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Introduction 

A rich class of dynamical systems is obtained by iterating rational maps of 
the Riemann sphere. An outline for classifying these dynamical systems was 
developed by Sullivan. He exploits the intimate connection between this classifi- 
cation problem and the theory of moduli for Riemann surfaces. In particular, 
he defines mapping class groups for rational maps, and shows how the mapping 
class group of a generic rational map can be built from subgroups of the mapping 
class groups of punctured tori. 

An open question is to find presentations for these subgroups. We attack 
this problem for a class of rational maps that is of interest in symbolic dynamics. 

Definition. A rational map is generic if it is hyperbolic, and its critical points 
have independent orbits containing no periodic cycles. 

The well-known Generic Hyperbolicity Conjecture states that generic rational 
maps form an open dense subset of the space of all rational maps (with the 
coefficient topology). 

In this article, we focus on an important  class of rational maps with strong 
ties to abstract symbolic dynamics. 

It is not difficult to show that the Julia set of a shift-like map  R is a Cantor  
set; furthermore, the dynamics of R restricted to its Julia set are conjugate 
to a one-sided shift. The mapping class group (MCG) of a generic, shift-like 
rational map is infinitely generated [GK] ,  and in Sect. 4 we give a complete 
presentation in case R is quadratic. 

There is a representation of MCG(R)  as a subgroup of automorphisms of 
the shift. The groups Auta of the one-sided d-shift were originally studied by 
Hedlund [H],  and recent work of Boyle, Franks and Kitchens [BFK]  and 
Ashley [A] show that these groups have a complicated, but not intractible 
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structure. Furthermore, shift automorphisms can be realized as homeomorph- 
isms of the Riemann sphere which commute with polynomials [BDK]. 

One focus of this article is the introduction of methods to study the represen- 
tation of MCG(R) as a group of automorphisms of the shift. In Sect. 5, we 
describe explicity this representation in the quadratic case. It is an open problem 
to extend these results to higher degrees. 

All of our constructions depend on an ability to analyze the parameter 
spaces of rational maps. At a conference in Paris in 1988, J.H. Hubbard outlined 
a technique to analyze the parameter space for cubic polynomials. This "critical 
point surgery" technique models pieces of the cubic connectivity locus on the 
dynamical planes of quadratic polynomials. The technique first appears in the 
thesis of Wittner [Wit]. 

In this paper, we develop an analogous technique to analyze the parameter 
space of quadratic rationals. A careful description of this technique comprises 
most of Sect. 3. 

In our context, it is natural to identify two rational maps if they are conjugate 
by a rational homeomorphism of the Riemann sphere I~. The group of all 
such homeomorphisms is the Moebius group PSL(2, IE). For a rational map 
R, we denote by M(R), the space of PSL(2, IE) conjugacy classes of rational 
maps which are quasiconformally (qc) conjugate to R. 

Examples. i) If R(g)=g2--kc for c=k0 in the cardioid (fixed point) region of the 
Mandelbr6t set, M(R) is parametrized by the cardioid with the origin deleted. 

ii) If R is a quadratic polynomial with a cycle of Siegel disks, then M(R) 
is a point. 

From [S], it follows that for a generic rational map R, M(R) is a K(n, 1) 
space which has the structure of a complex analytic manifold with singularities. 
We define a contractible covering space for M(R) in the following way: 

Let Q(R) be the space of qc homeomorphisms f :  ~-+I~ for which f R f  -1 
is again a rational map. Homeomorphisms f0, f l  are equivalent if there is a 
Moebius transformation h and an isotopy between hfo and f l  through elements 
of Q (R). The quotient space of Q (R) by this equivalence relation is the Teichmiiller 
space of R and we denote it Teich (R). 

Equivalent homeomorphisms in Q(R) conjugate R to rational maps that 
are PSL(2, r conjugate to one another, so there is a projection: 

P: Teich(R) --+ M(R) 
given by 

P([f])  = [ f R f -  2]. 

Let Qo(R)c Q(R) be the subgroup of qc homeomorphisms which commute with 
R. The mapping class group MCG(R) is the quotient of Qo(R) obtained by 
identifying homeomorphisms which are isotopic to the identity through elements 
of Qo(R). 

There is an action of MCG(R) on Teich(R) given by 

Eg]" [ f ]  = [fo g] 

and the orbit of any [ f ]  eTeich(R) is precisely a fibre of P. This gives 

Proposition 0.1. M (R)~- Teich(R)/MCG(R). [] 



The mapping class group of a generic quadratic rational map  337 

Examples. i) If R(z)= Z2"[ - C for c =t= 0 in the cardioid (fixed point) region of the 
Mandelbr6t set, MCG(R) = zq (M(R)) ~-Z. 

ii) If R(z )=z  d, then MCG(R) is the dihedral group generated by the confor- 
mal homeomorphisms z ~ 1/z and z ~ (z,  (a- 1 = 1 .  

The above definitions are modelled on the classical theory of Riemann sur- 
faces which we now recall. 

Let S be a Riemann surface and define, as above 

Q(S) = {qc homeomorphismsf :  S ~f(S)}.  

The equivalence relation here is: 

fo ~fa, if there is a conformal homeomorphism 

M: f0 (S) ~ f l  (S) and an isotopy between Mfo and f l .  

The Teichmiiller space Teich(S) is Q(S) modulo this equivalence relation. The 
mapping class group MCG(S) is the group of isotopy classes of qc homeomorph- 
isms g: S-+S. 

As for rational maps, MCG(S) acts on Teich(S) via 

[g ] .  [ f ]  = Es 

and the analog of M(R) is the moduli space 

M (S) = Teich (S)/M CG (S). 

M(S) parametrizes the ways a fixed topological surface can be made into a 
Riemann surface. 

Mapping class groups of finite type Riemann surfaces are well understood 
(see for example [Bi] and Sect. 4 of this article). They are generated by a finite 
set of mapping classes which are represented by homeomorphisms of a particu- 
larly simple type. 

By contrast, little detailed information is available for the mapping class 
groups of very basic "generic" rational maps. In [G], we generalize example 
ii) above, where we study the mapping class group of a special class of cubic 
polynomials - those with a single attracting fixed point which attracts all finite 
critical points. These groups are infinitely generated subgroups of the mapping 
class group of a twice punctured torus. 

In this article, we give a complete description of M(R) in case R is a generic, 
shift like rational map of degree 2. A rough statement of our result from Sect. 3 
is: 

Theorem. The moduli space M (R) is a fibre space over the punctured disk whose 
fibre is modelled on the filled Julia set of a quadratic polynomial. 

Using this, we prove 
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Theorem. i) MCG(R) is an infinitely generated subgroup of the mapping class 
group of a twice punctured torus MCG(TZ). 

ii) There is a distinguished set of generators for MCG(R) consisting of Dehn 
twists and spins (see Sect. 4 for definitions). 

As mentioned above, the restriction of R to its Julia set induces a representa- 
tion p of MCG(R) as a group of automorphisms of the 2 shift. As an application 
of the previous theorem, we prove: 

Theorem. i) The representation p: M C G ( R ) ~  Aut 2 is surjective. 
ii) There is a distinguished set of generators for the kernel of p consisting 

of Dehn twists and spins. 

This result is similar to the corresponding result in [BDK] but the methods 
are quite different. 

The organization of this paper is as follows: 
Section 1 introduces the two-parameter family of quadratic rational maps 

which contains a model for our moduli space M(R). 
Section 2 describes the dynamical planes of these quadratic rational maps. 
Section 3 describes the parameter space of these maps. This section contains 

the details of the surgery technique mentioned above. 
Section 4 contains a presentation for MCG(R). 
Finally in Section 5, we analyze the representation p: M C G ( R ) ~  Aut 2. 

Section 1 

Consider the two dimensional family of quadratic rational maps 

Rx, b(z) = 1/2(z + b + 1/z) 

parametrized by pairs (2, b)eD o x ~. Each Rx, b has an attracting fixed point 
at ~ with derivative 2, a pole at 0, and critical points at + 1. Label the critical 
values v+=R~,b (+ l )  and v_=Ra,b(--1),  respectively. For  a fixed 2, v+ and 
v_ depend linearly on b (and on each other), so that the family is essentially 
parametrized by R ' ( ~ )  and either v+ or v_. 

The attractive basin of R~,b at ~ ,  denoted Az,b, is a connected open set 
that is completely invariant under iteration and contains at least one critical 
point. The complement of Ax,b is the filled Julia set, Kz,b; as in the case of 
quadratic polynomials, the filled Julia set must be one of two types: 

Lemma 1.1. Either 
i) K~,b is a connected set containing one critical point 

or 
ii) Ka, b is a Cantor set disjoint from the critical points. 

Sketch of Proof Let A be a neighborhood of ~ which is homeomorphic to 
a disk such that 

i) A contains one critical value and no critical points 
and 

ii) R;,~(A)=A. 
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If K~,,b contains one critical point, then the family R~.~(A) forms a nested increas- 
ing sequence of topological disks whose union is homeomorphic to a disk and 
whose complement is Kz, b. 

