], [CC2]). Given 
the more general assumption (0.9), the argument requires only minor modifi- 
cations. Indeed, by the convergence theorem of [A2], the rescaling argument 
of [BKN] (see also [A], [AC]) yields a space, M~,  which is both a volume 
cone and a Ricci flat manifold with at most a finite number of singular points 
on any annulus, Ar,,rz(p_),O < r 1 < r 2 < OO. Moreover, the singularities are 
all of orbifold type. A straightforward modification of the argument in [BKN] 
shows that if ~3Br, (p)  is free of singular points, then the metric behaves coni- 
cally along all radial geodesics passing through ~Br, (pp). If the singular set is 
nonempty certain of these geodesics will end in a singular point. However, this 
possibility is easily seen to be incompatible with the volume cone structure. 
It follows that there are no singular points. Thus M ~  is a Ricci flat cone, 
C(Nn-J),  where N n-l carries an Einstein metric, ~, satisfying (0.10). 

For the construction of the gauges described at the beginning of this section, 
we will need some standard facts concerning the existence of divergence free 
gauges in the compact case [E]. We now recall these facts and introduce some 
notation. 

Let (X n-T, 0) denote an arbitrary compact riemannian manifold (we use the 
notation 0 since in the application, N n-~ will play the role of X "-I) .  

Let 6~ denote divergence with respect to the metric g. 
For k C Z+,0 < ~ < 1 there exists 0 < zl(O,k,c 0 < r2(0,k,e) and 

c(O,k,e) > 1 with the following properties. 
For each ,~, with 



(1.34) 

(1 .35)  

implies 

(1.36) 
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(1.26) [ f i t -  91k,~;~7 < v l ( f , k , ~ )  

there is a diffeomorphism, rt0 : X "  ~ --~ X '~-~, o f  class Ck+t'% such that 

(1.27)  6~(rl~ (h) = O. 

Moreover,  the map, 91 --~ q0,, satisfies 

(1 .28)  It/0, - r/~h 1~+2,=;4 ~ e ( f ,  k, c0lgL - 92 {k,:~;~,. 
and if  ld denotes the identity map,  

(1.29)  }r/j, - ld]~-+2,~;4 < c( f , k ,  c~)1;30(91 )]k-~,=;O - 

Finally, i f  ~ is a diffeomorphism such that ;50(~'91 ) = 0 and 

(1 .3o)  IC0~ - 91,,~;,~ < z 2 ( 9 , k , ~ ) ,  

then for some isometry, t, o f  9, 

(1 .31)  , ' ~ , 9 ~  --  ~'9~ �9 

It is clear that r l , r2  above can be chosen such that i f  91 satisfies (1.27), 
then 

(1.32) IriS, f1 - flk,~;o < z 2 ( f , k , ~ ) .  

Now, fix a metric, 90, on X " - I .  We can assume that rl(9o, k , e )  satisfies 

1 
(1.33) "cl(0o, k ,~)  < -~z2(9o, k,o:). 

By (1.2),  (1.27),  we can and will assume that 22 is so small  that 

"c 2 
19~ -9olk,~0,,  --< ~- ,  J = 1,2 

Z2 

19= - 9, Ik,~;~ --< - i f ,  

192 - 9J Ik,~;O,, ~ 2192 - 9, I*,~;~, �9 

L e m m a  1,37, Let  f i  be a sequence o f  metrics an X n-I ,O <= i < N <= ~ ,  
such that 

< ~ < 8 '  i + l  < N .  (1 .38)  ~9,+, 

Then there exists' N t <= N and fa r  0 <= i < N I, diffeamorphisms, 13,:X n-I -+ 
X "-1, such that flo = Id and 

(1.39) 6,~,,([3"9i) = O, 
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(1.42) 

(1.43) 

and in general, 

(1.44) 

( 1.40) lfl~0, - fli*-I gi-  l Ik,~;.4o < c(go, k, ~)e 

Moreover ,  i f  N ~ < N <= oe, 

(1.41) [/~2, ,gN, , - 001k,~;~io > ~1 - 2e 

P r o o f  For i < N ~ -<_ N we define by induction the sequence of diffeomor- 
phisms, 

fll = II:,U, = ~0, , 

fl' = ~/V-,'~, fl'- i �9 

Here, ~[it*l,~, is the diffeomorphism in (1.28) defined with respect to the metric 

go (=  0 of  (1.28)) and N / =< N is the largest (extended) integer such that for 
i < N  ~ 

(1.45) Ifl,*-lg~ - gOlk,=;O~, < ~J �9 

By the definition of  zl, it follows that ]~t is well defined for i < N ~ and by 
definition, relation (1.40) holds. Moreover, if  N'  < N, then by definition, 

(1.46) ][1,*,,ON, - g01k,~;~,, > rl �9 

Using (1.l),  (1.39) together with (1.35)-(1.37), we have for all i _<_ N ~, 

(1.47) 113,*-10i - fliLlO,-1 ]k,~;~,, < 2e, 

If (1.42) fails, then (1.47) (for i = N ' )  contradicts (1.46). Similarly (1.47) 
together with (1.29), (1.30) give (1.41). 

Before proceeding to the main result of  this section, we make a definition: 
If U C C ( N n - l , g o )  and 7j: U ---+ C ( N n - 1 ) , j  = 1,2, put for each (u ,x )  E U 

(1.48) p~o(~ , l (u , x ) ,~ ,2 (u , x ) ) k .~ ;1  = P g o ( O , _ , ' ; I O . , O . _ , ~ ' 2 0 . ) k , ~ ,  

where ~ is as in (1.7). Also, put 

(1.49) Poo(Yl,72)k,~;1 = sup pgo(~q(u,x),yz(u,x))k,~;1, 
(u,x)Eu 

Here Pk,~ is the k, c~ distance from 71,72 defined with respect to the metric go. 
Fix 0 < s < < 7, < < 2, where )f < c ~ ( n , e , A , k ) ,  and c , A  are as in (0.2), 

(O.9). 
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Propos i t ion  1.50. Le t  M ~ sa th f y  (0.2), (0.8),(0.9).  Then there exists a Ricci 
f la t  tangent cone, ( C ( N  "- t  ),go), satis]j~ing (0 .2) , (0 .8) , (0 .9) ,  and R < R' with 

R'  
(1 .5 l )  - -  > 2 

R 

and an imbedding, 

(1.52) 

such that 

~:AR~ R' (P)  --~ AR.~,(p)  

( l . 53 )  ] r  Yolk,,;o < ~(, 

(1.54) min lqS*g - g0lk,~;0 < e ,  
ARe,(_P} 

(1.55) I VO/Cr (4'*g)lk-l,~;-~ < e,, 

(1.56) 16q0(r < ~. 

Moreover, either R ~ < oo and Jot  some c2(n, f2, A , k )  > 0, 

(1.57) ]O* g-goIR,~;,j,, > c2Z OH A(I/2)R',R'(P) 
o r  

(1.58) R' = oo , 

(1.59)  l i m l  o * ,.-oo V'~/e~ ( r  g)(r))lka;-~ = O, 

(1.60) lim 16.,,(4;g)(r)t~.~;_~ = O,  

and.[or some sequence, rt --+ oo, 

* r (1.61) lira 10 g ( , )  - ,qo(ri)lk,~:o = O . 
r, ~ o o  

P r o o f  Fix 0 < el < e and L > 0 sufficiently large, to be determined later. 
Choose R so large that for each annnulus,  AR,,LR,(P), with RI > R, there 
exists a Ricci fiat cone and a map r as in (1.20). 

For 0 < i  < oo, put 

(1 + 2L)i R 
(1.62) ai - 3i 

(1.63) L = ( a , , L a , ) ,  
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and note that for i 4=j, I i n l j  is nonempty only for j = i - l , i + l .  Also, 
Ii-1 fql inl i+l  =~.  

For 0 < i < ~ ,  choose tangent cones (C(N n-I),  g,) and imbeddings 

(1.64) cb,:A,,,La,(pp) ---* Aa,,L~,(p) 

satisfying (1.21) with e replaced by el. Since an isometry between annular 
domains in cones is o f  the form (r,x) --~ (r, qx), for some isometry q o f  the 
cross-section, we see that there exist diffeomorphisms, 2 ,+ l :N ~- ~ ~ N " -  I such 
that on A,,.La,(p) fq A ...... La,+~(P), 

(1.65) Py,( (IN,.~.~4_ll )~)~+li~)i,ld)k,~;I < C~(e I ) ,  

(1.66) 12i+lg~+t - 9ilk,~;.4, < 6(eq ) 

where 6(e) is an increasing function, with lim~,~0 6(e.) = 0. 
Put 

( l .67)  ~i = 2 ~ . . . 2 " ~ , .  

Then {_0,}, satisfies (1.39) of  Lemma 1.38, we have with e replaced by c~(~1). 

Thus, for Z sufficiently and /~i,N ~ as in Lemma 1.38, we have 

(1.68) =9i =/~;9i '- i < N '  

(1.69) 6~o(~ Z ) ,  =~ = 0 .  

Moreover,  if  we put 

(1.70) ~b =/~i21 . . .  2 , ,  

then the ~b satisfy 

(1.71) p~ (d?~+'l(a ,Id)k,~;, < 6(~, ) . 

Now by a standard argument (compare [C], [AC]) we can slightly modify the 
~b such that on the annuli say A(I/5)La, (4/5)La,(P), the modified q5 i fit together 

to define a map 

(1.72) ~b: A( I/5)LR,(4/5)La~r (P) --~ Mn . 

Let L be sufficiently large and B 1 be sufficiently small. Then it is clear 
from Lemma 1.38 that (1 .53)- (1 .57)  will hold in the case N r < N = oc of  
that lemma, and that (1 .58)-(1 .61)  can be arranged in case N '  = N = cx~. 
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2 The  operator ~goLxgo on a cone 

In this section we do the linear analysis which is required for the construction 
of divergence free gauges given in Section 3. 

Let ( C ( N  "-1 ),.q0) be a metric cone. 
Let ,/ be as in (1.48), (1.49). Write 7 E c~k,~;1 i f  ?, is defined for all (r,x) 

with r sufficiently large and for some c, 

(2.1) p,qo(Y,/d)k,~;l < c .  

Note that for the usual action of diffeomorphisms on tensors, 

(2.2) ~ .  . . o T - P , q  o ~ - P , q  
k + l  ~t I ,  , J  k ~ t ; f  ---+ ~ k,~t;/ 

Let g be defined on Ac,a(p) C C ( N  n-I ). We ask whether Ig - golk,~;0 suffi- 
ciently small, implies the existence of qg E ~k+J,~;1, with po,,(qo,ld)k,~;1 small, 
such that 

(2.3) 6qo(tl~g ) = O. 

For the application, it is important that the required smallness of Ig - g0[k,~;0 
should be independent of the size of  d/c, where we assume say 

d 
(2.4) - > 2 .  

C 

The implicit function theorem approach to this question necessitates that 
we analyze the linearized equation 

(2.5) 6~oLx go = - 6qo h ,  

where X is a vector field, Lx  denotes Lie derivative and h is a symmetric 
bilinear form. More precisely, the standard approach makes use of Hx( l , . ) ,  
where Hx(t ,  .) is the flow generated by X. Relation (2.2) and the following 
lemma (whose straightforward proof we omit), suggests that we require X E 
y-l,0 in (2.5). 

' k + l , ~ ; I  

o7" 1,0 L e m m a  2.6. I f  X C ~' k+t,~;l is dehned on an annulus, A~.~(_p) C C ( N  " - l )  

and is tangent to the boundary, ( c , N " - l ) ,  then 

(2.7) Hx( t , . )  C ~k+l,~;I �9 

Note that since in the application of  (2.5), we will take h = .q - g0, where 
g E j-0,2 k,~;0, we will have 

~o7-0,1 (2.8) 60oh E ~ k-l,~;-I �9 

Using (2.12), (2.13) below, it is easy to check that 

- . o7-0,1 __+ /~/--1,O 
(2.9) 6q,,Lxgo �9 J k+1,~;1 ~ k-1,~:-I �9 
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Thus, we ask if there is a bounded right inverse, (6ooLxgo)-1: j-l,o k - -  1,or;-- l - - ~  
.y-o,1 

k + l , : q l "  

It turns out that if  no such inverse exists, then there exists 

07" l,O (2.10) X C .~ k+l,~;1 

such that 6o,,Lxgo = 0 and X has precisely linear growth. 
The existence of such an X corresponds to the existence of certain parti- 

cular eigenvalues, p, for the Laplacians on co-closed 0 and 1-forms of N "-I  
(including the eigenvalue /~ = 0 on functions, which is always present); see 
(2.37)-(2.39). 

In the cases (2.38), (2.39), the gauge condition must actually be modified, 
to obtain the existence of  ~/o- 

For (2.37), which corresponds to the existence of a Killing field, a gener- 
alization of (2.4) and Lemma 2.6 holds. Thus, in this case, no modification if 
the gauge condition is required; see (3.3)-(3.9). 

Recall that 

Lxgo(Y,Z) = go(~Ty X,Z)  + go(Y, Wz X ) ,  
~ y m  * (2.11) := W X ( Y , / ) ,  

6goLxgo(y ) ---- ~-~go(~7e ~7e, X,Y) + go(V'e gTr X,e,) 
i 

(2.12) = go(V*V X, Y) + go(Ric(X), Y) + go(graddiv X, Y).  

Here X* denotes the 1-form dual to X. Using Bochner's formula, we see that 
(2.5) is equivalent to 

(2.13) (d*d + 2dd* - 2Ri%,,)X* = 6ooh. 

Because our ultimate interest is in the case Rico, , = 0, for convenience we 
will study the operator (d*d + 2dd*) for g0 arbitrary. Then we can directly 
adapt the discussion of [C]. 

~ z *  
Let d,d denote the operations of exterior differentiation and its adjoint, 

for forms on the cross-section, N n- j .  Then letting prime denote differentiation 
with respect to r, the operators dd*,d*d on 1-forms of  C(N "-~) are given by 

dd*(q(r,x) + ~c(r,x)dr) 

(2.14) 

r - 2 d 3 * ~  - 3 r  - (n - 1 )r  - ~ &  

+(r-2~*t/ '  _ 2r-3~l*~l)dr 

+ ( - K " -  ( n -  1)r-I~:' + ( n -  1)r-2tc)dr, 
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d * d ( ~ ( r , x )  + K ( r , x ) d r )  = - q "  - (n -- 3 ) r - l q  ' + r-2cl*clq 

- - r  -2~1" r f  dr  

(2.15) + r - 2 d  * dK d r  . 

For the above see [C], p. 586, 
Observe that any 1-form can be written as an infinite sum of  forms of the 

following types and that d*d  + 2dd* preserves the types. 

(2.16) f ( r ) ~ ( x )  (degq5 = 1) 

(2.17) 

Here, 

(2.18) 

k ( r )  3~5(x) + d ( r ) r -1  (o(x) d r  

,t*0 =0 ,  

(deg~  = O) 

(2.19) d*dq5 = / ~ b .  

It will turn out that the kernel representing the Green's function for (2d*d + 
d d * )  does not decay fast enough to be defined on the subspace of ~7-0,1 ~' k,:~;-- 1 
corresponding to (2.16), (2.17), unless p is greater than the values in (2.37)-  
(2.39). Thus we will begin by solving (2.5) directly by variation of parameters, 
when the right-hand side is a .finite linear combination of  forms as in (2.16), 
(2.17). 

Put 

(2.20) r = e I . 

After performing (2.20) and the substitutions f ( d ) =  p ( t ) , p ' ( t ) =  q(t), etc. 
in order to reduce to a first order system, we get a system of the form 

(2.21) U I - A U  = e2tK . 

Here A is a matrix of  constants, of size 2 x 2 for (2.16) and 4 x 4 for (2.17). 
The vector valued function K is bounded in t provided the inhomogeneous 
term in the original equation is in y--0.t This follows from the fact that for 

' k , ~ ; - - I '  

~b and/- form,  

(2.22) IqS(x)l,. , = u-il~(X)lr=l �9 

Suppose that for an invertible matrix, V, with constant entries and a diag- 
onal matrix of  constants, A, we have, 

(2.23) M'  - A M  = O, 

where 
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(2.24) M = F e  A t  . 

