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Abstract. Complex-variable analysis is used to develop an exact solution to Kepler's equation, for 
both elliptic and hyperbolic orbits. The method is based on basic properties of canonical solutions to 
appropriately posed Riemann problems, and the final results are expressed in terms of elementary 
quadratures. 

1. Introduction 

Kepler's equation is, of course, basic to studies of celestial mechanics and consequently 
has been of interest for several centuries. For elliptic orbits, the equation is normally 
written as 

e sinE = E -  M,  (1) 

whereas for hyperbolic orbits the form is 

e sinh F = F + N.  (2) 

In Equation (1), we presume that the eccentricity ee(0,1) and the mean anomaly 
M e  [0,2rc] are given and thus consider the equation transcendental in E, the eccentric 
anomaly. In Equation (2), we view e > 1 and the hyperbolic mean anomaly N > 0  as 
given and thus seek the hyperbolic eccentric anomaly F. 

To solve Equation (1), we first let 

E = M + ( e / z ) ,  co = (l /e) ,  and = ( M / e )  (3) 

and subsequently consider the equivalent problem of seeking the zeros of 

A (z) = 1 + {z - coz sin-1 (l/z) (4) 

in an appropriately cut plane. We note that each branch of 

with log z denoting the principal branch of the log-function, 
(5) 

f ( z ) =  zZ 1, and f ( o o ) = i ,  (6) 
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is analytic in the plane cut from 
any zero zk~ r ( - 1, 1) of 

- 1 to 1 along the real axis. It therefore follows that 

Ak(z)=l+~z--o)zlkrc+(--1)krC )k I lZl ] i ( - -  1 log f ( z )  + , 

k = 0, • 1 , _  2, . . . ,  (7) 

will yield, by way of Equations (3), a solution of Kepler's equation, in the elliptic form. 
We note that only the branch corresponding to k =  1 in Equation (5) is such that 
sin- 1 ( _  z )=  - sin- 1 z. 

In a similar manner, it follows that any zero zk~ of 

[ !1] i (-- l)k log f ( z ) +  , 

can be used with 
k = 0 , _ _ l ,  + 2, . . . ,  (8) 

e 1 N 
F = -  N + i - ,  co = - ,  and ~ = i (9) 

z e e 

to yield a solution to Kepler's equation, in the hyperbolic form. Here we use the 
circumflex superscript to denote quantities basic to the solution of Equation (2). 

2. Basic Analysis 

Our previously reported procedure (Siewert and Burniston, 1972; Burniston and 
Siewert, 1972) for solving a class of transcendental equations is based on the fact that 
if an appropriate Riemann problem can be formulated, then the solution(s) of the 
considered transcendental equation can be expressed in terms of a canonical solution 
of that Riemann problem. 

From Equation (7), we find the boundary values of Ak(z), as z approaches the 
branch cut [ -  1, 1] from above ( + )  and below ( - ) ,  to be 

A~ ( t ) =  1 -+- t [ - ~ -  co~zA (k)] + (-- 1)kr 7C ~[tl 
where we have let 

and 
A ( k ) =  k + ( -  1) ~ 

T i ( -  1)kcotC (t), 

F 1] C ( t ) =  In f ( t )  + ~ . 

We now introduce 

a~ (z) = A~ (z) A~ ( -  z) 

and consider the Riemann problem defined by the boundary condition 

�9 ~- (t)= Gk (t) ~- (t), te(O, 1), 

(10) 

(11) 

(12) 

(13) 

(14) 
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where 

Gk (t) O; (t) = = exp [-2i arg O~- (t)]. (15) 

Here we seek a function ~k (Z)which is analytic in the plane cut from 0 to 1 along 
the real axis and nonvanishing in the finite plane. Since Gk (t) is continuous (Muskhelish- 
vili, 1953) and nonvanishing for re(0,1), the desired canonical solution can be written 
a s  

e (z) = (1 - z )  

1 

I !  f dt 1 exp argf2~ (t) t -  z ' 

0 

(16) 

with arg O~-(0)=0. In addition the index Nk is such that 2riNk is the change in the 
argument of Gk (t) as t varies from 0 to 1. 