If, on the other hand, K~,b contains no critical points, then there is a smallest 
integer N such that RZ~(A) contains both critical points and the complement 
of R ~ ( A )  consists of two topological disks. It follows that for m > 0, the comple- 
ment of - u + "  2" Ra, b (A) consists of disks and that the diameter of these disks 
tends to 0 as m tends to oo. The complement, Kz, b, of the union of the regions 
Rz.b (A) is therefore a Cantor  set. []  

Denote by M, the subset of Do • C for which K~,b contains a critical point. 
The set M is a disjoint union of subsets M+ and M_ for which the critical 
values v+ and v_ respectively are in K~,b. 

If (2, b) is not in M, both critical points are in A;~,b and Rz, b is a shift-like 
map. Generically, the orbits of the critical points are disjoint from each other 
and from oo ; we enumerate below the non-generic cases. 

i) Poles. The subset of (2, b)'s such that 

Ria,b(V+)=oO or R{,b(v_)=oo. 

is the pole set P. 
ii) Orbit relations. The subset of (2, b)'s such that 

R~,b(V+)=R~,b(V-). 

is the set 0 of orbit relations. 
Let RatE be the space of rational maps parametrized by 

D o x ~ - M u O u P .  

A standard argument from [MSS] shows that any two maps in Rat2 are conju- 
gate by a quasiconformal homeomorphism of ~. Hence, for any ReRatE, there 
is a projection F~ from RatE to the moduli space M(R) that sends R~,b to 
its PSL(2, C) conjugacy class. 

Proposition 1.2. For any ReRatE,  FR is a degree 2 covering of M(R) by RatE 
ramified along the curve Do x O. 

Proof ~R is surjective, since any rational map that is quasiconformally conjugate 
to an element of Rat2 is actually PSL(2, C) conjugate to some Ra,beRatE. 

The degree of F~ is 2 since R,L b is PSL(2, C) conjugate t o  R;~,b, if and only 
if 2 = 2 '  and b =  _+b'. It follows that along the curve Do x 0, the functions R~,o 
are unique in their PSL(2, ~)  conjugacy classes. 

Since each Ra, o is an odd function, the orbits of the critical points are disjoint 
and neither critical point is a preimage of oo. We conclude that Ra,o~Rat 2 
for all 2. [ ]  

An immediate corollary which will be used in Sect. 3 is 

Corollary 1.3. I f  b and b' are in the right half plane and Rx. b is conformally 
conjugate to Ra,b,, then b=b'. [] 



340 L.R. Goldberg and L. Keen 

We are interested in the action on fundamental groups induced by the PR's. 
To write this action precisely we must pick a basepoint in Rat2. We choose 
R=R1/2. o here, and wherever else in this paper  we need a basepoint. For the 
sake of coherence, we work with the moduli space M(R1/z,o)=M(R) which 
has the canonical choice of basepoint, R. 

As we will see in Sect. 2, it is often easier to study rational maps if the 
critical points are labelled. Analogously, in the theory of Riemann surfaces with 
punctures, one often labels the punctures. 

Since a map feQo(R) or Qo(S) permutes the labelled critical points or punc- 
tures, we define the pure moduli spaces M,(R) and M,(S), and pure mapping 
class groups M C G , ( R )  and MC G, (S )  by restricting to maps which take each 
labelled point to itself. If  n is the number  of labelled points, 

M , ~ M  

is an n! to 1 projection and M C G ,  is a subgroup of M C G  of index n!. 

Lemma 1.4. M C G ,  - image ~,. 

Proof This is immediate since the critical points of Rat2 are labelled + i and 
- 1 .  []  

Section 2 

The Poincar~ linearization theorem [P] guarantees that the restriction of any 
Rz,b to a suitable neighborhood of oo is conjugate to a linear map. We construct 
these conjugacies in an organized fashion. 

Lemma 2.1. For each 2eD o and be(E, the sequence of functions 

{2" R,~,b} 

converge uniformly on compact subsets of A a.b to a nonconstant, analytic surjection 

which fixes 0% and satisfies the functional equation 

r ~ Rx, b =)~-1 " q~,~,b" (1) 

Remarks. i) The derivative q~],b(O0) is always equal to 1, so that ~o~,b is a conjugacy 
in a neighborhood of ~ .  Of course, q~x,b cannot  be a homeomorphism on all 
of A~, b, and below, we characterize sets of points in ~ identified by q~,b" 

ii) The maps  ~o~, b depend analytically on the parameters  2 and b. 

Sketch of Proof Set q~a,b,.=2"R"~,b. The heart of the argument is to show that 
the q~a.b,.'s form a normal  family on a neighborhood of ~ .  
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By definition q~,b,,(~) = o0, and it is not difficult to show that on a sufficient- 
ly small neighborhood No~ of ~ ,  there is a K=K(b)  such that 

IR~,b(z) l > 1/2 Izl--K. 
It follows immediately that 

I ~0x,b,.(z)l =2" I R~,b(z)I > Iz l - -K 

for zeN~ so that the tpX,b,.'S form a normal family on N~ as claimed. 
No limit function of the ~0~,b,.'S can be constant since tp~,b,.(oV)= 1 for all 

b and n, and by construction, any limit of the q~,b,n'S must satisfy the functional 
equation (1). Therefore, the ~o~,b,.'s converge to a unique, nonconstant limit 
satisfying (1). 

Since, under iteration of Rz, b, every point in Az, b eventually falls in N~, 
(1) defines ~0~, b on the rest of A2,b. [] 

To see which points have the same image under ~0x,b we recall from [S] 
that there are two important equivalence relations induced on t~ by any rational 
map R: 

Definitions. Points z and w are grand orbit equivalent, if there are integers n, 
m > 0  such that R"(z)=Rm(w). If the stronger relation R"(z)=R"(w) holds, z 
and w are small orbit equivalent. 

Now ~Oz,b(Z) = ~ if and only if z is in the grand orbit of ~ ,  and we denote 
by A~ the complement in Aa, b of the grand orbit of Go. 

Lemma 2.2. The restriction of q)a,b to A~ identifies each small orbit equivalence 
class to a unique point in ~ - O .  

Proof If z and w are in A~, b, then there is an M > 0  such that Rt~,,b(Z) and 
R~,b(w ) are in No~. If z and w are small orbit equivalent, then (taking M larger 
if necessary) g~,b(z)=R~,b(W) SO that 

q~Z,b(Z)= lim 2n Rn2,b=q92,b(W). [] 
n~oo 

Let Ga be the cyclic group generated by the map z ~ 2z. Gz acts discontinuously 
on C - 0  and the map 

pa: C - - 0  ~ (1I~--0) Ga= Ta 

is a holomorphic projection onto a torus T~ of modulus 2. Let ~Z,b be the 
map obtained by composing pa with the projection tp~, b. 

t~A,b. AO, b ~ ,b  ~ - - 0  P'~ ) T 4 

From Lemma 2.2, it follows that ~ , b  maps the dynamical space of R,t,b t o  

the torus T~ by identifying each grand orbit equivalence class in A ~ with a 2,b 
unique point in Ta. Note that the image of ~ , b  is the same torus for all b 
and fixed 2. 
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If Ra, b~Rat2, then both + 1 and - 1  are in A~ and their images under 
~ , b  are distinct on Tz. Call T~2b the twice punctured torus obtained by deleting 
from T~ the special points ~a,b(+ 1) and ~z,b(-1) .  The set of critical points 
of ~a,b is comprised of the backward orbits of + 1 and - 1. 

772 Let A * b = ~ _ ~ (  ~,b); A'~,bCAz,b is the complement of the grand orbits of 
oo and of the critical points. It is proved in IS] that the restricted map 

#~,b: A~ b ~ Z2 , , ~ , b  

is a covering projection. 
The transformation 71: R~, b ~ T~b gives a correspondence between R a t  2 and 

the pure moduli space of a twice punctured torus. We choose T 2 =  T1~2, o as 
the basepoint for moduli space since it is the image of our basepoint R ~ Rat 2. 

Again from [S] it follows that ~ is a covering map, and so induces an 
injection on fundamental groups: 

71,: nl (Rat2) ~ ~zl (M.(T2)) 

which can be rewritten 

~ , :  MCG,(R)  ~ M C G ,  (T2). 

Therefore we can view MCG. (R)  as a subgroup of MCG.(T2) ,  and in Sect. 4, 
we give a presentation for this subgroup. This presentation depends on an analy- 
sis of the parameter space D O x C, which is the focus of the next section. 

The remainder of this section contains a topological description of the projec- 
tion from the dynamical plane of Rz, b onto the torus Ta. To simplify the exposi- 
tion, we surpress subscripts. 

Notation. Oriented simple closed curves on T are called ft. The collection of 
components of ~ -  1 (6) is called A (6), and an element of A (6) is called ~. Because, 
in later sections, our curves are equipped with cylindrical neighborhoods, we 
make the following convention: if 6 (or ~) bounds a disk, we define A=A(6) 
(or zt=~(~)) to be an open disk containing the bounded disk as well as the 
cylindrical neighborhood. 

Under  the map ~: A ~  T, the curve Iq~(z)l=constant is identified with the 
curve ]r Fix any constant and let ~ be the image of the level 
curve on T; the homology class of a on T is independent of the choice of 
constant. Let fl be any curve on Twhich, together with a, generates the homology 
of T. 

