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I n t r o d u c t i o n  

In [ J 1 ] Jones introduced the notion of index of a subfactor of a type I I 1 factor. This 
concept, as well as the results in [ J l], proved to be very deep and enlightening for 
numerous aspects of the theory of type II1 factors. One of the surprising results in 
[ J 1] is the characterization of the possible values of indices of subfactors (less than 
4) as being the same as the set of square norms of matrices with nonnegative integer 

entries (up to 4), that is 4 cos z n ,  n > 3. 
n 

Among the operator algebraic problems arising from Jones' work the most 
important are the characterization of all real values > 4 that may occur as indices 
of subfactors N c M with trivial relative commutant  N '  c~ M = C and the classifi- 
cation of subfactors having the same index when the ambient factor M is the 
hyperfinite II 1 factor. One way to approach these problems is by finite dimensional 
approximation. This means to construct finite dimensional subalgebras B, c M so 
that B, T M, A, = B, c~ N T N. In addition the algebras A, ~ B. should satisfy the 
so-called commuting square condition ( �9 ) E~,, EA. +, = Ea, ,  En denoting the trace 
preserving conditional expectation onto B. The subfactors in [J1]  do have this 
approximation property and in fact the corresponding sequences A, c B, are 
uniquely determined by an initial commuting square 

B o c B 1 

k.) k..) 

A o ~ A 1 , 

the rest of the sequence being obtained by an iterative construction. 
We prove in this paper a generating result for pairs of hyperfinite factors 

N c M which will show in particular that all subfactors of index [ M : N ]  less than 
4 arise in this way, from an initial commuting square of finite dimensional algebras, 
with inclusion matrices of norm [ M : N ]  L/2 and having dimensions and traces 
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determined by these matrices. This result reduces the classification of such sub- 
factors to the classification of some finite dimensional commuting squares and this 
in turn is a purely combinatorial problem. To describe in greater detail our results 
we'll recall some of the necessary background. 

It has been noted by various people (Pimsner-Popa, Jones in 1983, Ocneanu 
1984) that there are some (almost) canonical finite dimensional subalgebras 
B, c M, associated to N c M, that satisfy ( * ): these are the relative commutants  in 
M of the algebras in the Jones' tunnel of subfactors M ~ N ~ N 1 ~ N z ~ . . . .  i.e. 
B; = N'~ n M. At each step i, N~ (and thus Bi) are unique only up to unitary 
conjugacy by elements from the previous step N i_ 1 (cf. [PiPol]) .  And the problem 
was posed on whether one can choose the tunnel N~ such that N'i n M generate M 
and N'~ n N generate N, a result that would reduce the study of N c M to a study 
of finite dimensional commuting squares. 

Ocneanu was the first to realize that this generating problem may have a 
positive solution if N ' ~ M  = C and sup dim ~(N'~ n M) < o% a condition he 
called finite depth (in fact an equivalent form of it). Since if 
N ~ M c M1 c M 2 c . . .  is the Jones' canonical tower of factors associated to 
N c M then the finite dimensional algebra N'~ n M is antiisomorphic (and thus 
isomorphic) to M'  n M~+ 1, the condition sup dim ~(N'~ n M) < oo is the same as 
supdim.~e(M'c~ M~) < ~ .  

We prove in this paper the following generating result, without N '  n M = C 
being assumed. 

Theorem. Let  N c M be a pair o f  hyperfinite II1 factors  with f inite index. Assume 
the Jones" tower o f  factors  N c M c M1 c M2 ~ . . . satisfies 
s u p d i m Z ( M ' ~ M i ) <  co. Then there is a choice o f  the tunnel o f  subfactors 
M D N ~ N  I ~ N  2 . . .  such that N ' i c ~ M T M ,  N ' I n N T N .  Moreover  i f  

= U i M i  then the pairs N c M and M'I c~ M c M '  n ~I  are antiisomorphic. 

The case N '  n M = C of this result has been announced at various conferences 
during 1987-1988 by Ocneanu ([Oc]),  however without presenting a proof since 
then. 

The above theorem reduces the classification of subfactors with the property 
sup dim ~ ( M '  n M i) < oo to the classification of sequences { N'i n N c N ' i (h M } ~. 
But these sequences are uniquely determined by an initial commuting square 

N'io n M c N'io+l n M ,  
u u 

N'io n N c N'io+ l ~ N ,  

for some i o large enough, with io, the inclusions, the dimensions and the traces 
determined by some integral matrices of norm [ M : N ]  1/2. Moreover, since 
[ M : N ]  < 4 implies the finite depth condition, we get a complete classification of 
subfactors of small index in terms of commuting squares: 

Theorem. The conjuyacy class o f  a subfactor N c M with f inite depth o f  the 
hyperfinite II 1 fac tor  M is uniquely determined by the isomorphism class o f  a 
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commutin9 square of  finite dimensional algebras canonically associated to the inclu- 
sion N c M. Moreover, the subfactors of  index < 4 automatically satisfy the finite 
depth condition, so they are all classified by their correspondin9 commutin9 squares. 

So the problem remains to classify the corresponding commuting squares. In 

case the number is small (for instance < 2 + ,,/5) their number can actually be 
estimated. Moreover, in the case [ M : N ]  < 4 the analysis of the commuting 
squares has to do only with the simple matrices corresponding to the Dynkin 
diagrams A,, D,, E6, E7, E8, (these are all possible matrices of norm < 2). One can 
actually obtain: 

Corollary. For each n > 3, there are only finitely many subfactors (up to conjugacy) 

of  the hyperfinite II 1 factor, with index 4 cos z ~ 
n 

In [Oc], Ocneanu gave an intrinsic characterization of the sequences 
{N'i c~ N c N '  i c5 M}i in case N '  c~ M = C, describing them as group-like objects 
and announced a full list of such objects for [M:  N]  < 4. Thus a complete list of the 
subfactors of index < 4 of the hyperfinite II~ factor can actually be given. 

An important application of the case N ' n  M 4: C of the theorem is the 
classification up to outer conjugacy of (not necessarily outer) actions of finite 
groups G on the hyperfinite II 1 factor R and more generally of the classification up 
to conjugacy of the subgroups isomorphic to G in Aut R/int R (i.e. Jones' theorem 
in [J3]): this follows by taking a partition of the unity with [G] projections Po of 
equal trace in M, R = peMpe and by taking N = {Gg~Gg(x)lx ~ R = peMpe}, where 
9 e Aut R is a lifting of G c Aut R/Int R. This application will be discussed in a 
more general setting in a sequel to this paper. 

The proof of the theorem is based on the key observation that if 
s u p d i m  ,,~e (N' i ~ M) < Go then the algebras B = N i V (N' i ~ M) satisfy EB(X ) > cx, 
x e M + ,  with a constant c > 0 independent on i (see 3.8, 4.3). Since N i are all 
hyperfinite (cf. [C]), N~ v (N'i ~ M) can be approximated by relative commutants 
N k c~ M, k > i (see 4.4). Thus, by using the inequality one can choose recursively the 

tunnel N i such that R = U i( N 'i ~ M) satisfies ER ( X ) > c x, x e M + . By [P iPo l ]  this 
means R has finite index in M, [M: R] < c -  1. The inequality also shows that given 
x s M + and a choice of N~ up to j, there is a choice of N~, j < i < k, so that N~, c~ M 
contains a certain "percentage" of x. If this would be true for arbitrary x then the 
resulting R would equal M. If not, there would be x e M  a n d j  so that x l u R u *  for 
all unitary elements u in Nj (4.6). But by the Rohlin type lemma in [Po4], used here 
in a form we call the linearization principle (5.1), one has span uRu* = span N j R N j  
= M. Thus x = 0 and the theorem is proved (4.9). Then Section 6 contains 

applications of the main theorem to the classification of subfactors. 
The uniform bound from below EN, v(M, ~M)(X) > CX, x ~ M + ,  i > O, can be 

deduced from [Po3]. We included a complete and different proof here for the 
reader's convenience. The proof is a consequence of the uniform bound for local 
indices obtained in Section 3, which in turn follows by the general results on 
sequences of commuting squares in Section 2. Part of the algebraic considerations 
in Section 3 are of a similar type to some work in I-W], [GHJ] .  
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The proof  of the main theorem in this paper  was presented at the Annapol is  
Conference on "Knots  and Opera to r  Algebras" May  1988 and at the A.M.S. 
Summer  Institute on "Opera to r  Theory  and Ope ra to r  Algebras" August 1988. 

1. Preliminaries 

1.1. Jones' basic construction and the tower of factors. Let M be a finite von 
N e u m a n n  algebra with a normal  finite faithful trace ~, r ( 1 ) =  1. Denote  IIx[Iz 
= r(x*x) 1/2, for x e M ,  and LZ(M, r) the complet ion of M in the norm II lie. 

If B ~ M is a yon N e u m a n n  subalgebra  of M then we denote by EB the unique 
r-preserving condit ional  expectat ion of M onto  B. Also, we denote by e B the 
or thogonal  projection of L2(M, ~) onto LZ(B, r) ~ LZ(M, ~). EB, the project ion e B 
and the canonical  conjugat ion J on L2(M, ~), defined by Jx = x*, are related by the 
properties: 

1.1.1 (i) If  x e M then x ~ B iff [x, eB] = 0. 
(ii) eBxeB = EB(x)eB, X ~ M. 
(iii) [ J, eB] = 0. 

If M is a type 111 factor and N = B c M is a subfactor  then the Jones '  index of 
N in M, [ M :  N],  is the Mur ray  and von N e u m a n n  coupling constant  of N in its 
representat ion by left multiplication on LZ(M, ~). Thus, the finiteness of  [ M : N ]  
means that  N '  (or equivalently JN'J)  is finite, and its value can then be recuperated 
as r(eN)- a, r being the (unique) normal ized trace on JN'J. The construct ion of the 
finite factor JN'J  is in fact a major  tool in studying subfactors: it is called the Jones '  
basic construction. We list now some of its properties: 

1.1.2. Assume [ M : N ]  < ~ .  Define M 1 = JN'J. Then M I  is a type I I  1 factor and 
we have: 

(i) M 1 = (M w {eN})" = span{xeNy, x, y ~ M } .  
(ii) [ M I : M  ] = [ M : N ] .  
(iii) z(eNx ) = [ M : N ] - l r ( x ) ,  x ~ M ,  r being the unique trace on M 1 with 

T(1) = 1. 