We now restrict our efforts to seeking real solutions of Equation (1), for ee(0,1) 
and Me[0,2n], and thus in view of Equations (3) can consider in Equation (7) only 
those values of k for which the resulting Ak (z) will have real zeros. It is interesting 
to observe that the relevant values of k depend on the eccentricity and the mean 
anomaly. The argument principle (Ahlfors, 1953) can be used to determine, for a fixed 
ee(0,1) and Me  [0,2n], the number of zeros of Ok(Z) in the cut plane. In general, this 
number can be expressed as 2 (Nk + 1). We find, upon considering all k, that Nk can 
be - 1 ,  0, 1, or 2. The case Nk = -  1 is not interesting since the corresponding Ok (Z) 
does not have any zeros in the cut plane. For Nk =0, we find that Ok (Z) has two real 
zeros in the cut plane, and thus we must consider all such possibilities; however, since 
we are seeking only the real solutions of Equation (1), we can dismiss all cases for 
which Nk = 1. We conclude that we must also include all possibilities for which Nk = 2. 

For the allowed ee(0,1) and Me  [0,2n], we can summarize our conclusions regarding 
the appropriate values of k and Nk in terms of the three open regions 

R l : e <  M, 
2 

R 2 : e >  
n 3n 
- - M  and e >  M 
2 2 '  

such that 

R3:e<M. 
3n 
2 

{e, M}eR1 =~ k = 1 and 

{e, M}eR2 =~ k = 0  and 

{e, M} e R 3 => k = 3 and 

~ 1  "- 2 ,  

N 0 = 0 ,  

N3 = 2 .  

Of course, Equation (1) can be solved immediately for any of the special values of 
(e, M). 

Observing that the considered Ok (Z) is such that 

Ok (Z) = Ok (-- Z) and Ok (Z) = Ok (5), (17) 
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where the bar denotes the complex conjugate, we conclude that fak(Z ) cP[I(--Z) is 
also a solution to the Riemann problem defined by Equation (14). It therefore follows 
that 

E2k (z) cI'[ ~ (-- z) = cI) k (z) Pk (z),  (18) 

where Pk (Z) is a polynomial in 
deduce that 

with 

z. Since 

I lk+ 1 

P~ (z)= B~ H [zL- zq, 
~ = 1  

Bk = ~ -- oo~A ( k ) ,  

~bk (z) is nonvanishing in the finite plane, we 

(19) 

(20) 

and we can therefore write Equation (18) as 

a~ (z) = ~ (z) ~ ( -  ~) 
Nk+ I 

B~ 1Yl [ zL -z~] .  
~ = 1  

(21) 

If we now consider the hyperbolic form of Kepler's equation, we find analogously 
to the foregoing, that 

O, (z) = ~, (z) 21 ( -  z) (22) 

can be factored in the manner 
N1+1 

where 

o, (~)= ~ (z) ~, ( -  z) ~ I1 [z~,- z~], 
~ = 1  

(23) 

I !  f dt 1 ~1 ( z ) -  (1 - z) -~1 exp arg ~ -  (t) t Z (24) 

0 

with arg ~ (0)=0.  In regard to Equation (2), we note that only the case k =  1 in 
Equation (8) need be considered, since we seek only the real solution of Kepler's 

A 

equation; however, we find again that the index N1 depends on the parameters, e and 
N. In terms of the open regions defined by 

7C 
~1: e cosh N > - 

2 '  

/ )2:e cosh N < ~, 

we find that 

{e, N} e k l  =,. N1 = O, 

{e, N} eR2 =,. fr = 2. 