Let S be the collection of oriented simple closed curves 6 on T, and let 

i : S x S ~ T Z  

be the intersection pairing. 

Lemma 2.3. i) I f  i(a, 6)=0,  then each ~;eA(6) is compact. 

ii) I f  i(~, 6)4:0, then every element of A(8) is noncompact. 
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Proof In a deleted neighborhood N ( ~ )  of oo, the map �9 is analytically equiva- 
lent (by ~p) to the standard projection 

Pl/2: ~ - - 0 " ~  T.. 

The components of p~/12(6) are either compact or noncompact, for i(~, 6)=0 
or i(ct, 3 )~0  respectively. Choosing N ( ~ )  smaller, if it is necessary to remove 
"fragments", the same holds for any 3"c~ N(~) .  

Since each ~ A ( 6 )  can be mapped by an iterate of R which is a finite to 
1 branched covering, so that it intersects N(~ ) ,  the lemma follows. [] 

Remark. If 6 is contained entirely in the punctured torus T, the restricted map 

is a covering projection, so that the elements of A(6) are all homeomorphic 
to ~ if i(~, 6 )40 ;  otherwise they are all homeomorphic to S ~. 

In the next lemma, assume 6 is properly contained in the punctured torus 
T z and that i(~, 6)=i(fl, 3)=0. The curve 6 divides T z into two components; 
one of which is either a disk, a punctured disk, or a twice punctured disk. 

Lemma 2.4. I f  A (3) is a twice punctured disk, then either 

i) Some component A of ~- I (A)  contains both v+ and v_, and ~ - ~ - I ( A )  
is disconnected, or 

ii) t ~ -  ~ -  1 (A) is connected. 

Proof If some component A contains v+ and v_, then z~ is homeomorphic 
to a disk since it contains no critical points of ~. The preimage R-  1 (~) contains 
both + 1 and - 1  and by the Riemann Hurwitz formula, R-I(A) is a doubly 
connected region which disconnects the sphere. 

If no component contains both critical values, the discussion breaks into 
two steps. 

First, there are the special components A+ and A_ which each contain 
one critical value. Depending on whether or not A+ and A_ are in the same 
grand orbit, the restriction of �9 to A+ and A_ is a degree 2 map with one 
branch point, or a degree 4 map with 3 branch points. Either way, by the 
Riemann Hurwitz formula they are both topological disks. 

Second, A is an arbitrary component. Figure 2.1 illustrates the four possibili- 
ties for A: 

�9 
c a s e  i c a s e  iii 

�9 
case  ii c a s e  iv ~ '~ / / ,~  

ao 
Fig. 2.1 
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In i) 412 is a homeomorphism. 
In ii) 412 is a 2:1 branched covering with one simple branch point. 
Case iii) is just case ii) with the roles of 2_ and 2+ reversed. 
In case iv), 412 is a degree 4 branched covering with three branch points. 
In all four cases, the Riemann Hurwitz formula implies that 2 is a topological 

disk. [] 

For the following lemma, 6 is a non-dividing, oriented simple closed curve 
on T 2 such that i(~, 6)=0, i(fl, 6)= 1. 

Lemma 2.5. There are distinguished sequences of lifts {5.10 <= n} c A (6) and disks 
{2, = 2,(5,)}, and a non-negative integer K = K(6) satisfying: 

i) Each 5. is an oriented simple closed curve. 

ii) R maps 2.  onto 2.+ 1, 2 . ~ 2 , +  1 and ~ 2 , = o o .  

iii) R is a homeomorphism for n > K and is a 2:1 branched covering for n < K. 

Proof Suppose that 6 passes through 4 ( -  1). 

As in the proof of Lemma 2.3, there is a neighborhood of oo containing 
an infinite sequence of 4-lifts of 6 which pass through the forward iterates 
of - 1  and bound nested disks containing oo. This sequence contains a first 
element which we temporaily call 50. It is defined by the property that the 
disk it bounds contains all the other curves in the sequence. Label the other 
curves 5. = R(5,_ 1) and let A. = 2(5,). 

Now proceed according to the following algorithm: 

i) j = 0 .  

ii) If 2j contains both critical values, or if 5j contains one critical value, 
renumber the sequence by n = n - j  and stop. 

iii) Else, let 5j_ 1 be the component of R-I (S j )  that has winding number 
1 about oo. Set j = j -  1 and go to ii). 

The process terminates in a finite number of steps, and produces the required 
sequence {5.}. It is no problem to choose the A. so that R(A.) = 2,+ 1. 

To complete the proof, let K >  0 be the smallest integer such that 2/~_ 1 

contains at most one critical point. [] 

Lemma 2.6. I f  ReRat2,  there is a simple closed curve ~o on T passing through 
both 4 ( +  1) and 4 ( - i )  such that some ~oeA(cto) passes through both critical 
values v+ and v_. 

Proof See the beginning of Sect. 4 for the definition of spins. 

Let 6 be a simple closed curve on T passing through 4 ( + 1 )  and 4 ( - 1 )  
and satisfying i(~, 6)= 1 and i(~, fl)=0. There is a unique element 5~A(6) which 
passes through v_. Now 5 must pass through at least one point in the grand 
orbit of v + which we can assume is of the form R' (v  +) for some m > 0. (Otherwise, 



The mapping class group of a generic quadratic rational map 345 

just reverse the roles of " + "  and " - " . )  It follows that 6 contains no other 
points in the grand orbits of the critical points. 

If m = 0, there is nothing to prove so assume m > 0. 

Fig. 2.2 

@ 
We can assume, up to homological equivalence in T that fl passes through 

4 ( +  1) and not 4 ( - i ) .  Then either S'~(6) or S"_~(6) is the curve So we desire, 
where S~ is the spin about fl defined in Sect. 4. []  

Remark. The curve s o is not unique. 

Section 3 

In this section, we analyze the parameter space for the R~,b's. It is instructive 
to consider one dimensional slices of D O x ~ obtained by fixing 2 and varying 
b. Figure 3.1a shows the b-plane for 2 =  i/2. 

Fig. 3.1a 

The algorithm that draws Fig. 3.1 a counts the minimum number of iterates 
it takes for both critical points to leave a ball of radius 10. The grey region 
contains parameter values for which one of the critical points remains inside 
the ball after 100 iterates; it consists of two connected components, each of 
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t 
Fig. 3.1 b 

which is homeomorphic to a Mandelbr6t  set. This is illustrated in Fig. 3.1b 
which shows a blow-up of the right half plane. 

The projection n: Rat2--* Do that sends Rz, b to 2 is a locally trivial fibration. 
The fibre Fz=~-~(2)  is the complement in the b-plane (2=constant)  of the 
set M w O u P .  With respect to the basepoint R=R1/2,o~F~/2, the long exact 
homotopy sequence of rc yields a short exact sequence: 

1 ,n l  (F1/2) , nx (Rat2) ~* ~' 7~ 1 (Do) ,1 

? 
MCG,(R)  

so that MCG, (R)  is a twisted product  of ~t(F1/2) and 7l. 
For  the remainder of this section, we fix 2 = 1/2 and simplify our notation 

by writing R b for R~/2,b, Ab for Alfz,b, etc. 
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The affine map z--* - z  conjugates Rb to R_ b, so that the b-plane is symmetric 
about the origin. To understand this symmetry, we return to the dynamical 
plane of a particular Rb. The level curves of J tPbl are the leaves of a singular 
foliation of A ~ whose singularities occur precisely along the backward orbits 
of + 1 and - 1. There are two possibilities for the structure of this foliation. 

i) Both critical points lie on the same leaf of the foliation. This occurs 
exactly when b is on the y axis. 

ii) R b has a preferred critical point. In this case, there is a distinguished 
leaf of the foliation which is a figure eight curve and has the preferred critical 
point as its cut point; this distinguished leaf will be called ~o. The principal 
loop of ~o encloses the fixed point ~ ,  and the secondary loop encloses the pole 
0. The region bounded by the principal loop is the largest dynamically defined 
region on which ~o b is a conjugacy. 

b ~ l R  

~ r o  

*l PREFERRED 

Fig. 3.2 

The critical points + 1 and - 1 are preferred in the right and left half b-planes 
(R and L) respectively; the affine conjugacy z ~ - z  interchanges R and L, and 
therefore changes the label of the preferred critical point. 

If be R  then any pole has the form 

R~,(v_)= ~ ,  

any orbit relation has the form 

Rg(v+)=R'~(v_) re>n, 

and if b~R c~ M, the iterates R~(v_) stay bounded. 
It is a common phenomenon to find similarities between the dynamical 

plane of a rational map and the parameter space of a family of rational maps. 
Following ideas of Hubbard, we will use as a model for R - M ,  a subset of 
the filled Julia set of a quadratic polynomial. 

Let Q(z)=z2+ 1/2z. The map Q has a single attracting fixed point at 0 with 
multiplier 1/2, a critical point at - 1/4 and a critical value at - 1/8. In anticipa- 
tion of the ensuing construction, we label the critical point and critical value 
as c + and w +. The filled Julia set K is a quasidisk whose interior/~ constitutes 
the entire attractive basin of 0. 
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The map Q can be linearized in a neighborhood of its fixed point. As in 

the proof of Lemma 2.1, there is an analytic map 

defined by 
~o:/~-~r 

q~(z) = lim 2" Q" (z). 
n ~ o o  

The map q~ fixes 0 and conjugates Q to z-~ 1/2z in a neighborhood of the 
fixed point. 