Thus, start ing from the initial inclusion N c M, the basic construct ion builds a 
new inclusion M c M1, with the same index, with a projection e 1 = e N of trace 
[ M : N ] -  a implement ing the condit ional  expectat ion (like in 1.1.1). We call el the 
Jones '  projection corresponding to N c M and write the basic construct ion 
M ~ e l M  1 . 

We ment ion that  in fact M1 can be described abstractly: it is the unique 111 
factor that  contains M and a project ion el so that  M and e 1 generate M1 and so 
that  elxe 1 = EN(x)el, x E M  (cf. [P iPo2] ) .  

By iterating this construct ion we get a whole tower of factors 
N c M c M 1 c M 2 ~ , . . .  , with projections e l , e  2 . . . . .  so that  Mi ~ . . . .  M i + l  

is the basic construct ion for M~_ 1 ~ M~. They satisfy: 
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1.1.3. (i) e i + x x e i + l = E M ,  , (x)e i+l ,  in par t icu lar  e i + l e i e i + ~ = [ M : N ] - l e ~ + l .  

Also, eie i + 1el = [ M :  N]  - 1 ei" 
(ii) el+ x ~ M'i-  1 c~ Mi+ 1. In par t icu la r  eiej = ejei, for l i - Jl > 2. 
(iii) T( e i+ 1 x) = [ M : N ]  - 1 v(x), x ~ M i. In par t i cu la r  z( e i + 1 w) = [ M : N ]  - 1 z(w), 

for w~Alg{1,  e l ,  e2 . . . . .  ei}. 

1.2. The f i n i t e  dimensional case. If N = M are finite d imens iona l  then we can still 
define M~ = J N ' J ,  which will be finite d imensional  as well and  will satisfy proper-  
ties s imilar  to 1.1: 

1.2.1. M~ = (M w {e,})" = s p a n { x e N y l x ,  y ~ M } .  

Moreove r  if M is any a lgebra  conta in ing a copy of M and a nonzero  projec t ion  
e satisfying: 

(a) I-N, e] 
(b) x ~ N ,  
(c) exe  = 

= 0; 
xe  = 0 implies x = 0; 
EN(X)e 

then ZxeNy~- -~Sxey  defines an i somorph ism of M 1 onto  the a lgebra  
s p a n { x e y l x ,  y ~  M c .M}. This observa t ion  gives an abs t rac t  charac ter iza t ion  of 
M 1 (see. e.g. I-W]). We call M ~ M 1 with the pro jec t ion  e 1 the algebraic basic 
construct ion for N c M and EN. 

By the definit ion of M 1 there is a na tura l  i somorph ism zw-~JzJ  between the 
centers of  N and  M 1. It can be al ternat ively descr ibed by: " J z J  is the unique 
element  z ~ e ~ ( M x )  satisfying z~eu = zeN". This gives a na tura l  identif icat ion 
between the sets of simple summands  of N and M 1 . If  we denote  by K this c o m m o n  
set and by A = (akt)~ the inclusion matr ix  of N c M then the inclusion matr ix  of 
M ~ M 1 is A t. 

The case when M~ has a trace which extends the trace of M and satisfies a 
p roper ty  similar to 1.1. was clarified in [-Jl]:  

1.2.2. Let  (Sk)k~r be the traces of the minimal  project ions  of N and (t~)t~L those of M. 
Then the following condi t ions  are equivalent.  

1 ~ There is a trace Za on M~ such that  vi l la  = z and ZI(XeN) = Zl(X)Zl(eN), 
x ~ M .  

2 ~ AAt(sk)  = 2-1(s~) for some 2 > 0. 
3 ~ A'A( f i )  = 2-1(f i )  for some 2 > 0. 

Moreove r  if the condi t ions  hold true then the scalars 2 of 2 ~ and 3 ~ satisfy 
2 = r~(eN) = [I A ][-2, all i rreducible components  Ao of A satisfy II Ao I[ = I[ AI[ and 
(Sk) (resp. (fi)) is a Pe r ron -F roben ius  eigenvector for A A  t (resp. AtA).  

Prope r ty  1 ~ for the trace on Mx is called the 2( = zl(eN)) M a r k o v  proper ty .  If 
the above  condi t ions  are satisfied then one can i terate the basic const ruct ion  
gett ing at  each step the app rop r i a t e  extension of  traces satisfying the M a r k o v  
proper ty .  

If  M c M1 satisfies 1.2.2 we s imply call it the basic construct ion and write 
M ceNM1.  
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1.3. The tunnel ofsubfactors. Jones also showed that given an inclusion of factors 
with finite index N c M, there is a subfactor N 1 c N and a projection e o e M so 
that N c e~ is the basic construction for N~ ~ N. This fact is made more precise 
by the results in [PiPol] .  There is a unique (up to conjugacy by unitary elements 
u e N )  projection e o e M  such that EN(eo) = [ M : N ] - l l .  And if N1 = { e o } ' ~ N  
then N 1 is a subfactor in N with the property that N ~ ~~ is the basic construction 
for N 1 ~ N (i.e. with e 0 satisfying eoxe o = ENl(x)eo, x e N ) .  In particular N 1 is 
unique up to conjugacy by unitary elements in N. 

As before, we may iterate this construction k times and get a tunnel ofsubfactors 
up to k, M ~ e ~  ~ e  ~Na ~ e - 2 N 2  ~ e - 3  . . .  ~ e - k + , N k _ l  ~ N k  ' with [ N i : N i + l ]  

= [ M : N ] ,  e - l x e - i  = EN,+,(x)e-i, x e N i ,  and z(e_i) = [ M : N ]  -1, 0 < i < k -  1. 
Note however that while the tower N ~ M ~ e~ M 1 ~ ~ M  2 ~ (with the corres- 

ponding projections) is canonical and unique, the tunnel of subfactors 

M ~ e ~  ~ e - l N  1 ~ e - 2 N  2 ~ . . . 

is unique only up to conjugacy by unitary elements, i.e. if N1, N2 . . . . .  N k and e o, 
e - l ,  . . . ,  e-k+1 are chosen then e _ k e N k _  1 and Nk+ a ~ N k are unique up to 
conjugacy by a unitary element in N k. 

1.4. Other characterizations o f  [M:N] .  There are two alternative descriptions of 
[ M : N ]  that have been given in [PiPol] :  [ M : N ] -  1 is the best constant 2 for which 
the basic inequality, EN(x ) > 2x, holds true for all x e M + .  More precisely, if 

2(M, N) = max{2 > 01EN(x) > 2x, x e M + }  

then 2(M, N) = [M: N ] -  1. In addition, we saw in 1.3 that there is a projection e 
(unique up to unitary conjugacy by elements in N) such that EN(e ) = 2(M, N). The 
basic inequality then shows that 2(M, N) is the minimal scalar that can be the 
expected value on N of a nonzero projection in M (see more on this in [Po3]). 

Moreover, the module dimension definition of [ M : N ]  can be made more 
precise: it was shown in [P iPo l ]  that there exists {mi} i c M, a finite set, such that 
EN(m*mi) = 6ijfj, with f j ~ ( N ) ,  M = ~im~N.  A set {mi} i like this is called an 
orthonormal basis of M over N. Any such set satisfies ~,m~m* = [ M : N ] -  1. The 
projections fj  can be chosen to be all but possibly one equal to the identity. 

Such an orthonormal basis obviously exists for finite dimensional pairs N c M 
(and EN) as well. It can be used to prove the abstract characterization of the basic 
construction in 1.2. Moreover if the conditions in 1.2.2 are satisfied then Zmirn* 
= 2-~ (2 as in 1.2.2). 

2. Sequences of commuting squares 

If M is isomorphic to the hyperfinite II 1 factor then a natural way to approach 
index problems for subfactors N c M is by approximating the pair N c M with 
pairs of finite dimensional algebras B, c M such that B, 1' M, B, c~ N T N (see 
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[P iPo l ,  3]). The natural condit ion to be imposed on the algebras B, is then: 

EB E N = EB,~N (*) 

This is called the commuting square condition ( [ P o l ] ,  [ P i P o l ] ,  [Po2]) .  Note  
that if B c M satisfies (*) then max {2 > 0[ EB~N(x ) > 2x, x ~ B + ) > [ M : N ] -  1 (cf. 
[Po23). 

We will prove in this section some general properties for sequences of  finite 
dimensional subalgebras satisfying the commuting square conditions with the 
Jones tower (or tunnel) of factors. We first consider two consecutive commut ing  
squares. 

2.1 Proposition. Let  N c M c e ' M x  c e z M  2 be two steps o f  the tower. Le t  B o c M,  

B 1 ~ M 1, B 2 ~ M 2 be f in i te  dimensional subalgebras satisfying E~EM,_ 1 = E~ . . . .  
i = 1, 2. Suppose e 2 ~ B 2 and denote by P2 the central support o f  e 2 in B 2. Then we 
have: 

1~ BI ~x~-~ xpE6B1 P2 is an isomorphism; 

2 ~ eaBze2 = Boe2 and Bzp 2 = Alg(Bxp z w {ez} ) = span BaeaBx; 
3 ~ B a -~ Blp  z ce2Bzp2 is the algebraic basic construction corresponding to 

B o ~ B1, 

4 ~ I f  we identify the sets o f  simple summands o f  Bo and B2p z via the equality 
Boe z = e2BEe2 (see 1.2.1) then the inclusion matrix for  B~ ~ B2p z is the transpose o f  
the inclusion matrix for  B o ~ B~; 

5 ~ If(Sk)k is the vector giving the traces o f  the minimal projections o f B  o then the 
traces o f  the minimal projections o f  Bzp2 are given by (2Sk)k. 

Proof. Let qo = v {ue2u*lu6Cll(B1)}. Note  that e 2 <= qo < P2, qoeB'l  t"~B2 and 
that B 1 ~x~--~ x q o E B l q  o in an isomorphism. Thus, since e2xe2 = Eno(X)e2, x E B 1 ,  
it follows that if we denote B 2 = span B I e z B  1 then the inclusion 
B~q o c e2B~( = B~ qo) is the algebraic basic construction for B o c B1 (cf. 1.2). In 
particular the inclusion matrix for B~q o ~ B 2 is the transpose of the inclusion 
matrix for Bo ~ Bt. 

