Invent. math. 101, 1943 (1990) Inyentjones

mathematicae
© Springer-Verlag 1990

Classification of subfactors: the reduction to commuting
squares

S. Popa

University of California, Los Angeles, Department of Mathematics, Los Angeles,
CA 90024, USA

Introduction

In [ J1] Jones introduced the notion of index of a subfactor of a type II, factor. This
concept, as well as the results in [ J1], proved to be very deep and enlightening for
numerous aspects of the theory of type I, factors. One of the surprising results in
[ J1] is the characterization of the possible values of indices of subfactors (less than
4) as being the same as the set of square norms of matrices with nonnegative integer

. _ s
entries (up to 4), that is 4cos®*—, n = 3.
n

Among the operator algebraic problems arising from Jones’ work the most
important are the characterization of all real values > 4 that may occur as indices
of subfactors N = M with trivial relative commutant N'n M = C and the classifi-
cation of subfactors having the same index when the ambient factor M is the
hyperfinite I1, factor. One way to approach these problems is by finite dimensional
approximation. This means to construct finite dimensional subalgebras B, < M so
that B,T M, A, = B,~n N1 N. In addition the algebras A, = B, should satisfy the
so-called commuting square condition (*) Eg E, ., = E, , Eg denoting the trace
preserving conditional expectation onto B. The subfactors in [ J1] do have this
approximation property and in fact the corresponding sequences A, < B, are
uniquely determined by an initial commuting square

B, « B,
U U
Ay < A,

the rest of the sequence being obtained by an iterative construction.

We prove in this paper a generating result for pairs of hyperfinite factors
N < M which will show in particular that all subfactors of index [ M : N] less than
4 arise in this way, from an initial commuting square of finite dimensional algebras,
with inclusion matrices of norm [M:N]'? and having dimensions and traces



20 S. Popa

determined by these matrices. This result reduces the classification of such sub-
factors to the classification of some finite dimensional commuting squares and this
in turn is a purely combinatorial problem. To describe in greater detail our results
we’ll recall some of the necessary background.

It has been noted by various people (Pimsner-Popa, Jones in 1983, Ocneanu
1984) that there are some (almost) canonical finite dimensional subalgebras
B, = M, associated to N — M, that satisfy (#): these are the relative commutants in
M of the algebras in the Jones’ tunnel of subfactors M SN > N; o N, o. .., ie
B; = Nin M. At each step i, N; (and thus B;) are unique only up to unitary
conjugacy by elements from the previous step N;_, (cf. [PiPo1]}). And the problem
was posed on whether one can choose the tunnel N; such that N;~ M generate M
and N;n N generate N, a result that would reduce the study of N <« M to a study
of finite dimensional commuting squares.

Ocneanu was the first to realize that this generating problem may have a
positive solution if N'n M = C and supdim Z(N;n M) < o0, a condition he
called finite depth (in fact an equivalent form of 1it). Since if
NcMcM,cM,c...isthe Jones’ canonical tower of factors associated to
N < M then the finite dimensional algebra N;n M is antiisomorphic (and thus
isomorphic) to M’ n M, ;, the condition supdim Z(N;n M) < oo is the same as
supdim (M " M,;) < 0.

We prove in this paper the folowing generating result, without N'n M = C
being assumed.

Theorem. Let N = M be a pair of hyperfinite 11, factors with finite index. Assume
the Jones® tower of factors N M <« M, = M, < ... satisfies

supdim Z(M' n M;) < oo. Then there is a choice of the tunnel of subfactors
M>No>N,oN,... such that N;nM1TM, N;nN1TN. Moreover if

M = {J;M; then the pairs N =< M and M "M < M’ A M are antiisomorphic.

The case N'n M = C of this result has been announced at various conferences
during 1987-1988 by Ocneanu ([Oc]), however without presenting a proof since
then.

The above theorem reduces the classification of subfactors with the property
supdim Z(M' " M;) < oo to the classification of sequences {N;n N =« NinM},.
But these sequences are uniquely determined by an initial commuting square

7
Ny, "M < Nigsy n M,
() ()
’
Néo Nn N < Nio+1 M N,

for some i, large enough, with i, the inclusions, the dimensions and the traces
determined by some integral matrices of norm [M:N7]*2. Moreover, since
[M:N] < 4 implies the finite depth condition, we get a complete classification of
subfactors of small index in terms of commuting squares:

Theorem. The conjugacy class of a subfactor N ¢ M with finite depth of the
hyperfinite 11, factor M is uniquely determined by the isomorphism class of a
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commuting square of finite dimensional algebras canonically associated to the inclu-
sion N = M. Moreover, the subfactors of index < 4 automatically satisfy the finite
depth condition, so they are all classified by their corresponding commuting squares.

So the problem remains to classify the corresponding commuting squares. In

case the number is small (for instance <2 + ﬁ) their number can actually be
estimated. Moreover, in the case [M:N] < 4 the analysis of the commuting
squares has to do only with the simple matrices corresponding to the Dynkin
diagrams A,, D,, E4, E,, Eg, (these are all possible matrices of norm < 2). One can
actually obtain:

Corollary. For each n = 3, there are only finitely many subfactors (up to conjugacy)

of the hyperfinite 11, factor, with index 4cos?”.
n

In [Oc], Ocneanu gave an intrinsic characterization of the sequences
{NinN a N;nM}, in case N'n M = C, describing them as group-like objects
and announced a full list of such objects for [M: N] < 4. Thus a complete list of the
subfactors of index < 4 of the hyperfinite II, factor can actually be given.

An important application of the case N'n M % C of the theorem is the
classification up to outer conjugacy of (not necessarily outer) actions of finite
groups G on the hyperfinite I, factor R and more generally of the classification up
to conjugacy of the subgroups isomorphic to G in Aut R/int R (i.e. Jones’ theorem
in [J3]): this follows by taking a partition of the unity with |G| projections p, of
equal trace in M, R = p,Mp, and by taking N = {®,.c9(x)|xeR = p,Mp,}, where
geAut R is a lifting of G = Aut R/Int R. This application will be discussed in a
more general setting in a sequel to this paper.

The proof of the theorem is based on the key observation that if
supdim & (N;n M) < oo then the algebras B = N; v (N~ M) satisfy Eg(x) = cx,
xeM ,, with a constant ¢ > 0 independent on i (see 3.8, 4.3). Since N, are all
hyperfinite (cf. {C]), N; v (N;n M) can be approximated by relative commutants
N, M, k > i(see 4.4). Thus, by using the inequality one can choose recursively the
tunnel N; such that R = | J,(N;n M) satisfies Ex(x) = cx, xe M .. By [PiPo1] this
means R has finite index in M, [M:R] £ ¢~ 1. The inequality also shows that given
xe M, and a choice of N; up to j, there is a choice of N;,j < i £ k,sothat Ny n M
contains a certain “percentage” of x. If this would be true for arbitrary x then the
resulting R would equal M. If not, there would be xe M and j so that x L uRu* for
all unitary elements u in N (4.6). But by the Rohlin type lemma in [Po4], used here
in a form we call the linearization principle (5.1), one has span uRu* = spanN ;RN
= M. Thus x =0 and the theorem is proved (4.9). Then Section 6 contains
applications of the main theorem to the classification of subfactors.

The uniform bound from below Ey | (%) 2 ¢x, xeM ., i 2 0, can be
deduced from [Po3]. We included a complete and different proof here for the
reader’s convenience. The proof is a consequence of the uniform bound for local
indices obtained in Section 3, which in turn follows by the general results on
sequences of commuting squares in Section 2. Part of the algebraic considerations
in Section 3 are of a similar type to some work in [W1, [GHIJ].
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The proof of the main theorem in this paper was presented at the Annapolis
Conference on “Knots and Operator Algebras” May 1988 and at the AM.S.
Summer Institute on “Operator Theory and Operator Algebras™ August 1988.

1. Preliminaries

1.1. Jones’ basic construction and the tower of factors. Let M be a finite von
Neumann algebra with a normal finite faithful trace 7, t(1) = 1. Denote | x|,
= 1(x*x)'/2, for xe M, and L*(M, 1) the completion of M in the norm | ||,.

