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I n t r o d u c t i o n  

We prove in this paper an arithmetic analog of the Riemann-Roch-Grothendieck 
theorem for the determinant of the cohomology of an Hermitian vector bundle of 
arbitrary rank on a family of arithmetic varieties of arbitrary dimension. We also 
show that high powers of ample line bundles on arithmetic varieties have small 
sections. 

Let X and Y be regular quasi-projective flat schemes over ~. Consider an 
Hermitian vector bundle /~ = (E, h) on X:  E is an algebraic vector bundle on 
X and h is an Hermitian metric on the associated holomorphic vector bundle on 
X(•), which is invariant under complex conjugation. In [GS2] we defined arithme- 
tic Chow groups CHP(X), p > O, and in [GS3] we attached to (E, h)~,arithmetic 
characteristic classes such as the Chern character " ~ ( E , h ) e C H ( X ) e =  
@p_> 0 CHP(X) @ z Q, and the Todd class T~(E,  h). Assume now that f :  X ~ Yis 
a smooth projective morphism from X to Y. The determinant of cohomology 
2(E) = det Rf,(E) is an algebraic (graded) line bundle on Y. Choose an Hermitian 
metric h I ,  invariant by conjugation, on the relative tangent space T f, whose 
restriction to each fiber of f o v e r  Y(C) is K/ihler. The line bundle 2(E) can then be 
equipped with the Quillen metric hQ ([Q2], [BGS1] or 4.1.1 below). 

Our main result (Theorem 7) computes the first arithmetic Chern class of 
(z(E), hQ) in the ~-vector  space CH (Y) @ z II~. It reads 

(l) c1 (A(/), ho) -- f ,  ("~ (E, h ) T ~ ( T f ,  hi) - a(ch(E~)Td(Tf~:)R(Tf~,))) ~1) . 
tl) �9 / - - .  . Here ct as the componen tof  degree one of ct s CH'(Y)  , a is the map from the real 

cohomology of Y(C) to CH'( Y)e defined an [GS2, 3.3.4] and m 2.2.1 below, and 
R is the additive characteristic class (in real cohomology) attached to the power 
series 

R ( x ) =  ~ 2 ( ' ( - m ) +  1 + + . . .  + - -  ( ( - m )  
m"~d m 
m>_l 
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which we introduced in [GS4] (~(s) is the Riemann zeta function, and ~'(s) its 
derivative). 

Formula (1) was conjectured in [GS4, Conjecture 1]. The main step in the proof 
of this formula consists in factoring the map f a s  the composition f =  g ~ i, where 
i: X ~ P is a closed (regular) immersion and g ' P  = ~ ~ Y is the N-dimensional 
projective space over Y. Choose a resolution 

O ~  E , , ~  E,,,-I ~ . . . ~ Eo ~ i , E  ~ O  

of the coherent sheaf i ,  E on P, and (arbitrary) Hermitian metrics on E j, j > 0, as 
well as a Kfihler metric on Tg. We show that (1) for f a n d / ~  follows from the same 
identity for g and Ej, j > 0. Indeed, the difference 

Cl().(E), h o) -- ~ (-- 1)J~,(2(E~), h o) 
j>_o 

was computed by Bismut and Lebeau [BL], while the corresponding alternating 
sum of the right-hand sides in (1) was computed in [BGS3, Theorem 4.13]. 

We are thus reduced to the case of the projection 9 :IP~ ~ Y. When E is the 
trivial bundle and Y = Spec(Z), formula (1) was shown in [GS4, Theorem 1]. The 
general case follows by simple reductions, using the closed immersions IP N --. IP N+ 1 
and the main step above. 

This proof of (1) was described in [GS7]. The details are given in paragraphs 
4.2.3 and 4.2.4 which, when f i s  smooth, can be read independently from the rest of 
the paper. 

We also generalize (1) in several ways, in order to allow singularities on the 
special fibers of X or Y over 7Z (this might be of some use, since resolution of 
singularities is not currently available for schemes of finite type over 2g). More 
specifically, we consider two cases. Case(i): Y is regular, the generic fiber X~ is 
smooth, f is projective, and smooth over X~, and J~ is a coherent sheaf on X, 
which is locally free on Xe and equipped with an Hermitian metric on X(C). 
Case(ii):X~ and Y~ are smooth, f i s  1.c.i., and/~  is an Hermitian vector bundle 
on X. 

To make sense of a Riemann-Roch-Grothendieck theorem for 2 ( ~ )  in case (i), 
or 2(E) in case (ii), we need to extend our previous constructions in [GS2] and 
[~GGS3] to the singular case. So we introduce "homological Chow groups" 
CH. (X) ,  cap-products between CH and CH., and more generally some kind of 
"operational formalism" in the sense of Fulton [Fu2]. In case (ii), the statement (1) 
becomes an identity in CH. ( Y)~, and T~ (T f )  has to be replaced by the arithmetic 
Todd class of the relative tangent complex to f (see 2.6.2). In Case (i), we define 
a notion of Chern character with supp~orts, and d..then a characteristic class 
r ( ~ ) e  C'H. (X)e which takes the place of ch (E, h )Td  ( T  f, h f )  in formula (1). Our 
theorem (Theorem 7) is then in the style of the singular Riemann Roch theorem of 
[BFM].  This requires us to combine the Grassmannian graph construction of 
[BFM] with the study of complex immersions in [BGS2] and [BGS3]. 

The plan of this paper is as follows. In Sect. 1 we study the Grassmannian graph 
construction from the algebraic geometric point of view. In particular we show an 
interesting rigidity property of this construction (Theorem 2), and deduce from it 
a technical lemma, to be used in Sect. 3. In Sect. 2 we introduce CH., show some 
functorial properties of these groups, and define cap products and characteristic 
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classes of Hermitian vector bundles; we also replace Z by a more general base. In 
Sect. 3 we define the Chern character with supports and the transformation r. The 
proof that r is independent of choices (Theorem 5) uses the technical lemma of the 
first section. We can then proceed with the proof of the main theorem (Theorem 7) 
in Sect. 4. Several reformulations of this Riemann-Roch-Grothendieck theorem 
are also given, including one involving a notion of "arithmetic Betti numbers" 
(4.1.6). Finally, in Sect. 5, we use a (weak) version of this result to find bounded 
(nontrivial) sections o f ~  | S"E where s is an Hermitian coherent sheaf and/~ an 
Hermitian ample vector bundle on a projective arithmetic variety X, n is a large 
integer, and S"E the n-th symmetric power of E (Theorem 9). The proof uses 
a result of Bismut and Vasserot about the asymptotic behaviour of the analytic 
torsion o f ~  | S"Er [B-V], and a lemma of Gromov to compare the sup and L z 
norms on these. 

Special cases of our results were announced in [GS6, GS7, $3, G3]. Theorem 
7 was first shown by Deligne for smooth families of curves, up to universal 
constants [De]. In IF3], Faltings extends our result to higher degrees, when X, Y 
are regular and f i s  smooth. In [Vo], Vojta used a variant of Theorem 9 in his new 
proof of the Mordell conjecture. 

1 The Grassmannian graph construction 

1.1 Definition and basic properties 

1.1.1 Let X be an integral (i.e. reduced and irreducible) scheme, and suppose that 
E. is a chain complex of bundles (i.e. locally free coherent sheaves) on X. Denote 
by C. = C(E.) the split acyclic complex with Ci = E~@ E~_~ and differential 
d~: C ~  Ci-~, di(x, y ) =  (y, 0). Notice that C(E.) is an additive functor of the 
graded bundle E. (it does not depend on the differential on E.). Furthermore there is 
a natural map of complexes 

7:E.--*C(E.) 

x ~ ( x ,  el(x)) 

which is the inclusion of a sub-bundle in each degree (i.e. ? is locally split). 
If q~ : E. ~ F. is a map of complexes, then C(~b). 7E = 7r" q~' If furthermore ~b is 

null-homotopic, i.e. if there exists h such that ~b = d- h + h. d, then C(~b) is also null 
homotopic. Namely, if we define 

C(h):Ei @ El-1 ~ Fi+l @ Fi 

(x, S ) ~ ( h ( x ) ,  - h ( s )  + r 

we get, on C(E.), d. C(h) + C(h).d = C(~b). This homotopy is compatible with the 
natural transformation 7, i.e. that C(h)-Te = 7v" h. 

We suppose now that Ei = 0 for i < 0. Let P 1 be the projective line over Z and 
Opl(ioo) the invertible sheaf of meromorphic functions on p1 which have poles of 
order at most order i along the divisor oo and are regular on the affine line 
A 1 = p1 _ {oo}. Notice that (_gp , ( ioo)  is contained in (gp,((i + 1)oo). By pulling 
back along the projection X x P~ --, X (where X x p1 is the product over Z), we 
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can view E. as defining a complex of sheaves on X x p1.  Let C. = (7(E.) be the 
C-construction applied to the graded bundle @iEi(i)  where Ei(i) is Ei twisted by 
(_Qpl (i O Q)), The sheaf E~ is a subsheaf of Ei(i) and they are equal on X x A 1. Hence, 
via the map 7~, Eilx• 1 is a sub-bundle o f t ~  [X• :. Let rc :G-- ,  X x p1 be the 
product  of the Grassmann bundles G(ni, C~) parameterizing rank ni = rank(El)  
sub-bundles of C~ over X x P1.  OverX x A 1 the map ?e defines a section s of re. 
The following definition appears in [BFM,  II.1]. 

Definition I The Zariski closure W =  W(E.) of s (X  x A 1) in G is called the 
Grassmannian graph of E.. 

Since 7r is proper  so is its restriction to W (which we shall also denote ~), and 
since X x A 1 is integral so is W. By construct ion ~r is an isomorphism over X x A 1 ; 
however the (effective Cartier) divisor Woo = r c - l ( X x { o o } )  cut out by W at 
infinity will in general not  be isomorphic to X. By construction, there is a sub- 
bundle E f c  ~*((~) which coincides with E~ over X x A ~ . Notice that, since W is 
integral, this proper ty  characterizes Ei as a sub-bundle of 7c*(Ci). 

1.1.2 Let us now summarize, in the following proposition, some properties of the 
Grassmannian  graph construction, whose p roof  can be found in [BFM,  II.1 and 
II.2], and [BGS3, Sect. 4]. 

Theorem 1 (i) Assume that the restriction of E. to a nonempty open subset U ~ X is 
acyclic. Then there is a canonical splitting of ~ over U x P ~ . Denote by X the closure 
in Woo of the image o f U  x {oo} by this section. Then the cycle Z = [Woo] - [ )~]  is 
supported in the inverse image by ~ of  X - U, and the restriction of E. to 3~ is split 
acyclic. 