We now show that q0 = P2 and that B2 = B2p2 and this will end the proof. 
To do this we first show that P2 = qo. We have qo = P v { l ( xe2 ) l x~B~}  and 

P2 = v { l (ye2)lyeB2},  where l(z) denotes the left support  of an element z. But by 
[ P i P o l ]  and by the commut ing  square condition, if x = 2-~En, (ye2)  for some 
y E B z then x = 2-1EM~ (ye2) and xe  2 = ye 2. Thus l(xe2) = l(ye2) and qo = P2. To 
prove that B 2 ( = span B~e2B ~) equals B2p 2 it suffices to show that e2B2e 2 = Boe 2. 
Indeed, since P2 = qo = ~ i m i e 2 m *  for some m i e B 1 ,  with Eno(m*m fl  
= 6 j i , f j e ~ ( B o )  it would then follow that 

B2p 2 = p2B2pz = qoBzqo = .~. mie2B2ezm* 
t , J  

= .~. miBoe2m* ~ span B1 e2B1 = B2P2 . 
l , J  

But e2Bze 2 ~ e z M z e  2 = Me2,  so that e2B2e 2 = X e  2 for some X ~ M. Thus 
X = 2 - 1 E ~ ( X e 2 )  = 2-1Eu, (e2B2e2)  ~ BI ,  so that X ~ B 1 n M =  B o. This 
shows that e2B2e 2 ~ Boe 2 ~ e2Bze2, ending the proof  of the proposition. Q.E.D. 
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From 2.1 we can now deduce the following proper ty  for a sequence of 
commuting squares: 

2.2 Corollary. Let  N c M c e ' M  1 ~ e A M  2 ~ . . . be the Jones' tower of factors and 
B i ~ M i, i > 0, beflnite dimensional subalgebras satisfying EB, EM~_~ = E 8 . . . .  i > 1 
and ei~ Bi , for  all 2 < i < n (where 2 < n < ~ ). Let K i (respectively Li) denote the 
sets of simple summands O f  BEi  (respectively B2i + x ), n > i > O, and identify K i (resp. 
Li) with a subset o f  K~+t (resp. Li+l)  by using 2.1. Denote K = U, Ki, L = UiLi. 
There exists a unique matrix o f  nonnegative integers A = (akl)~.~ ~ with the properties. 

1 ~ (ak~)~.~: describes the inclusion BEi  ~ B2i+l , for  i > O, 2i + 1 < n; 
o. t (aki)~;,~.., describes B 2 1 + l  c B E i + 2  , i > 0, 2i + 2 < n; 

3 ~ Ki, L i satisfy L i = { l ~ L l q k ~ K  i with akt 4: 0} 
and Ki + t = {k ~ K[31 �9 Li with art # 0}. 

4 ~ [[ A[l  2 ~ [ M : N ]  and A is irreducible iff(aki)k~ro, t~Lo is. 

Proof. The construct ion of K~, L i, K, L and (ak l )k l ,  with 1 ~ 2 ~ follows by induction 
from 2.1. To  prove 3 ~ let p', p", q' be minimal central projections of Bi+t,  B i + 2 ,  

Bi- t  respectively, with ei+tp' = e~+tq' and p'p"4: O. We must show there exists 
some minimal central projection q"eB~ such that eg§ ei+Eq" and q " q ' ~  O. 
Define q" = 2-tEn,+~(p"ei+2). Since e i + 2 B i + E e i +  2 = B i e i + 2 ,  q" is a minimal 
central projection in B~. Also EB,+~(p")p'=~p'  for some g + 0 .  Thus 
q, q,, - t , ,, = A qEn,+~ (p el+2) so that 

p e i + t q q  ei+tp'  2 -1 . . . . . .  . . . .  = pqEa,§ e i+2e i+t )=pqEs ,+~(e i+tP  ") 

= p'(q'ei+t)Es,+~(p" ) = ctp'ei+ t 4:0  . 

Thus q'q" # O. 
The irreducibility condit ion for A follows by 3 ~ Moreover  by 2.9 in [P iPo3]  we 

have [l(au)7:~;]/2 < [ M : N ]  for all n, so that IIAH 2 = limnll(akl)~,g~:]l 2 <_ [ M : N ] .  
Q.E.D. 

2.3 Corollary. I f  {Bi},>i>=o are finite dimensional subalgebras (n < ~ ) with 
B i c M i , f o r  i >= 0, EB, EM,_ , ---- EB,_, , for  i > 1, e i e B i , f o r  i > 2, and if  there exists 
i o >-_ 0 such that dim.~e(Bio+2)< dim ~.~f(Bio), then {Bi},>i>_io with the projections 
eg ~ Bg, i > i o + 2, are obtained by iterating the basic construction starting from the 
inclusion B i o c  Bio+X and at each step the unique trace z of  t - ; M  i is a 
2 = [ M : N ] - a - M a r k o v  trace. Thus, i f  A = ( a k l ) k  I is the inclusion matrix of  
B i o c  Bio+ 1 and (SR)R are the traces o f  the minimal projections of  Bio and (h)l those of  
Bio+ 1 then 

1 ~ The inclusions Bio ~ Bio+l c B i o + 2  . . . are given by A, A t, A . . . .  
2 ~ The traces o f  minimal projections of  Bio + 2j are given by (AJSk)k and those of  

Bio+ 2j+ 1 by (AJtl)l . 

3~ I[ A I12 = I-M:N] = 2-1  and [I Ao t[ 2 = [M:  N ]  for  any irreducible component 
A o of  A. 

4 ~ (Sk) k is a Perron-Frobenius eigenvectorfor AA  t and (h)t a Perron-Frobenius 
eigenvector for AtA. 



Classification of subfactors: the reduction to commuting squares 27 

Proof Trivial by 2.1, 2.2, 1.2. Q.E.D. 

As 2.3 shows, the existence of a sequence of commut ing  squares satisfying 
the hypothesis of 2.3 imposes restrictions on the index of N in M: we must have 
[M:  N]  = II A II 2. We now deduce that we "almost must have" N'c~ M = C. 

2.4 Corollary. Assume there exists a sequence of  finite dimensional subalgebras 
Bi ~ M i, i > O, satisfying the hypothesis of 2.3. Then EN, ~M(eo ) = [ M : N ] -  1 l for all 
Jones projections eo ~ M (i.e., projections eo.(Or which EN(eo) = [ M : N ] - 1 1 ) .  

Proof Let B~o = OkM,~• Then by [ P i P o l ]  and 2.3 (see also [P iPo3] )  we 
have 

, ,t,, . . . . .  (A'(AA')Jfi)I(A)Jt)k 
n(B,o+ Zj+ l lBio+ 2j) = k,, ~ takl(AA yn)ktl~'~ ln ((AA,)jfi)k()Jtl~ . 

Since (AAt)Jfi tends (up to renormalization) to the Perron-Frobenius  eigenvector of 
AA', i.e. to a scalar multiple of AT, it follows that 

lim (A'(AA')Jfi)t(AT)k = 2-1 . 
j ~  ov ((AZ')Jn)ktt 

Thus, since ~k, t(au(AA~)Jfi)ktY = 1, it follows that limj~ 0o H(B~o + 2j+ 1 [Bio + z j) 
= l n 2  -1. Since M i o C M i o + l  is isomorphic to a reduction of the pair 

Mio+ZjC M~o+Zj+l by a projection in M~o+2 j (cf. [ P i P o l ] )  it follows that 
H(Mio+2j+ l lMio+2j) = H(Mio+llMio) for all j > 0 (cf. e.g. 4.4 in [P iPo l ] ) .  Thus 
from the commut ing  square condit ion we get 

H(Bio+ 2j+ 11Bio+2j) <= H(Mio+ 2j+ 1 [Mio+ 2j) = H(Mio+ 11Mio) < l n2 -1  

which shows that H(M~o+llM~o)=ln2-~.  By [P iPo2]  this implies H ( M I N )  
= ln2 -1 and EN,~M(eO) = [ M : N ]  -11. Q.E.D. 

If  B~, i > 0, satisfy the conditions of 2.2, then el e B~ for all i > 2 implies that 

~ , B  w c ~),M; ~ = 2Q is a type II1 yon Neumann  algebra (since {e,}i' is a type II~ 

factor). In fact ~)~B w follows to be a factor under very general assumptions. We will 
prove this type of results elsewhere. For  what we need the next easy consequence of 
2.3 will do. 

2.5 Corollary. Let {Bi}i~ o be like in 2.3 (with n = oo), and assume the inclusion 

matrix of  B o c B 1 is irreducible. Then R = UiB7 is a type 111 subJactor in 

U,M  = 

Proof. Let e k' i, "f~, i be the minimal central projections of B21 respectively B2i § 1. 
Arguing like in 2.4 (see also [P iPo3] )  it follows that 1 ~ limi~ ~ r(e k' i) = v2; 2 o. 
limi~ ~ z ( f  t' i) = w2; and 3 ~ limi~ ~ z(e k' i f  t, i) = 21/2auvkwl, where (Vk)k, (Wl)z are the 
Perron-Frobenius  eigenvectors of AA', respectively AtA normalized so 
that ~k v2 = 1, ~W~ z = 1, and 2 = flAil -2. Let p e ~ ( L r ( R ) )  and p . e ~ ( ~ ( B , ) )  
such that dlPn-PI[2 ~ 0 .  In particular we have: 4 ~ IIPz,P2,+I-P2~112 ~ 0 .  Let 
E, ~ K, F, ~ L with P2, = ~k~E, ek" ", P2,+ 1 = ~ t~v , f  t' "" Then 3 ~ 4 ~ show that, for 
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n large enough, if e k ' n f  l ' n  =~ 0 (or equivalently akl ~ 0) for some k ~ E , ,  l e L ,  then 
1 ~ F,. Thus 

F, = { l~L lak t  ~ 0 for some k ~ E , }  

and P2,+~ > P2,, so in fact P2,+~ = P2, again by 3 ~ 4 ~ But this contradicts the 
irreducibility of A, unless E,  = K, F, = L, P2, = 1. Q.E.D. 