Here the columns of V and corresponding entries of A are eigenvectors and 
corresponding eigenvalues of A. 

Put 

(2.25) 

(2.26) 

Define 

(2.27) 

and set 

21 0 ) 

0 2N 

V-IK = : . 
Ru(t) 

t 

fe~2-;,)SRa(s)ds ).j < 2 
fe(2-;-,ISRi(s)ds = o o~ 

-fe{Z-;,)SRi(s)ds 2j > 2 
-t 

(2.28) 

Then 

(2.29) 

is a solution of (2.21). 
Clearly if for all j ,  

(2.30) 

then 

(2.31) 

implies 

(2.32) 

for some constant, 

(2.33) 

( fe(2-<)'Rl(s)ds ) 
f e -(A-2t)s V-IK ds = " . 

f e Cz-;~ )* Ru(s) ds 

U = M(t)fe(A-21)V -1 K(s)ds 

)q :#2 ,  

ff~Jsj(K(e'~)) <= C, 0 <__ j < k 

z ' ty  < 
idtJ [ = CkCe z', O < j < k 

Ck = Ck(max 12j - 2[-1,det V - l ) ,  
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(with corresponding C k'~ bounds). In the same way, for the original equation, 

(2.34) (d*d + 2dd*)X* = v ,  

we have, more generally, the following. 

Lemma 2.35. Let  v be a f inite linear combination o f  f o r m s  as in (2.16) or 
(2.17) such that 2~i 4 : 2  + p holds f o r  the equation gotten by the substitution 

r = e t. Then v E 3 -~ implies that the solution corresponding to (2.29) 
k - -  I , ~ ;  - -  I - -  p 

satisfies 

(2.36) X* E .~,-0,1 
k + l , : ~ ; I  p " 

Until Section 5, we will be primarily concerned with the case p = 0 cor- 
responding to (2.30). 

Let # be as in (2.19). Using (2.14), (2.15) it is easy to check that the 
condition in (2.30) is violated precisely when for (2.16) 

(2.37) /t = 2(n - 2) ,  

and for (2.17) 

(2 .38)  # = 0 ,  

o r  

(2.39) /~ = 2n.  

It is also easy to check that in just these cases, condition (2.10) is violated. 
More precisely, in these cases, d*d + 2dd* is not surjective from ~0.J J k + l , : ~ ; I  to 

7 ~ and (2.29) leads to a solution satisfying ( r l o g r ) - I X  * C y-0,1 
�9 k - - I , ~ ; - I '  " k + l , ~ ; 0 "  

In the cases (2.38), (2.39), this does not suffice for our purposes. 
The 1-forms corresponding to (2.37), (2.38), (2.39), which violate (2.10) 

a r e  

(2.40) r2~b, 

(2.41 ) r d r ,  

(2.42) r 2 dq~ + 2r 4> 

(see [C], p. 586). The case (2.41), in which the form is dual to the infinitesimal 
homothety, r ~ ,  always occurs. 

To obtain condition (2.30), we replace the operator 6(= 6uo) by an operator 
6t defined as follows. In forms as in (2.17) corresponding to (2.37), (2.38), 

(2.43) 6t = 6 - tit-,  ~'/cr �9 
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Here, t E R and i denotes interior product. In the direct sum of the remaining 
spaces of forms in (2.16), (2.17), we put 6t = 6. I f X  is dual to the 1-form 
X* = ~1 + • dr ,  then by a straightforward computation, 

(2.44) i,.-, e/erLxgo = (r-I~l t - 2r-Zq + r-I~hc) + 2r - I  K ~ d r .  

By using (2.14), (2.15), it is easy to check that (2.9) and (2.30) hold for the 
modified operator, 

(2.45) 6tLxgo (t  + 0 ) .  

Alternatively, the forms in (2.38), (2.39) are not in the kernel of the operator 
in (2.44). Hence they are not in the kernel of the operator in (2.45) either. 

We mention that for the application to Ricci flat manifolds in Section 5, the 
modified gauge condition defined by fit = 0 will turn out to be an intermediate 
technical device. We will ultimately be able to control such solutions in the 
standard gauge corresponding to t = 0. 

The l-form in (2.40) is dual to a Killing field, x_, on C ( N " - I ) .  Equivalently, 
6~b----0,r = 2 ( n -  2) ,Ricu .... ~ ( n - - 2 ) ,  implies that q5 is dual to a Killing 
field, x ( l , x )  on N n-I . Since Lx9o =- O, r20 will be in the kernel o f  the operator 
corresponding to (2.45), no mat ter  what the gauge condition. In this case as 
is easily checked, (2.29) leads to a solution, X*, such that (on say AI ,~ (p ) )  

(2.46) ( r l o g r ) - l X  E J ~+1.~;0 ; 

compare (1.15). However, since X generates a 1-parameter group of isometries, 
it will turn out that a generalization of (2.4) and Lemma 2.6 holds for X* as 
in (2.46) in this case. Thus, we can work with the usual gauge condition, 
6g -- 0, on the corresponding space of forms. 

We have not yet discussed boundary conditions, nor have we dealt with 
infinite sums of  forms in (2.16), (2.17). 

For p as in (2.19), put 

2 + 2 i - n  
(2.47) ~ -- - -  , 

2 

(2.48) v = Xf~ 5 + / ~ ,  

(2.49) a • = c~ 5: v. 

Here i = 1 in (2.16) and i =  0 in (2.17). 
The solutions corresponding to (2.16) are 

(2.50) r a• ~b 

The solutions corresponding to (2.17) are of  two types, 

(2.51) r a• dO + a•  ~•  dr  A O ,  
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(2.52) 2r aa+2 d~) + a T r  a~:+l d r  A 0 

(compare (2.52) and (4.11)-(4.20)).  Note that by subtracting off appropriate 
multiples of  the ( - ) -so lu t ions  in (2.50)-(2.52) we can modify the solution 
corresponding to (2.29) to obtain a solution, u, satisfying absolute boundary 
conditions 

(2.53) ( U )  N - -  0 ,  

(2.54) ( d u )  N = O, 

such that (2.35) continues to hold. Here ( )u denotes normal component. 
The above remarks apply essentially unchanged to the perturbed operator 

in (2.45). The only difference is that the values a + change slightly (depending 
on the size of t). 

For infinite sums of forms as in (2.16), (2.17) we must bring in the Green's 
function in order to solve (2.5). 

We will discuss explicitly only annuli of the form A<~o(p). The general 
case A,,,d(p) is handled similarly. Alternatively, one can use a simple argument 
involving a cutoff function to deduce results from the case d = oo, which 
suffice for the eventual application in Section 5. 

We consider first, the case (2.16). For arbitrary sums of forms as in (2.16) 
the Green's function on Ac.oo(p), with absolute boundary conditions at c is 
given by 

V" l a; a 7 (2.55) z . ~ ( r ~  - c2"'rl )r2 ~bb @ 41, rl ~ r2 

(see [C]). Observe that since the volume element on C ( N  " - j )  is 

(2.56) r n-t  d r  A con_l , 

where o~n-1 is the volume form on N n-J , in order even to be able to apply a 
kernel f ( r l , x l , r 2 , x 2 )  to a form of linear decay, r - I ,  we should have for fixed 
r l ,  

(2.57) 

so that 

i f ( r l , x l , r 2 , x 2 ) l  <= c r  I . . . . .  , 

oc 
(2.58) c 1 . . . .  "n-1 -1 j r  2 r 2 r 2 dr2 < o o .  

I 

It follows from (2.22), (2.49) that (2.57) will hold for the sum in (2.55) 
prov ided  we drop the terms with # < 2(n - 2 ) .  Thus, let G be the sum in 
(2.55) with the restriction # > 2(n - 2). Then it follows that G inverts d*d  + 
2dd* on the direct sum of the spaces of  forms in (2.9) corresponding to 
t* > 2 ( n -  2). 
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The discussion of [C], Section 6, can be adapted immediately to show that 
the symmetric kernel G satisfies 

(2.59) [G__(rj,xl,r2,x2)l < C " 2--n 1 < rl < 1 = . & s t ( ( r l , x l ) , ( r 2 , x 2 ) )  ' -2 = r-2 = 

(2.60) t G ( r l , x l , r 2 , x 2 ) l  < C(r l r2) (2_n) /2 ,h(r l / r2) ,  r l  < 1 
= r 2 = 2  

where h( s )  is smooth for s > 0 and as s ~ O, 

(2.61) 

Here ~ > 0 is given by 

h(s) = O(s~+n/2). 

n 
(2.62) E=  min v - -  

p>2(n-2) 2 

Suppose 

(2.63) k = ~ k j ( r ) ~ j ,  /~j > 2(n - 2) 

satisfies 

(2.64) Ikl ~ ~ r  -1, 

Then if c < �89 

l /2rl  2ri 

IG(k)l < f flGllklr~-'dr2 + f flGllklr~-' dr2 
c N 1/2riN 

oo  

(2.65) + f tG__ltklr~ - I  d r 2 .  
2rl 

I f  i r l  < c, the first two integrals get replaced by an integral from c to 2rl 
and the estimates which follow undergo an obvious modification. 

Putting s = rr/r2 and using (2.60), (2.61), we see that the third integral is 
bounded by 

1/2 

(2.66) o)Crl f h ( s ) s  l-n~2 d s  < o)crl . 
0 

In the second integral in (2.65), we put s = r2/rl and use the fact that the 
singularity in (2.59) is integrable to obtain the bound 

(2.67) coCrl . 

The first integral in (2.65) is handled similarly and we again get the bound 
cOCrl (for say c > 1). 
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Similarly, one can obtain estimates on derivatives of  the form (1.11), 
(1.12), by using the more precise parametrix of [C]. 

Finally, as above, one can adapt the discussion of [C] to handle l-forms 
which are sums of those as in (2.17), with /~j > 2n. 

The results obtained in this section can be summarized as follows. 
y-o,) denote the space of  On Ac,d(p) (with say d/c > 2) let "r C ,  k+2,~;-1 

l-forms in (2.16) for p = 2 ( n -  2). Let ~ 1  denote the corresponding space 
of vector fields satisfying (2A6), whose dual 1-forms satisfy absolute boundary 
conditions at (c,N~-~). Let u/'2 C y-0,1 denote the direct sum of the 1-forms ' k,:~; 1 

o7- 1,0 as in (2.16), (2.17) for the remaining values of  p, and let ~/U2 C ~ k+2,~;I 
denote the corresponding space of vector fields whose duals satisfy absolute 
boundary conditions at ( c , N  ~-1). 

Theorem 2.68. For t 4= O, there ex&ts a bounded operator 

(2.69) (6tLxgo)-):  ~f't | "f'2 ~ "#/~1 | r162 

such that (6tLxgo)(~}tLxyo) -1 is the identity on ~-o,l k,:(;-- 1" 

In the same way we have the following; compare Lemma 2.35. Fix p > O. 
y-0.1 Let ~< c .  k+2,~;1 denote the space of  1-forms satisfying absolute boundary 

conditions. Let the {2j} be as in Lemma 2.35. 

Theorem 2.70. I f  2i ~= 2 + p, there exists a bounded operator 

(2.71) (6 L ~ ' - ) "  y--L0 (.h) X f f O )  " '  k,:t; 1 - p  ~ ~ [~ - '  

such that (6a,,Lxgo)(6q,,Lxgo) -I  is the identity on ,y-l,o k,:~;-  1 - - p '  

3 Reduction to the divergence free case 

In this section we construct 6t-free gauges and use this construction to sharpen 
Proposition 1.50 (see Proposition 3.24). 

By Theorem 2.68, for t =~ 0, the linear operator (6tLxffo) -1 is bounded. 
Fix such a number t. In what follows let 0 < ~ < 1 and d/c  >= 2. 

Theorem 3.1. There exists •(t,k) such that i f  ( C ( N ' - l ) , g o )  is a Ricci f lat  
cone and g is a metric on Ac.a(p) C C ( N  "-1 ) such that 

(3.2) Ig - golk,:r < ~c(t,k) 

then there exists a d!ffeomorphism, q:Ac,d(p) ~ A, .d(p)  such that 

~ - 0 , 2  
(33 )  r/*g C.  k,~;0 

and 

(3.4) bt(~*,q - go) = 0 .  
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Moreover, if 

(3.5) [6r(g)lk-r,<-I < e ,  

then 

(3.6) 

where 6(~:) .L and 

Ir /*g- glk,~;0 < 6(e.), 

(3.7) lim 6(e) = 0. 
t : ~ 0  

Proof With the notation of  Theorem 2.68, let Y = (111, Y2) E ~'l  | ~J2. Thus, 
Y1 = f (r )X,  with X a Killing field for the metric g0. We denote by Ky, the 
diffeomorphism 

(3.8) Ky = Hr~(l,Hy,(l ,  . ) ) .  

Here, Hy,(t, .) is the flow generated by Y,. Hence, 

#H,,(t,.) Y,(Hy(t,.)) 
(3.9) ,:'t -- , 

Hr,(0, ") = Id 

The main point is to check that the flow Hr,(t,.) has properties which, 
for our purposes, are just as good as those of Hr.(t, .); see (3.14). In this 
connection recall that vector fields in ~q/l can grow more rapidly than those 
in ~V); see (2.46). 

It follows from (3.9) that 

(3.10) Hr, (t,.) = Hx( t f ( r ) , .  ) .  

Since the Killing field X is tangent to N n-l ,  for fixed t,r, the map Hx(tf(r),  .) 
is an isometry of  the corresponding cross-section. It follows that for some 
constant C, 

(3.11) [~'rHx(f(r),')lk+l,~;o < C.  
~ r  

Here V denotes the covariant derivative for the induced metric on the cross- 
section (r, Nn-1). On the other hand, 

8 
(3.12) ~rHx(f(r),  .) = f ' ( r )X(Hxf(r ) ,  .)),  

and by the definition of ~/r for some constant, C, 

(3.13) ~---~Hx(f(r), . ) <  C,  
k+l ,7 ;0  

Then by induction, one easily shows that 



Euclidean volume growth and quadratic curvature decay 517 

(3.14) I V  Hx(f(r),')[k+l,~.;o <= C~. 

This is the analog of  Lemma 2.6. 
There is a well defined map, 

~o~2 ~ .t~-i | W2 y-o,l (3,15) B : ( ' ~ I  @, "#P2) x Jk+la:o = '  k,~; l 

given by 

(3.16) B( Yj, r2,9) = r 

In fact, it follows from (3.14) that 

(3.17) H i  ' g ff ,y-o,2 
/ * + 1 , ~ ; 0  �9 

~o,2 Thus o7-1,0 it follows that K~,g r �9 k+l,a ,0" Since ]/2 E ;;' k+2,~.l, 

/o7-0,1 (3.18) B( YI, Y2; g) E ,-  k.~;-I , 

and, the map B is well-defined. 
It is easy to show that B is differentiable at (Y1, Y2,9)E ( ~ / 1 0  ' ~ 2 ) •  

~-- 0,2 Indeed, k+l,~;0" 

(3.19) 1~S,(K{,q) - at(go) - 6tt',',+Yegotl,-,,~:-, = O(tY] 2) 

where tY{ is computed with respect to the direct sum norm on '://"~ @ ~ 2 .  We 
have 

(3.20) D{r,.v:)B(O,O;go) = 6tLy,+r2go 

and by Theorem 2.68, the inverse 

(3.21) (6fL}',+>go)-l: Y/'I (~ 'P'2 -'~ "/~/'1 @ q/~"2 

is hounded, Therefore, by the implicit function theorem, for {g-- 
g0]k+l,~,0 sufficiently small, there is a diffeomorphism 

(3.22) q = Ky 

such that (3.3) holds. The second part of Theorem 3.1, (3.5)-(3.7) is an 
obvious consequence of the proof of the implicit function theorem. 

The following remark is important for the sharp decay estimate proved in 
Section 5. 