If B < M is a von Neumann subalgebra of M then we denote by Ej the unique
7-preserving conditional expectation of M onto B. Also, we denote by e, the
orthogonal projection of L?(M, 1) onto L*(B, 1) = L*(M, 1). Eg, the projection e,
and the canonical conjugation J on L*(M, ), defined by Jx = x*, are related by the
properties:

1.1.1 (i) If xe M then xe B iff [x, e5] = 0.
(i) egxeg = Eg(x)eg, xe M.
(i) [J,ez] =0.

If M is a type 11, factor and N = B < M is a subfactor then the Jones’ index of
N in M, [M:N], is the Murray and von Neumann coupling constant of N in its
representation by left multiplication on L?(M, t). Thus, the finiteness of [M:N]
means that N’ (or equivalently JN'J ) is finite, and its value can then be recuperated
as t(ey)” !, T being the (unique) normalized trace on JN'J. The construction of the
finite factor JN'J is in fact a major tool in studying subfactors: it is called the Jones’
basic construction. We list now some of its properties:

1.1.2. Assume [M:N] < 0. Define M, = JN'J. Then M, is a type II, factor and
we have:

(1) M, =M u{ey}) =span{xeyy,x, ye M }.

(i) [M,:M]=[M:N].

(iii) t(eyx) = [M:N] 't(x), xe M, 1 being the unique trace on M, with
(1) = 1.

Thus, starting from the initial inclusion N <= M, the basic construction builds a
new inclusion M = M,, with the same index, with a projection e, = ey of trace
[M:N]7! implementing the conditional expectation (like in 1.1.1). We call e, the
Jones’ projection corresponding to N « M and write the basic construction
McM,.

We mention that in fact M, can be described abstractly: it is the unique II,
factor that contains M and a projection ¢, so that M and e, generate M, and so
that e, xe, = Ey(x)e,, xe M (cf. [PiPo2]).

By iterating this construction we get a whole rtower of factors
NcMcM, cM,c,...,with projections e,, e,,...,so that M, = “** M, ,
is the basic construction for M;_, = M,. They satisfy:



Classification of subfactors: the reduction to commuting squares 23

1.1.3. (i) e xe;+y = Ey, ,(x)e;1,, in particular e, e;e;,, = [M:N] e, ,.
Also, e;e;, e, = [M:N] e,

(i) e,y €M;_y N M, . In particular e;e; = eje;, for |i — j| = 2.

(iil) t(e;4 ;%) = [M:N]7'1(x), xe M. In particular t(e;, ; w) = [M:N]™ ! 1(w),
for weAlg{l, e, e,,..., ¢}

1.2. The finite dimensional case. If N « M are finite dimensional then we can still
define M| = JN'J, which will be finite dimensional as well and will satisfy proper-
ties similar to 1.1:

1.2.1. M, = (M u {¢})” = span{xeyy|x, ye M }.

Moreover if M is any algebra containing a copy of M and a nonzero projection
e satisfying:

(@) [N,e] =0;
(b) xeN, xe = 0 implies x = 0;
(c) exe = Ey(x)e

then X xeyyr— Zxey defines an isomorphism of M,; onto the algebra
span{xey|x,yeM < 1\71} This observation gives an abstract characterization of
M, (see. e.g. [W]). We call M <« M, with the projection e, the algebraic basic
construction for N « M and E,.

By the definition of M, there is a natural isomorphism z+ JzJ between the
centers of N and M,. It can be alternatively described by: “JzJ is the unique
element z, € Z(M,) satisfying z,ey = zey”. This gives a natural identification
between the sets of simple summands of N and M, . If we denote by K this common
set and by 4 = (a3 )ex the inclusion matrix of N = M then the inclusion matrix of
McM,isA.

The case when M, has a trace which extends the trace of M and satisfies a
property similar to 1.1. was clarified in [J1]:

1.2.2. Let (s, )k be the traces of the minimal projections of N and (t,),.,, those of M.
Then the following conditions are equivalent.

1°. There is a trace 7, on M, such that t,|,, = t and 1,(xey) = 7,(X)7,(ey),
xeM.

2°. AA'(s,) = A7 1(s,) for some A > 0.

3°. A'A(t)) = A7 1(¢,)) for some A > 0.

Moreover if the conditions hold true then the scalars 4 of 2° and 3° satisfy
A =1,(ey) = || 4] "2 all irreducible components A4, of A satisfy || 4| = [l 4| and
{s,) (resp. (z,)) is a Perron-Frobenius eigenvector for AA’ (resp. A‘A).

Property 1° for the trace on M, is called the A( = 7,(ey)) Markov property. If
the above conditions are satisfied then one can iterate the basic construction
getting at each step the appropriate extension of traces satisfying the Markov
property.

If M = M, satisfies 1.2.2 we simply call it the basic construction and write
MceM,.
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1.3. The tunnel of subfactors. Jones also showed that given an inclusion of factors
with finite index N < M, there is a subfactor N; = N and a projection e,€ M so
that N < °°M is the basic construction for N, = N. This fact is made more precise
by the results in [ PiPo1]. There is a unique (up to conjugacy by unitary elements
ue N) projection eoe M such that Ey(eq) =[M:N]7'1. And if N, = {eq}' "N
then N, is a subfactor in N with the property that N <M is the basic construction
for Ny = N (ie. with e, satisfying eyxe, = Ey, (x)eg, x€ N). In particular N, is
unique up to conjugacy by unitary elements in N.

As before, we may iterate this construction k times and get a tunnel of subfactors
up to k, M %N D¢ IN; D¢ 2N, 23 | o¢ N, | o N, with [N;:N;, ]
=[M:N], e_;xe_;=Ey,, (x)e_, xeN,and tle_;) =[M:N]",0gisk— 1

Note however that while the tower N =« M < ©'M, = ©2M, < (with the corres-
ponding projections) is canonical and unique, the tunnel of subfactors

M >N ¢ 'N, 52N, o. ..

is unique only up to conjugacy by unitary elements, i.c. if N, N,,..., N, and ¢,
€_4, ..., €_,,,; are chosen then e_,eN,_, and N,,, < N, are unique up to
conjugacy by a unitary element in N,.

1.4. Other characterizations of [M:N]. There are two alternative descriptions of
[ M :N] that have been given in [PiPo1}: [M:N]~! is the best constant A for which
the basic inequality, Ey(x) = Ax, holds true for all xe M , . More precisely, if

AM, N) = max{1 = 0|Ey(x) = Ax,xe M, }

then A(M, N) = [M:N] . In addition, we saw in 1.3 that there is a projection e
(unique up to unitary conjugacy by elements in N) such that Ey(e) = A(M, N). The
basic inequality then shows that A(M, N) is the minimal scalar that can be the
expected value on N of a nonzero projection in M (see more on this in [Po3]).

Moreover, the module dimension definition of [M:N] can be made more
precise: it was shown in [PiPo1] that there exists {m;}; = M, a finite set, such that
En(m¥m;) = 6,f;, with ;e 2(N), M =Y ,mN. A set {m;}; like this is called an
orthonormal basis of M over N. Any such set satisfies Y ;m;m}¥ = [M:N]- 1. The
projections f; can be chosen to be all but possibly one equal to the identity.

Such an orthonormal basis obviously exists for finite dimensional pairs N = M
{and Ey) as well. It can be used to prove the abstract characterization of the basic
construction in 1.2. Moreover if the conditions in 1.2.2 are satisfied then Zm;m}
= A"! (4 asin 1.2.2).

2. Sequences of commuting squares
If M is isomorphic to the hyperfinite II, factor then a natural way to approach

index problems for subfactors N =« M is by approximating the pair N = M with
pairs of finite dimensional algebras B, = M such that B,TM, B,AnN1TN (see
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[PiPol, 3]). The natural condition to be imposed on the algebras B, is then:
Ep Ey = EB,.nN *)

This is called the commuting square condition ([Pol], [PiPol], [Po2]). Note
that if B = M satisfies (*) then max {1 2 0|Ep x(x) = Ax,xeB.} 2 [M:N]™! (cf.
[Po2]).

We will prove in this section some general properties for sequences of finite
dimensional subalgebras satisfying the commuting square conditions with the
Jones tower (or tunnel) of factors. We first consider two consecutive commuting
squares.