We will refer to the proper ty  sup dim f f (B , )  < c~ for an increasing sequence of 
finite dimensional  algebras {B,}, by saying that  it has bounded (or finite) 9rowth. 

3. Higher relative commutants and finite depth 

Approximat ing a pair of hyperfinite factors N = M with finite dimensional  sub- 
algebras satisfying the commut ing  square condit ion (*) is in fact quite difficult. 
However,  there is a simple way of producing finite dimensional  subalgebras of M 
satisfying (*) by taking the relative commutan t s  in M of some subfactors N of N. 
Indeed by [ P o l ]  we then have E~7, ~MEN = E ~ 7 ~ .  Also, if IN:AT] < ~ then 
AT' n M is finite dimensional.  A possible choice for N are the factors in the tunnel. 

3.1 Proposition. Let  M ~ e ~  ~ e - ~ N 1  ~ e  2 N 2  ~ . . . (respectively 

M c e 'M  1 c e2M 2 c . . .) be a choice o f  the tunnel o f fac tors  (resp. the Jones  tower). 
Then we have 

1~ N'j n M,  M '  n M j are f ini te  dimensional. 

2 ~ EN,jnMEN ' : E N , j n N ,  EM, n M E ~ t  ' = EM, n M , f o r  k <- i < j .  
3 ~ eo, e_ 1 . . . . .  e _ i + l e N ' i n M ,  e2, e 3 . . . . .  e j E M ' n M j .  

Proo f  By [ J1 ]  N '  i n Mi are finite dimensional  and by [ P o l l  we have the corres- 
ponding commut ing  squares. Q.E.D. 

Although the tunnel of  factors N k is not uniquely determined (see 1.3) the 

resulting pair  of algebras U,(N' i  n N )  c Ui (N ' i  n M )  is actually unique up to 
isomorphism.  

3.2 Proposition. 1 ~ Let  M ~ e ~  ~ e  ,N1 ~ e - 2 N 2  D . . . .  

M ~ e~ ~ e~ ' ~ro ~ e ~ 2 l~fO " " ~ - ~" 2 ~ . . . , be two choices o f  the tunnel. Denote 

= = ' = U j ( N j  r i M )  , R w (N'j n M )  w, R o U~(Nj n N f f  c R, R ~ o, 

R ~ = U j ( N  ~ n N f f  c R ~ Then there exists a trace presenting isomorphism o f  R 

onto R ~ carrying R o onto R ~ and N~ n M onto M '  n Mj+ ~,i>=o. 

2 ~ Le t  N c M c e ~ M 1  c e 2 M 2  c . . . be the tower o f  factors  a n d / ~  = U . M , ,  
R 1 = M '  n )Q1, R~ = M'I n )17I. Then there exists  an antiisomorphism 

�9 : U j ( N ~ n M ) ~ U j ( M ' n M j + I )  with ~ ( N ) n M ) = M ' n M j + I ,  ~ ( N ) n N )  
= M'~ n M j + x ,  tb(e_fl = ej+2. Moreover  i f  N c M satisfies EN,~M(eO) 
= I - M : N ] - x  1 then �9 is trace preserving and can be uniquely extended to a trace 

preservin9 antiisomorphism o f  R onto R 1 carrying R o onto Rio . 

P roo f  1 ~ By [ P i P o l ]  (see 1.3) it follows that there exist uni tary elements u~ E N ~ 
i >  0, such that  ui-1 . . .  uoNiu*  . . .  u*-i  = N O , i >  1. Define cr:R--,  R ~ by tr(x) 
= limi~ooui_ t . . .  UoXU* . . .  u*_ 1. If  x ~ N '  i n M ,  then 
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ul- 1 �9 �9 . UoXU* �9 �9 �9 u*_ 1 ~ NO' c~ M so that 

Un . . . U i ( U i -  1 . . .  U o X U ~  . . . U ' ~ I - 1 ) U ~  . . . U~n = U i _  1 . . .  U o X U ~  . . . U ~ -  1 , 

for all n > i - 1. This shows that a is a well defined trace preserving isomorphism. 
Obviously a(Ro) = R ~ 

2 ~ By [P iPo2]  one can represent recursively each M ,  on L2(M, z). Thus 
u M,  c ~'(L2(M, r)) and N i = JM'~+ 1J will form a tunnel of subfactors in M. 
Since J M ' J  = M we also have J ( M '  c~ ( U i M i ) ) J  = U i ( N i  n M).  Thus the reflec- 
tion ~P(x) = J x J  gives the desired antiisomorphism, which, in case EN,~M(eO) = 2, is 

trace preserving by [P iPo2]  and thus can be extended from U i ( N i  n M )  TM onto 
M'  c~ M. Q.E.D. 

3.3 Definition. The pair of algebras R o = Ui(N' i  c~ N)  c Ui(N'i  c~ M )  = R is 
called the core of the inclusion N c M. Note that the isomorphism class of 
R o c R doesn't  depend on the choice of the tunnel. 

Since the algebras M'  c~ M~ satisfy the conditions of 2.2. (cf. 3.1) we can now list 
the corresponding properties of these algebras: 

3.4 Corollary. Denote B ~ = N'i- 1 c~ M and Bi = M '  c~ M i. Then B ~ satisfy condi- 
tion (*) in Section 2 and Bi, i > O, satisfy the hypothesis o f  2.2 and they have the 
properties: 

3.4.1. I f  Pi+2 is the central support o f  el+2 in Bi+ 2 (resp. o f  e - i  in B~ then 

Bi + 2Pi + 2 span B i + 1 ei + 2Bi + 1 (resp. 0 ---- Bi+2Pi+ 2 = spanB~247176 and 
�9 0 e -  Bi+l ~ . . . .  Bi+2Pi+2 (resp. B~ ~-Bi+lPi+2 c 'B~ is the algebraic basic con- 

struction for  B i c Bi + I (resp. B ~ c B~247 l ). 

3.4.2. Identify the sets o f  simple summands o f  B2i and B~ by 3.2.2 and denote it by K~, 
0 i > O, and those o f  B2i+ 1, B2i+ 1 by Li, i > O. Via these identifications the embeddings 

K ~ c K i + l  (or L i c L i + l )  defined in two ways by either the application 

~(Bi)~q' l - -~q" ~Yf(Bi+2Pi+2) , with q"ei+ 2 = q'ei+2, or by ~ ( B ~  -~, 
pp 0 r q E ~ f ( B i + E P i + 2 )  , w i t h  q " e _  i = q e_i, are the same. 

3.4.3. Let  K = U~K,, L = UiL , .  Then K o = {ko} and there is a unique pointed 
0 0 matrix A = (akl)~ , k 0 G K,  such that (au) .... describes BEi c BEi+l and BEi c BEi + 1 

. t e . lcL~ 
w h t l e  ( a k l ) k e K i + l  d e s c r t b e s  B2i+l c B2i+2 a n d  B ~  c B ~  . M o r e o v e r  Ki, L i  

leL~ 
satisfy 

L i = { 1 E L I 3 k e K  i with a k t 4 : 0 } ,  

K i + l = { k e K I 3 l e L i  with akl4=O}. 

3.4.4. A is an irreducible matrix and IIa II 2 _-< [ M : N ] .  

Proof. cf. 2.2 and 3.1, 3.2.2. Q.E.D. 

3.5. Remark. The pointed matrix (A, ko) associated to the sequences N ' i n  M, 
M'  c~ Mi like in 3.4 coincides with the standard matrix defined in [Po3].  It is also 
equivalent to Ocneanu 's  principal graph for N'  c~ M = C. In fact for what we need 
in this section the definition and construction of A are not necessary; the result 3.8 
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which will be used in the proof of the main result in Section 4 can be derived 
directly from the general result 2.2. 

We now mention the particularization to the case B~ = M'  c~ M~ of the results 
on sequences of commuting squares with sup dim ~(Bi)  < ~ in Section 2. Follow- 
ing ([Oc]), if the sequence of higher relative commutants  of N = M has bounded 
growth, then we say that N = M has finite depth. In fact this terminology is used in 
[Oc] for subfactors with N '  c7 M = C. We will use it here for subfactors N ~ M 
without assuming the trivial relative commutant  condition. We also introduce 
another terminology, which although less established seems better suited. 

3.6 Definition. The inclusion N ~ M has finite depth (or finite growth) if 

sup  d i m  ~.~(N' i ~ M)(  = dim Lr(M' ~ M i +  1)) < ~ 

(i.e. if B~ = M'  n M i have bounded growth). 

3.7 Corollary. I f  N ~ M has f n i t e  depth then: 

3.7.1. EN, nM(eO) = I -M:N]-1  1 and the antiisomorphism of 3.2.2 is trace preserving. 

3.7.2. There is an io such that for  all i > i o, Bi+ 1 c . . . .  Bi+ 2, B~ l c e  'B~ are the 
basic constructions for B i ~ Bi§ 1 respectively B ~ ~ B~ 1 and the unique trace z of  57I 
is a 2 = [ M : N ]  -1 Markov  trace on each basic construction. Thus the inclusions 

o o B21 ~ B21 + 1, B~ ~ B~ + 1 are descr ibed  by A and  B2i + 1 c B21 + 2, B2i + 1 c?_ B21 + 2 by 
At, for  2i >__ io, A being the standard matrix defined in 3.4.3. 

3.7.3. I f  p (resp. q) is a minimal projection o r B  ~ or B i (resp. B~ Ej or Bi+ Ej ) which 
belongs to a simple summand labeled by the same k (if i is even) or 1 (if i is odd) then 
z(q) = )Jr(p). 

3.7.4. II A II 2 = [ M : N ]  and for  2i > i o the traces of  the minimal projections of  B21, B~ 
give the Perron-Frobenius eiyenvector for  A A  t, A being the standard matrix. 

