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Summary. We first prove a theorem concerning higher order logarithmic par- 
tial derivatives for meromorphic functions of several complex variables. Then 
we show the best nature of the second main theorem in Nevanlinna theory 
under two different assumptions of non-degeneracy of meromorphic mappings 
f :  112" -+ IP m for arbitrary positive integers n and m. Moreover, we derive a 
upper bound of the error term in the second main theorem for meromorphic 
mappings of finite order. Finally, we demonstrate the sharpness of  all upper 
bounds in our main theorems. 

I Introduction 

The most striking result in Nevanlinna theory is the second main theorem, 
which is an inequality relating two leading quantities, one is the characteristic 
function that measures the rate of growth of a function or map, the other is 
the counting function that tells the size of the preimages of points or sets, 
by means of an error term. Among all classical applications of the second 
main theorem, only the growth order of the error term was taken into account. 
However, motivated by P. Vojta's dictionary [17] between Nevanlinna theory 
and Diophantine Approximations in number theory, people, see [10] and [19] 
for instance, have started to find a precise form of the second main theorem 
because of the analog between the Siegel-Roth-Schmidt Theorem in number 
theory and the second main theorem in Nevanlinna theory. There are many 
different versions of the second main theorem in Nevanlinna theory, but the 
closest analog to number theory is the second main theorem for holomorphic 
curves, or more generally for maps such that the dimension of the domain is 
less than the dimension of the target. Historically speaking, this case was first 
studied by Ahlfors using higher order osculating curves, and by H. Cartan using 
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logarithmic derivative lemmas when the dimension of the domain is one. Then 
Ahlfors' method was extended by many authors to the case when the dimension 
of the domain is greater than one and less than the dimension of the image 
space. Cartan's method was extended by A. Vitter [16], B. Shiffman [13], and 
S. Lang [8] in different contexts. Another approach towaMs the second main 
theorem is the negative curvature method, which started from J. Carlson and 
P. Griffiths [2] and was extended by many authors. However, no one had 
attempted to find a precise form of the second main theorem until Lang raised 
the question of a best possible error term in [9]. Other questions on this matter 
have been investigated by the author and others, e.g. see [15] and [21]. 

In 1990, Lang [11] found the best nature of the upper bound of the second 
main theorem by improving Pit-Mann Wong's method [18] in the equidimen- 
sional case. Later, W. Cherry [3] extended Lang's results to the case when the 
dimension of the domain is not less than the dimension of the image space un- 
der the assumption that the image of the map contains a non-empty open set in 
the image space, i.e. the map is non-degenerate. In this case, this definition of 
non-degenerate is quite natural. Thus the study of maps which decrease dimen- 
sion can be reduced to that of  equidimensional map. However, this definition 
of non-degenerate does not make any sense if the dimension of the domain 
is less than the dimension of the image space. This observation leads people 
to introduce a weaker non-degeneracy assumption: the image of the map is 
not contained in any hyperplane. We call a map with this property a linearly 
non-degenerate map. Under this weaker assumption, the proof of  the second 
main theorem is much more difficult since people have to cope with the asso- 
ciated maps and higher order derivatives. Lately, Wong and W. Stoll [19] have 
obtained an estimate on the second main theorem for linearly non-degenerate 
meromorphic maps in the non-equidimensional case. 

Let ~ and 4) be increasing functions in 1R + with 

dr ~ dr 
< and :! 

However, for simplicity, we always regard qS(r) < r in the sequal. 
In order to avoid nonessential complications, we have restricted ourselves 

to discuss a meromorphic map f :  (F n --+ pm and hyperplanes (As a matter of 
fact, Lang, Cherry, and Wong and Stoll have more general settings in spaces 
and divisors). Suppose HI, 112 . . . . .  H e are arbitrary hyperplanes in lP m in general 
position. We denote the error term of f in the second main theorem by 

q 

S(f ,{Hj}q i , r )  : ( q -  m - 1)Tl(r ) - ~ NI(Hi, r) + N(Rt , r ) ,  
j=l 

(1.2) 

where R t is a ramification divisor of f to be defined in Sect. 6 and 7 respec- 
tively. It is possible that S( f ,  {Hj}q=r,r) is negative. Thus the classical second 
main theorem (e.g. see [14]) states that there is a constant C > 1 such that 

m q S ( f , {  /}j=l,r) < Clog(rT/(r))  (1.3) 
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for all large r outside a set of finite Lebesgue measure. If f is of finite order, 
then, for all large r, 

S ( f ,  {H; }~=l,r) < C log, ' .  (I .4) 

In 1992, under the assumption of f being non-degenerate and n > m, 
Cherry [3] extended Lang's result [10] and showed 

S ( f ,  {H/}~=.,r) <= m (log Tt(r  ) + log r  

+logr (1.5) 

for all large r outside a set of finite Lebesgue measure, where r is defined as 
in (1.1). 

Recently, under the assumption of f being linearly non-degenerate, and any 
;7 and m, Wong and Stoll [19] showed (1.3) can be improved to be, for any 
c > O, 

S ( f  , q m(m + I ) {H/};=l 'r)  ---< 2 (log Tl(r) 

+ (2 + ~;)log log T/(r))  + O(log r) (I .6) 

for all large r outside a set of finite Lebesgue measure. 
The main purpose of this paper is to derive a precise form of the second 

main theorem of meromorphic maps under the above setting. In fact, we show 
the inequality (1.5), hence (1.3), can be sharpened to be 

S(. f ,{H]}~=l,r  ) <_<_ m ( l o g T l ( r ) + l o g ~ ( T / ( r ) ) ) + O ( l )  (1.7) 

for all large r outside a set of finite Lebesgue measure, where r is defined as 
in (1.1); and the inequality (1.6), and hence (1.3), can be improved to 

S ( f  , {Hi}q=l,r) = < 
m(m + 1) 

( l o g T / ( r ) + l o g O ( T / ( r ) ) ) + O ( l )  (1.8) 

for all large r outside a set of finite Lebesgue measure, where r is defined as 
in (1.1). Recall that there are many O's such that O(r) < log2+"(r) for any 
c > 0 and both (1.7) and (1.8) sharpen (1.3) in different cases. To accomplish 
these, we need Lemma 6 which concerns the higher order logarithmic partial 
derivative by means of reducing it to the one variable by fiber integration, 
instead of the negative curvature methods used by Vitter in [16]. This lemma 
has a different format than the usual logarithmic derivative lemma. The second 
technical ingredient is Lemma 8, which gives sharp estimates on the order of 
partial derivatives which come from the ramification divisor in the second main 
theorem. With these in hand, we are able to show inequalities (1.7) and (1.8). 

Furthermore, the method in this paper brings out another interesting estimate 
on the error term of meromorphic mappings of finite order, which cannot be 
obtained from either Lang and Cherry's method or Wong and StoWs. This 
is the first investigation of the error term of meromorphic mappings of  finite 
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order as far as the author knows. In order to match up (1.4), we have that if  
f is o f  finite order p, then, for any t: > 0, 

S(f,{Hj}q=,,r) <= m ( p - 1  + ~ 0 1 o g r  (1.9) 

for  all large r, where we assume that f is non-degenerate. When f is linearly 
non-degenerate and is of  finite order p, then, for any e > 0, 

S( f,  {Hi q r m(m § 1 }j:l ,  ) < ) ( p - l + ~ : ) l o g r  (1.10) 
" = 2 

for any large r. It follows that S(f ,  {Hi}q:l,r) is always negative if the order 
of  f is less than 1. 

More interesting, there is a big difference between coefficients in (1.7) and 
(1.8) when m > 1; one is m, the other is m(m + 1)/2. In the beginning, the 
author was skeptical about the sharpness of  the coefficient m(m + 1)/2 in (1.6), 
which was proved by Wong and Stoll in [19], although their results are very 
good considering their weaker assumption. Later, Wong convinced the author 
the coefficient m(m + 1)/2 could be sharp and encouraged the author to prove 
the sharpness. Therefore, another important part of  this paper is to verify the 
leading coefficients m in (1.7) and (1.9), and m(m + 1)/2 in (1.8) and (1.10) 
are sharp. Thus one can claim that the leading coefficient in the error term 
for a linearly non-degenerate mapping should be m(m + 1)/2. Since the maps 
constructed by the author are not linear degenerate and algebraically degenerate, 
it is an interesting problem to determine the best possible coefficient in the error 
term for an algebraically non-degenerate map. The author thanks the referee 
for suggesting to post this interesting question here. 

There is no overlap between inequalities (1.7) and (1.8), also (1.9) and 
(1.I0),  when m > 1 since we trade off the upper bound with the non- 
degeneracy. Moreover, the method used in this paper is straightforward com- 
pared with the method used by Vitter [16], Lang [10] and Cherry [3], Wong 
and Stoll [19]. All their proofs are based on the complex differential geometry 
method. Additionally, Wong and Stoll 's proof contains some very difficult es- 
timates on the associated maps. However,  our proofs are based on the Cartan's 
method by means of a new logarithmic partial derivative lemma. Furthermore, 
our results are better than theirs as we have discussed above. 

