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Introduction

We prove in this paper an arithmetic analog of the Riemann—Roch-Grothendieck
theorem for the determinant of the cohomology of an Hermitian vector bundle of
arbitrary rank on a family of arithmetic varieties of arbitrary dimension. We also
show that high powers of ample line bundles on arithmetic varieties have small
sections.

Let X and Y be regular quasi-projective flat schemes over Z. Consider an
Hermitian vector bundle £ = (E, h) on X:E is an algebraic vector bundie on
X and h is an Hermitian metric on the associated holomorphic vector bundle on
X(C), which is invariant under complex conjugation. In [GS2] we defined arithme-
tic Chow groups CH”(X) p =0, and in [GS3] we attached to (E, h) arithmetic
characterlstlc classes such as the Chern character ch(E h)e CH (X)g =
@p>0 CH P(X)® ; @, and the Todd class ﬁ(E h). Assume now that f: X — Yis
a smooth projective morphism from X to Y. The determinant of cohomology
A(E) = det Rf(E) is an algebraic (graded) line bundle on Y. Choose an Hermitian
metric h,, invariant by conjugation, on the relative tangent space Tf, whose
restriction to each fiber of fover Y(C) is Kdhler. The line bundle A(E) can then be
equipped with the Quillen metric hy ([Q2], [BGS1] or 4.1.1 below).

Our main result (Theorem 7) computes the first arithmetic Chern class of
(A(E), hg) in the @-vector space CH! (Y)®z ©. It reads

(1) ¢,(ME), ho) = f,(ch (E, ) TA(TF, hf)~a(ch(Ec)Td(Tfm)R(ch)))‘“-

Here o'V is the component of degree one of x € CH ( Y)q, a is the map from the real

cohomology of Y(C) to CH (Y)g defined in [GS2, 3.3.4] and in 2.2.1 below, and

R is the additive characteristic class (in real cohomology) attached to the power
series

1 1 x™

R(x)= Y (2{’(—m)+<1 +§+ +E>C(—m)>—~

m odd m!

mz1
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which we introduced in [GS4] ({(s) is the Riemann zeta function, and {'(s) its
derivative).

Formula (1) was conjectured in [GS4, Conjecture 1]. The main step in the proof
of this formula consists in factoring the map fas the composition f= g i, where
i:X — Pis a closed (regular) immersion and g: P = Py - Y is the N-dimensional
projective space over Y. Choose a resolution

0-E,»E,1—...Ey—>i,E-0

of the coherent sheaf i, E on P, and (arbitrary) Hermitian metrics on E;, j 2 0, as
well as a Kéhler metric on Tg. We show that (1) for fand E follows from the same
identity for g and E;, j = 0. Indeed, the difference

¢ (AE — 2 (1Y (AE)) ho)

jz0

was computed by Bismut and Lebeau [BL], while the corresponding alternating
sum of the right-hand sides in (1) was computed in [BGS3, Theorem 4.13].

We are thus reduced to the case of the projection g:IP¥ — Y. When E is the
trivial bundle and Y = Spec(Z), formula (1) was shown in [GS4, Theorem 1]. The
general case follows by simple reductions, using the closed immersions PY¥ — P¥*1
and the main step above.

This proof of (1) was described in {GS7]. The details are given in paragraphs
4.2.3 and 4.2.4 which, when fis smooth, can be read independently from the rest of
the paper.

We also generalize (1) in several ways, in order to allow singularities on the
special fibers of X or Y over Z (this might be of some use, since resolution of
singularities is not currently available for schemes of finite type over Z). More
specifically, we consider two cases. Case(i): Y is regular the generic fiber X is
smooth, fis projective, and smooth over X, and % is a coherent sheaf on X,
which is locally free on X and equipped with an Hermitian metric on X(C).
Case(ii): Xq and Yg are smooth, fis l.ci, and E is an Hermitian vector bundle
on X.

To make sense of a Riemann—Roch-Grothendieck theorem for A(F ) in case (i),
or A(E) in case (ii), we need to extend our previous constructions in [GS2] and
[GS3] to the singular case. So we 1ntroduce “homological Chow groups”
CH. (X), cap-products between CH and CH and more generally some kind of

“operational formalism” in the sense of Fulton [Fu2]. In case (ii), the statement (1)
becomes an identity in CH.(Y)q, and Td (T f) has to be replaced by the arithmetic
Todd class of the relative tangent complex to f(see 2.6.2). In Case (i), we define
a notlon of Chern character with supports, and then a characteristic class

(./)eCH (X)q which takes the place ofch(E h) Td(Tf h;) in formula (1). Our
theorem (Theorem 7) is then in the style of the singular Riemann Roch theorem of
[BFM]. This requires us to combine the Grassmannian graph construction of
[BFM] with the study of complex immersions in [BGS2] and [BGS3].

The plan of this paper is as follows. In Sect. 1 we study the Grassmannian graph
construction from the algebraic geometric point of view. In particular we show an
interesting rigidity property of this construction (Theorem 2), and deduce from it
a technical lemma, to be used in Sect. 3. In Sect. 2 we introduce CH., show some
functorial properties of these groups, and define cap products and characteristic
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classes of Hermitian vector bundles; we also replace Z by a more general base. In
Sect. 3 we define the Chern character with supports and the transformation t. The
proof that 7 1s independent of choices (Theorem 5) uses the technical lemma of the
first section. We can then proceed with the proof of the main theorem (Theorem 7)
in Sect. 4. Several reformulations of this Riemann—Roch-Grothendieck theorem
are also given, including one involving a notion of “arithmetic Betti numbers”
(4.1.6). Finally, in Sect. 5, we use a {weak) version of this result to find bounded
(nontrivial) sections of # ® S"E where .# is an Hermitian coherent sheaf and E an
Hermitian ample vector bundle on a projective arithmetic variety X, n is a large
integer, and S"E the n-th symmetric power of E (Theorem 9). The proof uses
a result of Bismut and Vasserot about the asymptotic behaviour of the analytic
torsion of # ¢ ® S"E¢ [B-V], and a lemma of Gromov to compare the sup and L2
norms on these.

Special cases of our results were announced in [GS6, GS7, S3, G3]. Theorem
7 was first shown by Deligne for smooth families of curves, up to universal
constants [De]. In [F3], Faltings extends our result to higher degrees, when X, Y
are regular and fis smooth. In [Vo], Vojta used a variant of Theorem 9 in his new
proof of the Mordell conjecture.

1 The Grassmannian graph construction
1.1 Definition and basic properties

1.1.1 Let X be an integral (i.e. reduced and irreducible) scheme, and suppose that
E. is a chain complex of bundles (i.e. locally free coherent sheaves) on X. Denote
by C = C(E) the split acyclic complex with C;=E;® E;_, and differential
d;:C;— C;_q, di(x,y) = (y,0). Notice that C(E.) is an additive functor of the
graded bundle E. (it does not depend on the differential on E.). Furthermore there is
a natural map of complexes

y:E. — C(E))
x—{x,d(x))

which is the inclusion of a sub-bundle in each degree (i.e. y is locally split).

If ¢:E — F.is a map of complexes, then C(¢)-yg = yr+ ¢. If furthermore ¢ is
null-homotopic, i.e. if there exists h such that ¢ = d-h + h-d, then C(¢) s also null
homotopic. Namely, if we define

Chy:E;®@E;_1 > Fi,®F,
(x, y)—=(h(x), — h(y) + ¢(x))

we get,on C(E ), d-C(h) + C(h)-d = C(¢). This homotopy is compatible with the
natural transformation v, i.e. that C(h)-y; = yp-h.

We suppose now that E; = 0 for i < 0. Let P! be the projective line over Z and
Op1(ico) the invertible sheaf of meromorphic functions on P* which have poles of
order at most order i along the divisor oo and are regular on the affine line
A' =P! — {oo}. Notice that Op:(ioo) is contained in Gp:((i + 1)o0). By pulling
back along the projection X x P! —» X (where X x P! is the product over Z), we
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can view E. as defining a complex of sheaves on X xP'. Let C. = C(E.) be the
C-construction applied to the graded bundle @), E;(i) where E;(i) is E; twisted by
(Op 1(ioo). The sheaf E; is a subsheaf of E;(i) and they are equal on X x A'. Hence,
via the map yg, E;|x xa: is a sub-bundle of_ Cilxxa. Let G—»XXP‘ be the
product of the Grassmann bundles G(n;, C: ;) parameterizing rank n; = rank(E;)
sub-bundles of C; over X x P'. OverX x A, the map v; defines a section s of 7.
The foliowing definition appears in [BFM, 11.1].

Definition 1 The Zariski closure W= W(E) of s(XxA?') in G is called the
Grassmannian graph of E..

Since & is proper so is its restriction to W (which we shall also denote ), and
since X x A is integral so is W. By construction = is an isomorphism over X x A!;
however the (effective Cartier) divisor W, = n~'(X x {cc}) cut out by W at
infinity will in general not be isomorphic to X. By construction, there is a sub-
bundle E; « n*(C;) which coincides with E; over X x A'. Notice that, since W is
integral, thls property characterizes E; as a sub-bundle of n*(C,).

1.1.2 Let us now summarize, in the following proposition, some properties of the
Grassmannian graph construction, whose proof can be found in [BFM, I1.1 and
I1.2], and [BGS3, Sect. 4].

Theorem 1 (i) Assume that the restriction of E. to a nonempty open subset U < X is
acyclic. Then there is a canonical splitting of © over U x P'. Denote by X the closure
in W, of the image of U x {0} by this section. Then the cycle Z = [W 1-[X7is
supported in the inverse image by t of X — U, and the restriction of E. to X is split
acyclic.

(i) Suppose that i: X — P is a regular immersion of a closed subscheme, F is
a locally free sheaf on X, and E. — i, F is a finite locally free resolution. Then W(E.)
is isomorphic to the total space of the deformation to the normal cone construction of
[BFM, 1.5]. Hence the immersion X xP'— P xP' induces a closed immersion
J: X xP'— W, such that E. is a resolution of j, F

Furthermore P is the blow up of P along X and W, ~P(Ny,p® 1)U P.
In particular |Z| is the projective completion P(Ny,p @® 1) of the normal bundle of
X in P.

Finally, on |Z| there is an exact sequence

0-G.> Elpn, 01— K(H)®@n*(F) -0,

where K.(H) is the tautological Koszul complex on P(Ny,p @ 1), which is a resolu-
tion of Ox when X is imbedded into P(Nx,p @ 1) by the zero section, and G. is acyclic.

1.1.3 We shall now prove a few additional properties of the Grassmannian graph.
For instance, we need to know how W/(E.) depends upon E.. First we state
a general lemma.

Lemma 1 Let V be an integral scheme, and suppose that A < E and B < F are locally
free sub-sheaves of locally free sheaves.
1. If ¢: A — B is a homomorphism which vanishes on a Zariski dense open subset
of V, then ¢ vanishes on the whole of V.
2. If Bc F is a sub-bundle, and ¢:E — F is homomorphism such that, over
a Zariski dense open subset of V, ¢(A) < B, then ¢(A) < B over the whole
of V.
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Proof. The first statement is true because B is a torsion free module, while the
second statement follows from the first by considering the induced map A — F/B
(since, by assumption, F/B is locally free). O

Lemma 2 E is a sub-complex of n*(C)

Proof. It suffices to show that da(E;) < E;_,, since C is a complex. This is true on
the dense open subset X x A' = W. But W is integral and, by definition of the
Grassmannian graph, E;; is a sub-bundle in n*(C;_ ). Therefore, by Lemma 1,
dé(E;) < E;_; on the whole of W. W

Lemma 3 If E. has locally free homology sheaves then W(E.) ~ X x P!,

Proof. The complex E. breaks up into short exact sequences:
0—>Zi_>Ei—d)Bi_1 "‘)0

(2) 0-B,~-Z,-H(E)->O,

where Z; and B; denote the subsheaves of E; consisting of cycles and boundaries
respectively. Since we assume that the H;’s are locally free, it follows by induction
on i that all the sheaves in the above exact sequences are locally free too. Consider
the map

Bi ()@ Ei-(i—1)

N E()®E; (i~ 1)— B, (i—1)

which maps (i, v) to the class of (du, v); here B;_ (i — 1) is mapped diagonally into
B; ((i)® E;_1(i — 1) by the inclusions B; (i — 1) = B;_;(i) and

Bi_(i— 1)< Z, (i~ 1)< E;_ (i — 1). Since the sheaves in the sequences (2)
are all locally free, the target of y; is locally free, and hence its kernel is too. Over
X x A', the homomorphism #; is equivalent to the map

nE(D)@E, _(i—D)—E_(i—1)

sending (u, v) to v — du, and hence the restriction of Ker(#;) to X x A? is isomor-
phic to the inclusion of E; into E;® E;_, via x+—(x,dx). So the sub-bundle
Ker(n;) = C; determines an extension over X xP! of the section
s:X x Al - G(n;, C;) defined in Section 1.1.1, and hence W(E)= X xP*, as
desired. [

Lemma 4 Let E. be a complex of locally free sheaves on X, and let [ P — X be a flat
map. Then W(f*E.) = P xy W(E.).

Proof. First observe that C(f*E)=(fx1p1)*(C(E)). Hence W(f*E.) is the
Zariski closure of Px A' in P x G, which is equal to to the Zariski closure of
F7H(s(X x A1)). Since fis flat, it is open and f ~ ! preserves the operation of Zariski
closure. Thus W(f*E)=f"Y(W(E)) = Pxy W(E). J

Lemma 5 Let ¢: E. — F. be a map of complexes of locally free sheaves on X. Assume
¢ is a monomorphism and Coker(¢) is an acyclic complex of locally free sheaves.
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7~’he11 W(~E,) = W(F.)and the pull-back 0f¢~to X x A extends to a map of complexes
¢:E — F. on W(E.). Furthermore Coker(¢) is acyclic, and split acyclic over {o0}.

Proof. Since X x A' is dense in W there can exist at most one isomorphism
W(E.) ~ W(F.) which is the identity on X x A'. To define it we may work locally
on X, hence we can assume that X is affine. By induction on the degree i of F;, we
may therefore assume that the complex F. is_the direct sum of E. with an acyclic
complex G., and hence that C(F.) ~ C(E.) @ C(G.). Let m;, n; and p; be the ranks of
E;, F;, and G;, respectively. The direct sum decomposition of F. gives a closed
embedding

G(m;, él(E)) Xx xpt G(p;, éi(G~)) - G(n, C:i(Fv))

which is compatible with the sections of these Grassmannians over X x A'. By
Lemma 3, W(G.) = X x P, hence, via the embedding above, W(E.) ~ W(F.).

Observe that, on W(E.) = W(F.), we have an exact sequence
0> C(E)>C(F)-> C(G)—0.

The induced sequence

O-E->F >G>0

is exact since this_is true locally.
The fact that G. is acyclic on W and split acyclic over {0} ts shown as in [BGS3,
Lemma 4.5]. L

Corollary 1 Let ¢:E.— F. be a quasi-isomorphism between bounded complexes of
locally free sheaves on X. Then W(E.) = W(F.), and the complexes E. and F. are
quasi-isomorphic as complexes on W(E.).

Proof. Apply the previous lemma to the inclusion of E. and F. into the mapping
cylinder of ¢. t

Corollary 2 Let M be an integral reqular scheme, and i: X = M a closed subscheme.
Let W(X /M) denote the Grassman-graph construction for any resolution of i,,('x by
locally free sheaves on M. Then, given a locally free coherent sheaf F on X, any
resolution E. ~ i, # by locally free coherent sheaves on M extends to a complex of
locally free coherenz sheaves on W(X /M) which is a complex of sub-bundles of C(E.).

Proof. Notice that, by Corollary 1, W(X/M) is independent of the choice of
resolution F. of i, Cx by locally free coherent sheaves.

Locally on X, E. is quasi-isomorphic to a direct sum of copies of such a resolu-
tion F.. By the previous lemma F. and hence any finite direct sum F. @ n extends
to a subcomplex of C(F.©") ~(C(F)®") on W(X/M). Now W(X/M)=
(JW(X nU/U)as U runs through any open cover of M. If we choose the open
cover so that, on each U, E. is quasi-isomorphic to a sum of copies of F., then E.
extends as a subcomplex of C(E) on each W(X nU/U), and hence, by the
uniqueness of such extensions, it extends as a subcomplex on the whole
of W. O
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1.14

Lemma 6 If E. and F. are chain complexes of locally free coherent sheaves on X, the
identity map on X x A extends uniquely to a map from the Zariski closure W(E., F.)
of X xA'in W(E)xx.p W(F.)to W(E @ F)).

Proof. On the variety W(E ) xx xpr W(F.) by pulling back from the two factors we
obtain sub-bundles E of C(E) and F. of C(P ) extending E. and F. from X x Al
The direct sum E. @ F.is a sub bundle of C(E. )@ C(F) ~ C(E.® F.) and hence is
classified by a map from the fiber product W(E) xx . p' W(F) to the Grassman-
nian of sub-bundles of C(E. @ F). This map agrees with the standard section s over
X xA', and hence maps W(E., F.) to W(E. @ F.). O

Lemma 7 (i) Any map qb E.— F. of chain complexes of locally free sheaves on
X extends to a map ¢ E — F. on W(E., F.). The map ¢ § is additive.

() If ¢ E. - F. and . F. > G. are maps of complexes of locally free coherent
sheaves on X, then on W(E., F., G.) (which is defined analogously to W(E., F.)), we

have (> ¢) = * .

Proof. (i) By pulling back from X x P! we may view C.(¢) as a map of complexes on
W(E,F). On XxA'c W(E,F) we know that C(¢$)(E)< F.. Hence, by
Lemma 1, C.(¢)(E.) E@nce C(¢) is additive in ¢, it follows (by Lemma I
applied to the map (¢, + ¢,) — (§; + $,)), that ¢ is also additive.

We omit the proof of (ii). O

Let us temporarily simplify our notation, and write W for W(E., F.). Let W, be
the inverse image of X x {0} under the projection . W - X xP! It follows from
Lemma 3 that, as in Theorem 1 (which is the special case where F. = 0 and E. is
generically acyclic) [ W, ] = Z + [X], in which n|g: X — X is birational, and the
support | Z| of Z is contained in the inverse image of the proper closed subset of
X where the homology sheaves H.(E. @ F.) are not locally free. By definition, if U is
the complement of this closed subset in X, X is the closure in ¥, of the image of
U x {0} by the section of © over U x P! obtained in Lemma 3.

Theorem 2 Let ¢p: E. — F. be a map of complexes on X, and let h be a null-homotopy
of ¢. Then h extends uniquely from X x A to a nullhomotopy i of ¢ on W.

The restriction of h to W, depends only on ¢ and not on the choice of h. It is
additive in ¢.

The restriction of i to | Z| depends only (and additively) on the restriction of ¢ to
n(1Z]).

Proof. On X x P* we can define a map
Ci(h): E(D) @ Ei-1((i = 1) = Fis (i + D) @ Fi(D)

by Ci(h)(x,y) = (h(x), —h(y)+ $(x)), where we remember that we have an
embeddmg of Upi(ioo) into Up:((i + 1)oc). In order to show the existence and
uniqueness of i, we now use Lemma 1, and we observe that C(h) restricted to the
dense open subset X x A' = W(E., F) is a nullhomotopy of C(¢).
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On W we have a commutative diagram:
E~i - E(@E_(i—1)

N ey 0
rl lh‘:—[¢ r—hu)]

Firy - Fio i+ D@ Fi(i)

Here h(1):E;(i)—> F,+(i+ 1) is the composition of h with the inclusion
Fiy1(i) > Fi (i + 1). Since the restriction of this inclusion to X x {co} vanishes,
the restriction of k(1) vanishes too. Hence the restriction of A to infinity does not
depend on the choice of h at all, but rather is the restriction to E. of the map

o o)

from C(E.) to C(F.). Therefore at a point we W it depends linearly on the map ¢ at
the image of w in X. The assertions of the theorem follow from this remark. [J

1.2 A technical lemma

1.2.1 We need some facts from homological algebra.

Lemma 8 Let E. and F. be bounded complexes of sheaves of abelian groups on
a topological space X. Suppose that there is a finite open cover {U,} of X and
quasi-isomorphisms

Y. Ejy, - Fly,
such that on each intersection U, " Uy, Y, and Y, are homotopic, i.e. there exists
a map
Ypa Elv,nv, = Flu,nu,
such that
wﬂ - l/’l! = dlpﬁa + ‘//ﬂad >

and such that, on each triple intersection U, nUyn U,,

‘/jﬂa - WW + ‘/jyll =0
Then E. and F. are isomorphic in the derived category of bounded complexes of

sheaves.