3.7.5. The al#ebras R = U I ( N  ~ c7 M )  and R c7 N j = Ui(  N'i ~ N j), j > O, are type 
II 1 factors. 

Proof  By 2.3, 2.4 and 3.1, 3.2.2 we get 3.7.1-3.7.4. Moreover, by 2.5 and 

3.2 it follows that R = U i ( N ' i n M )  is a factor. Since [ M : N j ] <  ~ and 
E N , ~ M E N j = E N ,  nn~, by [PiPo3] it follows that the embedding matrix 
of N' i c7 N j c N ~ n M,  i > j > O, has square norm majorized by 
[ M : N ]  j+l. Thus, since s u p d i m ~ ( N ' i n M ) < ~ ,  s u p d i m ~ ( N i c ~ N j ) < ~  

as well. Thus Ni§ 1 ~ N j  has finite depth and R c~ Nj = U i ( N I  n Nj)  is a factor by 
the previous part. Q.E.D. 

Corollary 3.7 yields an important property for subfactors with finite depth: 
there is a uniform bound for the local indices [pMp:Nip  ] of the inclusions Ni c M, 
independent of i and of the minimal projection p of N'~ n M. More precisely we 
have: 

3.8 Theorem. Assume N c M is a subfactor o f  finite depth. Let  A = (au)t: [, ko e K,  
be its standard matrix and let (Vk)k~r be the Perron-Frobenius eigenvector of  A A  t 
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normalized so that Vko = 1. Let  i > 0 and p be a minimal projection of  N'2i- ~ c~ M (or 
M ' n M 2 ~ )  which belongs to a simple direct summand labeled by k 6 K .  Then 
[pMp:N2i - lP]  = v2 (respectively [pM2ip: Mp] = v2). Moreover if q is a minimal 
projection in N'2i ~ M or M' c~ Mzi+~ in the simple summand labeled by l e L  then 

[qMq: N2i q] = [M:  N ]  - 1 ak~V k respectively [qM2i + ~q: Mq] 

= [M:  N]  - 1 aktv k . 

Proof  Since EN,~M(eo)= 2 = [ -M:N]  -1, by [P iPo2]  and 3.1 it is sufficient to 
prove the statement for the tower. By [PiPo2]  we then have [pM21p:Mp] 
= [M2i: M]z(p) 2 = 2 -  21"c(p)2. Let Jo > 0 be so that M'  c~ Mzj + 1 ~ M'  (", M2j + 2 is 

the basic construct ion for M'c~ Mzj  c M' ~ M2j+I f o r j  >Jo .  By 3.7 i f j  > 0 and 
if pZj is a choice of  a minimal projection in the k-th summand of M'  ~ M2~ then 
~ ( p 2 j )  = ,~ j -  joT~(p2jO). Thus 

[" n2J AAr r~2j. vk ,,, zj~'k �9 mP~ j] = ,~- 2jz(P~J)z = 2 -  2J~176 

But by 3.7 (z(p~,J~ is the Perron-Frobenius  eigenvector for AA t normalized by 
2jo ~Jo 2j 2j. 2j Fn2J Ad n2J �9 AArn2j'l 1/2 v(Pko ) =  Thus 1 and coincides [ Pko M 2 jPko " M pko] = �9 LYk zva2jt"k "tr -I 

with the k-th entry of the Perron-Frobenius  eigenvector of AA t which has the k o 
entry equal to 1. 

Similarly if p~J+~ is a choice of a minimal projection in the l-th summand of 
M' ~ M 2 j + I , j  >= O, then (z(p~j+a)) l = At(z(p2j+2)) k and 

[ p 2 j +  1 M 2 j +  1 p 2 j + l ,  mpZj+l ] = z(p~j+ 1)2 2 -  2 j - 1  = ~(p2jO + 1)2~ - 21o - 1  

Thus we get for j > Jo 

A ([pL 2j+'  MzI+ l p  2 j + l "  M e  2 j+1 ] 1 / 2 ) / =  ,~ - J o -  1/2(.c(p2jo)) k 

~ -  1/2~ F .Zjo  Ad n2jo:  Mp2kJO] 1/2)k 
~'~ ~LPk ~va 2joPk 

This implies that 2 -  1/2([p2j+ 1Mzj+ lp2j+ 1 :MpZtj+ 1]l/z)l is a Perron-Frobenius  
eigenvector for AtA so that 

, ~ l / 2 d t t r n 2 j o l l / !  n2jo.  A/fn2joql /2h . , , .  ,LVk ""2joek .... Vk J ,k = ([pZ,+lM22+~p2,+~:Mp~+~]1/E)t " 

This ends the p roof  of the theorem. Q.E.D. 

4. Finite depth and the generating property 

As we mentioned before, a general strategy for approaching index problems for 
subfactors N c M of the hyperfinite II  1 factor M - R is to approximate N c M by 
a sequence of finite dimensional subalgebras satisfying the commuting square 
condit ion (*). F rom Section 2 we saw that the finite dimensional subalgebras 
B ~ = N '  i_ 1 c~ M are the first to be considered that satisfy EBo. E N = EBOnN. Then the 
approximat ion with B ~ amounts  to say that we may choose the tunnel Ni so that 

the core R o = UI(N'i c~ N)  c (,.)i(N'i t~ M )  = R coincides with N c M. 
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Approximating N c M with the sequence of higher relative commutants  is 
tnore rewarding than with other finite dimensional algebras, since the sequence of 
higher relative commutants is canonical. 

4.1 Definition. We say that N ~ M has the generating property if there exists a 
choice of the tunnel of subfactors N i such that N '  i c~ M T M, N '  i n N T N. Note that 
since EN:~ME N = EN;~N, N '  i ~ M T M actually implies N '  i N N ~ N. 

We will prove in this section that i f M  is the hyperfinite II 1 factor and N c M 
has finite depth (i.e. s u p d i m ~ r ( N '  i n M ) <  ~ )  then N ~ M has the generating 
property. The key observation allowing us to prove this generating result is that the 
subalgebras B = N k V ( N '  k N M )  satisfy the basic inequality EB(X) >= CX, x e  M+,  
with c independent of k. This important device will be a simple consequence of 3.8. 
But first we need a simple formula which is implicit in [-PiPo3]. 

4.2 Lemma. Let  no, Co < ~ .  l f  ql . . . . .  q n ~ ( M )  is a partition o f  the unity in M, 
with n < no, and if P i c qiMqi are subfactors with [qiMqi:Pi] < Co, then B = ~iPi  
satisfies Es(x  ) > (no Co)-  lx, x e M + . 

Proof. Denote B 1 = ~iqiMql.  By [PiPo3] we have E~l(x ) > no lx ,  x ~ M +. More- 
over if y ~ B 1 , y = Sy i, with Yi e qiMqi then EB(y) = ~iEp, (Yi). Thus if y > 0 then by 
[P iPo l ]  (see 1.1) we have EB(y) > ~ i[q iMqi:  Pi]-  lYi > Co i y. Altogether we get 
for x ~ M + ,  EB(X ) = EBEBI(X) > ColEBI(X) > (Cono)- lx .  Q.E.D. 

4.3 Theorem. Suppose N c M has finite depth. There exists c > 0 such that given 
any choice o f  the tunnel o f  subfactors {Ni}i>=l we have 

EN, v (N;c~M)(x) > CX, x e M +  , 

for all i > 1. 

Proof. Let {q~}j be the minimal central projections o f N '  i c~ M. Then q~ are also the 
minimal central projections of N i v (N~ n M). Thus N i v (N'i c~ M )  = ~jP~ with 
P~ = ( N i v ( N ; n M ) )q} subfactors in q~ M q}. Moreover ifp is a minimal projection 
in (N  I n M)q~ then p ~ P} and Nip = p(Ni v (N '  i c~ M))p  = pP~p so that 

[q Mq : = [pMp:pP}p]  = [pMp: Nip  ] . 

By 3.8 there is an upper bound on this indices, 

s u p { [ p M p : N i P ] l i  > O,p minimal projection in N'ic~ M }  = C O < ~ . 

Thus [q~Mq~: P~] <= Co for all i,j. Moreover, since for e a c h / t h e  number of P~'s is 
bounded by sup dim ~ ( N '  i c~ M) = no < ~ ,  the statement follows by 4.2. Q.E.D. 

If c is the uniform bound (from below) given by 4.3 then the above theorem 

easily yields the existence of a tunnel N i so that R = Ui(N'i  c~ M )  w has finite index 
in M. This "almost" proves the generating property. To show all this let us first 
mention a consequence of the hyperfiniteness of M and of [J1].  

4.4 Lemma. Let  N c M be hyperfinite 111 factors with finite index. Let  
M ~ ~~ ~ e- ,N1 ~ ~-~.. .  ~ ~-'+ 'N,._t ~ Ni be a choice o f  the tunnel up to some i. 
Let  e > O  and F c N i v  (N' ic~M) a finite set. Then there exists j >  i and a 
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continuation o f  the tunnel ~ e - ' N  i ~ e - ' - ' N i +  r . . ~ e - i +  l N j _  1 ~ N j  such that 
x e ~ N ~ c ~ M ,  x E F .  

P r o o f  Let  {fr", s} . . . . .  be  a m a t r i x  uni t  for  N '  i c~ M ,  where  n labe ls  the  s u m m a n d s  of  
N '  i c~ M.  T h e n  x = S, xTsfr~, with x,~e Ni .  Since N~ is i s o m o r p h i c  to  the  hyper f in i te  
II1 fac to r  (cf. I-C]), by  [ J 1 ]  we m a y  rega rd  it as g e n e r a t e d  by  a sequence  of  
p ro j ec t i ons  {e~,},,_>l = Ni sat is fying Jones '  a x i o m s  e ' e , ,+ le~ ,  = 2e~,, [e~,, e',] = 0 
for [m - n[ > 2, z(e~,) = 2, where  2 = [ M : N ] - 1 .  Thus  for  any  6 > 0 there  is p > 1 
such t h a t  xr"~e~Alg{1, e' 1 . . . . ,  e~,_l}. Let  ~ e ~ 1 7 6 1 7 6  " ' i+1  �9 �9 �9 ~e~ 
N~ ~ N~ be a c o n t i n u a t i o n  of  the tunne l  up  to  i + p. By [ J 1 ]  there  is a z- 
p re se rv ing  i s o m o r p h i s m  be tween  Alg  { 1, e'~ . . . . .  e ;_  a } a n d  
Alg { 1, e ~ g _ 1 . . . . .  e~ ~ - v + ~ } send ing  e~, to  e ~ g _ k' Thus  there  is a u n i t a r y  e lement  in 
the a m b i e n t  a l geb ra  N~ such t ha t  ue~ u* = e~,, 1 --< k _< p - 1. Thus ,  if we p u t j  
= i + p a n d  Ng+k = uN~ u*, 1 < k <= p, then  N~+ k is a c o n t i n u a t i o n  of  the tunne l  

t such t ha t  N ' j c ~ M  ~ Alg{1,  e'l . . . . .  ep_x}~ox"~ for  all  n, r, s ( and  all  x e F ) .  Since 
' ' " % N ) c ~ M ,  if we t ake  6 smal l  e n o u g h  we get  f ~ " ~ e N i c ~ M c N j c ~ M  a n d  x,~ 

g ) c ~ M ~ X x ~ f ~ " ~  = x,  x a F .  Q.E.D.  