Note that ~0 (z)= 0 if and only if Q" (z)= 0 for some n > 0; it follows that 

q~(c+)=re i~ for some r+0 .  

As for the Rb's, we denote by 7o, the preferred component of the level set 
]~0[-l(r) containing c+. The curve 7o is a figure eight whose principal loop 
encloses 0, and whose secondary loop encloses the preimage - 1/2 of 0. 

To continue our description of K, we need the following: 

Definition. A generalized figure eight curve in ~ is a union of simple closed 
curves consisting of: 

i) a primary loop which separates the sphere into two disks. 

ii) n >  1 secondary loops, each attached to the primary loop at a unique 
point and all of which are contained in the same disk. 

A generalized figure eight divides the plane into three types of regions: the 
disk not containing the secondary loops is type A, the disks bounded by the 
secondary loops are type B, and the remaining "queer"  component is type C. 
We denote by A(7), B(7) and C(7) the different regions bounded by a generalized 
figure eight 7. 

Let y, = Q-"(To). Then 7, is a generalized figure eight curve with 2" secondary 
loops and 7 , cA(y ,+ l )  for all n. Each B(7,) contains a single point in the set 
Q-~.+ 1~(0). 

-I t 112 

Fig. 3.3 
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The image Q(1)o) of the figure eight 2)o is a simple dosed curve contained 
in A(7o). Let A be the closed disk bounded by Q(7o); the remaining region 
/ ( - A ,  is a topological annulus. 

Lemma 3.1. There is an injective holomorphic map 

E : R - M _ ~ I g i - A  

which has the following properties: 

i) E maps each pole in R - - M _  to a preimage o f  O; that is, i f  b satisfies 

RT,(v-)= ~ 

then w = E(b) satisfies Q" (w) = O. 

ii) E maps each point b satisfying an orbit relation in R - - M _  to a point 
in the grand orbit o f  the critical value w + ; that is, if 

then w = E(b) satisfies 
R'~(v+)=R~(v_), 

Q"(w+)= Q'(w_). 

iii) As b tends to 0R, w = E ( b )  tends to OA. 

Proo f  The map E from R - M _  to / (  is defined in the following way. Since 
R 'b (~ )=Q' (O)=I /2 ,  there is a unique conformal homeomorphism ~b from a 
neighborhood of ~ in A b to a neighborhood of 0 in K which conjugates R b 
to Q and is normalized so that ~b(+ 1)=c+.  Since b is in R - M _ ,  the map ~b 
can be analytically continued in a unique fashion to v_ and we define 

E(b) = ~b(v_). 

Since the critical point +1  is preferred for beR, ~b(V_) lies outside A. The 
conjugacies ~b depend holomorphically on b, so that E is holomorphic. By 
construction, E satisfies properties i) and ii). 

Furthermore, E is injective: if (b,(V_)= ~b(V-), the map 

~ ,  1 o ~b 

maps a neighborhood of oo in A b to a neighborhood of oo in Ab.; it extends 
to a conjugacy of Rb to R b, on the stable sets. It follows from [MSS] that 
this map extends further to a conformal conjugacy between R b and Rb, on 
all of I~. Since b and b 'sR,  Corollary 1.3 implies b=  b'. 

Property iii) follows easily. As b ~ 0 R ,  the critical value v_ tends toward 
the leaf of the dynamically defined foliation containing v+ in the dynamical 
plane of Rb, and therefore w = E ( b )  tends to O A ~ w +. [] 

Remark.  The map ~b ties together domains in the dynamical spaces of R b and 
Q with the parameter space of the Rb's. 

The rest of this section contains a proof that E is a homeomorphism onto 
/ ( - A .  The following technical lemma will be used repeatedly: 
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Lemma 3.2. Suppose S is a Riemann surface homeomorphic to ~ - n  disks and 
let w + , w_ eS. There is exactly one isomorphism class of  degree 2 ramified covering 
projections of  S by planar Riemann surfaces which ramify simply over w+ and 
w_.  These projections are normal, and the total space is homeomorphic to ~ - 2  n 
disks. 

Proof. To show existence, fix an embedding e: S ~ t ~  that maps w+ and w_ 
to 0 and ~ respectively. Consider the map H(z)= z 2. The region S' =17-1(e(S)) 
is planar, therefore the Riemann Hurwitz formula implies that S' is homeo- 
morphic to ~ - 2  n disks. The required covering is 

e - I  o H : S ' ~ S .  

To show uniqueness, let q: S'--*S be a covering satisfying the hypotheses. As 
above, the degree 2 assumption implies S' is homeomorphic to ~ - 2  n disks. 
Since q is a ramified covering, it is injective in a neighborhood of each end. 
Therefore, the classifying homomorphism 

q, :  x l ( S -  (w+,w_})~TZ 2 

maps generating loops of 7zl(S-{w+, w_}) about w+ and w_ to the generator 
of 7~. 2 and maps all other generating loops to the identity. Since q ,  determines 
the isomorphism class of q, the result follows [Ma, p. 159]. []  

Theorem 3.3. The map E: R - M _  --* I(  - A is a homeomorphism. 

Proof. We construct an inverse to the map E. 

Outline of  the construction: 

i) w e  think of the points in / ~ - A  as potential places to add a new critical 
value. For  any choice of w_ e / ~ - A ,  the stable region of a rational map depend- 
ing only on w_ is built up by an inductive procedure. At the n TM stage, we 
obtain a Riemann surface f2 n which is topologically ~ - 2  n disks, and a holo- 
morphic degree 2 endomorphism Q,: f2 n ~ O n. The direct limit is a Riemann 
surface f2o~ of infinite type, with a holomorphic, degree 2 endomorphism 

Q~o: f2~ ~ (2o~. 

The map Qo~ has two branch values and an attracting fixed point with multiplier 
1/2. 

ii) The measurable Riemann mapping theorem is used to construct a confor- 
mal embedding e: f2o~ ~ t~ such that 

e o Q ~ = R b o e  

for a unique b ~ R - M_ satisfying ~b (V _ ) = W_. 
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Details of the construction 

Step0 .  Fix w_~I$i-A. There are two distinct elements of  Q - l ( w _ ) ;  choose 
one and label it c_ .  Let  N be the smallest  integer such that  w_~A(?,,)wB(7,, ). 
The curve 7, is a c o m p o n e n t  of  the level set [q~l-l(2 N.r). F o r  all sufficiently 
small  e > 0 ,  each level set I q~1-1(2 N . r+e )  has a componen t  which is a simple 
analytic curve bounding  a disk which contains  ?~, w+,  c§  and w_ but not  
c_ .  Fix such an e and call the disk f20. 

i OK 0~o 

Fig. 3.4 

L e m m a  3.2 implies tha t  there is a ho lomorph ic  degree 2 covering 

HI: ~1 "-~ ~0 

ramified over  w+ and w_ with f21 doubly  connected.  
Since the topological  disk f20 contains  one critical poin t  c+, Q(Oo) is a 

topological  disk and 
Q: Oo --," Q (f2o) 

is a 2:1 covering ramified over  w + ; (w_ is not  in Q (t20)). 
Set I2'1 = H i -  1 (Q(f20)); then 

is also a 2:1 covering, ramified over  w +. 
Consider  the d iag ram 

Q'I c O ,  

Q ( ~ o ) C ~ o <  Q ~2oC ~ 
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We construct a homeomorphism il : ~20 ~ O'~ satisfying 

171 ~ = Q  

by lifting locally near the critical point and extending by analytic continuation. 
Since Ha is a normal covering, there are two choices for i a . However the rational 
map we construct does not depend on this choice. 

Define Q1 = ii o ~1 :O1 ~ f21 ; Qa is a holomorphic endomorphism which is 
a 2:1 branched covering of its image ramified over il(w+) and il(w_). The 
point ia(0) is a fixed point of Qa with multiplier 1/2. 

~176 @ 
ao  

Fig. 3.5 

We proceed inductively. The hypotheses are: 

i) For  0 < j  < n, there is a planar Riemann surface Oj which is homeomorph-  
ic to the complement in ~ of 2 j topological disks. 

ii) For  0 =<j__< n, there is a holomorphic endomorphism 

Q j: ~ j  ~ t2j 

which is a 2:1 branched covering of its image. Each Qj has a fixed point with 
multiplier 1/2. 

iii) For  0 < j  < n - 1 ,  there is a holomorphic embedding 

ij+1: ~-~j-"~ ~j+ l 

satisfying Qj + 1 ~ i j  + 1 = i j  + 1 o Qj. 

Inductive Step. Lemma 3.2 gives a planar Riemann surface ~2,+ 1 g ~ - 2 "  + a disks 
and a 2:1 normal covering 

Hn+l :  ~'~n+ l "~ ~'~n 

ramified over w+ and w_. 