(ii) Suppose that i: X--* P is a regular immersion of a closed subscheme, ~,~ is 
a locally free sheaf on X, and E.--* i , ~  is aflnite locally free resolution. Then W(E.) 
is isomorphic to the total space of  the deformation to the normal cone construction of 
[BFM,  1.5]. Hence the immersion X x p1 ~ p x p1 induces a closed immersion 
j : X x P 1 __. W, such that ff~. is a resolution of j .  ~ .  

Furthermore P is the blow up of  P alon9 X, and Woo ~ - P ( N x / p @  1)wP .  
In particular IZI is the projective completion P(Nx /p  @ 1) of the normal bundle of 
X i n P .  

Finally, on IZ[ there is an exact sequence 

O --~ G. ---~ ff~.IP(Nx:p| I) --~ K.( H) @ zc*( ~ )  ---~ O , 

where K.(H) is the tautological Koszul complex on P(Nx /p  | 1), which is a resolu- 
tion of  (gx when X is imbedded into P( Nx /e  @ 1) by the zero section, and G. is acyclic. 

1.1.3 We shall now prove a few additional properties of the Grassmannian  graph. 
For  instance, we need to know how W(E.) depends upon E.. First we state 
a general lemma. 

Lemma 1 Let V be an integral scheme, and suppose that A a E and B c F are locally 
free sub-sheaves of  locally free sheaves. 

1. I f  (a : A ~ B is a homomorphism which vanishes on a Zariski dense open subset 
of  V, then cb vanishes on the whole of V. 

2. I f  B a F is a sub-bundle, and (9 : E ~ F is homomorphism such that, over 
a Zariski dense open subset o f  V, (9(A) ~ B, then c~(A) a B over the whole 
of V. 
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Proof  The first s tatement  is true because B is a torsion free module,  while the 
second s ta tement  follows from the first by considering the induced map  A ~ F / B  
(since, by assumption,  F I B  is locally free). [] 

L e m m a  2 if. is a sub-complex o f  ~z*(('.) 

Proof  It  suffices to show that  dc(ifi) c ifi- 1, since C is a complex. This is true on 
the dense open subset X x A 1 c W. But W is integral and, by definition of the 
Gras smann ian  graph, ifi-1 is a sub-bundle in rt*(Ci_,).  Therefore, by L e m m a  1, 
dd(ifi) c i f i - ,  on the whole of W. [] 

L e m m a  3 l f  E has locally free homology sheaves then W ( E )  ~- X x p1. 

Proof  The complex E. breaks up into short exact sequences: 

O --~ Z i -* Ei d Bi_ I -~ 0 

(2) O --~ B i ---~ Z i ---~ H i ( E. ) ---r O , 

where Z~ and B~ denote the subsheaves of E~ consisting of cycles and boundar ies  
respectively. Since we assume that  the Hi 's  are locally free, it follows by induction 
on i that  all the sheaves in the above exact sequences are locally free too. Consider  
the m a p  

th: El(i) 0 El-  1 (i -- 1) 
Bi ~ ( i ) O E , _ ~ ( i -  l) 

B i _ l ( i -  1) 

which maps  (u, v) to the class of (du, v); here Bz_ 1(i - 1) is mapped  diagonally into 
B i - t ( i )  G E i - l ( i -  1) by the inclusions Bi-x ( i  - 1) c Bi - l ( i )  and 

B i - , ( i  - 1) c Z i - l ( i  - 1) = E i - l ( i  - 1). Since the sheaves in the sequences (2) 
are all locally free, the target of rh is locally free, and hence its kernel is too. Over  
X x A 1, the h o m o m o r p h i s m  r h is equivalent to the map  

rh:Ei( i)@ E i - l ( i - -  1)--* E i - l ( i - -  1) 

sending (u, v) to v - du, and hence the restriction of Ker(t/i) to X x A 1 is i somor-  
phic to the inclusion of Ei into E i |  E~_~ via x~--~(x, dx). So the sub-bundle  
Ker(rh) ~ C/ determines an extension over  X x P 1  of the section 
s : X x A l - - * G ( n ~ , C i )  defined in Section 1.1.1, and hence W ( E ) = X x P  1, as 
desired. 

L e m m a  4 Let E. be a complex o f  locally free sheaves on X,  and let f :  P ~ X be a f lat  
map. Then W ( f * E . )  = P xx  W(E.). 

Proof  First observe that  C ( f * E . ) =  ( f x  1pg*(C(E.)) .  Hence W ( f * E . )  is the 
Zariski closure of P x A '  in P x G, which is equal to to the Zariski closure of 
f - l ( s ( X  x A1)). Since ./'is flat, it is open and f -  1 preserves the operat ion of Zariski  
closure. Thus W ( f *  E.) = f -  1 (W(E. ) )  = P x x W( E.). [] 

L e m m a  5 Let 4) : E. --* F. be a map of  complexes o f  locally .free sheaves on X.  Assume 
4) is a monomorphism and Coker(~b) is an acyelic complex o f  locally .free sheaves. 
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Then W ( E. ) = W ( F. ) and the pull-back of'#) to X • A ~ extends to a map of complexes 
r : E-. --* ,ft. on W( E.). Furthermore Coker (@) i s  acyclie, and split acyclic over {oo}. 

Proof Since X x A1 is dense in W there can exist at most  one i somorphism 
W(E.) ~- W(F.) which is the identity on X x A 1. To  define it we may  work locally 
on X, hence we can assume that  X is affine. By induction on the degree i of F~, we 
may  therefore assume that  the complex F. is the direct sum of E. with an acyclic 
complex G., and hence that  t~(F.) _ C(E.) | C(G.). Let m~, ng and p~ be the ranks  of 
E~, F~, and G~, respectively. The direct sum decomposi t ion  of F. gives a closed 
embedding 

G(mi, Ci( E.) ) Xxxp,  G(p~, Ci( G.) ) --+ G(ni, (~i( F.)) 

which is compat ib le  with the sections of these Grassmann ians  over X • A t. By 
L e m m a  3, W(G.) = X • p1,  hence, via the embedding above, W(E.) "~ W(F.). 

Observe  that, on W(E.) = W(F.), we have an exact sequence 

0 --+ C(E.) ~ C(F.) --+ ( ( G . )  -+ 0 .  

The induced sequence 

o--+ ~. --+ Y, -+ ~. --+ o 

is exact since this is true locally. 
The  fact that  t~. is acyclic on W a n d  split acyclic over  {oo} is shown as in [BGS3, 

L e m m a  4.5]. LI 

Corollary 1 Let r : E. ~ F. be a quasi-isomorphism between bounded complexes o=1" 
locally free sheaves on X. Then W(E.) = W(F.), and the complexes E. and F. are 
quasi-isomorphic as complexes on W(E.). 

Proof Apply the previous l emma to the inclusion of E. and F. into the mapp ing  
cylinder of r [] 

Corollary 2 Let M be an integral regular scheme, and i: X c M a closed subscheme. 
Let W ( X / M )  denote the Grassman-graph construction for any resolution of i ,  ~x by 
locally free sheaves on M. Then, given a locally free coherent sheaf ~ on X, any 
resolution E. ", i ,~ --~ by locally free coherent sheaves on M extends to a complex of 
locally free coherent sheaves on W ( X / M ) which is a complex of sub-bundles of C ( E. ). 

Proof. Notice that, by Corol lary  1, W ( X / M )  is independent  of the choice of 
resolution F. of i ,  6x by locally free coherent  sheaves. 

Locally on X, E. is quasi - isomorphic  to a direct sum of copies of such a resolu- 
t ion F.. By the previous l emma F. and hence any finite direct sum F. |  extends 
to a subcomplex of C ( F . e " ) ' - ~ ( C ( F . )  Cn) on W ( X / M ) .  Now W ( X / M ) =  
U w ( x  c~ u / u )  as u runs through any open cover of M. If we choose the open 
cover  so that, on each U, E. is quasi - isomorphic  to a sum of copies of F., then E. 
extends as a subcomplex of C(E.) on each W(Xc~ U/U), and hence, by the 
uniqueness of such extensions, it extends as a subcomplex on the whole 
of W. [] 



An arithmetic Riemann Roch theorem 479 

1.1.4 

L e m m a  6 I f  E. and F. are chain complexes of locally fi'ee coherent shem,es on X, the 
identity map on X x A ~ extends uniquely to a map fi'om the Zariski closure W( E , F.) 
o f X x A  ~ in W(E.)xx•  W(F.) to W(E. OF.). 

Proof On the variety W(E.)Xx x p' W(F.) by pulling back from the two factors we 
obtain  sub-bundles /~. of C(E.) and /7. of ~(F.)  extending E. and F. from X x A i. 
The direct sum/~. O/~. is a sub-bundle of C(E.) | C(F.) ~- C(E. | F.) and hence is 
classified by a map  from the fiber product  W(E.)Xx• W(F.) to the Grassman-  
nian of sub-bundles of (~(E. | F.). This map  agrees with the s tandard section s over 
X x A ~, and hence maps  W(E., F.) to W(E. @ F.). 

L e m m a  7 (i) Any map $ : E. ~ F. of chain complexes of locally free sheaves on 
X extends to a map ~'ff~ --, F. on W(E., r.). The map c)~+~b is additive. 

(ii) I f  ~" E. --+ F. and ~ : F. ~ G. are maps of complexes q[" locally .free coherent 
sheaves on X, then on W( E., F., G.) (which is defined analogously to W( E., F.)), we 

h a v e  r = $. 

Proofi (i) By pulling back from X x P 1 we may view (~.(O) as a map  of complexes on 
W(E.,F.). On X x A l c  W(E.,F.) we know that (~.(qS)(E.)cF..  Hence, by 
L e m m a  1, d.(O)(/~.) c F_ Since C.(~b) is additive in r it follows (by Lemma  1 

applied to the m a p  (~bl + ~b2) - (~1 + 32)), that  q~ is also additive. 

We omit  the proof  of (ii). [] 

Let us temporar i ly  simplify our notation,  and write Wfor  W(E,  F.). Let W~. be 
the inverse image of X x {oo} under the projection rc : W o  X x P 1 It follows from 
L e m m a  3 that, as in Theorem 1 (which is the special case where F. = 0 and E. is 
generically acyclic) [ W~]  = Z + [ X ] ,  in which ~z 12:X --* X is birational,  and the 
support IZl of z is contained in the inverse image of the proper  closed subset of 
X where the homology  sheaves H.(E. (9 F.) are not locally free. By definition, if U is 
the complement  of this closed subset in X, )~ is the closure in W,~ of the image of 
U x { oo } by the section of 7r over  U x P 1 obtained in L e m m a  3. 