Proof. Consider the complex € *({U,}, F.) of sheaves on X with sections over
each open set U consisting of the total complex of the Cech bi- complex
C*{U,n U}, F). The natural augmentation 7:F. —»%*({U },F) is a quasi-
isomorphism. It sufﬁces to show therefore that there is a quasi- 1somorphlsm
E - %*({U,}, F.). We define such a map ¢ "as follows. Writing ¢ "= @, y* with
Y E—> P, F (U, F)we set

= (—Dalpa >

‘l/lz@a,ﬂd’ﬂa’
yr=0 ifk>1.
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Then it is straightforward to check that ¥ "is a map of complexes. To see that s "is
a quasi-isomorphism, we can work locally, and assume that X = U, for some a.
Then ny, and ¥ " are homotopic, and since ¥, and # are quasi-isomorphisms, it
follows that " is too. O

Lemma 9 Suppose that E. and G. are bounded double complexes in an abelian
category, with d’ (resp. d”) the first (resp. second) differential. Assume that . is
a map of bigraded objects such that:

1. For each k,

l//k_.:Ek'A b ch

is a quasi-isomorphism of complexes.
2. For each k, 1 there exists a map .1  Ex.1 = Gp—1,1+, such that

Y~ oy, d = (= D) g+ (= Do d

3. d'y + xd’ vanishes.
Then the map  + (— 1)*y on E, . induces a quasi-isomorphism between the total
complexes of E. and G.

Proof. First we check that ¢ =y + (— 1)*y on E, . induces a chain map on
Tot(E.). Let D = d' 4 d” be the total differential. We want

D¢p—¢p:D=(d-y —y-d)+(d" -y —p-d") + (= D(d" -y + x-d)
+(=D4d" -y~ x-d")

to be zero. But the second and third terms in the right hand side of this equation
vanish by 1. and 3., while the other two terms have sum zero by 2.
Now given a double complex X. consider the filtration

FlX = @Xk.' .
k<i
then ¢ preserves this filtration on E. and G., and the induced map on the
associated graded objects is the sum of the quasi-isomorphisms , .. Hence ¢ is
itself a quasi-isomorphism.

1.2.2 Let X be an integral scheme, quasi-projective over a regular noetherian
integral domain A. Suppose that j: X — M and k: X — P are two embeddings of
X into regular quasi-projective varieties over 4, and that there is a smooth map
q:P — M, such that gk = j.

Consider the following diagram, in which the square is Cartesian, g is the
section of p induced by k, and f=jx 1p.

X4 XxyP —Ls P
Ir la
X —Lam.
Since it is a section of a smooth map, g is a regular embedding. This implies that
the direct image by g, of any bundle on X has a finite global resolution by bundles
on X x,, P. This is a standard fact that we shall use several times: being reguiar, g is

perfect and, since X x,, P is quasi-projective we can apply [BGI, 1I Proposition
2.2.9.b] (see loc.cit. Definition 2.2.4 and 2.2.5).
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So let V. — g, Oy be a resolution by locally free coherent sheaves on X x,, P of
the direct image of the trivial bundle on X. If 7 is a coherent sheaf on X, g, ("y and
p*F are Tor-independent (p is smooth), and so V. ® p*.# is a resolution (though
not by locally free sheaves) of g, % . Now let E. — j,.% be a locally free resolution of
the direct image of # on M, and let W(E.) = W be the corresponding Grassmann-
graph construction.

On P we may choose a resolution of f, (V. ® p*.#) by a double complex G. of
locally free coherent sheaves so that, for each i, G;. - f.(V; ® p* %) is a resolution
{proceed by induction on i, using the fact that this is true when V. has length one).
By Corollary 2 we know that, since each G; . is a resolution of a locally free
coherent sheaf on X, it extends as a complex G~i,. to W({(X x,P)/P). Now observe
that W((X xp P)/P) = W x, P, by Lemma 3. The horizontal component d’ of the
differential on G. can be viewed as determining for each i a map of complexes
d:G;,. - Gi_y. o where the differential on G; . is (— 1)'d”, and hence by Lemma
6 we get amapd :G,. > G,_ 1.» such that d/2 = 0. Thus we have a double complex
G. on W(X/M)XMP 5

From the results in the first section, we see that this double complex G. has the
following properties. If w: W x P — P! x P is the projection then for each [, G, . is
acycliconn ™' [P' x (P — ¢~ '(X))]. Over {0} eP', G. ~ G.Over {oc}eP!,if we
define M < W as above, W, xy P~ (ZuM)xMP with n(Z)c X xy P < P.
The restriction of the double complex G to M x, P has split acyclic columns G, .
and Tot G| ¥ x,, P 15 therefore acychc

Let |Z| be the support in W of the cycle Z=[W,] —[M]. We have
n(|Z}) = X. We denote by v:|Z| X P - X Xy P and q,:|Z| xy P — Z the projec-
tions induced by n and g respectively, and by E.# the restriction to |Z| of the
canonical extension of E. to W.

Lemma 10 There is an isomorphism in the derived category of bounded complexes of
locally free coherent sheaves on |Z| Xy P:

TotGlizix,p = v*(V )® g% (E?).

Proof. For every integer k, since each V; is locally free coherent on X x, P,
in a small open set where V, is trivial of rank ry, the sheaf f,(V, ®@p*F) =1,
(p*F )™ = q*(jF )™ has a resolution by ¢g* E.". It also has a (global) resolution
by G,... Hence there exists a locally finite covering { U, } of P by affine opens, and,
for each U,, an isomorphism

0,:Vi—> 0%, p
on U, N (X xy P), and a chain equivalence
Gy ETE— Gy,
on U,, resolving the isomorphism
[0 @ 1): [ (Ve ® p*F) = [ (p* F ).

On U, " Uy " (X xy P) there is a transition matrix 0, = G40 " for V,, which we
may lift to an r, x r, matrix of functions 8, on U, n Uy.

Now consider the two maps ¢, and ¢,(8s, ® 1) from E™to Gy.,.. The composi-
tions of these maps with the quasi-isomorphism from G, . to f.(V; ® p*# ) are the
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same, hence, since E’™ is a complex of locally free coherent sheaves, these maps are
homotopic over the affine open U, n U,. Let us make a choice of homotopy ¢p,.
satisfying

d(p,) = ¢p(0p, @ 1) ~ ¢, .

By Lemma 6 the maps (f)a, ¢ g U5, and ¢y, extend to the inverse images of the
sets Uy, Ug, and U, N U,; in W xy P. We denote these extensions by ¢,. (,b,; (),,,,
and d),,a Notice that (),m is the inverse image by 7 of H,h In partlcular its restriction
to | Z| xy P coincides with v*(Hﬁ,) =0 (9,,)L (6,)"'. On the covering {|Z|x, U
we consider the trivializations 8, = v*(d,) of v*(V,) and the maps

Vo= Gl 0, ® 1):0* (V) ® 45 (ED) 21y p v, = Gilizix P v, -

On the intersection | Z]| x, (U, n Upy) the map

Vpe = $pal 0, @ 1)
is a homotopy between yr; and V,, since
AW e = d(Gp) 121 P(0, @ 1) = (& 0pa — )71 p(0, D 1)
= Bylizr P (Op) 0*(0)® 1) = dal 2y p(6*(0) ® 1)
=0, ® D) ~ (T, ® 1) = by — ¥,

Furthermore, by Theorem 2, $ﬂal|Z|XMp depends only on the restriction of
g0z, — ¢y to X xyy P. Therefore we deduce from Theorem 2 that, on the triple
intersections | Z| xy( Uy,n Uy U,),

l/ja_l//y1+l//y[f:0'

Indeed, (Yp, — W0 + ¥yp) )0, ® 1)~ is the restriction to |Z| of the extension to
W of a null-homotopy of (¢85, — ¢,) — (¢),0,, — ¢,) + (¢,0,5 — Py)04,, whose
restriction to X x,, P is zero since

0,00px = 0,057 6,0, =0,

Hence, by Lemma 8, the family {,, Y4, } defines a quasi-isomorphism of com-
plexes of sheaves on |Z] x, P:

p*(V) ® g% (E7) > Tot 4 ({U,}, Gi.) -

The differentials dy: V;, — ¥, _; can also be lifted locally to maps of complexes
di.o: Ef — Epi, over each U,. After composition with the augmentation from
Gi—1. t0 fu (Vi1 ® p*F), the two maps df © ¢, and ¢,°d,_; coincide. Hence
these two maps are homotopic. Let ¢, be the homotopy and y, the restriction to
| Z| %, P of the canonical extension of ¢, to W x,, P. Restricting to | Z| x,; P we get,
over each U,, a diagram

v, E -5 G
=di®1 | L
Vk—1®E LI G~k—1.
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with d'r, — Yd’ = (— D" 1d"y, + (— 1)*y,(1 ® dg). From the equality

d'(d" Gy — Pad’) + (d' o — ¢d")d" =

on X xy P we get, by Theorem 2, d'y, + y,d' =0. Hence, by Lemma 9,
W, + (— 1)y, defines a quasi-isomorphism

Tot(v*(V) ® g% (E)) > Tot(G.,)
on U,. Now consider
Vo= (o + (= ¥ ) -
Tot (v*(V) ® q%(E*) - Tot(¢"({U,}, G.,)) .

To show that ¥ is a quasi-isomorphism, which will conclude the proof of Lemma
10, we shall apply once more Lemma 8. For that the only identity left to be shown
ind' Ype — Wpad = (— )*(xp — 1) This follows from Theorem 2 by an argument
as above, where we compose both sides of this equality with (6, ® 1)~ and notice
that d’ commutes with 9},a ® 1 on X x, P. Details are left to the reader. O

2 Arithmetic Chow homology
2.1 The construction

In [GS2] we defined an arithmetic ring to be an excellent regular noetherian
integral domain A, together with a finite non-empty set X of monomorphisms from
A into the complex numbers, and a conjugate linear involution F, of the product
C? which commutes with the diagonal embedding of 4 into CZ.

When dealing with dimensions of cycles, it will be convenient to restrict our
choice of ground ring. We say that A is “good” if it is equicodimensional (i.e., all
maximal ideals have the same height), and Jacobson (i.e., any prime ideal is the
intersection of the maximal ideals containing it). We shall write ¢ = e(A4) for the
dimension of 4, and F for the fraction field of A. Examples of good arithmetic rings
are the ring of S-integers in an algebraic number field, or the algebraic number field
itself (where in both cases we take X to be the set of all embeddings of the ring into
the complex numbers and F,, to be complex conjugation), or the complex numbers.
Notice that a more general case is considered in [Fu2], Chapter 20, and [G2].

An arithmetic variety over the arithmetic ring A is a scheme X which is flat and
quasi-projective over Spec(4), and has smooth generic fiber Xp. Till the end of
Section 3 we make the assumption that the ground ring A is good. This implies that
X is Jacobson, and that each irreducible component of X is equicodimensional (see
[EGA4] 10.4). Tt follows that each Zariski open set in X has the same dimension as
X, and that if Z < X is an integral subscheme of X for which Z is non-empty, then
dim Z equals dim Z — e. Note that the set X(C) of complex points of X® 4, C* is
a quasi-projective complex manifold. The conjugate linear involution F,, of C*
induces an anti-holomorphic involution, which we also denote F,, of X(C). For
each natural number p, we write A??(Xg) [resp. 2 »?(Xg)] for the vector space of
real differential forms [resp. real differential forms with distribution coefficients]
o on X(C) such that F¥ (o) = (— 1)?«. Let 2, ,(X) be the space of real currents
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on X (C) which is the topological dual (with respect to the Schwartz topology) of
the space A?'?(Xg) of forms with compact support, and let 4, (Xg)e Z, ,(Xg) be
the subspace consisting of currents which are smooth, ie. represented by integra-
tion against smooth forms.

If X is a scheme and p is a natural number, following [EGA4] and [Fu2], we
define Z,(X) to be the free abelian group on the set of integral subschemes of X of
dimension p; elements of this group are called dimension p cycles. Following [GS2]
1.2.3,if X is an arithmetic variety, we write &, ,(Xr) for the quotient of 2, ,( Xr)
by the subgroup (Im & + Im 0). If Z e Z ,( X), then its restriction to the generic fibre
Xr is p — e dimensional. (Recall that e is the dimension of the ground ring A.)
Hence the current 5, given by integration over the restriction of the cycle Z to

(C) liesin Z,_. ,-.(Xr). (See [GS2] 1.1.2 for more details; the only difference
here is that we are grading by dimension rather than by codimension.) A Green
current for Z is an element g € j,, e+1.p-e+1(XR), such that the current
dd“(g;) + 0z is smooth. Let Zp(X) be the subgroup of Z (X)) D Zp-cv1.p-e+1(XR)
consisting of pairs (Z =Y m;[ Z;], g,) such that g, is a Green current for Z.

If Y= X is an integral subscheme of dimension p + 1, and fek(Y)* is a
rational function on Y, the divisor of f, div(f), is a cycle of dimension p; see
[Ful] for details. The complex points Y(C) of Y form an analytic subspace of
X (C); we shall write i: Y(C) - X(C) for the inclusion. As in [GS2, 3.3.3], the
function — log|f|> on the nonsingular locus of Y(C) defines a current
ix[—10g|f1?1€Dp-cs1.p-e+1(Xr), (for which we shall often write just
— log| f]?). Of course this current is zero if ¥ n X is empty. By the Poincaré-
Lelong formula {GH], we know that i, [ —log|f|?] is a Green current for div(f):

ddi [ —log| f1?1+ daivcs)=0.

Hence the pair (div(f), i,[—log|f1*]) is an clement of ZP(X); we write
R,(X) < Z,(X) for the subgroup generated by these classes.

Definition 2 If X is an arithmetic variety over a good arithmetic ring A and
p a natural number, the p-th arithmetic Chow homology group CH,,(X) is the
quotient of Z,,(X) by the subgroup R o X)

2.2 Elementary properties

The following are, except where noted, direct translations of the corresponding
results for the arithmetic Chow groups (graded by codimension) defined in [GS2].
We have therefore omitted any duplicate proofs.

2.2.1 We start by recalling the notation and definitions {(with some minor modifi-
cations to account for the grading by dimension) of [GS2] for the various natural

maps we can construct involving C/I\i.(X ). First, there are maps
{:CH,(X)— CH,(X)
(Z,gz)— 2,
a: Ay oitper1(Xp) = CH(X)
(0, a),
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and
0:CHY(X) > Ay p o Xr)
(Z, g2)—0(Z, g7) = 6, + dd‘g, .
These are well defined since C((Ti;(f)) = div(f) and a)((fi;f)) =0
Let CH, ,.1(X) be the group (see [G1])

Ker{diV'@yEXka( N~ Z (X)}
Im{t @”EXP+ZK2 @}EXPH ’

where the map ¢ is the differential in the Quillen spectral sequence, [Ql, Sect. 71. It
follows from the arguments of [GS2, 3.3.5], that the map

@yeXp+1 k(y)* - gp—e+ l,p—e+ I(XR)
fek(y)*— —log|f|?

CHp piy(X) =

factors through a map.
p:CHp.p-Fl(X) —)H;—e-i- 1,p—e+1(XR) < @p—e+1,p—e+l(xR) ‘

Here HY .i1,-.+1(Xg) is the kernel of dd‘. We shall also write
Zp—op-d XR) S Ap-op-o(Xgr) for the kernel of d, and H)_. ,-(Xgr) for its
quotient by the image of dd°.

As in [GS2, 3.3.5], we have exact sequences:

CHppi1(X) 25 Ay pees1(Xp) — CH(X)— CH,(X) =0
and

Cpr+1(X)—*Hp e+1.p— e+1(XR)‘—a"6PIp(X) (L —w)

(X)®Zp e,p— e(XR) HE e,p— e(XR)—’O‘

2.2.2 Let f: X — Y be a proper map between arithmetic varieties, which restricts to
a smooth map X — Yr. Then the proof of [GS2, 3.6.1] applies after replacing the
grading by codimension by the gradlng by dimension, to give a push forward map
Seo CH. (X)— CH. (Y), which is given explicitly on arithmetic cycles by f,
(Z, 92) = (f4Z.f.49z)- Here £, Z is the usual push forward of algebraic cycles, as in
[Ful], while f, g is the push forward on currents induced by pullback on forms
with compact support; note that f.g, is a Green current for Z because
f:X(C)- Y(C) is smooth.

The map f, is part of a morphism from the exact sequences of 2.2.1 for X to the
corresponding exact sequences for Y. In particular, for any arithmetic variety X,
the canonical map X™ — X, where X red is the reduced scheme attached to X,
induces an isomorphism on CH, for all p >0, as can be checked from the
corresponding statement for CH, by applying the five Lemma to the map of exact
sequences in 2.2.1.
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2.2.3 Now let f: X — Y be a flat map between arithmetic varieties which is smooth
over F F. Then, agaln as in [GS2, 3.6.1], we can construct a pull back map
f*: CH AY)— CH,,M( ) where d is the dimension of the fibres of f(we assume for
sxmphclty that d is the same for all connected components of X).

Lemma 11 Let f: X — Y be a flat map between arithmetic varieties, which is smooth
over Yp, and let g: P — Y be a proper map, again smooth over Y. Let Z be the fibre
product ofX and P over Y, with p:Z — P and q:Z Z — X the two projections. Then
given xeCH( ), we have q,p*(x) =f*g,.(> )eCH(X)

Proof. First we observe that the two functors ¢, p* and f*g, agree at the level of
algebraic cycles, not just modulo rational equivalence. This is because the corres-
ponding two (derived) functors from the category of ¢p-modules to the category of
(’x-modules agree. It then suffices to know that the maps from currents on P to
currents on X agree, since then the two maps will have the same effect on Green
currents. By duality, this follows directly from the fact that integration of compact-
ly supported differential forms over the fibres of a smooth map commutes with base
change.

224 I X is equidimensional and regular of dimension n, then
CH,(X)~ CH" ?(X). This is an elementary property of the gradings by codimen-
sion and dimension.

225 If¢pisa Kl-chain on X which is supported in the special fibres of X (i.e. the
support of ¢ lies in X — Xy), then div(¢) = (div(¢), 0). Therefore, in defining
CH. (X), we can first divide Z.(X) by arithmetic cycles which are divisors of
K -chains of this type. More precisely:

Definition 3 Let X be an arithmetic variety; then Z~,,(X) is the quotient of Z,(X) by
the subgroup consisting of all div(f) for which fis a rational function on a (p + 1)-
dimensional subvariety W < X such that W Xy is empty.

Notice that a “cycle” Vin Z (X)) restricts to a well defined cycle on the generic
fibre X, and hence that it makes sense to talk of a Green current gy for V.

The group CHI,(X) is generated by pairs (Z, g)eZ (X)® J,, er1.p—e+ 1{XR)
where g is a Green current for Z. The relations are generated by of all classes (ﬁ;( 1)
with fek(y)*, for ye Xy a point of dimension p — e + 1.

2.2.6 Let X be an arithmetic variety and D < X a principal effective Cartier divisor
on X such that Dy is smooth, and let i:D — X be the inclusion. For any map
f:Y = X of arithmetic varieties whose restriction fr: Y — Xr to the generic fibre
is transverse to Dy, we may define as follows a pull-back map

i* =it:CH(Y)~ CH.(f'(ID])) .

Let (Z, g) be an arithmetic cycle on Y. By the Moving Lemma on Yy, we may
assume that Z, meets f (D) properly. We then set

i*(Z,9)=(Z.f*D,i*g),

where Z. f* D is defined by the method of [Fu2, Remark 2.3]. Namely, by linearity,
we may assume that Z is irreducible. If Z = f71({D}), we put Z.f*D = 0, and
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otherwise Z. f* D is the Weil divisor associated to the Cartier divisor j* f* D where
j:Z - Y is the inclusion. Notice that Zf* D depends only on the restriction of Z to
—|f*D|.

We must check that i* respects linear equivalence. If (Z, g) and ( W, h) represent
the same class in CH.(Y), then, as in [GS2, 4.2.6], we can find a K,-chain ¢ on
Y such that dlv(qS) =(Z — W,g — h), and ¢ meets | f*(Dy)| almost properly on Yy
(with the terminology of loc.cit.). Tt follows that

i*(—log(|¢1%) =i*(h—g) =i*h —i*g .

We need to check that i*(div(¢)) is rationally equivalent to zero. By linearity, we
may assume that ¢ is a rational function r on an integral subscheme 7T < Y.
Suppose that T is not contained in f~!(|D|) (otherwise there is nothing to check),
and let i*T =)' ng[S]. Define i*(¢p) = Y ns{r|s}, where the sum is taken over all
S’s which are not contained in |div(¢)|. On the other hand, if ¢ is an equation for
f*(D) on Y and div(¢) = Y, my [ V], we get

i*div(¢) = Ymy div(e| V),

where the sum runs over all irreducible subvarieties V' of codimension one in
the support of ¢ which are not contained in the divisor of ¢. It follows that
i*(div(¢)) — div(i*(¢)) is the divisor of a K -chain ¥ supported on the compon-
ents of excess intersection of £~ 1(|D|) and div(¢) (see the proof of Lemma 23
below). In particular, the support of i does not meet Yr. It follows that

i*(div(e)) = div(i*(d) + V),

ie. i* preserves linear equivalence.
When fis proper, for any xeCH. (Y),

i* fulx) = f21*(x)

in CH.(|D|), where f? is the restriction of fto the inverse image of | D|. This may be
checked directly on cycles as in [Ful, Proposition 2.3.c].