2.1 Proposition. Let N ¢ M <*'M,; =M, be two steps of the tower. Let B, = M,
By = My, B, © M, be finite dimensional subalgebras satisfying Eg Ey,, | = Ep, |,
i =1, 2. Suppose e, € B, and denote by p, the central support of e, in B,. Then we
have:

1°. By3xw>xp, € B, p, is an isomorphism;,

2°. e,Bye; = Bye, and B,p, = Alg(B,p, v {e,}) = span B,e,B,;

3°. By =~ Byp, <®B,p, is the algebraic basic construction corresponding to
By < By;

4°, If we identify the sets of simple summands of B, and B,p, via the equality
Boe, = e,B,e, (see 1.2.1) then the inclusion matrix for B, G B,p, is the transpose of
the inclusion matrix for B, = By;

5°. If (sy), is the vector giving the traces of the minimal projections of B, then the
traces of the minimal projections of B,p, are given by (1s,),.

Proof. Let g, = v {ue,u*lue%(B,)}. Note that e, < g, £ p,,9,€B, "B, and
that B, 3 x+ xq, € B,q, in an isomorphism. Thus, since e,xe, = Eg (x)e,, x€ B,,
it follows that if we denote B, = span B,e, B, then the inclusion
B,g, =°*B; ( = Bj q,) is the algebraic basic construction for B, = B, (cf. 1.2). In
particular the inclusion matrix for B,q, < B, is the transpose of the inclusion
matrix for By < B,.

We now show that ¢, = p, and that B; = B,p, and this will end the proof.

To do this we first show that p, = q,. We have g, = p v {I(xe,)|x€ B, } and
p, = v {l(ye;)|ye B,}, where I(z) denotes the left support of an element z. But by
[PiPol] and by the commuting square condition, if x = A7 'Eg (ye,) for some
y€B, then x = A71E,, (ye,) and xe, = ye,. Thus I(xe,) = l{ye,) and q, = p,. To
prove that B, ( = span B,e,B;)equals B,p, it suffices to show that e,B,e, = Bge,.
Indeed, since p, =g, =) ,me,mf for some meB,, with Eg(m¥m;)
= 0;;/;»f;€ P(B,) it would then follow that

Byp; = p2Byp; = qoBago Z me,B,e,mf
L

=) mBoe;m} < span Bye;B, < B,p, .
[

But e,B,e, < e,M,e, = Me,, so that e,B,e, = Xe, for some X = M. Thus
X = 17'Ey,(Xe,) = A7 'Ey, (e,B,e,) =« By, so that X < B,nM = B,. This
shows that e,B,e, « Bye, < e,B,e,, ending the proof of the proposition. Q.E.D.
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From 2.1 we can now deduce the following property for a sequence of
commuting squares:

2.2 Corollary. Let N M <® M, <®*M, < ... be the Jones" tower of factors and
B, = M,, i = 0, be finite dimensional subalgebras satisfying Eg Ey,, | = E,._,i2 1
and e;e B;, for all 2 £ i < n(where 2 <n £ o). Let K, (respectively L;) denote the
sets of simple summands of B,; (respectively B,;, ), n > i = 0, and identify K; (resp.
L;) with a subset of K;., (resp. L, ) by using 2.1. Denote K = | JiK;, L = | JiL;.
There exists a unique matrix of nonnegative integers A = (ay x With the properties.

1°. (ay)ex. describes the inclusion By; < By 4, for i 2 0, Jit1< n;

2°. (au)iex... describes Byiyy © Byiyz,120,2i+2 <

3°. K, L; satisfy L; = {le L|3ke K, with a,, + 0}
and K;, = {keK|3le L; with a,, + 0}.

4°. |A|* < [M:N] and A is irreducible iff (G heko, 1eL, 15-

Proof. The construction of K;, L;, K, L and (ay, ), with 1°,2°, follows by induction
from 2.1. To prove 3°, let p', p”, ¢’ be minimal central projections of B;,,, B;,,,
B;_, respectively, with ¢;, ;p" = ¢;, .4 and p'p" + 0. We must show there exists
some minimal central projection q” € B; such that ¢;,,p" = ¢;,,4" and ¢"¢' + 0.
Define q" = A" 'Eg , (p"e;4,). Since e;,,B;,,¢;,, =Be;,,, q' is a minimal
central projection in B;. Also Eg  (p")p'=ap’ for some a3 0. Thus
49" = A" 'qEg,,, (p"e;4,) so that

Pe1qq'e 0 = j’_lp,q/EBi+1(ei+ 1P€o€.1)=pqEg (e.1D")
=p(qe+1)Eg, (p")=ape,, 0.

Thus ¢'q” + 0.

The irreducibility condition for 4 follows by 3°. Moreover by 2.9 in [PiPo3] we
have ||(ay )iex. I < [M:N] for all n, so that | Al|* = lim, || (). 12 < [M:N].
Q.E.D. " )

2.3 Corollary. If {B;},»:»o are finite dimensional subalgebras (n < o) with
BicM; foriz0,EgEy. = Eg_,, fori=1,eeB,, foriz?2, and if there exists
io 2 0 such that dim Z (B, ,) < dim Z(B,,), then {B;},. >, with the projections
e,€B,, i 2 iy + 2, are obtained by iterating the basic construction starting from the
inclusion B, < B, ., and at each step the unique trace T of WM, is a
A=[M:N]"'—Markov trace. Thus, if A= (ay)y is the inclusion matrix of
B;, < B,y and (s,), are the traces of the minimal projections of B;, and (t,), those of
B, ., then

1°. The inclusions B;) = B;,.1 < B, 4, ... are givenby A, A", A4, . . .

2°. The traces of minimal projections of B, . ,; are given by ('s,), and those of
Biyiaje1 by (M),

3°. |AI? =[M:N]=A"'and || Ao||* = [M:N] for any irreducible component
A, of A.

4°. (53)x is a Perron-Frobenius eigenvector for AA' and (1;), a Perron-Frobenius
eigenvector for A'A.
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Proof. Trivial by 2.1, 2.2, 1.2. Q.E.D.

As 2.3 shows, the existence of a sequence of commuting squares satisfying
the hypothesis of 2.3 imposes restrictions on the index of N in M: we must have
[M:N] = | A||>. We now deduce that we “almost must have” N'n M = C.

2.4 Corollary. Assume there exists a sequence of finite dimensional subalgebras
B; = M,,i = 0, satisfying the hypothesis of 2.3. Then Ey. .. y(eo) = [M:N]~' 1 for all
Jones projections e, € M (i.e., projections ey for which Ey(eq) = [M:N]~11).
Proof. Let B;, = @& M,, «,, (C). Then by [PiPol] and 2.3 (see also [PiPo3]) we
have
(A'(AAYR)(ANT),

((AA")R) (A1)

H(B;y 254 11Bigs2;) = kzl (au(AA'YR) LA In

Since (4A")’7 tends (up to renormalization) to the Perron-Frobenius eigenvector of
AA', ie. to a scalar multiple of At, it follows that
A(AAYT) (AF
lim M(_Lk =A"1,
o ((A4YR)
Thus, since Y, (a,(AAYA) A = 1, it follows that lim;_, , H(By 4 2j+1|Bis+25)
=Ini~' Since M; =M, ,, is isomorphic to a reduction of the pair
M s M 5;+; by a projection in M, ,,; (cf. [PiPol]) it follows that
H(M; i 2;:11M;4;) = HM, . |M,) for all j 2 0 (cf. e.g. 4.4 in [PiPol]). Thus
from the commuting square condition we get
H(Biy12j+11Big+2;) S HM 125411 Mig12;) = H(M, 11 IM)) = Ini™t
which shows that H(M, .,|M;)=1ni"'. By [PiPo2] this implies H(M|N)
=Ini"!'and Ey e = [M:N]"'1. QE.D.
If B;, i = 0, satisfy the conditions of 2.2, then e;e B; for all i = 2 implies that
UBY =« UMY = M is a type II; von Neumann algebra (since {e;}/ is a type II,
factor). In fact { ), By follows to be a factor under very general assumptions. We will

prove this type of results elsewhere. For what we need the next easy consequence of
2.3 will do.

2.5 Corollary. Let {B,;};>, be like in 2.3 (with n = o), and assume the inclusion
matrix of By < By is irreducible. Then R =\)BY is a type 11, subfactor in
UMy = M.