2 N o t a t i o n s  a n d  p r e l i m i n a r i e s  

For z : (zl . . . . .  zn) C ~n,  we define, for any r E IR +, 

Ilzll = ( Iz ,  I 2 + - - +  [Zn[2) 1/2 and B.(r) = {z ff Cn; ilz[ [ < r } ,  

S , ( r ) = { z e r  and B , [ r ] : { z c ~ ; l l z l l  < r } .  
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Let d = ~ + (7 and d " = (c~ - ~)/4rti; we write, 

o9.(z) = dd" log/lzll 2 and an(z)  = d" logllz]l z A ~oi',-'(z), for z E r  ; 

v . ( z )  = dd'l lzl l  2 and p,,(z) = vg(z), for z E ~'" .  

Thus a,,(z) defines a positive measure on S,,(r) with total measure one and 
p,, is Lebesgue measure on 112" normalized such that B.(r )  has measure r 2". 
Moreover, when we restrict v,, to S,,(r), we obtain that 

V,,(Z) = r2(on(z) and f (u',i = I . 
B.(r) 

Let N and M be connected, complex manifolds of  dimensions n and m 
respectively. Let U be a non-empty open subset o f  N such that N \ U  is an 
analytic set. Let F : N -+ M be a holomorphic map on U. Set F = {(x ,F(x));  
x E U}. The map F is said to be meromorphic on N if  

(i)  The closure of  F in N x M is an analytic subvariety of  N x M. 
(ii) The projection p : F -+ N is proper, i.e. F N (K x M )  is compact for 

any compact subset K in N. 
We call I /  = {x E N; # p - I ( x )  > 1} the set of  indeterminacy. It is clear 

that 1/ is an analytic subvariety o f  N of codimension at least 2. Therefore the U 
can be chosen so that 11 = N\U.  Furthermore if F : r  --+ IP m is meromorphic, 
then F can be represented by a holomorphic mapping f :  C?" ---+ C 'm+j such 

that f = ( f o , . l l  . . . . .  fro), and 

I t = { z E r  . . . . .  f , , ( z ) = O } ,  and F = s o / ' o n  U 

where ~ : ~m+l \{0}  + IP" is ~z(w) - [w] = c o m p l e x  line through 0 and w. We 
call f a reduced representative o f  F (the only factors common to f 0 , - - . , f m  
are units). F will often be identified with its reduced representative f .  

Let I = (7J,~2 . . . . .  c(,,) be a multi-index with 7/ E 7Z + U {0} with 1 < j 
< n. We denote the length of  I by II] = ~ - 1  ~/, and define 

. . .   za" 
. . . .  , (~2. I �9 . . ~ Z  n 

and .lz, = cOhf/&~ " = ((';k/ /(Tz~ . . . . .  ~J ' . , /Sz~)  fo r  any ho lomorph ic  map 
/ 

f =  (.ti . . . . .  a,;,) : r  -~  r 

Let N be a complex manifold of complex dimension n. We denote by 
.~ the space of compactly supported complex valued C ~ ( p ,  q)-forms 
on N. This is endowed with the structure of a linear space and the usual 
topology. The currents of  bidegree (p,  q )  are the linear functionals T on the 
space ~P'q(N), i.e. the elements of the dual space of ~ The set 
of  these currents will be denoted by ~p,q(N). This space is provided with 
the topology of  weak convergence: a sequence T,, -+ T i f  T,,(.q) --+ T(g)  for 
every g E ~P'q(N). Similarly, we define the set o f  currents of  degree k ~ k ( N )  
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to be the set of  the elements of  the dual space o f  ~ 2 " - t ( N ) .  The currents of  
degree 2n, which are defined on the space ~ ~  coincide with the generalized 
functions. One can interpret in a similar way the currents of  degree 0 defined 
on the forms of  maximal degree. 

The concept o f  a current includes in particular both the concept of  a form 
and the concept o f  an analytic set. Let ~z be a form of  bidegree (n - p, n - q) 
with locally integrable coefficients. Then ~ determines a current [c~] of  the same 
bidegree which acts on ~P'q(N) by the rule 

[0r for # E  ~P'q(N). 
N 

In exactly the same way, a k-dimensional analytic set A C N defines a current 
[A] of  dimension (k , k )  by 

[A](d) :  f y for ,qC c'-2~2/"(N), 
Arcg 

where Areg is the set of  regular points of  A. Clearly, the current [A] 
E ~n -k  . . . .  ~(N) and d[A] = O. 

Let f be a meromorphic function in N, the divisor of  f is the current of  
bidegree (1, l )  defined by 

D! = ~ ai[A/] - ~ b,[B/] , 
i i 

where f has zeroes o f  multiplicity a I on A I and poles of  multiplicity bj on Bj, 
and A / and B i are irreducible components of  complex analytic hypersurfaces 
in N. One of  our basic tools is the Poincar6-Lelong formula 

D~ = ddC[log I.fl2]. (2.1) 

For all 0 < s < r, the growth of  a meromorphic mapping f :  C '~ --~ IP m is 
measured by its characteristic function 

: I " - '  wt  = l . (  ~ / J q o g l l f [ I  z A ,,,, Tl(r 's)= s ~ 8 , , [ , ]  j" f*(coo)Av,, ., ~ 8 , , [ , ]  

where COo is the Fubini-Study metric on 1P m. Sometimes, for simplicity, we 
write Tl ( r )  instead o f  T/(r , s )  i f  no confusion occurs. 

We say that a meromorphic map f : ~'~ ---+ IP" is of  finite order p i f  

log T 1 ( r )  
l i m s u p - -  - p  < oo .  

,--,or l og r  

For A E ~m+l, a hyperplane in IP" is defined as HA = {[w] E lpm; (w ,A)  
= 0}. In the sequel we always write H = HA with [[A]] = 1. I f  the image of  f 
is not contained in H,  their intersection is measured by the counting function 
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N t ( H , r  ) defined as follows: 

r d t  , is - I 

N / ( H , r )  : .]'t2~_l J ,,, 
s I t  I ( t ]  

for HI = f - i ( H )  and Hi[t] = H t •B,,[t] and the integral over Hi[t] under- 
stood to mean "counting multiplicity". More generally, we define 

Definition Let q) ~ cJ l j (C")  such that d ~  = O, and �9 {~' rr hy 
integration. The order./unction N ( ~ , r ) . / o r  the ~fivisor q) is given h), 

.i: dt 
N ( ~ , r )  = @(Z~r,,l,l v''-I )t2,~-_l . 

It is easily verified that N / ( H , r )  = N(D(/ .A) ,r)  and N(.l*(r = T/(r) .  
Moreover, Lemma (3.3) in [16] asserts that if u is pluripotential on if'" then 

m(,/,/'[,],,-) 1 t = t e a , ,  + O( 1 ) .  (2.2) 
2 s,,'(,. ) 

It follows when H = HA and u = log] ( f ,A) l  that Jensen's theorem states 

N I ( H , r ) =  f log](./',A)lo- . + O ( 1 ) .  (2.3) 
~%,(r) 

Let H = HA with ]]All= 1 be a hyperplane. The "closeness" of  the image of  
f to H is measured by the proximity function 

I I f J l  m / ( H , r )  =- J" log ~ , ,  
S,(r) 

where I( . / ,A)l/ l l f l l  is the norm of  the holomorphic section of  hyperplane bun- 
dle defining H pulled back to ~F'; via f .  Applying u = log(ILfil2/l(./',A)l) to 
(2.1), we obtain the first main theorem 

Furthermore, 

T/(r )  = N / ( H , r )  + m / ( H , r )  + O(1 (2.4) 

Tt(r) = .l logll.fl[~, + o(1). (2.5) 
S,,(r) 

Let n and m be any positive integers. A meromorphic map f �9 if'" -~ IP m 
is called linearly non-degenerate if the image of  f is not contained in a hy- 
perplane. If  n > m, we also use the usual definition of  non-degenerate: a 
meromorphic map f "  ~'" ~ 1P';' is called non-degenerate if the image of  f 
contains an open set in IP m. 

3 Results 

Theorem 1 (Logarithmic Derivative Lemma) Let  ~b and (9 be de[ined as 
in (1.1) and assume f is a non-constant meromorphic junction in ~"  and 
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n 1 = (~1,~2 . . . . .  ~,,) is a multi-index o f  length 1 = ~ /=i  ~/" Then 

f log + c')!f Tl(r)~(ri(r)) 
s,,(,-) J rr, =< l log  + q~(r) + O(1) ,  

for  all large r outside a set E with .rE dr/(a(r) < oo. 