The mapping class group of a generic quadratic rational map 353 

The Riemann Hurwitz formula implies that Q.(I2.) is homeomorphic to the 
Riemann sphere with 2"-1 disks deleted. Set f2'. + 1 = H.-+~I (Q.(f2.)). Both 

17.+ 1: fa'.+, --,Q.(O.) 
and 

(2.: fa. --, Q.(fa.) 

are 2:1 covering projections ramified over w+ and w_. Therefore Lemma 3.2 
implies that there is a holomorphic isomorphism 

satisfying 
in+l: Qn--+ f2'n+ I 

H.+lo i .+I=Q.  on Q.. 

Once again, there are two possibilities for i.+ t, but the choice does not matter. 
Define Q. + 1 : f2. + 1 ~ f2. + a by 

Qn+ l = i n +  l ~ [ In+ l �9 

Then 
Q . + l ~ 1 7 6 1 7 6  

= i . + l o Q ,  

and i.+1 conjugates Q, to Q,+I. Therefore both induction hypotheses ii) and 
iii) are satisfied. This completes the inductive step. 

The direct limit 0~o of the system (~.,  i.) is the quotient of the union 

U o .  
n 

by the all identifications of the form z ~ i. (z). 
The resulting space is a Riemann surface f2~ of infinite type whose fundamen- 

tal group is given by: 

/-/1(f2~)= lim in,:l-ll(Qn)-'+/71(f2n+l) 
t l ~ o O  

A twofold self-covering Q~ : f2oo ~ f2o~ is defined by 

O=([z])=[Q.(z)] z~fa.. 

The map Q~ is holomorphic and ramifies over [w+] and [w_] and has an 
attracting fixed point at [0] with multiplier 1/2. 

Topologically, f2~ is homeomorphic to the complement of a binary Cantor 
set in ~.  We claim that there is a unique conformal embedding 

that conjugates Qo~ to an Rb for a unique b~R. 
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Consider first the generic case for which the grand orbits of [-0], [w+] and 
[w_] are distinct. We construct a topological conjugacy between (Q~, f2o~) and 
the restriction of the base map ReRat2  to its stable set A. 

Let f2* be the region obtained by deleting from 12~ the grand orbits of 
[-0], [c+] and [c_].  The quotient of f2* by the grand orbit equivalence relation 
is a twice punctured torus T 2 of modulus i/2, and the projection is denoted 

~'a*--,T~. 

It is analogous to the projection 

q~o: A* ~ T 2, 

of Sect. 2. From Lemma 2.6, there is a simple curve ~o o n  T 2 passing through 
both punctures and a lift $o which passes through v + and v_. 

Similarly, there is a curve ~oo on T 2 which passes through both punctures, 
and a lift ~o passing through both I-w+] and [w_]. 

By inductive application of Lemma 3.2, any orientation preserving homeo- 
morphism f from T 2 to T 2 which preserves the labelling on the punctures 
and maps c~ to ~o lifts to a topological conjugacy f between R I A  o and Q~. 
We use this topological conjugacy to find the conformal embedding. 

Without loss of generality, assume that f is K-quasiconformal with Beltrami 
coefficient/Z Then/~ lifts to a Beltrami differential I~ on A~ which is compatible 
with R, that is 

(R (z)) R' (z)/R (z) = ~ (z) z s A t .  

Extend ~ to be 0 on ~ - A * .  
By the measurable Riemann mapping theorem [AB], there is a unique K- 

quasiconformal homeomorphism g: I ~ 1 ~  fixing 0, 1, and oo, such that 
goRog -1 is analytic on I~. From Corollary 1.3, it follows that g o R o g  -1 is of 
the form R b for a unique b(w_)~Rc~F~/2.  

The map e = go f - 1 :  Oo~ ~Ab~,,_) is the required conformal embedding. 
To show that the correspondence w_--* b(w_)  gives an inverse to E, consider 

the commutative diagram, in which i~ is the direct limit of the maps ij: 

K 

12 o '~ , Q ~  'Ab(w_)~(~ 

By construction e o i~ (w_) = b(w_), v_ = Rb(--  1) and ~b(V-) = W_. 
In the non-generic cases, the critical value w_ is added along the orbit 

of 0 or of w+ i n / ~ - A  and the quotient of the region f2* by the grand orbit 
equivalence relation of Q~ is a once punctured torus. A construction similar 
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to, but easier than, the one above defines a conformal conjugacy e between 
Q~ and a unique R b, b ~ O w P ~ R .  

This completes the proof of Theorem 3.1. []  

Remarks. i) By placing w_ outside of A in /s we are permitted to think of 
w+ as the preferred critical point. It is possible to imagine adding w_ along 
0A, in which case there is no prefered critical point. By taking limits we extend 
E to a homeomorphism 

E: OR --, 0A 

where 0 R = y  axis U {~}. The point at ~ is the image of w_ =w+ since there 
is no quadratic rational map with a single critical value. 

ii) In the left half plane, - 1 is preferred; we could just as easily have mapped 
L - M +  onto I ~ - A ,  by the map E' defined as 

E'(b)=r 

iii) The curves 7 ,~ /~  accumulate on the quasicircle boundary component 
o f / s  as n ~ ;  in fact 0A(7 , )  is the complement of /~. The corresponding 
regions A(F,) also nest and we see that the corresponding boundary component 
of F1/2 is the set M_ (1/2). Moreover, we have: 

Corollary 3.4. M n b-plane consists of two bounded, connected sets 

M _ = M n R  and M + = M & L .  []  

Remark. A straightforward application of the straightening theorem of [DH2] 
shows that M_ and M+ are each homeomorphic to the Mandelbr6t set. 

Section 4 

Material from Sects. 2 and 3 is used to give a presentation for the subgroup 
M C G ( R ) c  MCG(T2). We begin by reviewing some basics about mapping class 
groups of surfaces. 

Let c5 be an oriented simple closed curve on any Riemann surface S. Let 
N(6) c S be a cylindrical neighborhood of c~ with coordinates t and 0, - 1 < t < 1, 
0 < 0 < 2 rE; 6 is given by the equation t = 0. We assume that, at any point p ~ N(6), 
the tangent vectors (dt(p), dO(p)) form a basis for the tangent space TS (p) com- 
patible with the complex structure of S. 

Suppose that r is a real number. 

Definition. An r-Dehn twist D]: N(6)-o N(6) is the homeomorphism defined by 

D~(t, O) = (t, 0 + ~. r(1 + t)) 
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If r is an integer, then D] is the identity on ON(f) and so canonically extends 
to a homeomorphism on all of S. We use the notation D] to represent both 
the local and the global homeomorphism, and we surpress the superscript in 
case r = 1. 

I 
I /,,' 

L/ 
Fig. 4.1 

Now suppose that S is a punctured Riemann surface, and 6 is an oriented 
simple closed curve on S that passes through one puncture X. Choose simple 
closed curves 6 § 6 _ ~ S which bound a cylindrical neighborhood of (5 in S w X. 
Let N(6+) and N(6_) be chosen with 6 as a common boundary and let N(6) 
=N(6+)wN(6_) .  

Definition. The spin So: N ( 6 ) ~ N ( 6 )  is the homeomorphism D;+' ~ �9 As for 
Dehn twists, So has a canonical extension to S which is also denoted So. 

The spin S o "drags"  the puncture X along the curve 6 as drawn below: 

W B, B B- -~" 

Fig. 4.2 

The isotopy class of D~ or S0 depends only on the class of 6 in HI (S) or 
rt I (S u) X, X), respectively. 

The following elementary fact about twists and spins will be useful later 
in this section. 

Lemma 4.1. [Bi]. I f  f: S ~ S is a homeomorphism, then 

i) So D 0 o f -  1 = By(0) 

ii) fo  S o o f -  1 = Ss(0). 

Namely, conjugates of twists and spins are twists and spins. [] 

In Sect. 2, we constructed a map 

�9 : A ~  T 
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from the attractive basin of oo with the grand orbit of oo removed, onto a 
torus T of modulus 1/2. Recall that we defined the twice punctured torus T 2 
as T minus the points 4 ( + 1 )  and ~b(-1). We also described a dynamically 
defined simple closed curve c~ c T and a complementary curve fl c T which to- 
gether, generate the homology HI (T). 

It is well known [Bi] that the mapping class group of T is the modular 
group PSL(2, 2g), and that the Dehn twists D~ and Da generate a subgroup 
of index 6. 

The map that assigns to any twice punctured torus, the unique torus obtained 
by filling in the punctures defines a map p: M ,  (T 2) ~ M (T). Since the fundamen- 
tal group of a moduli space is a mapping class group, the induced map on 
fundamental groups can be expressed as 

p , :  M C G ,  ( r  2) ~ MCG(T).  

Consider next the once punctured torus T I =  T - Q ( +  1) and choose 4 ( - 1 )  
as basepoint on T ~. Let i: T I ~ M , ( T  z) be the map that assigns to any point 
pe  T 1 the twice punctured torus T ~ -  {p}. This choice is asymmetric; we make 
it because we have chosen to work in the right half b-plane. 