Remark  3.23. Suppose that in fact [g - go{k,~:-~ is sufficiently small for p > 
0. Then it is clear that subject to obvious modifications in the relevant norms, 
at can be replaced by 60 = 6g,, in Theorem 3.1; see Theorem 2.70. For instance, 

the space in (3.3) gets replaced by ~0,1 ' ~  k,:q p" 

Now we can strengthen Proposition 1.50. Let the notation be as in that 
proposition. 
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Proposition 3.24. Let  M "  satisfy (0.2), (0.8), (0.9). Then f o r  any e,Z > 
0,e < < Z, there exists a Ricci  f ia t  tangent cone, ( C ( N " - l ) , g o ) ,  satisfying 
(0.2), (0.8), (0.9), and R < R' with 

R ! 
(3.25) - -  > 2 

R 

and an imbedding, 

(3.26) 

such that 

( P : A R , R ' ( P )  --~ A R , R ' ( p ) ,  

(3.27) ]qS*g- g0]k+~,~;0 < Z,  

(3.28) min [~b*g - g0[~+l,~;0 < e,  
A R Rt(p) 

(3.29) I v'?/r (4*g)l*,,;-~ < ~- 

(3.30) 6t(c~* g - go) = O . 

Moreover,  either R t < o~ and f o r  some ce(n, f2, A , k )  > O, 

(3.31) Iqb*g- gOlk+l,u;O 2> 02~ on  A(1/2)RqR(p ) 

o r  

(3.32) R I = o~ . 

P r o o f  It is clear from the proof of Proposition 1.50 that we can replace 6qo by 
6t in (1.56). Then Proposition 3.24 follows from Proposition 1.50, so modified, 
and Theorem 3.1 (see in particular (3.5), (3.6)). 

Remark  3.33. The reason that we had to drop the counterparts of (1.59)- 
(1.61) in stating Proposition 3.24, stems from the nature of the operator in 
(2.27) for the case 2j < 2 (such 2j might exist). However, this will not cause 
any serious problems in Section 5. 
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4 The linearized equation 

In this section we derive the explicit form of the linearized deformation equa- 
tion on a Ricci flat cone for divergence zero symmetric bilinear forms, h, and 
exhibit its solutions. A basic reference here is [g], Chapter 12. We also need 
to consider the modified divergence condition of Section 2. 

If (u is a l-parameter family of  diffeomorphisms, the metrics (~,go are all 
Ricci flat. Hence, symmetric tensors of the form Lxgo are automatically solu- 
tions of the linearized equation, (4.1), and vector fields, X, such that 6Lxgo = 0 
(as studied in Section 2) generate divergence free solutions of (4.3). Note that 
the component of a symmetric tensor field which involves dr is of the form 
dr  [] Y* (where [ ]  denotes symmetric tensor product). Hence, the space of  
mixed components is isomorphic to the space of  vector fields. Thus, it is rea- 
sonable to hope that the mixed component of any divergence free solution of 
(4.3) agrees with the mixed component of some Lxgo, with 6Lxgo = O. A 
precise result to this effect is stated in Proposition 4.65. 

Proposition 4.65 is required for the sharp results on the rate of convergence; 
see Theorem 5.78. The qualitative properties of solutions of the linearized 
equation (see Corollary 4.86) are used in the proof of Theorem 0.13. 

For any Ricci flat metric, the linearized deformation equation is 

(4,1) ( V V *  -26"fi  - 2/~)h - Hess trh = 0 .  

Here * denotes adjoint and tr denotes trace. The adjoint and the trace are 
computed with respect to the background metric. Also, R ( x , y ) =  [~ . ,Vy]  
- ~7[x,y] and 

o 

(4.2) R h(x, y )  = - ~ h ( R ( x ,  e, )y, e , ) .  

Thus (4.1) coincides with [B], (12.28') although our definitions of R and /~ 
are the negatives of those used in [B]; (1.1) and p. 52. 

In case 6h = 0, (4.1) reduces to 

(4.3) ( V ' V  -2/) )h  - Hess trh = 0.  

Before looking at (4.3) for the case of cones, we begin with some general 
remarks. 

Note that 

(4.4) tr V*~7 h =V*~7 t rh .  

Also, if  Ri%~, = 2go is constant, it is easy to check that 

o 

(4.5) tr(Rh) = 2 t r h .  

Hence, if Ric~0 = 0, taking the trace in (4.3) gives 
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(4.6) 2 V'*V trh = 0 .  

Now putting h =/~ + ~ (trh)g0, and 

o 

(4.7) E~ = (W* V - 2 R ) ,  

we see that relation (4.3) is equivalent to (4.6), together with 

(4.8) []/~ = Hess t rh .  

As noted above, since the condition of being Ricci flat is invariant under 
diffeommorphisms, it is clear that for any X, Lxgo satisfies (4.1). Also 

(4.9) tr(Lx g0 ) = 2bX.  

Thus if 

(4.10) 6Lx.ao = 0 ,  

or equivalently, ( d * d + 2 d d * ) X * =  O, then X satisfies (4.3) and by (4.6), 
2d 'X* is harmonic. 

To find a solution of  (4.9) with 26X = u, a prescribed harmonic function, 
we can attempt to proceed as follows. Let v satisfy 

1 
Av = ~ u .  (4.11) 

Then 

(4.12) 

(4.13) 

Also, since u is harmonic, 

2d*(dv) = u ,  

1 
dd*(dv) = ~du .  

(4.14) d*(du) = 0 .  

Suppose 0, 0 are 2-forms satisfying 

(4.15) d*O = ~ d u ,  

(4.16) A 0 = 0 ,  

(4.17) dO = dO = O. 

Then 

(4.18) (d*d + 2dd*)(dv - d 'O)  = O, 
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(4.19) 

and we can put 

2 d * ( d v -  d * $ )  = u ,  

(4.20) X = ( d r  - d * ~ ) *  . 

If  the underlying manifold is a Ricci fiat cone, then v, 0, ~ as above exist 
and d r - d * q  is a form of  the type occurring in (2.52). It is neither closed 
nor coclosed (unlike the forms in (2.50), (2.51) which are both closed and 
coclosed). Thus, for Ricci flat cones, any solution of (4.3) can be written as 
h + Lx.qo, with X as in (4.20) and h satisfying 3h = 0 and 

(4.21) Dh  = 0 ,  

(4.22) t rh = 0 .  

We now concentrate on (4.21), (4.22) for h with 6h = 0. 
m r  

Let W denote the riemannian connection with respect to the induced metric 
on (r, N " -  1 ) C C ( N " -  J ). Let P: T(  1, N n -  I ) ___+ T(r ,  N " -  I ) denote the identifi- 
cation of tangent bundles induced by parallel translation along radial geodesics. 
Put 

(4.23) 

Then 

~" = p ~ ' l p - I  

(4.24) ~ " =  r - ' ~ .  
- - r  : r  - - r  

Also, let gr ,6 ,tr ( =  trace) be defined with respect to the induced metric on 

( r ,N n-L) and let ~r  denote exterior differentiation on ( r , N " - l ) .  Then if  

(4.25) 

we have 

~7 = p ~ T J p - I  

6_ : P a I P - ' ,  

= p ~ l l p  - I  ' 

= P t r l p  - I  ' 

z•r = r _ 2 ~ ,  

a r = t - ' a ,  

d"= r-'~, 
~ r  

(4.26) tr = _tr. 

Let e be tangent to ( r , N  n-L)  and let e* be its dual l-form. Let r/ be a 

1-form such that 
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(4.27) q ~rr = 0 ,  

(4.28) V'a/& ~1 = 0 .  

Then 

(4.29) ~7 e ~] = r--1(~Ter I -- q ( e ) d r ) ,  

(4.30) g r  dr = r - l e  * , 

0 
(4.31 ) ~Tc/a~ ~ r  = ~T&> dr = 0 .  

Let ~ e . t~r' 1 , . . , en- -1 ,  be a local orthonormal basis satisfying 

(4.32) ~ e e  s = 0 

at some fixed point, ( r ,x) ,  and 

(4.33) ~7~,/r e - -  O . 

Then at the point where (4.32) holds, 

0 
(4.34) ~ V'e, ei = - ( n  - 1 )r -1 0-7 " 

t 
Put 

(4.35) tol [ ]  ~o2 = m~ | ~o2 + ~o2 | col . 

We now compute the expression in (4.3) for h = . f(r)rll []  r/2, with rh, ~/2 as 
in (4.27), (4.28). 

(4.36) 

~7e,~7e, (~11 [ ] /~2)  = ~ ~7e,~7e, ~ [ ] / ~ 2  
t i 

-}-~7e, /71 [ ]  1~7e, Y]2 q- ~11 [ ]  ~7e, ~7e, /'12 

(4.37) 

V'e, g7e, rlj = r -1 Ve, ( ~  rlj - r l j (e , )dr)  

= r - 2 ( ~ q j  - 2~r/j  dr - q j ) ,  

~ Ve, rl l[] Ve, rl2 

(4.38) 

r -2  (~i ~_e, rll l-X-l L r l 2 -  ~r l21"Zl  dr  

- ~ , ~ r l l  []  dr  + ~(r h []  rl2)dr | d r )  , 
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(4.39) 

(4.40) 

Thus, 

We/~Wc/cr (Jrll [ ]  ~/2) = f " q t  [ ]  ~/2, 

We, e,(Jtll []  //2) 1. ,  -- = r  f ~ l [ ] q 2  . 

~7*W ( f ~ l  [ ]  /'12) = ( - f "  - (n - 1 ) r - i f  ' + r -z + ( ~ * ~  + 2))r/1 [ ] / /2  

+ 2r-Zf6_(ql [ ]  q2) [ ]  dr 

(4.41) - 2r-2 f ~ ( q l  []  ~12)dr @ d r .  

(See (4.53) below for _6(qt [ ]  qz).) 
Next observe that on a cone, 

(4.42) R(, ), ~r = 0 

(for all choices of the remaining arguments) and that for x , y , z  tangent to 
(r, Nn-1) ,  

n(x, y)z = ~r(x, y)z + ,--2((x,~)y - (y ,~)x) .  (4.43) 

Then 

(4.44) 
o o 
R(.]Cr]l [ ]  ?]2) = r - 2 f ( ~ q l  [ ] / /2  + ql [ ] / /2  -- ~(tll [ ]  q2)g).  

Now let B be a sum of forms of type ql [ ]  q2. Then by (4.41), (4.44), 

[S](J'B) = ( - f "  - (n - l ) r - l  f ' + r -2 fE] )B  

+ 2r 2f~(B)~ + 2r 2f~_(B) []  dr 

(4.45) - 2r-2 f ~ ( B ) d r  []  d r .  

Now consider h = k(r)r  []  dr with r as in (4.27), (4.28). Then 

(4.46) ~ We, (k'c)l-ffl We, dr = r-2k(~_s'vm'c - z []  d r ) ,  
t 

where Frsymz = L~*,q, is the symmetrized covariant derivative, 

i 

(4.47) 

Also, 

(4.48) We, We, dr = - ( n  - 1 ) r - 2 d r .  

Since, by (4.43), /~h = 0 in this case, with (4.37) we get 
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[](kr [] dr) = - ~ r - 2 k ~ T S y m ' f  

+ { [ - k "  - (n - 1 ) r - 'U  + r - 2 k ( ~ * ~  Jr n Jr 2)1~} [ ]  dr 

(4.49) + 4r-2k~_r dr (~ dr .  

Last, consider  h = { ( r )  dp(x)dr | dr. Then 

(4.50) ~ ~Te, ({~adr)| g7, d r = r - 2 ( ( ( o O + ~ [ ] d r ) ,  
l 

and with (4.48) we get 

[Z(E& dr Q dr) = - 2 r - 2 d  q5 ~ - 2r-2d~q5 [ ]  dr 

+ ( - ~ "  - (n - 1)r - I{  * 

(4 .51)  + r-Q'(~_*~7 + 2(n -- 1 ))q~dr | dr.  

Next  we compute  6h for h as in the three cases above. 

6(f~/t  [ ]  q2) = 

(4.52) 

Thus,  for B as in (4.45) 

f ~  ~7e, ql(ei)q2 q'- ql(e , )  Ve, 172 
i 

Ar V e ,  q2(e,)r/l -}-q2(e,) ~Te, t]l �9 

(4 .53)  6( fB)  = r - '  f6_(B) - r - l  f ~ ( B )  dr .  

b(kz [] dr) = k ~  We, z(ei)dr + "c(ei) ~Te, dr + (~7e, dr)(e,)z + k ' r ,  

(4.54) = klz + nr- lkz  + r-lk(6_r)dr. 

6(d(adr • dr) = ~gdp(gre, dr)(e,)dr + {'dpdr, 
i 

(4 .55)  = ( . f  + (n - 1)r-~E)dpdr 

Now we consider  a solution o f  (4.3),  which is a sum of  the three types 
previously  considered and satisfies in addition, 

(4.56)  6h = 0 ,  

(4.57)  t rh  = f ~(B) + E(a = O . 

Then we easily find that (4.3)  is equivalent  to 
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(4.58) ( - f " - ( n  1 ) r - l f  + r - Z f ~ ) B  " _  ~ - s y m  -- = 4r -~ (~  + 2r-~k~ 7 r ,  

525 

(4 .59 )  ( - k "  - (n  + 1 ) r  ' k '  + r - 2 k ( ~ * ~  - (n - 2 ) ) ) r  = 2 r - 2 f d 4 9  , 

(4.60) ( - - { "  --  (n + 3 ) r - I {  ' + r - 2 { ( ~ * ~  " - 2n))49 = O,  

(4.61 ) r - l  f 6 8  + nr-~kr  + k"r = O, 

(4.62) #' + nr - l  # + r-lk~_r = 0 . 

At this point we emphasize that in reconciling the results of the present 
section with those of Section 2, we must bear in mind that in Section 2 we 
used polar coordinates in order to trivialize the tangent bundle in the radial 
direction, while in the present section we used parallel translation in the radial 
direction for this purpose; compare e.g. (2.22), (4.25), (4.26). 

Let 49 in (4.60) be as in (2.18), (2.19). Then it is easy to check that for 
a • as in (2.49), 

(4.63) r~• 

are the two solutions of (4.60). The corresponding solution of the full system 
(4.57)-(4.62) is Lxgo where X* is the dual of the form in (2.51). 

Similarly, Lxgo with X* the dual of the form in (2.50) is the solution of 
(4.57)-(4.62) with (49 = 0 and r playing the role of 49 in (2.50). 

Note that the forms (2.42) give rise to the radially parallel solutions of 
(4.57)-(4.62). The form in (2.41) gives the radially parallel solution (h = 90) 
of (4.3) with trh = 2. 

Remark 4.64. Corresponding to (2.41), we get Lx9 = 0, since in this case X 
is a Killing field. Thus, we do not obtain a solution to (4.58)-(4.62). Note 
that in this instance, dr [] r does define a radially parallel solution of (4.58)- 
(4.60) (equivalently of (4.3)) which, however, does not have divergence zero. 
In fact, even if we were to introduce a tangential component B, (4.61) could 
not be satisfied since _6B is orthogonal to the space of Killing fields. 

The computations of this section can now be summarized as follows. 

Proposition 4.65. I f - ( 1  - n / 2 )  2 is not an eigenvalue o f  ~q, then every solu- 
tion h o.['(4.1) satisfyin9 6h = O, can be written uniquely as a sum 

b • (4.66) h = LxOo + ~-]r , B, 
i 

where each B, satisfies 

(4.67) ( - f "  - (n - 1 ) r - t f '  + r - 2 f ~ ) B ,  = O. 
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(4.68) tr B, = 0 ,  

(4.69) cSB~ = ~B~ = 0 .  
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If - ( 1 -  n/2) 2 is an eigenvalue of ~, then a solution of  the form r I-'/2 
logrB must be included on the right hand side of (4.36). 

Remark 4.70. Let us note that ~] > 0 implies that for b -  as in (4.66), 

(4.71) b __<2-n .  

Proposition 4.65 has several consequences which are used in Section 5. 
Before stating these, we introduce some notation. 

For fixed r, let us define a symmetric bilinear form on tensor fields of 
C(N n-I ) o v e r  ( r , N  n - I  ) by 

(4.72) ((h,,h2)) = r .(~-~) f (h,,h2) dvolN . . . . .  
(r,N"- I ) 

where 

(4.73) (hi,h2) , 

denotes the usual pointwise inner product. 
Now consider the modified equation 

(4.74) (~7" ~7 -2tb*ir-,,7/~r - 2/~)h - Hess trh := E]th - Hess trh = 0 

It will suffice from now on to assume that It] is small. As in Proposition 4.65 
we find that solutions occur in pairs of the form 

(4.75) r/~,~ T, 

or exceptionally, 

(4.76) rU Ti, rU logrTi , 

where Ti is a symmetric bilinear form with {Ti} orthonormal with respect to 
( ( , ) )  and 

(4.77) ~7~/,~ T~ =- 0 .  