Since the logarithmic derivative lemma plays an important role in 
Nevanlinna theory, it has been studied by many people for many years. Theo- 
rem 1 here, when ~b(r) = 1 and ~ ( r )  = ( logr)  i+'' (for any ~; > 0) and l = 1, 
is stronger than the logarithmic derivative lemma obtained by Vitter [16], or 
Biancofiore and Stoll [1] since we use precise estimates of Gol'dberg and 
Grinshtein [4], and Kolokolnikov [7]. Moreover, a logarithmic derivative lemma 
recently showed by Miles [12], and Hinkkanen [6] is a special case of  our The- 
orem 1 when n = 1 and l = 1. Furthermore, the proof of  Theorem 1 is derived 
from our Lemma 6 which is another setting of a logarithmic derivative lemma. 

Theorem 2 (Second Main Theorem) Let ~ and q5 be defined as in ( l .1) ,n  
and m any positive integers' and assume f :  ~"  -+ IP m is a meromorphic map 
which is* non-rational and linearly non-degenerate. Suppose Hi, H2 . . . . .  H u be 
arbitrary hyperplanes in lP m in general position. Then 

S ( f  , {H/}, r )  < m(m + 1) log T/(r)~b(T/(r))  
= 2 q$(r) + O ( 1 )  (3. l )  

,/'or all large r outsMe a is'et E with ,/L. dr/~b(r) < cx~; 
In addition, i f  f is" o f  f inite order p, then, Jbr any ~: > O> 

S([ ' , {Hj} , r )  < m ( m +  1) (p  �9 = 2 + e -  l ) l o g r  + O ( l )  (3.2)  

H q for  all larye r, where S ( f , {  i} /=l , r )  is de/i'ned as in (1.2). 

Wong and Stoll in [18] and [19] introduced the concept of  secondary defect 
for any hyperplanes {H/} in general position. They showed 

62(f ,  { H / } )  ~ lim inf S(.f, {Hi} , r  ) < 
r~o~ log Tl(r  ) 

m(m + 1) 

where S( f , {H / }~=l , r  ) is defined as in (1.2). However, Theorem 2 gives 

Corollary Under the assumptions o f  Theorem 2, we have 

6 z ( f , { H i }  ) <=_ m ( m +  1)/2, i f  f is o f  infinite order; 

=< m ( m + l ) (  1 - 1 ) 2  , i f  f is o f  f inite order p; 

= -oo ,  i f  f is" o f  order zero. 
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Proofof  Corollary. Taking ~b(r)= log3"2r and qS(r) = I in (3.1), we have the 
first inequality since T/(r) goes to infinity as r ~ oe. 

When f is of  finite order p, then we have from (3.2) that, for any c > 0, 

l i m i n f S ( f , { H i } , r )  < m(m+ l ) ( p + e _  l ) l iminf  logr  
, ~  logTt(r ) = 2 , ~ ,  log Tt( r  ) 

<= re(m+ l ) ( p + ~ : _  1 ) 1 .  
2 p 

By arbitrariness o f  ~;, the corollary is proved completely. [] 

Wong and Stoll in [18] and [19] also brought up the concept of  third defect 
for any hyperplanes {H~} in general position since they did not get the best 
second term in the left side of  (1.6). Now we know from Theorem 2 that 
the third defect is always zero. We no longer see any usefulness for the third 
defect. 

Theorem 3 (Second Main Theorem) Let n and/n be positive integers with 
n > m and suppose f : C" ~ IP m is a non-rational and non-der 
meromorphie map. Suppose HI, [12 . . . . .  Hq are arbitrary hyperplanes in IP m in 
#eneral position. Then 

T/(r)q/(T/(r)) 
S ( f , { H / } , r )  < mlog q~(r) + 0 ( 1 )  (3.3) 

for all large r outside a set E with J~: driP(r) < oe; 
In addition, ! [ f  is of finite order p, then, Jor any ~: > O, 

S ( f  , {Hj},r) <= m ( p + ~ ; - 1 ) l o g r  (3.4) 

. , H q &r all lar.qe r; where S([',{ /} /=l , r )  is defined as in (1.2). 

Corollary Under the assumptions ~]" Theorem 3, we hat~e 

62(f ,{H/})  < m, (]" f is of  infinite order; 

=< m(1 - 1/p), if  f is ~[" finite order p; 

= -oo,  i f  f is of order zero. 

When m = 1, Theorem 2 coincides with Theorem 3. However, Theorem 3 
is not better than Theorem 2 even if we assume n -> m in Theorem 2 since 
linear non-degeneracy is much weaker than non-degeneracy. When n = m 
= 1, our theorem 3 is still better than Hinkkanen's result [6] because [6] had 
log + in the left side of  (3.1) instead of  log. So (3.2) cannot be obtained by 
using Hinkkanen's result. Moreover, if f has a regular growth, e.g. T/(r) 
,.~ Cr p, then (3.2) and (3.4) can be improved to be 

S ( f ' { H / } ' r )  < m(m+ l) ( 1 - 1 )  2 
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and 

S ( f , { H j } , r )  = < m ( l  _ 1 ) l ~  O(1) ,  

respectively. Obviously, these inequalities are much better than (3.1) and (3.3). 
Generally speaking, (3.1) and (3.3) can be always improved if we only consider 
a subclass of  meromorphic mappings. 

Theorem 4 There tire tl meromorphie map f "  117" ~ IP m (for some n anti 
Ill) anti hyperpkmes Hi, 1t2 . . . . .  Hq jor some q in general position in IP m such 
that 

S ( f , { H i } , r ) =  ( m ( 2 +  l) + o ( l ) )  logTt(r) 

for all large r, where S(j',{Hj}q=l,r) is deJined as in (1.2). 

Theorem 5 There are a meromorphic inap f "  112" --+ IP m (Jor some n and m) 
and hyperplanes HI, H2 .. . .  , Hq (['or some q) in general position in 1P m such 
that f is oJjinite order p (/or some p) and 

S ( f  , { H i } , r )  = m(m + ] 2 ) ( p -  1 + o ( l ) ) l o g r  

Jor all large r, where S( f ,  {Hj}q i , r )  is defined as in (1.2). 

If  we take ~9(r) -= logl+"r for any e > 0 and qb(r) - 1, then clearly (3.1) 
can be written as, 

m(m + 1 ) 
S ( f ,  {H~ }, r )  < log T t (r) + (l + ~:)log log T / ( r )  + O ( l )  

= 2 

-- ( m ( 2 - + l ) + o ( 1 ) ) l o g T / ( r )  

for all large r outside a set o f  finite Lebesgue measure. It follows that Theorems 
4 and 5 show the sharpness of  Theorem 2 in a certain sense. Moreover, the 
mappings in Theorems 4 and 5 are algebraically degenerate and not linearly 
degenerate. This observation leads an interesting question to determine what 
the best possible coefficient is if the map is algebraically non-degenerate. 

The map f in the proofs of  Theorems 4 and 5 is from l~ 2 to IP 3, i.e. n < m 
(it is not difficult to find a map from {E to IP 2 which makes Theorems 4 and 
5 be true by using the method in the proofs of  Theorems 4 and 5). Clearly, 
the map f can be regarded as a map from Ir n to IP 3 for any n > 2. Thus we 
see from a little changes in the proofs of  Theorems 4 and 5 that Theorem 2 
is sharp whenever n => m (compare with Theorem 3) and n < m. 

Naturally, the following theorems show the sharpness of  Theorem 3. In fact, 
the sharpness of  (3.3) was shown by the author in [20] in a general setting and 
the best example can be found in [23] in one complex variable case. However, 
examples here are different from examples in [20]. Moreover, Theorems 6 and 
7 can be proved by utilizing the maps in the proofs of  Theorems 4 and 5 
without much effort. 
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Theorem 6 There are a meromorphic map f :  IF" ---+ 1P m (/br some n and m 
with n >= m) and hyperphmes H~,H2 . . . . .  Hq ([or some q) in IP'" hi .qenera/ 
position such that 

S ( f ,  {H/} , r )  = (m + o ( l ) ) l o g  r / ( r )  

Jot  all &rye r, where S ( f ,  {H/}~=l,r)  is defined as in (1.2). 

Theorem 7 There are a meromoudfic mcq~ f "  IF" -~ IP m (tot some n and m) 
and h)Terplanes HI, H2 . . . . .  Hq (Jbr some q) in IP'" in general position such 
that f is (?/finite order p (/or some p) atul 

S ( f , { H i } , r )  = m(p  - I + o ( l ) ) l o g r  

jar  all larqe r, where S ( f ,  {Hj}~=l,r)  is" ~&fined as in (I.2). 