2.2.7 Another (and more general) case when we can define a pull back map is when
f:X - Y is a local complete intersection (l.c.i.) morphism between arithmetic
varieties, i.e. there is a factorization f= gei, with i: X — P a regular embedding,
and g: P — Y a smooth morphism. Then there is a pull back map

f*:CH,(Y)~> CH,.y(X)

where d = dim(X) — dim(Y) (for simplicity, we assume here that X and Y are
irreducible).

This is_constructed by the method of 4.4 in [GS2]. SpeCIﬁcally, we have a
map g*: CH AY)— CHp+,,(P), n = dim(P) — dim(Y), since g is smooth and in
particular ﬂat It therefore suffices to define a map

i*:CH, . o(P) > CH, o X) .

This is done for cycles in Theorem 4.4.1, (i) to (v), in [GS2], where the only use of
regularity in the construction of the map i* is to ensure that i is a regular
embedding (there is a typographical error in the statement of Theorem 4.4.1 in loc.
cit.,, in that the closed embedding is called f, but is twice written i). Indeed, the
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construction in Fulton’s book [Fu2] that is appealed to ibidem is the Gysin map
attached to a regular embedding in homological Chow groups, which is valid when
varieties are singular. The proof in [GS2, Theorem 4.4.2] that the pull-back on
cycles respects rational equivalence applies equally well to our current situation,
the only change being to replace the grading by codimension with grading by
dimension. Theorem 4.4.3 (1) to (4) also applies, with the same changes, showing
that f* is independent of the factorization chosen.

The pull back by lc.i. maps has the following properties. In the situation of
2.2.6, the inclusion i: D — X is l.c.i., and both definitions of i* on CH( ) agree.
Whenf X — Y is both lLc.. flat, and smooth on X, the map f* agrees with the
map in 2.2.3 above. If f:X > Y and g:Y— Z are two lci. maps, then (¢/)*
=g*f* from CH(Z) to CH(X)

Furthermore, given an l.c.i. map f: X — Y and a proper map g: P — Y (smooth
on Pg), such that fand g are Tor-independent, then

%9y = gxu f5:CH(P) > CH(X),

where gx: X xy P — X and fp: X xy P — P are the two projections (notice fp is still
l.c.i. under our assumption). By Lemma 11 applied to smooth maps, to prove this
we need only consider the case where f is a regular immersion. We may check
this identity on a generator (Z, g,) of CH. (P) with Zp transverse to fp and g, of
logarithmic type. The identity is true for g, because integration of forms along
fibres is compatible with pull-backs (compare (3) in Lemma 12 below), and it is also
true in the algebraic Chow groups of f ~*(g(}Z |)) by [Fu2, Theorem 6.2.a)], which
remains valid over A as explained in [GS2, 4.4.1].

2.3 Cap products

2.3.1 We shall now show that the construction in [GS2] of cup products on the
arithmetic Chow cohomology groups can be extended to give a cap product
between arithmetic Chow cohomology and homology. These cap products are
described somewhat in the style of Fulton’s operational theory [Fu2].

First notice that the real vector space A(XR) Py 0o APP(XR) is a contra-
variant functor from arithmetic varieties to rings without unit, where on A(Xg) we
consider the *-product: ¢+ = ¢ Add(y). Given a class xeCH HX) and ¢e
A(Xy), we define their cap product

dnx=¢n(Z,9z) =0, ¢*gz)=al¢- o(x)) .
Here we have written x = (Z, g,), and “-” for the product
APP(XR)® Dy—et1,q-e+ 1 {XR) ™ Dyg-p-ev1,4-p-e+1(XR)
which is induced by the wedge product of forms with distribution coefficients.

Theorem 3 Given a map f:X — Y of arithmetic varieties, with Y regular, there is
a cap product:

CH?(Y)® CH,(X)— CH,_ ,(X)o
Yy x> y.x

which we also denote y ~ x if X = Y. This product has the following properties.
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L w(y,x) =f*o(y) A o(x), and, for any ne A(Tg), a(¢);x = a(f*¢)n

2, CH(X)Q is a graded CH (Y)q module; i.e. leECH (X)o, yeCH”( Y)Q, and
y ECH"(Y)Q, then y.(y'.,x) = (yy').,x, where yy' is the cup product defined in
[GS2, 4.2.3].

3. Ifg Y — Y’ is a map of arithmetic varieties with Y' regular, y' e CH"( Y') and
xeCH X ), then y'. rx = (g*(y")).; x. Here g* is the pull back map defined in [GS2,
4.4.3].

4.If h: X' - X is projective, and smooth over X, x 'eCH (X')and yeCH P(Y),
then y.;(h (x )) = hy(y.pnx"). That is, the push forward h,, zs(aﬁer tensoring with Q)
a map of CH (Y)q modules.

5. If h: X'~ X is smooth over F, and either flat or lc.i, xeCH( ) and
yeCH”(Y) then h*(y.;x’) = y.;nh*(x'). That is, the pull back map h* is (after
tensoring with Q) a map of CH (Y)q modules.

6. Let i: D — X’ be the inclusion of a princzpal effective Cartier divisor, h: X — X’
a morphism which meets Dp properly, and ix:h~ (D) — X the inclusion of the inverse
image of D. Then, for any xe CH(X) and yeCH (Y), the following holds in
CH.(Ih~(D)]):

V¥ (x) = i*(y.px) .

Proof. We shall first define y.,x. Without loss of generality we may suppose that
Y is equidimensional of dimension n, since being regular it will be a disjoint union
of such varieties, and we may then consider the cap product for each component of
Y separately.

Letx = (V, gy)e CH 4(X), with V an algebraic cycle on X. We may assume that
V is a prime cycle, i.e. that V = X is a g-dimensional subvariety. By the Moving
Lemma, we may assume that y = (W =) n, W, gW)eCH P(Y), with each f~ (W)
meeting V properly on the generlc fibre X 5. Since Y is regular, [0y 1€ K§(Y),
and hence f*Ox1eK T Wi(X). So we have f*[Op]1n[0y]e
Ko(Vaf Y (W,)). Now by [S1 Theorem 8 v)], and [GSI, Theorem 8.2],
Ko(V o f 1<W))Q ~ @z o CH(V A f " (W), with CH,(Vnf™'(W))g =
Gr,Ko(V nf ™1 (W))q, where Gr. is the graded associated to the filtration Fil. by
dimension of support. By 2.2.5, to define the cap product arithmetic cycle it will
suffice to define an algebraic cycle [ V] ;[ W] eZ~q o X), together with a Green
current for [ V][ W] We shall produce the cycle [V].,[W] in the group
CH,—,(Vf ' (IW]))q, which maps naturally to Zq A X) (since each f~1(W))
meets V properly on the generic fibre X¢). To do this it suffices to show that

[ LOw 1[0y eFil, Ko(Vaf~ (W)

Since X is quasi-projective, we can factor f= meoi, with 7:U — Y the smooth
projection from a Zariski open subset U of P}, and i a closed immersion. By the
associativity of the tensor product, f*[Oy,] " {0y] may be calculated in the
K-theory with supports of U, ie. via the isomorphism Fil¥ ™ Kg(U)g =~
FilK(V)q; here N is the dimension of U, and Filis the filtration by codimension
of support. The needed assertion about the cap product cycle now follows from the
multiplicativity of the filtration by codimension of supports on K-theory with
rational coefficients for a regular scheme, see [S1, Theorem 7 iv)] and [GS],
Theorem 8.3].
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Mt
Turning to the construction of the associated Green current, let V(C) be

e

a resolution of singularities of V' (C), and k: V(C) » X (C) the map induced by the

inclusion ¥ — X. Then as in [GS2, 2.1], since W, meets f properly over F, the
current

Sy Af*gw, B Ky (fK)*gw,

is well defined if we choose for gy, a Green form of log type along W,(C) in the sense
of [GS2, 1.3.5]. Such a choice always exists after adding an element of the form

o(u) + @(v) (loc. cit.). We now set

Vogv) s (Wi gw) = (LV]. [ W], v Af*gw, + gv A ow) ,

which is an arithmetic cycle by [GS2, 2.1.4].

We must show that the cap product is compatible with rational equivalence.
Suppose that x = (V, gy) with V' a subvariety of X, as above, and that (W, gw),
(W', gw) are two arithmetic cycles on X, representing the same class ye CH'(Y),
both meeting V5 and/{F properly. By [(GS2, 4.2.6], we may assume that
(W, gw) — (W', gw-) = div(¢) with ¢ a K -chain on Y which meets V and f;
almost properly. Following op. cit. we may assume that ¢ =[Z].{¢], with
¢ a rational function on Y, the divisor of which meets fr and Vy properly, and
which is a unit on any component of f(Vz)~ Wy for which /7' (Vp)n Wy has
excess dimension. Then by the method of Lemma 425 of [GS2],
(V. gv).,(div(¢)) = div(y), where  is the K,-chain on X equal to
([V1,L21)./4().

Similarly, if (V, gy/)\ and (V, gy ) are two representatives of x, we can write
(V,gv)— (V', gy') = div(¢), with ¢ a K,-chain on X. By the Moving Lemma, and
the fact that the cap product is independent of the choice of representative for y, we
can choose a representative y = (W, gy ), with Wy meeting fr and ¢p properly on
the fibre over Spec(F'). As before,

(V. gv) — (V' gv)).p (W, gw) = div(¢. [ W]),
where the K;-chain ¢.,[ W] is defined by the cap product

Ki(l¢] — Idiv(¢)) @ KT(Y)— K ((1¢] — [div(®)) nf " (IW]) .

This proves that the cap product is well defined.

Property 1 follows immediately from the definition.

Turning to the proof of Property 2, we may assume that Xy and Y, are
projective (compare [GS2, 4.2.7. (i)]), and that x, y, and y’ are represented by
arithmetic cycles (V, gv), (W, gw), (W', gw ), respectively, such that Wand W' meet
properly on Y, meet fp properly, and f ™! Wand f~' W' meet V properly on X;.
Then the required associativity is the conjunction of two facts. First, by [GS2,
Lemma 4.4.37, the following identity holds in & (XR)

gy *[*gw*gw) = gv*([*(gw)*/*(gw ') ,
and by op. cit. 2.2,
gy *(f*(gw)*f*(gw)) = (gv *f*(gw)) = *(gw ) -
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Second, the product on K-theory with supports is associative, as follows from the
associativity of the tensor product, see [GS1].

The proof of Property 3 on the Green current side is just the fact that if we
represent the classes x and y by arithmetic cycles (V, gy} and (W, gy ) for which the
associated algebraic cycles intersect properly, the pull back (/" f)*gw, and the
product g, = (f' f)*gw were both defined using pull-backs and wedge products of
smooth forms of log type, and hence are functorial and associative. On the cycle
side, we just appeal again to the associativity of the tensor product.

On the cycle side the proof of Property 4 reflects the projection formula for

K-theory, while for Green currents, assuming proper intersections and representing
the Green currents by forms of log type, we are reduced to the projection formula
for integration of smooth forms over the fibres of a proper smooth map.
__To prove Property 5, first consider the case where h is flat. Let x = (V, gy )e
CH ,(X) with V a prime cycle, and let y = (W, gy) with W a prime cycle meeting Vp
properly; it follows that W also meets h ™ *(V5) properly. The equality h*(g, *
f*(gw)) = h*(gv) *(fh)* gw follows from the Lemma of section 4.4.3 of [GS2] and
the fact that Green currents of log type pull back to Green currents of log type, see
2.1.3 and 2.1.4 of op. cit., so that (fh)*gy = h* f*gy at the level of forms. Next we
check that we have an equality of cycles

WV WD) = [ ()]l W]
in CHy—,4a(h™ (V) (fh)~ (W))g. It suffices to observe that
ROy 1nf*[Ow]) = [Ow 1N (fR)* [Ow]eFily_ e a Ko (B (VO f THV)))g

by the associativity of the tensor product and the flatness of h. Turning to the case
when h is Lc.i., since a smooth map is flat, we need only consider the case of
a regular immersion #: X' — X. Again the equality of Green currents follows from
the regular case, since X and Xy are smooth. On the cycle side, we use the
compatibility of the pull back of cycles via deformation to the normal cone with
products on K-theory, which may be verified by embedding the whole deformation
to the normal cone family in a regular variety.

The proof of 6 follows from the definitions in 2.2.6. qed.

2.3.2 We shall also need the following projection formula:

Lemma 12 Let f: X — M be a map of arithmetic varieties with M regular, and
suppose p:P — M is a proper smooth map of arithmetic varieties of relative
dimension d. Then if we write g: X Xy P = P and q: X %, P — X for the projec-
tions, we have, for all xe CH,(X) and ye CH%(P),

Q*(q*(a)’gy) = Oy Py -

Proof. Suppose that a (resp. 7) is the class of the arithmetic cycle (Z, gz) (resp.
(W, gw)), where Z and W are irreducible cycles which are flat over the base (if not
the statement is purely algebraic, see below). We may assume that g, (resp. gw) is of
logarithmic type along Z(C) (resp. W(C)), and, by the Moving Lemma, that the
closed sets g~ (W) and g~ ' (ZF) meet properly in (X x,, P)p (i.e., each irreducible
component of g~ (W) meets properly the irreducible set g~ !(Zp)). When
dim p(Wg) + dim( W), the cycle p, (W) is zero by definition of p,, on cycles [Ful].
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But then any fibre of the map p: W — p(W) has positive dimension, hence the same
is true for any fibre of the map q:q " Z)ng Y (W) — Z nf ™ *(W). It follows that
in that case the cycle components of both g, (g*(«)+,7) and a -, p,(y) vanish (for
our choice of representatives of a and y). When dim p(W;) = dim( W), it follows
from our transversality assumptions that any component of g~ ' (Zp) g™ ' (W) is
generically finite over its image, and that the components of

(I(q‘l(ZF)mg_l(WF)) = ZFf\fvl(P(WF))

have the same dimension. Their multiplicities are equal by the Tor formula and the
projection formula, since p and ¢q are smooth.
On the other hand, the equality of currents

(3) a+(a*(g2)*g*(gw)) = a4 (a*(02)g*(gw) + ¢*(92)9* (ww))

=02q.9*(gw) + 9249 (0w) = gz * 459 *(gw) ,

when tested on (compactly supported) form of appropriate degree is an equality of
indefinite integrals on the open set X(C)— (Z(C)nf~'p(W(CT))) (unless
p(W(C)) = M(C), in which case (3) can be checked directly). The 1dent1ty (3) then
follows from the fact that integration of forms along fibres of p and ¢ commutes
with base change by the map Z(C) —» M(C).

Finally, to check the identity of the lemma for our choice of representatives of
o and f, by 2.2.5 we need only to check that the cycle classes q,(¢*[Z]-, [ W])and
[Z]-; p[ W] are equal in the algebraic Chow group CH.(Z nf ™ 'p(W))g. Since
the cap product on Chow homology is defined using algebraic K-theory [GS1, S17,
this follows from the identity of derived functors L f* Rp, = Rq, Lg™, i.e. base
change for direct images in K-theory with supports (see [BGI I'V 3.1.0] and [QI,
Proposition 2.11]).

2.4 Characteristic classes for Hermitian algebraic vector bundles

2.4.1 In this section we recall some results in complex geometry concerning
Bott-Chern secondary characteristic classes and their singular analogs.

Let X be a complex manifold and E = (E, h) an holomorphic vector bundle
E on X equipped with a smooth Hermitian metric 4. Denote by

ch(E) = trexp(i % >
2n
the usual form representing the Chern character of E, where V' is the Hermitian
holomorphic connection on E attached to h [GH]. Given an exact sequence
E0-8S—-E—->Q0-0

of holomorphic vector bundles on X, and (arbitrary) Hermitian metrics h’, s, h” on
S, E, Q respectively, the Bott—Chern secondary characteristic class

ch(8)e A(X)= @ AP(X)/(Imé + Tm &)

pz0
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solves the equation
dd°ch(&) = ch(S) — ch(E) + ch(Q),

(with dd° = 00/(2ni)). We refer the reader to [BC, Do, BGS1, GS3] for its construc-
tion. To simplify notations we write ch(&) instead of ch(&, h', h, h"). This class

:'E(@“’) is functorial and is characterized by the fact that it vanishes when & is
(metrically) split, i.e. (E, h) is the orthogonal direct sum of (S, k") with (Q, h").

In special cases we shall use a different notation foL;h/(cf). When @ =0, ie. if
we are given an isomorphism 0: S — E, we shall write ch(S, E, 0) instead of ch(&).
If, in addition, 0 is the identity on S = E, we shall write ch(E, h', h) instead of
ch(&).

Notice that these secondary characteristic classes exist for other characteristic
classes and not only for the Chern character [GS3]. For instancg_,\g/iven a metrized

exact sequence & as above, there exist classes Td(&) and Td ~'(&) in A(X),
attached to the Todd class and its inverse. They solve the equations

ddTd(&) = Td(S)Td(Q) — Td(E)
and
ddsTd (&) = Td =1 (5)Td ~(() — Td ~“(E) .

More generally, given a finite acyclic complex of vector bundles

EQ0->E,-E,_ —>...2FE;-0,
and arbitrary metrics on each Ej, there exists a class ZE(E.)EE(X) such that

dd°ch(E) = — ch(E)
where, by definition, ch(E.) = Yisol— 1)/ ch(E;) [BGS1, GS3].
This definition is again generalized in [BGS2], where Bott—Chern singular

currents are introduced. Given a closed immersion i: ¥ — X of (smooth) complex
manifolds and an Hermitian vector bundle F on Y, consider a resolution

O0-E,»E,.y—...>Ey—»i ,F-0

of the coherent sheaf i, F' by holomorphic vector bundles on X. The homology
groups H,(i*E.), for k = 0, of the restriction to Y of the complex of sheaves

E.:Em—)Emhlﬂ e "‘)EO

are canonically isomorphic to the bundles N (N*)® F, where N * is the dual of the
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normal bundle of ¥ in X (see [BGS2, l.a] for references). We then have the
following definition [B]:

Definition 4 Given a metric on N, we say that a choice of metricson E, j =0,
satisfies condition {A) when the 1somorphisms

H(i*E)=/N(N*)® F

are isometries for the metric induced by E. on homology, and the metric induced by
Nand Fon N(N*)®F.

Such a choice of metrics always exists [ B, Proposition 1.6]. Using such metrics,
we defined in [BGS2, (2.4)] a class of currents

ch(E)e @ 97(X)/(Imé + Im &)

pz0

solving the equation of currents
@) dd¢ch(E) = iy(ch(F)Td ~'(N)) — ch(E) .

When F = 0 we recover the previous definition. This Bott-Chern singular current
ch(E.) was denoted T(h*) in [BGS2] and [BGS3, 1.g], where £ is E. and h* is the

metric on E. We refer to loc. cit. for several properties of;:Z(E.), Again, by abuse of

notation, we omit to mention in our notation ch(E.) the dependence of this class
upon our choices of metrics (on F, N and E)).

2.4.2If X is an arithmetic variety, an Hermitian algebraic bundle E on X is a pair
(E, h) consisting of a vector bundle E on the scheme X, and a C* metric & on the
induced holomorphic bundle over X (C) which is invariant under F .. Iff: Y - X is
a morphism of arithmetic varieties, then f*(E) = (f*(E),f*(h)) is an Hermitian
bundle on Y. R

As in [GS3, 6.1], we can form the arithmetic Grothendieck ring of X, Ko(X).
This is the quotient of the free abelian group on the set of pairs (E, 11) with
WEZ >0A""(X r), by the subgroup generated by all expressions of the form
(E',n')—(E,n)+ (E",n”) — (0, B), where & is an exact sequence of bundles

O0-E ->E—->E" -0
over X, equipped with arbitrary metrics, and f = ;l;(é”) + 7 —n+n", where
ch(&) is the Bott-Chern secondary Chern character class. We get in this way

a contravariant functor X — K(X) from arithmetic varieties to rings [GS3, loc.
cit.].

Theorem 4 There is a biadditive pairing
Ko(X)® CH.(X) - CH.(X)q

which we write & ® x+> ch(a) 0 x, with the following properties.
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1. If f: X — Y is a morphism of arithmetic varieties, with Y regular, aeKo(Y)
and xe CH (X)), then

Th{f*a)nx ="ch(a). ;x .
2. If (0, n) e Ko(X) and xe CH.(X), then
h((0, 7))~ x = a(nax(x))
3. IfaeKo(X) and xe CH.(X), then
w(ch(2) N x) = ch(a) A o(x) .