Corollary 4.78. For t sufficiently small, the only radially parallel solutions of  
(4.74) are of  the form f B ,  where f is a constant function, 

(4.79) [~3B = 0 ,  

and B satisfies (4.68), (4.69). 
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Proof For t # 0, the solutions which are perturbations of those in (2.41), 
(2.42) are no longer radially parallel (compare (2.45)). Since it is clear that 
for t sufficiently small, the solutions of (4.74) with 6th are small perturbations 
of those in (4.67), our claim follows. 

Note that since the operators [~, ~ * ~ -  ( n -  2) and V ' * ~ -  2n, which 
appear on the left-hand sides of (4.58) are not necessarily positive semidefinite, 
we might not have [1+ > 0 for some finite number of [1+ in (4.75) (see also 
(4.76)). For such values of i we get solutions of the following types. 

fl+ 
(4.80) (c ,rE + d , r ,  )T,  13, < [3 + < 0 

(4.81) (e, rU + d,r f~) logr)T,, [1+ =/17 

(4.82) (c,rE- +d,rL )T,, Re [17 < 0, [17 = [1+ 

In (4.82), Im [17 # 0. 
We will group the solutions in (4.80) (4.82) together with the remaining 

- solutions and call a linear combination of such solutions a ,[ solution. The 
remaining + solutions will be called Y solutions. Thus, any solution, h, of 
(4.74) can be decomposed as 

(4.83) h = h T + h t + h0, 

where h0 represents the radially parallel component. 
For our purposes in Section 5 it will be necessary to specify a precise 

sense in which the solutions, h;, are norm decreasing. 
Define the modified L2-norm of h over an annulus, Aa,b(p), by 

b 

(4.84) Illhllla.b = ftthll 2r-1 dr ,  
a 

where IIh[t 2 is defined as in (4.72). 

For [1, as in (4.75), (4.76), put 

(4.85) [1 = ~, ~n I[1il, 

Corollary 4.86. Given 0 < [1' < [1, there exists ( such that Jbr all a > 0 and 
L > (  

(4.87) [llhxlllLa,L2a >= Lr 

(4.88) Illh~lllLa, L2a ~ L-r �9 
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Proof Since {T~.} is orthonormal, if  we did not have to take into account the 
solutions in (4.80)-(4.82), this would be obvious from (4.75), (4.77). The 
solutions in (4.80)-(4.82) are handled by the following proposition whose 
elementary proof we omit; compare however [S1], [$2]. 

Proposi t ion 4.89. Let f , ( r )  denote any o f  the Junctions in (4.80)--(4.82) 
(where c,,d, are arbitrary). Given 0 < ~' < - I  3+, there exists ( = {(~7,/~ +, 
[3 ~) > O, such that for a > 0 and L > (, 

L2 a t La 

(4.90) f f2,(r)r-~ dr ~ Z -2[:t f f ~ ( r ) r  -1 dr .  
La a 

5 The integrable case  

In this section, by using an argument from [S1], [$2] we prove Theorem 0.13, 
which asserts uniqueness of  the tangent cone under the assumption that some 
tangent cone is integrable. By a small extension of  the argument we obtain 
an essentially sharp estimate for the rate of  convergence, r -/j, in terms of the 
spectrum of the operator, [~, on the cross section. 

Consider a gauge as in Proposition 3.24. Thus qS* 9 is a Ricci fiat metric 
over an annulus, AR, R'(P_)C C(Nn-1), for some tangent cone, (C(N n-j),go). 
Moreover, 6t(#)* g - g) = O. 

Let gl be a second Ricci flat metric defined on AR,R,(p), satisfying 

(5.1)  3t(gj - go) = 0 .  

In the application, gl will be a suitable Ricci fiat cone metric, 

(5.2) gl = dr 2 + r2gt �9 

If  we put 

(5.3) h = qS*g - gl , 

then 

(5.4) 6th = 0 .  

Subject to (5.4), the equation 

(5.5) Rico,+h -- Ricq, = O, 

is a nonlinear elliptic equation on h, which, for h small, we can view as a 
perturbation of the linearized equation (4.74). More precisely, we have 
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L e m m a  5.6. 

(5.7) 

where 

Ricq,+h - Ricq, = 5 t h  - Hess  tr h + F(9o, 9 b h  ) 

IF(go,~,h)l~-,~;o <= C{I.qj - golk,~;o + Ihlk,~;o]l X 72 h[k-2,~;-2 
(5.8) + [I v' (.0,-.q0)lk-,.~:-~ +IV'  hlk-l,=;-~]l V" hl~-~.~:-,} 

P r o o f  In local coordinates the Christoffel symbols of 91 + h are given by 

1 
(5.9) /-~/r = ~(91 + h)'/  (h//,k + h/k,j -- hjk,/ ) 

where 

(5.1o) 

Note also that 

((at + h) ' / )  = ((g~ + h),s) -~ 

(5.11) R i c ( 9 1 + h ) , ) = F  k Fkk. l+ k / k / ~j;k -- , FtiFk/ - Fz/Fjk 

From this, (5.8) follows in a straightforward manner. 

Fix an annulus Aa,b(_p). The modified Lz-norm of h over Aa,b(_p) is defined 
as in (4.84). Note that if 

(5.12) q = a - 2 1 / / * ( h ) ,  

with ~ as in (1.6), then 

(5.13) IIIhflla, La = I[[qll[l,L 

The basic elliptic estimate for this section is the following. 

L e m m a  5.14. There is a smal l  number,  X = z ( n , O , A ) ,  such that  i f  191 1 
901k,~,0 < Z, then Jbr  any solution h o f  (5.7) with Ihlk,~,0 _-< Z, 

3 
(5.15) ]h(~a)lk.=:o < e(n ,~2,A,k  )lllhll]~,2, 

P r o o f  By (5.13), it suffices to consider the case, a = 1, for which the result 
follows from standard elliptic theory; see [GT], Chapter 6. 

In order to reduce the verification of assertions about sufficiently small 
solutions of  the nonlinear equation, (5.5), to the verification of  correspond- 
ing assertions about the linear equation, (4.74), we will use an argument by 
contradiction based on the following Lemma 5.18. 

Let {q~i} be a sequence of  gauges as in Proposition 3.24 relative to a fixed 
tangent cone, (C(Nn-1 ) ,  90), such that for the sequence of  constants, Xi, of  that 
proposition, 
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(5.16) lim Zi = 0 .  

Let g, be a sequence of Ricci flat cones such that 

(5.17) 66t(g, - (1o) = O,  

(5.18) Igi-  gol~,=;o < Z , .  

The norm in (5.16) is the uniform norm. Put 

(5.19) h, --- q~g - g , .  

Fix L > O. For j = O, 1, 2, consider the annuli 

(5.20) AL,a,,L,+'a,(P) C AR,,R;(p_) 

Here Ri,R I are as in Proposition 3.24. Put 

(5.21) qi = a,72~ba*(h,) �9 

Lemma 5.22. I f  f o r  some f i x e d  c > O, 

clllhilIILo,.L~., >= IIIhelllo,.Lo, + IIIh411L2.,,L'a,, (5.23) 

then f o r  

(5.24) k, Illq, II , = IL[~2q, 

/~7-0, 2 there is a convergent  subsequence,  in , k,~;o, 

(5.25) ki, --+ k ,  

on any  annulus,  Ab.o(__P), with a < b < c < La. Moreover ,  k satisfies 

(5.26) []t k - Hess  tr k = 0 ,  

(5.27) fitk = 0 . 

P r o o f  In view of (5.15) relation (5.25) follows from standard compactness re- 
sults. Then (5.26) is a direct consquence of (5.8), (5.16), (5.20). Finally, (5.27) 
is clear. 

In the next lemma, we isolate a property of  solutions of (4.74). By means 
of Lemma 5.18, we will show that it holds for sufficiently small solutions 
of  (5.5) as well. 

Let k be an arbitrary solution of (4.74) satisfying 

(5.28) fitk = 0 .  
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As in (4.83), we write 

(5.29) k = k T + k t +/co, 

where for /3 as in (4.86), (4.87) we have 

(5.30) fl = flU) > O. 

Lemma 5.31. Given 0 < f f  < fl, there exists L such that i f  

(5.32) lllklflL,~ = L~'IIIklII~,L, 

then 

(5.33) 

and i f  

(5.34) 

then 

(5.35) 

Moreover, i f  

(5.36) 

then at least one of  (5.33), 
of  (5.32), (5.34) holds). 

Proof  If (5.32) holds, then 

IIIklIIL2,L~ ~ Lt~'IltkltlL,L~, 

IIIklIIL2L' ~ L ~ kl ~,L2, 

tlIklIIL, L2 ~ L-~'IIIklIt,,L. 

531 

k o z O  , 

(5.35) holds (whether or not at least one 

(lllkslll~,L'- + Illk*ll12,L2 + IIIkoIII2,L2) = > L2/~' 

(5.37) (lllkTIflff L + IIIkxll 2 2 , II,L + IIIkolll.,L) 

Since ko is radially parallel and we can assume that (4.87) holds, this gives 

(5.38) 2 IIIkTtlIL,~2 > ( L21~' - 1)(lllkllll~,L= + IIIkolll~,L-') �9 

Together with (5.29), we get 

IIIk111~2 L, 

(5.39) 

Then, by taking L so large that 

> LE~lllkTII 2 ILL'- , 

> 22~ L2~' - l lllklll~,L ~ 
= ~ L 2 [ f  
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L2# ' 
(5.40) L 2(/~-/j') > L2t~,-~--Z-~, 

the first assertion follows. The proof of the second assertion is entirely similar. 
Finally, if  (5.36) holds then 

1 
(5.41) tlIk~IIIL,L2 ~ ~IIIklIIL, L~ 

implies 

(5.42) 

provided 

(5.43) 

Similarly, 

(5.44) 

implies 

(5.45) 

[llklll~L~ ~ -~IIIAIII2L2, 
>_ L2lf 2 - IIIkll l~,L2, 

L 2[~-1~') > 4 .  

IIIk+IIIL,L= ~ ~IIIAIIIL, L2, 

IIIklll,Z L2 ~ t-2r 
provided (5.43) holds. This suffices to complete the proof. 

We now return to the situation of Proposition 3.24 and we continue to 
assume (5.1)-(5.4). We assume in addition, that 

(5.46) I g l -  golt,,~,o < Z.  

Let fl' > 0, L > 0 be as in Lemma 5.31. For j = 0, 1,2, let 

(5.47) AL, . .L,"a(_P)  C AR, R'(_P) �9 

Over, AL,a,L,+,a(p_) let n denote orthogonal projection on the subspace, 
ker(Ult - Hess tr)lAca.L2,(p), with respect to the inner product defining III IIILo,,2o. 
As in (5.28), put 

(5.48) (nh) = (xh) t + 0zh) t + (xh)o �9 

Finally, let c, A be as in (0.2), (0.9). 
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Proposition 5.49. There 
then i f  

(5.50) 

then 

exists z(n, Y2,A) > 0, such that 

IIIhlllLa, L~a ~ U'IIIhItIa,L~, 

i f  Z < z(n ,c ,A) ,  

(5.51) 

and i f  

(5.52) 

then 

IIIhllk2~,L~ ~ U'IlthlIIL~,L~a, 

L -/~ h lllhlllL2a,L~a <= I La, L2a, 

(5.53) 

Moreover, i f  

IIIhlIIL~.L2o ~ t-~'illhlll~.L., 

(5.54) (~zh)0 = 0 ,  

at least one o f  (5.51), (5.53) holds'. 

Proof  In view of Proposition 1.6, it suffices to prove the claim for X < 
x(Nn-l ,go) .  

Note that the inequalities in Proposition 5.49 hold if and only if they hold 
when h is multiplied by a nonzero constant. 

Assume there exists a sequence of gauges, q~i, and solutions, hi, for which 
the constants ~,, satisfy l i m , ~  Z, = 0, but none of the assertions the propo- 
sition fails. Then, using the rescaling construction of Lemma 5.22 we produce 
a solution of (4.74) with a property contradicting the corresponding assertion 
of  Lemma 5.31. This suffices to complete the proof. 

Remark 5.55. The first part of Proposition 5.49 says roughly that if h starts to 
grow at a definite rate then it continues to grow at at least that rate. Similarly, 
if  somewhere h decays at a definite rate, then previously it decays at at least 
that rate. 

The last essential preliminary that is required for the proof of  Theorem 0.13 
is the assertion that gl can be chosen such that h = qS*g - 91 satisfies (5.54), 
(nh)0. At this point the integrability condition enters. 

Lemma 5.56. Let (C(N n-I ),go) he a tangent cone which is integrable. Then 
i f  x < ~(n, E2,A,L), for  any annulus, Aa,La(p) C AR,R'(p), there is a Ricci flat 
cone metric, gl, satisfying (5.1), such thaF(5.54) hold.  Moreover, i f  

(5.57) 

then 

IIl~b*g- golllLa, L2a ~ Z,  

(5.58) IIIgl - golllLa,L2a ~ 2[ll~z(0*g -- gO)[IILa, L2~. 
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Proof  The integrability assumption implies that the set of  metrics, g, satisfying 

(5.59) Ric O = 0 ,  

(5.60) 3~o~ = 0 ,  

has a natural smooth manifold structure near 00; see [B]; chapter 12E. Here 
we have put go = dr2+ r2~jo . Let ~ be a sufficiently small Euclidean neigh- 
borhood of  00. The tangent space to '9  at 00 is naturally identified with 

(5.61) ~{ = {B E k e r ~  I3B = 0, trB = 0} .  

Let B, be an orthonormal basis for J {  with respect to the natural inner product. 
The map ~P: ~/! --+ .g( defined by 

(5.62) ~ ( ~ )  = ~(_~, B,)B, 
! 

is smooth. Moreover, with the above identifications, it is easy to see that the 
differential of 71 is the identity map. Thus, our claim follows from the implicit 
function theorem together with (5.15). 

Proof  o f  Theorem 0.13. Consider a gauge as in Proposition 3.24. Take e < < 
Z < < )~(n, f2, A) as in Proposition 5.49. Let L be as in Proposition 5.49. 

First we show that by choosing X, e sufficiently small, we can guarantee 
that R ~ = cx~. 

By (3.29), (3.31) together with (5.15) we see that there exists c3 = 
e3(n, ~, A, L, ~), such that 

(5.63)  IIl~b*g - gOIIIL-'R',R' ~ c3Z . 

By (3.28) and (3.29), there is a j >= 10, such that 

1 1 
(5.64) 100e3x =< IllO*g--g0111L . . . . . .  R',L-,R' = < ~ e 3 z .  

We can assume that Z is so small that we can apply Lemma 5.56 to obtain 
gl, such that if h = dp"g - 91, then over AL~,+,~R, L-,R'(P__) (Trh)0 = 0 and 

1 
I[Igl - gOII[L-',+"R',L-,R' < 2[llqS*g -- g0LIIL -- U + I)R,.L-,R' < ~ C 3 z .  

(5.65) 
Then (5.64) and (5.65) imply 

1 
(5.66) I]lqS*g - g~IIIL-'R',R' -->-- T6e3z  �9 

If  (5.50) holds, then Proposition 5.49 implies that for i < j, 

(5.67) IIIhlIE-,R,,L . . . . .  ,R' > Z IIIhlIIL-,,+',R'.L-,R', 

where h = q~*g - gl. But from (3.29) and Lemma 5.14 we easily get 
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(5.68) IIIhtlIL-2R',L 'R' + c ( n ) e ( l o g L )  1/2 >--IIIhllk 'R',R',  

which, for ~: sufficiently small, contradicts (5.66), (5.67). Therefore, (5.50) 
does not hold. Similarly, one can show that (5.52) does not hold, either. Then, 
since (rch)o = 0, by using the last s tatement in Proposition 5.44, we get a 
contradiction. Thus, R' = oc. 

Now consider a sequence of  annuli  AL,a.L,*,,(P), i = 0, 1 ,2 , - . - ,  and a cor- 
responding sequence, y~, such that for 

(5.69) h, = ~b*.q - 9 , ,  

we have, 

(5.70) (Tzh,)0 = 0 .  