Proof. Let e~ f be the minimal central projections of B,; respectively B,;. ;.
Arguing like in 2.4 (see also [PiPo3]) it follows that 1°. lim,,  t(e*’) = v?; 2°.
lim;_ , t(f"%) = w?; and 3°. lim,_ , t(e* 'f* %) = AY%a, v, w,, where (v,),, (w,}, are the
Perron-Frobenius eigenvectors of AA', respectively A‘A normalized so
that 07 =1, Y, wf =1, and A= ||A| "% Let pe 2(Z(R)) and p,e 2(Z(B,))
such that ||p, — pll, = 0. In particular we have: 4°. [Py, Pan+1 — Panll2 = 0. Let
E,c K,F,c Lwithp,, =Y cp. € Doy = Duer, f©" Then 3°, 4° show that, for
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n large enough, if ¢ "f"" 4 0 (or equivalently a,, + 0) for some keE,, € L, then
leF,. Thus

F,={leLl|a, =+ 0 for some ke E,}

and p,,4; = Paas SO in fact p,,,, = p,, again by 3°, 4°. But this contradicts the
irreducibility of A, unless E, =K, F, =L, p,, = 1. Q.E.D.

We will refer to the property supdim 2°(B,) < oo for an increasing sequence of
finite dimensional algebras {B,}, by saying that it has bounded (or finite) growth.

3. Higher relative commutants and finite depth

Approximating a pair of hyperfinite factors N « M with finite dimensional sub-
algebras satisfying the commuting square condition (*) is in fact quite difficult.
However, there is a simple way of producing finite dimensional subalgebras of M
satisfying (*) by taking the relative commutants in M of some subfactors N of N.
Indeed by [Pol] we then have Eg .y Ey= Eg .y Also, if [N:N]< o then
N~ M is finite dimensional. A possible choice for N are the factors in the tunnel.

3.1 Proposition. Let M N ¢-'N, o 2N, o ... (respectively
McaM, M, .. \) be a choice of the tunnel of factors (resp. the Jones tower).
Then we have

1°. Nin M, M’ nM; are finite dimensional.

2. EN;nMEN- = EN;mN,’ EM;(HMJEM‘ = EM,li,for k<i<j.

3 eg ey, ENINnM, ey, e;5,..., ;e M N M,

Proof. By [J1] N;n M, are finite dimensional and by [Pol] we have the corres-
ponding commuting squares. Q.E.D.

Although the tunnel of factors N, is not uniquely determined (see 1.3) the
resulting pair of algebras | J(N;nN) = { J(Njn M) is actually unique up to
isomorphism.

3.2 Proposition. 1°. Let M N oS¢ !N, o° 2N, ...,
M o8N 2N 5N ..., be two choices of the tunnel. Denote
R= U(N;AM),Ry=J;(N;AaN)* <R R®=|J,(NY~nM)~,
R§ = {J;(NY A" N)* = R®. Then there exists a trace presenting isomorphism of R
onto R° carrying R, onto R and N'; " M onto M' " M;, | ;>,.

2°. Let N M c®'M, c®*M, c ... be the tower of factors and M = UnM,,
R'=M M, Ry=M,nM. Then there exists an antiisomorphism
AN A M) (M "M, y) with &(N;nM)=MnM;,,, ®(N;nN)
=M \nM;,,, Ple_.;)=ej,,. Moreover if Nc M satisfies Ey. . pleo)
= [M:N]"!1 then & is trace preserving and can be uniquely extended to a trace
preserving antiisomorphism of R onto R* carrying R, onto R}.

Proof. 1°. By [PiPo1] (see 1.3) it follows that there exist unitary elements u,e N?,
i20,such that u;_, ... uoNuf ... u¥ , = N?, i= 1. Define 6:R — R® by a(x)
=lmy, u g .. ugxud .. uf . I xeN;n M, then
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Ui_y ... Ugxud ... uf e NY M so that

i

* * * * * *
Uy ooty o ugxud o uE JuF oy = ugxug L ur

1

for all m > i — 1. This shows that ¢ is a well defined trace preserving isomorphism.
Obviously a(R,) = RJ.

2°. By [PiPo2] one can represent recursively each M, on L*(M, ). Thus
UM, c #(L*(M, 1)) and N, = JM/,,J will form a tunnel of subfactors in M.
Since JM'J = M we also have JM' (M) = | Jd{N;n M). Thus the reflec-
tion ®(x) = JxJ gives the desired antiisomorphism, which, in case Ey. . s(eg) = 4, 18

trace preservmg by [PiPo2] and thus can be extended from U (N;n M) onto
M M. QED.

3.3 Definition. The pair of algebras R, = |J(N;inN)c | Ji(N;nM)=R is
called the core of the inclusion N — M. Note that the isomorphism class of
R, © R doesn’t depend on the choice of the tunnel.

Since the algebras M’ n M, satisfy the conditions of 2.2. (cf. 3.1) we can now list
the corresponding properties of these algebras:

3.4 Corollary. Denote B = N;_, "M and B,= M' ~ M,. Then B? satisfy condi-
tion (*) in Section 2 and B,, i = 0, satisfy the hypothesis of 2.2 and they have the
properties:

34.1. If p;y, is the central support of e;,, in B;,, (resp. of e_; in B, ,) then
B;+2P:+2 =spanB;. ;4 ;B4 (resp. B, 2pis 2 = span By je_ B}, ) and
B, 5% ?B;, ,p;,, (resp. BY, | ~ B?, \p,., < °'BP,,) is the algebraic basic con-
struction for B;  B;,  (resp. B? < B?, ).

3.4.2. Identify the sets of simple summands of B,; and BY; by 3.2.2 and denote it by K,
i 2 0, and those of By; . 1, B%: .1 by L;, i 2 0. Via these identifications the embeddings
K, =K;y, (or LicL;.,) defined in two ways by either the application

Z(B)sq'—q" e Z(B 1+2Pl+z), with q'e;.,=q'es, or by Z(BY)aq+
q' € Z (B, ,pi+ o), with q"e_, = q'e_,, are the same.

343. Let K =K, L =\J;L;. Then Ky = {ko} and there is a unique pointed
matrix A = (ak,)m, koeK such that (ak,)kgx describes B,; = B,; ., and BY, < BS; .,
while (ak,)kei(.H “describes B, < BZ,+2 and BY,, < BY,,,. Moreouer K;, L,

satisfy
L;={leL|3keK; with ay,+0},
K;,;={keK|3leL; with a,#*0}.
3.4.4. A is an irreducible matrix and | A||*> < [M:N].
Proof. cf. 2.2 and 3.1, 3.22. Q.E.D.

3.5. Remark. The pointed matrix (4, k,) associated to the sequences N;n M,
M’ n M; like in 3.4 coincides with the standard matrix defined in [Po3]. It is also
equivalent to Ocneanu’s principal graph for N' n M = C. In fact for what we need
in this section the definition and construction of A4 are not necessary; the result 3.8
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which will be used in the proof of the main result in Section 4 can be derived
directly from the general result 2.2.

We now mention the particularization to the case B; = M’ n M, of the results
on sequences of commuting squares with sup dim Z(B;) < oo in Section 2. Follow-
ing ([Oc]), if the sequence of higher relative commutants of N = M has bounded
growth, then we say that N = M has finite depth. In fact this terminology is used in
[Oc} for subfactors with N’ M = C. We will use it here for subfactors N =« M
without assuming the trivial relative commutant condition. We also introduce
another terminology, which although less established seems better suited.

3.6 Definition. The inclusion N < M has finite depth (or finite growth) if
supdimnZ(NinM)(=dimZ (M A M,;,,)) <
(ie. if B; = M’ n M, have bounded growth).

3.7 Corollary. If N = M has finite depth then:
3.71. Eyayleg) = [M:N]™* 1 and the antiisomorphism of 3.2.2 is trace preserving.

3.7.2. There is an iy such that for all i 2 iy, B;; =®*B;,,, BY,, <*"'B?_, are the
basic constructions for B; = B, , respectively B? < B?, | and the unique trace t of M
isad={[M:N]"! Markov trace on each basic construction. Thus the inclusions
By © Byiy 1, BY; < BY; ., are described by A and By, < By;y 5, By < B, by
A’ for 2i 2 iy, A being the standard matrix defined in 3.4.3.

3.7.3. If p (resp. q) is a minimal projection of B} or B; (resp. BY,,; or B;, ,;) which
belongs to a simple summand labeled by the same k (if i is even) or | (if i is odd) then
t(q) = At(p).