4 Lemmas  

Lemma 1 Let f be a non-constant meromorphie Jhnetion in IF. For arbitrary 
with 0 < ~ < 1, there e.~cists a constant C such that Jor arhitrat T r and R 

with r < R, we have 

2~ o I. / '(re'~ - cosc~r/~ r (R- -  r) [mr(R, 0) + mt(R,~'x:)] ~ 

, } + ; s [ n / ( R , 0 )  + n/(R,  ,9o)] ~ 

Pro@ Without loss o f  generality, we assume that f ( 0 )  = 1, otherwise we 
consider z a f ( z )  for some integer k. Hence, we have from [4], 

2-~ .['(re '~ dO _<- --2n i) ~o ' ] ' [ l~  -- z[ 2d+ 

l b~J~ dO + ~ - -  
+ ~ o c~ <R R2-C~-z  ~ o q < R z - c ' ~  

dO 

=11 + 1 2 + 1 3 ,  

where z = re  '~ , 6 2 = 1, and 

I1 ~= r ( R _ r ~ ( m / ( R , O ) + m t ( R ,  cx:)) , 

12 =< 2 2 ~ s e c ~ -  ( n / ( R , O ) + n t ( R ,  oc ) )  �9 
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By [7], we obtain 

13 < 22+~sec~-  ( n l ( R , O ) + n l ( R ,  oo)) o 

It follows that the lemma is proved. [ ]  

Lemma 2 Let r ~ IR + and h be a Junction on S,,(r) such that ha,, is integrahle 
over Sn(r), then, .lor p(w)  = V/72 - I w l  e, 

' l, ) ; ha n --r2n 2 .f J h(w,~)dil(~) Pn I(W). 
S,,(r) ~,,_l(r) L(pOv)) 

Lemma 3 Let f be a non-constant meromorphic fimction in 112", and c E IW 
then, i f  r > O, 

1 
r2,,-2_ f nl[wl(P(W),C)Pn-I(w) ~ n t ( r , c ) ,  

B._ I0 ) 

where ftw](Z) = f ( w , z )  for  w E ~, l - i  and z e ~; and p(w)  = ~ /7  i -  Iw) 2, 
/ o r  w E/~, , - i (r) .  

Complete proofs of  the two lemmas above can be found in [l]. Lemma 4 is 
from [22]. Here, for the sake of  completeness, we give the proof of Lemma 4. 

In the sequel, C is always thought as to be an absolute positive constant, 
although the value may vary in each appearance and we write 

nt(t,O, o o ) = n 1 ( t , O ) + n t ( t ,  oc ) and mt(t,O, o c ) = m l ( t , O ) + m t ( t ,  oc ) .  

Lemma 4 Let f b e  a meromorphic fimetion in 117 'l. Then jor  any 0 < a < 1/2, 
there is a constant C > I such that Jar any r < R, and any j E {1,2 . . . . .  n}, 
we have 

6;,(~ ) r( R -- r 

Proof  Without loss of  generality, we take j = n and set s = (R+r)/2.  Applying 
Lemma 2 and Lemma 1 with p ( w ) =  v/r2 - I w l  2 and P ( w ) =  v / ~ -  Iwl 2, we 
obtain 

J~wj(z) 
f din = r 2-2n f f al(z)P,,-I(w) 

s,,(,.) &-t( ,)  &(P(w)) .f[)d (z) 

2--2n " j C { (  P(w) )~: < r 
#, ,_,( , . )cos~/2 \ p(w) (P(w)  - p (w) )  

• m~lr,,(P(w),O, o o ) +  l~n~,  (P(w)  0, o o ) } p n _ , ( w ) .  
L ', p ~ ( w )  'Lq 

I 

(4.1) 
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Clearly, for any w E / } , , - t ( r ) ,  since p(w) <= P(w)r/s, 

P(w) s 
< - -  (4.2) P(w)- p(w) = s - r  

I p,,-  i(T), then, Moreover ,  for any 0 < [~ < 1, set C = .]~,,_t(l)(i-z-2)/P2 

1 I C r  2"-2 
~,_,~,~J" P/~(w)P~-l(w)=r2n-2~,, J',(I) rl~(l .c2)l~,~pn I ( r ) - -  rl~ (4.3) 

For any c ~ IP I, applying L e m m a  2 gives 

s 2 n - 2 m l  (S ,C)  ~- S 2n-2 .f log + I I / ( f ( z )  - c)la,,(z) 
S. (,~ ) 

= f9,,- i(,,) (sj'l(Ptw)) l~ ]l/(l[wl -C)]exl) pJ~-t(w) 

= .f m/M(P(w),c)P,,-I(w) 
t~,,_ i(,~ ) 

> f mti.l(P(w),c)p,_j(w). (4.4) 
/}. lit) 

Therefore,  using (4.2), the H61der inequality, and (4.3)  for [~ = ~/(1 - ~)  and 
(4.4),  we get that 

P(w) )~ 
r2-2~ J p(w)(P~)-- p(w)) m}i"l(P(w)'O'~)P"-i(w) 

B,,_t(r) 

( S  ~S' r ' ) ' :  r2_2n_ , ' . 1 [,,1 (P(w)' <= j n~iw m} O, cx~)p,_t(w) 

< S r2_2,  , mfM(p(w),O, cx~)p,_l(w) 
= k s - r /  , , ' , ( .)  

X 

=< C -s (2"-2)m~(s,  0, cx~). (4.5) 
Y 
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Similarly, using the H61der inequality, (4.3) and Lemma 3, we have 

r 2 -  2n 1 f n~/I,~(P(w),O, oc)p,, , (w) 
~,, j(,.~ p ~ ( w )  

r 2-2n 1" nlt,,t(P(w),O, cx~)p,, l(w) 
,~ 'l(r) 

< r2-2"(s>'-=n/(s,O, 0c))~ \ r ~ / ( l _ ~ )  

C ( s ~  ~(2n-2) 
< ,'~ , r ,  n] (s ,  0, o o ) .  (4.6) 

Noting s = (R + r) /2 ,  we have 

mt(s ,  oc ) < T / ( R ) + O ( I )  and m/(s ,O) < T / ( R ) + O ( I ) ;  

s R s 2R 
- < - and - -  < - - "  
r = r r(s r) = r ( R - r ) '  

R R 2R 
n/(s ,  oc)  < - - N / ( s ,  oo) < T / (R)  = - - T / ( R ) ;  

= R - s  = R - s  R - r  

2R 
nt(s,O ) < - - ( T / ( R ) +  O ( 1 ) ) .  

= R - -  [~ 

Combining these estimations with (4.1), (4.5) and (4.6), we obtain the 
Lemma. [] 

L e m m a  5 Let f :  •" ~ IP m be a non-constant meromorphic mappin# such 
that f o ~- 0 and set 

G = ( f l / f o ,  ./'2/.1o . . . . . .  /,,,/./o) and 

[1, Gz, ] = [1, ( f  ,/.['o)z,, ( j ' 2 / fo  )z, . . . . .  (f,,,/.to )z, ].  

Then, for  any j E {1,2 . . . . .  n} and for  any r < R, 

T[t,G=,t(r) _< 2 T t ( r ) + m l o g  + - r ( R _ r ~ ) T / ( R )  + O ( 1 ) .  

= - (.fo)~,.iklJo. Then the Proof  Set Gx. j ' d f o ,  then (Gx)z, = ( . f k ) . . , / f o  " " = 
reduced representative of  the meromorphic map [ I ,G, j ]  is o f  the form f i - i ( f~ ,  

f~Gzj ) where /3 is a holomorphic function on 112". Thus we have from (2.5) 
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and Jensen's theorem (2.3) with e0 = (1,0 . . . . .  0 )  E (F '''+t 

1 
T I Lc;:,l(r) = ~ f log(]/4[-2 i./.014( I + IIG:, II 2))c~,, + O( 1 ) 

5",, ( r ) 

Since 

4 8 9  

1 
i log(l + ]lG:,lt2)a,, + 2Nt(Heo,r) - N(DI~,r) + O(1). (4.7) 

<= 2s,; 1 

log(1 + IIG=, II 2) ~ log + IIGI] 2 + log+( IIG. II/IIGII )~ + log 2 

= log(l + IIGII 2) + ~ log + I(G~ )~,/G~ 12 + O(1), 
k = l  

1 
rl(,-) = 

Consequently, 

we have from (4.7) and Lemma 4 that 

rl"<~, ](r) < 1 i. log(1 + [IGH2)~,, + 2Nt(H,~o,r ) 
= 2 s,~(,') 

5 t - '  (G~). ~ 
+ Z='--s,;~,, ~ l ~  a ,  + O ( l )  

< _1 [. log(l + []GllZ)a,,+2S/(Heo,r) 
= 2s;),.i 

+ ~ l ~  C r ~ - - r )  T(;~(R) + O ( 1 ) .  (4.8) 
~=1 

Applying the first main theorem (2.4) to f and H,, 0 and noting I l f l l / ( f ,  eo) 
-- (1 + I IGII2)" t  we have 

,1' log(1 +l lGl l2)c~, ,+N/(H,~o, r )+O(1) .  (4.9) 
S, , ( r )  

Nt(H,,o,r ) ~ T / ( r ) + O ( l ) .  

Furthermore, we have from the definition of  T! that for all k, 

LT~(r) = Tlto, txl(r) < T l ( r ) .  