By reasoning as above, we can assume that (5.53) holds for all 1. 
After  passing to a subsequence,  we can assume that for some Ricci fiat 

cone, g ~ ,  

(5.71) l im Ig~, - 9,~lk,~';0 = 0 (~'  < :~). 
. 1 ~ o o  

If  it is not the case that 

(5.72) lim Itth,,lllc, a,C,+,a = 0 ,  

then as above, using (5.51) and the implication, (5.50) implies (5.51), we 
contradict (3.27). 

Thus, (5.72) holds and by using Proposition 5.49 inductively and standard 
elliptic estimates, (see Lemma 5.14) we find that for some c > 0, 

(5.73) Iq~*9 - 9~lk,~;0 < cr -I~' �9 

Finally, since 9o is a tangent  cone, by (1.31), (1.32), we find that 

(5.74) g ~  = go - 

This completes  the proof  of  Theorem 0.13. 
The decay estimate proved so far is not optimal. We now show how to 

improve this estimate to obtain one which is essentially optimal. 
To begin with, by Theorem 0.13 and Remark 3.23, after modifying q5 by 

a suitable diffeomorphism, we can assume that for some ~ '  > 0, 

(5.75) ~b*9 E 7 ~ 
' k , ~ ; - [ : ~ '  ' 

(5.76) 6(~) '9)  = O. 

In (5.75),  (5.76)  we continue to denote the modified metric by 4)*9. 

Let rb•  be as in (4.66) and put 
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(5 .77)  b = bminolb• I 

Theorem 5.78. For all 0 < b t < b, there exists a 9auge, $b', such that 

(5.79) kb~,o - 9Olk,~;o = O(r-b ' ) ,  

(5 .8o )  64,7,,g = o .  

Moreover, i f  rbB is a solution o f  (4.67), (4.68)  and r b l og rB  is not a solution, 
then b' can be replaced by b in (5.79) and (5.80). 

Proof Let ~b* 9, 9o, /3 be as in Theorem 0.13. Put h = ~b* 9 - g o .  Then by 
(5.8)  we have 

(5.81)  Q h  - H e s s t r h  = F(h) 

where 

(5.82) F(h) E j-0,2 
k - 2 , ~ ; - - 2 / 3  t - 2  

As in Section 2 (see in particular (2 .20) - (2 .33)  and Theorem 2.69), we 
can find h3 satisfying 

(5.83) 

and 

(5.84) 

It follows that 

[ ] h  3 - Hess t rh3  = F(h) 

0 ,2  ( l o g r ) - I h 3  E Jk,~,-2//' �9 

(5.85)  (�89 - Hess tr)(h - h3) --- 0 . 

As in (4.75),  (4.76),  we can write 

or 

(5.86) h = ~-~fi(r)Ti(x). 
I 

Here the T~(x) are radially parallel symmetric  bi l inear  forms as in (4 .58 ) -  
(4.60)  (some o f  which  may  involve dr) which are or thonormal  with respect 
to the inner  product  in (4.72). 

Then  as in Section 4 we can find h2 such that for fixed subset, say A C Z +, 

(5 .87)  he = ~ f , ( r ) T i ( x ) =  ~ e z r  eTT' 
l E A  lEA  

(where  e.g. e~- = a;- - 2  as in (4.63)).  

(5 .88)  ([] - Hess t r ) (h  - h2 - h3) = 0 ,  
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and, at worst, 

(S,~9) (k]O~ I ' ) - l h |  E ,~-~2;_ min{2fl',b}" 

where hi = h - h2 - h3, Thus, 

(5.90) 

and in (5.87), 

h = h i  + h 2  + h3 

(5.91) 

implies 

c , + 0 ,  

(5.92) minf2fl',b} > le?l ~ fl ' ,  
where b is as in (5.77). 

By Corollary 4.65 and Theorem 2.70, we can choose ,4 such that 

(5.93) h2 = Lxgo,  

where 

(5.94) X E j -ko k+l,zql --fl ~ , 

Let Kx be the diffeomorphism generated by taking the flow of X to time 1. 
Then it follows easily from (5.92) and (5.93) that 

(5.95) K~(go) - Lxgo E ,y-of; . . . .  {2fl,,b} ; 

compare (2.2), Lemma 2.6 and (3.19). Similarly, in view of (5.84), (5.89)~ 
(5.93) and (5.94), 

(log r ) -  J " ,~ -0 ,2  
( K x g o  - ~) * g )  E k,x;-min{2fl 'b} (5.96) 

this implies 

(5.97) (Iogr)-I(k*~xdp*Y - go) E y-o,2 ' k,,x,- min{2fl',b} 

If  2fl ~ > b, then the theorem is proved. If 2fl ~ < b, we redefine h to be 
K*-x~*9 - go. This new h still satisfies (5.81) and (5.82). Thus we can proceed 
as above with fl~ replaced by 2fl j - ~  for some sufficiently small e > 0. 

By an obvious induction we can complete the proof. 
We close this section by explaining the relation of our results to those of 

[BKNt in the ALE case. [n this case the tangent cone, C(N"-  i ) is of the form 
R"/F. Thus, any solution of (4.3) on C(N n- i )  can be lifted to a solution h~ 
on R n. In view of Theorem 5 78, in studying the optimal rate of decay we can 
restrict attention to those h with trh = 6h = 0. 

Since trh = 0, the components of h are just harmonic functions. Thus, 
the rate of  decay is at least r 2-n, since this is the Green's  function i.e. the 
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homogeneous, decay solution which decays most slowly. However, such a 
homogeneous solution is of the form 

(5.98) rZ-n T , 

where 

(5.99) V T = 0 .  

Moreover, (5.99) implies 

(5.100) i~/~rT ~ O, 

and as an easy consequence, 

(5.101) 6(r2-nT)  ~ O . 

It follows that for homogeneous decay solutions satisfying trh = 6h = O, 

(5.102) [h(r)[ < cr j -n  , 

since this is the rate of decay for homogeneous harmonic functions, which, 
apart from the Green's function decay most slowly. However, the existence of 
such a function corresponds to p = n - 1 in (2.47)-(2.50) (where i = 0). By 
Obata's Theorem, this can only happen if C ( N  " - l )  = R n. Then, clearly M "  is 
isometric to R n as well. Thus, with Theorem 5.78 we get (compare [BKN]). 

Theorem 5.103. I f  M n is an A L E  space, then b = n. 

6 A special result in the nonintegrable case 

In this section, we show that if  a manifold (Mn,9 )  satisfying (0.2), (0.8), (0.9) 
has a unique tangent cone which (as opposed to being integrable) is max ima l l y  
noninte~rable in a suitable sense, then (Mn ,9 )  converges to its tangent cone 

at the rate O (L-~-Tg~). 

Let (G(N n-1 ),@) be a Ricci-flat metric cone, In this section, we will write 
2 for the operator ~--Hess tr, since this operator occurs repeatedly. Also, where 
previously we wrote q~*g, here we just write g. 

Consider a one-parameter family of cone metrics g.~ = dr  2 -}- r2~s, and the 
formal expansion 

(6.1) 9s : 30 +shl  +s2h2 + . . .  

Then at teast-fata-nally, the Einstein equation R ic (~ . )=  ( n -  2 )~  reduces to a 
sequence of recursive equations, 

(6.2) s = E i ( h i , . . . , h i - i ) ,  i =  1,2, . . .  
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where ~ is computed with respect to .q0 = ,q. Here, El = 0, and E, is a poly- 
nomial in the h t , h z , . . . , h ,  1 and their derivatives up to second order. In fact, 
it is well-known that (C(Nn-1),go) is integrable if  and only if for any hi in 
kerS~, one can solve (6.2), inductively for h2, h3,. . . ;  see [B], Section 12F. 
Equivalently, on N "-1, 

(6.3) E , ( h l , . . . , h , _ l ) L k e r  5~ i = 2 ,3 , . . .  

Definition 6.4. We say (C(N n 1), go) is maximally nonintegrable if there ex- 
istsht CkerS~ such that for a l lh  # 0 ,hE  ker L~ 

(6.5) f (E2(h),hl) > 0 
N "  I 

In case dim k e r ~  = 1, the maximal nonintegrability simply means that for 
h c k e r L ~  h # 0, 

(6.6) f (E2(h) ,h)  # O. 
N 

Clearly, a maximally nonintegrable cone is locally rigid. The purpose of 
this section is to prove 

Theorem 6.7. Let  (C(Nn-I) ,go)  be a maximally nonintegrable Ricci-flat 
cone, and g be a complete Ricci-flat metric on C(N n - l )  with 6tg = O. Sup- 
pose that g converges to go as r -~ oo. Then for  all k, ~, there is a constant 
C, possibly depending on go, such that 

C 
(6.8) [ g -  g0lk,~;0(r) < f o r  r > 1 . 

= logr  

Remark 6.9. We believe that the estimate in (6.8) is optimal for a maximally 
nonintegrable cone and a general Ricci-flat metric g which is asymptotic to g0. 

Remark 6.10. It should be possible to generalize the arguments in the proof 
of Theorem 6.7 to prove the uniqueness of  tangent cones for a complete Ricci 
flat manifold in case some tangent cone (C(N "-1 ),go) satisfies the following. 
The set, 

(6.11) E1 = {h C ker~~ tlh[[L2(N) = 1}, 

is a smooth submanifold in S tker~ :  = {h C kerL~[ []hNL2(N ) = 1}. Moreover, 
any h in EI is integrable, and E2 satisfies a nondegeneracy condition analogous 
to that in Definition 6.4, in directions normal to El. 

In proving Theorem 6.7, it is more convenient to work with the cylindrical 
coordinates (t,x) C R + x N n - I  = C(N "-1 ), where t = logr. For any object T 
in polar coordinates, we denote by T c the correspondence of T in cylindrical 
coordinates. For instance, we have 
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(6.12) 

(6.13) 

Also, i f  we put  

(6.14)  

(6.15) 

where 

(6.16) 

gC = ~ g ,  gCo = ~ g o  = dt2 + ~ ' 

h : = g - g o ,  h C : = g C _ g ~ ,  
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:~ChC = R i c r 2 ( r  h< ) - Ricr2r = 0 ,  

[~Ch<' - LPh~Io~ <__ c{Ih~lo,[(~TC)Zh~lc . . . .  +1 I7~ h ~[o_,,=}2 

L~Z'h C = (Dr - Hess t r ) ( reh ~ ) .  

Fix u > 0. For L as in L e m m a  5.31. Set 

{(t ,x)l  l ogu  + (i - 1 ) l o g L  < t < l ogu  + i l o g L }  

{( t ,x) i t  C 1,} 

A i 

(6.17) : =  

Also, put 

(6.18)  

and 

(6.19) 

Illhr = flhCl2dvol~,o., 
A, 

IlhC(t)ll 2 = f IhC(t)[ 2dvol~7 ' . 
N " -  I 

Finally, put 

(6.20)  [~ = ~7~/,~ t h c . 

Let fl~ be as in L e m m a  5.31 and let 0 < 0 < 1. The fol lowing lemma can 
be proved by arguments  just  like those which  were used in Section 5; see also 
IS1], Lemma 3.3. 

L e m m a  6.21. There exists  7~o = ~o(n,O,~r,L) such that i f  h ~" satisfies (6.14) 
and 

(6.22) 

then 

(6.23) 

implies 

(6 .24)  

and 

IhClc2.'. 2 < Z < Zo, 

0 * IIIhClll~+2 ~ e~'LlllhClll~+l, 

Illhllli+3 ~ c~'L[llhClll~+2, 

(6.25) 0 * IIIhCllli+3 ~ e-~'LIIIhCIIli+=, 
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implies 

(6.26) IHhClll,+2 ~ e-I~'LlllhClll,+~. 

I f  neither (6.24) nor (6.26) holds, then for all tl,t2,t E/~+2, 

(6.27) IlhC(tz)ll ~ (1 + O)llhC(t~)l l ,  

(6.28) ILhC(t)ll ~ Ollh~(t)ll . 

Moreover, i f  in this case we write h c = h~ + h~, where for  every t ~ I~+2, h~ E 

kerLT? and h~2 is orthoaonal to kerr/?, then 

(6.29) IIh~(t)ll ~ OIIh~(t) l l .  

Note that in the last statement in Lemma 6.21, for each t we regard ele- 
ments  o f  kerLTa as symmetric  tensor  fields on C(N n-I ) = (O, o o ) x  N "-I,  via 
the natural identification. 

Proof o f  Theorem 6. 7. By standard elliptic estimates, it will suffice to prove 
(6.8) for the case k = 2, ~ = 1/2. 

Since 9 converges to 90, by standard elliptic estimates, given 0 < ~ < < 
~0, there exists to > 0, such that for any t > to, 

(6.30) IhC(t)lc2,2 < 6.  

Define A~ as in (6.17) using to in place of  uo. Thus, using the implication, 
(6.22) implies (6.23) and induction, it follows that the conclusion (6.23) cannot  
hold. 

Next  suppose that there is a sequence {/~}j>!  with l imi j  = cx~ for which 
(6.26) holds. Then  by using (6.26) inductively, we get for all i > 1, 

(6.31) IIIh~lll, ~ e-/~RIIIhCIIL,_, ~ . . .  ~ e-~'RIIIh~lll,. 

Hence, h ~ decays exponentially.  Equivalently,  h decays at the order r -/~ and 
Theorem 6.7 and follows. 

Therefore, we can assume that after changing to if  necessary, (6 .27) - (6 .29)  
hold for all tit2, t > to, and It~ - t2l < L. 

Differentiating the equation (6.13) with respect  to t, we obtain (with obvi- 
ous notat ion)  

(6.32) 0 = 5r162 c - b~ �9 ~72/~c _ b~ �9 ~7/~c _ b~ �9 /~ 

where for some constant,  C, 

c s c c 
(6.33) max{Ib~lc . . . .  Ib21c ...... 1631co,.'2} < Clh Ic2.,.2 . 

As a consequence,  we can repeat the argument  of  Lemma 6.21 with h c 
replaced by h r Thus, all conclusions of  that lemma hold for h c as well. 
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Now, if H/~(t)l] decays exponentially, so does Hh~(t)H. But this contradicts 
the above assumption on llh~(t)]t. Therefore, by applying Lemma 6.21 to /~, 
we get that for all q,t2, t > to and It~ - t2l < L, 

(6.34) Ilh'C(t)ll __< 0tlh"(t)l I , 

(6.35) I/h~(q)ll < (1 + 0)ll/?(t2)l[ �9 

As in (6.29), we write 

(6.36) h c = h~ + hE, 

where 
(6.37) L~h~ = 0 ,  

(6.38) h~• 

Then equation (6.14) is of the form 

(6.39) ~q,ohC2 = Q(hCl) + I~ + b �9 ]11 -~- ~l I . ~72 h~ + ~l 2 ~ ~ h E + a3 " h~ 

(again with obvious notation) where b is a constant tensor, Q(h~) depends 
only on h~, 

c2  
(6 .40)  IO(h~)lc,,,~ ~ C [ h l [ c 2 , e ,  

and 

(6.41) max =< {[allc2,/2,la2lc,.,,2,La31c,,.,,~} ~ ClhClc ...... 

By (6.27), (6.28), (6.30), (6.34), together with standard elliptic estimates, 
we find that for t > to + 1, 

(6.42) [h~(t)lc2,2 ~ C(O + 6)llh~(t)ll . 

By (6.29) together with standard elliptic estimates, to prove Theorem 6.7, 
it suffices to show that 

C 
(6.43) llh~(t)ll = - .  

t 

In this connection, note that (6.42) is actually a qualitative improvement of 
(6.29). It is used below in verifying (6.43). 

By the maximal nonintegrability assumption, there exists k E S l k e r ~  such 
that (6.5) holds with k in place of hi. 

Put 

(6.44) f(t)---- f (hC,k). 
Nn- t 

Then it follows from (6.14), that 
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(6.45) f ( t )  + pj '( t)  = f (E2(hCt),k) + f 0 < (Ih~l 3 + Ih~l 2) 
N "  t N " -  I 

where # > 0. By using (6.42) and the choice of k, we get 
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f ( t )  + I~jc(t) > c[[h~(t)[[ 2 , 

(6.46) > c f ( t f ,  

where c is a positive constant. However, (6.34) implies 

(6.47) I]:(t)t _-< 0 l f ( t ) l .  