We prefer to consider separately those special values of e and N for which 

71; 
{e, N} e/~s ~ e cosh N = - 

2'  
(25) 
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since here the boundary values ~0~ (t) have zeros on the cut 
for {e, N} e/~s, the argument of the coefficient 

(~1 (t) = ~ [ ( t )  
~O~- (t) ' 

[ -1 ,1 l .  It follows that, 

(26) 

in the Riemann problem defined by 
+ 

~1 ( t ) =  Gx (t) ~ -  (t), t ~ (0, 1 ) ,  (27)  

is discontinuous at 

2e 
t =  t o - . (28)  

It thus follows immediately that Equation (2) admits the solutions 

7r, 

F=-N+_i-2,  {e, N}  e/~s, (29) 

but, of course, we seek a real solution. A canonical solution of equation (27) can be 
written as 

dr] 
~1 (z) - -  ( t  o - -  z) -1 exp arg ~0~- (t) t - -  z ' 

0 

{e, N} e/~s, (30) 

with arg .O[ (0)=0.  
a discontinuity of rc at t = to, so that arg ~ -  (1) 
factor ~1 (z) in the manner 

.01 (Z)= ~I (Z) (~i (-- Z) ~2 [t 2 _ Z2] [Z21 

It is important to note here, for {e, N}e/~s, that arg .O~- (t) has 
- 0 .  Equation (30) can now be used to 

- z 2 ] ,  {e, N }  e /~s .  (31) 

3. Expl ic i t  Solut ions  

Having established the required formalism, we are now able to solve Equation (1) 
almost immediately. Since our explicit solution is most concise for {e, M}eR2,  we 
consider that case first. Noting for this case that k = 0  and No=0, we can solve 
Equation (21) to obtain 

Zo21 = z 2 + 12 o (z) EBb@ o (z) ~o ( -  z)]  - I  , {e, M }  ~ R 2 , (32) 

which can be evaluated at any convenient z to yield __+Zol, respectively the real zeros 
of Ao (z) and Ao ( -  z). If we now let z = iy, y real, then Equations (7) and (13) can be 
used to yield 

e2Qk(iY) [ e + ( - - 1 ) k y  In IX/y1 ~ ~]]2 = + 1 + + y2 [ M -  rcA (k)-] 2 . 

(33) 
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We also wish to define 

with 

Ek (iy) = exp [ -  - 

a rgO:  (t) = tan -1 

1 11 de] ~z t argO~- (t) t2 + y2 
0 

2 (--1)k+ ltC (t) [e + ( - -1)  k rc Itl 

[e + ( _  1)kT~ ]2 
_ ~ l t l  - t ~ [ M  - = A  ( k ) ]  ~ 

(34) 

tEc2(t) 

(35) 

and arg O~ (0)=0.  Equation (32) can now be used with Equations (3) to establish the 
desired solution of Equation (1) 

E = M - e (M - re) [e200 (iy) E~ (iy) - y2 (M - 7r)2] - 1/2 , {e, M } e R 2 .  
(36) 

Different choices of y in Equation (36) can, of course, alter the computational merits 
of that result; the choice y = 0  yields 

1 

E = M - ( M -  r e ) e x p [ ! f  a r g o  o (t) ~ ] ,  

0 

{e, M} e R 2 ,  (37) 

or, if we let y tend to infinity in Equation (36), we obtain the equivalent solution 

E = M - e (M - ~z) [(e  + 1) z j,b 1 -  1/2 ( M -  ~)~ 2 + - t a r g o  o (t) dt , 

0 

{e, M} e R 2 . 