Theorem 2 Let 0 : E. ~ F. be a map of complexes on X, and let I1 be a null-homotopy 
of O. Then h extends uniquely fi'om X x A 1 to a nullhomotopy h of (~ on W. 

The restriction of h to W~, depends only on c/) and not on the choice of h. It is 
additive in 4). 

The restriction of h to I ZI depends only (and additively) on the restriction of 0 to 
 (tZl). 

Proof On X • P t we can define a m a p  

Ci(h)" E~(i) @ E~-l((i - 1)) ~ Fi+ l((i + 1)) @ Fi(i) 

by Ci(h) (x ,y )= (h(x), - h ( y ) +  q~(x)), where we remember  that  we have an 
embedding o f~p , ( ioo}  into (~p,((i + 1)~,). In order to show the existence and 
uniqueness of h, we now use Lemma  1, and we observe that C(h} restricted to the 
dense open subset X • A 1 c W(E., F.) is a nu l lhomotopy  of C(~b). 
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On W we have a commutative diagram: 

E,i --+ Ei( i )O E i _ x ( i -  1) 

ffi+l -+ Fi+~(i + 1)@Fi(i)  

Here h(1):E~(i)~Fi+~(i+ 1) is the composition of h with the inclusion 
Fi+ ~ (i) -+ Fi+, (i + 1). Since the restriction of this inclusion to X x { c~ } vanishes, 
the restriction of h(1) vanishes too. Hence the restriction of/7 to infinity does not 
depend on the choice of h at all, but rather is the restriction to E. of the map 

from C(E.) to C(F.). Therefore at a point we Wit depends linearly on the map ~b at 
the image of w in X. The assertions of the theorem follow from this remark. [] 

1.2 A technical lemma 

1.2.1 We need some facts from homological algebra. 

Lemma 8 Let E. and F. be bounded complexes of sheaves of abelian groups on 
a topological space X. Suppose that there is a finite open cover { U~} of X and 
quasi-isomorphisms 

~'~:E.[u -+ F. Iu~ 

such that on each intersection U= c~ Up, ~ and ~p are homotopic, i.e. there exists 
a map 

such that 

~p - ~ = dt~p~ + ~bp=d , 

and such that, on each triple intersection U, ~ Up c~ U~, 

- + = o . 

Then E. and F. are isomorphic in the derived category of bounded complexes of 
sheaves. 

Proof Consider the complex ~*({ U=}, F.) of sheaves on X with sections over 
each open set U consisting of the total complex of the (~ech bi-complex 
C*({U,  m U},F.). The natural augmentation q:F.-- ,g~*({U~},F.) is  a quasi- 
isomorphism. It suffices to show therefore that there is a quasi-isomorphism 
E. -+ ga, ({ U=}, F.). We define such a map ~" as follows. Writing ~ ' =  (~k~ k with 
~bk:Ei --+ (~, -a  =i c~k ({ U,}, F,) we set 

~ = 

~ k = o  i f k > l .  
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Then it is s t raightforward to check that  q~" is a m a p  of complexes. To  see that  ~k" is 
a quasi- isomorphism,  we can work locally, and assume that  X = U~ for some ~. 
Then r/~, and ~," are homotopic ,  and since ~ ,  and q are quasi- isomorphisms,  it 
follows that  ~ ' i s  too. [] 

L e m m a  9 Suppose that E.. and G.. are bounded double complexes in an abelian 
category, with d' (resp. d") the first (resp. second) differential. Assume that ~9.. is 
a map of  bigraded objects such that: 

1. For each k, 

Ok.. : Ek . --, Gk.. 

is a quasi-isomorphism of  complexes. 
2. For each k, 1 there exists a map Xk, z:Ek.t ~ Gk- l , t+l  such that 

d ' O k . - - ~ k  1 , . d ' = ( - -  1) k ld"Zk , . + ( -  1)kZk..d". 

3. d ' z  + zd '  vanishes. 
Then the map ~ + ( -  1)kz on Ek . induces a quasi-isomorphism between the total 
complexes of  E.. and G.. 

Proof  First we check that  q5 = ~ + ( - 1 ) k z  on Ek.  induces a chain map  on 
Tot(E..). Let D = d' + d" be the total differential. We want  

D.4) - ~ .  D = (d' .~,  - O ' d ' )  + (d" .O  - ~b.d") + ( -  1)k(d'.  z + x ' d ' )  

+ ( -  l)k(d"')~ -- 7~-d") 

to be zero. But the second and third terms in the right hand side of this equat ion 
vanish by 1. and 3., while the other two terms have sum zero by 2.. 

Now given a double complex X.. consider the filtration 

FIX. .  = @ Xk . .  . 
k<=i 

then q~ preserves this filtration on E.. and G.., and the induced m a p  on the 
associated graded objects is the sum of the quas i - i somorphisms ~fik,.. Hence ~b is 
itself a quasi- isomorphism. [] 

1.2.2 Let X be an integral scheme, quasi-projective over a regular noether ian 
integral domain  A. Suppose that  j :  X ~ M and k: X ~ P are two embeddings of 
X into regular quasi-projective varieties over A, and that  there is a smooth  m a p  
q : P ~ M, such that  qk = j. 

Consider  the following diagram, in which the square is Cartesian, g is the 
section o f p  induced by k, and f = j  )r lv. 

X g , X •  ] ,  P 

X J ~ M .  

Since it is a section of a smooth  map,  9 is a regular embedding.  This implies that  
the direct image by 9 .  of any bundle on X has a finite global resolution by bundles 
on X •  This is a s tandard fact that  we shall use several times: being regular, g is 
perfect and, since X •  is quasi-projective we can apply [BGI ,  II  Proposi t ion  
2.2.9.b] (see loc.cit. Definition 2.2.4 and 2.2.5). 
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So let V. --* g,(Sx be a resolution by locally free coherent sheaves on X xMP of 
the direct image of the trivial bundle on X. If ~ is a coherent sheaf on X, g ,  ~"x and 
p*~,~ are Tor-independent (p is smooth), and so ld | p * ~  is a resolution (though 
not by locally free sheaves) of .q ,Y.  Now let E. --* j , , ~  be a locally free resolution of 
the direct image of ~ on M, and let W(E.) = W be the corresponding Grassmann- 
graph construction. 

On P we may choose a resolution o f f , (  V. | p * ~ )  by a double complex G.. of 
locally free coherent sheaves so that, for each i, Gi, --+f,( Vi | p * ~ )  is a resolution 
(proceed by induction on i, using the fact that this is true when K has length one). 
By Corollary 2 we know that, since each Gi,. is a resolution of a locally free 
coherent sheaf on X, it extends as a complex G~. to W ( ( X  xMP)/P).  Now observe 
that W ( ( X  XMP)/P)  = WXMP, by Lemma 3. The horizontal component d'  of the 
differential on G.. can be viewed as determining for each i a map of complexes 
d " G i . - *  Gi-1.., where the differential on Gi. is ( -  1)~d ", and hence by Lemma 
6 we get a map c7' : G~. ~ t~i ~., such that d' 2 = 0. Thus we have a double complex 
G.. on W ( X / M )  XMP. 

From the results in the first section, we see that this double complex G.. has the 
following properties. I f~ :  WXMP --+ P~ x P is the projection, then for each l, G~. is 
acyclic on ~-1 [P~ x (P - q-~(X))] .  Over {0} ~P~,  G..-~ G... Over {c~}~ P~, if we 
define M c W~ as above, W~ XMP ~-- ( Z w  M)XMP,  with ~(Z)  ~ X xMP ~ P. 
The restriction of the double complex t~ to JQ XM P has split acyclic columns Gt.. 
and Tot Gl~• is therefore acyclic. 

Let IzI be the support in W of the cycle Z = [ W ~ ] -  [M] .  We have 
n(IZ}) = X. We denote by v : I Z] x~t P --+ X XM P and q ~ '  I ZI XM P --+ Z the projec- 
tions induced by n and q respectively, and by E. z the restriction to IZI of the 
canonical extension of E. to W. 

Lemma 10 There is an isomorphism in the derived category of bounded complexes of 
locally .free coherent sheaves on IZI • P: 

Tot GIIzI• p ~- v*( V ' )  | q* (E.Z) . 

Proof For every integer k, since each Vk is locally free coherent on X XMP, 
in a small open set where Vk is trivial of rank rk, the sheaf f , (  Vk | p*~-~) = f ,  
( p , ~ ) r ~  = q * ( j , ~ ) r ~  has a resolution by q*E. r~. It also has a (global) resolution 
by Gk,.. Hence there exists a locally finite covering { U,} of P by affine opens, and, 
for each U,, an isomorphism 

~XxMP 

on U~ c~ (X xMP ), and a chain equivalence 

~b~ : E. ~a --* G k , .  , 

on U~, resolving the isomorphism 

f , (g~ | 1 ) : f , ( V k |  rk . 

On U~ c~ U, c~ (X XMP) there is a transition matrix r = 0~0~ -1 for Vk, which we 
may lift to an rk X rk matrix of functions 0,~ on U, c~ U,. 

Now consider the two maps @, and q~,(0,, | 1) from E~ ~ to Gk..  The composi- 
tions of these maps with the quasi-isomorphism from Gk. to f , (  Vk | p * ~ )  are the 
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same, hence, since E~ k is a complex of locally free coherent sheaves, these maps are 
homotopic over the affine open Us ~ Ua. Let us make a choice of homotopy q~s~, 
satisfying 

d( (as~) = dps(Os~ | l ) -  qS~. 

By Lemma 6 the maps qS~, ~b/3, Os~, and 4 ~  extend to the inverse imagesof the 
sets Us, U s, and U~ Q Ua in W • P. We denote these extensions by qS~, 0/~, 0t~, 
and ~a~. Notice that 0~ is the inverse image by n of 0s~. In particular, its restriction 
to IZI XMP coincides with v*(6a~) = v*((~)v*(O~) 1. On the covering {[ZI • 
we consider the trivializations O~ = v*(d~) of v*(Vk) and the maps 

~G = ~p~(O~ @ 1) :v* (Vk) |  (E.Z)lizl• --+Cak.llZj• . 

On the intersection IZI xM(U~ C~ Up)the map 

@s= = Ot~(O~ | 1) 

is a homotopy between S0 and ~9~, since 

= d~SliZl• 1 ) -  4~llz~ • P(~'*(O=) | l) 

= 0~(0~ | 1 ) -  ~ (0~  | 1 )=  ~ ,  - g,~. 

Furthermore, by Theorem 2, 0S, llZl• depends only on the restriction of 
~b00s, - q~ to X XMP. Therefore we deduce from Theorem 2 that, on the triple 
intersections ]Z[ • Us c~ U s c~ U.r 

q's~ - ~'~, + q'.,, = 0 .  