It follows from (4.8)-(4.11)  that the Lemma is proved. [] 

(4.10) 

(4.11) 

Lemma 6 Let f be a non-constant meromorphic .fimction in ~" and I 
1l 

: (h ,v2  . . . . .  v,) a multi-index o f  lenqth l = ~ i = j  v 1. For any .~ with 0 
< 17 < 1/2, there is a constant C > 1 such that fo r  any r < p < R, we 
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have 

, ), 
.%<,., .r o-,, __< c (7 ,  ~ ' - ' -  ;7 :~=(~) 

Proof  We prove the lemma by utilizing induction on the number o f  non-zero 
elements in 1. First we assume that there is only one non-zero element in l ,  
say, I = (1, 0 . . . . .  0). Then 

,o,.f =.t;,, =-DI- 'J; I  -~ .. T 

It turns out from the H61der inequality and Lemma 4 that, for r < p, 

.f S,(r) ~ l . . =  s .~ .~;,,, ... ' ~ ~,,<,, I . q - '  I-"2', -= , o-,, 

I/I 

, .) . l  f in  

= (p,)lz~(2n--2) ( [ )'~ Tf/ I (p) 
< C ' ,re  r (p - -  r) :, 

" "  T'~t_-, (P)Tf ~(p) - (4.]2) 

Applying Lemma 5 to the meromorphic function f when m = 1, we have that, 
for any j E {1,2 . . . . .  n} and for any r < R, 

Th, (r) < 2T t ( r )  + log { R } = r r(R-~ ~ r 1 ( r )  + o( I ) .  (4.13) 

Using (4.13) for .~{_,,.[2/-~ . . . . . .  [~, consecutively, we obtain a constant C such 

that, for any k with 1 < k < l -  1 and any p < R ,  

T& (p) < CTI(R ) . (4.14) 
"1 

It follows from (4.12) and (4.14) that the lemma is proved in this case. 
Now suppose the lemma is true when the number of  non-zero elements in 

1 is n -  1. The lemma will be proved i f  we can show that the lemma holds i f  
~i > 0 for any 1 < j  < n. Set 

l,,_l = (vl . . . . .  v,,_l,O) , 

then 

~9 (~"-' f)<', ~"-' f 
and l = vn + I1,,-I[. 

f ~ ~4,-~f  f 
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Therefore, applying the H61der inequality and the induction hypothesis, we 
have 

(.)/I. z~ O'n ( 0/,, I . f  )z;" (~1,,_ I f /2 
&,{,') ") ~ .1. 05, 

=< C(P-'}('+II" '1)~(2" 2 ) ( \ r e  r(p p--r))O''+l'' ,I)= 

• ~)i,>, I(P)TI '' ' t~(e)-  (4.15) 

Again making use of(4 .13) ,  we get a constant C > 1 such that for any p < R, 

T~,,, , t (p)  <= CTI(R ) . 

It turns out from (4.15) that 

p :~(2n 2) P 1~ ",,~ 1/,,-~1~ 
f a,, <= C \ r /  r ( p - - r )  T t (R)T  1 (R) .  

S,,(r) 

Thus Lemma 6 is proved completely. [] 

Lemma 7 Let tp and ~ be defined as in ( 1.1 ) and T a nondecreasing function 
in IR +, then there is a constant C > 1 such that 

~5(r) ~ < CV(r)  
T ~ + g,(T~7))) = 

.]'or all large r outside a set E with .rE dr/qS(r) < oo. 

This is a sort of  standard growth lemma. The interesting readers can find 
a proof of  the lemma from [6] or [5]. 

Lemma 8 Let F : ff?n ___+ lpm be a linearly non-degenerate meromorphic map 

and f = (j0, Ji . . . . .  Jm ) 

a reduced representative o f  the meromorphic map F, then there are the 
multi-indices fit . . . . .  tim such that 11311 <= j J'or any 1 <= j < m and f ,  
~l~l f ,  . . . .  #l*,,,f are linearly independent over C. 

Proof  Since F is linearly non-degenerate, f0 ,  .fl . . . . . .  fm are linearly indepen- 
dent functions in ~" .  For any positive integer k, set 

.~a = { U  f :  I ~ ] = k }  and , ~ o = { f } .  

We first claim that there is at least one element in .~-i, say f ~ ,  which is 
independent with f .  In fact, if  the claim is not so, then for any f z ,  c 3"-i, J'~, 
and f are linearly dependent; i.e. for any j with 0 < j _-< m, there is a c i 
such that 

f~ , (z)  = c i f ( z ) .  (4.16) 
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U ~ N h Taking partial derivatives o f  (4.16), we obtain that for any h E h=2. k, 
and f are linearly dependent over ~'. Moreover, f has a global expansion at 
any point. Hence, 

v/ 

J'(z)  = f ( z o )  + ~.l~.,(zo)(zj - (zo)~) + " -  
/=l 

I? i1 

= f ( z o )  + . f ( zo )E]  c'~(z~ - (zo)~) + . f ( z o ) ~ C / , ( z / -  (zo)j)(z,  - (zo), ). 
/ = l  ja 

=- f ( z 0  )p ( z )  

where z = (zl . . . . .  z,,), z0 = ((zo)l . . . . .  (zo),,) and p ( z )  is an entire function 
r Consequently, 

J}(z)  = .D. (zo)p(z ) ,  for j = 0, 1 . . . . .  m.  

I11 

It turns out that f0,  j i  . . . . . .  fb are linearly dependent functions. This is a con- 
tradiction. 

Now suppose that 

f/~/~'.f, ~/~'"-'.f (l#,I < J) 

are linearly independent and we claim that there exists [~m such that i)lS"f 
C . ~  U J 2  U . . .  U,~m and 

f ,  0/q f ,  . . . .  ~/~,,, , .f, ~/~,,, / 

are linearly independent. If the claim is false, then f ,  ?/q.f, . . . .  r r.f consists 
o f  a maximal linearly independent subset in .~o U .~ l  U - - .  U .~,,. It turns out 
from taking partial derivatives that f ,  ~t~ f ,  . . . .  J , , -~  f consist of  a maximal 
linearly independent subset in U~.~' j .  Thus, the global expansion at point 
zo C r gives 

f ( z  ) = f ( z o  ) po(z ) + J '  ./'(zo ) p l (z )  + . . .  + ~1~,,,- ~ f ( z o  ) Pro- t (z)  , 

where Pi(J = 0 . . . . .  m -  1) is an entire function in ~n and f (zo) ,  # ~ f ( z o ) ,  
. . . .  8t~,,,-~J(zo) are vectors in cs ''+~ . Therefore, for any j = 0, 1 . . . . .  m, 

f A z  ) = ( f  j(zo), ~gl~' f /(zo) . . . . .  /~"' -~ j j ( z o  )) 

p0(z)  "~ 

p,,,_ j (z) / 

Consequently, f0 ,  f l  . . . . .  fm are linearly dependent functions which contra- 
dicts our assumption that f is linear non-degenerate. [] 
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L e m m a  9 Le t  f be an entire f imc t ion  in ~ ,  then, Jor  z = (zl . . . . .  z,,) and  
n > 2 ,  

S,,(,') f f ( Z l  )O',,(Z) - -  2l" jO J0 r 2 " - 2  tf(te'~ 

Prool: First let r = 1, B,,(1) = B, and S,,(1) = S,,, and set, for any 0 < s 
< ,cX;, 

h(~,) - J .t(:~ )~o',',(z). 
ABit 

.s 
Integration in polar coordinates gives h( s ) = 2n .]o t2"- ' ./is,, . f  ( tz t )a ,,( z )d t. Con- 
sequently, 

h'( 1 ) = 2n f f ( z ,  )a,,(z) . (4.1 7) 
s ,  

On the other hand, noting Fub in i ' s  theorem with an orthogonal projection o f  
IF" to 02, h may be written as 

h(s)  = c(n)  f (s 2 - [ w l 2 ) ' - ' . f ( w ) ( o j ( w )  , 
Hi 

where c(n)  is a constant  depending on the normalizat ion of  r Thus 

h ' ( l  ) = c ( n ) f Z ( n  - 1)(1 - Iw, I 2)" 2 f ( w ) O ) l  (W) .  
BI 

(4.18) 

By comparing (4.17) to (4.18), we obtain 

.J'./(z, )a,,(z) = 2(n - 1 ) c ( n ) f ( l  - Iwl 2 ) '~ -2 . / (w)co , (w) .  
Sn B I 

(4.]9) 