4. The pairing makes CH. (X)q into a Ko(X) module; i.e. for all a, ﬁeKO(X),
and xeCH. (X)g, we have

Th(x) A (ch(B)n x) = (ch(aB)) n x

Here af is the product in Ko(X) (see [GS3]).
SIfY->Xis a flat or 1.ci. morphism of arithmetic varieties, let aeKo(X)and
xeCH( ). Then

P

Ch(f*a)ynf*(x) = *{ch(a)nx) .

6. if f: X — Y is a proper morphism of arithmetic varieties, smooth over Yg, let
aeKo(Y) and xeCH( ). Then

Fleh(f*a)y s x) ="ch(a) N filx) -

7. Ifi:D — X is the inclusion of a principal effective Cartier divisor, f: Y — X as
in2.2.6., iy f ~Y(|D|) — Y the inclusion, and E an Hermitian vector bundle on Y, for

any xeCH. (X') we have

ChE(E)) ni*(x) = i*(ch(E)nx) .

Proof. We start by considering a generator o = (E, h, n) of Ko(X). Since we are
assuming that all our varieties are quasi-projective over A, we know that there
exists a vector bundle U over an arithmetic variety M, with M smooth over A4,
amap u: X - M, and an isomorphism 0: E — u*U. Fix an arbitrary metric on U;
then U has a Chern character/c7z(U )e@ (M). Given xeCH {X) consider the
class

Th(T)..x + aOEE(E,p*U, NHhnx+an)nx.

(Here, and in the discussion following, we have written a° ;:\I;( .)instead of a(/cﬁ( )

We claim that this is independent of the choice of the triple (u, U, 8). For if
(u':X > M', U’ 0')is a second such triple, let Iso(U’, U) be the variety, smooth
over A, which parameterizes isomorphisms U — U’. There are projections
p:Iso(U,U)—M, and p’:Iso(U’,U)—> M’, and an isomorphism :p*U —
p'*U’. By definition of Iso(U’, U) there is a unique map J:X — Iso(U’, U)
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such that pod = u, p’°d = u’, and 6*(¢) is the isomorphism 6'(#)"!. Then given
xeCH . (X), we get

= xmé*(aoch(p*U,p'*U',(P))

= x(a>ch(u(T),u*(T"),0'(0)"1))

A(as ch(E, p'*T",0) — as ch(E, p*U, "))

as desired.

Since the cap product is biadditive, this pairing is additive in x. In order to show
that we get a map Ko(X)® CH. (X)— CH. (X)q, it suffices to show that given an
exact sequence

E0—-E >E-E" -0
of bundles on X, we have, for any choice of metrics on the bundies,

SN =

(Ch(E') —¢h(E) + eh(E ")) nx = a° ch(€) N x .

Choose triples (u: X - M, U, 0), (w':X >M', U, 0'), and (u”": X > M", U",0")
representing the terms in the exact sequence. There is a variety P, smooth over
A, which parameterizes exact sequences 0 > U’ — U — U" — 0. That is, there are
projections ¢: P— M,q’ :P—>M',q":P - M", and a universal exact sequence

U0-g'*U —g*U—q"™*U" >0,

with the obvious universal property. In particular there is a map f: X — P, such
thatgf=u,q' f=u',q" f= u", and an isomorphism of exact sequences f*(%) ~ &.
Since P is smooth over 4, we know from [GS3, 4.8(ii)] that

s P P T~

q'*(ch(U") — q*(ch(U) + q"*(ch(U"))) = a> ch(¥) .

Py

From the biadditivity of the cap product CH'(M)® @.(X ) — @,(X Jo we see
that

(ch(E') ~"ch(E) + ch(E")) n x
=h(U")wx — eh(U)ux + h(T ") x + ao ch(E,u*U",0") A~ x

—aoch(E,u*U,0)Ax +a>ch(E",u"*U", 0"y x
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=c/h\( *U")., x—ch(q* U)fx+ch(q’*U”) x+aOEZ(E_’,u’*U’,(9’)mx

—aoch(E,u*U,0)Ax +ao ch(E",u"*T", 0"y x

= f*(as ch(U)) A x +as ch(E,u*T",0') A x — as ch(E,u*U, 0)  x
+aech(Eu*U",0") A x
= aogf;(é”)mx

by [GS3, Proposition 1.3.4], as desired.

We now verify Properties 1-7 in turn.

Properties 1 and 2 are part of the construction of the pairing, while Property
3 is a straightforward computation.

For Property 4, since the product is biadditive we can consider the four cases
where o = (0,7), or « = f*(E)for f: X - Yamap to an arlthmetlc varlety smooth
over A, and E an Hermitian bundle on Y, and f=(0,5'), or f =g*(E") for
g:X — Y’ a map to a regular arithmetic variety, and E’ a Hermltlan bundle onY'.
The case where « =(0,7), and B = (0,n’) reduces immediately to Theorem 3,
Property 2. If a=(f*E, 0, and p=(g*E,0), then auf=
(£ g)*(p*E® p’'*E’),0), where (f, g): X » Y x Y' is the induced map, and p and
p’ are the projections from Y x Y'. Hence, by Theorem 3, Property 2,

Ch(aUB)nx =Cch(p*E@ p'*E ). 1.4)X
= (ch(p*Ech(p'*E")) (. X
="Ch(p*E).( 1. (ch(p"*E").(.5)%)
="ch(2)n (ch(B)nx) .
Now consider
ch (0, n) A (ch(E, 0) 1 x) = a(n - w(ch(E, 0))) n x
= a(y A(ch(E) A 0(x))
= a((n A ch(E)) A (x))
="ch(0,y A ch(E)) N x
="ch((0, M(E, 0) N x

The proof of the fourth case is similar, and we therefore omit it.
Property 5 (resp. 6, resp. 7) follow from Property 5 (resp. 4, resp. 6) in
Theorem 3. (]

Remarks. Th/e\same method allows us to define other characteristic classes like the
Todd class Td(E)nx for any Hermitian vector bundle E (and more generally
Td (¢)n x for any a e K o(X)) from the regular case [GS3]. These satisfy properties
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similar to those in Theorem 4 (of course /T?l is multiplicative rather than additive).
These other classes are also given by standard universal polynomials in the
components of "ch. Notice also that, by [GS3, Theorem 7.2.1], for any xe Ko(X)
there is a unique fe Ko(X) such that Td(oc = ch(ﬂ

As mentioned in 231 the formalism of cap products is inspired by the
operational theory of Chow groups. It is probably the case that, for any X (and
more generally for any map Y — X)), one could define operational (resp bivariant)
arithmetic Chow groups in the style of [Fu2]. The Chern character ch( ) would lie
in these operational Chow groups.

2.5 Hermitian Coherent Sheaves
2.5.1

Definition 25 Let X be an arithmetic variety. An Hermitian coherent sheaf % on
X consists of a pair (&, h), with # a coherent sheaf of ¢ y-modules on X which has
locally free restriction to the generic fibre Xy, and / a smooth metric on the
associated holomorphic vector bundle over X(C), invariant under complex con-
jugation.

_ Given an arithmetic variety X, let P(X) be the free abelian group on pairs
(#,n), with .# an Hermitian coherent sheaf on X, and ne A*(Xg). Let
E(X) < P(X) be the subgroup generated by elements of the form

(F',n) = (F.m)+(F",n") — 0, B)

where

is an exact sequence of coherent sheaves on X, locally free on X, equipped with
arbitrary Hermitian metrics, and

B=ch(&)+n ~n+n"

The Grothendieck group K, (X) is, by definition the quotient of P(X) by E(X).

2.5.2 For any X there is a homomorphism of abelian groups «: Ko(X)—~ Ky(X)
which comes from viewing any vector bundle as a coherent sheaf.

Lemma 13 If X is regular, the map x: Ko(X) - K(X) is an isomorphism.

Proof. It suffices to show that « has an inverse. Let (%, 5) be a generator of K 5(X).
We define «(0, #) = (0, 5). To define k(#,0), we procede as follows. Since X is
regular, the coherent sheaf underlying £ has a finite resolution
0-E,— ... > Ey— % — 0 by locally free sheaves on X. We may choose arbit-
rary metrics h; on the E’s, to get Hermitian bundles E;. Since # is locally free
over X, the resolution ¢: E. > £ restricts to an acyclic complex of Hermitian
vector bundles on X(C). Let ch(e) be the corresponding Bott—-Chern class,
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so that dd*(ch(e)) = ch(E)— ch(#). Now consider the class o(F,n) of
> o(— DI(E;, 0) — (0, ch(e)) in Ko(X). We claim that it is independent of the
Ch01ces made, so that we can define ¢ to be the inverse of k. Suppose that
¢:E.— Z is a second resolution of # by Hermitian bundles on X. Then, by
a standard argument, we may assume there exists a quasi-isomorphism «: E. - E’.

which is a morphism of resolutions from ¢ to ¢'. From [GS3, Proposition 1.3.4]
(whose proof extends, by induction, to complexes of arbitrary length) we get that

n

;7{(8)—;”;(8 Z "1 Ch(E,,E,, )’

which implies that o is independent of the choices made. One can check that ¢ is an
inverse to k. ]

The homomorphism «: Ko(X) — K4(X) is a special case of a cap product
Ko(X)® Ko(X) - Ko(X)
defined by

()" (F,0)=(ER F, ch(E)0 + nch(F) + n«0) .

One can check that this cap product makes If()(X) mtoa IfO(X)-modLAlle (compare
[GS3, Theorem 7.3.2]). The map « is the cap product by the class in K4(X) of the
structural sheaf with trivial metric.

2.6 Todd classes

2.6.1 In this section we study properties of the Bott—Chern secondary characteristic
classes (see 2.4.1 above) in the case of the Todd class and its inverse.

First notice that, given an exact sequence
£ 0-8S-E->Q-0

of holomorphic vector bundles on a complex manifold X, endowed with arbitrary
metrics, the following equality holds in A(X):

) Td- (&) = — Td(6)Td~1(S)Td~(E)Td~(0) .

To check this, just notice that both sides of (5) have the same image by dd°, depend
functorially on &, and vanish when & is split. Therefore they coincide by [GS3]
Theorem 1.2.2.
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Lemma 14
(i) Let

- Q0 - 0

o
l

— O — W~ n — O
1

— O« e bn«— O

<
o

be a commutative diagram of bundles on X, with exact lines and columns. Call these
respectively C, C,, Cyand Ly, L,, Ly ( fromleft to right and top to bottom). Choose
arbitrary metrics on the bundles S, Q, A, B, C, D. Then the following identity holds in
A(X):

Td(L;) Td(A)Td " (C)Td~ (D) — Td(L,)Td (D)
+ Td(Cy)Td (D) — Td(C,)Td " (C) = 0.

(i") Under the hypotheses of (i), the following holds
— Td N(Ly) Td(B) — Td(L,) Td~(C)Td~*(Q)

4 Td(C,)Td (D) — Td(C,)Td" (€)= 0.
(ii) Let

—_— o — O
Il

0 - 8> C -

l
0 0

0
!
S
!
0 -S> A4 > B - 0
!
D
!

be a commutative diagram with exact lines L., L,, Ly and_exact columns
C,, C,, C5, with arbitrary metrics on S, §', A, B, C, D. Then, in A(X),

Td(C,)Td~(C) — Td(C3)Td~ (D)

+ Td(Ly) Td(A) Td~(C)Td~ (D) Td~(§") — Td(L,)Td~ (D) Td~*(§') = 0.
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(iii) Let (D)

0 0 0
l l !

0 -8 - E - Q0 -0
! ! !

0 -8 - E, - 0, >0
l 1 !

0 - S35 - E3 > 03 -0
! l !
0 0 0

be a commutative diagram with exact lines L, L,, L3 and exact columns
C,, C,, C5, with arbitrary metrics on all the bundles. Then, in A(X),

Td(Ly)Td ~(Q,)Td~"(Q3) Td(Es) — Td(L,) Td~(Q,)
+ Td(Ly)Td~1(Q,)Td ™ (Q3) Td(Ey) + (Td(Ly)* Td(L3)Td~"(0;)Td " *(Q5)
= Td(Cy) — Td(C,)Td~ () Td~(Qs) — Td~ (C) Td(Ey) Td(Ey)
+(TA(Cy)* Td~(Cy)) .

where the *-product is the one defined in 2.3.1.

Proof. To prove the first identity in (i), after multiplication by Td(C)7Td(D), we
compute

Td(Ly) Td(A) — Td(L,) Td(C) + Td(C,)Td(C) — Td(C,) Td(D)
= Td(L:)(Td(S)Td(C) — dd°Td(C,)) — Td(L,) Td(C) + Td(C,) Td(C)
+ Td(Cy)(— Td(Q)Td(C) + dd° Td(Ls))
= [Td(Ly) Td(S) — Td(L,) + Td(C5) — Td(C,) Td(0)] Td(C) .
But, from [GS3, Pro-position 1.3.2], we get
Td(Ly)Td(S) = Td(Ly @ L+)
and

Td(C,)Td(Q) = Td(C; @ C) .
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From [GS3, Proposition 1.3.4] we conciude that
Td(Ly) Td(S) — Td(Ly) + Td(C,) — Td(C,) Td(Q) = 0

which proves (i).

The proof of (i') is similar; one approach is to substract from (i).

The proof of (ii) is similar to (i) (first multiply by 7d(S’ Td(C) Td( D). It follows
also from (i) by looking at the dual diagram, since Td(/* Td( £)*, where
a* = (— 1)Pa when ae APP(X) (this follows from the axiomatic characterization of
Td(&)).

To prove (iii) one may also reduce this equation to Proposition 1.3.4. in [GS3]
or use the following argument (which also works for (i), (i’} and (ii)). Let n be the
difference of the left-hand side and the right-hand side of this equation. Notice that
n is functorial in the diagram (D), and vanishes when both the lines and columns
are (metrically) split. Furthermore dd(n) = 0. As in the proof of the Proposition
1.3.4 in [GS3] we may define a diagram (D) of bundles on X x IP! with exact lines
and columns, whose restriction to 0 (resp. o0)) coincides with (D) (resp. has split
lines). Let 7 be the corresponding form, and p: X x P! — X the projection. We get

0 = p,(dd° (7j)(log|z|*)) = py(7dd‘(log|z|?)) = fijxxo =~ fjxx» -

So, to prove the vanishing of # we may assume that the lines in (D) are split. By
repeating the argument, we may also assume that the columns are split.  q.e.d.

26.2 Let f:X — Y be a morphism of arithmetic varieties. We assume that f is
a local complete intersection morphism (l.c.i. morphism) which is smooth on the
generic fiber Y. Choose a Hermitian metric on the complex relative tangent space
T fe. We shall attach to these data a Todd class Td( f).

Since X is quasi-projective we may imbed X in a projective space P" and let
i:X - YxPY = P be the product of this imbedding with the map f We get
a factorization f = gi, where g: P — Y is the first projection:

X—sp
N g
Y.

Since fis l.c.i. and g is smooth, the immersion i is regular. Denote by N = Ny,p the
normal bundle of X in P and Ty the relative tangent-bundle of g. Choose
Hermitian metrics on N and Tg. Recall from [GS3] and 2.4.2 that we can attach to
these Hermltlan bundles (operatlondl) Todd classes T d (N) acting on CH. (X)g
and Td(Tg) acting on CH. (Pg.

On X (C) there is an exact sequence of vector bundles

&:0- qu;—»i*qu;—>N¢—->0.

We denote by ﬁi(éa)eg "(X) the Bott—Chern secondary characteristic class at-
tached to this sequence [BC, GS3]. In particular

dd°Td(6) = Td(Tfe ® N¢) — Td(i* Tgg) .
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Let
(6) Td(f/g) = Td(6)Td(Ng) ' e A'(Xp),
so that

dd*Td(f/g) = Td(Tfe) ~ Td(i*Tge) Td(N¢) !
For any oceéf\{‘(X) we define
(7 ﬁ(f)moc— Td(i *Tg)m(Td YUN)na) + Td(f/g)moceCH (X)o -

When Y = Spec(A4) is_the ground ring, we also write ﬁ(X) instead ofﬁ(f),
and Td(X/P) instead of Td(f/g).

If we assume that X and Y are regular and the ground ring is not necessarily
good, we can also define

Td(f) = Td(i*Tg)Td ~(N) + Td(f/g)e CH (X )q

Proposition 1 (i) The class Td(f) depends only on the choice of metrics on T f¢, and
not on the choice of i, g, nor on the metrics on N and Tg.

(i) Let f: X — Y and g: Y — Z be two maps between regular arithmetic varieties.
Assume that fand g are smooth over F and choose ametricon T f¢, Tgg and T(g f)c
Then the following identity holds in CH (X)

Td(gf) = Td(f) f*(Td(g)) — a(TA(E")) ,

where &' is the exact sequence

0->Tfe—~>T(9f e~ *Tgec—0.

Proof. To prove (i), given two factorizations f= g,i; = g,i, as above, we may
consider the fiber product P; xy P, and the diagonal imbedding, so we are led to
consider a diagram

X
J f
v il
P 9

PP P — Y

where p, g and h = g o p are smooth. We want to show that, for arbitrary choices of
metrics,

Td(i* Tg) ~(Td " (Nx;p) o) + Td(f /g) Ao
= Td(j*Thy~(Td ~(Nx,;p) ) + Td(f/h)

(The proof in the regular case is similar).
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On X(C) we have a commutative diagram with exact rows and columns

0 0
! l
Tfe S Tfe

l !

0 —»j*Tpc—>  j*The - i*Tge -0
|2 ! !

0 —=j*Tpe — Nxwyr@w) = Nxwpre) = 0
| l
0 0

Let Ly, L,, L; (resp. C,, C,, C3) be the three lines (resp. columns) in this diagram.
By definition

Td(f[h) = Td(C,)/Td(Ny,p) ,

and

Td(g/h) = Td(C3 )/ Td(N y,p) .

So we compute

Td(i*Tg) ~(Td " (Nyp) o) + Td(f /g) Ao — TA(j*Th)
A(Td " (Nyp)n o) — Td(f/h) e

= [Td(j*Tp) Td(i*Tg)- Td(j*ThY]Td (N x,p) Td " (j*Tp) n o + [TA(N yp)
— TAG*Tp) TAN xp) TG TR TA ™ (N ) Td™ (N y,p) Td (¥ Tp)
+ Td(f/g) o — Td(f/h) N a

= a{x) "«

with
x = TA(Ls) TAG*THY T~ (V) Td (N, ) T (5 Tp)

— Td(Ly)Td™"(Ny,p) Td ™ (j*Tp)
+ Td(C3)Td ™ (Ny,p) — Td(C2)Td " (Nx;p) -

By Lemma 14(ii) applied to the diagram above, we know that x = 0. This proves ().
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To prove (ii), since f and ¢ are lci, by a standard argument there exists
a commutative diagram .
X ‘> M <5 M

N br b
v ok M

¢ |

Z.

in which p, g and r are smooth, i, j, and k are regular immersions, and the square is
cartesian. Let us write T, T,, T,, T,,, N;, N; N,, and N; for the relative tangent
bundles and the normal bundles respectively of the maps p, q, r, rq, i, j, k, and ji.
Note that N; ~ p*N,, while T, >~ j*T,. We choose arbitrary metrics on these
bundles, except for requiring that the two isomorphisms we just mentioned are
isometries. On X (C) we get the following commutative diagram with exact lines
Ly, L,, Ly and exact columns C,, C,, C3 (we omit to write the subscripts C):

0 0 0
1 l !

0 - T, - i*T, - N, - 0
l l !

0 - T,, — i*j*T,, > Nj — 0
l ! !

0 - f*1; —» f*k*T, - f*Ny, - 0
l ! !
0 0 0.

By definition of Td we have
Td(f) = Td(i* T,)Td ~"(N;) + Td(L,)Td " "(N,) ,

f*Td(g) = TA(*k*T)Td ~H(f*No) + Td(L)Td*(f*N,) |
and
Td(gf) = Td(i* j* T,)Td " (W;) + Td(L)Td ™ (N;) .
Using the first two formulas we find

TA(f)f*Td(g) — TA(C,) = Td(i *T)Td YN)TA(f*k*T)Td = (f*Ny)
+ TA(L)Td ™ H(N)TA(f*k*T) Td =1 (f* Ny
+ Td(Ly)Td ™ (f*N,) Td(i* T,) Td = (N,)
+ (TA(L,) * Td(L3))Td ~H(N) Td~H(f*N,) — Td(C,) .
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Using the exact sequences C, and C; we may rewrite as follows the formula for
Td(g f):

Td(gf) = TAG* T, Td *(N)TA(f*k* T)TA L (f*N,) + (TA(Co)« Td~ 1 (C))
— Td(C3)Td Y (N)Td ' (f*Ny) — TF%Q)Td(i*T,,) Td(f*k*T)
+ Td(L,)Td " *(N) .