(38) 

We must now consider the remaining cases {e, M}eR1 or R3. For both of these 
cases the appropriate Nk is 2, and thus we choose to evaluate Equation (21) at three 
distinct points, say z = iy, y=o~, fl and ),, to obtain 

and 

Fk (i~) = [z~1 + ~2] [zkZ2 + ~2] [z23 + ~2], 

e~ (~fl)= [zL +/32] [z~ +/32] [z~ + fl~], 

Fk ( i ) , )= [z~1 + ),2] [Z#z + ),2] [zkZ3 + ),2], 

(39a) 

(39b) 

(39c) 

for k =  1 or 3. Here 

e20k (iy) [1 + y212 E~ (iy) 
Fk (iy) = [M -- zr, A (k)] 2 " (40) 

Equations (39) can be reduced by elimination to yield a cubic equation in z2~. The 
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resulting cubic equation can, naturally, be solved analytically; some care must be 
exercised, however, in selecting the correct value of Zk~ to be used with Equations (3) 
to yield the real solution of Equat ion (1). We find that  the desired solution of Equat ion 
(1) can be expressed as 

where 

with 

and 

E = M + e ( 2 -  k) [Slk (~, fl, 7) + S2k (a, fl, 7) --]A2g (~, fl, 7)]-1/2 
{e, M} eRk, k = 1 or 3, 

Sjk (~, fl, Y) = [Dk (~, fl, Y) -- (-- 1) j [ D2 (~, ]3, Y) + Qk 3 (a, fl, 7)]1/2] 1/3 

Dk fl, 7) = [Alk fl, 7) A2k fl, 7) -- 3Aok fl, 7 ) ]  - -  

- 

Qk (o~, fl, 7)= ~Alk (o~, fl, 7 ) -  [-}Azk (~, fi, 7)] z. 

(41) 

(42) 

(43) 

(44) 

In addition, 

and 

where 

Aok (a, fl, 7) = a2f1272 + fl272 (f12 _ 72) TFk (ia) + 
+ 72a2 (72 _ a2) TF, (ifl) + a2f12 (~2 _ f12) TFk (i7), 

AI ,  (a, fl, 7) = a2fl 2 + fl272 + 72a2 + (f14 _ 74) TFk (ia) + 
+ (74 - a 4) TF, (ifl) + (a 4 - f14) TFk (i7), 

A2k (c~, fl, 7) = a2 + f12 + 72 + (f12 _ 72) TF k (ia) + 
+ (72 _ a2) TFk (ifl) + (~2 _ flz) TFk (i7), 

T = [ ( ~2  _ f ie )  (f iE _ 7 2 ) ( 7 2  _ a 2 ) ] - i ,  

(45a) 

(45b) 

(45c) 

(46) 

The choice of c~, fl, and '2 in Equat ion (41) can, of course, alter the accuracy of a 
calculational scheme based on that  result; a convenient choice is a = 0 ,  f l= 1, and 
7 = 2, for which Equations (45) reduce to 

and 

Aok (0, 1, 2) = -- Fk (0), 
A lk (0, 1, 2) = 4 -- -}Fk (0) + 4F k (i) 

Azk (0, 1, 2) = 5 -- --}F k (0) + -}F a (i) 

1 ( 2  0 , 12Fk 

(47a) 

(47b) 

l~Fk (2i) . (47C) 

Equations (47) can be used to write an analytical solution of Equat ion (1) as 

E = M + e(2 - k) [Slk (0, 1, 2) + Sza (0, 1, 2) -- �89 (0, 1, 2)] -1/2 , 
{e, M} ~ Rk, k = 1 or 3. (48) 

In order to establish, for {e, M } e R 1  or Ra, a solution to Equat ion (1) equivalent in 
form to Equat ion (38), we now replace c~, fl, and 7 in Equat ion (41) by at, fit, and 7t 
and subsequently observe the limit as t tends to infinity to obtain 

E = M + e (2 - k) [Slk + S2k -- ]Azk]- 1/2, {e, M} E Rk, k = l o r 3  

(49) 
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where 

and 

Sjk = [ D k -  ( - -  1) j [D 2 + Q311/211/3 
D k = -~ [ A ~ k A z k -  3Aok ] -- [�89 3 , 

Qk = -}A lk - [-}3Azk] 2. 