Let f =  1, then 

1 = 2 ( n -  l ) c ( n ) f ( 1  - I w 1 2 )  " 2 f ( w ) ( o l ( w )  
B~ 

1 2Jr 
= 2(n - l ) c ( n ) f  f ( l  - t 2 )"-2tdtdO = 2~zc(n) , 

0 0 

so that c(n)  = 1/(2=). Substi tut ing 1/(2rc) for c(n)  in (4.19) gives the lemma 
when r = 1. If  r=l= 1, set z = r~, then 

f f ( z l  )o-~(:)  = .l'f(r~1 )c~,,(r~) 
S,, ( r ) S, 

__ n - -  l . ] . ( l _  12)n 221tf(rte,O, . )dOdt 
7~ 0 0 

- l - f ~ f ( s e ' ~  �9 , 
1"C 0 O F 

which implies the lemma. [] 
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5 Proof of Theorem I 

Using the concavity of logarithmic function and Lemma 6, we obtain that, for 
any small positive ~, 

f l~ 7 
S,,(r) 

l ( ~/ " ~ (J.! 
~" --< -l~ ~,s f 7 ,,(r) 

' 
< - log + C 

+ o ( 1 )  

< l log + 

for a n y r  < p < R. Put 

a,,) + o ( 1 )  

l:~(2n--2) ( p ) 1 : ~  

r(p -- r) 

r ( p 2 ~ ) T l ( R )  +O(1)  (5.1) 

qS(r) R + r qS(r) 
R = r +  and p -  - - - r +  (5.2) 

O( T! (r) ) 2 2O( T! (r) ) 

Applying Lemma 7 to the increasing function T l, we get 

~b(r) ~ < CT/(r) (5.3) T/(R) = T! r + O(~f(r))] = 

for all large r outside a set E with fEdr/~b(r) < oo. In addition, for all 
large r, 

p/r __< 2 and l / ( p - r )  < 2~9(Tl(r))/(a(r). (5.4) 

Therefore substituting (5.2)-(5.4) into (5.1) shows that the theorem is 
proved. [] 

6 Proof of  Theorem 2 

Let f "  IE n --* IE m+l also denote a reduced representative of the meromorphic 
map. Set 

f =  (f0, f~ . . . . .  f , . ) -  

f being linearly non-degenerate is equivalent to the fact fo,  J'l . . . . .  J',, are 
linearly independent in IC". By Lemma 8, there are multi-indices flj with 
[fl/I = lj < j for 0 _-< j =< m such that f ,  c~lhJ ", O&f, . . . .  c~lJ,,,f are linearly 
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independent. Set 

d ( . /  ) ==- J ( f o . . . . . .  1,,,) =_ . /  A ~.~l~ . /  i~ . . . i~ J "  f 

.[ 'o 

C lq ./'o 

Cl~,,,./o 

32 

.t'l . . .  f , , ,  

? lJ l  f l . . .  (O/Jl . f ro  

?lS,,, f ~ CI~,,, ~. 
�9 " " ~ . l  m 

( - 1 )"'~s" r ~ ......... ~( ~otJ, o f o  )( .~/s, ~ ./.j ) . . .  ( ,.~s~,,,, f m  ) 
0 < r 0 , i  I ,..., lm _< m 

where we always regard the index under the ~ as i s =l=i~ for all j ~ k .  
Clearly, J ( f )  is a holomorphic function in ~".  Define the ramification 

divisor R! - D j .  
Without loss of  generality we may assume that the number of  hyperplanes 

q > m + 1 and H / =  {[w] E Ipm; (w, As) = 0} where the A I are unit vectors 
in ~,m+l. Otherwise, we can add more hyperplanes such that the new set of  
hyperplanes consists of  m + 1 hyperplanes in general position�9 In addition, 
S ( f ,  {H/}~(, r)  is nondecreasing with respect to q since (1.2) can be written 
a s  

q 

S ( f  , { H i } q , r )  = ~ - ]ml (Hs , r  ) - (m + l ) r i ( r )  + N ( R I , r  ) + O ( I ) ,  
i I 

and m l ( H i , r  ) >= O. Set 

,qi(z) =- ( f ( z ) , A s )  j = 1 . . . . .  q .  

Thus, for any 7 = (70 . . . . .  7'm), where 71 ~ {1 . . . . .  q } ( j  = 0 . . . . .  m)  and 
7/:#7k if j + k ,  we get from general position of  the hyperplanes that there 
exists a non-singular matrix B:, such that 

f,,,(z) \ ~,,:.,,,(z) 

i.e. for each j C {0 . . . . .  m } , f , ( z )  = ~,~'-o bi~(7),q;'x(z)" Set 

G;. = (g~'0, g~', . . . .  g;,,,,) : I17" ~ Ir ' '+l , 

then, for any large r > 0 ,  

T<.(r) = f logi lG:.Na, ,+O(1) < T l ( r ) + O ( 1 )  < 2 r t ( r ) ,  (6.1) 
S,,0) 

where O(1) depends on 7. Since there are only finitely many 7's, we always 
regard O(1) as an absolute constant in the sequel. Furthermore, there is a 
non-zero constant c;. such that 

J ( f )  = c J ( G ; . )  =_ c:,G,: A c3iq G;. A . . .  A ~91s"'Gr , (6.2) 
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For any 2 E IR + and any {a,/} c IR +, there exists a constant C = C(~) > 1 
such that 

For r < p < R and sufficiently small ~, set s -= c~(m+ 1 ) and t =- 1 / (m+ 1 ), we 
have from the concavity of  logarithmic function, (6.3), the HSlder inequality 
and Lemma 6, and noting T%(r )  < C T , ( r )  and ][~/I = I/ < J for all j ,  that 

IJ(g;,,i . . . . .  g;,,,, )l 1 

&,(r) "' 

l o g ( ~  IJ~(-G-7)I '~ 
I.q:,,... ;J;,,, I/  

O- n 

z / -1 log J'" 
Sn(r) ~ 0 6 to,q,...,im < m  ,qTo ,qTJ 

J,,,, 
.qT,,, ] a .  + O( 1 ) 

,q~,,,, / 

< - l o g  ~ ~ < 
0~ ~i ") 7 0 ~ i 0 , q , . . . , t m = m  �9 q, 'o ,q~,' 1 

a,, + O ( 1 )  J ,qT,,, 

__< -tog Z 
~' O~to<t l , - ' - , tn l~  m Jl" ") 

- -  O n J ,qTo 

�9 .. ' -  or. + 0 ( 1 )  
, . ) f  g , ' , ,  I 

v!, =< - log C r ( p - -  r ) ]  _ ,',~(R) 

- 2}  p l,,,~ 
�9 T~ (R) + O ( 1 )  

{ } < m ( m +  1)log ( p ]Z ,  2 p .... 
= 2 " ,r /  r ( p - - r )  (R) + O ( 1 ) ,  (6.4) 

where the indexes ? 's  are combinations of  {1 . . . . .  q} taken m + 1 numbers at 
a time, and the last inequality holds because It + 12 + . . .  +lm ~ m(m + 1)/2. 
It follows from (6.4) and (6.1) that, for any r < p < R, 

s,,o.) I,q:.o ~.,,,]a,, =<- 2 log r )  r(p -- ~ r t (R)  

+ O ( 1 ) .  (6.5) 
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At any z • C" the .q,'s may be ordered so that ],ql(z) f < I . q 2 ( z ) ]  < " ' "  < 

L q q ( z ) ] ,  then there is a constant C such that 
I/2 

Jogllr(z)ll v =0 ) 

< I o g l g / ( z ) l + C ,  j = m + 2  . . . . .  q ,  (6.6) 

where 7,= (1,2 . . . . .  r e + l )  and C can be chosen independently of  z (at different 
points z one orders the gt 's  differently and gets different constants but there 
are only finitely many possibilities) and also, noting (6.2), 

I ( , q ~  0q)(Z)l I J( . /0  . . . . . .  /'m)(z)l 
I(.q,,,+2-...qu)(z)l ; IJ(.fo . . . . . .  f , . )(z)l  I(.q..q2"" ".q,.+, )(~)I 

I(#, " ,q,z)(z)[ IJ(G,)(z) j  
= I J ( . f o  . . . . . .  fm)(=)l I(;#~', :-~7(:)1 I,~.1 �9 

Therefore, there is an absolute constant C > 1 such that 

'g ' ' "<qq'(~7 'J(G:')' ) ' . qT i - "Z ,+ ,  ' I.q,,,+2.qql <_- Clj(~/.Z~7~,,,) t , (6.7) 

noting the right side of  this inequality is independent of the order of  ,qx's. 
On the other hand, we have from Jensen's formula that 

Nt(Hj,r) = f iogl,qjl~r. + 0 ( 1 ) ,  (6.8) 
&(r) 

and from the Poincar~-Lelong formula (2.1) and (2.2) that 

N(RI,r ) = N(dd<'[loga2(.t')], r )  = .f log Id(./)l~,, + o ( 1 ) .  (6.9) 
S,,(r) 

It follows from (6.6) (6.9) that 

( q - m - 1 ) T l ( r ) = ( q - m - I )  f logl l . / ' l l a , ,+O(l )  
s,,[r) 

< f logl,qm+2-.-qqia, + O(1) 
s,,(r) 

I ,q~ .q2  ,qql <= f log [U(./'o, , f ,  ) a,, 
S,,(r ) " " " 

tJ(G:,)I 
+ .f log 32 I .qs ~ , + o ( i )  

S,(r) 7 

q 
= 3 2 N I ( H I , r ) - N ( R I , r  ) 

i=1 

IJ(G, ,)]  
+ f log~[ .q: - ._ : - ; -  l a , , + O ( 1 ) . ,  .<,,',,, (6.10) 

S~dr) ;' 
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Therefore, combining (6.5) and (6.10) gives 

m(m + { ( ~ ) 2 n  2 jO } 
S(.f ,  {H/}, r )  < l ) l o g  - -  (6.11) = 2 r ( p - r )  Tl(R) + O ( 1 ) .  