3.74. |A|* = [M:N]andfor2i = i the traces of the minimal projections of B,;, BS;
give the Perron-Frobenius eigenvector for AA', A being the standard matrix.

3.7.5. The algebras R = | J(N;in M) and RAN; = | J(N;nN,), j =0, are type
I1, factors.

Proof. By 2.3, 24 and 3.1, 3.22 we get 3.7.1-3.7.4. Moreover, by 2.5 and
32 it follows that R=|{J(NjnM) is a factor. Since [M:N;]<oo and
Ey. mEn; = Ey, AN, by [PiPo3] it follows that the embedding matrix
of NinN;cN;nM, izjz0, has square norm majorized by
[M:N]’*!. Thus, since supdimZ(N;nM) < co, supdimZ(N;nN) < o
as well. Thus N;,; = N, has finite depth and R N; = { J(N;n N,) is a factor by
the previous part. Q.E.D.

Corollary 3.7 yields an important property for subfactors with finite depth:
there is a uniform bound for the local indices [pMp: N,;p] of the inclusions N; = M,
independent of i and of the minimal projection p of N;~ M. More precisely we
have:

3.8 Theorem. Assume N < M is a subfactor of finite depth. Let A = (@ e koekK,
be its standard matrix and let (v,),.x be the Perron-Frobenius eigenvector of AA'
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normalized so that v,, = 1. Let i = 0 and p be a minimal projection of N%;_, n M (or
M’ N M,;) which belongs to a simple direct summand labeled by ke K. Then
[pMp:N,;_,p] = v} (respectively [pM,;p: Mp] = vi). Moreover if q is a minimal
projection in Ny, M or M' " M,; ., in the simple summand labeled by le L then

2
[qMq:N,;q] = [M:N]™! <; aklvk> (respectively[qMZin:Mq]

= [M:N]*1<Zak,vk>2> .
%

Proof. Since Ey..pleq) = A =[M:N]', by [PiPo2] and 3.1 it is sufficient to
prove the statement for the tower. By [PiPo2] we then have [pM,p:Mp]
= [M,;:M](p)* = A~ *1(p)>. Let j, 2 0 be so that M' A My, « M A M,;,, is
the basic construction for M’ M,; c M'nM,;,, forj 2 j,. By 3.7 if j 2 0 and
if pi’ is a choice of a minimal projection in the k-th summand of M’ n M,; then
t(p¥) = 4/~ ¥oz(p?®). Thus
[P Mope’: Mpi?] = A~ 2t(pi’)? = A7 2Pt (po)

But by 3.7 (2(p#°)),x is the Perron-Frobenius eigenvector for 44’ normalized by
T(pile) = 2. Thus [piiM,;pil:Mp¥1 =1 and [p'M,;p': MpH]'? coincides
with the k-th entry of the Perron-Frobenius eigenvector of 44" which has the k,
entry equal to 1.

Slmllarly if p?#*! is a choice of a minimal projection in the I-th summand of
"AMyji1,j 20, then (x(p/" 1)), = A'(x(pi’* *)), and

[pP/ ™ My pp7* s M1 ] = a(pp T 2AT M = oo )PAT 2T
Thus we get for j = jg,
A([p?j“Mquzz“liMpz”l]l’z)z = A7 ((pe)),
ATV pRIo My Mpgo ]! ),

This implies that A~ l”([pzf“MzJJ,“UZJ+1 Mp?i*1]Y2), is a Perron-Frobenius
eigenvector for 4°4 so that

Al/zAt([P ]DMZJOPZJO MPZN]I/Z) = ([PtszszHPthH:Mptzjﬂ]l/z)z .
This ends the proof of the theorem. Q.E.D.

4. Finite depth and the generating property

As we mentioned before, a general strategy for approaching index problems for
subfactors N = M of the hyperfinite I, factor M ~ R is to approximate N ¢ M by
a sequence of finite dimensional subalgebras satisfying the commuting square
condition (*). From Section 2 we saw that the finite dimensional subalgebras
BY = N;_, n M are the first to be considered that satisfy EgoEy = Epoy. Then the
approximation with B amounts to say that we may choose the tunnel N; so that

the core Ry = [ Ji(N;n N) c [ Ji{(N;jn M) = R coincides with N = M.
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Approximating N ¢ M with the sequence of higher relative commutants is
more rewarding than with other finite dimensional algebras, since the sequence of
higher relative commutants is canonical.

4.1 Definition. We say that N = M has the generating property if there exists a
choice of the tunnel of subfactors N, such that N;n M T M, N;n N T N. Note that
since Ey mEn= Ey nns Ni;n M1 M actually implies N;AnNTN.

We will prove in this section that if M is the hyperfinite 1, factor and N ¢ M
has finite depth (ie. supdim &(N;n M) < c0) then N ¢ M has the generating
property. The key observation allowing us to prove this generating result is that the
subalgebras B = N, v (N, n M) satisfy the basic inequality Egz(x) = cx, xe M .,
with ¢ independent of k. This important device will be a simple consequence of 3.8.
But first we need a simple formula which is implicit in [PiPo3].

42 Lemma. Letny, Co < 0. 1lfqy, ..., q,eP(M)is a partition of the unity in M,
with n < ng, and if P, © q;Mq; are subfactors with [q;Mq;: P;] < C,, then B =Y ; P,
satisfies Eg(x) = (ngCy) 1x, xeM .

Proof. Denote B, = Y 4;Mgq;. By [PiPo3] we have Ep (x) = ng 'x, xe M ... More-
overif ye B,,y = Xy,, with y;e q;Mq; then Eg(y) = ZiEP‘(y,-). Thus if y = 0 then by
[PiPo1] (see 1.1) we have Eg(y) = Y, [q:Mq;:P;]1™'y; = Cg'y. Altogether we get
for xe M, Eg(x) = EzgEp (x) 2 Cq ' Eg (x) 2 (Cong)'x. Q.E.D.

4.3 Theorem. Suppose N = M has finite depth. There exists ¢ > 0 such that given
any choice of the tunnel of subfactors {N},>, we have

Ey o ivamX) Zcex,xeM,
foralli=1.

Proof. Let {q}}; be the minimal central projections of N; n M. Then g} are also the
minimal central projections of N; v (N;n M). Thus N; v (N;n M) =) ;P with
Pi = (N; v (N{n M))q; subfactors in ¢;Mq;. Moreover if p is a minimal projection

in (N;n M)gq’ then pe P{and N;p = p(N; v (N;n M))p = pPip so that
[¢:Mq}: Pi]1 = [pMp:pPip] = [pMp:N,p] .
By 3.8 there is an upper bound on this indices,
sup{[pMp:N;p]|i 2 0,p minimal projectionin N;n M} = Cy < oo .

Thus [¢'Mg': Pi] < C, for all i, j. Moreover, since for each i the number of P{’s is
bounded by supdim Z(N;~ M) = n, < oo, the statement follows by 4.2. Q.E.D.

If ¢ is the uniform bound (from below) given by 4.3 then the above theorem
easily yields the existence of a tunnel N; so that R = | J;,(N;~ M)" has finite index
in M. This “almost” proves the generating property. To show all this let us first
mention a consequence of the hyperfiniteness of M and of [ J1].

44 Lemma. Let N c M be hyperfinite 11, factors with finite index. Let
M 2N o !N 2°-2 ., ¢ 'N,_| N, be a choice of the tunnel up to some i.
Let ¢>0 and F = N;v (N;n M) a finite set. Then there exists j=i and a
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continuation of the tunnel >°N;>°" "N, . ..2° /"IN, | o N, such that
xeN;nM,xeF.