The following lemma is proved in [Bi] : 

Lemma 4.2. i) The sequence of  maps 

T 1 --~ M,  (T 2) • M(T)  

is a fibration whose long exact homotopy sequence yields the short exact sequence: 

1 ,~zl(Tl, q~(_l)) ,, , M C G , ( T  2) o, ,MCG (T)  ,1. 

ii) The map 

i ,:  rq (T ~, 4 (  -- 1)) ~ rq (M,  (T 2 ) ~ M C G ,  (T 2 ) 

is an injection that sends an oriented based loop ~ on T 1 to the spin S~ on T 2. [] 

The fundamental group of the parameter space F~/2 and the mapping class 
group MCG, (R)  satisfy a similar relation. We next find the analog for R of 
the short exact sequence of Lemma 4.2. In Sect. 2, we introduced the fibration 

F1/2 -'~ M,(R)  ~ Rat2 -&D O 

given by r~(Ra,b)= 2. 
We also defined a covering projection 

~:  Rat2 --* M , ( T  2) 

which assigns to R~.b, the twice punctured torus T~b, (the quotient of A*,b 
by the grand orbit equivalence relation). 
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Since the Riemann surface obtained by filling in the punctures on T~b is 
a torus T~ of modulus 2, the map 7 ~ induces the "modulus"  map 

p: D o ~ M(T)  

which sends 2 to the torus T~. Consequently, ~ induces a covering map of 
fibres 

O: F1/2  --* T 1 

and there is commutative diagram of spaces: 

F1/2 i n Rat 2 ~ D O 

T ~ & M , ( T  2) & M(T)  

in which the horizontal sequences are fibrations and the vertical maps are cover- 
ing projections. This implies 

Lemma 4.3. There is a commutative diagram of fundamental groups 

1 , ~zl (F1/2) i. . .  Do , M , ( R )  ' ~1( ) ,1 

1 l o. 
1 , rcl(r  t) , M C G , ( T  2) , MCG(7  / ,1 

in which the horizontal sequences are exact and the vertical arrows are injec- 
tire. [] 

Since F1/2 is contained in Rat2 the implicit choice of basepoint for /Z 1 (Fu2) 
is b=0.  Taking q=o(0) as basepoint on T a and identifying nl(Fl/2) with its 
image in nl (T 1) under o. ,  we obtain 

Corollary 4.4. 7rl (F1/2) is a subgroup of the free group ~1 ( Tl)  �9 [] 

The map v: F I / 2  --~ T 1 was defined abstractly, but it can be understood con- 
cretely in terms of the dynamics of our quadratic polynomial Q and the homeo- 
morphism E: Rc~M_ ~ / ( - A .  We will use this explicit formula in Sect. 5 to 
relate loops in the parameter space F1/2 with loops in the dynamical plane 
of the rational map R. 

In analogy with prior notation, let K* be the region obtained by removing 
from /~, the grand orbits of 0 and the critical value w+ = -  1/8. As above, 
K* projects via the grand orbit equivalence relation onto a once punctured 
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torus T~ of modulus i/2: The puncture corresponds to the grand orbit of w+. 
Let 

~Q: K* --* T~ 

denote the projection. 
The conformal homeomorphism 4o that conjugates R to Q induces a confor- 

mal isomorphism between T a and T~. We treat this isomorphism as an identifica- 
tion and prove: 

Lemma 4.5. The restricted map 

o: F1/2nR--+ T 1 

equals the composite ~Q o E. 

Proof We must show that the following diagram commutes:  

K*- -A  ~ E F1/2c~ R ~ Rat2 

r 1 , M , ( T  z) 

Choose beF1/2c~R and let w=E(b).  As in the proof  of Lemma 3.1, there is 
a conformal isomorphism ~b from a neighborhood of ov in A b to a neighborhood 
of 0 in K that maps v+ to w+ and v_ to w_. Therefore, ~b descends to 
a conformal isomorphism from T~2,b to the twice punctured torus 

[] 

To understand the action of v on FI/2 ~ L, recall that the linear map 

l: Z --'). - -Z  

conjugates R b to R _  b and interchanges + 1 and - 1 .  On the level of Riemann 
surfaces, l descends to a conformal isomorphism between the twice punctured 
tori Tb 2 and T2b which interchanges the marked points. There is an induced 
map  

L:  M , ( T  2) --* M , ( T  2) 

of degree 2 and the quotient of M , ( T  2) by the relation z ~ L ( z )  is M(T2). Each 
fibre of the map p: M , ( T  2) --~ M ( T )  is preserved so there is an induced map 

e: T 1 --, T 1 

obtained by restricting L to the fibre T 1. The map  e is the elliptic involution 
of the torus T 1. An explicit construction of e is given at the end of this section. 

We conclude 

Lemma 4.6. The map v satisfies the functional equation 

v ( - b ) = e o v ( b ) .  []  
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Recall from Sect. 3 the structure on /s given by the generalized figure eight 
curves V,. The region B(Vo) contains the preimage, - 1 / 2 ,  of the fixed point 
of Q. It also contains a sequence of points w,~, m>__ 1, which accumulate on 
- 1 / 2  and satisfy 

Q(w~)=Q=(w+) 
Each B(~.) is mapped onto B(~o) by Q" in a 1:1 manner. It follows that B(7.) 
contains a single element of the set Q-t"+l)(O) and a sequence of points w.,m 
satisfying 

Q"+l(w.,,.)=Q"(w+). 
The union of the cut points w of the y.'s comprise the backward orbit of the 
critical value w + ; they satisfy equations of the form 

Q " ( w ) =  w + 

~ 2(V_)-V+ 

Rt' (V . I .CO 

Fig. 4.3 

Under  the homeomorphism E, R -  M_ has an analogous structure: 

i) Each B(F,) contains a single pole b satisfying 

R~ "§ "(v_)= oo 

and a sequence of b's satisfying the orbit relations 

R~"+l)(v_)=Rm(v+) m>=l 
ii) The cut points b of each F, satisfy an orbit relation of the form 

R~(v_)=v+ 
From the symmetry of the b-plane, it follows that L c~ F1/2 has the same structure 
but the roles of v § and v_ are interchanged. 

We conclude that the b's satisfying orbit relations are isolated points in 
M u O u P  and accumulate on the poles, while the poles accumulate on M. 
Therefore nl (Ft/2) is an infinitely generated free group, which is generated by: 
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i) One (based) loop enclosing each orbit relation. 
ii) One loop enclosing each pole. 

iii) Two loops, one enclosing M+,  one enclosing M_.  

It is certainly possible to choose these loops so that each is contained either 
in the closed left or right half plane. If {7i) is a set of generators for ~1 (R c~ F1/2) 
then {~j, - ? j }  are generators for ~1 (F1/2). Lemma 3.6 implies 

o, [ -  y~] = ~, o o, [~j]. 

We will construct a family of generators in the right half plane of types i)-iii) 
above. We use the maps v,  and i ,  to interpret their action as elements of 
MCG,(T2) .  We thus obtain a presentation for the subgroup MCG, (R)  of 
MCG,(T2) .  

Since the map ~ is an ~ to 1 covering projection, the preimages in F~/2 
of the basepoint q=  v(O)~T ~ form an infinite discrete subset. If ~ is a directed 
path in F~/2 from 0 to x~v- l (q) ,  then v(o~) is a based (but not necessarily 
simple) loop in T 1. The element [o (~ ) ]~x l (T  1) therefore corresponds to the 
homeomorphism 

h,o = i ,  Ev (~0)] 
in M C G ,  (T2). 

Let No c FI/2 be a small deleted neighborhood of an orbit relation b eO c R. 
For  every such b, the image of the restriction of v to N o is a deleted neighborhood 
of the puncture in T 1. 

Let k be a homotopically nontrivial loop in N o parametrized by 0, 0 __< 0 < 2 ~. 
Since v is a covering projection, there is a directed path (~F1/2 connecting 
some element x of v- l (q)  to k(0), so that v(0 is a simple path on T 1. Now 

7 = ( - ~ k (  

is a simple loop based at x which encloses the orbit relation b, and no other 
points in M w 0 w P. 

There are two cases to consider 

i) The point b is a cut point of a F.. 
ii) Otherwise. 

o x 
7" around orbit relation 

case i 

k 
7" around pole 

7" around orbit relation 
case ii 

Fig. 4.4 
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Case ii) is easier since the restriction of o to D O is a homeomorphism, and 
so, taking the circle k smaller if necessary, the restricted map 

v: ~ --, v(~) 

is a homeomorphism as well. The based loop v(y) on T 1 is e-approximated 
by a simple loop 6 for any e, so that Y corresponds to the spin S~ in MCG,(T2) .  

Finally, if we choose a directed path co from 0 to x in F1/2, then the based 
loop 

e)- 17e9 

in F~/2 encloses the orbit relation b, and, by Lemma 4.1, corresponds to the 
spin 

h,~ 1 So ho, 

in M C G .  (r2). 
In case i), the restriction of v to N o is 2:1, so that k projects to a curve 

that winds twice about the puncture in T a, therefore, the projection of the 
loop 

7 = ~ - 1 k ~  

based at x in F~/; is a based loop v(7) on T a that winds twice about the puncture. 
Consequently, there is a simple based loop 6 that winds once around the punc- 
tures such that v(?) is homotopic to 3 2. It follows that the image of Iv(7)] 
in M C G . ( T  z) is the spin-square S~. By Lemma 4.1, the based loop 

co-17~o 

in F1/2 corresponds to the spin-square 

h~, 1 S 2 h,o 
in M C G ,  (TZ). 