Again taking p and R as in (5.2) and using Lemma 7, we get (3.1). 
if f is of  finite order p,  then, fox" any c > 0, we have, for all large r, 

Tl(r ) < r p+'. " 

We take R = 2r and p = 3r/2. Hence (6.11) gives 

S ( f ,  {Hj} , r )  <= m ( m +  l) l o g ( C r p + ' )  

which is the second part o f  the theorem. 

m ( m +  1 ) ( p + t ; _  l ) l o g r +  O(1 ) .  
2 

[] 

7 Proof of Theorem 3 

Let f " ~ "  --+ (I2 ' '+t  also denote a reduced representative o f  the meromorphic 
map. Set 

f =  ( J ; , A  . . . . .  f , , ) .  

Since the map f is non-degenerate and n > m, we can, without loss of  
generality, choose coordinates on ~n such that the determinant 

J; . / l  " ' "  Y;,, 

(.J%):, (.t i)_., " ' "  (L , , )~ ,  

( / ; )  .... ( f l )  .... " ' "  ( / ; , , )  .... 

is not identically equal to zero. it follows that f ,  Jz , , fz  2 . . . . .  J),,, are linearly 
independent. Define the ramification divisor R! = DfA/q A.-At:,,,. Thus the proof  
of  Theorem 2 can be carried over here sentence by sentence if  we define 

y ( . f )  - f A .L,  A - . -  A L,, ,  �9 

Therefore we have 

S(f, {H/}, r) < f log ~ IJ(G:,)I 
s,,o-~ ~. I< ' ,  " �9 g~',,,+, I ~ "  + ~  

< !log 
&fir) ~ 0 ~ i0,il ,...,ira <=m 

O" n 
J gTo g~,'t g;',,, 

+ 0(1 )  
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=<mlog C r ( p _ r )  Tl(R) + O ( 1 ) .  

The remainder of  the proof is similar to the proof of  Theorem 2. [] 
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8 P r o o f  o f  Theorem 4 

Set c~(r) = eCt~ and let {rl} be the sequence defined by 

~ ( r j ) = U  +l, j =  1,2,3 . . . . .  (8.1) 

This sequence {rj} is uniquely determined, strictly increasing and unbounded. 
Let 

, q (z )=~_  1 +  - , (8.2) 
i \ r l l  t 

where 

nj = 2 / (8.3) 

We prove that .q is entire and (8.23) and (8.24) hold. In these estimates N~l(r,O) 
and n~l(r,O ) will be replaced by N(r) and n(r). 

Let r > 0, with r E [rh-l,ra.). Then n(r) = 2 ~ - 2 < ~ ( r ) - 2  and 

1 1 
n(r) = ~ ( r / ,  ) - 2 > ~c~(r) - 2 . (8.4) 

The upper bound for n(r) and the definition of  N(r) yield that 

N(r) <= ge  (l~ - 2 1 o g r + C ,  ( r >  r0).  (8.5) 

Choose a E (�89 1 ), and set 

s i = r  I - a / ,  S / = r / + a / ,  (8.6) 

Ej = [s/,Sl], E = UEj ,  (8.7) 

and observe that ll(E) <= ~j=t 2#  = A, where A depends only on a. 
If r > Sk, we have from (8.6) and r/ < j + 1 that for all large k, 

r ( a z~. ) a t a k 
l o g - -  > log l +  > > - -  

rk = = 2rk = 2 ( 1 + k ) '  

so that, by (8.3), 

> exp . (8.8) 
\ r k /  = \ 2 ( k + l )  
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i f  r < st ,  we see from (8.7) and r / < j + I that for all large k 

and so 

l o g - -  < log 1 -  < - - -  < 
rk = = rk = (l+k) 

- -  _ _ <  exp 

Z. Ye 

Note that i f r  E ( r~ , rk+ l ) \E ,  then r > Sj ( j  = 1 . . . . .  k)  and r < s / ( j  = 
k + 1 . . . .  ). If  z = re '~ for any such r then 

log[q(z)l ~ n / l o g  + ~ log (ri],,: z = + 1  + log 1 +  --  
:=1 /=l \ z : i=/~+l \ r j /  

-- N(.) + E108 ( ' )  +1 + lo8 1+  k , ; J  j = l  \ Z / ,= I ,+ I  

= N(r) + lj + 12. (8.10) 

Since 2a > 1, we see from (8.8) and (8.9)  that i f  r is large enough, then 

I:,l_< __< exp - /=l /=l 2 ( j  + 1) + O ( 1 )  = O ( 1 ) ,  

= - -  < y ~ e x p  - l + j j + O ( 1 ) = O ( 1 ) .  
/=k+1 \ r J }  /-I 

Thus g is entire; indeed 

loglg(z) l  = N(r) + O(1) (8.11) 

for all large r q E and z = re '~ It follows that 

N(r) <= T,j(r) < l ogMq(r )=N(r )+O(1) ,  (r > r, ,r(/_E) (8.12) 

where M,j(r) = maxlz I ,.Ig(z)l. Therefore, we have from (8.5) and (8.12) that 

T, ; ( r )=N(r )+O(1)  <= ~(r), (r > r, ,r  ~ E) .  (8.13) 

Furthermore,  i f  r E E,  then there exists j such that r E E~ and 

log+kf(re'~ < logM:/(r) <= logM,;(S/) =< ~ ( S / ) =  exp( ( log ( r j  + aJ)) 2) 

< exp ((1 + o(1))( log(r / -  a/)) 2) < exp ((1 + o(1 ))(log r )  2) . 

Consequent ly ,  for all large r,  

log+lf(rei~ < ~(r) < e (l+~176 (8.14) 

(8.9) 
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As above, we assume that i" E (r~, rk41 )\E, with k large. Thus 

zu ' (z )  ~ ~ -n~ r nAz/ , ' ,  )", 
- ~ n , + ~  + ~, )"' 

.q(z) j . i  z:l 1 + (z/G )"' t:~ ~ l I + (z/G 

= n(r)  +J I  +,]2 �9 

Since 2a > 1, we see from (8.2), (8.8) and (8.9) that 

[JII < 2 nz < 2 ~ 2 i e x p  + O ( 1 ) = O ( 1 )  
1:1 (r/rj)", j : l  2( 1 + .j) ' 

1 - - - ~ "  < 3 ~ U e x p  
/=/,+l i - - I  

Consequently, if z = re '~ then 

z q ' ( z  ) 
- - n ( r ) + O ( l ) ,  (r > r , , r ~ E ) ,  (8.15) 

.q( z ) 

and 

] 
(1 + J ) / +  o(1) : o (1 ) .  

,q-(:) 
,q(z) \ .q(z) ] r 2 

>_ (1 + o ( 1 ) ) n 2 ( r ) / r  2 (r > r , , r  C E ) ,  (8.16) 

It follows from (8.15) and (8.4) that 

1 2~ , q ' ( z )  
~-n.[log_ 1 ~  dO >= I o g n ( r ) - I o g r - o ( l )  

> ( logr )  2 + l o g l o g r -  l o g r -  o ( I )  

: (1 + o(1))(log r )  2 (8.17) 

for all large r ~ E and z : re '~ Similarly, (8.16) and (8.4) give 

1 2~. ,q"(z) dO > 2 ( l o g r ) 2 + l o g l o g r - 2 1 o g r - o ( l )  ~ !  log g(z)  = 

= (2 + o( I ))(log r )  2 (8.18) 

for all large r ~ E and z = re i~ 
Now we show that inequalities (8.17) and (8.18) hold for all large r. In 

fact, for r E [rh,,Sh.], we have from (8.15) that 

z,q' ( z ) nk 
- -  n ( r )  + O(1 ) ,  (8.19) 

g(z )  1 + (z/rt )'~ 
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Moreover, since if la] -> 1 and a#: - 1, then Re{1/(l + a ) }  =< 1/2; so, for 
r E [r~,S~], (8.19) gives 

z~l~(z) > Re zy'(z) = n(r)  - n~ 
g(z)  = .q(z) ~ - + O ( 1 )  >_ n ( r ) + O ( I ) .  (8.20) 

Thus we yield from (8.20) and (8.17) that 

21z 
__1 !~log f ( z )  
2~ .q(z ) 

dO > l o g n ( r ) -  l o g r -  0(1)  