4.5 Coro l l a ry .  I f  N ~ M has f in i te  depth and N,  M are hyperf lni te  II~ fac tors  then 

there is a choice o f  the tunnel {N~}~ ~ such that the f ac to r  R = U i (  N'~ c~ M )  has f in i te  
index in M .  

P r o o f  Let  c > 0 be the  c o n s t a n t  in 4.3. Let  {x .} ,  c M +  be a sequence  of  e lements  
dense  in the  uni t  bal l  of  M +  in the  n o r m  II 112. By 4.3, 4.4 we m a y  choose  
recurs ive ly  n u m b e r s  k~ < k2 < �9 �9 �9 < k ,_  ~ < k , . . .  a n d  c o n t i n u a t i o n s  of  the tun-  
nel N k . _ , + t  D . . .  ~ N k .  such t ha t  ItENL~M(Xi)II 2 >= x/,cllxgll 2, 1 < i < - - n .  Indeed ,  

d e f  

s u p p o s e  we ach ieved  s tep n - 1. By 4.3 we have  Yl = EN .... ~ tn'~~ ~ ~t)(xl) > cxi ,  

thus  I l Y i l l Z 2 = z ( y i x i ) > c r ( x 2 ) = c t l x i l l  2, l < _ i < n .  By 4.4 we m a y  choose  
Nk,-1  + ~ ~ N k , -  i + 2 �9 �9 �9 ~ Nk, ,  for s o m e  k, > k ._  1, so tha t  y~ e l/ .N'k, ~ M.  Thus ,  
since N~,  c~ M a n d  Nk,_ , v (N'k,_~ C~ M )  fo rm a c o m m u t i n g  squa re  (cf. [ P o l l ) ,  we 

get II EN,~, ' c~ M (Xl)I129 ~ l] EN .... v (N'k._, c~ M) EN'~. c~ M(Xl)II 

= II EN,~~ ~ M EN~. , ~ tN'~. ,~ M)(X~)II 2 = ~/, II ENd. , v tN'~._, ~ M)(Xi)I[ 2 > C II X~ II 22. 

If we t ake  n o w  R = U , > _ I ( N ' k  ~ M ) W = ~ k > l ( N ' k C ~ M )  then  ]]E~(xl)l] 2 

= l im ,  II ENZ ~ t  (x~)ll 2 > ctlx~ll2 2 for  all  i. Thus  IIER(X)II2 2 > c l lx l l  2 for  all  x e M + ,  
by densi ty .  "Since R is a fac tor  (cf. 3.7.5), by  t h e o r e m  2.2 in [ P i P o l ]  we get 
[ M : R ] < c  -~. Q .E .D.  

W e  n o w  show tha t  if we can  choose  the tunne l  N i so tha t  [ M : R ]  < o0, wi th  

R = ~ i ( N ' i  r M) ,  then  we can  ac tua l ly  choose  it so that  R = M .  W e  will p rove  this 
by  con t r ad i c t i on .  So we need to  k n o w  wha t  the fa i lure  of the gene ra t i ng  p r o p e r t y  
impl ies .  

4.6 L e m m a .  Le t  N ~ M be so that  there ex is ts  a choice o f  the tunnel Ni ,  i > 1, with 

the proper ty  that  R = Ui (N ' i  ~ M )  has f in i te  index in M.  Assume N ~ M doesn't  
have the 9eneratin9 property.  Then we have 
(1) Ve > O, Vk o >= 1, Sk 1 > ko, 3 x e M ,  Itxll~ = 1, Itxll < [ M : R ]  ~/2 such that 

[I Eu,Ru,~(X)[I 2 =< e, Vux e ~ ( N k , ) .  
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Proof. Note  first that the property (non 1) reads: 

(Non 1) "3e o > 0, 3k o > 1 such that  u > k o, ~/x~M with [Ixll2 = 1, 

Ilxll < [ M : R ]  1/2, 3 u ~ I ( N R )  such that IIE~R,.(x)II s > ~o". 

Assume (Non 1), instead of(l) ,  holds true. Let then {x,}. ~ M be a sequence of 
elements satisfying II x.  II 2 = 1, II x ,  II < [ M : R ]  1/2, dense in the norm II II 2 in the set 
{ x s M I  Ilxll2 = 1, Ilxll _-< [M:R] I / : } .  Let also {y ,} ,  ~ M+ be a sequence of ele- 
ments dense in the norm II 112 in M+.  We will find recursively 1 < kl < ks < �9 . .  
and a choice N ~ i > 1, of  the tunnel such that 

(i) llENo., ~M(X,)II s > ~o; 
(ii) II ENoo, nM(Y.)112 >---- 1 / , [ M : R ]  -1 IlY. 112; 

Suppose k 1 < k  s < . . . < k . _ l  and M = N = N  ~ 1 7 6  have been 
chosen. Let U o ~ r ( N  ) be such that  uoN~ * = N~ for i = 1 . . . . .  k . -1 .  Then 

E R (uoy, u ~) > [M: R] - 1 uoy,u.  , 

so that there exists k ~ > k._ 1, k~ > ko such that: 

EN'kO • M (uoy.u*) >= 1In [ M : R  ] - l uoy.U' ~ . 

Thus we get 

Eu* ukou'o c~ M( Y. ) = Eu*o(N'ko n M)uo ( Y . )  

* * = R ]  . = UOENko,~M(Uoy.Uo)Uo > 1/~[M: - l y .  

Moreover,  by (Non l) applied to x = UoX.U ~, there exists u~ ~ l ( N k o  ) such that 

II Eu,gu*(UoXnU~)II 2 > ~o �9 

But then, again by the definition of R, there exists k, > k ~ with: 

II Eu,IN;. c~ M)u?(UoXnUo )II 2 > ~0 " 

Thus we also get: 

II Eu~u, N,u?U'o c~ M(X,,)II 2 = II Eu*u,iN;. • M)u?uo(X,,)II 2 > ~o �9 

But u*ulNiu*uo = N ~ for 1 -< i -< k._ 1, so that if we put N ~ = u'dulNju*uo for 
k . -1  < j  =< k. then both (i) and (ii) will be satisfied (also, since Uo*UlNkoUl*Uo 
= U*NkoUo). This ends the proof  of the existence of N ~ 

Let R ~ = U I(N~ c~ M). Then by (ii), IIERo( y)112 ----> [M:R]-111  y 112, Y ~ M + ,  so 
that [ M : R  ~ < [ M : R ] .  Since R ~ ~ M, [ M : R  ~ > 2 so by [ P i P o l ]  there exists 
m ~ M  with Ilml12 = 1, Ilmll < [ M : R ]  1/2 such that  ERo(m ) = 0. But (i) shows that 
IIERo(m)ll2 > eo, a contradiction. Q.E.D. 

4.7 Corollary. Let 09 be a free ultrafilter on N. With the notations and under the 
hypothesis of  4.6, there exist x = (x.). ~ M ~ II x II s = 1, If x II < [M:  Ry/2,  and there 
exists k 1 < k 2 < . . .  such that x-LuR'~ * for all unitary elements u in I - I ,~ ,Nk  . 
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Proof  The construct ion of x, follows by applying recursively 4.6. Q.E.D. 

It turns out that if B0, B c M are von Neumann subalgebras of  M then the 
span of  uBu* for u running in q/(Bo) is almost a B o - B o bimodule. We will prove 
this technical result in the next section (see 5.1). Thus we get from 4.7: 

4.8 Corollary. With the notations and under the assumptions o f  4.6, 4.7, there exists 
x ~ M ~ L]x]12 = 1 such that x• Uk,)R'~ 

Proof  By 4.7 there exists x E M ~', I[ x II z = 1, with 

x k X  = span uR~ N k .  . 

Also, by 4.4 we have I-L~(Nk, V (N'k, c~ M)) ~ X.  Indeed, if 
y = (y,),eI-[~,(Nk" v (Nk, C~ M)) then by 4.4 for each n there is a w. eq l (Nk .  ) and 
l, > k. such that 

y, ea/,w,(N't, ~ m)w* c w, Rw* . 

Thus y e w R ' ~  where w = ( w , ) , .  Thus 5.1 applies and we get 
xZ(I - I ,oNk, )R '~  Q.E.D. 

We can now end up the p roof  of the generating result. 

4.9 Theorem. Let  M be the hyperfinite II 1 factor and N c M a subfactor of  finite 
index, l f  N has.finite depth (i.e. supdim ~ ( M '  c~ Mi) < ~ for  the Jones tower Mi) 
then N c M has the generating property (i.e. there exists a choice of  the tunnel 

N i ,  i > 1, so t ha t  Ui(N'i ~ M) = m).  Moreover, i f  l!Tl = U i m i  then there is an anti- 
isomorphism of  M onto M'  c~ 371 carrying N onto M'  1 c~ 1~7I. 

Proof  Assume N c M doesn't  have the generating property. By 4.5 and 4.8 there 
exists x ~ M ~, x # 0, xZspan(1-IoNJR'~ Nk,), where Ni is a choice of the 

tunnel such that R = u (N' i c~ M)  satisfies [ M : R ]  < oo. 

Since EnEN, = ER~N,, [R:Ni  ~ R] <= [ M : N i ]  (cf. e.g. [Po2]) .  Moreover,  since 
R contains the Jones projections in the tunnel, eo, e_ ~, e_2 . . . .  , it follows by 
[P iPo2]  that R contains the Jones projection for Ni c M, i.e. a projection f e  M 
with 

EN,(f)  = [ M : S l ]  - 11 . 