Suppose next that b e P c R  is a pole. Then b lies at the "center"  of some 
B(F,) and the restricted map 

t): B(?n) n F l l  2 --* T 1 

is analytically equivalent to the projection 

Pl/2: l~--{0, 2"In ,Z} --* T 1 , 

defined in Sect. 2. 

~n 

e(rn~ 

Fig. 4.5 



The mapping class group of a generic quadratic rational map 363 

Therefore, B(F.)n F1/2 is tiled by a nested sequence of fundamental domains 
for v, each of which is homeomorphic to a punctured annulus. Fix such a 
fundamental domain D, and let x be the unique element of ~-1 (q) in D. Let 
y be a simple loop in D based at x which generates the fundamental group 
of the unpunctured annulus. The image v(y) is a based simple closed curve 
o n  T 1 which corresponds (under i,) to the spin So(~). If 09 is a directed path 
connecting 0 to x in F~/2, then 

og-~yco 

is a based loop in F1/2 that encloses the pole b, and corresponds to the spin 

h~, 1 S~(~) ho, 
in M C G ,  (T2). 

The last part is the easiest. The y axis and the primary loop of F o in R 
bound an annulus A which is a fundamental domain for v. Let T c A  c R be 
a simple closed curve based at 0 generating ux(A). The curve 7 separates M_ 
(and all the poles and orbit relations in R) from M +. As above, 7 corresponds 
to the spin S~(~)in M C G , ( T : ) .  

The relation ~, [ -  7~] = e,  o v, IT j] is used to interpret the action of the genera- 
tors {-7i}  as elements of MCG,(T2) .  If S~j is the spin corresponding to Tj 
then S,(~j) is the spin corresponding -y~. 

To complete the analysis of MCG,(R) ,  recall the commutative diagram in 
Lemma 4.3. We can choose a fundamental domain for the projection 4 o which 
is an annulus A containing a lift ~ of the curve a on T. The disk Do is the 
moduli space of A; and the group u~ (Do)--MCG(A) is an infinite cyclic group 
generated by the Dehn twist Da. Therefore the group MCG(A) injects into 
the subgroup of MCG(T)  generated by D,. 

We summarize this analysis in 

Theorem 4.7. The pure mapping class group MCG, (R)  is an infinitely generated 
subgroup of M C G ,  (T 2) which can be expressed as a twisted product 

Z* n 1 (F1/2). 

The factor Z = n 1 (Do) is generated by a Dehn twist about a dynamically defined 
simple closed curve ~ in T 2. The factor zcl(Fx/2) is an infinitely generated sub- 
group of rc I (T 1) _ M C G ,  (T 2) with three types of generators: 

ia) Loops about orbit relations of the type R " ( _ v ) =  +v  in F~/2 which 
are spin squares about simple closed curves in T 2. These curves satisfy i(a, 6) 
=i(fl, 6)=0.  

ib) Loops about orbit relations in F1/2 of the type R " ( + v ) = R " ( + v )  for 
m >  1 which are spins about simple closed curves in T 2. These curves satisfy 
i(ot, 6)=i(fl, 6)=0.  

ii) Loops about  poles which are spins about simple closed curves 6 in T z. 
These curves satisfy i(~, 6)=0,  i(fl, 6)= 1. 
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iii) One loop about each Mandelbr6t set M + and M _ ,  these are spins about 
simple closed curves 6 in T 2 that satisfy i(a, 6)=0,  i(fl, 6)= i. 

Moreover we conclude 

Theorem 4.8. The mapping class group MCG(R) is a degree 2 extension of 
MCG,(R) .  It is generated by MCG,(R)  together with the unique involution of 
T z that interchanges the punctures and induces the identity on H,(T).  [] 

Remark. As b varies in F1/2, the quotient % ( +  1)/%(--1) takes on all complex 
values except 0 and the integral powers of 2. Therefore the map 

b ~ % ( +  1 ) / % ( -  1) mod 2" 

projects F~/2 onto a once punctured torus, and it is not  difficult to show that 
this map is just o. The projection 

Pl/2: I~- -  {0, 2"[n~7Z} ~ T 1 

commutes with the map g: z ~  l/z on I12-{0, 2"lneZ}. Therefore ~" descends 
to a degree two map 

e: T 1 ~ T a 

which is once again, the elliptic involution. 

Section 5 

One of the original motivations for this article was to study the relationship 
between the dynamics of shift-like rational maps and automorphisms of the 
shift. We review the basic definitions [D]:  

Let Z 2 be the space of semi-infinite sequences whose entries are the integers 
0 or 1. A neighborhood basis for a topology on Z 2 is defined at the point 
S =(S0, S1, $2, . . .)  by 

Uj= {t=(to,  t , ,  t2 . . . .  ) l t i=si ,  O<i<j}. 

In this topology Z 2 is a Cantor  set. 
The one-sided shift map a: 2;2 --' 2;2 defined by 

~ ( S o , S ~ , S 2 , . . . ) = ( s ~ ,  s2 , s3  . . . .  ) 

is a continuous, 2:1 endomorphism. 
The automorphism group Aut2 is the group of self-homeomorphisms of 

2; 2 that commute with the shift. 
A well-known result of Hedlund is: 

Theorem 5.1. [H]  Aut2 is generated by the homeomorphism that interchanges 
the symbols 0 and 1; in particular, Aut2 ~ Z , .  [ ]  

The relationship with the rational maps we have been studying is given 
by: 

Proposition 5.2. I f  R~Rat2 there is a homeomorphism from the Julia set of R, 
JR to Z, 2 which conjugates R[J R to a. 
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Sketch of Proof For convenience, suppose that R has + 1 as its preferred critical 
point. Define the curve 6 o n  T 2 =  ~ ( A o )  by 

,~ = ~ ( { z  t r ~o (z)r = I ~o(v_)l}) .  

Since i(~, 6 )=0  and i(fl, 6)= 1, Lemma 2.5 implies that there is a sequence of 
lifts {$,[n > 0} and nested disks {z](3",)} which contain ~ .  

6 
Fig. 5.1 

The disk z] o contains both critical values so that its preimage V=R-~(Ao) 
is doubly connected. The complement of V consists of two disjoint topological 
disks which we label I o and 11 . 

The disks I o and 11 generate a Markov partition for the Julia set: a map 
from JR to X 2 is obtained by labelling points of JR using their itineraries relative 
to this partition. That is, set 

p (z )=0  if RJ(z)elo 
= 1 if RJ(z)eI1. 

By definition aop=poR. The proof that p is a homeomorphism is standard 
and can be found, for example in [D]. []  

Remarks. i) Hedlund's theorem implies that p is unique up to postcomposition 
by the homeomorphism that interchanges the symbols 0 and 1. 

ii) A proof virtually identical to the proof of 5.2 shows that if R is a shift-like 
rational map of degree d, there is a homeomorphism from the Julia set of R 
to Z n which conjugates RIJ  R to a. 

The map p induces a representation 

p , :  MCG,(R)  ~ Aut2 

in the obvious way: an element f of MCG, (R)  restricted to JR~Z2 induces 
an element p ,  f of Z2. 

In Sect. 3 we defined a set of generators for MCG,(R)  which fall into four 
categories: 
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Generators for ~1 (F1/2) 

i) Spins generated by loops about orbit relations. 

ii) Spins generated by loops about poles. 

iii) Spins generated by a loop about a Mandelbr6t set. 

Generator for 7[ 1 (Do) 

iv) A Dehn twist of the annulus. 

The remainder of this section contains a proof of: 

Theorem 5.3. Under the map p , :  M C G , ( R ) ~ A u t z ,  the generators of type iii) 
map to the generator of Aut2, all others map to the identity. 

Outline of Proof i) Lemmas 2.4 and 2.5 are used to describe lifts of curves 
on T 2 to the dynamical plane of R. 

ii) The Julia set is located relative to these lifts (as in the proof  of Proposi- 
tion 5.2). 

iii) Lemmas 5.4, 5.5, and 5.6 (below) are used to describe how the spins 
and twists lift to the stable set of R. 

iv) Lemma 5.7 (below) is used to extend this action to the Julia set of R. 

We first review how a Dehn twist on a Riemann surface S lifts locally to 
a branched covering S'. 

Recall notation from Sect. 4; suppose 6 is an oriented simple closed curve 
on a Riemann surface, and N(6) is a cylindrical neighborhood with coordinates 
(t, 0), - 1 _< t _< 1, 0 < 0 < 2 n. Suppose 

H:S' ~ S  

is a map of Riemann surfaces, $ a component  of H -  x (b), and N($) the component 
of II-I(N(~)) containing 6. If the restricted map 

H: N(~) ~ N(6) 

is a degree q unbranched covering, then ~ is a simple closed curve. Moreover, 
there are q different ways to give N(3) "H-preferred coordinates" (t, 0), 
- l_<t_< 1, 0 < 0 < 2 n ,  so that 

H (t, O)--(t, qO mod 2 n). 