Indeed, (g~, - ~.~ + ~.~)((7, | 1)-~ is the restriction to IZ[ of the extension to 
W of a null-homotopy of (O~0t~, - 0,)  - (0.~0~,~ - ~ )  + (q~,0~.~ - q~)0~, whose 
restriction to X XM P is zero since 

Hence, by Lemma 8, the family {@=, 6 ~  } defines a quasi-isomorphism of com- 
plexes of sheaves on l i t  • 

V*( VD | q*,(E, z) --+ Tot cg'({ Us}, (7~ .). 

The differentials d~ : Va --+ V~_ a can also be lifted locally to maps of complexes 
da.=:E~k--+ E~_-~, over each U~. After composition with the augmentation from 
G~_~. to f.(V~_~ | p * ~ ) ,  the two maps d~o~b~ and q~=od~_~ coincide. Hence 
these two maps are homotopic. Let qS; be the homotopy and 7.= the restriction to 
IZI • of the canonical extension of~b" to WXMP. Restricting to I ZI • we get, 
over each U=, a diagram 

V~_~ | E. ~" , ( , ,_ , ,  
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with d'O~ - O~d' = ( -  l)*-ld"z, + ( -  1)kz~(1 | From the equality 

d ' ( d ' r  - r  + ( d ' r  - r  = 0 

on X XMP we get, by Theorem 2, d'z~+ z~d' =0 .  Hence, by Lemma 9, 
O, + ( -  1)kg, defines a quasi-isomorphism 

Tot(v*(V) | q*(/~.)) ~ Tot (G.,.) 

on U,. Now consider 

~' = {0~ + ( -  1)kz~, q,~} : 

Tot(v*(V.) | q*(E.Z)) --* Tot(C~'({ V~}, (~.,.)). 

To show that T is a quasi-isomorphism, which will conclude the proof of Lemma 
10, we shall apply once more Lemma 8. For that the only identity left to be shown 
in d ' ~ ,  - ~ d '  = ( -  1)k(zp -- Z~)" This follows from Theorem 2 by an argument 
as above, where we compose both sides of this equality with (0, | 1)-~ and notice 
that d' commutes with 0t~ | 1 on X • p. Details are left to the reader. [] 

2 Arithmetic Chow homology 

2.1 The construction 

In [GS2] we defined an arithmetic rin9 to be an excellent regular noetherian 
integral domain A, together with a finite non-empty set 2: of monomorphisms from 
A into the complex numbers, and a conjugate linear involution F~ of the product 
C ~ which commutes with the diagonal embedding of A into C ~. 

When dealing with dimensions of cycles, it will be convenient to restrict our 
choice of ground ring. We say that A is "good" if it is equicodimensional (i.e., all 
maximal ideals have the same height), and Jacobson (i.e., any prime ideal is the 
intersection of the maximal ideals containing it). We shall write e = e(A) for the 
dimension of A, and F for the fraction field of A. Examples of good arithmetic rings 
are the ring of S-integers in an algebraic number field, or the algebraic number field 
itself (where in both cases we take 2: to be the set of all embeddings of the ring into 
the complex numbers and F~ to be complex conjugation), or the complex numbers. 
Notice that a more general case is considered in [Fu2], Chapter 20, and [G2]. 

An arithmetic variety over the arithmetic ring A is a scheme X which is flat and 
quasi-projective over Spec(A), and has smooth generic fiber Xv. Till the end of 
Section 3 we make the assumption that the ground ring A is good. This implies that 
X is Jacobson, and that each irreducible component of X is equicodimensional (see 
[EGA4] 10.4). It follows that each Zariski open set in X has the same dimension as 
X, and that i fZ  c X is an integral subscheme of X for which ZF is non-empty, then 
dim ZF equals dim Z - e. Note that the set X(C) of complex points of X| C ~ is 
a quasi-projective complex manifold. The conjugate linear involution F~ of C ~ 
induces an anti-holomorphic involution, which we also denote F~,  of X(C). For 
each natural number p, we write AP'P(XR) [resp. @ P'P(XR)] for the vector space of 
real differential forms [resp. real differential forms with distribution coefficients] 

on X(C) such that F * ( e )  = ( -  1)P~. Let ~p,p(Xk) be the space of real currents 
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on X(C) which is the topological dual (with respect to the Schwartz topology) of 
the space A ~" P(XR) of forms with compact support, and let A p.p(Xa) e ~p.q (XR) be 
the subspace consisting of currents which are smooth, i.e. represented by integra- 
tion against smooth forms. 

If X is a scheme and p is a natural number, following [EGA4] and [Fu2], we 
define Zp(X) to be the free abelian group on the set of integral subschemes of X of 
dimension p; elements of this group are called dimension p cycles. Following [GS2] 
1.2.3, if X is an arithmetic variety, we write ~q.q(XR) for the quotient of ~q,q(XR) 
by the subgroup (Im c~ + Im ~). If Z ~ Zp(X), then its restriction to the generic fibre 
XF is p -- e dimensional. (Recall that e is the dimension of the ground ring A.) 
Hence the current 6z given by integration over the restriction of the cycle Z to 
X(C) lies in @p-e,p-e(XR)- (See [GS2] 1.1.2 for more details; the only difference 
here is that we are grading by dimension rather than by codimension.) A Green 
current for Z is an element gz~-e+l .p-e+~(XR) ,  such that the current 
ddC(gz) + 6z is smooth. Let Zp(X) be the subgroup of Zp(X) Q ~p_~+ 1.p-~+ ~(XR) 
consisting of pairs (Z = ~n~[Z~], gz) such that gz is a Green current for Z. 

If Y ~ X  is an integral subscheme of dimension p + 1, and f~k (Y)*  is a 
rational function on Y, the divisor of f, div(f) ,  is a cycle of dimension p; see 
[ F u l l  for details. The complex points Y(C) of Y form an analytic subspace of 
X(C); we shall write i: Y(C)-* X(C) for the inclusion. As in [GS2, 3.3.3], the 
f u n c t i o n - l o g l f ]  2 on the nonsingular locus of Y(C) defines a current 
i ,[-- loglf lZ]~p_e+l,p_e+l(Xii) ,  (for which we shall often write just 
- l o g l f l 2 ) .  Of course this current is zero if Yc~ Xr is empty. By the Poincar6- 
Lelong formula [GH],  we know that i ,  [ - l o g  Ill 2 ] is a Green current for div(f) :  

ddCi,[ - loglf]  2] + 6di~I) = 0 .  

Hence the pair (div(f), i , [ - l o g ] f ] 2 ] )  is an element of Zp(X); we write 
/qp(X) = Zp(X) for the subgroup generated by these classes. 

Definition 2 If X is an arithmetic variety over a good arithmetic c ring A and 
p a natural number, the p-th arithmetic Chow homology group CHp(X) is the 
quotient of Zp(X) by the subgroup/~p(X). 

2.2 Elementary properties 

The following are, except where noted, direct translations of the corresponding 
results for the arithmetic Chow groups (graded by codimension) defined in [GS2]. 
We have therefore omitted any duplicate proofs. 

2.2.1 We start by recalling the notation and definitions (with some minor modifi- 
cations to account for the grading by dimension) of [GS2] for the various natural 
maps we can construct involving CH.(X). First, there are maps 

( 'CHp(X) -+ CHp(X) 

(Z,  g z ) ~  Z , 

a :/ip_e+ 1,p-e+ x(Xn)  -* C 'H,(X)  

~ ( 0 ,  ~), 
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A 
co: CHp( X) --, Ap-e,p-e( XR) 

(Z, gz)~-* o)( Z, Yz) = 6z + dd" gz . 

These are well defined since ((dlv(f))  = div(f)  and co(divf)) = 0. 

Let CHe,p+ I(X) be the group (see [G1]) 

Ker{div : @,~x~+, k(y)* --* Zp(X)} 
CHp, p+ I(X) = Im{t:  ( ~ x ~ +  ~ K2k(z) ~ (~>,~x~+, k(y)*} ' 

where the map t is the differential in the Quillen spectral sequence, [Q1, Sect. 7]. It 
follows from the arguments of [GS2, 3.3.5], that the map 

@yr k ( y )*  ~ Y p - e +  1,p-e+ I ( / R )  

fek(y)*~--~ - loglf[  2 

factors through a map. 

p CHp, p+ l ( S )  i �9 . . -~.Hp_e+l,p_e+l(XR) ~ ~ p - e + l , p _ e + l ( S R )  �9 

Here t Hv-e+l,p-~+~(X~) is the kernel of dd% We shall also write 
Zp-e,p-~(XR) ~ Ap-e,p-e(Xa) for the kernel of d, and H~_e,v-~(XR) for its 
quotient by the image of ddq 

As in [GS2, 3.3.5], we have exact sequences: 

cI-I~,~+~(x) o ~ ~,_~+,,~_o+~(xR) " , c l h ~ ( x )  ~ , c H A x ) - - , o  

and 

CHp,p+ I ( X )  P i a ) H p _ e + l , p _ e + l ( X R )  , CHp(X) ~'-~~ 

CHp(X) (~ Zp_e,p_e(XR) c-h 11 ' Hp-~,p-e(XR) ~ 0 . 

2.2.2 Let f :  X ~ Y be a proper map between arithmetic varieties, which restricts to 
a smooth map X~ ~ YF- Then the proof of [GS2, 3.6.1] applies, after replacing the 
gradi~ng by codimension by the grading by dimension, to give a push forward map 
f , : C H ( X ) ~ C ' H . ( Y ) ,  which is given explicitly on arithmetic cycles by f ,  
(Z, gz) = ( f , Z , f ,  gz). Here f ,  Z is the usual push forward of algebraic cycles, as in 
[Fu l l ,  whi lef ,  gz is the push forward on currents induced by pullback on forms 
with compact support; note that f ,  gz is a Green current for Z because 
f :  X(C) ~ Y(C) is smooth. 

The map f ,  is part of a morphism from the exact sequences of 2.2.1 for X to the 
corresponding exact sequences for Y. In particular, for any arithmetic variety X, 
the canonical map Xr e d~  X, w hhere X red is the reduced scheme attached to X, 
induces an isomorphism on CHp for all p > 0, as can be checked from the 
corresponding statement for CHp by applying the five Lemma to the map of exact 
sequences in 2.2.1. 
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2.2.3 N o w  let f :  X -~ Ybe a flat m a p  between ari thmetic varieties which is smooth  
over F. Then, a~gain as in [GS2, 3.6.1], we can construct  a pull back map  
f* :CHp(Y)  ~ CHp+d(X) where d is the dimension of the fibres o f f ( w e  assume for 
simplicity that  d is the same for all connected components  of X). 