Proof. Let { f!}, s » be a matrix unit for N; ~n M, where n labels the summands of
Nin M. Then x = Zx} f, with x € N;. Since N, is isomorphic to the hyperfinite
11, factor (cf. [C]), by [J1] we may regard it as generated by a sequence of
projections {e},},», < N; satisfying Jones” axioms e, e, = i€, [e, €,] =0
for |m — n| = 2, 1(e,,) = 4, where A = [M:N]~'. Thus for any § > 0O thereisp = 1
such that x"e,Alg{l, e}, ..., €,_;}. Let DN, 5%-iN? .. 5
N, ,—1 © N}, , be a continuation of the tunnel up to i + p. By [J1] there is a t-
preserving isomorphism between Alg {1, ¢, ..., e,_;} and
Alg{1,e%,_,,...,€%,_,,,}sending ¢ to e®,_,. Thus thereis a unitary element in
the ambient algebra N; such that ue®,_,u* = ¢;, 1 < k < p — 1. Thus, if we put j
=i+ pand N;,, = uN? ,u* 1 <k < p, then N,,, is a continuation of the tunnel
such that N, M o Alg{l, ¢}, ..., e,_;}3;x} for all n, r, s (and all xe F). Since
frse NinM c N;nM and x;,e;N;n M, if we take 6 small enough we get
NinMs . Zx fii=x,xeF. QED.

4.5 Corollary. If N = M has finite depth and N, M are hyperfinite 11, factors then

there is a choice of the tunnel {N},5 , such that the factor R = | )(N;~ M) has finite
index in M.

Proof. Let ¢ > 0 be the constant in 4.3. Let {x,}, « M, be a sequence of elements
dense in the unit ball of M, in the norm || |,. By 4.3, 44 we may choose
recursively numbers k, <k, <...<k,_, <k, ...and continuations of the tun-
nel N, ., >... DN, such that IEy; mM(x )H2 2 el X012, 1 £i < n. Indeed,

def
suppose we achieved step n — 1. By 4.3 we have y; = Ey (Np.. r\M)( X;) = ¢x;,

thus || y;|13 = 1(yx;) = ct(x?) =cf x;|12, 1<i<n By 44 we may choose
Neo «12 Ny, +2-..2 N, for some k, > k,_,, so that y; €,,N; n M. Thus,
since N, "M and N, _, v (N, _, 0 M)form a commuting square (cf. [Po1]), we
get || EN;‘nr\M(xi) ”% Z | E}\kaI v (N}, nM) EN;(an(xi) ”%
= Ex, amEn v v s =1ml B, v v~ M3 2 cllx; 3.
If we take now R = Un>1 N 0 M)” Upl(NkmM) then || Eg(x;)|32
= lim,, I Ey; ~m )13 2 el x; 1|3 for all i. Thus || Eg(x )2 =clix||3forall xeM,,
by density. Since R is a factor (cf. 3.7.5), by theorem 2.2 in [PiPol] we get
[M:R]<c¢c™. QED.

We now show that if we can choose the tunnel N; so that {M:R] < oo, with
R = | J{(N;n M), then we can actually choose it so that R = M. We will prove this
by contradiction. So we need to know what the failure of the generating property
implies.

4.6 Lemma. Let N = M be so that there exists a choice of the tunnel N, i = 1, with
the property that R = U,-(Ngm M) has finite index in M. Assume N < M doesn’t
have the generating property. Then we have

(1) Ve >0, Vko =1, 3k, > ko, IxeM, |ix|l; =1, x| S[M:R]"* such that
1E, gae (91> S & Vi, €U(Ny, ).
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Proof. Note first that the property (non 1) reads:
{(Non 1) “Jg, > 0, ko = 1t such that Vk > kg, Yxe M with |[x||, = 1,
x|l < [M:R]V?, Jue¥(N,) such that ||E g .(x)[|, > & .

Assume (Non 1), instead of (1), holds true. Let then {x,}, = M be a sequence of
elements satisfying || x, [, = 1, || x, || £ [M:R]Y2, dense in the norm || ||, in the set
{xeM|||x|l, =1, | x| £ [M:R]"?}. Let also {y,}, < M, be a sequence of ele-
ments dense in the norm | ||, in M ,. We will find recursively 1 £k, <k, <
and a choice N?, i = 1, of the tunnel such that

(@) 1 Eno:~p(Xa)ll2 2 €03
(i) IIENk A 17 2 1 [M:RT Iy 13

Suppose k; <k, <...<k,-; and M>N>N{>...o>N] | have been
chosen. Let uy,e%(N) be such that ugNPu¥ = N, fori=1,...,k,_;. Then

Eg(uoy,ud) = [M:R]™ 'uoy,ul ,
so that there exists kC > k,_,, k% > k, such that:
EN;(gnM(HOynug) .2_ l/n[M:R]— luOynug .
Thus we get
Eu;;ngu;, . M(yn) =E u§iNko N Mu (.Vn)
= uoEng'nM(uoyn“o Juo 2 1u[M:R]™ Y-
Moreover, by (Non 1) applied to x = uox,u§, there exists u, € % (N o) such that

fl EulRu;(“oxnug)Hz > & -

But then, again by the definition of R, there exists k, > kO with:

||E uy (N, N Mt (uox u0)||2>80

Thus we also get:

I Eué‘ulNk u}‘u;,r\M( X2 =E u (N, ﬁM)ux“o( 2> g

But u¥u, Nutuy = NY,for 1 £ i< k,_,,so that if we put NY = u§u, N utu, for
k,_, <j<k, then both (i) and (ii) will be satisfied (also, since u¥u, N youtug
= u§Noio). This ends the proof of the existence of NY.

Let R® = ( ):(N?" n M). Then by (i), |Ego(»)I3 = [M:R]""||yll3, ye M, so
that [M:R°%] < [M:R]. Since R° + M, [M:R°] = 2 so by [PiPol] there exists
meM with ||m||, = 1, |m|| £ [M:R]"? such that Ego(m) = 0. But (i) shows that
| Ego(m} ||, = &4, a contradiction. Q.E.D.

4.7 Corollary. Let w be a free ultrafilter on N. With the notations and under the
hypothesis of 4.6, there exist x = (x,),e M®, || x|, = 1, | x| £ [M:R]*?, and there
exists k; < k, <. ..such that x LuR®u* for all unitary elements u in [ [,- Ny, -
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Proof. The construction of x, follows by applying recursively 4.6. Q.E.D.

It turns out that if By, B < M are von Neumann subalgebras of M then the
span of uBu* for u running in %(B,) is almost a B, — B, bimodule. We will prove
this technical result in the next section (see 5.1). Thus we get from 4.7

4.8 Corollary. With the notations and under the assumptions of 4.6, 4.7, there exists
x € M®, |[x|, = 1 such that x L(] [,N, JR*([ ] Ny,)-

Proof. By 4.7 there exists xe M®, || x|, = 1, with

def
x1X = span{uR‘”u*Ws%(H Nk")} .

Also by 4.4 we have [[,(N,. v (N, A M)) = X. Indeed, if
= (V€[ Jo(Ni, v (Ni, N M)) then by 4.4 for each n there is a w,e#(N,,) and
l > k, such that

. *
ynel/nwn(Nlan)Wn < WnRW;k .

Thus yewR“w* < X, where w=(w,),. Thus 5.1 applies and we get

xL(J[oNy,)R®([JoNy,). Q.E.D.
We can now end up the proof of the generating result.

4.9 Theorem. Let M be the hyperfinite 11, factor and N = M a subfactor of finite
index. If N has finite depth (i.e. supdim Z (M’ " M,) < oo for the Jones tower M;)
then N = M has the generating property (i.e. there exists a choice of the tunnel
N, i2 1, so that | J{N;n M) = M). Moreover, if M = U M; then there is an anti-
isomorphism of M onto M’ n M carrying N onto M|~ M.

Proof. Assume N « M doesn’t have the generating property. By 4.5 and 4.8 there
exists xe M°, x % 0, xLspan(] [,N, JR°([]., Ni,), where N, is a choice of the
tunnel such that R = U (N;n M) satisfies [M:R] < 0.

Since ExEy, = Egon,, [RIN; N R] £ [M:N{] (cf. e.g. [Po2]). Moreover, since
R contains the Jones projections in the tunnel, ey, e, e_,, .. ., it follows by
[PiPo2] that R contains the Jones projection for N; = M, ie. a projection fe M
with

Ex(f)=[M:N]'1.
Thus feR, Ey g(f) = Ex(f) = [M:N;]17'1, so that [R:N;nR] 2 [M:N,]. Al-
together [M:N,] =[R:N;nR]. But
[M:N,JEN;:N;,nR] =[M:N;nR] =[M:R]J[R:N;nR]

(cf. [J1]) so that [M:R] = [N;:N;n R]. It follows that if {m}, is an orthonormal
basis of N; over N;n R, then it is also an orthonormal basis of M over R, thus
Y MR = M. Put m; = (mk"),e M®. It follows that ) ,m;R” = M. But x LY ;m;R®,
a contradiction.