Comparing the right hand sides in these two formulas follows from Lemma 14 (iii)
applied to the diagram above. q.ed.

2.6.3 Concerning the classes ﬁ(f/g) we shall need the following results. We
assume that the ground ring is € and first consider the case where Y is a point.
Then we have the following

Lemma 15 (i) If we choose two different metrics h' and h" on the tangent bundle
to P, then

Td(X/P, 1’y — Td(X/P,h"y = Td(Tp, i'.h"YTd~*(Nx,p) -
(i) If h" and h" are two different metrics on the normal bundle Ny p, then
TA(X/P, W) — TA(X/P, ") = — k*(Td~'(N. k', k") Td(T»).

1) rom =(Tp,h"), A=
C=i*Tp and Q = Ny,p, when (i) is the special case M = P of the next
lemma. g.e.d.

Proof. (i) follows from Lemma 14 (i) with S =0, B = (Tp, h’'), D

Now consider two closed immersions j: X - M and k: X — P of smooth
complex manifolds, and q: P - M a smooth map such that gk = .

Lemma 16 The following identity holds in A(X):
Td(X/P) — Td(X/M) = Td= "0 - k* T, — Ny,p — Ny;p — Ok* Td(Tp)

+ Td(O - k* T, > k*Tp - j* Tyy > 0)Td ™ (Ny,p) Td "1 (k*T,) .
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Proof. On X we have a commutative diagram with exact lines and columns:

0 0
! !
Ty = Ty
l !
0 - k¥T, - k*Tp - j*Tyy - 0
I l l
0 - k*T, - Nyp — Nyy — 0
l 1
0 0

By applying formula (5} to 7d "*(L;) and then Lemma 14 ii) the proof is
complete. q.e.d.

2.7 Segre classes

Let X be an arithmetic variety and E = (E, h) a Hermitian bundle of rank r on X.
Denote by P = IP(E) the projective space of E in the sense of Grothendieck,
representing rank one quotients of E, and f: P — X the projection. On P we have
the canonical exact sequence

E:0-S->f*E-0(1)>0,
where ¢(1) is the tautological line bundle. We equip f*E with the metric f*h, and
S (resp. (1)) with the induced (resp. quotient) metric. For every integer k = 0
define L
SWE) = fy (e (O()**" e CH¥(X) .
Following [E] we define an element R, in A*~ V¥~ 1(X), k > 0, as follows. Let &
be the dual of & and V(1) = &Y ® ¢(1). For the obvious choice of metrics, let

(&Y (1))6/?’"1""1(P) be the r-th Bott—Chern class of this exact sequence. Then
R, is th k-th coefficient of the formal power series

—— -1
® X Rktk=< ) f*(ﬁ(C"(l))"“fr(é”(l)))t">( ) cj(E)(~t)j> ;

k>0 k>0 i>o0
where we have used the module structure of A’(X) on closed forms in A(X).
The arithmetic Segre class $(E)e CH*(X), k = 0, is defined by §,(£) = 1 and
) $(E) = §«(E) + a(R,) when k>0.

Lemma 17 The following identity of formal power series relates Segre classes and
Chern classes:

y @(E)(—nf:( D s*kuf)tk)* |

jizo kzo
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Proof. From the exact sequence
7 (1):0=>Cp—f*EV))>S" (1) -0,

the additivity of Chern classes, and their behaviour under tensoring by a line
bundle (see [GS3]), we get

a(&,(6 V(1)) = &(Cp ® S¥ (1)) — &,(f*(EV)(1)
= — & EV)1) = = T [HEV))E(O()

jzo
Furthermore ¢;(EY) = (— 1)/¢,(E) (loc. cit.). If we apply a to (8) we get, by the
projection formula,

Y a(Ry)t* = — ( S LG (O)F f*(EE Y ) e (@) ) )
k>0 k

>0
iz0

( Y GE) (- I)j>_
iz0

k>0

e < Y fulé (O 1y )

since f*(cl((O( ))™) = 0 unless n = r — 1. Using §,(E) = 1, the definition of §',(E)
and the equalities we just proved we conclude that

-1
Y a(Rth =~ Y s”k(E)t"—i-( Y éj(E)(—t)j>

k>0 k20 iz0
and the lemma follows from (9). g.e.d.

It follows from this lemma that Segre classes provide an alternative way to
define Chern classes, hence all characteristic classes of Hermitian vector bundles,
rather than the splitting principle used in {GS3] (compare [E] and [F3]).

3 A characteristic class for Hermitian coherent sheaves
3.1 The Chern character with supports

Let P be an integral arithmetic variety (over a good arithmetic ring), and i: X —» P
a closed arithmetic proper subvariety, with a choice of metric on the normal bundle
to X(C) in P(C). Suppose that we are given a bounded complex E. of locally free
sheaves on P, acyclic off X, which over the generic fibre Py is a resolution of
4 Hermitian bundle & on X;. Then we can define a Chern character with supports,
oh X(E)eCH. (X)q as follows.

Let 7: W— P x P! be the Grassmann graph construction associated to the
complex E. As in Sect. 1.1, we consider the cycle Z = [W,,] — [P] and write | Z|
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for its support. Let £ be the extension of E. to W, and E.Z its restriction to | Z|. Since
E.Z is a resolution over | Z|p of the direct image of %, we may equip the bundles
EZ# with Hermitian inner products satisfying condition (A) (see 2.4.1, Definition 4),
and consider, as in loc. cit., the Bott—Chern singular current ch(E?) of this
complex. Let us write n2:|Z| — X for the projection induced by the mapn: W — P.
Observe that, because of Eq. (4), the current dd“(n% ( h(E.%2))}is smooth on X, and
hence, by [GSZ Theorem 1.2.2(i)], that a(nZ (ch( Z))) makes sense as an
element in CH. (X). Furthermore, the cycle Z may be viewed as giving a class in
Cdem(Z)(!ZI) - Cdem(Z)(|Z|)

Definition 6 The Chern character of E. with supports in X is:

P

Ch3(E) = n2{ch(EZ)n Z) + a(n,ch(E?)) .

We shall write sometimes ch* (E.) rather than ch F(E.). This class depends on
the choice of metrics on % and on the normal bundle to X(C) in P(C), but it is
independent of the choice of metrics on E.2. This follows from the case
E’. = E' = E. of the following lemma.

Lemma 18 Ifk: E'. — E". is a quasi-isomorphism which, over F, induces a morphism of
resolutions of &, then

s

ChX(E') ="ch*(E").

Proof. Replacing the quasi-isomorphism by its mapping cone, if necessary, we may
suppose that k is injective in each degree. By Lemma 5 we know that
W(E')= W(E") and that the map k induces a map k?:E'.? » E".Z which is
a monomorphism with cokernel a split acyclic complex of locally free coherent
sheaves. Let us now choose arbitrary metrics on the complexes E' %, E” £, which
satisfy condition (A), and let us also make a choice of metrics on the quotient
complex compatible with the splittings. By Theorem 4

(ch(E"%) —ch(E'%) + Ch(E"Z/E'2))n Z
=a [Z(” D" eh(0 - (E"5) — (E'Z) — (EjZ/ER) *O)J -
However by [BGS3, Theorem 2.9], the right hand side of this equation is equal to

a[ ch(E"%) — ch(E".%) — ch(E"Z/E".%)] .

Since E"Z/E'"Z is split acyclic both ch(E”"Z/E'%) and fc\I;(E”.Z/E’.Z) vanish. So we
conclude that

(ch(E"2) —Ch(E'%))nZ = a[ ch(E'%) — ch(E"?)]. 0

Corollary 3 Let % be an Hermitian coherent sheaf on X and suppose that P is regular.
For any resolution E. of # by a complex of locally free coherent sheaves on P, the
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/ciass/c_ﬁ *(E)e (/TFI.(X) is independent of the choice of resolution. We shall denote it
ch*(F).

Proof. Given any two resolutions E'. and E”. of &, there exists a third resolution E.
which maps quasi-isomorphically to each of the first two resolutions. By the

previous lemma, it then follows that the class ch *(E.) in CH.(X ) is independent of
the choice of resolution. |

Lemma 19
(i) o(ch*(E.)) = ch(F)Td ™ '(N).
(i) If we are given two metrics h’ and h" on the normal bundle of X (C) in P(C),

then the difference of the associated Chern characters with supports is given
by the formula

ChX(EY —h¥(E)" = a(ch(F)Td™ (N, I, k")) .

(i) If we are given a short exact sequence o/ of complexes of locally free
coherent sheaves:

O0-E —-»E—-E">0

which on the generic fibre is a resolution of the exact sequence of Hermitian
coherent sheaves:

N

0-F -F >F"->0

A

>

then
ChX(E") —ch*(E) + ch*(E") = a(ch(/) Td ™" (N, ))

Proof. Recall from (4) that
dd ch(E?) = i,(ch(F)Td ' (Nx,p)) — ch(EZ) .

Since 7,1, is the identity, we get part (i) of the lemma. To prove part (ii), consider
the embedding i x 1p:: X x P' » Px P!, and give the normal bundle to this em-
bedding a metric which restricts to k' at 0 and to h” at oo. Given part (i) of the
lemma, the proof now proceeds by the same method as [GS3], section 1.2. The
proof of part (iii) is similar, except that in the family of embeddings ix 1p: we
consider a Hermitian coherent sheaf % which is flat over P!, and which restricts to
F atOand to F' @ F " at co. This sheaf ¥ may be constructed as in [GS3, 1.2.3],
and we give it an Hermitian metric for which the restriction isomorphisms at 0 and
at oo are isometries. O

Given the definition of K 5(X), one immediately obtains:
Corollary 4 Assume P is regular. Then the map
(Z,7)-ch*(F) + a(y)
defines a homomorphism of abelian groups

Ko(X)— CH.(X)q
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Lemma 20 We have the following module property of the Chern character with
supports. If G is a locally free coherent sheaf with Hermitian metric on P, then:

Ch}(E.® i*G) = ch}(E.).ich(G) .

Proof Note that W(E ® G)= W(E)), and that on this scheme we have
E ® G ~ E ® G. On restricting to | Z|, we find that

(E®G): =EZQn?*i*G .

Now observe that
Ch(EZ @ n?*i*G) = ch(E4)n™* i*ch(G) ,

[BGS3, 1.3.3] and the result follows from the projection formula for currents. [

Lemma 21 Let X — P be a closed embedding of arithmetic varieties, and suppose that
g:P — Y is a proper map of arithmetic varieties, such that the induced maps from
P(C) and X (C) to Y(C) are both smooth. If E. is a complex of Hermitian locally free
coherent sheaves on P, acyclic off X, which on the generic fibre Pq is a resolution,
satisfying condition (A), of a Hermitian coherent sheaf % on Xq> then, writing f for
the restriction of g to X, we have the following equality in CH. (Y)os

S CRE(E) ) = g, (ch(E) A a) + a(gy ch(E)o(x)) ,

where o :/cﬂ(x), for er&O(P)Q, or P is regular and ae@'(P).

Proof. First we fix the metric on the normal bundle of X x P! in the Grassman-
graph construction W = W(E), as in [BGS3, Sect. 4(d)], via the isomorphism

NXXP‘/W: p*NX/P("‘ ),

where p is the projection from Y x P! to Y.

On C-valued points, the map % = gon from Wto ¥ x P1 induces a proper map
of complex manifolds. As in loc. cit., choose a metric on E such that its restriction
to 0 coincides with the one on E., its restriction to P is split acyclic, and its
restriction to |Z| satisfies condition (A).

Consider the class #,(ch(£),2) + a(#,ch(E)q*w(x)) in CH(YxP)q,
where q: W — P is the projection. The restriction of this class to {oc} is the
left-hand side of the equation in the lemma, while the restriction to {0} is the
right-hand side. By Theorem 4.4.6 of [GS2] (which remains valid when X has
singularities away from the generic fibre X ), the difference of these two is

J, An(@(C(E) + alch(E))g*o()dd(~ loglz|?)

where z is the parameter on P!. However, by (4), w(/cﬁ( E)+ a(ch(b: )))is equal to
Jalch(F)Td " (Nxxpi;w)), where j: X x P* - W is the inclusion. Applying the
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projection formula for integration over the fiber, it remains to observe as in [BGS3,
loc. cit.], that

[ ch(p* Ny p(— o0))log|z|? = 0. O
P]
Lemma 22 (i) Suppose that i: X — P is a closed regular embeddmg and % is an
Hermitian vector bundle on X; then for any resolution E.— i % by locally free
sheaves on P,

ThX(E) ="ch(F)n(Td" " (Ny;p) " [X]).

(ii) Suppose that X and P are both regular. Then for any Hermitian coherent sheaf
F on X

/cz (# )*Ch /)(‘\/z NX/P

Proof. (i) Since the inclusion i: X — P is a regular embedding, the cycle Z at infinity
is irreducible and equal to P(N @ 1), with N = Ny (Theorem 1(ii)). Let H be the
tautological codimension one sub-bundle of N @ 1 on P(N @ 1). Then the Koszul
complex K.(H) is a resolution of s, @, where s is the zero section, and hence
K(H)® n*(F) is a resolution of s, %#. Furthermore, we know from Theorem 1
(and Theorem 4.8 of [BGS3]) that there is a quasi-isomorphism;

¢ E? ~ K(H)® n*(F)

in which ¢ is an epimorphism with split acyclic kernel. If we give K.(H) the metric
obtained by viewing H as a sub-bundie of N ® 1, then K(H)® n*(# ) automati-
cally satisfles condition (A) as a resolution of s, % (see [BGS3] loc. cit.). Hence,
as in Lemma 18,

a(ch(EZ) — ch(K.(H) ® n*(F))) = (ch(K(H) ® n*(F)) — ch(EZ)) N [Z].

The result now foillows from Theorem 4.13 of [BGS3]. Part (ii) follows immediately
from part (i). £

Lemma 23 Let E. be a complex of locally free coherent sheaves on the arithmetic
variety P, and let X < P be the support of the homology of E.. Suppose that X,
viewed as a reduced subscheme of Py, is smooth over F, and that, on Pg, E. is
a resolution of an Hermitian vector bundle on Xp. Let i:D — P be an arithmetic
subvariety which is a principal (i.e. effective Cartier) divisor and meets X transversally
over F. Let us write { D, } for the irreducible components of D, n, for the multiplicity
of D, in the Weil divisor [D] =Y _n,[D,] associated to D, and n*: X "Dy —> X n D
for the inclusion. Then:

i¥ ch§(E) =Y noni ch§ P (E|p)e CH.(X n D),

where iy: X N D — X is the inclusion.
This is also true when, more generally, D is a divisor on P, which is contained in
a Zariski open subset U < P, and is principal as a divisor on U.

Proof. Let us fix some notation. Write G, for the product of Grassmannian bundles
[1,,G(nm, C4(E.)) over PxP" as in 1.1.1, Gy, for the restriction of this to D x P*
{which may be identified with the corresponding product of Grassmannians for the
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restriction of E. to D). Let ig: Gp — Gp be the inclusion of the divisor Gp into Gp.
Let Gp, be the fiber of Gp over Px{o0}, which is a divisor in Gp, and let
in:Gpe — Gpy, be the inclusion of the corresponding divisor in Gp. Write
j:Gpy — Gp for the inclusion, and for each «, jp_for the corresponding inclusion
over D, x P!, Observe that Gp,, " Gp = Gp,.

Now GDC,O is a principal divisor in the pull-back G3 of G, over D x (A' — {0})
(we give G$ a similar meaning); let us write ¢ = 0 for the equation of this divisor.
Following 2.2.6, we have a pull back map j§:Z,(Gp) - Z, - 1(GDOO) on cycles as
well as on CH together with similar pull back maps j*, i%, and i .

Let W < Gp be the Grassmannian graph of E. and Z = J*([W]) ~[P] on
Gp . Since on the complement of the divisor Gp, the variety W is the image of the
section of Gp over P x A corresponding to the graphs of the differentials in E., we
have an equality of cycles

*(LWD Zn [Wp,]

on the open set Gp — Gp,. The cycle j5 [Wp 1= Zp + [D,] is used to compute
the Chern character with supports of E.|p_. Since j*i*([ W1]) depends only on the
restriction of [ W] to Gp — Gp o,

JFIRIW) =Y n(Zp, + [D,])

However, we know, following [Fu2, Corollary 2.4.2], that the maps j*i* and i*j*
agree up to rational equivalence. Thus there is a K,-chain ¢ on Gj,, such that

div(¢) =j*i*[W] —i*j*[W].

We claim that this K -chain can be chosen so that its support does not intersect the
generic fibre. For the varieties G, W, and Gp, all meet transversally over F, hence
the cycle j*i*[ W] — i*j*[ W] is supported over the special fibres. Examining the
proof of Theorem 2.4 in [Fu2], we see that the K;-chain ¢ is constructed by
blowing up the components of the intersection which have excess intersection,
which in this case are all supported over special fibres. Another argument, using
K-theory and the Gersten complex ([Q1], [G1]) may be given as follows. Let
f be an equation for D; then the symbol {f ¢t} defines an element of
K, (Wn(Gp — (Gpju Gp,))), and hence in K, of the function field of W. The
differential of this element in the Gersten complex is a K, chain ¢ supported on
div(f)u div(t); see [GS2, 4.2.5 and 3.3.5], and [QI1, Sect. 7]. Since the differential
in the Gersten complex is compatible with products [G1, Sect. 8], one knows that,
on the components of div( f)} where ¢ does not vanish, i is equal to ¥, = div(f) *
{t}, while, on the components where ¢ vanishes but f does not, ¥ is equal to
—y,=—div(t)x{f}. Now observe that div(y,)=j5i§[W], while
div(y,) = ig, j*[W]. Since the composition of two differentials in the Gersten
complex is zero, div(y) = 0, and hence

Jr W] —i*j* W] = div(¢),

Y n(Zp, + [D,]) — i*(Z + [P]) = div(¢),

where ¢ =y —y, +y¥, is a K;-chain supported on div(f)ndiv(t)n W.
Since D and X are smooth and meet transversally over F, it follows from the
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identification of the generic fibre of the Grassmannian-graph construction with
deformation to the normal cone (see Theorem 1 ii)), that over F the two cycles
Zp, + [ D] and i*(Zy + [ Pr]) coincide, and hence that the cycle ¢ constructed
above is supported over the special fibers. Furthermore, since away from X, W and
W) are isomorphic to P x P! and D, x P* respectively, we know that the support
of¢ lies over X n|D]|.

Now choose metrics on E. as in the proof of Lemma 21, and consider the class:

i¥Ch¥(E) = i*(nZ[ch(EZ)n Z] + a[n% ch(E?)]).
Since X(C) and D(C) are smooth and intersect transversely in P(C),
i*(alnZch(E#)]) = a2 ch(E.%)] .

Therefore we must show that
P

i*n,(ch(E*) Z) = ¥ nns(n 2 (ch(E2») O Zp,))
in C/ffl.(Xm |D|) where #*: X A D, — X N |D| is the inclusion. Since 7% n%» factors
through the inclusion of Z;, into |Z| n|D|:=(n?) (| D]) followed by the pro-
jection from {Z|n|D| to X n|D|, we know, using Theorem 4 Property 6
for this inclusion, that the right-hand side of this formula is equal to

n'Z‘“‘D|@(E Lz~ b)) N (O .1.Zp)). By the statement at the end of 2.2.6. and
Theorem 4 Property 2 applied to i, we know that the left-hand side of the equation
is equal to n'Zl’“'D‘(ch(E lizi~p) N i*Z). As we saw above

i*Z = 2 n,Zp — div(g) + t

in Cfl\(lZ|m|Dl) where ‘C——z n [D]—l*[P] Since the support of 7 is
contained in Pn|Z|, E* |ic is (metrically) split, and hence ch(E )Nz =0 in
CH. (17]). Because the support of the K;-chain ¢ does not meet X, dlv(¢)
(div(¢), 0), and therefore

Ch(EZ|g) N div(g) =0
in CH.(|$|). Hence

nlmm'D‘(Ch(E hzm[m)ﬁl*z)_TIIZ’MD'(Ch(E “lzi~ip)) N (ZnaZD>>

and we are done.

This completes the proof of the main assertion of the lemma. Since the
construction of the Chern character with supports is compatible with puil-back by
flat maps, we get the second assertion. |

3.2 The construction of t

3.2.1 We wish to define an analog in our situation of the Riemann-Roch trans-
formation used by Baum et al. in proving the singular Riemann-Roch Theorem,
[BFM]. This will be a map

1:Ko(X)» CH(X)qg ,
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depending only on the choice of an Hermitian metric on the tangent bundle to
X(C). So let X be an arithmetic variety, # an Hermitian coherent sheaf on X, and
i:X — P a closed immersion of X into a regular irreducible arithmetic variety P.
Let us fix a metric on the normal bundle of X (C) = P(C). From Corollary 3, we get
from these data a class ch 3(# )e CH.(X )q. Let us now, in addition, fix metrics on
the tangent bundles of X(C) and P(C). Recall from 2.6.2 that there is a secondary
characteristic class 7d(X/P)e A(XRr), such that we have an equation of forms on
X(C):

dd*Td(X /P) = Td(Txc)) — i* Td(Trc) Td ~ (Nxcypic)) -

Recall also that we defined in 2.6.2 the arithmetic Todd class ﬁ(P) in the
arithmetic Chow group of P.