Thus, if  0 < /z/2, then for t >= to + 1, 

(6.48) ~ j ( t )  > c f ( t )  2 > O. 

Since l i m l ~  f ( t )  = O, f ( t )  < 0 for t > to + 1. Dividing both sides of 
(6.48) by f2 ( t )  and integrating over the interval [to + 1,t], we get 

(6.49) 2 ( - f ( t )  -I + f(to + 1) - l )  > ( t -  to - 1). 

Equivalently, 

(6.50) ] f ( t ) [ = - f ( t )  < 1 ( I t )  
= ~ ( t - t o -  l ) - f ( t o + l )  -1 = 0  

If dim kerL# = 1 and then ]lh~(t)ll = I f ( t )  t, the theorem is proved. 
In the general case, it is easy to see that for any k_ in a small neighborhood 

of k, 

(6.51) f (E2(h),k) > 0 on SikerS~. 
N " -  I 

Then the above argument shows that for all t > to + 1, 

C 
(6.52) f (h~,k)#(t)dvol~[ ~ - - .  

N t 

From this, it is easy to deduce that for t > to + 1 

(6.53) 

Thus, the theorem follows. 

C 
]lh~(t)ll ~ - - .  

t 
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7. The linearized equation in the Kfihler case 

In this section and the next we consider the case in which M 2k is a K~ihler 
manifold of complex dimension k. Then if C ( N  2~-I)  is a tangent cone as in 
Section 1, it is clear that C(N 2k-j ) admits a natural Ricci flat K~ihler structure. 
Our aim in this section is to discuss the rate of  decay of infinitesimal K~ihler 
Einstein deformations, and the rate of  decay of infinitesimal deformations of 
the complex structure. We also derive the results necessary for the proof given 
in Section 8, that (given the assumptions of  Theorem 0.I5) tangent cones 
are complex integrable. To do this, we show that matters can be reduced to 
considerations on the complex  base of C(N 2k-1 ). 

Let J denote the complex structure on a Ricci flat K~ihler cone, C ( N  2k- I ). 
Thus, ~7 J = 0. If we put 

(7.1) - -  = J  
00 ~ ' 

(7.2) ( r - l ~ 0 ) *  = 6),  

then, 

(7.3) J ( d r )  = - 6 ) .  

Let rb• be as (4.66). In showing that matters can be reduced to con- 
B e siderations on the complex base, a major step is to show that (~ ,  �9 ) = 0 

provided - 2 k  < b ~: < 0. This is accomplished somewhat indirectly, as we 
now explain. 

According to [B] p. 363, if  we define the action of J on symmetric bilinear 
forms by 

(7.4) Jh(v, w)  = h(Jv, J w  ) , 

then ker [] is J invariant. The results of  this section are obtained by analyzing 
the action of  the involution J in our situation. 

Let us put 

(7.5) ker0D = {h E kef3]trh = 0, 3h = 0} .  

In fact, ker0[] is properly contained in kerD. However we will show that the 
action of J preserves the subspace of ker0[] that we are interested in study- 
ing i.e. the one spanned by those h E ker0[] which are homogeneous satisfy 
er -2k < [hi < c, and for which additional integrability conditions, (7.63)- 
(7.66), hold. In the application to Theorems 0.15 and 0.16, the integrability 
conditions will automatically be satisfied. 

Additionally, we will show that the space spanned by the homogeneous so- 
lutions of the form Lxgo in (4.66), where cr -2k < [Lxgo[ < c, is J-invariant. 
But, as is easy to check, the decomposition in (4.66) is orthogonal for the 

b �9 J-invariant inner product in (4.70). Thus, the space of  solutions r B, with 
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2k < b ~- < 0, is J-invariant as well. Since by definition, B (~ ,  �9 ) = 0, we 

g e t B ( a ,  . )  = 0 .  
In order to analyze the action on solutions of the form 17 sy'n X* = Lxgo, 

the following eigenvalue estimate is required; compare [EM], [DNP]. 

Theorem 7.6. Let X n-I be compact, with 

(7.7) Ricx,, , > (n - 2)g.  

Then the first eiqenvalue, Pb o f  the Laplacian on coclosed l-forms satisfies 

(7.8) ~i > 2(n - 2) .  

Equality holds i f  and only i f  t) is dual to a Killing field which is also an 
eigenvector o f  Ric with eigenvalue ( n -  2). 

Proof. If ~ is an arbitrary l-form, the Bochner Weitzenbock formula gives 

(7.9) 

Write 

Id~9t 2 + IbtPl 2 = I V'~9t 2 + (Ric~4@) . 

(7.10) ~7 t~ =~7 s ~b+ ~7 ss ~ .  

where the superscripts denote symmetric and skew symmetric parts respec- 
1 tively. (Thus, in the notation of Section 4, U s =  ~ V'sYm.) Under the usual 

identification between 2-forms and skew symmetric 2-tensors, 

(7.11) �89 ~ V  ss 4,. 

Note however, that this identification is not norm preserving for the norms in 
(7.9), (7.10), and in fact, 

1 
(7.12) 21d012 = I XTSS 012- 

Then by (7.9), 

1 
(7.13) i[d~912 + 16~12 = I V s ~l = + ( R i c ~ )  , 

from which our claim immediately follows. 

Recall, that the harmonic functions on a cone can be written as a sum of 
functions of the form 

(7.14) r~qS, 

where 

(7.15) Ar = ~4' 
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and a is as in (2.47)-(2.49).  In our case, Ricx2h , = 2(k - 1)ff and by Obata 's  
theorem, /~ > 0 implies 

(7.16) /t _>__ 2 k -  1 

(7.17) a -  < 1 - 2 k ,  

with equality only for N 2k-I = S2k-I.  
The harmonic 1-forms on C(N 2k-1) can be written as sums of  forms of  

the following three types. Namely 

(7.18) d(ra• (q~ E A ~ 

where q~ is as in (7.14); 

ra• (q~C A t) 

(7.20) 6q5 = 0 ,  

(7.21) Aq5 = pq5 ; 

and last of  all, 

(7.22) ra• + a:Fr a• dr A (p (dp E A ~ 

where 4) is in (7.14). 

L e m m a  7.23. Let ~ be a homogeneous harmonic 1-form on C(N2k-I) ,  such 
that, ItPl < or, for  r > 1. Then either 

(7.24) Iffl ~ crl-2k 

where equality holds i f  and only i f  t/.,[(1,N 2k-1 ) is dual to a Killing field on 
N2k - 1, or 

(7.25) c < 1~91 < cr (r >= 1) 

I f  N 2k-1 is not isometric to the unit sphere, S 2k-1, then for  some e > O, 
the form in (7.25) actually satisfies 

(7.26) cr~ < Ir < er .  

L e m m a  7.27. I f  ~b is homogeneous and for some s > O, 

(7 ,28 )  c < I~'1 --< c rj-~ (r >__ l )  

then ff is as in (7.18) and hence exact. Moreover, i f  

(7.29) I~Ol = cr (r > 1) 

(7.19) 

where 
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then ~k is a sum o f  exact  Jorms as in (7.18) (the case /~ = 4k) and (7.22) 
(the ease t* = O) and f o rms  as in (7.19) which are dual to Kitlin.q fields'. 

In the case of (7.22), 4, is the constant Junction and the harmonic l-fi, rm 
is a multiple o f  

(7.30) r d r = d  ( l r  2)  

Given Theorem 7.6 and (7.17), the proofs of the above two lemmas follow 
from the definitions, (2.47)--(2.49), by inspection. 

In view of Lemmas 7.23 and 7.27, the following lemma has obvious im- 
plications for our discussion. 

Let ~b be a l-form on an arbitrary K~ihler manifold. 

Lemma 7.31. I f  

(7.32) d(JO ) = O, 

then 

(7.33) ( V  `'y" tp) H = 0 .  

[1 ~ J~k is dual to a Killing f ield 

(7.34) ( ~ 7sym I/I) S f l  = O . 

P r o o f  If (7.32) holds, then 

1 
(7.35) V' Jt~ = ~ ~7 (Jtp)sy m 

and 

~7jx ~9(JY) = ~Tjx J $ ( Y ) ,  

= v'y J q , ( J X ) ,  

(7.36) = - ~7v ~k(X), 

which clearly implies (7.33). 
If J~b is dual to a Killing field, 

(7.37) V ''ym Jl~ = 0 

and 

(7.38) 

~7sx $ ( J Y )  = ~Tsx J $ ( Y ) ,  

= - ~Ty J r  

= Wy q , ( X ) ,  

which implies (7.34). 
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Let Y/~ @ ~/r the decomposition of the space of harmonic 1-forms of 
C(N 2k-t) satisfying (7.25) into exact forms and forms dual to Killing fields 
fixing the singular point, as guaranteed by Lemma 7.27. Let n: ~ | ~r -~ 
be the projection. From Lemma 7.23, Lemma 7.27 and Lemma 7.31 we im- 
mediately obtain 

Corollary 7.39. The subspace o f  keroD spanned by those ~7 ~ym ~9 which are 
homogeneous and which for some ~ > O, satisfy 

(7.40) 

is J-invariant, 
I f  for  some ~ > O, 

d 2k < I V'Y" ~1 < c ,  

(7.41) cr-2k < I ~7sym ~1 <= cr-~,  

then ~7 sym tp is skew hermitian. 
I f  tp is homogeneous and has linear growth, then 

(7.42) ( V sy'~ ~p )" = 0 

i f  and only i f  

(7.43) ~ E ~ ( J ' ~ ) .  

Moreover, 

(7.44) (~TSy,, ~ )sH = 0 

i f  and only i f  

(7.45) 0 E 7z(J~q/'). 

We now show that subspace of ker0[3 consisting of those h, satisfy- 
ing er -2k < lh] < c and the integrability conditions, (7.63)-(7.66), is also 
J-invariant. To this end, we recall the characterizations of the hermitian and 
skew hermitian elements of ker0[3; [B], p. 362. 

Let 

(7.46) h = h H + h sH 

denote the decomposition of h into its hermitian and skew hermitian parts, 
corresponding to the +1, - 1 ,  eigenspaces for the action of J .  If A is an 
endomorphism and k(, ) is a bilinear form we put 

(7.47) 

Then for h as above, 

lco A(x,  y )  = k(x ,  A y )  . 

(7.48) h = h H , 
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if  and only if h o J is skew symmetric i.e. h o J is a 2-form, if and only if 
h o J  = ( h o J )  H. Also, if we define 1 by 

(7.49) g o l  = h o J  , 

we can regard I as a 1-form with values in tangent vectors. Then 

(7.50) h = h sH 

if  and only if  for all X , I ( X )  = J ( I ( J X ) ) ,  in other words, if and only if  I is 
the real part  of a unique T 1'~ valued form of type (0,1). Here we use the 
splitting of the tangent bundle into its holomorphic and antiholomorphic parts. 

With this terminology we have for all k, 

(7.51) 5(k o J )  = ?Jk o J  . 

Moreover, if  A = d6 + 6d, then htr E ker [] if and only if  

(7.52) h 'q o J E ker A 

On the other hand, 

(7.53) 6h sH = - J ~ * I  

and if d = ~ + (~, then h s H E  ker [] if and only if  

(7.54) 1 E ker (0~* + ~*~).  

At this point, we require some additional assumptions on those h E ker [] 
satisfying 6h = 0 which we consider. These assumptions hold automatically 
for the solutions required in our applications. 

Let h E ker Q, with 6h = 0, be of  the form 

(7.55) lim g~: -~'q = h ,  
~ , ~ 0  /2 

where g~ ~ g,(V~:) iR~: ---~V'i R , i  = 0, 1 . . . . .  Here, g~ is Ricci flat and K~ihler 
with respect to the complex structure, J,., where J,: ~ J .  

Assume in addition that 

(7.56) lim J~ - J = J 
~ 0  ~: 

exists. 
Note that h = Lxgo (as in (4.66)) automatically implies (7.55), (7.56). 

Thus, given h E ker [] with 6h = 0 satisfying (7.55), (7.56) we can write 

(7.57) h = ho + Lxgo 

where h0 E ker0[] satisfies (7.55), (7.56). Therefore, since the action of J pre- 
serves trace, in what follows (and for the application) it will suffice to assume 

h ( =  h0) E ker0[]. 



550 J. Cheeger, G. Tian 

As in (7.10), let A = A s + A  ss denote the decomposition of the endomor- 
phism A into its symmetric and skew symmetric parts. Note that 

(7.58) j j s s  + .~ss j = ( j j s s  + jss  j ) S 

j j s  - } - j s j  = (j.~s 4- jS j ) ss  (7.59) 

Thus, from 

(7.60) J J  + J J  = O, 

it follows that 

(7.61) j j s  + j s j  = O, 

(7.62) j j s s  + j s s  j = O . 

Recall that m~, = g,:(J,:) is the K~ihler form of g,:- Since d9 is skew symmet- 
ric, we get 

- O  = h o J + g o j  

o jSS (?.63) = h H o J + g  , 

which corresponds to the decomposition, 

(7.64) d~ = o) H + oSH 

together with 

(7.65) h sn o J  + g ~  = O. 

Of course we have in addition, 

(7.66) dr9 = O, 

since for all 5, 

(7.67) d~o~ = 0 .  

Lemma 7.68. On C(N2k-I) ,  let ~o satisfy (7.63)-(7.66). I f  

(7.69) lob I < c 

then 

(7.70) &H = fll -}- f12, 

where 
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(7.71) A g  = 0 ,  

(7.72) 6fl~ = 0 ,  

(7.73) 1fl2l ~ cr-2k" 

Proof. So as not to disrupt the continuity of the presentation, here we will 
verify (7.73) with the exponent - 2 k  replaced by 2 - 2 k .  The shaper statement 
will be proved in the Appendix at the end of this section. There we will 
actually show that & itself is harmonic (see (7A.18)) and is the sum of a 
radially parallel harmonic form and one which decays no slower than cr -2k. 

Let 12 denote the sum of  the homogeneous components of the harmonic 
form do H whose norms are bounded by cr 2-2k (r > 1). Put i l  = 6~ - 12. It 
will suffice to observe that in our situation every homogeneous harmonic form, 
i ,  o n  C ( N 2 k - 1 ) ,  with cr 2-2k <= Jill <= c, satisfies 61 = 0. 

The harmonic 2-forms on a cone are of four types; see [C] Section 3. Two 
of these are analogous to those appearing in (7.18), (7.19) and hence, are of 
divergence zero. The remaining two types are of  the form 

(7.74) ra• +aV-r "~+l d r A  95 (95 E A I ) 

(7.75) r a• +l d r  A d95 (95 E A ~ 

By definition p > 0 and hence a + > 0 in (7.75). Thus, for a = a +, the 
form in (7.75) is not bounded in norm for r > 1. Similarly, by Theorem 7.6 
(or already by Bochner 's  Theorem) a + > 0 in (7.74). Hence, for a = a +, the 
form in (7.74) is not bounded in norm for r > 1. 

On the other hand, by (7.17), a = a  in (7.75) implies a < 1 - 2 k .  By 
(7.24), a = a -  in (7.74) implies a < 2 - 2 k .  This completes the proof. 

The following proposition is an immediate consequence of (7.72), (7.73). 

Proposition 7.76. I f  h C keroE] is homogeneous, sat&ties (7.63) (7.66) and 

(7.77) cr '-2k < lhl < c (r >= 1) 

then 

(7.78) Jh E keroE3. 

Equivalently, h H, h sHE kero[3 and satiafy (7.63)-(7.66). 

Now we can easily verify the J-invariance of the subspace of ker0[], 

spanned by the rb• satisfying (7.63) - (7.66), and (7.77). 
Now let ( ( , ) )  be the inner product defined in (4.72). Note that clearly, 

(7.79) ( (h,,h2) ) = ( (Jh,,Jh2) } . 
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Lemma 7.80. On the subspace of keroD satisfying (7.63)-(7.66) and (7.77), 
the orthogonal complement of the subspace spanned by the bilinear forms, 
~Tsym I~, is the subspace spanned by those rb• B such that 

(7.81, B ( ~ r ,  . )  = 0  , 

(7.82) tr B = 0, 

(7.83) c~B = 0. 