To complete the solution given by Equation (49)7 we list the explicit results 

Aok = ~313k + 4IlkIak + 215g + J (k)  [ M -  rcA (k)] -2 , 

Alk  = 2I~k + 213k + [-- 2 ( e -  1) 2 Ilk --[- - } ( e -  1)3 [M - rcA (k)] -z 

and 

where 

and 

Azk = 2 I l k -  ( e -  1) 2 [ M -  rca (k)] -2 

J ( k ) = -  2 ( e -  1) 2 [112 + Iak] + ( e -  

1 

1) [211k + ~o] " 3 6  

(50) 
(51) 

(52) 

(53a) 

(53b) 

(53c) 

(54) 

if 2 I~k = - t ~ arg Q~- (t) dr. . (55) 
rc ~ + 1  

0 

Equations (36; 37; 38) and (41; 48; 49) are our final solutions of the elliptic form of 
Kepler's equation. Although we have restricted our attention to those values of e and 
M of physical interest, we wish to emphasize that our method can be used for all 
values, real or complex. In the same vein, although we have sought only the real 
solutions of Equation (1), the method clearly is not restricted to real solutions; in fact, 
even for {e, M } e R 1  or R3 the complex solutions of Equation (1) deriving from the 
branches corresponding to k -  1 and k = 3 are immediately available from two of the 
complex solutions of Equations (39). 

We now wish to solve Equation (2), the form of Kepler's equation appropriate to 
hyperbolic orbits. Except for those special values of e and N for which {e, N}e/~s, 
the solutions required here follow almost immediately from the previous consider- 
ations. First of all, for {e, N} e/~1, Equation (23) for z = iy, y real, yields 

F = - N + e N  [e2~1 ( iy)  E f  ( iy )  + N2y2] - 1/2 {e, N} e/~l,  (56) 

after Equations (9) are invoked. Here 

and 

e E ~ l ( i y )  [e - Y In [~/~2 ~112 = + 1 + - - N 2 y  2 

1 

I l l  + at 1 JE'I ( iy )  = exp 7c- t arg ~1 (t) t2 ~ y2 , 
0 

arg ~ -  (t) = tan -1  

I e 

2tC (t) e it[ 
2 

2 
7r t2 Itl + [N z - c ( t ) ]  

(57) 

(58) 

(59) 
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with arg ~0~ (0) =0. We can now set y = 0 ,  or let y tend to infinity, in Equation (56) to 
obtain two equivalent solutions of Equation (2): 

and 

F = - N + N e x p [ ! f  argO~(t)~l ,  
0 

{e, N} ~.[{1 (60) 

1 

F=_N+eNI(e 1)2 +N2 2 ; 1-1/2 - - t arg .0~- (t) dt , {e, N }  ~/~1 7C 
0 

(61) 

If we now consider {e, N} e/~2, then, in the established way, we can evaluate Equation 
(23) at three distinct points, say z = ia, z= ifl, and z=i2, with c~, fl, and ]/real, and 
solve the resulting equations to find 

where 

and 

F = -  N + e[Sl l  (a, fl, ]/) + $21 (a, fl, ] / ) -  ~d21 (a, fl, ]/)-]-1/2, 
{e, N}  e[{2 , 

b~(~,  fl, r) ~[dl l  (a, fl, ]/)d21 (a, fl, ] / ) -  3dol (a, fl, V)] - 

- [ 3 ~ & ,  (~, fl, r)]~ 

Q1 (0~, fl, ]/)--- ~ d l l  (0~, fl, ] / ) -  [ ] d 2 1  (0~, fl, ]/)]2. 

(62) 

/3 
9 

(63) 

(64) 

(65) 

In addition, 

and 

where 

d01 (0~, fl, ]/) - - - -  ~2fl2]/2 __ fl2]/2 (f12 __ ]/2) T p  I (ioc) - -  

- ~,~ (,~ - ~,~) v f ,  (~fl) - =~fl~ (o, ~ - f l : )  r &  (g~,) 

fl** (~,, fl, v) = ~,~fl: + fl:v~ + ~,:~,: + (f14 _ r  TPl  (i~) + 
+ (]/4 _ e4) TF1 (ifl) + (a4 _ f14) T/~I (i7), 

d 2 1  (0~, f l ,  ] / )  - -  - -  (X 2 - -  f12 __ ]/})2 __ (f12 __ ] / 2 )  T/~I (i~) -- 
_ ( ] /2  _ a 2 )  TF1 (ifl) - ( a 2  _ f12 )  T/~I (i]/), 

F1 ( i y ) = -  
e 2 
N2 ~21 (iy) [1 + y212 ~12 (iy). 