L e m m a  11 Let f :  X --* Y be a flat map between arithmetic varieties, which is smooth 
over Yr, and let g : P --* Y be a proper map, again smooth over Yr. Let Z be the fibre 
product of ~.X and P over Y, with p:Z  ~ P and q~.f --* X the two projections. Then 
given x~CH.(P),  we have q .p*(x)  = f * g . ( x ) ~ C H . ( X ) .  

Proof First we observe that  the two functors q.p* and f ' g .  agree at the level of 
algebraic cycles, not just modu lo  rat ional  equivalence. This is because the corres- 
ponding two (derived) functors from the category of Cp-modules to the category of 
Cx-modules agree. It then suffices to know that  the maps  from currents on P to 
currents on X agree, since then the two maps  will have the same effect on Green  
currents. By duality, this follows directly from the fact that  integrat ion of compact -  
ly suppor ted  differential forms over  the fibres of  a smooth  map  commutes  with base 
change. 

2.2.4 If X is equidimensional  and regular  of dimension n, then 
CHp(X) ~- CH"-P(X). This is an elementary proper ty  of  the gradings by codimen-  
sion and dimension. 

2.2.5 If q~ is a K l - cha in  on X which is suppor ted  in the special fibres of X (i.e. the 
su~pport of ~b lies in X - XF), then div(4~) = (div(qS), 0). Therefore,  in defining 
CH.(X), we can first divide Z . (X)  by ari thmetic cycles which are divisors of 
K~-chains of this type. More  precisely: 

Definition 3 Let X be an arithmetic variety; then Zp( X) is the quotient of Zp( X ) by 
the subgroup consisting of all d i v ( f )  for which f is a rational function on a (p + l)- 
dimensional subvariety W c X such that W c~ XF is empty. 

Notice that  a "cycle" V in Zp(X) restricts to a well defined cycle on the generic 
fibre XF, and hence that  it makes  sense to talk of a Green current gv for V. 

The group Cf'Hp(X) is generated by pairs (Z, g)~2p(X)  �9 ~p-~+ 1.~-e+ I(XR), 
where g is a Green  current for Z~. The relations are generated by of all classes d w ( f )  
with f ek (y )* ,  for y E X  v a point  of dimension p - e + 1. 

2.2.6 Let X be an ari thmetic variety and D c X a principal effective Cart ier  divisor 
on X such that  Dv is smooth,  and let i: D-- ,  X be the inclusion. For  any m a p  
f :  Y ~  X of ari thmetic varieties whose restriction fr" Yv ~ XF to the generic fibre 
is transverse to Dr, we may  define as follows a pull-back m a p  

i* = i*" C"H.(Y) - ,  U B . ( f - ~ t l D [ ) ) .  

Let (Z, g) be an ari thmetic cycle on Y. By the Moving  L e m m a  on Yv, we may  
assume that  ZF meets f -1 (De)  properly. We then set 

i*(Z, O) = (Z.f*D, i ' a ) ,  

where Z. f*D is defined by the method  of [Fu2, Remark  2.3]. Namely,  by linearity, 
we may  assume that  Z is irreducible. If Z c f - l ( l D I ) ,  we put  Z. f*D = 0, and 
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otherwise Z . f * D  is the Weil divisor associated to the Cart ier  divisor j *  f * D  where 
j : Z  -~ Y is the inclusion. Notice that  Z f * D  depends only on the restriction of Z to 
Y -  [ /*DI.  

We must  check that  i* respects linear equivalence. I f (Z ,  g) and ( W, h) represent  
the same class in CH.(Y) ,  then, as in [GS2, 4.2.6], we can find a Kl -cha in  ~b on 
Ysuch that  div(~b) = (Z  - W, g - h), and 4) meets I f* (DDI  a lmost  proper ly  on Ye 
(with the terminology of loc.cit.). It  follows that  

i*( - -  log(l~b[2)) = i*(h - g) = i* h - i* g . 

We need to check that  i*(d iv(r  is rationally equivalent  to zero. By linearity, we 
may  assume that  ~ is a rat ional  function r on an integral subscheme T ~ Y. 
Suppose that  T is not  contained in f - l ( [ D I )  (otherwise there is nothing to check), 
and let i* T = • s n s [ S ] .  Define i * ( r  = •ns{r l s } ,  where the sum is taken over all 
S 's  which are not contained in Idiv(r On the other  hand, if t is an equat ion for 
f * ( D )  on Y and d iv ( r  = ~ v  mv [ V], we get 

i*(d~v(~b)) = Z mv~lV( t  ] V) , 

where the sum runs over all irreducible subvarieties V of codimension one in 
the suppor t  of  ~b which are not  contained in the divisor of t. It  follows that  
i*(div(qS)) - div(i*(~b)) is the divisor of a Kt -cha in  ~ suppor ted  on the compon-  
ents of excess intersection o f f - l ( I D I )  and div(~b) (see the p roof  of L e m m a  23 
below). In part icular,  the suppor t  of  ~, does not  meet Yr. It follows that  

i*(div(qS)) = div(i*(q~) + ~0), 

i.e. i* preserves linear equivalence>. .  
When  f i s  proper,  for any x e C H ( Y ) ,  

i* f . ( x )  = fD.i*(x)  

in C"H.(IDI), w h e r e f  D is the restriction of f to the inverse image of lD I. This may  be 
checked directly on cycles as in [ F u l ,  Proposi t ion  2.3.c]. 

2.2.7 Another  (and more  general) case when we can define a pull back map  is when 
f :  X--* Y is a local complete  intersection (1.c.i.) morph i sm between ari thmetic 
varieties, i.e. there is a factorizat ion f = 9 ~ i, with i : X ~ P a regular embedding,  
and g :P - -*  Y a smooth  morphism.  Then there is a pull back m a p  

A A 

f * ' C H p (  Y) --~ CHp+d(X  ) 

where d = d i m ( X )  - d im(Y)  (for simplicity, we assume here that  X and Y are 
irreducible). 

This is constructedd by the me thod  of 4.4 in [-GS2]. Specifically, we have a 
m a p  g*:  C"Hp(Y) -~ CHp+,(P),  n = d im(P)  - d im(Y),  since g is smooth  and in 
part icular  fiat. I t  therefore suffices to define a m a p  

i*: CHp+,(P)  --+ CHp+e(X)  . 

This is done for cycles in Theorem 4.4.1, (i) to (v), in [GS2] ,  where the only use of 
regularity in the construct ion of the map  i* is to ensure that  i is a regular 
embedding (there is a typographical  error in the s ta tement  of Theorem 4.4.1 in loc. 
cit., in that  the closed embedding is called f, but  is twice written i). Indeed, the 
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construction in Fulton's book [Fu2] that is appealed to ibidem is the Gysin map 
attached to a regular embedding in homological Chow groups, which is valid when 
varieties are singular. The proof in [GS2, Theorem 4.4.2] that the pull-back on 
cycles respects rational equivalence applies equally well to our current situation, 
the only change being to replace the grading by codimension with grading by 
dimension. Theorem 4.4.3 (1) to (4) also applies, with the same changes, showing 
that f *  is independent of the factorization chosen. 

The pull back by 1.c.i. maps has the following properties. In the/, situation of 
2.2.6, the inclusion i:D --* X is l.c.i., and both definitions of i* on CH.(X) agree. 
When f :  X ~ Y is both l.c.i, fiat, and smooth on Xr, the map f*  agrees with the 
map in 2.2.3 above. If f." ,.X ~ Y and g: Y ~ Z  are two 1.c.i. maps, then (g f ) *  
= g ' f *  from C"H.(Z) to CH.(X). 

Furthermore, given an l.c.i, map .f: X ~ Y and a proper map g : P ~ Y (smooth 
on PF), such that f a n d  9 are Tor-independent, then 

f ' g ,  = gx . f~  :CH.(P) ~ CH.(X)  , 

where 9x : X x r P ~ X and f~ : X x r P ~ P are the two projections (notice fp is still 
1.c.i. under our assumption). By Lemma 11 applied to smooth maps, to prove this 
we need only consider the case where f.fis a regular immersion. We may check 
this identity on a generator (Z, gz) of CH.(P) with ZF transverse to fp and gz of 
logarithmic type. The identity is true for gz because integration of forms along 
fibres is compatible with pull-backs (compare (3) in Lemma 12 below), and it is also 
true in the algebraic Chow groups o f f -  1 (g(]Z ])) by [Fu2, Theorem 6.2.a)], which 
remains valid over A as explained in [GS2, 4.4.1]. 

2.3 Cap products 

2.3.1 We shall now show that the construction in [GS2] of cup products on the 
arithmetic Chow cohomology groups can be extended to give a cap product 
between arithmetic Chow cohomology and homology. These cap products are 
described somewhat in the style of Fulton's operational theory [Fu2]. 

First notice that the real vector space /T(XR)= (~p~ o/iP'P(XR) is a contra- 
variant functor from arithmetic varieties to rings without unit, where on A(XR) we 
consider the *-product: ~b, ~ = ~b A ddC(t)). Given a class x ~ CHq(X) and q5 
/T(XR), we define their cap product 

q~ c~ x = q~ c~ (Z, gz) = (0, ~b �9 gz) = a(qS. c0(x)). 

Here we have written x = (Z, gz), and " . "  for the product 

AP'P(XR) Q ~q-e+ 1,q e+ 1 (XR) -'~ ~q-p-e+ 1 , q - p - e +  I(XR) 

which is induced by the wedge product of forms with distribution coefficients. 

Theorem 3 Given a map f :  X -~ Y of arithmetic varieties, with Y regular, there is 
a cap product: 

CH' (  Y) | CHq(X) --* CHq_v(X) Q 

y |  x~--~ y.rx 

which we also denote y n x if X = Y. This product has the following properties. 
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1. co(y.:x) =.f 'co(y)  ^ co(x), and, for any tl e A(YR),  a(O).yx = a ( f*  ~) ~ x. 
2>~ A ~ .~. H.(X)Q is a graded C H "( Y)Q ,module; i.e. i[ x ~ C Hq( X )Q, y ~ C H e( Y)Q, and 

y' sCHP'(  Y)Q, then y . : ( y ' . : x ) =  (yy ).:x, where yy' is the cup product defined in 
[GS2, 4.2.3]. 

3 ./f g: Y ~ Y' is a map of  arithmetic varieties with Y' regular, y '~  CH e(y , )  and 
x e CHq( X),  then y'oy x = (g*(y')).y x. Here g* is the pull back map d@ned in [GS2, 
4.4.3]. 