Proof If (X, ~) =-0, ~Te/er X = 0, then (as in (4.29), (4.30)), the tangent 
component of 

~Tsvm(f(r)X+u(r,X)~r ) (7.84) 

is 

(7.85) f ( r )  ~'rmX + u(r,x)r-lO 

It is clear from (7.85) that the subspaces in question are orthogonal. By Propo- 
sition 4.65 they also span. 

Given B as above, write 

(7.86) B = B b + O [] z + uO Q O , 

where, 

Let the bilinear form, ~7 sym O, be as in Corollary 7.39. 

Corollary 7.89. I f  h E keroD is' homogeneous and satisfies (7.63)-(7.66) and 
(7.77), then 

(7.90) h =~7 sym tp + rb+ B , 

where B satisfies (7.86)-(7.88) and 

(7.91) B = rb• b . 

Proof This is an immediate consequence of (4.66), Corollary 7.39, Proposition 
7.76, (7.79) and Lemma 7.80. 
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As a consequence of the discussion so far, we also obtain a homological 
description of the Hermitian symmetric elements of ker0D having slow decay. 

Let TbN 2k-1 C TN 2k-I denote the subspace orthogonal to ~0" 

Theorem 7.92. Le t  h = h H C kero[l sat is fy  (7.63)-(7.66) and (7.77). Then 

(7.93) h = ~7 sym ~1 -}- B 

where Jt~ is dual  to a Kil l in9 f i e ld  and  

( 7 . 9 4 )  

satisfies 

fl = B o J  

(7.95) dfl  = 6fi = 0 

(7.96) f l ( ~ r '  " ) = f l ( ~ 0 '  . )  = 0 ,  

(7.97) f l lTbN 2k-l  is o f  type (1,1) 

(7.98) ~'~/~r (rZfi) = 0 

(7.99) L,y,~o[t = 0 .  

P r o o f  In view of Corollary 7.89 it suffices to characterize those B such that 
B = B b and B = B ft. By (7.62), (7.63) 

(7.100) fl = B o J  = - e )  H , 

where cb satisfies (7.66). From Lemma 7.27, together with considerations of 
homogeneity, it follows that we can assume that either 

. c~ 
(7.101) c O ( ~ r r , - )  = 0  

~73/& (r2(b) -- 0 (7.102) 

or 

(7.103) r = d(r2qS) 

where r2q~ as in (7.19) is dual to a Killing field (compare the discussion after 
(7.166)). 
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In the former case, (7.101) together with eb H ( ~ , )  = 0 implies (7.96). The 
J-invariance of  the space of forms satisfying (7.96), (7.98) implies that we 
can assume that (7.97) holds. Moreover, since 

(7.104) L~/~o~ = i~/~o d fl + dio/,~o~ , 

(7.99) holds as well. 
In case (7.103) holds, the conclusion follows from Lemma 7.31 (see 

(7.34)). This completes the proof. 
We now consider the remaining case of skew Hermitian elements of ker0[~, 

satisfying (7.63)-(7.66) and (7.77). 
As mentioned after (7.50), if  h is skew Hermitian it can be regarded as the 

real part of a T 1'~ valued (0,1)-form. The integrability condition correspond- 
ing to (7.63), (7.64), (7.65) is the condition that this form is 8-closed. An 
equivalent way of expressing this condition is the following. 

Let J be as in (7.56), and regard ) as a real 1-form with values in tangent 
vectors. Let d J  be the exterior derivative of  this l-form. Here, we use the rie- 
mannian connection on the coefficient bundle (in this case, the tangent bundle) 
in defining the operator d. Let (d J )  sn be the sum of the type (2,0) and (0,2) 
components of  the 2-form d )  i.e. the skew Hermitian part with respect to the 
first two slots. 

Lemma 7.105. 
(7.106) (dJ)Sn = ( d j s  )s;4 = ( d )  ss)sn = O . 

Proo f  Differentiating (7.1) gives 

(7.107) ~7 j  = J ~ -  ~ ' J .  

Thus, 

(7.108) 

where we have used 

(7.109) 

dJ(X,  Y) = ~Tx J ( Y ) -  ~7~, J ( X )  

= J ( ( T x Y  ) - (7x(JY)  - J ( ( T y X )  + (Ty ( jX )  

= ( T r J X -  (7xJY , 

(TxY - ~ z X  = 0 ,  

which follows from the fact that riemannian connections have torsion zero. 
Letting SH denote the skew Hermitian part in the first two slots, we get 

2(dj)sH(X,  Y )  = (7rJX - (TxJY + (TjrX - ( 7 j xY  , 

(7.110) = 0 ,  

where again we use (7.107). Replacing J by j s  in (7.107) and the relations 
which follow, gives 
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(7.111) (djS) st4 = O, 

which easily implies (7.106). 
The condition, (7.106) imposes an additional constraint on elements of the 

form r-CB, with B = B b =BSH; see Proposition 7.131. We now proceed to 
derive this constraint. 

Let B = B b and put 

(7.112) gliB(X, Y) = I (B(JX, Y) - B(X, JY)) ,  

(7.113) jSH B(X, Y) = I(B(JX, Y) + B(X, JY) ) . 

Then j H ,  jS~/ define almost complex structures on the Hermitian, respec- 
tively skew Hermitian, bilinear forms. Moreover, 

(7.114) JHBSH = jSHBH = O, 

SO that ~.r = ~.r + j s H  is an almost complex structure on the space of all B 
as above. 

Note that if 

(7.115) 

and 

(7.116) , Y = 0 ,  

then 

(~'&~oZ, Y) = ~ (Z ,  ~? Y) + (JZ, Y) 

(7.117) = ( [ ~ 0 , Z ]  +JZ, Y ) .  

Also, if  ZI,Z2 satisfy (7.80), then 

(7.118) 

Hence 

(7.119) 

1'~Tz, Z2, ~+O I = (ZI,JZ2) �9 

I[Z1,Z2], ~--O I = 2(ZI,JZ2) . 

From the above we easily find that if  z is a l-form such that 
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(7.120) "C = Z "  = 0 ,  

(7.121 ) 27e/~ z = 0 ,  

then at r =  1, 

(7.122) 

Now let 

27 z =~7 b ~ - J z  | 0 + 0 | (Le/aoz - J z )  - ~ | d r  

(7.123) B = B b = B SH 

and 

(7.124) 27~V~ B = 0. 

Locally we can write 

(7.125) r - ~ B  = r - " ~ r ~  | ~, , 
i 

where z, are 1-forms satisfying (7.120), (7.121). From (7.122), we obtain at 
? ' =  1~ 

27(r|  = V b ( z |  

+ [ - J v  ~ 0 + 0 @ (L,~/~oz - J~)  - z @ dr] | z 

(7.126) + [ - J z  | z | 0 + 0 | z @ (L~/~o~ - J'c) - z | z @ dr] 

from which we find that the component of V' (r | z) which involves O in the 
first two slots is 

(7.127) O A [L~/,~oz | z + ~ | (L~/eoz - Jz)] , 

while the component involving d r  in these slots is 

(7.128) dr  A (z  | z ) .  

Thus, the component involving O of in the first two slots, of dSH~T, | Ti is 

(7.129) 1 0  1 2 A (Le/ao - -  2JH)~-]~'Q @ vl = = 0  A LO/~O~V i @ "C i 

where we have used (7.114), and B = B s~. Similarly, it follows that for B as 
in (7.123), (7.124), the component of  d S H ( r - ~ B )  involving O in the first two 
slots is (at r = 1) 

1 
(7.130) ~ O A (L~/oo - c ~  sH )B 

From (7.113) together with (7.65) we now conclude 
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Proposition 7.131. Let  B = B b = B SH and let r -~B satisfy 

(7.132) dSH(r-CB) = O . 

Then 

(7.133) L#/eoB = c~SH B . 

Recall that we have made no assumption concerning the closedness of the 

orbits of  the vector field ~5~. Nonetheless, for V a sufficiently small open set 

about  x C N 2k-l, we can consider the space whose points are the components 
(V n C) ~ of (U A (9) where 6,' ranges over the orbits whose intersection with 
U is nonempty. This local quotient space V inherits a well defined Kiihler- 
Einstein structure. 

According to [B], p.363 the linearized deformation operator on V, when 
restricted to skew Hermitian deformations, can he identified with the operator 

8"~ + 8~*; compare (7.54). Let us denote the horizontal lift of this operator to 
~b - ~. 

N 2k-1 by ~b and let c ,(~*)b denote the horizontal lifts of the operators ~,v . 
Then, as is standard, 

(7.134) f (E3bB, B) = f (~bB,[bB) + (([*)bB,([*)bB) > 0 .  
N 2 ~  - I N 2 ~  - -  I 

Proposition 7.135. Let  B = (Bb) sH and let r-CB be as in Proposition 7.131. 
Let  r -CB C kero~ and ~]B = I~B. Assume that the complex dimension, k, is 
> 4. Then i f  c > O, in f ac t  

(7.136) c = 0 ,  

(7.137) L,~/aoB = 0 ,  

(7.138) E3bB = 0 .  

Proof. Let r satisfy (7.120), (7.121). Then 

(7.139) ~/~0z = L~/aoz - Jz , 

+ 2(L@~oz - Jz )  @ (L@~oz - Jz)  

= L,~/aoLa/#o(z @ z) - 2(z | ~ - Jz @Jz) 

(7.140) - 2La/~o(z | ~)(J, �9 ) - 2Le/co(z @ z)(  �9 , J )  

Thus, 
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(7.141 ) rT ~/~o~7 ,~/eoB = ( L~/eoL~/~o - 4L~/~o~ - 4)B.  

Similarly, using (7.122) we get 

(7.142) ~Te, Z - -~7  b z - J z ( e , )  
- -  e ,  

~Te ~Te,(Tg @ 75) 

b b 2J(~7~ z ) ( e i ) O - J ' c ( e ~ ) ( J e ~ ) * ] l ' - ~ z  = [l~Te, ~7'e, "C - -  

(7.143) + 2 ( U  b v - J z ( e i ) O )  | (~7~ r - J z ( e , ) O )  , 

from which it follows that 

(7.144) ~ 7 e , ~ ' e B  = AbB - 2 6 b j B  [ ]  0 - 2 B  
l 

Finally, if we define R b to be the horizontal lift of the curvature tensor on 
the base, by a straightforward computation, 

& o b  
(7.145) R B = R  - 3 B .  

If, for the moment, we grant (7.145) and use (7.141), (7.144), then from 
the definition of  [~ (see (4.2), (4.7)) we get 

(7.146) ~]B = ~ b B  - (Le/c~oL~/,~o - 4 L e / ~ o J ) B  - 26b~r [ ]  0 

However, since 

(7.147) d ivbJB = 0 ,  

we get 

(7.148) ~ B  = [s]b B -- ( L~/~oL ~/,~o - 4L~/~o J )B . 

Also, 

(7.149) [~B = #B,  

and with Proposition 7.131, 

(7.150) # = # + c 2 - 4c,  

where by (7.134), 

(7.151) # => 0 .  

On the other hand, it follows from (4.58) that 

(7.152) - c = ezk ~ + / t  

where 
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2 - 2k 
(7.153) ~ = - -  ; 

2 

compare (2.47)-(2.50). From (7.152) we get 

(7.154) c 2 + 2cw = # .  

Combining this with (7.150) and using (7.151 ) gives 

(7.155) 2(~ + 2)c= p > 0 .  

However, k > 4 implies 

(7.156) 

and hence by (7.147), 

~ + 2  < 0 ,  

(7.157) c < 0 .  

This gives (7.130)-(7.132). 
o 

We now return to the computation of RB. Recall (see (4.2)) that 

o 2 k - - 2  

RB(x,y) = - ~ B(R(x,e,)y, ei) 

2 k - - 2  

= - ~ B(R(x,e,)y,e,) 
1=1 

(7.158) - Z(k(x ,  ei)y, ej)B(ej, e,) 
~d 

If  x,y E TbN 2k-1, our claim is a direct consequence of O'Neil l ' s  formula 
for the curvature of riemannian submersions, together with (7.120). 

0 
If  y =  ~-O' 

- g 0 
(7.159) (R(x, ei)-~o,e,)=(R(x,  e i ) ~ , e j ) + ( x A e i , ~ o A e j ) ,  

where as usual, R is the curvature tensor of C(NZk-l).  Then 

0 
R(z, e i ) ~  = R(x, ei)J 

0 
= 

(7.160) = 0 .  
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Also, 

(7.161) 

Thus, 

(7.162) 

x A e " ~ - 0 A 9  = 1, x = ~ , i = j  

RB ,x = 0  ( x 6 T b N  2k-1) 

o 

(7.163) RB , = tr B = 0.  

This completes the proof. 
In the exceptional case k = 2, the real cross-section, N 3 of C(N 3) of ne- 

cessity has constant curvature. Then it follows that we are essentially reduced 
to the ALE case considered in [BKN]. Further details, together with the case 
by case discussion (compare [T]) required if  k = 3 will be given elsewhere. 

Finally, we consider homogeneous skew symmetric infintesimal deforma- 
tions of  complex structure which satisfy the decay condition 

(7.164) cr ~:-2k < Ijss[ < c (r > 1) 

As in (7.57) it is easy to reduce our considerations to the case trh = 0. 
By (7.63), every such deformation corresponds to the skew Hermitian part 

of a closed and coclosed 2-form, fl = -e) .  By Lemma 7.68 (see also Remark 
7A.49), the form fl is either of type 1, ra+c~,(c~ C A 2) or type 2, d(ra~dp),(d? E 
A1). 

In the former case, since /3 is closed, 

(7.165) fl = 

(7.166) d e  = 6r = 0 .  

In the latter (type 2) case, we consider the decomposition ",~ | # "  of the 
harmonic 1-forms which occurred in Lemma 7.48, Corollary 7.56. It is easy 
to check that when we apply d, the roles of  the forms are the reverse of what 
they are when we apply ~7 sym. Thus, the conclusion is that d(J't/~) is just the 
space o f  type 2 skew Hermitian 2-forms, while d(J~ff/) is space of  type 2 
Hermitian 2-forms. 

Therefore, in the type 2 case, it suffices to assume ) = j ss  and that 

(7.167) d(JV)* (X, Y) = g(X, JY)  , 

for some Killing field V. Then, choosing V" X = ~7 y = 0 at y E C(N2k-I), 
we have 
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(7.168) 

Thus, 

(7.169) 

g(X, (LvJ)(Y))  = g(X, ~Tv J Y -  ~Tjr V -  J Vrz Y + J ~Tr X )  , 

= g(X,J riTr V -  r, Tjr V ) ,  

= g(~Ty V , X ) + y ( W x  V, J Y ) ,  

= d(JV*)(X, r ) ,  

= g(X, J Y ) .  

J = L v J .  

Therefore, the type 2 skew symmetric infinitesimal deformations are inessential. 
Since as we have already seen, the space of harmonic 2-forms of type 2 is 

J-invariant, by arguing as in Lemma 7.80, it follows that the same holds for 
the 2-forms of type 1. Thus, for such a form /3, (as in (7.165), (7.166)) we 
have 

(7.170) f l ( ~ 0 ,  . )  = 0 .  

By (7.104) together with d/~ = 0, as in (7.99), we get 

(7.171) L~/,~ofl = 0 

as well. 
Thus, for the case in which Y = NZk-1/S1 is a Kahler-Einstein manifoM 

(necessarily of positive Ricci curvature) by a well known theorem of Bochner, 
[GH], Y admits no nonvanishing holomorphic p-forms. Since /~ is a sum of 
forms of type (2,0) and (0,2), this gives 

(7.172) /3 = 0 .  

In fact, as in (7.134), we find that this holds in the general case as well. 
Thus we get 

Theorem 7.173. All homogeneous skew symmetric in[initesimal complex de- 
formations satisJj~ing (7.164) are as in (7.169), and hence, are inessential. 

Appendix: A sharp decay estimate 

Recall that in proving Lemma 7.68, we only proved a weakened version of 
(7.73), in which the exponent - 2 k  replaced by 2 -  2k. Here we prove (7.73) 
itself. 

Throughout this Appendix we assume that (7.56) and its consequences 
(7.63)-(7.66) hold. We also assume 

(7A.1) trh = 0 .  