The rest follows by 3.2. Q.E.D.

Note that we also proved the following general result:
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4.10 Theorem. If N = M are hyperfinite factors with finite index and if there is a

choice of the tunnel N, such that R =|J)i(N;"M) is a factor and satisfies
Ep(x) = cx, for all xe M* and some ¢ > 0, then N = M has the generating property.

Proof. By the duality result 1.5 in [ PiPo1] it follows that if U (N, n M)" is a factor
then U (N, N,)" is also a factor, and more generally  J,(N, n N,;, )" are all
factors for i = 0. Moreover since © (N%;,; " M)¥ = U (N, n M)¥, it follows that
N c M has the generating property iff N, « M has the generating property.
Altogether this shows that in the above statement we may assume
R,= U(N,nM)”"nN;= Ui(N; N N;)* are all factors. But then the proof of 4.9
shows that N = M has the generating property. Q.E.D.

5. Proof of the linearization principle

We prove here the linearization principle that we used in the proof of Theorem 4.9.
The essence of this linearization principle is the noncommutative Rohlin type
theorem in [Po4].

5.1 Theorem. Let M be a finite von Neumann algebra with a finite faithful trace <.
Let B < M be a von Neumann subalgebra and S = M a vector subspace. Then

(span{uSu*|lue#(B)} + Bv BnM)™ =(spanBSB + Bv B n M)~ ,
the closures being taken in L*(M, 1).

Proof. We clearly have the inclusion <. Let £eL*(M, 1) with {uyu*, &) =0,
b, &> =0 for all ue#(B), yeS, beBv BnM. Let heB,, i<i=<n Pur
fiC">C,

Sy Aas ooy Ay) = exp(Ashy)exp(izhy) . - . exp(4,h,)y exp( — A,h,)
cooexp(= A1), &5

Then fis analytic on C" and vanishes on (iR)". Thus f vanishes everywhere on C".
Since any invertible element in B is a product of two elements of the form exp(ih),
with 1 € C, he B,, we obtain that {sys™ !, £) = 0, for any yeS and any invertible
element s in B. Let p_Lg be projections in B and se B invertible. Denote s,(f) =
tp + (1 — p), 5,(t) = t(1 — q) + q. Observe that s, (1) ™" = s5,(t7"), s,(t71) = 5,(¢7 1)
and that

1

Nt - -
iim ?s2(t)81(t)sys 'si()) 7 sy(6) T —psysTq) = 0.

[ 2ndle ]

It follows that {psys ~1q, &> = 0. We now deduce that {zyz* &> = Oforallze B.

It is clearly sufficient to prove this when spec(z*z) is finite. So let z = au, where

a = Tue;, with a; 2 0, Ze; = 1, e;€ 2(B), and ue ¥ (B). By [Po4] there is a refine-
ment f;€ B of the ¢;’s so that

};Léﬂ - ez;fj(B'f\M)(é) “2
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is small (the result in [Po4] is stated for B'n M < B but the general case used here
has exactly the same proof). But since Y ;fi(B'" M) = B v B'n M and egyp - p(¢)
= 0, ezfj(B,ﬁM)(f) = 0 as well. This shows that we can make || ZlfjéfJ I, as small as

we please, with f;e 2(B) refining the es.
Since < fuyu*f;, &> =0, for i = j, it follows that

{zyz*, &> = Lauyu*a, &) = <Zj;-auyu*afj, §>

= <auyu*a,Zj}ffj> = <zyz*,Z]§ffj> .

By the Cauchy-Schwartz inequality

|(zyz*, O] = llzyz* |,

LS

2

and for fixed z, y we can make this last term as small as we want. This shows that
{zyz*, &> =0,z¢B, yeSs .

The standard polarization trick then implies: {z,yz,, £> = 0, for all z,, z,€ B,
yeS. Q.ED.

6. Applications to the classification of subfactors

The generating type results reduce the classification (up to conjugacy) of the
subfactors of the hyperfinite 11, factor to the classification (up to trace preserving
isomorphism) of the corresponding sequences of inclusions {N;n N < N;n M},
(or {M'| " M; =« M’ " M,};). Moreover under the finite depth assumption all the
information on such a sequence is contained in an initial commuting square:

N, AnMc Ny, n M,
U V)
N, n N & Ny n N,
where i, the inclusions, the dimensions and the traces are all determined by the
standard matrices of N @ M and N, = N. To deduce this we return to the general
setting of Section 2.

The next result was first noted by Jones and by Pimsner-Popa, independently
(LJPPY).

6.1 Lemma. Let
By, <4 B
C u v D
By <3 Bi
be a commuting square of finite dimensional algebras with the matrices A, B, C, D

describing the corresponding inclusions. Assume By < By, By « B} satisfy the equi-
valent conditions of 1.2.2 and | Al = |B|. If By < By c**B, c®By ... is the
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iterated basic construction for By = B, 1 is the .. = || A||~2-Markov trace on U B;
and if we denote B}, , = span Ble;, B}, i = 1, theneBl, | has support one in B;, ,,
Bl = Bl =*:B! «*B} = ... give the iterated basic construction for Bi = B!, 1
is a 4= |B||"2-Markov trace on U B! and we have the sequence of commuting

squares
By «4 By <% B, <% By <
U U U U
By <p B <% B, =% By <
Moreover, with the usual identifications of the centers of B,, respectively B}, with
the sets of indices of the matrices A, respectively B, the inclusion matrix for B3; = B,;

is C and that of BY; ., = B,;,, is D, i = 0, that is, in Wenzl's terminology ([W]), the
sequence of commuting squares is periodic with period two.

Proof. Let B} < B! =B} be the basic construction for B} < B! with a
4 = || B||~2-Markov trace 7, on B} satisfying 1, (¢,x) = A1(x), x € B!, where 7 is the
Markov trace on B, (restricted to B!). Define an isomorphism ¢ from B} onto B}
by a(Xxé,y) = Zxe,y. Since 7, °0 = 7 and 7,(1) = 1 it follows that 7,(g(1)) = 1 so
that (1) = 1 and thus B} has support 1 in B,.

To show that the inclusion matrix for B} < B, is the same as for B = B, note
that e, e((B}) n B,) and e, e((B{)Y n B,). Note also that, since e, has support 1 in
B!, the map (B}) n B,3z+> ze, is an isomorphism and that (B}) n By3zr> ze, is
an isomorphism as well. Since

ez((Bi)/ N B,)e, = (e;Ble,) MeyBae, = (Bjey) M Boey = ((Bg) N Boes

it follows that there is a unique isomorphism ¢:(BLY n B, — (B}Y n B, determined
by @(z)e, = ze,. But this isomorphism, when restricted to 2'(B,), Z (B}), gives the
usual identifications between Z'(B,) and Z(B,), respectively 2 (B}) and Z'(B}).
Moreover the dimensions of ((B3) n B,)q’q” for minimal projections ¢ in Z(B,),
g" in Z(Bl), give the multiplicities in the inclusion matrix of B} < B,, which will
therefore coincide with that of B} < B,. Q.E.D.

The next result will not be used here but it may be useful for constructing
examples of subfactors. Related results on periodic sequences of commuting
squares can be found in [W].

6.2 Corollary. Let
B, <, B,
C v u D
By cj Bj
be like in 6.1 and let
By c¢4 By =% B, <% B; <«
U v U U

1 1 ez 1 e3 1
By, <y By <% B, =% By <
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be the corresponding iterated sequence of commuting squares. Let M = E}ZW,
N =By " Then

1°. M is a factor iff A is irreducible

2°. N is a factor iff B is irreducible

3°. If N, M are factors then

(@) [M:N]=|C|*=|D|?
(b) HMM|N)=In[M:N] so that E..y(eo)eC for the Jones projection
epeM.

Proof. 1°, 2° follow by Section 2 and 3° (a) is a particular case of 1.5 in [W]. Then
3°, (b) follows by [PiPol] and, again, by [W]. Q.E.D.

6.3 Lemma. If N ¢ M has finite depth then N, = N;_, and M;_, < M, have finite
depth for all i Z 1. Moreover the standard matrices for N,; ., = Ny, My; @ My, 4
coincide with that of N, < N and the standard matrices of N,; < Ny 4,
M,,_, © M,; coincide with that of N < M.