> (Iogr)  2 + loglogr  - I o g r -  0(1)  (8.21 ) 

for all large r E [lk,Sk]. 
If r E [s~+l,r~+j ), then applying Jensen's formula to ,q'/g, and noting the 

fact 
N~j(O,r)=N,j(O,s~+~) and Nr r) > N,/(O, sh+~), 

we get from (8.17) and (8.6) that 

~-~ ~] og (re '~ dO = N,/,~j(O,r) - N,//,,(cx~, r) + O(1) 

= N~/(O,r) - N~l(O,r ) + O(1 ) 

> Nr - N, d0, sh+l ) + O(I )  

>= N~//~j(O,s~.+t ) - N,//~l(oo, sh+t ) + O(1 ) 

1 o2~ f = ~ . / I o g  (sz+le m) d O + O ( 1 )  

> ( 1 + o( 1 ))(logsk+l )2 = ( 1 + o( 1 ))(log (r~ - a h )2 

> ( l + o ( l ) ) ( l o g r f ,  ( r ~ ) .  (8.22) 

Combining (8.17), (8.21) and (8.22), we see 

l 2~ ~ 
~-~ f log  ~ ( r e  '~ dO > (1 + o ( 1 ) ) ( l o g r )  2 (8.23) 

for all large r. Similarly, we have, for all large r, 

[ 2 ~  t t /  J 

2-~0flog ~-3(re'~ dO >= (2 + o(1))( logr)  2 . (8.24) 

We now are ready to prove Theorem 4. Let O be as in (8.1) and set 
f :  ~2 __~ ip3 be defined by 

f (z l ,z2)  = [1 : y (z l ) :  y(z2) : ,q(zl ),q(z2)]. 
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Obviously ,  ./(112") is not contained in a hyperplane and is contained in a hy- 
persurface in IP 3. We take the hyperplanes  

H; = {[w] = [wo : "-" : W3] C [p3;WI_ I ~- 0} ,  j = 1 ,2 ,3 ,4  

and set the mult i- indices 

1 1 = ( I , 0 ) ,  / 2 = ( 0 , 2 )  and 1 3 = ( 1 , 2 ) .  

Moreover ,  let 

J = . f A  .1'% A '/':'3 A .1% 

1 

0 
z 

0 

0 

g(zF) g(z2) g(zl)g(z2) 
g'(z3 ) 0 * 

0 g"(z2 ) * 
0 0 g'(zl ) j ' ( z 2  ) 

= (gt(zl).q"(z2 ) )2,  

and noting R/ = Dj ,  we have from the proof  o f  Theorem 2 that 

4 

S(f ,  { H ; } , r )  = ( q -  m - 1 ) T / ( r )  - ~-~N/(H/,r) + N(Rt,r)  
i--I 

= a,, - J log kq(z, ),q(z2)]o-,, + J log IJla,, 
; = l  5"t j( r ) Sn(r) Sn(r)  

= 2 .[ log .q'(z,).q"(z2) or,,. 
s,,u.i .q(z, ) .q(z2 ) 

It fo l lows from (8.23),  (8.24),  and L e m m a  9 for  n = 2 that 

s(.!, {/4; },r) 
~ t  

2 ,:2~ 1 log ~j(te w) dOdt 2 '12.~ 1 ,qU 
: . 

> (1 +o(l ) ) f t ( logt )2dt+ (2+o(I)) f t ( logt)2dt  
o r- i) 

> 6( 1 + o( 1 ) ) ( log  r)  2 . (8 .25)  

N o w  estimate T l ( r ) .  Indeed, we have f rom (8.14) that, for all large r, 

Tl(r ) = f logll,f l la,, + O(1)  s C .f log+l.q(zj)la,, + O ( I )  
x,,(,-) S,,(r) 

,'2~z l 
= c j  fl~t log Ig(te'~ + O(1)  

o~) r 

<~5C '~t exp (( 1 + o( 1 ))( log 1)2 )dt =< C exp (( I + o( 1 ) ) ( log  r )  2 ) . 
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Consequently, 
l o g T l ( r  ) < (1 +o( l ) ) ( Iogr )  2 + O(1). 

It follows from (8.25) and (8.26) that Theorem 4 is proved. 

Z. Ye 

(8.26) 

9 Proof of  Theorem 5 

Let f :  if,2 ___, ips be defined by 

. f ( z , , z2 )  = [1 " e x p ( z f ' ) ' e x p ( z ~ ' ) ' e x p ( z l ' +  z~')], 

where p > I is any positive integer. We take the hyperplanes 

H / =  {[w] =[wo . . . . .  w3]~lp3;w:_, = 0 }  j =  1 ,2 ,3 ,4  

and set the multi-indexes 

/I = ( l ,  0), 
Moreover let 

J = . f A  .,f~,, A ./z,2 A J'z/3 
P 

I e "l 

- -  I - P  
0 pz('  e~* 

0 0 

0 0 

12=(0 ,2 )  and 1 3 = ( 1 , 2 ) .  

~P 
e-2 , 

0 * 

Z p eZ~ ~ pzP-2(  p -- I + p 2 ) * 
P P 2 P--I I,--2~ pz~ ~)ezl +=2 0 p z  I z 2 ~ p -  1+ 

=/JZl--4 2p--2z22p--4.(p_ l +  pzp )2exp (2z (  ' + 2z2 p) ==- P( z , , z2 )exp (2z ( '  + 2z/2 ') , 

and noting R~ = D: ,  we get from Lemma 9 that 

4 
S ( f  , { H / } , r )  = (q - m - 1 ) T / ( r )  - ~ N I ( H / , r  ) + N ( R / , r )  

i=l 

2 71' z~)+z~ 
= - Z  .1' log}e-,la, ,-  f log e - a , ,+  .]" log]dla,, 

/=1 S,,0") S,(r) S,,(r) 

= ./' log]P(z,,z2)la,, 
&,(r) 

= (4p--  6) f Ioglz, la,, + 2  f loglp--  I + pz~'[a,, + 0 ( 1 )  
s,,(,.) S,,(r) 

> 6 ( p - -  l ) l o g r + O ( 1 ) .  

Now compute the order of f .  In fact, 

T / ( r ) =  f l og l l J l [ a .+O( l )  > j l o g ( l + l e x p ( z ( ' ) l ) a . + O ( l )  
S,,(r) S,(r) 

1 rDrt 
> ~ f f  ~ l o g  (1 + lexp (tPe':)l)dOdt + O(1 ) > CrP + O(1 ) ,  

' ~ 0 0  " 
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and 

T/ ( r )  : . f  log UI I" , ,  + o(  1 ) __< c ./' log ( 1 + lexp (z~')l)~,, + o (  l ) 
S, , ( r )  S . ( r ]  

Cr p + O( 1 ). 

It follows that f has order p. E~ 

10 Proof  of  Theorem 6 

Let g be defined as in (8.2) and set 

./(zl,z2,z3) = [1 : :l(Zt ) : ,~/(z2)] : ~3 ~ ip2, 

and the hyperplanes 

H l = { [ w ] : [ w o : w l  :w2]CIPZ;wl_l = 0 } ,  / =  1 ,2 ,3 .  

In a manner similar to the proof of  Theorem 4, we get from Lemma 9 and 
(8.23) that 

S( f ,  { H , } , r )  : .J' log I'q'(zl ).q/(z2)l .q'(z~) 
s,,(,.) -I.q(zl ):/(7'2 )10n = 2s,;(,.) J log ,q(zl ) or,, 

~ t l o g  (te '~ dOdt 
I[O 0 

r ") 2 
r ' - - t  

>= 8 ( 1 + o ( 1 ) ) . f ~ . 4  t ( l o g t ) 2 d t + O ( l )  
0 

= (2 + o ( l ) ) ( l og r )  2 . ( ]0.1) 

Furthermore, we obtain from (8.26) that log T t (r)  =< ( l +o(  1 ))(log r )  2 + O( 1 ). 
It follows from (10.1) that the theorem is proved. [53 

11 Proof  of  Theorem 7 

The proof of  the theorem is quite similar to the proof of  Theorem 6. For any 
positive integer p > 1, set the map 

-P J' ~,3 ip2 .['(ZI,Z2,Z3) : [[ 'e- ,  "e~2 ] : ~ , 

and the hyperplanes 

H i :  {[w] = [w0"wl " w2] E Ip2; wi- i  : 0 } ,  j =  1 , 2 , 3 .  
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Thus  we have  

S ( f , { H / } , r )  = f loglpz  ~' ' ~ -" - '  
N,(rI 

2 "2rrr2 t 2 
= 2  t l o g t  p Id)dt + O(1 ) 

= 2 ( p -  1 + o ( 1 ) ) l o g r .  

Clear ly ,  the func t ion  f is o f  order  p. Hence  T h e o r e m  7 is proved.  [ ]  
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