Definition 7 We set

to(F) =ch¥(F),Td(P) + a(ch(F)Td(X/P)) .

The following lemma follows directly from the equations above and Lemma
19.1.

Lemma 24 With the notation above, o(tp(F)) = ch(ﬁ)Td(TX(c)) .

Ultimately, we wish to show that, given %, this class only depends on the choice
of metric on the tangent bundle to X. Hence we must show independence of all
other choices made. First we have:

Lemma 25 The class tp(# ) does not depend on the choice of metrics on Tpc) and
Nxcy/pc)-

Proof. If we have two different metrics h" and h” on Tp(c), then, from Lemma 15(i),
we get

P

to(F, h') — tp(F, h") =Ch X(F), Td(P, h') — ChX(F).. Td(P, h")
+ a(ch(F)TA(X /P, ') — ch(F)Td(X /P, h"))
="Ch¥(F)(a(Td(Tp, b, h"))

+ a(ch(F)[TA(X/P, h') — Td(X/P, h")])
= a(ch(F)[ Td(Ty, ', k") Td ™ (N;p) + Td(X/P, h')
— Td(X/P,h")])=0.
Now if we put two metrics on the normal bundle we get
(F, ) — p(F, ") = [hH(F, ') =~ Ch¥(F, 1)1 Td(P)
+ a(ch(F)(Td(X/P, h') — TA(X/P, k")),
which is zero by Lemma 19(2) and Lemma 15(ii). O
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Having eliminated the dependence on metrics, it only remains to show:

Theorem 5 The class tp(F) is independent of the choice of the embedding of X into
a regular integral variety P.

We shall proceed in several steps.

Lemma 26 Let j: X — M and k: X — P be two embeddings of X into regular integral
varieties, and suppose that there is a smooth map q. P — M, such that gk = j. Then
(7)) = (7).

Proof. We are in the situation of Sect. 1.2.2, and we shall use the notations given
there. In particular, there is a complex G. = Tot(G.) over W x, P. Its restriction G #
to | Z| xy P is quasi-isomorphic to v*(V.) ® ¢* (E.?) by Lemma 10.

Choose Hermitian metrics on the normal bundles N y¢), m(c) and Ny ¢y -picy and
on the relative tangent bundle Tpcymic). The normal bundle of X(C) in
X (C)xp P(C) coincides with k*Tpcymcy» and | Z(C) = P(Nx(c) i) @ 1), there-
fore the normal bundle of X (C) in |Z|(C) xy P(C) is isomorphic to Nycymicy @
k*Tpcymcy- We endow it_with the orthogonal direct sum of the two
chosen metrics. Let us write 7d ~ (X, P, M) for the Bott-Chern secondary class

associated to the characteristic class 7d ~! and the exact sequence of bundles on
X(C)

0— k*Tpcymc) = Nxcyre) = Nxcymio = 0.

Lemma 27 If Y < | Z| %y P is the support of the homology of G.%, and h: Y — X is the
projection map, then, for the choices we made of metrics on normal bundles, we have

ChE(F) = Y nghl(ch %, (G 72,)) — a(Td ' (X, P.M)ch(:F)
B

Here the Zy are the irreducible components of |Z|, and Z =3 2y, YV =
ZyxuP < Y, and h?:Y? > X is the induced projection.

Proof. Let T be the support on W x,, P of the homology of G.. There is a natural
projection from T to X x P!, which is an isomorphism over X x A" and such that
the inverse image of X x {oc} is Y. Given any te P!, we write T, for the inverse
image in 7 of X x {t}. Notice that the generic fibre of T is isomorphic to the one of
X xP! Letjo:P— WxyPandj,: W, xyP— Wx,P be the inclusions corres-
ponding to {0} and {00} in P1.

The normal bundle of X(C)xP!YC) in W(C) is isomorphic to
h*(Nxcymic(— 1)), where h: X xP'— X is the projection; see [BGS3, Sect.
4(d)]. We metrize it by the chosen metric on A*(Ny(cym ) tensored with the
standard metric on the tautological line bundle over P*(C). By Lemma 23 we know
that

Py -y P

JECeh by, p(G)) ="ch§(G.) ="ch§(F),

and that

P

JECh Ty p(G)) = S nghh(ch 5, s(G712,))
B
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(notice that TN(W, xyP)=7Y, and Y (M x,sP)= @&). By the method of
[BGS3, Sect. 4], we see that

ChE(F) = Y nghb(h Y, p(G7p))
)

is equal to the integral over P! of ch(# )Td ~*(Nr(c)w(c))loglz|?, and this implies
that

hE(F) = Y nghb(ch Y p(GZ|z) = — a(Td™ H(X, P, M)ch(F))
B

(see also below the proof of Lemma 28). O

Now let us prove Lemma 26. Noting that, for each irreducible component Z of
Z, Zyxy P = Zy xx (X xy P), we have a Cartesian diagram:

ZpXMPL Zﬁ
l”ﬁ lbﬂ
XxyP —» X

On GZ, ¥V, and E.? we choose metrics satisfying condition (A) with respect to our
choices of metrics on % and, before Lemma 27 on the normal bundles involved.
For all § the inverse imdge by v, of g(X(C)) is transverse in the complex points of
Zyxy P to the inverse image by g of the zero section ] (C)—»P(NC(-B 1).
Therefore as in [BGS3, Sect. 2.b], the complex v} V. ® g} E Z is a resolution of
(j% % g),F satisfying condition (A) for the one component Z s(€) (with multiplicity
one) of Z(C€) which is non-empty.

Since both of the complexes G.% |z,(C)xy P a0d VEV ®qFE. Z are resolutions of
the Hermitian vector bundle #(C), if Z4(C) + &, we have that

hi ch % p(G Zlz,x p) = hi ch 2ty p(vEV.Q qFEZ|z,) .

If Z,C)= ¢, the same formula remains true as an identity in
CH .(bg(Zg)) = CH.(bg(Zy)), simply because the complexes are quasi-isomorphic.

The projection map n = pev = boq,, from | Z| x, P to X is smooth on complex
points, and maps Y(C) isomorphically onto X (C) via . Hence, applying Lemma 21
for each B to the maps nf:ZyxyP—> X and h*:Y# = Y n(Z;xyP)— X, and
noting that Z;(F) is empty for all but one f, we find that:

S nghb(ch,, p(vEV.® qF EZ|2,))
B

—Znﬁﬂﬁ Ch(U V.® qfE*|z,) 0 [ZsxuP]) + a(n *(Ch( *V.®q*E?) .

Let us now compute the first term in the above expression, treating each term in the
summation individually; nothing that n# = bye q,, we start with the direct image
by g;. In CH. (Zg), we have, by Theorem 4, Propertics 4 and 6, that:

Qg Ch(vﬂ V.® CIEEZIZ,,) N{Zy;xuP])
= dpu(h(qa} EZ12,) 0 (ch(vF V) N [Z5 % P1))
="Ch(EZ|2,) " dpu(ch (03 V) N [ Zy X P]) .
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Now vj(V.) is a resolution of 5,((z,), where 5:Z; — Z; xy P is the section of the
smooth map q;:Z; xy P - Z; induced by the section g: X — X %, P; over the
manifold of complex points Z; x, P(C), v} (V.) satisfies condition (A), since it is the
pull-back by a submersion between complex manifolds of a complex which satisfies
condition (A). Applying Lemma 21 (with a = 1) to the diagram

Zy —— Zyxy P
l‘l/i
Zy,

we find that
Gos (R (03 V) A [Zyxa P) + aldzynch (V) = ch G, p(C2) 0 [ 2]
which by Lemma 22(i) is equal to

Td " (Ng,z,xp) " N IZp1=Ta (b Nxjxar) ' N [Z4] .

Now recalling that
h(F) = Y ngbh ch(E?|z,) + a(b, ch(E2),
]

together with Lemma 27 and all the equalities we proved after it, we find that:

o~ o~ - —~

ch§(F) = (ch}(F) — a(b,ch(E£)Td ™ (Nx/x x,,p)
— a(by(ch(EZ) gy ch(v* 7)) + almy ch(v* F.® g% EX)
— a(Td"N(X, P, M)ch(F))
="h5(F)TA " (Nxx xp) — alby ch(EXTA ™ (Nyicyx(@xupi©))
— a(by(ch(E?)q o ch(v* 7)) + a(my ch(v* V. @ g% E7))

— a(Td" (X, P, M)ch(F)) .

We may simplify this expression using the following identity, which is a conse-
quence of Theorem 2.7 of [BGS3] together with the projection formula for direct
image of currents:

—_~

Ty(ch(v* V. @ gX E%)) = b*Ch(EZ)P*;};( V) + Td—1(NX(C)//X(C)xMP(C))b*;E(E-Z) ,

to obtain
hE(F) =ch¥(F)Td " (Nx/x ., p) — a(Td~ (X, P, M)ch(F)) .
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From this equality and the definition of 7, we deduce that

s

h¥(F), Td(P) + a(ch(F) TA(X/P))

p(F)

i

(ch3(F ) Td (Nxyx « )i Td(P)
— a(ch(F)Td™ (X, P, MYK*Td(Tpic)) + ch(F) TA(X/P)) .

But the normal bundle of X in X x,, P coincides with k* Ty, = k* T,. Therefore,
by applying Proposition 1 ii} to the map ¢ and the defining map of ¥, and Theorem
3, Property 3, for j = gk we get, from the equation above,

to(F) = Ch5(F ), TA(M) + a(ch(F)x)

where
X = — Td(() hd k* TP(C)/M(C) ad k* TP(C) -—)]* TM(C) - 0)
- Td ™ (k* Tpeymicy) Td ™ (N x(oypmic)

+ Td(X/P)— Td~ (X, P, M)A k* Td(Tr) -
From Lemma 16 we know that x = ﬁ(X /M), and therefore
Tp(.g;) = TM(e?) . O

From Lemma 26 we may now prove Theorem 5. First we see that t,(%) is
independent of the embedding k: X — P for P smooth (and integral). Indeed, given
k:X - Pandj: X - M two embeddings of X into smooth varieties, we consider
the product embedding i: X — P x M and apply the lemma to the two projections
from the product.

In general, given a closed embedding j: X — M with M regular and integral, we
can choose a closed embedding f:M — P with P smooth and integral. Let
N = Ny, p be the normal bundle of M in P and s: M — P(N ® 1) the zero section.
Note that P(N @ 1) is regular, and that the projection q: P(N @ 1) - M is smooth.
Hence by Lemma 26 ty (%) = tp(x @ 1)(Z ), where we embed X into P(N @ 1) via
soj. Hence to end the proof of Theorem 5, it suffices to prove:

Lemma 28 With the notation above,
w(F) =tpven(F).

Proof. Choose metrics on the normal bundles of X (C) in P(C) and M(C), and on N.
The normal bundle of X(C) in P(N @ 1)(C) is the direct sum of j*(N¢) with
Nxymcy; we endow it with the orthogonal sum of their metrics. Given the
formula for 7p in terms of the Chern character with supports it then suffices to
compare ch () with chfygn(F). By Lemma 23 the Chern character with
supports is compatible with restriction to principal divisors, so, by an argument
similar to [GS2, 4.4.6] (see also [BGS3 4.12]), we know that the difference of these
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two classes is the integral over P* of ch(#)Td ~"(Nx.p'yc.wic))1og|z|?, where
W is the deformation to the normal cone for the inclusion of M into P, and
X x P! > Wis the natural inclusion. The bundle N(x «p1)c) wic) Is an extension of
N(MXP’)(C)/W(C) by NX(C);’M{C) which coincides with NX(C), p(C) Over X(C) x 0, and
with the normal bundle of X(C) in P(N @ 1)(C) over X(C) x {cc}. Therefore, by
[GS3, 1.2.3], we get

hEF) “ag(N@l)(f)
= —a(ch(F)Td" (0> Nxccymcy = Nxwypic —i*(Ne)—0)) .

Similarly, since Tp(n @ 1)c) is the orthogonal direct sum of Ty with N¢, we
get, on M,

FH(TA(P)) = s*(TAP(N @ 1)) — a(Td(0 - Tuic) = f*(Toic) = Ne = 0)) .

From these two equalities and Definition 7 we get, with i = f¢j,

1o(F) = Ch {(F ), Td(P) + a(ch(F)TA(X/P)) = toy o 1(F) + alch(F)y)
where

y=Td(X/P)— Td (0 - Nxcymic) > Nxypicy =i*Nc— 0k*Td(Tpc)
~ Td(X/P(N@® 1))

— J(Td(0 = Taycy— f*(Tricy) > Ne = ) Td ™' (Nxoppiv & 1i0) -

The fact that y = 0 follows from the remark that ﬁ(X/P(N d1))= EI(X/M)
and from Lemma 14 (i"). ]

3.2.2 Having shown in Theorem 5 that t(#) is independent of choices, we may
now give a few properties of this class.

Theorem 6 (i) There exists a canonical isomorphism of Q-vector spaces
1:K5(X)q— CH (X)g

mapping the class oj;(ﬁ, n) to r(ﬁ':) + a(n).
(i) For any xe Ko(X) and ye Ko(X), one has

t(x 1 y) = t(x) " h(y) .
(i) When X is regular, for any xe Ko(X) = Ko(X),
t(x) =ch(x)Td(X)
in CH'(X)q = CH .(X)o.
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Proof. The fact that t is well defined on K5(X) follows from Corollary 4. To show
(i), consider the diagram

K'i(X)o - @pz0APM(X) - Ko(X)g - Kio(X)g — 0
I lid Lo L
Ppz0CH,pi1(X)g » PpzodP?(X) » CH(X)g » CH(X)q — 0.

The algebraic maps t on K1 (X )q and K5(X )g can be defined using the Chern
character with supports from K-theory to the graded quotients of its y-filtration
[S1, Theorem 4, 7.1., and Theorem 8], mimicking [G1, Theorem 4.17; they are
isomorphisms. The rows in the above diagram are exact (for the top row, proceed
as in [GS3, Theorem 6.2(i)]; notice that any coherent sheaf on X has finite
resolution by coherent sheaves which are locally free on X). Furthermore, the
diagram commutes: this follows from the definitions and, for the left hand square,
where it can be checked on the generic fibre, from [GS3, 7.2.1]. By the five Lemma
we conclude that

1:Ko(X)o - CH (X)o
is an isomorphism.
The module propery (iii) follows from Lemma 20, Property 1 in Theorem 4 and
Property 2 in Theorem 3.
To prove (iii), we apply Definition 7 to the case of the identity map X — X and
Lemma 22(ii). 0

4 Riemann-Roch
4.1 The statement

4.1.1 Let X be a smooth projective complex variety of complex dimension d and hy
an Hermitian metric on the holomorphic tangent bundle TX over X, satisfying the
Kaihler condition dwgy = 0, where w, is the normalized K4hler form attached to hy.
In any local holomorphic coordinate chart (z,) on X we have

i Jd @
1 =Y —hy{ —, — dz, .
(19 @o g,;Zn X<0za’8zﬁ>dz" i
Let E be an Hermitian vector bundie on X, g = 0 an integer, and

A%(X,E)=A%(X) ® C™(X,E)
C*(X)

the vector space of forms of type (0, ¢) on X with values in E. Since
A%(x) = c=(x, N (Tx*)),

where TX * is the dual of the complex conjugate of the complex vector bundle 7X,
it inherits from hy a pointwise scalar product with values in C*(X). By tensoring
with the metric on E, we get a pointwise scalar product on A%(X, E). The L?

scalar product of two sections s and ¢ in 4%4(X, E) is defined by the formula
d

(st = [ Cs(x), 1(x)D 55—?
! !
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where d is the complex dimension of X and {s(x), t(x)> is the pointwise scalar
product. The Cauchy—Riemann operator

3:A%(X, E) > A7 (X, E)
has a (formal) adjoint ¢*:
<S, (’/TI>LZ = <5_*S, t>L2

when se A%9* (X, E) and te A% (X, E).

Consider the Laplace operator 4, = d0* + 0*0 on A%(X, E). The cohomo-
logy HY( X, E) may be computed using the Dolbeault resolution on X, and, by
Hodge theory, it is isomorphic to the subspace Ker(4,) of harmonic forms in
A%(X, E). We may therefore endow it with the L? scalar product. Let h;. denote
the induced scalar product on the complex line

ME)= @ det HY(X, E)"" D",
qz90
(If V is a complex vector space, det(}) is its maximal exterior power, and if L is
a complex line, L™ is its dual.)
The zeta function of 4,

{(s) = Tr(4,°IKer(4,)")

is convergent when Re(s) > d. It can be analytically continued to the whole
complex plane and is regular at the origin. Following Ray and Singer [RS] we
define the analytic torsion
T(X,E)= ), (~1)""1q{,(0),
qz 0
where {,(0) is the derivative of {,(s) at the origin. On A(E), Quillen considered the
metric

ho = hp2exp(T(X, E)) .

Notice that these definitions are those in [GS4] and [BL], whose results will be
used below.

4.1.2 Let f:X — Y be a projective morphism of arithmetic varieties over an
arithmetic ring 4. Assume that the restriction of fto the generic fibre X ¢ is smooth.
On the relative tangent bundle T f¢ choose an Hermitian metric h, whose restric-
tion to every fibre X, =f""(y), ye Y(C), is Kéhler.

Let # be an Hermitian coherent sheaf on X. Assume that R f, # is a perfect
complex on Y. According to Grothendieck and Knudsen-Mumford [KM], one
may then define a (graded) line bundle

MF)=detRf (F)

on Y, called the determinant of cohomology. For every ye Y(C), the fiber A(F), is
canonically isomorphic to

® det HY(X,(C), F¢) ™ V*

q20

and can be given the Quillen metric hq. It was shown in [BGS1, Corollary 3.9], that
this metric hq is smooth on the line bundle A(F)¢.
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We shall consider two cases where R f, & is perfect:

(i) Y is regular;

(i) fislci. and &# = F is locally free.
In case (i), any coherent sheaf on Y has a finite resolution by locally free coherent
sheaves, and R?f,.# is coherent for all g =2 0. Therefore (see [KM]) Rf, F is
perfect and

MF)= @ detRIf (F) D7,
qz0
In Case (ii) we may view F as a perfect complex and we notice that fis a perfect
morphism [GBI, Exposé 3, Exemple 4.1.1]).
We shall omit the sign questions in the definition of A(F) (see [KM]) since they
play no role in what follows.

4.1.3 Let H(X(C),R) be the (singular) real cohomology of X(C), and
ch(Z ¢), ch{ E¢), Td( f¢ ) the usual Chern character class of & ¢ (resp. E¢, resp. the
Todd class of T'f¢) in H'(X(C), R). We shall also consider the characteristic class
R(fe) = R(Tf¢)e H*(X(C), R) introduced in [GS4]. Namely, the class R is
contravariant, additive on exact sequences, and, when L¢ is a holomorphic line
bundle with first Chern class ¢, (L¢) € H?(X (T), R), the following identity holds in
the real cohomology of X(C):

R(Le)= ). <2c’(—m)+<1+%+ +%>¢(~m))&@£_>i_

!
m odd m:
mz1

Here {(s) is the Riemann zeta function, and {'(s) its derivative. We shall consider
the image of R(f¢) by the map
a:H'(X(C), R) - CH.(X)

defined as in 2.2.1 (real cohomology maps to A(X(D))).

__Given xeCH" (X) (resp. xe CH.(X)) we denote by x» eCH"(X) (resp. x(p €
CH » (X)) its component of degree p. .

Finally, given any Hermitian metrics on T’y ¢y and Ty), we let Td(f)e A(XR)

be the Bott-Chern secondary Todd class (2.6.1) of the exact sequence of Hermitian
vector bundles on X(C)

0-Tfe - Tx@y=f*Tya) 0.
4.1.4

Theorem 7 Let f: X — Y be a morphism of arithmetic varieties whose restriction to
Xr is smooth. On the relative tangent bundle T f¢ choose an Hermitian metric
whose restriction to any fibre of fis Kahler.