T h u s f ~ R ,  EN, ,~ ( f )  = EN,( f  ) = [ M : N i ]  -1 1, so that [ R : N ; ~  R] > [ M : N i ] .  Al- 
together [ M : N i ]  = [R : N i ~ R]. But 

[ M : N i ]  [Ni: Ni c~ R] = [M:  Ni c~ R] = [ M : R ]  [R:  Ni n R] 

(cf. [ J1])  so that [ M : R ]  = [N~:N~ n R]. It follows that if {m j} i ~  is" an or thonormal  
basis of N~ over N~ c~ R, then it is also an or thonormal  basis of M over R, thus 
~jm~R = M,  Put m~ = (mk").~ M ~ It follows that ~,imjR "~ = M ~'. But x •  ~', 
a contradiction. 

The rest follows by 3.2. Q.E.D. 
Note  that we also proved the following general result: 
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4.10 Theorem. I f  N c M are hyperfinite factors with finite index and if there is a 

choice o f  the tunnel N k such that R : U R ( N ' k ~ M )  is a factor and satisfies 
ER(x ) > cx, for all x e M + and some c > 0, then N c M has the generating property. 

Proof  By the duality result 1.5 in [ P i P o l ]  it follows that if ~ (N~, r~ M) TM is a factor 

then w (N'~ c~ NO w is also a factor, and more generally Uk(N'k C~ N2i+ l) TM are all 

factors for i > 0. Moreover  since u (N~+ ~ c~ M) w = ~ (N'k c~ M) w, it follows that  
N c M has the generating property iff N~ c M has the generating property. 
Altogether this shows that in the above statement we may assume 

R i = u (N'k c~ M)w f~ N~ = Ui(N'k n Ni) ~ are all factors. But then the p roof  of 4.9 
shows that N ~ M has the generating property. Q.E.D. 

5. Proof of the linearization principle 

We prove here the linearization principle that we used in the proof  of Theorem 4.9. 
The essence of this linearization principle is the noncommutat ive  Rohlin type 
theorem in [Po4] .  

5.1 Theorem. Let  M be a finite yon Neumann algebra with a finite faithful trace z. 
Let  B c M be a yon Neumann subalgebra and S c M a vector subspace. Then 

( span{uSu*lueqi (B)}  + B v B' n M ) -  = ( spanBSB + B v B' c~M)-  , 

the closures being taken in L2(M, z). 

Proof  We clearly have the inclusion c .  Let ~ELZ(M, z) with (uyu*, ~ ) =  O, 
( b , ~ ) = 0  for all ueql(B) ,  y e S ,  b e B v  B ' n M .  Let h ieB  h, i < i < n .  Pur  

f : C " - *  C, 

f (21 ,22  . . . . .  2,) = (exp(21hi)exp(22h2) . . . exp(2,h,)y exp( - 2,h,)  

. . .  e x p ( -  21hi), (> . 

T h e n f i s  analytic on C" and vanishes on (iR)". T h u s f v a n i s h e s  everywhere on C". 
Since any invertible element in B is a product  of  two elements of  the form exp(~.h), 
with 2 e C, heBh ,  we obtain that  (sys -1, ~) = 0, for any y e S  and  any invertible 
element s in B. Let p l q  be projections in B and s e B  invertible. Denote sl(t ) = 
tp + (1 -- p), s2(t ) ---- t(1 -- q) + q. Observe that sl(t) -1 = s i ( t - i ) ,  S2(t -1) -- s2(t -1 )  
and that 

lim i s2 ( t )s l ( t )sys- ls l ( t ) -  ls2(t)- 1 _ psys-  lq = O. 
t ~ o t ~  

It follows that ( p s y s -  lq, ~) = O. We now deduce that (zyz*, ~)  = 0 for all z e B. 
It is clearly sufficient to prove this when spec(z*z) is finite. So let z = au, where 
a = 2otlel, with ~i --> 0, re i  = 1, eiet~(B),  and ueVll(B). By [Po4]  there is a refine- 
ment f~ e B of the ei's so that  

~ f ~ f ~  -- e~"f~(B' n M) ( r ) 2 
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is small (the result in [Po4]  is stated for B' c~ M ~ B but the general case used here 
has exactly the same proof).  But since ~j f j (B '  n M) c B v B' n M and envB,nM(~ ) 
= O, eZf~(B,~,M)(4) = 0 as well. This shows that we can make Jl ~ i ~ 4 f j  112 as small as 

we please, with f j e  N(B) refining the e~'s. 
Since (f~uyu*fj, 4)  = 0, for i # j ,  it follows that  

(zyz*, 4 ) = (auyu*a, 4) = (~fjauyu*afj ,  ~ )  

= ( a u y u * a , ~ f j 4 f j ) = ( z y z * , ~ f j ~ f j ) .  

By the Cauchy-Schwartz  inequality 

I<zyz*,4)l <-_ Ilzyz*ll2 ~fj4fj 
2 

and for fixed z, y we can make  this last term as small as we want. This shows that  

<zyz*, ~> = O, zeB ,  y e S  . 

The s tandard  polarizat ion trick then implies: {zlyz2, 4) = 0, for all zl, z z e B, 
y eS .  Q.E.D. 

6. Applications to the classification of subfactors 

The  generating type results reduce the classification (up to conjugacy) of the 
subfactors of the hyperfinite I I  1 factor to the classification (up to trace preserving 
isomorphism) of the corresponding sequences of inclusions {N'i n N c N ' /n  M}i 
(or {M' 1 n M i c M '  c~ M~}~). Moreover  under the finite depth assumpt ion all the 
informat ion on such a sequence is contained in an initial commut ing  square: 

N'io n M c N'io+l n M ,  

U U 

N'io n N c N'io+ l n N ,  

where io, the inclusions, the dimensions and the traces are all determined by the 
s tandard matrices of N c M and N 1 c N. To deduce this we return to the general 
setting of Section 2. 

The next result was first noted by Jones and by Pimsner-Popa,  independently 
([  JPP]) .  

6.1 Lemma.  Let 

B o C7- A B 1 

C u  u D  

B~ c B B~ 

be a commuting square of finite dimensional algebras with the matrices A, B, C, D 
describing the corresponding inclusions. Assume B o c B1, B~ c B~ satisfy the equi- 
valent conditions of 1.2.2 and II A II = 11 B II. I f  Bo c B1 c e2B 2 c e3u 3 c . . . is the 
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iterated basic construction for  Bo c Ba, z is the 2 = II A I[-2-Markov trace on u Bi 
and i f  we denote BI+~ = span B]e,+ ~B~, i >  1, then~B~+ ~ has support one in B i+1, 
B~ c B 1 ce~B~ c ~ B  1 c .  . . give the iterated basic construction for  B 1 c BI ,  z 

is a 2 = [IBl[-2-Markov trace on u B~ and we have the sequence o f  commuting 
squares 

N o  C A  B 1  e2 e2 B 3  c A t B 2 c A �9 �9 �9 

k.) k.) k )  k.) 

B~ c ,  B~ ce~ B~ c 2 B~ c . . .  

Moreover,  with the usual identifications o f  the centers o f  Bi, respectively B], with 
the sets o f  indices o f  the matrices A, respectively B, the inclusion matrix  for  B~i c B2i 
is C and that o f  B~i+ l c BZi+ l is O, i > O, that is, in Wenzl's terminology ([- W]), the 
sequence o f  commuting squares is periodic with period two. 

Proof  Let B~ c B~ c e'~/~ be the basic construct ion for B l c  B~ with a 
2 = [[ B t[-Z-Markov trace z 1 on/~z 1 satisfying rl(~zx ) = 2r(x), x r B~, where r is the 
Markov  trace on B 2 (restricted to B~). Define an isomorphism a from/~2 ~ onto B~ 
by a(Zx~zy) = Xxe2y. Since z~ oa  = z and zl(1) = 1 it follows that  zl(a(1)) = 1 so 
that  a(1) = 1 and thus B~ has support  1 in B 2. 

To show that the inclusion matrix for B 1 c B 2 is the same as for B~ c B o note 
that e 2 ~ ((B~)'  ~ B2)' and e z ~((B~)' n Bo)'. Note  also that, since e 2 has support  1 in 
B~, the map (B~)' c~ B 2 ~ z ~ z e  2 is an isomorphism and that (B~)' n Bo ~ z ~ z e  2 is 
an isomorphism as well. Since 

ez((B1) ' ~ Bz)e2 = (ezB~e2)' ~ ezBzez = (B~e2)' ~ Boe2 = ((B~)' & Bo)e z 

it follows that  there is a unique isomorphism ~p:(B~)' c~ B z ~ (B1)'c~ B o determined 
by  q~(z)e 2 = ze 2. But this isomorphism, when restricted to  ~e(B2),  .~oe(O~), gives the 
usual identifications between Lr(Bz) and ~(Bo) ,  respectively ~(B~)  and 5e(B~). 
Moreover  the dimensions of ((B1)' n B2)q'q" for minimal projections q' in ~e(B2)  , 
q" in ~e(B~), give the multiplicities in the inclusion matrix of B2 ~ c B2, which will 
therefore coincide with that of Bo ~ c B o. Q.E.D. 

The next result will not  be used here but it may  be useful for constructing 
examples of  subfactors. Related results on periodic sequences of commut ing  
squares can be found in [W].  

6.2 Corollary. Let  

be like in 6.1 and let 

Bo CZ A B1 

C ~ u 

B~ c B B1 

D 

B o c a B 1 c~,4, B2 c ~  B a c . . .  

k..) U k.) k.3 
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be the corresponding iterated sequence o f  commuting squares. Let M = U , B .  ~, 

N = U,B1, ~. Then 
1 ~ M is a factor iff A is irreducible 
2 ~ 

3 ~ ' 

Proof. 
3 ~ (b) 

N is a factor iff B is irreducible 
I f  N, M are factors then 

(a) [-M:N] = IlCII 2 = IIDI] 2 

(b) H ( M I N ) =  l n [ m : N ]  so that Eu,~M(eo)~C for  the Jones projection 
e o c M .  

1 ~ 2 ~ follow by Section 2 and 3 ~ (a) is a particular case of 1.5 in [W]. Then 
follows by [P iPol ]  and, again, by [W]. Q.E.D. 