4. I f  h: X ' ~ X is projective, and smooth over X v , x ' ~ C Hq( X ) and y ~ ~ P(Y), 
then y.y(h,( .x '))  = h.(Y.yhX'). That is, the push forward h ,  is (after tensoring with Q) 
a map of CH "( Y)Q modules. 

5~.l f  h : X ' ~  X is smooth over F, and either fiat or l.c.i., x e C H q ( X )  and 
y e C H P (  Y), then h*(y . :x ' )  ~.y .yhh*(x ') .  That is, the pull back map h* is (after 
tensorin9 with Q) a map of  CH "( Y)Q modules. 

6. Let  i : D ~ X '  be the inclusion of  a principal effective Cartier divisor, h : X ~ X '  
a morphism which meets De properlJ2., and ix : h-  1 (D)...--* X the inclusion of  the inverse 
imm..age of  D. Then, .for any x e C H . ( X )  and y e C H ' ( Y ) ,  the following holds in 
CH.(Ih-I (D)I) :  

y:fixi*(x) = i * ( y . f x ) .  

Proof We shall first define y.:x.  Without loss of generality we may suppose that 
Yis equidimensional of dimension n, since being regular it will be a disjoint union 
of such varieties, and we may then consider the cap product for each component of 
Y separately. 

Let x = ( V, 9v)~ CHq(X), with V an algebraic cycle on X. We may assume that 
V is a prime cycle, i.e. that V c X is a q-dimensional s Luubvariety. By the Moving 
Lemma, we may assume that y = ( W = ~i  ni W,., gw) e CH "(Y),  with each f -  1 (W,-) 
meeting V properly on the generic fibre Xr. Since Y is regular, [(gw,] eKw'(Y), 
and hence f*[Cw,]~KVo ~f l(w')(X). So we have . f * [ C w , ] ~ [ ( g v ] ~  
K 'o (Vc~ f - l (Wi ) ) .  Now by [S1 Theorem 8 v)], and [GS1, Theorem 8.2], 
K'o(Vc~f- I (W~))Q ~- @r>=oCHr(Vc~f-I(W~))Q, with CHr(VC~f-I(W~))Q ~- 
Gr, Kb( V c ~ f - 1  ( W~))Q, where Gr. is the graded associated to the filtration Fil. by 
dimension of support. By 2.2.5, to define the cap product arithmetic cycle it will 
suffice to define an algebraic cycle [ V] . : [  W]  e Zq_v(X),  together with a Green 
current for [ V ] . : [ W ] .  We shall produce the cycle [ V ] . I [ W ]  in the group 
CHq_p( V c~f -  1 (i WI))Q, which maps naturally to Zq_ p(X) (since each f -  1 (W,.) 
meets V properly on the generic fibre XF). To do this it suffices to show that 

f * [  Cw,] ~ [Cv] e Filq_vK'o( V ~ f -  1( W~) )O . 

Since X is quasi-projective, we can factor f = rto i, with ~r: U --+ Y the smooth 
projection from a Zariski open subset U of P}, and i a closed immersion. By the 
associativity of the tensor product, f*[(gw,] c~ {-(gv] may be calculated in the 
K-theory with supports of U, i.e. via the isomorphism F i l N - ' K v ( U ) Q -  ~ 
Fil.Ko( V)O; here N is the dimension of U, and Fil ' is the filtration by codimension 
of support. The needed assertion about the cap product cycle now follows from the 
multiplicativity of the filtration by codimension of supports on K-theory with 
rational coefficients for a regular scheme, see IS1, Theorem 7 iv)] and [GS1, 
Theorem 8.3]. 
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Turning to the construction of the associated Green current, let V(C) be 

a resolution of singularities of V(C), and k: V(C) ~ X(C) the map induced by the 
inclusion V ~  X. Then as in [GS2, 2.1], since W~ meets .(properly over F, the 
current 

6v Af*gw, a a  k , ( f k ) * g w ,  

is well defined if we choose for gw, a Green form of log type along W~(C) in the sense 
of [GS2, 1.3.5]. Such a choice always exists after adding an element of the form 
~(u) + c~(v) (loc. cit.). We now set 

( V, gv).•( W~, gw,) = ([ V].I[  W], 6v Af*gw,  + gv/x ~Ow), 

which is an arithmetic cycle by [GS2, 2.1.4]. 
We must show that the cap product is compatible with rational equivalence. 

Suppose that x = (V, gv) with V a subvariety of X, as above, and that (~W, gw), 
( W', gw,) are two arithmetic cycles on X, representing the same class y~ CH'(Y) ,  
both meeting Vv and f.f~. properly. By [GS2, 4.2.63, we may assume that 
(W, g w ) -  (W' ,  g w , ) =  div(4') with 4' a Kl-chain on Y which meets VF and fv  
almost properly. Following op. cit. we may. assume that 4' = [Z] .  ~t 4'~,t with 
q~ a rational function on Y, the divisor of which meets f r  and Vv properly, and 
which is a unit on any component of f (VF)  c~ We for which j ' -  1 (VF) C~ We has 
excess dim.mension. Then by the method of Lemma 4.2.5 of [GS2], 
(V, gv) . I (d iv (4 ' ) ) zd iv (qJ  ), where qJ is the Kl-cbain on X equal to 
([ v].~l-z3).f*(4'). 

Similarly, if (V, gv)), and (V', gv,) are two representatives of x, we can write 

( V, gv) - ( V', gv') = div(4'), with 4' a Kl-chain on X. By the Moving Lemma, and 
the fact that the cap product is independent of the choice of representative for y, we 
can choose a representative y = (W, gw), with WF meetingfr  and 4'v properly on 
the fibre over Spec(F). As before, 

(( V, gv) - ( V', gv')).s( W, gw) = div(4', r [ W]), 

where the Kl-chain 4' .I[ W] is defined by the cap product 

K'~(I 4'1 - Idiv(4')l) | KoW(Y) ~ K•((14'I -- Idiv(4')l) r~f -  1 (1WI)). 

This proves that the cap product is well defined. 
Property 1 follows immediately from the definition. 
Turning to the proof of Property 2, we may assume that XF and Yr are 

projective (compare [GS2, 4.2.7. (ii)]), and that x, y, and y' are represented by 
arithmetic cycles ( V, gv), ( W, gw), ( W', gw,), respectively, such that Wand W' meet 
properly on YF, meet fv properly, and f - 1  W and f - 1  W' meet V properly on XF. 
Then the required associativity is the conjunction of two facts. First, by [GS2, 
Lemma 4.4.3], the following identity holds in ~ "(XR) 

gv * f* (gw  * gw,) = gv * ( f* (gw)  * f*((Jw,)) , 

and by op. cit. 2.2, 

gv * ( f * (gw)  * f * (gw ' ) )  = (gv * f * (gw) )  * f * ( g w ' )  . 
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Second, the product on K-theory with supports is associative, as follows from the 
associativity of the tensor product, see [GS1]. 

The proof of Property 3 on the Green current side is just the fact that if we 
represent the classes x and y by arithmetic cycles ( V, 9v) and ( W, 9w) for which the 
associated algebraic cycles intersect properly, the pull back ( f ' f )*gw, and the 
product 9v * ( f ' f )*gw were both defined using pull-backs and wedge products of 
smooth forms of log type, and hence are functorial and associative. On the cycle 
side, we just appeal again to the associativity of the tensor product. 

On the cycle side the proof of Property 4 reflects the projection formula for 
K-theory, while for Green currents, assuming proper intersections and representing 
the Green currents by forms of log type, we are reduced to the projection formula 
for integration of smooth forms over the fibres of a proper smooth map. 
~ , ,To prove Property 5, first consider the case where h is flat. Let x = (V, 9v)~ 
CHq(X) with Va prime cycle, and let y = ( W, 9w) with Wa prime cycle meeting Vv 
properly; it follows that W also meets h-~(Vv) properly. The equality h*(gv* 
f*(gw)) = h*(gv) * (fh)* 9w follows from the Lemma of section 4.4.3 of [GS2] and 
the fact that Green currents of log type pull back to Green currents of log type, see 
2.1.3 and 2.1.4 ofop. cit., so that (fh)*gw = h*f*gw at the level of forms. Next we 
check that we have an equality of cycles 

h*([V] s[W]) = [h- '(V)] ~h[W] 

in CHq_p+u(h-1(V) ~ ( fh)-1(  W))r It suffices to observe that 

h*([ (_gv] ~ f *  [(gw]) = [6~h,(v)] C~ (fh)* [ (fiw] ~ Vilq-p+aK'o(h- 1( V n f -  1( W)))O 

by the associativity of the tensor product and the flatness of h. Turning to the case 
when h is 1.c.i., since a smooth map is flat, we need only consider the case of 
a regular immersion h : X'  ~ X. Again the equality of Green currents follows from 
the regular case, since X )  and XF are smooth. On the cycle side, we use the 
compatibility of the pull back of cycles via deformation to the normal cone with 
products on K-theory, which may be verified by embedding the whole deformation 
to the normal cone family in a regular variety. 

The proof of 6 follows from the definitions in 2.2.6. q.e.d. 

2.3.2 We shall also need the following projection formula: 

Lemma 12 Let f : X  ~ M be a map of arithmetic varieties with M regular, and 
suppose p:P ~ M is a proper smooth map of arithmetic varieties of relative 
dimension d. Then if we writeA g : X xM P ~ and q: X x M P ~ X for the projec- 
tions, we have, for all e e CHp(X) and 7 e CH q(P), 

q,(q*(~)'o?) = e "sP,7 - 

Proof Suppose that ~ (resp. 7) is the class of the arithmetic cycle (Z, gz) (resp. 
( W, gw)), where Z and W are irreducible cycles which are flat over the base (if not 
the statement is purely algebraic, see below). We may assume that gz (resp. gw) is of 
logarithmic type along Z(C)  (resp. W(ff~)), and, by the Moving Lemma, that the 
closed sets 9-1(Wv) and q-l(Zv)  meet properly in (X x~ P)e (i.e., each irreducible 
component of 9-1(Wv) meets properly the irreducible set q-l(Zv)). When 
dim p(WF) 4: dim(We), the cycle p ,  (W) is zero by definition of p ,  on cycles [Fu 1 ]. 
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But then any fibre of the map p : W ~ p (W) has positive dimension, hence the same 
is true for any fibre of the map q : q- 1 (Z) ~ g-  1 (W) --* Z c~f- 1 (W). It follows that 
in that case the cycle components of both q,(q*(~)"gT) and ~ "IP,(7) vanish (for 
our choice of representatives of c~ and 7). When dimp(WF) = dim(Wv), it follows 
from our transversality assumptions that any component of q- ~ (Z~,) c~ y-  ~ (Wv) is 
generically finite over its image, and that the components of 

q(q-a(Z~)c~g-I(WF)) = ZFc~f- I (p(Wv))  

have the same dimension. Their multiplicities are equal by the Tor formula and the 
projection formula, since p and q are smooth. 