(i) Assume that the ground ring is good and that Y is regular. Let # be an
Hermltlan coherent sheaf on X. Then, for any chmce of Hermitian metrics. on
o) and Ty, the following identity holds in CH! (Y)q

(1) o(UF) ho)V = £ («(F) + alch(F ) Td(f)) — a(ch(F ) Td( fo)R(Je)) .
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{il) Assume fis lLci. and let F be an Hermitian vector bundle on X. When the
ground rmg is good, given any element ae CH,(Y)g, p = 1, the following identity

holds in CH,, 1(Y)e:

(12)
EL(MF), hg) 0o = £, (ch (F)TA(f) — a(ch(Fe) Td(fe)R(fe) A *(@))p-1) -

Similarly, when X and Y are regular (and the ground ring is arbitrary), the
identity

(13) CL(A(F), hq) =f*(/071(F)/T9(f) —a(ch(Fe)Td(fo)R(fe))'?
holds in CH ' (Y)q.

For the definitions of/cZ(F) and ﬁ(f) see [GS3], 2.4.2 and 2.6.2.

4.1.5 Notice that when X and Y are regular, the ground ring is good, fis Lc.i.
and & = F, the three statements in Theorem 7 are equivalent (by 2.2.4. and
Theorem 6(iii)).

It is interesting to consider Theorem 7(i) when Y = Spec(Z), in which case one
gets an arithmetic analog of the Riemann—-Roch theorem of Hirzebruch [Hz],
which is an equality of real numbers rather than integers. So let # be an Hermitian
coherent sheaf on an arithmetic variety X. Denote by £S the cardinal of a finite set
S, and by HY( X, F ),oss the torsion subgroup of HY(X, &). Define

(14) 2 F)= Y (= D) (log g HUX, F )iors
qz0
— logvol(H(X(C) #¢)*/H(X, 7)) + $904(0))

where {(0) is defined as in 4.1.1, HY(X (C), # ¢) * is the subspace of H/(X(C), # ¢)
fixed by F,, and vol(HYX(T), Z¢)*/HY( X, #)) the volume of its quotient by

the lattice H4(X, Z )/HUX, F ),ors for the volume form attached to the L*-metric.
Then Theorem 7(i) reads
(15) 2o F) = £ (1(F) — alch(F ¢) Td(fe)R(fe))'V

in CH 1(Spec(Z)) = R (in this identification, the codimension one cycle
(>.n,[pl, 4) on Spec(Z) is mapped to an,,log(p) + 4/2 for any finite set of
integers n, and any real number 4).

Indeed | T(A(F), ho)'") = yo(F ) since the tangent space to Y is trivial. Further-
more yqo(# ) coincides with ¢é; (A(F), hy) by the definition of Quillen’s metric and
the fact that for any Hermitian coherent sheaf % on Y = Spec(Z) (i.e. a finitely
generated Z-module with metric), the class of det(#) in CH ' (Spec(Z)) = R is
equal to

log #(Z 1ors) — log vol((Z ¢) 7/ F)

(to prove this one just needs to check the case where & is torsion-free and the case
where # is a finite cyclic group).

4.1.6. In order to make the analogy between xo(# ) and the Euler characteristic
of a vector bundle more explicit, one may proceed as follows. Let
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B = BY(F¢) € A°(X(C), Z ¢) be the image of 0, and { 5,(0) the derivative at zero
of the zeta function

{pa(s) = Tr(4, | BY)

of the restriction of 4, to B4. Since B?is isomorphic to ¢*(A4%47 (X (C), # ¢)), one
has [RS]

(16) Y (= D% 0) = ) (= 1D)5a(0).

qz0 qz0

On the other hand, {ollowing [GS5], for any finitely generated lattice M, equipped
with a norm |- || on M @z R, we define

hO(M, || -|) = logg{meM, [m| <1},
and
RUM, - 1) = hO(M*, |- %),

where M * = Hom(M, Z) is equipped with the dual norm || - | ¥. If n = rk(M) is the
dimension of M @z Q, it was proved in [GS5, Theorem 2], that

|hO(M, ||+ 1) — R (M, [|-]|) — log # Mo + log vol (M ® IR/M)]

is bounded above by an explicit constant C(n). It follows from this and (16) that, if
we define the “arithmetic Betti numbers” of & by the formula

(17)  be(F) = h°(HUX, F), || l12) + BH(HTHX, F), [+ l12) + 3{54(0)

we have

1ol F) — Z (— DI(F)| < Y C(ny)

qz0

UV

where n, = dim¢ HY(X(C), # q;) is purely topological.
Furthermore, these numbers b (% ) behave well under Serre duality. Namely, if
wy is the relative dualizing sheaf of X over Z (recall that X — %pec(Z) is Lc.i),

equipped with the metric coming from the isomorphism wy ¢ ~ /\ (TX(C)*), and
ifwelet FVY = 0y ® F*, then, if F is locally free,

(18) bus1-o F ) = b(F).

To prove (18), we first notice that algebraic relative Serre-Grothendieck duality
applied to fimplies that

(19) ﬁHq(Xa 'g:)lors = ﬁHd+1_q(gv)tors )

and that furthermore the lattice H4(X, F)/HUX, F hops is dual to H 4F )/
HY 9(F V). On the other hand, the analytic Serre duality on X (C) between the
Dolbeault resolutions of % ¢ and & ¢ (see also [GS4, 1.4]) respects the L?-metrics
and induces isomorphisms

BUF ) = OX(AT I THFE)) = (A*UF L))
compatible with the action of Laplace operators. Therefore
(s (0) = Upsr-o(FELO)
and (18) follows from this, (16), (17) and (19).
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Notice that 2°(M, ||-}}) and h'(M, | -||) are nonnegative real numbers. It
would be of interest to find lower bounds for {34(0), ¢ = 0. We conjecture that such
lower bounds exist, which do not depend on the metric on E.

4.1.7 Let us check, following [GS4, Theorem 2.1.1], an example of Theorem 7. We
first note that if X is a Riemann surface and h is a Hermitian metric on the
holomorphic tangent bundle 7y of X, then with the definition of 4.1.1 above, the
Laplacian on functions is given by

B o a\\"' arf
(20) Ao(f)——(h<g,g>> —

in any holomorphic coordinate chart with coordinate z. We now consider the case
of Y = Spec(Z), X = P}, and F equal to the trivial Hermitian line bundle €p: on
P} = Proj(Z[ X, Y]). We fix the Hermitian metric on TIP'(C) by requiring it to
be invariant under the unitary group U (2), and requiring that on the affine line

0
Az = Spec(Z[z]) = P}, where z = X/, P have norm 1 at the origin. Then, by
z

(10), the restriction of the Kihler form to the z-plane is

i dzdz

T (T )
Notice that this gives P (C) volume one. By (20) the Laplacian on 4% °(PP(Q)) is

2
o= — (141217 - —

0z 0z
on AL(C) ~ C. The eigenvalues of 4 are k(k + 1), for k =0, 1,2, . . ., with multi-
| — 55 =
plicity 2k + 1. For instance Z and ul - are independent eigenvec-

14221 +z2 1+ zZ
tors with eigenvalue 2. From [V, Proposition 3.1], it follows that

{4,0)=40(=1) - 1/2.
The L*-norm of the trivial section of H(P', Op:) is fp(qywo = 1. Hence
(21) 2o(0p) = 1/4 =20'(— 1).
Now the right-hand side of (15) is equal to
(22)  fal@r(P2)*)/12 = 2U(—= 1) + (= 1)) = (fo(¢1(PE)?*) + 1)/12 = 20'(— 1) .
We know that there is an isomorphism of invertible sheaves on P:

¢: TPy~ Op:(2).

Since the Hermitian metrics on these sheaves are U (2) invariant, and the isomor-

phism ¢ is SL,(Z)-invariant, the norm of ¢ is constant, equal to its value at the
origin. But at the origin ¢ induces an isomorphism of the free rank one Z-modules



528 H. Gillet and Ch. Soulé

0
generated by % and by Y2, both of which have norm 1, hence ¢ is an isometry. It
Z

follows that

¢1(Pg) = 2¢,(0(1)) .
As shown in [GS3, 54], if /: P} — Spec(Z) is the projection, then
(23) fu(é4(0(1))?) = 1/26 CH ' (Spec(Z)) ~ R,

hence f,(¢;(IP%)?) = 2. From (21), (22), (23) we see that Theorem 7 holds for
IP} and the trivial line bundle.

4.2 The proof

4.2.1 Being quasi-projective, X is contained in a projective space PV, and we let
i:X - YxPY = P be the product of this embedding with the map f We get
a factorization f= goi, where g is the first projection:

X ‘5 p
N g
Y.

The map i is a closed immersion (since fis proper) and g is smooth.
In case (i), since Y is regular, so is P, and we may choose a resolution

(24) O0-E —-FE_1—-...2E-i,% -0

of i, # by vector bundles on P. In case (ii) such a resolution also exists for i, F, since
iis lci. and P is quasi-projective (see 1.2.2).

Let us choose a Kédhler metric on P(C). We may restrict this metric to X (),
T f¢ and the normal bundle N¢ = Ny (¢)p@). Now choose a metric on each bundle
E;,j Z 0,1in such a way that hypothesis (A) is satisfied (see 2.4.1). It will be enough
to prove that the theorem holds with this choice of metric on T f¢, since, as shown
in [GS4, Theorem 1.4(i)], based on [ BGS1], this will imply that Theorem 7 is true
for any choice of metric on T f¢.

We shall deduce Theorem 7 in two steps:
1) we prove that Theorem 7 for g and E;,j = 0, implies Theorem 7 for % (or F)
and f;
2) we prove that Theorem 7 holds for g and any Hermitian vector bundle on P.

4.2.2 Let us prove 1) in case (i). According to [KM] the resolution (24} induces
a canonical isomorphism

TMF) S P ME)TY .
jizo0

The norm of this isomorphism for the Quillen metric was computed by Bismut
and Lebeau [BL]. Let ch(E.) = Z}.;O(— 1)’ch(E;) be the Chern character of

E. in the real cohomology of P(T), EE(E.)E/T (P()) the torsion of the resolution
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E._ as defined in 24.1, Td(j¢) the Todd form of T_g¢ in A(P(C)), and
Td(f/g))eA {X(@)) as in 2.6.2. Then, according to [BL, Theorem 0.1].

log| o113 = [ fu(ch(F¢)R(Ne)Td(fe)) + gu(ch(E) Td(Ge))
+fi(ch(F ) TA(f19)]© .

Here f, (resp. g, ) denotes integration of forms along the fibres of a smooth map,
and direct image of cohomology classes.

The line bundle 2(E) = & ;0 A(E;)" "’ may be equipped with the tensor
product of Qulllen metrics. We also define ch(E) = Z o (— 1) (h(E) (E)
—ZI o(— E;), etc. Since

& (MF), hg) — E1(A(E.), ho) = allog o1 §)

(see [GS3, 1.2.5 and (4.8.2)]), we get, for the difference of the left hand sides of
equation (11) for # and E.:

P

U(MF), ho)V — 1(AE.), ho)™V = ((ch (AU(F)) = ch(A(E))TA(1))V
= (¢, (UF)) — & (MENT(Y)™D
= a[ f(ch(F ) R(N¢) Td(fo)) Td(Ty@)
+ g (ch(E) Td(§e)) Td( Tye)
(25) + fu(ch(F &) TA(f 1 9)) TA( Tri) 1

We wish to compare this with the difference of the right-hand sides in (11). Since
R is additive and 74d is multiplicative, we may use the Riemann—Roch theorem for
i in ordinary cohomology to get

(26)  fu(ch(F )R(Neg)Td(fe)) Td(Ty) = g«(ch(E. ¢)R(gc) Td(P(T)))
— Jx(ch(F ¢)R(fe) TA(X(T)))
Now let

27)  x:=fo(o(F) + alch(F ) TA(f)) = gu(t(E) + a(ch(E ) Td(g))) .

We need to show that this is equal to

a((fi (ch(F ¢)TA(f]9)) + g4 (ch(E)Td(Ge)) Td( Ty(q) -

Since P is regular, by Theorem 6,

while

W F) =ch2(F), Td(P) + a(ch(F ¢)Td(X/P)) .
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By Lemma 21,

Jo(ch}(F).TA(P)) = g, (ch(E)TA(P)) + a(g,(ch(E) Td(Tr@))) -
Therefore

(28) x = a(fy(ch(F ) TA(X/P) + ch(F¢) Td(f))

+ gu(ch(E)Td(Tp())) — gu(ch(E.) Td(g)) .
By definition
dd*“(Td(g)) = Td(gc).9* Td(Tyy) — Td(Tr@) ,
and
dd*(ch(E)) = i,(ch(F¢) Td~(N¢)) — ch(E.q) .
Therefore, in A°( Yr),

94 (ch(E)Td(To@)) = ga(ch(E) Td(§e) Td(Tyioy) — gu(ch(E)dd*(Td(g)))
= ¢.(ch(E)Td(ge)) Td( Tyie)) — g, (dd(ch(E.)) Td(g))
= 94 (ch(E) Td(Ge)) Td(Ty@) + g4 (ch(E¢) Td(g))

~ fulch(F ) Td = (Ne)i* Td(g)) .

Combining this with (28) we get

(29) x = a(fy(ch(F ) TA(f)) + f (ch(F ) TA(X/P))
— fu(ch(F¢) Td~ (Ng)i* Td(g)) + go(ch(E) Td(§¢)g* Td( Ty)) -

Now consider the following diagram with exact rows and columns:

0 0
! !
0 - Tfge - i*Tge — N¢ - 0
! 1 12
0 hd i*TX(q:) i i*Tp(q:) — NC -> 0
! !
f*Tye = [*Tyo
! !

0 0.
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From (6) and [GS3, Propositions 1.3.2 and 1.3.4], we deduce from this diagram
that

Td(f/9) f*(Td(Ty))) Td(Ng) — i*(Td(X /P)) Td(N¢)
= Td(f) Td(N¢) — i*(Td(g)) .

From this and (29) we get

(30) x = al fy(ch(F ) Td(f/9)) + 44 (ch(E) Td(§e) Td(Tyqy) -

as was to be shown. The identities (25), (26), (27), and (30) prove 1). In other words, if

T(AE)). ho)" = gu((E)) + a(ch(E;.¢) Td(9)) — a(ch(E; ¢) Td (ge) R(fe))™

holds for ail j = 0, then
H(AUF ), ho)! =f (x(F) + a(ch(F ) Td(f)) — a(ch(F ) Td(fe)R(fr)) .

4.2.3 To prove 1) in case (ii) we can proceed as above, using [BL] and [BGS3]. The
argument is somewhat simpler since we deal with Todd classes of the relative
tangent spaces and we do not need the discussion about 7 in Sect. 3.

More precisely, to prove (12) (the proof of (13) is similar: delete « in the formulas
below and replace cap products by cup products), from [GS3, 1.2.5 and (4.8.2)],
given any weCH. (Y)g, we have

(31) (e (AF)) — &1 (AE)) N = a((— logllo || §w(x))
and, from [BL, Theorem 0.1],
(32) —logllo]& = [fx(ch(Fc)R(Ne) Td(fo)) + g*(ZE(E») Td(gc))
— fulch(Fe)Td(f/9)1 .
On the other hand, the following equation holds in 61\{.( Y)g:
FRPYTA(S) A f*(2)) = 9ol (EYTA(9) 0 g*(2)) + ag,(ch(E) Td(de)g*((a)))
+ af, (ch(Fe)Td(f/g)/*((2)))
Indeed, by definition ofﬂ(f) (see 2.6.2) and since f* = i*g*, the following holds
TA(f) " f*() — a(Td(f /g) f*((2))) = Td " (N) A i*(Td(g) n g*(2)) .

Let y = Td(g) n g*(a)e CH (P). From this, (31) and (32) it follows that (12) is
equivalent to the identity

S

(33 gu(ch(E)ny) + agu(ch(E)o(y) = f(Td~H (NYCh(F) n i*(3)) .
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This equality (33) plays in the l.c.i. case the role of Lemma 21 in Case (i). When f1s
smooth and Y is regular, (33) is Theorem 4.13 in [BGS3] (with different notations).

The proof of [BGS3] extends as follows to any lci. map f The immersion
i: X — P being regular, the Grassmannian graph W = W/(E.) is isomorphic to the
deformation to the normal cone (see 1.1.2), and |Z| = Px(N @ 1). Let E. be the
extension of E. to Was in [BGS3, Lemma 4.3] or 1.1.2 above, and E. Z its restriction
to | Z|. Choose a metric on E. whose restriction to P(C) is split acyclic, and which
satisfies condition (A) as in [BGS3, 4.12] (or Lemma 21 above). Define

B= | ch(E)log|z|?
W(C)/P(T)

in A'(Pr). By the same proof as in Lemma 4.12 in [BGS3], we have
(34) g (ch(E) ny) = fumy (ch(EZ) 0 m*i%(y) + ag (B (7))

where 7: Py (N @ 1) —» X is the (smooth) projection.

The right-hand side of (34) can be computed using Theorems 3.22 and 4.11 of
[BGS3] as in the proof of Theorem 4.13 in [BGS3], i.e. by comparing E.Z with the
Koszul complex K.(H)&® n* F considered in Theorem 1 ii) above. Formula (4.36)
in [BGS3] has to replaced by the identity

1, (ch(K(H) ® n*F) n n*i*(y)) = m, (ch (K.(H)) A n¥i*(y)) " ch (F)

which follows from Theorem 4(5). As in the proof of Theorem 4 we may choose
a map h: X — M, where M is regular, and a vector bundle N’ on M such that
h*(N') = N. Since proving (33) for one metric on N implies the result for all
metrics, we may assume that there exists a metric on N’ such that N = h*(N’). On
Py (N @ 1) we consider the canonical hyperplane bundle H = n'*(N') ® 1,
where n': P (N’ @ 1) > M is the projection, and the Koszul complex K.(H') with
the metric induced by N'. Then, using the projection formula in Lemma 12, we get

y(Ch(K(H)) ¥ i*(y)) = i*(y) i (ch (K.(H")) .
Applying (4.37) and (4.38) in [BGS3] on M concludes the proof.

4.2.4 Now we prove 2)in 4.2.1, i.e. Theorem 7 for the prOJectlve space over Y. Given
any Hermitian vector bundle E on P = ¥ x P and any ae CH (Yo, we let

S(E)nva = &,(AE), ho) n o — go(ch(EYTA(g) n g™ (0))ip—1) -

As in [GS4], Theorem 1.4 (i} ], we see that 6(E) m o depends only on the class of
Eg in the Grothendieck group Ko(Pg) of the generic fiber of P, since it is invariant
under change of metric on E and additive on exact sequences (by the results in
[BGS1]), and it vanishes on a virtual bundle with support in the special fibers (by
the algebraic Riemann—-Roch theorem [S1, Theorem 7]). Furthermore, if F is any
bundle on Y, we have, by [GS4, Theorem 1.4 (iii)],

NE®g*(F)na=rk(F)o(E)na.

As a module over Ky(Y), Ko(P) is generated by the positive powers Op(n) of the
canonical line bundle. Therefore it is enough to show that §(0p(n)) =

But Op(n) is pulled back from IPY by the second projection, A(CUp(n)) is constant
on Y and, if p: Y — Spec(Z) is the projection map, we get, using Lemma 12,



An arithmetic Riemann—Roch theorem 533

0(Cp(n)) N = o(C'px(n).,o So we may assume that ¥ = Spec(Z) and P = P¥, in
which case 8(Cp+(n)) lies in CH "(Spec(Z)) = R..

To prove that 6(('p~(n)) = 0 we proceed by induction on n and N. Whenn = 0
and N = 1 the fact that Riemann-Roch holds for the trivial line bundle on PV is
Theorem 2.1.1 in {GS4] (in fact the power series defining R was computed in order
that this fact be true). When n = 0 consider the standard inclusion i : PY — PN*!,
There are standard exact sequences on PV*!

(35) 0o (pse1(n) = Cpyei(n + 1) > iy Cpx(n) > 0 .

By induction on N, we may assume that 6(('pv(n)) = Oforall ne N (thecase N =0
is trivially true). Using the fact 1) proved in 4.2.2 above (i.e. the compatibility of the
statement with immersions), we deduce from (35) that 3(Cp+-1(n)) = Oforalin = 0.
This ends the proof of Theorem 7.

4.2.5 When f is smooth, X and Y are regular, and % = F, Theorem 7 was
conjectured in [GS4, Conjecture 1.3]. Special cases were announced in [S3] and
[G3]. The statement (i) was announced in [GS6, Theorem 2], but the statement in
loc. cit. is not correct in general since we wrote ¢, (A(F), hg) instead of

W(AUF), ho)V = ¢1(A(F), ho) — ¢1(X)/2

for the left-hand side of equation (11), and we forgot the term a(ch(% ¢)Td(f))"
on the right-hand side.