Lemma 5.4. There are precisely q lifts of the pth power Dehn twist 

D$ : N (,~) -~ N O )  
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to N (3), each of which can be expressed in any H-preferred coordinate system 
for N(3) as a p/q-Dehn twist followed by a rotation by 2ten~q, l < n < q .  That 
is, 

Rot2~n/q~ [] 

Recall that a spin $6 about a curve 6 through a puncture is a composition 
of Dehn twists. If 

H: U(3) ~ N(6) 

is a degree q regular covering. Then 3 is a simple closed curve with q punctures. 
These facts, together with Lemma 5.4, immediately imply the following lemma. 

Lemma 5.5. There are q distinct lifts f of  the pth power spin to N(3). Among 
these is a distinghuished lift which restricts to the identity on both components 
of ON(3). All the other lifts restrict to nontrivial rotations on both components 
of aU(3). [] 

If the map 
H: N(~--* N(6) 

is a degree 2 cover branched over the puncture in 6, the curve 3 is a figure 
eight curve and 0N(3) has three components labelled so that, 3_ double covers 
6_ and 3+ o and 3+ 1 each single cover 6 +. 

Fig. 5.2 

In this case, Lemma 5.4 implies: 

Lemma 5.6. There are two possible lifts of Sn to N(3): the first is a rotation 
of 7t radians about 3_ and extends to the identity on 3+o and 3+ 1, the second 
is the identity on 3_ and interchanges 3+ o and 3+ 1. [] 

For  the last technical lemma, define W =  A -  ~ -  1 (N(6)), where A is the stable 
region of R. In analogy with notation of Sect. 2, set W*= ~-1  (T  2_N(6)) .  The 
set W -  W* consists of the grand orbits of the critical points and 0o. 

Let U be a component of W. 

Lemma 5.7. I f  f f ixes some point in U, then f[  U is the identity. 

Proof If U contains one point, there is nothing to show. Each component 
of W which is not a point is the closure in W of a component U* of W*. 
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The restricted map 
�9 : U* --* T 2 - N ( 6 )  

is a covering projection of its image (which may not be all of T 2 -  N(6)). Since 
N(6) contains the support o f f ,  the restriction o f f  l U* is a covering translation. 

If z~ U and f ( z ) =z ,  either zEU or zEdU, and in either case, f maps a 
deleted neighborhood V* of z in U* to a deleted neighborhood of z. Since 
any covering translation that fixes a point is the identity, the restriction of 
f to V* is the identity. Since f is analytic, f is the identity on all of U*, and 
its closure U. [] 

Proof of Theorem 5.3 

The spin generator cases. Let ? be a generator of/l:l(F1/2) of type i)-iii) which 
we assume, without loss of generality, is contained in the closed right half plane. 
From Theorem 4.7, we know that the corresponding generator 
i, v , ( ? ) e M C G , ( T  2) is either a spin or spin square about an oriented simple 
closed curve 6 on T z which passes through the puncture corresponding to 
~ ( - i ) .  

Case i) The loop ? encloses an orbit relation b such that 

R~,(v_)=R'~(v+) 

where n >0,  m > 1 are the smallest integers for which the relation holds. Theo- 
rem 4.7 implies 

i ,  u, [7] = Sa m > 1 

= S  2 m=  1. 

Since i(~, 6)=i(/3, 6)=0,  the curve 6 divides T z into two parts, one of which 
is topologically a punctured disk A. We claim that the region ~ - ~ - 1  (Z~) is 
connected. 

To see this, slightly enlarge A to a disk A' which contains both punctures. 
The grand orbits of both critical points are contained in ~-lifts of A', but no 
single component of ~-~(A') contains both v+ and v_ since there is no orbit 
relation v + = v_. Then Lemma 2.4 implies that ~ -  ~ -  1 (A') is connected. 

Shrinking A back to its original size, we conclude that ~ - q J - l ( A )  is con- 
nected as well. Therefore, 

U =  A - c I ) -  I (A) 

= ~ -  {4~- 1 (A) • Julia set} 

is also connected. The region U contains ~ and f ( ~ ) =  ~ ,  so by Lemma 5.7 
f l U  is the identity. Since the Julia set of R is part of 0U, it follows that f 
is the identity on the Julia set. 

If 7 is a generator of type ii) or iii), the curve 6 on T 2 for which i,  v , (?)=Sa 
satisfies i(~, 6 )=0  and i(fl, 6)= 1. 
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The analysis of cases ii) and iii) begins as in the proof of Proposition 5.2. 
From Lemma 2.5, there is a distinguished set of lifts {~,}, n > 0  and nested 
disks {3,} containing oo. 

The disk zt o contains both critical values so its preimage V = R - a ( 3 o )  is 
doubly connected. The complement of V in I~ is a pair of disks I o and I~ 
which generate a Markov partition for the Julia set. 

There is a distinguished lift ~eA(6 )  that contains the critcal value v_. The 
curve ~ is contained in 3 o and its preimage 

~" =R-~(~ ' )  

is a figure eight curve contained in V. 
In case ii), 3"~ bounds a disk containing a single pole, while in case iii), the 

curve 30 = 3"~ so the disk bounded by 3"~ contains oo. Figure 5.3 illustrates the 
different locations of 3"~ in cases ii) and iii). 

d. set case ii 

Fig. 5.3 

,,U ) , \  
II[ ,o.+ / / ' ! k ~  1,,';~, 

case iii d. sat 

Case ii) the loop ? encloses a pole of the form R"(v_) = oo. 

We will show that in this case, the lift f of So to the dynamical plane of 
R restricts to the identity map on c3 V= 0 Io u 811 . 

The map f fixes each forward iterate of - 1 ,  and therefore maps each N(3",) 
homeomorphically to itself. Let K = K ( 6 )  be the integer from Lemma 2.5. For  
n > K, the restricted map 

~: N (~.) ~ N (~) 

is a homeomorphism so that f ]N(~ . )  is the spin S~. for n => K. 
If 0 _-< n < K, the map 

,~: N(~.) -* N 0 )  

is a 2" to 1 covering. Lemma 5.5 and induction imply the restricted map f l N ( J . )  
is the unique ~-lift of the spin So that restricts to the identity on N(~.). We 
conclude that 

f lON(3o)= f l ~ 3 o  

= identity. (1) 
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Refer to Fig. 5.3; there is a component U of ~ - - ~ - 1 ( N ( 6 ) )  whose boundary 
consists of 63z~ o ~ ~Io u 6311 u $ c .  From (1) and Lemma 5.7, the restricted map 

f1{63Io u 6311} = identity 

so that f does not interchange the generators of the Markov partition for JR" 
Consequently, Hedlund's theorem implies that S,  f = identity. 

Case iii) the loop 7 encloses the Mandelbr6t set and all poles and orbit relations. 

Let U be the component of ~ -  ~ -  1(N(6)) containing + 1. The map f fixes 
+ 1, hence Lemma 2.7 implies that f l U = identity. Since 63 U contains ~c_, the 
restriction of f to 3"c_ is the identity as well. Lemma 5.6 implies that f inter- 
changes the simple boundary curves ~'~+o and ~c+, and thus interchanges Io 
and I1 as well. It follows from Theorem 5.1 that S,  f generates Aut2-~Z2. 

Case iv) The Dehn twist about the curve e on T 2 is the easiest to analyze. 
Recall from Sect. 2 that we defined the curve e on the torus T as the image 
under 4:  A~ T of a level curve of the form 

ao = {zll ~0 (z)I =constant} .  

By choosing the constant appropriately, we can assume a does not pass through 
the branch values 4 ( +  1) or 4 ( - 1 ) .  

Lemma 2.3 implies that each ~eA (~) is compact so the restriction 

4:  ~--*~ 

is a finite to one covering. We claim that q~ is 1:1 for every ~. To verify this, 
we refer to the diagram below. 

/ l ~ r  , ~ ~ \ 

I i / ~ _ _ _ - - . 4 - - - - - - - - . .  ~ ~',, \ 
I /  / I  ~ - -  . -"~, \ \. l 

.,'!,(t C . ; 7., 
t " > . - - . , . - . ,  . . . . . .  . " . . "  

Fig. 5.4 
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The curve ~ satisfies the hypotheses of Lemma 2.5, so there is a family of 
distinguished lifts {~, I n > 0}. Since our basepoint map R is symmetric, the disk 
A (C7o) contains both critical values, the disks A (~,) contain neither critical value 
if n>0 .  

Every curve in A(~) is mapped onto some ~, by an iterate of R. Suppose 
that R j maps ~ onto ~,; then either 

i) n > 0 :  The region R-J(A,) consists of 2 ~ topological disks, each of which 
is mapped homeomorphically onto zt, under R j. One such component is bounded 
by ~, therefore RJl ~ is a homeomorphism. 

ii) n=0 :  The region U=R-J(Ao) is connected and the restricted map 

RJ: U ~ z ]  o 

is a degree 2 j covering branched over v+ and v_. The Riemann Hurwitz formula 
implies that U has 2 j boundary components, each mapped homeomorphically 
onto 0z] o = ~o by RL Since ~ c ~ U, RJl ~ is a homeomorphism. 

In either case, ~ l~  is a homeomorphism. We conclude that the lift f of 
the Dehn twist D, to the dynamical plane of R is given by 

f(z)=D~(z) zeN(~), ~ A ( a )  

= identity otherwise. 

Therefore, f restricts to the identity on the Julia set as claimed. 
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