Proof. If C; is the matrix of the inclusion N; " N = N{n M then by 2.9 in [PiPo3]
we have ||C;||2<[M:N]. Since supdimZ(N;AM)< o it follows that
supdim Z'(N{ n N) < co. Thus N; = N has finite depth. The rest follows by 1.8 in
[PiPol]. Q.E.D.

The previous lemma and 6.1 show that in the finite depth case the sequence of
commuting squares

M oMy, © MMy, © M oMy, <
U v v
MinMy, © MinMy,oy © MiNnMyen <
for i, large enough comes by iterating the basic construction for the first com-

muting square, like in 6.1. The next result clarifies what are the inclusion matrices.

64 Lemma. Assume N c M has finite depth and let A= (@ e koe K,

= (@it e kieK?, be the standard matrices of N = M respectwely Mc M,.
Let M, be the Jones tower of factors and iy = cardK, card L' + 1. Then the
commuting square

’ ’
MnM,, <, MM,
) )

! ’
MlmMZio CAlt MlﬁM2io+1

has the corresponding inclusion matrices and satisfies the conditions of 6.1. Moreover
there are trace preserving isomorphisms between the pairs M'y N\ My, c M' 0 M,
and M'nM,; _; « M’ nM,;, and respectively M{ "My, ., =« M'nM,;,,, and
MMy vy € Min M, ... Via these identifications the inclusion matrices for
MinMy, oM M, and M \nM, ., cM NM,y, 1, in the commuting
square, are A" respectively A, in particular card L = card L*.

Proof. The first part is clear by 6.3. The last part follows by observing that if J;

10?

Jiy+1 are the canonical conjugations in L*(M,,, ) respectively L*(M, . ,, 7) then
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J,M' "My ) ), = M My, J, (M N My ), =M My, _, and
Jgr1Min My ) ier = My My, 40, Jios (M O My 1) i 41

= M| N My, +,. But by 6.3, 3.2, the corresponding applications J; -J; , Ji, + 1 Jig+ 1

are trace preserving. Since the algebras are finite dimensional it follows that there
exist the required trace preserving isomorphisms as well. Q.E.D.

We mention that the use of the reflections J;-J; as antiautomorphisms of
M’ n M,; was discovered by M. Pimsner and the author and, independently, by
Ocneanu ([Oc]). Moreover in ([Oc]) the reflections and the commuting square
conditions are suitably used to give a complete intrinsic description of the sequence
{MinM,c M nM}.

6.5 Definition. If N = M has finite depth and 4 = (akl),fef, is its standard matrix
and if iy = max {card K, card L + 1} then )

r 7
M M, ¢ MM,
v v
! ’
MinM,,, = MMy,

is called the canonical commuting square associated with N < M.
We say that two commuting squares

0 0
By = Bj;
o o

1 1
Bo; < By

i = 1,2, are isomorphic iff there is a trace preserving isomorphism of BY, onto B?,
carrying Bi, onto Bi,,i,j =0, I.

We can now derive the classification result for subfactors, in terms of classifi-
cation of their canonical commuting squares.

6.6 Theorem. Let N = M, N° c M° be pairs of hyperfinite type 11, factors with
finite depth. Then N ¢ M and N°® = M° are isomorphic iff their associated canonical
commuting squares are isomorphic. Thus, the subfactors of finite depth of the
hyperfinite type 11, factor are completely classified by their canonical commuting
squares.

Proof. If the commuting squares are isomorphic then their corresponding iterated
sequences will be isomorphic by 6.1, ie. there will be a trace preserving
»-isomorphism of U(M’'nM,) onto | J,(M% ~M?) carrying M’ A M, onto
MY"M2, M;AM, onto MYMP? Taking M,= u(M nM,)*, N,
= UMM, M3 =J,(MY " M2)*, N§ = (MY " M?)”, it follows that
N, © M, is isomorphic to N3 = MJ. By Theorem 4.9 it follows that N = M is
isomorphic to N° = M° The converse implication is trivial. Q.E.D.

As the previous theorem shows, classifying the subfactors of finite depth
amounts to the investigation of the corresponding commuting squares. By 6.4 the
algebras, the traces and the horizontal inclusions involved are completely deter-
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mined by the standard (pointed!) matrices of N « M, M = M,. Moreover the
vertical inclusions are determined by the same matrices up to some possible
permutations of the sets of indices. These matrices and the permutations must
satisfy some very strong conditions of matching the traces and the dimensions: for
instance by 6.4 the Perron Frobenius eigenvectors of 4’4 and A'*4* must coincide
(via the identification of L, L* resulting from 6.4). Also the dimensions should
satlsfy A(AY(A A 1ol = (4A'Y vy, where vy = Fyudir 15 = (5,(‘,(1),(‘ and
= (d,p )kex with @, = ak,, I' - I being the identification of L with L! given by 6.4.
In many situations these conditions impose A! = A. This can be easily seen for
| A2 = [M:N] < 4, where one has to analyse only the matrices coming from the
Dynkin diagrams A,, D,, E¢, E,, Eg and in fact even for A% <2 + \/g Then
direct simple computations can be used to deduce that if

By, =4 B,
A v v A
B < BY
At

is a commuting square with A = A4,, D,, E,, E,, Eg then there will be no small
perturbations of BY to still satisfy the commuting square condition with B,, B,
unless it is of the form vwB{w*v* for some unitary elements we B, ve By n By,
with wBow* = BS. Thus the number of commuting squares in 6.5 with given
matrices is bounded. But if [M: N] < 4 then N < M automatically has finite depth
and N'nM=C (as first noted by Jones). Indeed if [M:N] <4 and
NcMc®M, c°M, < ...is the Jones” tower then e, ve, v...ve,=1 (cf.
[J11) so Alg{e,,...,e,_ }e, Alg{e;,...,e,.} has support 1. Thus
N nM,_,e,NnM,_, has support 1 so N « M has finite depth by Section 3.
Thus Theorem 6.6 completely classifies the subfactors of index less than 4 in terms
of their associated commuting squares, coming from their higher relative com-
mutants picture, which in turn, by the above discussion, are finite in number. In
fact, in case || 4| < 4, the above observation on the combinatorial problem of
estimating the number of canonical commuting squares is superceded by the
complete list of such objects corresponding to indices less than 4 announced in
[Oc]. We use in the next corollary only the finiteness of the number of canonical
commuting squares of small indices resulting from the above remarks, without
however giving further details on the proof.

6.7 Corollary. Up to conjugacy, there are only finitely many subfactors N of index

4coszg in the hyperfinite 11, factor M, for each n = 3, and all have finite depth.

Moreover if the subfactor N has only the Jones projections ey, ..., e, in its
relative commutant in M,, then N = M coincides with the Jones’ subfactor of index

s
4cos? —.
n
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Note that the last part of the corollary is just a simple consequence
of 49 and of Jones’ result ([J1]) that if [M:N] =4coszg and N'nM, =
Alg{e,, ..., e,} then N'nM, = Alg{e,..., ¢} for all k. Thus M, "M c
M’ A M coincides with the Jones’ pair of factors of index 4cos2;:— which is

antiisomorphic to itself and thus it is isomorphic to N = M by 4.9.

We mention that one can prove under very general assumptions that the
commuting square problem has only finitely many solutions (up to isomorphism),
when the dimensions of the algebras involved are fixed.

As concerning the index > 4, the case <2 + \/g is still tractable, since the
matrices of such small norm can actually be computed. One can show for instance
that only finitely many of them may produce commuting squares like in 6.4. A first
result of this type was proved by M. Pimsner and the author (1983 unpublished) for
finite matrices tending to the infinite matrix:

In fact to show this it is sufficient to consider the infinite matrix itself describing
the matricial inclusion of type 11, algebras with atomic centers like in [PiPo3],
where the problem becomes quite easy. The same arguments can be used to settle
the case of the other infinite matrices (and thus accumulation points) of square
norm less than 2 + \ﬁ

This shows that there can be only finitely many subfactors of finite depth and

index between 4 and 2 + ﬁ in the hyperfinite 11, factor. Note however that
although by [PiPol] subfactors of index <2+ \/5 satisfying Ey..(e0)€C
automatically satisfy N’ n M = C, the finite depth condition doesn’t follow auto-
matically.
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