Theorem 7 extends the arithmetic Riemann-Roch theorem in relative dimen-
sion one due to Faltings [F1] and Deligne [D]. Deligne considered a smooth map
f:X = Y of relative dimension one. He obtained a canonical isomorphism of
Hermitian line bundles between (a power of) det R £, (E) with its Quillen metric and
an Hermitian line bundle on Y whose class in Pic(Y)q = CH '(Y)q coincides with
(a multiple of) f,(ch (E)/Tz(f))“’ (at least when the set of complex imbeddings of
A contains a real imbedding, see [GS3], 4.10). Deligne’s isomorphism is true up to
some universal constant. Therefore Theorem 7 computes this constant: it comes
from the class R(f) and involves {'(— 1). For a precise statement, see [S2] and
[GS4], 1.5. Notice that Deligne’s theorem is stronger than Theorem 7, since our
result computes only an isomorphism class of Hermitian line bundles on Y. The
algebraic isomorphism in Deligne’s result was extended to arbitrary degree and
arbitrary relative dimension by Franke [Fr]. It would be interesting to get an
arithmetic analog of Franke’s version of the Riemann—Roch-Grothendieck
theorem.

Faltings gives in [F3] a new proof of Theorem 7, when fis smooth, X and Y are
projective and regular and # = F is locally free. His proof is valid in all degrees in
CH (Y), and not only for the determinant of cohomology. Its analytical part does
not use the work of Bismut and Lebeau [BL].

5 Small sections of ample bundles
5.1 The main result
5.1.1 In this paragraph we shall apply (a weak version of) the arithmetic Riemann—

Roch-Grothendieck Theorem 7 to produce small sections of symmetric powers of
ample vector bundles on arithmetic varieties.
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We first state our main result. Let X be a projective flat variety of relative
dimension d over Z with smooth generic fibre X, E = (E, h) an Hermitian vector
bundle on X, and & = (#, h’') a Hermitian coherent sheaf on X. We make the

following assumptions on E:

A1) E is ample on X, in the sense of [H1, par. 2];
A2) the metric h on E¢ is positive in the sense of Griffiths, i.e., any nonzero smooth
section e (resp. u) of E¢ (resp. Tx(q)), one has

h(RE(u, di)(e),e) >0,

where RE is the curvature form of E¢ (with values in the endomorphisms of Eg).

Denote by S"E the n-th symmetric power of E, i.e. the degree n part of the
quotient of the tensor algebra of E by the ideal generated by the elements
Xx®y—y® x[EGA2, p.14]. We equip S" E¢ with the quotient metric S"h induced
from h ®" by the map Eg” — S"Eg, and F ¢ ® S"E¢ with b’ ® §"h. We look for
small sections of # ® S"E on X when n is big.

Choose a Kdhler metric on X (€) (invariant under complex conjugation) and
denote by y;:(S"E ® %) the real number

1(F ®S"E) = — logvol2(HY(X(C), F¢ ® S"E¢) */H(X,S"E® 7)) ,
the volume being taken for the L2-metric.

Let r (resp. r') be the rank of E¢ (resp. #¢). For any k=0 denote by
$i(EYe CH¥*(X) (resp. sy(E)e CH*(X)) the arithemetic Segre class of E (resp. the
algebraic Segre class of E), as in 2.7. We introduce a real number

Sas1(E) = pu(8as1(EN/(d + r)!eR = CH ' (Spec(Z))
and a rational number
04(E) = py(sdE))/(d +r — 1)!e Q = CH®(Spec(Z))q

(where p: X — Spec(Z) is the map defining X). In particular, when E is a line bundle
L, we have

Gar (L) = pylé (L) H)/(d + 11

We shall use the following notations. Given a map n — ¢(n) from positive integers
to positive real numbers, we write o(¢(n)) (resp. O(¢(n))) for any real valued
function of m such that lim,. o |o(¢p(n))/¢(n) =0 (resp. |0(p(n))|/Pp(n) is
bounded above by some constant independent of n). Our main result is the
following:

Theorem 8
As n goes to infinity,

Y 2(F @ S"E) = 1’644 ((E)n** + (r'/8)(d — r + Do (E)n®*" " 'log(n)
+ And+r—1 + O(nd+r—1)
where A is given by formula (47) below.

5.1.2 Let P = IP(E) be the projective space of E, f: P — X the projection, and (1)
the standard line bundle on P. According to [EGAZ2, 3.3] and [H2, Proposition
7.11], the cup-product

[(0(1) &> f,0(n)
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induces a canonical isomorphism

(36) 2:S"E > f,0(n).

Furthermore RIf, (¢(n)) = 0if g > Oand n 2 0. To prove Theorem 8 we shall first

use the restriction of « to the generic fibre X, to get the following lemma. Let
ChIKO(XQ)Q hd CH(XQ)Q

be the Chern character isomorphism for the Grothendieck group of X and
[Fo®S"EqgleKy(Xg)g the class of the restriction of # @ S"E to Xg

Lemma 29 There exist elements a;€ Kq(X q)q independent of n such that
d+r—1 .
[Fo®S"Egl= Y an'
i=0
and
ch(agsr—1) =r's4a(E)/(d +r—1)!.
Proof. From (36) we deduce that

F@®S"Eq = (/7 @(0(n)lg =1 (f*(F)(n)g)
Therefore, the Riemann—Roch-Grothendieck theorem for f[BGI] gives

ch(Fq ® S"Eq) = ch(f (f*F (n)g)) = fy(ch(f*F (n)g) Td(f))

= fyexp(ne (CONYTA( /) ch(F ¢) = ZO b.n'
since CH*(P) = 0 when k > d + r — 1. Furthermore
bavr—1 =1 filer (OO HNd + 1 = D =71's(E)/(d + 71— 1)!
by definition of Segre classes. Since ch is an isomorphism [BGI] the lemma follows.
5.1.3 Since E is ample on X by Al), we can take n big enough so that
Hi(X,#7 ®S"E)=0 wheng>0.

From (36) we get an isomorphism
HO(X,# ® S"E) > H(P,f*(F)(n)).

From the metric on E¢ we deduce a metric on ¢(1) (a quotient of f*( E¢)), hence on
O(n). We endow f*(F )(n) with the tensor product of this metric with f*(h). Let us
choose an arbitrary Kdhler metric kp on P.

Now we apply the arithmetic Riemann-Roch Theorem 7 (formulated as in
4.1.5) to f*(F)(n) on P. Since H°(P, f*(#)(n)) is the only nonvanishing co-
homology group we have

(37 2(f*(F)(n)) = ~ logvolL(H(P(C), f*(F ¢)(n)) " /HO(P, f*(F )(n)))
— (12 T(P(C). f*(F¢)(n)
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and
2(f¥(F)(n)) = g (t(f*(F) ()Y — alg,(ch(f*(F ) (n)R(g)Td(g)))",
with g = po f: P — Spec(Z). Since
T(f*(F)(n) = 1(f*(F)Jch(6(n) = 1(f*(F))exp(né, (C(1)) ,
we may write yo(f*(Z )(n)) as a polynomial in n:
(S *(F)(m) = gue(f*(F)e(O)* ) Dn* " /(d + r)!
+ gy (t(SHF DO D=1 (d 4 7 — 1)
— a(gy (ch(f*(F ) (0(1) T R(g) Td(g)))™
(38) xn®* T Ud+r =0+ Y gnt.
k<d+r—2

We compute

(39) g (T(SHF)NE () YDA + 1)l = 1 gy (E1(O(1))/(d + 7)!
=641 (E).

(40) gy ((SH(FNEOMNTTTHD = gy (t(f*(F), kp) Ve (1))

(where we write 7(f*(F ), kp) instead of =(f*( )) to indicate the dependence on
the metric on P), and

(41) a(g(ch(f*(F))ei (O(1)* " R(g) Td(g))V =0

since R(g) has positive degree.

Bismut and Vasserot [BV] computed the asymptotics of analytic torsion under
twisting by a positive line bundle. The hypothesis A2) on the curvature form of
Egis  equivalent to the fact that the curvature form R of (0(1)¢ on P(C) is positive.
Let R be the endomorphism of the tangent space of P{C) attached to R by the
formula

R(u, v) = {u, R(v))

where u and v are two tangent vectors and ¢, ) our chosen metric on P(C). Define
a functional in the metric & on E¢ and the metric kp on P(C) by the formula

R i
BV(h, kp) = | logdet|{ — R ).
(ko) = [ togc (2n)exp(2n )

Then, by [BV, Theorem 8], as n goes to infinity,

T(P(C), f*(F¢)(n) =% | logdet (%:i > exp < g}r R) +o(nt*r 1)

P(T)
=(r'/2Qo(EMd +r — Dn?*""tlog(n)

42) + 5 BV(hkp)n®™" "t o(n® 7).
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It foliows from (37), (38), (39), (40), (41) and (42), that the number

12(f*(F o) (n), kp) = —logvol2(H(P(C), f*(F ¢)(n)) " /HO (P, f*(F )(n)))
satisfies

X2 (fX(F ) (n), kp) = r' 6441 (E)n®*" + (r'/8)ay(E)d + r — Dn*"" ' log(n)
+ (r'/8)BV(h, kp)ni*rt
+ gy (T H(F), kp) Ve (O~ nd* 7 (d + 7 — 1)
(43) +om*tr1).

To relate this number to y;:(S"E ® %) we introduce the following metric on
TP(C). The Hermitian holomorphic connection on E¢ gives a splitting

TP(C) = Tfe @f*TX(T).

Denote by hp the metic whose associated (1, 1)-form is the direct sum of the

restriction of ¢, (¢(1)) to T f¢ with the inverse image by f* of the Kdhler form on
X () (the metric hp needs not be Kihler). The volume form on 7P(C) attached to
hp is the product of the Fubini-Study volume form of 7 f¢ with the volume form on
f*TX(C). Therefore, if we endow f,(O(n))¢ with the L? metric along the fibers of f,
we get

(44) 12(fX(F o) (n), hp) = y12(F @ fo (C(m)e) -

To compute the norm of the isomorphism

2:S"E > f,(0(n))

we may assume that X(C) is a point. One gets that
nl(r—1)!
(n+r—1!

Indeed, when X (C) is a point, if x = e 2" ® e . . . ® e is a generator of S"E,
with ¢; an orthonormal basis of E¢, by definition of the quotient metric, we get

25

()12 =

ot
xp? =2
n!

On the other hand, if p is the invariant volume form of total volume one on
P~ 1(C), we get

- EN G
R I P P
(ol ) !

T (n+r=1!

It follows that o multiplies the norms by n!(r — 1)!/(n +r — 1)L
Notice that H°(X(C), #¢ ® S"E¢) has rank

X(X(C), Fe® S"Ec) = r/o.d(E)nd+r~l + O(nd+r—2) .



538 H. Gillet and Ch. Soulé

Therefore, by (44) and the Stirling formula, we get
1:(F @ S"E) — yr2(f*(F c)(n), hp)
= (1/21(X(C), Fc ® Sg)log(n!(r — DI/(n +r — D)
= = (/2)(r = Do (Eynt*"logn + (r'/2)log (r — 1)!)a,(E)n®*"~*
45) +o(ntr 1.
According to [BV, Theorem 10],
(46) 12 (fF ) (), hp) — g2 (f¥(F o) (n), kp) = (r'/2U{ BV (h, hp)
— BV(h, kp))n®r 1 + o(ntr71) .

Furthermore we compute

g*(f(f*(,?';), hp) e, (O(1))4 1) — g*(r(f*(g‘?)’ k) e (GH )
= gu(ch(f*(F &) Td(hp, kp) @ (O(D)* 1)

= (r'/4)(BV (h, hp) — BV (h, kp))(d + r — 1) .
Combining this fact with (43), (45) and (46), Theorem 8 follows with

(47) A= g, (1(f(F), hp) Ve (0T + 1 — 1)!

+ %BV(h, he) + (r'/2)log ((r — D))ao(E) . qe.d.

Remark. Notice that, in the proof of Theorem 8, the exact form of the arithmetic
Riemann-Roch-Grothendieck Theorem 7 is not used. One needs only to know the
curvature of the determinant line bundle [BGS1] in addition to the algebraic
Riemann—-Roch-Grothendieck theorem, since this implies that the defect
O0(S"EQ® #), defined as in 4.24, depends only on the class [# ¢ ® S"Eq]e
Ko(Xq)g, to which Lemma 29 applies (see {GS6]).

5.2 Small sections

5.2.1 We keep the notations of Sect. 5.1. Fix a positive real number ¢ > 0. Denote
by N, the number of sections se H°(X, # ® S"E) = A such that, for every point
x e X(T),

Is()ll < exp(n(Sa+1(E) — ¢)/au(E)),
and by N} the number of elements e Hom(A, Z) such that
sup|A(s)| = exp(n(e — 64+ 1(E))/0u(E)),

where the sup is taken over all sections s such that |[s(x){ < 1 for all x in X(CT).
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Theorem 9 As n goes to infinity
log(N,) — log(N¥) = r'en™" + O(n"*"" 'log(n)) .

5.2.2 To prove Theorem 9 we apply a variant of Minkowski’s theorem proved in
[GSS] to the lattice A equipped with the norm

sl = sup (Is(x)Il)exp(— n(S441(E) ~ &)/a,(E))) .
xe X{(T)

From [GS5, Theorem 1] we have
(48) [log(N,) — log(N}) + logvol|. (A ® R/A)| < 6log(y) — logvol(B),

where y is the rank of A, B the unit ball in R * and the covolume vol|. (A ® R/A)is
taken for the norm |-|. From Lemma 29 we get (when # is big enough)

(49) 1= 1(X(C), Fe®S"E¢) =r'o(E)yn’™" "1 + 0(n?"772).
Therefore, by Stirling’s formula,
(50) ~ log vol(B) = O(ylog(y)) = O(n*"" "' log(n))
and, if vol,, is the volume for the sup norm on A, we have
(51) —logvol,.| (4 ® R/A) -+ logvoly,(A ® R/A) = 1.(n(644 1 (E)— &)/oy,(E))
=1'(e — 644 (E))n"*
+ 0(n*trty.

From Lemma 30 below we may compare the sup norm and the L? norm on A.
First, the L? norm on A is less than or equal to the sup norm. On the other hand the
nl(r — 1)!
(n+r—1)
times the sup norm of P(C) of f*(F ¢)(n). By Lemma 30 below this is bounded
above by a constant multiple of n¢*"~! times the L2 norm on P(C) of f*(F ¢)(n)
{using hp). But, by definition of the metric on f, (¢(n})¢ and Fubini’s theorem, this

L? norm is also the L? norm on A. It follows that

(52) [log volg,,(A ® R/A) — log vol (4 ® IR/A)|
= x.O(logn) = O(n?*""tlog(n)) .

sup norm on A, using the isomorphism « of (36), is bounded above by

Finally, from Theorem 8, we have

(53) —logvol (A ® R/A) = r' 644 (E)n®*" + O(n**" " log(n)) .
Combining (51), (52) and (53) we get

(54) —logvol. (A®R/A) = r'en®*" + O(n?*" " 'log(n)).

From (48), (49), (50) and (54) we deduce Theorem 9. q.ed.

5.2.3 To compare the sup norm and the L? norm on A we use the following result,
that was explained to us by Gromov. Let M be a compact Riemannian complex
manifold, " an Hermitian complex vector bundle and L an Hermitian line bundle
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on M. Let d = dimg M. Denote by || - ||sup and || - || .2 the sup norm and the L2 norm
of sections of bundles on M.

Lemma 30 There is a positive constant C > 0 (independent on n) such that, for any
section s of V® L®" on M,

”SHsup § CndHS”L2 .

Proof. We first prove a local statement. Let B be the open ball B = {ze C%/|z| < 3}.
Assume we are given two smooth strictly positive real functions g and p on B, and
a positive definite k by k Hermitian matrix valued function h = (h;;) on B. Then
there exists a constant C(p, h, g) > 0 such that, for any k-tuple (fi,...,fi) of
holomorphic functions on B, any integer n = 0, and any we B with |w| < 1,

| (Zhu f(Z)f(Z)> (z)"g(z)dx dy; . .. dy,

lz—w|=1

2 C(p, h,9) <Zhu(w f(W)f(W)> (w)'n =27

To prove this, let go = Infj;) <, ¢(z), and let M (k) (resp. m(h)) be the supremum
{resp. the infimum) of the largest (resp. smallest) eigenvalue of (h;;(z)), |z| < 2.
Furthermore, let dp be the differential of p,

=< Sup || dp(Z)H)/( Inf p(2)>,
lz]=2 lz| =2

and ¢ = Sup(c’, 1). By the mean value theorem, we have

p(z) Z p(w)(1 —cfz —wi)
when |z] £ 2 and |w| £ 2.
With these definitions we obtain, where dx = dx,dy, . . . dyg,

I= <Zhu(2)f f(2)>p(2)”g(2)dx

jz—wl =1

zm(h)go Z | £(2)]?

lz=w|=1i=1
2m(h)go | <Z|f >1—C|Z-—W|)P()d
fz—w|=1

Since the f’s are holomorphic, for any positive real number r, the average value of
| f(2)|? on the sphere |z — w| = r is bounded below by | f(w)|?. Therefore, if $2¢~*
is the unit sphere, we get

Iz m(h)go< Zk: Iﬁ(W)|2>p(W)"V01(S“_1) lj/c (1 —cr)"r*®=tdr
i=1 r=0

m(h)
=Mm)?°

<Zh”(w W)f(“’)) p(w)"vol(S2?~ 1)~ 24p=24

which proves our assertion.
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To deduce the lemma from this fact, choose a finite open cover Q, < M, «€ A,
biholomorphic isomorphisms ¢,: B — Q,, and trivializations of ¢*L and ¢} E on
B. We assume that

M = | @ ({we B such that jw| < 1}).
a2cA
Write (h%) and p* for the functions on B induced by the metrics on E and L, and
our choice of trivializations. The measure di: on M defines a positive function g* on
B by the formula @ ¥(du) = g*(z)dx. Let C = inf \/C(p?*, h*, g%). Given any holo-
aeAd
morphic section s of ¥ ® L ®" on M, let x4 be the point at which the norm of s is

maximum. Choose 2€ A and we B, |w| £ 1, such that ¢,(w) = xy. Then, from our
choice of trivializations, we get a k-tuple of holomorphic functions (f;, . . ., fi} on
B such that oX*(s) = (f;, . . ., f) Therefore, by the result above

Isliza= [ 15 du(x)
M

=2 [ lleFslgrdx

[z-wis1
> Cn ( 3 h,»,(wm(w)ﬁ(w))p(w)"
= C2n M| s(x0) |2 = C2n 2|52, . ged.

5.3 Variants

5.3.1 There are other variants of Theorem 9. For instance, if one is only interested
in bounding N, from below, one may replace the hypothesis Al) of ampleness of
E by the vanishing of the even cohomology groups H*(X,# ® S"E), k > 0,
n > 0. According to (14) this will be enough to get an estimate from below for
%ol f*(F)(n)) since, by A2), the cohomology groups H*(X(C), # ¢ ® S"E¢) will
vanish for k > 0 and n > 0.

This is an argument which has been used by Vojta in [Vo]. Furthermore, in loc.
cit., the hypothesis A2) is also replaced by a weaker assumption.

One could also replace S"E by S"E, ® ... ® $"™E,, or replace Spec(Z) by
a more general base scheme Y.

5.3.2 One may wonder if # could be any algebraic coherent sheaf on X, not
necessarily locally free on Xq. This raises the question of defining Hermitian
metrics on arbitrary coherent sheaves, and we do not know whether this can be
done in general.

However, given a Hermitian coherent sheaf % on X (in the sense of Definition
5 in Par. 2.5) and a subsheaf .# < %, one may ask whether there are nontrivial
sections s in H%(X, # ® S"E) which are bounded in H°(X, # ® S"E). Using the
exact sequence

0 HX,# ®S"E) > HY(X, F ® S"E) —— H(X, (F/.5) ® S"E)

one may apply our lower estimate on N, and the Dirichlet box principle to produce
such a section s. Indeed, if N, is bigger than the cardinality of 7(B,), where B, is the
set of sections of # ® S"E satisfying the first inequality in 5.2.1., we may find two
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sections sy, 5, in B,, s; = s,, having the same image by n. The difference s = s; — s,
is then a bounded section of .# ® S"E. For further discussion see [L].

For arithmetic surfaces Zhang, using Theorem 9, gets in [Z] an arithmetic
analog of the Nakai-Moishezon criterion for ampleness.

5.3.3 When X is a projective space and E = (1), Theorem 9 amounts to producing
small homogeneous polynomials with integral coefficients and, when the support of
F /.7 is flat and finite over Z, 5.3.2. amounts to asking that some partial derivatives
of these polynomials vanish at some points. This has been solved classically in the
theory of diophantine approximation (Siegel’s lemma). For more general X's,
Faltings [F2] and Bombieri [Bo] have shown how to replace the use of the
arithmetic Riemann—Roch theorem in the work of Vojta [Vo] by a more direct
approach, inspired by Siegel’s lemma.

Acknowledgement. We thank J.-B. Bost for helpful comments.
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