On the other hand, the equality of currents 

(3) q,(q*(gz)*g*(gw)) = q,(q*(bz)g*(gw) + q*(gz)g*(~w)) 

= 6zq,g*(gw) + gzq,g*(~Ow) = gz*q ,g* (gw) ,  

when tested on (compactly supported) form of appropriate degree, is an equality of 
indefinite integrals on the open set X ( r  (unless 
p(W(C))  = M(r  in which case (3) can be checked directly). The identity (3) then 
follows from the fact that integration of forms along fibres of p and q commutes 
with base change by the map Z((F) ~ M((F). 

Finally, to check the identity of the lemma for our choice of representatives of 
and fl, by 2.2.5 we need only to check that the cycle classes q , (q*[Z]  .g [ W]) and 

[ Z ]  -y p , [  W] are equal in the algebraic Chow group CH.(Z c~f - lp(  W))Q. Since 
the cap product on Chow homology is defined using algebraic K-theory [GSI, SI], 
this follows from the identity of derived functors L f * R p ,  = Rq, Lg*, i.e. base 
change for direct images in K-theory with supports (see [BGI IV 3.1.0] and [Q1, 
Proposition 2.11]). 

2.4 Characteristic classes for Hermitian algebraic vector bundles 

2.4.1 In this section we recall some results in complex geometry concerning 
Bott-Chern secondary characteristic classes and their singular analogs. 

Let X be a complex manifold and/~ -- (E, h) an holomorphic vector bundle 
E on X equipped with a smooth Hermitian metric h. Denote by 

ch(E)-- trexp ~ 

the usual form representing the Chern character of E, where Vis the Hermitian 
holomorphic connection on E attached to h [GH].  Given an exact sequence 

E : O ~  S ~ E--+Q ~ O  

of holomorphic vector bundles on X, and (arbitrary) Hermitian metrics h', h, h" on 
S, E, Q respectively, the Bott-Chern secondary characteristic class 

c~'h(g)~A(X) = ~ APP(X)/(Imd + Ira J) 
p>O 
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solves the equation 

ddCch(d ~ = ch(S) - ch(s  + ch(Q_.) , 

(with dd ~ = J8/(2~i)). We refer the reader to [BC, Do, BGS1, GS3] for its construc- 
tion. To simplify notations we write ch(g)  instead of ch(g,  h', h, h"). This class 

ch (g )  is functorial and is characterized by the fact that it vanishes when g is 
(metrically) split, i.e. (E, h) is the orthogonal direct sum of (S, h') with (Q, h"). 

In special cases we shall use a different notation f o f f h ( 8 ) .  When Q = 0,i.e. if 
we are given an isomorphism 0: S --* E, we shall write ch(S, E.;,O) instead of ch(~).  

I fsf, in addition, 0 is the identity on S = E, we shall write ch(E, h', h) instead of 
ch(~).  

Notice that these secondary characteristic classes exist for other characteristic 
classes and not only for the Chern character [GS3]. .For instance.given a metrized 

exact sequence d ~ as above, there exist classes Td(g)  and T d - l ( ~ f )  in /T(X), 
attached to the Todd class and its inverse. They solve the equations 

ddCTd(~g) = T d ( S ) T d ( Q _ ) -  Td(E)  

and 

ddCTd-1(o~ ) = Td-l(~)Td-1(~)_ T d  - 1 ( / ~ )  . 

More generally, given a finite acyclic complex of vector bundles 

E. : O --* Em --+ E,~_ I --~ . . . -* Eo -~ O , 

and arbitrary metrics on each Ej, there exists a class c h ( E . ) ~ A ( X )  such that 

ddC ch( E.) = - ch( E.) 

where, by definition, ch(E . )=  ~2 > o ( -  1)Jch(Ej) [BGS1, GS3]. 
This definition is again generalized in [BGS2], where Bott-Chern singular 

currents are introduced. Given a closed immersion i : Y ~ X of (smooth) complex 
manifolds and an Hermitian vector bundle F on Y, consider a resolution 

O ~  E,,,--* E,,,-1 ~ . . .  ~ E o - ~ i . F  ~ O  

of the coherent sheaf i , F  by holomorphic vector bundles on X. The homology 
groups Hk(i*E.), for k _>_ O, of the restriction to Y of the complex of sheaves 

E.'Em--* E,,-x ~ . . .  ~ Eo 

are canonically isomorphic to the bundles A k ( N  *) | F, where N * is the dual of the 
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normal bundle of Y in X (see [BGS2, 1.a] for references). We then have the 
following definition [B] : 

Definition 4 Given a metric on N, we say that a choice of metrics on E i, j > 0, 
satisfies condition (A) when the isomorphisms 

Hk( i*E.) ~ Ak( N *) | F 

are isometries for the metric induced by/~. on homology, and the metric induced by 
and F o n  A * ( N * ) |  

Such a choice of metrics always exists [B, Proposition 1.6]. Using such metrics, 
we defined in [BGS2, (2.4)] a class of currents 

ch(E.)~ @ ~PP(X)/(Im(? + IMP7) 
p>=o 

solving the equation of currents 

(4) ddCch(E) = i , (ch(F)Td ' (N) )  - ch (E) ,  

When F = 0 we recover the previous definition. This Bott-Chern singular current 
ch(E.) was denoted T(h ~) in [BGS2] and [BGS3, l.g], where ~ is E and h e is the 

metric on E.. We refer to loc. cit. for several properties of ch(E.). Again, by abuse of 

notation, we omit to mention in our notation ch(E.) the dependence of this class 
upon our choices of metrics (on F, N and E.). 

2.4.2 If X is an arithmetic variety, an Hermitian algebraic bundle/~ on X is a pair 
(E, h) consisting of a vector bundle E on the scheme X, and a C ~' metric h on the 
induced holomorphic bundle over X(C) which is invariant under F~.  If./: Y --, X is 
a morphism of arithmetic varieties, then f * ( E )  = ( f* (E) , f* (h ) )  is an Hermitian 
bundle on Y. 

As in [GS3, 6.1], we can form the arithmetic Grothendieck ring of X,/s  
This is the quotient of the free abelian group on the set of pairs (E, ~/), with 
t /_~p~oAP,  P(XR), by the subgroup generated by all expressions of the form 
(E', r/') - (s q) + (/~", q") - (0, fl), where g is an exact sequence of bundles 

O ~ E ' ~ E ~ E " ~ O  

over X, equipped with arbitrary metrics, and fl = ch(g ~ + ~ l ' - t l  + tl", where 

ch(g)  is the Bott-Chern secondary Chern character class. We get in this way 
a contravariant functor X ~ / s  from arithmetic varieties to rings [GS3, loc. 
cit.]. 

Theorem 4 There is a biadditive parring 

~ o ( X )  | CH. (X)  -~ CH. (X)Q , 

A 

which we write ~ @ x~--~ch(a) c~ x, with the following properties, 
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1. I f  f :  X--* Y is a morphism of arithmetic varieties, with Y regular, e e  I(o( Y)  
A 

and x E C H . ( X ) ,  then 

cl"~(f*o~)c~x =~c'fi (e).f  x . 

2. If(O, t /)e/s and xeCI 'H(X) ,  then 

A 

ch((O, q)) n x = a(tlo)(x)) . 

3. I f  ~ e I ( o ( X )  and xeC"H. (X) ,  then 

o ) ( c h ( ~ )  n x )  = c h ( ~ )  A o~(x)  . 

4. TheN.pairing makes C'H.(X)Q into a I (o (X)  module; i.e. for all a, t i e ing(X) ,  
and x e C H . ( X )  o, we have 

"~(~)  n ( '~ (/~)~ x) = ( c '~ (~ ) )n  x .  

Here ~fl is the product in Is  ) (see [GS3]). 
5 ~ I f  f : Y ~ X is a f iat  or l.c.i, morphism of arithmetic varieties, let c~ e I(o( X )  and 

x e C H . ( X ) .  Then 

" ~ ( f * e )  n f * ( x )  = f *  (c/"h (a) ~ x ) .  

6. if f : X  ~ Y is.a proper morphism of arithmetic varieties, smooth over YF, let 
e I~o(Y) and x e CH.(X) .  Then 

f,(cTh(f*ct) n x) = cf'fi(c~) ~ f , ( x )  . 

7. I f  i 'D  --* X is the inclusion of  a principal effective Cartier divisor, f :  Y -*  X as 
in 2.2.6., ir : f - I ( IDI)  -* Y the inclusion, and E an Hermitian vector bundle on Y, for 
any x ~ CH. (X )  we have 

" ~  (i*(E)) n i*(x)  = i*(c~'h(E) n x) . 

Proof. We start by considering a generator c~ = (E, h, t/) o f / (o (X) .  Since we are 
assuming that all our varieties are quasi-projective over A, we know that there 
exists a vector bundle U over an arithmetic variety M, with M smooth over A, 
a map u: X --* M, and an isomorphism 0' E ~ u* U. Fix an arbitrary metric on U; 

then [7 has a Chern character "~  (G) e C'H "(M). Given x e C/H. (X) consider the 
class 

c'Ah([7).,x + ao'c'[~(E, p* [7, O) n x + a ( q ) n  x . 

(Here, and in the discussion following, we have written a o ch (.) instead of a (ch(.)).) 

We claim that this is independent of the choice of the triple (u, [7, 0). For if 
- - !  