(66a) 

(66b) 

(66c) 

(67) 

Again, the choice a =0,  fl = 1, and ]/= 2 yields 

F = - N + e [$11 (0, 1, 2) + $21 (0, 1 

with 
2 o 1 ( 0 , 1 , 2 )  

f l l l  (0, 1, 2) 

A 

= r ,  (o),  
= 4 - �88 (0)  + 4 f f  1 ( i)  

, 2 )  - �89 (0, 1, 2 ) ] - * / 2 ,  

{e, N} ~/~2, 

1 F1 (2i)  12 

(68) 

(69a) 

(69b) 
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and 
A2, (0, 1, 2) = - 5 + -}Fi (0) - } f l  (i) + 1-~-f~ (2i). 

If we now let c~, fl, and ? tend to infinity, as previously, in Equation (62), we find 

(69c) 

where 

and 

F = -  N + e [,.~11 q- S21 ld21 ]- 1/2, {e, N} ~/~2 ], 

Nj~ - [D~ - ( -  I )  j 1-132 -4- 0 3 ] I / 2 ]  I /3 , 

131 = -~ [ d l i d 2 i -  3Aol]  - [ 3 - I - d 2 1 ]  3 , 

Q 1  - "  11  - -  2 1  �9 

(70) 

(71) 

(72) 

(73) 

In addition, 

and 

where 

and 

4;~3 4 [ ~ / 3  215 + Y (1)  N -  2 d 0 1  - - -  3 X l l  N 1 - -  1 

A l l  = 2/'21 + 2131 - [ -  2 (e - 1)21fl 1 + �89 (e - 1) l  N -  2 

221 = -  21,1 - ( e -  1) 2 N -2 , 

] ( 1 )  = - 2 ( e  - 1) 2 [121 + 1'31] + (e - 1) [2111 -It- 2--~] 

1 

Li  - 1 t" arg ~ l  (t) dt - 
7~ 

0 

2 

a + l  

(74a)  

(74b) 

(74c) 

1 ( 7 5 )  
3 6  

(76) 

Finally we need consider the special case {e, N}eRs.  If we solve Equation (31), with 
z - i y ,  for zl 1 and use that result with Equations (9), we find 

F = - N + eN[e2Di (iy) EZl(iy ) + N2y2] -1/2 , {e, N}e[~s. (77) 

We can now set y = 0 ,  or let y tend to infinity in Equation (77) to obtain 

F = - N + N exp arg {)~ (t) , {e, N} eke ,  (78) 

o 

o r  

1 F_ N+eN[ e l 2+N22f ]1/2 - - t arg D~ (t) dt , {e, N) e~s 
7g 

0 

(79) 

Though Equations (77), (78), and (79) are the same as those derived for {e, N}e/~l,  
we wish to reiterate that for {e, N}eRs  the resulting arg D~-(t) has a discontinuity 
of ~ at t=to, so that arg D~- (1)=0,  {e, N}e/? l  or Rs. Equations (56; 60; 61), (62; 
68; 70), and (77; 78; 79) are our final solutions of the hyperbolic form of Kepler's 
equation. Although we have restricted our attention to those values of e and N of 
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physical interest and have sought only real solutions of Equation (2), the method is 
not limited to either real parameters or real solutions. 

A Gaussian quadrature integration procedure has been used to evaluate numerically 
all of our explicit solutions, for numerous cases, and accuracy to within ten significant 
figures was achieved, quite straightforwardly. 
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