In the following lemma the underlying manifold can be an arbitrary K~hler 
manifold. 
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Lemma 7A.2. 

(7A.3) 6J03 = 0 .  

Proof" Since 

(7A.4) 6(h o J )  = O, 

we have 

(7A.5) 6(-03) = ~g(e , ,  ~Te, J )  
i 

Fix a point p. Let gr e i  = 0 ,  ~7" y = 0 at p, where Y is a vector field and {e,} 
is a local orthonormal frame field. Then 

(7A.6) 

~g(ei ,  We, ) ( Y )  ) = ~g(ez,J(Te, Y) - ~7e, JY)  
i i 

1 
= --~ z~{we , h(Y, Jei)+ ~Tz h(ei,Jet)-  ~Tj~, h(ei, Y)} 

1 ~7 - ~ {  e, h(JY, ei)+ ~Tjr h ( e , e , ) -  ~Te, h(ei,JY)} , 

where we have used the standard formula for the variation of the riemannian 
connection, together with (7.107). Since trh = 0, the fifth term on the right 
hand side of (7A.6) vanishes. Also, since h is symmetric, the fourth and sixth 
terms cancel. Using the substitution, e i ~ Jei, we see that the second term 
vanishes and the first and third terms are each equal to 6(h o J). Thus, 

6 ( - 6 9 )  = 26(h o J ) ,  

(7A.7) = 26(--03H), 

from which our claim immediately follows. 

Corollary 7A.8. 
(7A.9) dA03 = 0 

(7A.10) 6A03 = 0 

(7A.1 1 ) Ado = A03 sH 

Proof" Equations (7A.9), (7A.11) follow from (7.66), and (7.63) together with 
(7.52) (and JA = A J). Also, by (7.52), (7.170), 
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6A69 = - A 6 c b ,  

= 2A~5(h o J ) ,  

= 26A(h o J ) ,  

(7A.12) = 0 .  

If  we now restrict attention to the case C(N 2k-1), it follows that A69 is a 
sum of forms of type 2, as in (2.51), and possibly a type 1 form as in (7.170). 
However, as we have already observed, there are no such type 1 forms in our 
situation (see (7.172)). 

Proposition 7A.13. On C(N 2k-~ ) a skew Hermitian type 2 harmonic form,  

(7A.14) r~d(9 + ar~- ldr  A (9, 

satisfies 

k 
(7A.15) a > - -  

- k - I  

Since Io51 < c implies IA~I ~ cr -2 (see (7.55)) we immediately get 

Corollary 7A.16. On C(N2~-1), i f  I~1 < e then 

(7A.17) A~b = 0 .  

To prove Proposition 7A.13, we need the following integral formula. Let 
Z be a vector field on N 2k- t with 

Let ( V ' Z )  b denote the restriction of the bilinear form (V'Z,)  to the sub 
bundle, TbN 2~-1 C TN ek-1 and let {e~) be a local orthonormal frame field 
for TbN 2k-~. 

Proposition 7A.19. 

f I (~z )b l  ~ = 
N 2 , ~  - 1 

(7A.20) 

Proof" 

f { ( (dd*  + d * d ) z * , z * )  
N 2 ~  - I 

- ( 2 k -  1)1212 - so,z +JZ 

(7A.21) 

E (v~ ,Z ,  ej) 2 = i~z[  2 - E ( v ~ Z , e ~ )  2 
i j  ~d 
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Since 

(7A.22) ( ~ '  ~ Z, ~ -~0)=0 ,  

by using (7.117), (7.118) and Bochner's formula, the lemma easily follows. 

Proof of Proposition 7./1.13. Since drA8 is Hermitian symmetric, it follows 
that 

(7A.23) 

Also, from 

(7A.24) 

we get 

= o  

J ( O A ~o ) = --adr A 49 

(7A.25) O0 -- L ~ ~b, = -aJq5.  

Since ~ is Killing, putting ~b = Z*, we have 

(7A.26) 

Now 

(7A.27) 

and 

(7A.28) a 2 - 2c~a - kt = 0 ,  

where 

(7A.29) ~ = 2 - k ; 

see (2.47)-(2.51). Since the expression (7A.20) is nonnegative, the proposition 
follows easily from (7A.26)-(7A.28) and (7A.20). 

By the part of  the proof of Lemma 7.68 which was completed in Section 
7, in proving (7.73), we can certainly assume I~1 = o (1 ) .  Thus, by (7.66) 
and (7A.17), 09 is the sum of type 2 harmonic form as in (as in (7A.15)) 
and of  type 4 harmonic forms (as in (7.75)). However, from Lemma 7.23, 
Lemma 7.27 it follows that for a type 2 harmonic form whose norm decays to 
zero at oo, we must have a = a - .  Then as consequence of (7.17), the rate of 
decay is no slower than cr -2k. So for our purposes, we can assume that the 
homogeneous components of o) whose rate of  decay is slower than r -2k, are 
all of  type 4 i.e. of the form r~ A de). 
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We now show that these components actually vanish. In view of the absence 
of type 2 harmonic forms in the above range, it follows from (7A.3) that for 
each type 4 component, J(&+ldrAdc~) is of type 1 i.e. is as in (2.50). To 
complete the proof of (7.73), we must show that this additional condition 
implies a -  = -2k ,  or equivalently, 

(7A.30) ~ > 4k.  

Since dr A O is J-invariant, it follows from what has just been observed 
that 

aq~ _ o .  (7A.31 ) c~0 

Thus, Z = grad 4) is tangent to ThN 2k-l, and satisfies 

(7A.32) [~0,Z] = 0 .  

Unfortunately (unlike what took place earlier) (7A.20), (7A.32) do not 
yield (7A.30). For this, we will require an additional integral formula. 

Proposition 7A.33. Let Z be tanoent to TbN 2~-J. Then 

0 Z . (7A.34)Nf_, ((VrZ)b,J(P'Z) b) =N f_, {2kIZ]Z+(2k - 2 ) (  [ ~ , Z ] , Z  ) }  

Proof We have 

(~Te, Z, ej)(~Tje, Z, Jej) 
(7A.35) 

Since 

= ei((Z, ej)(~TjeZ, J e j ) ) -  (Z, ej)(~'e,~'je, Z, Jej) 
- (l, ej)(~rje, Z,~Te,Jej) 

(7A.36) (Z, ej) (~  je, Z, Jej) = J( VrZ)b(e,,Z) , 

(7A.37) ~P,(Z, ey)(~7 je, Z, Je,) = ~ - (~T jzJZ, ei) , 
J J 

it follows that the first term on the right hand side of (7A.35) is a divergence. 
Hence its integral vanishes. 

The second term on the right hand side of (7A.35) equals 

(7A.38) _ 1 ~ (k(ei, Jel )Z, JZ) - ~ (~7 [e, Je,]Z, JZ) . 
2 i  

By the Jacobi identity, 
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- ~ i  <k(ei,Jei)Z, aZ) = ~i (R(Z, ei)Jei,JZ> 

= ]~_,(R(Z, ei)Jei,JZ} - (Z, Jei)(ei,Jz) + (Z, JZ)(e,,Jei) 
i 

(7A.39) = ~ - (R(Z, ei)e,,Z) + [Z[ 2 
i 

where R denotes the curvature tensor of C(N 2k-1). Since C(N zk-l) is a Ricci 
flat cone, the quantity in (7A.35) becomes 

(7A.40) 

Also, since 

(7A.41) 

we get 

2 

= t <  ~ . 

[ei,Jei] = ~'e, Je, - ~'je, ei, = - 2 - ~  , 

-~  ~ (~r[e,,Je,]Z, JZ ) = ( 2 k  - -  2 )(~7~?/?~oZ, JX) , 

(7A.42) = ( 2 k - 2 ) ( I Z [ Z + ( [ ~ - - - o , Z ] , J Z ) ) .  

Thus, the second term on the right-hand side of (7A.35) becomes 

(7A.43) ( 2 k  - 1 ) l Z l  2 . 

Finally, using (7.118), we find that the third term on the right hand side 
of (7A.35) equals 

( 7 A . 4 4 )  IZI  2 . 

By (7A.38),(7A.41), (7A.43), (7A.44), the lemma follows. 

Since the group generated by ~-~, acts by isometrics which preserve 

TbN 2k-I and commute with J[TbN 2k-1, the space of vector fields, Z, tan- 
gent to TbN zk-I can be decomposed as a direct sum of subspaces, ~ea (for a 
certain countable set of  2) such that z E ~)~ if and only if 
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Corollary 7A.46. Le t  Z E ~;~. Then 

f [((~7z)b).I2 = 1 J" <(d3* +2*2)Z*,Z*)  
N2~-, 2N2~ , 

(7A.47) - ((4 - 2k)2 + 22)IZI 2 

567 

j. [((~7Z)b)SHi = = 1 f <(~?d* +d*2)Z*,Z*) 

(7A.48) - (4k + 2k). + 22)[Zl z 

Now we observe that (7A.32) and (7A.48) immediately yield (7A.30). As 
previously noted, this suffices to complete the proof of  (7.73). 

Remark 7A.49. Note that we have actually shown that cO itself is the sum of 
a radially parallel harmonic form and one which decays at a rate no slower 
that r - 2 k  . 

8. Complex integrability and the Kiihler case 

In this section we prove Theorem 0.15 and Theorem 0.16. 
Recall that in the Kiihler case, solutions of  the linearized equation which 

arise as rescaled limits of the nonlinear equation, Ri%+h --= 0, satisfy the inte- 
grability conditions, (7.63) (7.66). Also, for k q= 3, it follows from Theorem 
7.92, and Proposition (7.135) that the radially parallel solutions which satisfy 
these integrability conditions and which are annihilated by fit (t 4= 0) satisfy 
B =- (Bb) sH, as well as (7.137), (7.138). 

As in Theorems 0.15 and 0.16, we assume that the dimension of the space 
of  holomorphic Killing fields on (C(N2k-t),,q0) is I. This implies in particular 
that C(N n- l )  is a standard complex cone, with complex base, Y = N2k-l /SI ,  
which might be an orbifold. 

Before proceeding further, we will recall some relevant definitions pertain- 
ing to orbifolds. 

Let (Y, 9 b) be a compact Kahler Einstein orbifold, Y = N 2k l/S1. Each 
point of y has a neighborhood of the form, U/F, where F is a finite group 
acting by biholomorphisms, and for some imbedding, ck : U --+ C k - l ,  0 o F o 
0 -1 C U(k - 1), the unitary group of C k-1. The triple, (U,F, 4~) is called a 
local uniformizing chart. 

Denote by Sing(Y) the set of singular points of Y. By definition, the Kiihler 
metric, gb, is a metric on Y \ Sing(Y) such that for any local uniformizing 
chart, (U, F, 4~), the pullback extends to a smooth metric on U. Similarly one 
can introduce tensors of arbitrary type on Y, where in actuality, all computa- 
tions are performed with equivariant objects on U. 
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Below, we will use some facts which, at least in the case of smooth man- 
ifolds, are well known. Their extension to the orbifold case is straightforward, 
given the above remarks. 

The skew Hermitian solutions, B, as above, correspond to orbifold symmet- 
ric infinitesimal deformations of the complex strucure of Y; compare Section 
7. 

Definition 8.1. The c o n e  (C(N 2k-l),,qO), is complex integrable, if  every such 
infinitesimal deformation is tangent to a curve of K~ihler Ricci flat orbifold 
metrics on Y. 

Proof of Theorem 0.15 By using an obvious variant of the discussion of Sec- 
tion 5, it is clear that to prove uniqueness of the tangent cone in the Kahler 
case, it suffices to verify that some tangent cone, is complex integrable. We 
now proceed with the verification under the assumption that the dimension of 
the space of holomorphic Killing fields on (C(N 2~-1),9o) is 1. As a conse- 
quence, the orbifold Y admits no holomorphic Killing field, or equivalently, 
since Y is Kahler Einstein, no holomorphic field whatsoever. 

Let B as above determine a Tr176 (0,1)-form on Y as in (7.39), 
(7.40). We denote this form by ~b. Thus, ~b determines an infinitesimal orbifold 
deformation of complex structure. 

We now observe that the obstruction space for the problem of orbifold 
deformation of the complex structure on Y is trivial; compare [B], p. 350. 

Lemma 8.2. The cohomoloyy 9roup H2( y, T~ '~ vanishes. 

Proof By the Serre duality theorem, 

H2(y,Tr H k - 2 ( y ,  (k,0) 10 * = ga~ [(:ey, ) 1),  
(8.3) = Hk-2(Y, Q~'~ 

where Ky is the canonical line bundle over Y, i.e. Ky = Ak(Tr176 *. Since the 
first Chem class, cl(Y) is represented by a positive (1,1)-form, by the Kodaira 
vanishing theorem, (see [GH]) 

(8.4) Hk-2(Y, Y~~ = 0 .  

It follows from Lemma 8.2 that for q~ as above, there is a smooth family 
of integrable orbifold almost complex structures, Jr, on Y, with 

(8.5) Jo = J ,  

(8.6) J0 = q~. 

It remains to show that the Kfihler-Einstein orbifold metric, 9 b, on Y can 
be deformed in the direction, B. In other words, to find a smooth family of 
K{ihler-Einstein orbifold metrics on (Y, Jt). 



Euclidean volume growth and quadratic curvature decay 569 

Let 9t b be a smooth family of Kiihler orbifold metrics on (Y, Jt) with Kfihler 
form cot b, such that 9o b = ,qb. Consider the complex Monge-Ampere equations 

(8.7) (co l' + ~tbg~qSt) k = el;-zk4~'(cotb)k 

subject to the condition 

b-b (8.8) co,~ + 0, 0, q~, > o ,  

where f t  is defined on (Y,J~) by 

(8.93 n i c & ) -  2kco, = ~,~<~.r,, 
Here Ric(9~) denotes the Ricci form of .q~, and 

(8.10) f ( e  r' - 1)cotb) k = O. 
r 

Note that f0  = 0 since g0 b = ,qb is K~ihler-Einstein. 
If (8.7), (8.8) has a solution qbt, then we can produce a K/ihler-Einstein 

orbifold metric, ,qt by defining its K~hler form to be 

b-b b + ?t Ot (o~ . (8.11) cot 

Therefore, the complex integrability is equivalent to the solvability of (8.9) for 
t small. 

Theorem 8.12. I f  Y has no nonvanishing holomorphic vector field then (8.7), 
(8.8) is solvable/'or t small. 

Proof By the Implicit Function Theorem, it suffices to show that the lineariza- 
tion of (8.7) at t = 0 is invertible. Differentiating (8.7) with respect to q5 at 
t = 0, we obtain 

(8.13) D~E(q,)l(o,o ) = A u~qJ - 2/ap, 

where for e small, E is the operator 

(8.14) 

given by 

(8.15) 

Here 

E : ( - e , e )  x C~'I/2(Y) ---+ C~ 

E(t, qS) = log (e)tb)~. f t  + 2kq~. 

(8.16) Ct2'I/Z(Y) = {q5 C C2'I/2(Y)Iw + ~?t~tr > 0} 

Note that E ( t , r  0 if  and only if  r satisfies (8.7). 
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We claim that D~E[(o,o) has no nontrivial elements in its kernel. In fact, if  

(8.17) D~E(~O)l(0,01 = 0 ,  

then by the Bochner  identity, 9q~,] is a holomorphic vector field on Y, the 
existence o f  which contradicts our assumption. This suffices to complete the 
proof  of  Theorem 8.12 and hence, o f  Theorem 0.15 as well. 

Proof of  Theorem O. 16. As mentioned in the introduction, the discussion o f  
the complex analytic compactification will be deferred to [CT]. Statement i) 
follows from Theorem 7.93 and Proposition 7.135, by the argument used to 
prove Theorem 5.78. The part o f  statement ii) concerning the rate o f  conver- 
gence o f  the complex structure follows similarly from Proposition 7.135 and 
Theorem 7.173. 

Example  8.18. According to [N], [T], the Femaat hypersurfaces o f  degree d in 
n CP n, where ~ + 1 < d < n + 1, admit Kfihler Einstein metrics with cl > 0. 

For k > 3, these admit no holomorphic fields. Thus, the complex cones on 
these varieties provide explicit examples to which our results apply. 
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