6.3 Lemma. I f  N c M has finite depth then N i c N i -  ~ and Mi_ 1 c M i have finite 
depth for  all i > 1. Moreover the standard matrices for Nz~+l c N2~, Mzi c Mz~+ 1 
coincide with that o f  N 1 c N and the standard matrices of  N2~ c N2i_~, 
Mzi -1  c M2i coincide with that o f  N c M.  

Proof. If C~ is the matrix of the inclusion N[ n N c N[ n M then by 2.9 in [PiPo3] 
we have [ ]Ci I [2<[M:N] .  Since s u p d i m ~ ( N [ n M ) < o o  it follows that 
supdim ~e(Ni c~ N) < oe. Thus N 1 c N has finite depth. The rest follows by 1.8 in 
[PiPol  ]. Q.E.D. 

The previous lemma and 6.1 show that in the finite depth case the sequence of 
commuting squares 

M '  n Mzio c M '  f3 m2io+ 1 c M '  n M2io+ 2 c . . .  

kd t.) Y 

M ' l n M z i  ~ ~ M ' l n M 2 i o +  1 c M ' l n M z i o +  2 c . . .  

for io large enough comes by iterating the basic construction for the first com- 
muting square, like in 6.1. The next result clarifies what are the inclusion matrices. 

6.4 Lemma. Assume N c M  has finite depth and let A=(akl)~$g, k o e K ,  
A 1 = (akm)f?gg,, k 1E K 1, be the standard matrices o f  N c M respectively M c M1. 
Let  M.  be the Jones' tower of  factors and i o > cardK,  cardL1 + 1. Then the 
commuting square 

m '  n M 2 i  ~ c n  M '  n M z i o +  1 

t.) u 

m'l  c~ m21o c alt m ' , n m 2 , o + l  

has the corresponding inclusion matrices and satisfies the conditions of  6.1. Moreover 
there are trace preserving isomorphisms between the pairs M'I c~ Mzl o c M '  c~ M2io 
and M '  nM2io_  I c M '  nMz io  and respectively M'I n Mzio+1 c M ' n  M21o+l and 
M ' I  ~ m21o+ 1 c M~ n M2io+ 2. Via these identifications the inclusion matrices for  
M '  1 n m z i  ~ c M '  n M 2 i  ~ and M'I nM21o+l c M '  n M z i o + l ,  in the commuting 
square, are A t respectively A 1, in particular card L = card L 1. 

Proof. The first part is clear by 6.3. The last part follows by observing that if Jgo, 
J~o+l are the canonical conjugations in LZ(Mio, 3) respectively LZ(Mio+  1, "c) then 
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Jio(M' n M2io)Jio = M'  n M2io, Jio(M'l n Mzio)Jio = M '  n Mzio_ 1 and 
Jio+a(M'x n M2,o+ ~) Jio+ ~ = M'a ~ M2,o+ ~, d~o+~(M' n M2io+l)Jio+l 
= M'i n M21o + 2. But by 6.3, 3.2, the corresponding applications Jio.J~o, Jio + l'Jio + 1 

are trace preserving. Since the algebras are finite dimensional it follows that there 
exist the required trace preserving isomorphisms as well. Q.E.D. 

We mention that the use of the reflections J~.Ji as antiautomorphisms of 
M ' n  M2~ was discovered by M. Pimsner and the author and, independently, by 
Ocneanu ([Oc]). Moreover in ( lOci )  the reflections and the commuting square 
conditions are suitably used to give a complete intrinsic description of the sequence 
{M'l n Mi c M '  n M i } .  

6.5 Definition. If N c M has finite depth and A = (akt)~ 2 ,  is its standard matrix 
and if i o = max {card K, card L + 1 } then 

M ' n M z l  ~ c M ' n M 2 i o +  1 

u u 

m'~ n m21o = m'lc~m2io+l 

is called the canonical commuting square associated with N c M. 
We say that two commuting squares 

B~ c B~ 

u t..) 

B~i c Bli 

i = 1, 2, are isomorphic iff there is a trace preserving isomorphism of B~ o n t o  B~ 
carrying B~I onto B~2, i, j = 0, 1. 

We can now derive the classification result for subfactors, in terms of classifi- 
cation of their canonical commuting squares. 

6.6 Theorem. Let  N c M,  N O c M ~ be pairs of  hyperfinite type II 1 factors with 
finite depth. Then N c M and N O c M ~ are isomorphic iff their associated canonical 
commuting squares are isomorphic. Thus, the subfactors of  finite depth of  the 
hyperfinite type I I  1 factor are completely classified by their canonical commuting 
squares. 

Proof I f  the commuting squares are isomorphic then their corresponding iterated 
sequences will be isomorphic by 6.1, i.e. there will be a trace preserving 
*-isomorphism of u (M' n M.) onto U , ( M  ~ n M ~ carrying M '  c~ M, onto 

M ~  ~ M ' a n M ,  onto M ~  ~ Taking M o =  w ( M ' n M , )  w, N o 

= u (M'~ c~ M.) w, M ~ = U , (M ~  n M ~ )w, No o = U , ( M  o, c~ M~ w, it follows that 
N O c M o is isomorphic to N ~ c M ~ By Theorem 4.9 it follows that N ~ M is 
isomorphic to N o c M ~ The converse implication is trivial. Q.E.D. 

As the previous theorem shows, classifying the subfactors of finite depth 
amounts to the investigation of the corresponding commuting squares. By 6.4 the 
algebras, the traces and the horizontal inclusions involved are completely deter- 
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mined by the standard (pointed!) matrices of N c M, M c M 1. Moreover the 
vertical inclusions are determined by the same matrices up to some possible 
permutations of the sets of indices. These matrices and the permutations must 
satisfy some very strong conditions of matching the traces and the dimensions: for 
instance by 6.4 the Perron Frobenius eigenvectors of AtA and A irA1 must coincide 
(via the identification of L, L 1 resulting from 6.4). Also the dimensions should 
satisfy A ( h l ) t ( A l h l t ) i - l l ) ~ = ( Z h t ) i t ) o ,  w h e r e  V0=(6kok)k, v l = ( 6 k t k , ) k  ~ and 

= ~ I 1 l being the identification of L with L l given by 6.4. ,4 (akv)~r~, with akt~ = akt , --~ 
In many situations these conditions impose A 1 = A. This can be easily seen for 

II A II 2 = [M: N] < 4, where one has to analyse only the matrices coming from the 

Dynkin diagrams A,, D,, E6, ET, E 8 and in fact even for II ALI 2 < 2 + w/5. Then 
direct simple computations can be used to deduce that if 

B o CA B1 

A ' w  w A  

B ~ = B ~ 

A t 

is a commuting square with A = A,, D,, E6, E7, E8 then there will be no small 
perturbations of B ~ to still satisfy the commuting square condition with Bo, B ~ 
unless it is of the form vwB~ * for some unitary elements w~Bo,  veB~ riB1, 
with w B ~  B ~ Thus the number of commuting squares in 6.5 with given 
matrices is bounded. But if [M: N]  < 4 then N c M automatically has finite depth 
and N ' c ~ M  = C (as first noted by Jones). Indeed if [ M : N ]  < 4  and 
N ~ M c e l M 1  c e z m  2 ~ . . .  is the Jones' tower then e 1 v e 2 v . . .  V e, = 1 (cf. 
[J1])  so Alg{e 1 . . . . .  e ,_l}e,  Alg{el . . . . .  e ._l} has support 1. Thus 
N ' ~ M , , _ l e ,  N ' n M . _ ~  has support 1 so N = M has finite depth by Section 3. 
Thus Theorem 6.6 completely classifies the subfactors of index less than 4 in terms 
of their associated commuting squares, coming from their higher relative corn- 
mutants picture, which in turn, by the above discussion, are finite in number. In 
fact, in case tl A 112 < 4, the above observation on the combinatorial problem of 
estimating the number of canonical commuting squares is superceded by the 
complete list of such objects corresponding to indices less than 4 announced in 
[Oc]. We use in the next corollary only the finiteness of the number of canonical 
commuting squares of small indices resulting from the above remarks, without 
however giving further details on the proof. 

6.7 Corollary. Up to conjugacy, there are only finitely many subfactors N of index 

4C0S 2 ~ in the hyperfinite II 1 factor M, for each n ~ 3, and all have finite depth. 
n 

Moreover if the subfactor N has only the Jones projections e 1 . . . . .  e, in its 
relative commutant in M ,  then N c M coincides with the Jones' subfactor of index 

n 
4 cos 2 - .  

n 
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Note that the last part of the corollary is just a simple consequence 

of 4.9 and of Jones' result ( [ J l ] )  that if [ M : N ]  = 4 c o s  2~- and N ' ~ M , , =  
n 

Alg{e 1 . . . . .  e,} then N'c~ M k = Alg{el . . . . .  ek} for all k. Thus M'~ c~ M c 

M ' ~ M  coincides with the Jones'  pair of factors of index 4cos 2 ~- which is 
n 

antiisomorphic to itself and thus it is isomorphic to N c M by 4.9. 
We mention that one can prove under very general assumptions that the 

commuting square problem has only finitely many solutions (up to isomorphism), 
when the dimensions of the algebras involved are fixed. 

As concerning the index > 4, the case < 2 + x/5 is still tractable, since the 
matrices of such small norm can actually be computed. One can show for instance 
that only finitely many of them may produce commuting squares like in 6.4. A first 
result of this type was proved by M. Pimsner and the author (1983 unpublished) for 
finite matrices tending to the infinite matrix: 

In fact to show this it is sufficient to consider the infinite matrix itself describing 
the matricial inclusion of type II  1 algebras with atomic centers like in I-PiPo3], 
where the problem becomes quite easy. The same arguments can be used to settle 
the case of the other infinite matrices (and thus accumulation points) of square 

norm less than 2 + , ~ .  
This shows that there can be only finitely many subfactors of finite depth and 

index between 4 and 2 + , ~  in the hyperfinite II1 factor. Note however that 

although by [P iPo l ]  subfactors of index < 2 + x/5 satisfying EN, nM(eo)~C 
automatically satisfy N' c~ M = C, the finite depth condition doesn't follow auto- 
matically. 
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