( u ' : X  ~ M' ,  U ,  0') is a second such triple, let Iso(U',  U) be the variety, smooth 
over A, which parameterizes isomorphisms U-~ U'. There are projections 
p ' I s o ( U ' , U ) ~ M ,  and p ' : I s o ( U ' , U ) ~ M ' ,  and an isomorphism O : p * U ~  
p '*U' .  By definition of Iso(U',  U) there is a unique map 6 " X - ~ I s o ( U ' ,  U) 
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such that  p o 6 = u, p 'o  6 = u', and 6 " ( ~ )  is the i somorph ism 0 ' (0 ) -1 .  Then given 
x ~ CH. (X),  we get 

: x . ~ ( p * c ~ ( O )  - p ' * c ~ ( O ) )  

= x.a(a ~' ch(p* O, p'* 0 ' ,  {0)) 

= x ~ 6*(ao c h ( p * O , p ' * O ' ,  ~))  

: x ~ (a o c h ( u * ( U ) ,  u ' * ( O ' ) ,  0 ' ( 0 ) - 1 ) )  

= x c ~ ( a o c h ( E , p  U , O ) - a o c h ( E , p * O , O ' ) )  

as desired�9 
Since the cap p roduc t  is biaaddditive, thi~.s pair ing is addi t ive  in x. In o rder  to show 

that  we get a m a p  K o ( X )  | C H . ( X )  ~ CH.(X)Q,  it suffices to show that  given an 
exact  sequence 

g:O-+ s E-+ E"-+o 

of bundles  on X, we have, for any choice of metrics on the bundles,  

�9 ' - . . . . . .  - "  0" )  Choose  triples (u:X--+ M, U,O), (u' X - +  M , U ,O ), and (u :X  ~ M , U , 
represent ing the terms in the exact sequence. There is a variety P, smooth  over 
A, which parameter izes  exact  sequences 0 ~ U '  ~ U ~ U" ~ 0. That  is, there are 

�9 �9 M , and  a universal  exact sequence project ions  q P --+ M, q'  P ~ M ' ,  q" :  P -~ " 

q l : O ~ q ' * U ' ~ q * U  ~ q " * U " ~ O ,  

with the obvious  universal proper ty .  In par t icu lar  there is a m a p  f :  X ~ P, such 
U !  t! i ~ that  q f =  u, q ' f =  , q j =  u", and  an i somorph i sm of exact sequencesf*(~ ')  - & 

Since P is smooth  over A, we know from [GS3,  4 .800]  that  

q'*(cl"h(O ') - q*(c 'h(O) + q"*(cf'h(O"))) = a o c~'h(~g) . 

F r o m  the b iaddi t iv i ty  of the cap p roduc t  C H ' ( M ) |  CI"H.(X)~ C"H.(X)Q we see 
that  

( ~ ( E ' )  - c '~(E) + c I ~ ( E " ) ) ~  x 

= ch - '  (U ).,,x - ch (O) . , x  + ch (U ).,,,x + ao ch(E',  '* '~ '  u ~ , O ' ) n x  

. . . .  0")  - a o c h ( E , u * U , O ) c ~ x  + a o c h ( E " , u " *  -"U , n x  
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A _ _  A A - -  ~ - -  

= ch (q '*  U ' ) . y x  - ch (q*  l Y ) . f x  + ch (q"*  U " ) . ~ x  + a o ch(E ' ,  u '*  (]', 0') c~ x 

- a o c h ( E , u * ( J , O ) n x  + ao c h ( E " , u " * ( J " , O " ) n x  

- '  o ch(E,  u* 17, O) n x = f * ( a  o ch(dll)) n x + a o ch(ff,', u '*  U , 0') n x - a 

- - "  0 " )  + a o c h ( E " , u " * U  , c~x 

= ao ch (d  ~) n x 

by [GS3, Proposi t ion  1.3.4], as desired. 
We now verify Propert ies 1-7 in turn. 
Propert ies  1 and 2 are par t  of the construct ion of the pairing, while Proper ty  

3 is a s t raightforward computa t ion .  
For  Proper ty  4, since the product  is biadditive we can consider the four cases 

where ct = (0, r/), or c~ = f * ( E )  for f : X  --* Y a  m a p  to an ari thmetic variety smooth  
over  A, and /~ an Hermi t ian  bundle on Y, and /3 = (0, r/'), or /3 = 9 * ( E ' )  for 
g '  X --* Y' a map  to a regular ar i thmetic  variety, and /~ '  a Hermi t ian  bundle on Y'. 
The  case where ~ = (0, r/), and /3 = (0, r/') reduces immediately to Theorem 3, 
Proper ty  2. If c~ = ( f ' E ,  0), and /3 = (9", /~ ' ,  0), then c~ w fl = 
( ( f  9 ) * ( p * f f , |  0), where ( f  9 ) : X  ~ Y x  Y '  is the induced map, and p and 
p '  are the projections from Y x  Y'. Hence, by Theorem 3, Proper ty  2, 

A A - -  - -  

ch(cc u /3) c~ x = ch(p*  E | p ' * E  ').lS.o)x 

= ( ~  (p* E)c'h (p'* s ~z,o~ x 

= c h ( p * E ) . ( A o ) ( c h ( p  E ).(i ,o~x) 

A A 

= c h ( ~ ) n ( c h ( f l ) c ~ x ) .  

Now consider 
A A - -  h - -  

ch (0, q) c~ (ch(E,  O) c~ x )  = a (q .  o.)(ch (E, 0))) c~ x 

= a(q A (ch(ff~)/x o ( x ) ) )  

= a((r 1A ch(lE)) A O(X))  

= ' ~  (0, ~/ A ch(E))  rn x 

= ch((O,  ~ ) ( s  0)) n x .  

The proof  of  the fourth case is similar, and we therefore omit  it. 
P roper ty  5 (resp. 6, resp. 7) follow from Proper ty  5 (resp. 4, resp. 6) in 

Theorem 3. [] 

Remarks.  The same method  allows us to define other  characteristic classes like the 
Todd  class T d ( E ) c ~ x  for any Hermi t ian  vector  bundle E (and more  generally 
Td(cr n x for any ct e / s  f rom the regular case [GS3].  These satisfy propert ies  
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A 

similar to those in Theorem 4 (of course Td is multiplicative rather than additive). 
These other classes are also given by standard universal polynomials in the 
components of c"h. Notice also that, by~[GS3, Theorem 7.2.1], for any :~e/~0(X) 

there is a unique f l~ l s  ) such that Td(~) = ch(fl). 
As mentioned in 2.3.1, the formalism of cap products is inspired by the 

operational theory of Chow groups. It is probably the case that, for any X (and 
more generally for any map Y --, X), one could define operational (r.esp. bivariant) 
arithmetic Chow groups in the style of [Fu2]. The Chern character ch (~) would lie 
in these operational Chow groups. 

2.5 Hermitian Coherent Sheaves 

2.5.1 

Definition 25 Let X be an arithmetic variety. An Hermitian coherent shea['.~ on 
X consists of a pair ( ~ ,  h), with ~.~ a coherent sheaf of 6x-modules on X which has 
locally free restriction to the generic fibre Xv, and h a smooth metric on the 
associated holomorphic vector bundle over X(C), invariant under complex con- 
jugation. 

Given an arithmetic variety X, let /~(X) be the free abelian group on pairs 
(;~,~/), with .~ an Hermitian coherent sheaf on X, and t l eA*(XR) .  Let 
E ( X )  c f i ( X )  be the subgroup generated by elements of the form 

where 

(~r , ' )  - ( . r  ~) + (~r ~") - (0. fl) 

~ : 0 --* ,~-' ~ .~- --* .~-" ~ 0 

is an exact sequence of coherent sheaves on X, locally free on XF, equipped with 
arbitrary Hermitian metrics, and 

fl = ch ( 4') + q ' -  rl + rl" . 

The Grothendieck group/s is, by definition the quotient of 13(X) by/~(X).  

2.5.2 For any X there is a homomorphism of abelian groups ~c'/~0(X) ~ / ~ ( X )  
which comes from viewing any vector bundle as a coherent sheaf. 

Lemma 13 l f  X is regular, the map •: ls  ) --* ls is an isomorphism. 

Proof It suffices to show that lc has an inverse. Let (.~, ~/) be a generator o f /~ ; (X) .  
We define ~c(0, q ) =  (0, r/). To define K(~ ,  0), we procede as follows. Since X is 
regular, the coherent sheaf underlying ~ has a finite resolution 
0 --, E, --* . . .  --* Eo -* ~- -* 0 by locally free sheaves on X. We may choose arbit- 
rary metrics hi on the E.'s, to get Hermitian bundles El. Since ~,~ is locally free 
over Xv,  the resolution e:/~.-* ~ restricts to an acyclic complex of Hermitian 
vector bundles on X(C). Let ch(E) be the corresponding Bott-Chern class, 
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~ v  
so that d d C ( c h ( e ) ) = c h ( l ~ ) - c h ( ~ ) .  Now consider the class a ( .~ ,q)  of 

~ 7 = o ( -  1)i(/~/, 0) - (0, ch(e)) in /s We claim that it is independent of the 
choices made, so that we can define a to be the inverse of ~c. Suppose that 
e':E'.--, ~ is a second resolution of ,N by Hermitian bundles on X. Then, by 
a standard argument, we may assume there exists a quasi-isomorphism c~ : E. --* E'. 
which is a morphism of resolutions from e to e'. From [GS3, Proposition 1.3.4] 
(whose proof extends, by induction, to complexes of arbitrary length) we get that 

i = 0  

which implies that cr is independent of the choices made. One can check that a is an 
inverse to ~. [] 

The homomorphism ~ c : / ~ o ( X ) ~ / ~ ( X )  is a special case of a cap product 

n"/~o(X) | ~,(x) --,/~ ~(x) 

defined by 

(~, q) n ( ~ ,  O) = ( d  | g ,  ch(d)O + q c h ( ~ )  + q .  0).  

One can check that this cap product makes/s  into a/~o(X)-module (compare 
[GS3, Theorem 7.3.2]). The map K is the cap product by the class in K'o(X) of the 
structural sheaf with trivial metric. 

2.6 Todd classes 

2.6.1 In this section we study properties of the Bott-Chern secondary characteristic 
classes (see 2.4.1 above) in the case of the Todd class and its inverse. 

First notice that, given an exact sequence 

~ : O ~ S - - *  E ~Q--*O 

of holomorphic vector bundles on a complex manifold X, endowed with arbitrary 
metrics, the following equality holds in A(X): 

(5) Td - 1  ( ~ )  = __ Td(o*) Td - ~( S) Td- 1 ( ~ )  Td- ~( Q) . 

To check this, just notice that both sides of (5) have the same image by dd c, depend 
functorially on ~, and vanish when ~ is split. Therefore they coincide by [GS3] 
Theorem 1.2.2. 
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Lemma 14 
(i) Let 

__. 

0 0 

S = S 

A ~ B ~ Q - - * O  

C - - * D ~ Q ~ O  

0 0 

be a commutative diagram of bundles on X, with exact lines and columns. Call these 
respectively C1, C2, C3 and L1, L2, L3 (from left to right and top to bottom). Choose 
arbitrary metrics on the bundles S, Q, A, B, C, D. Then the following identity holds in 
LI(X): 

Td(L3) Td(,~) T d -  '( d)  Td-  ~(O) - Td( L2) Td - ~(O) 

+ T d ( C ~ ) T d - ' ( B )  - T J ( C I ) T d - ~ ( C )  = o .  

(i') Under the hypotheses of (i), the following holds 

-- T d - I ( L 3 ) T d ( B ) -  T d ( L 2 ) T d - I ( C ) T d - I ( Q )  

+ Td(C2)Td-~(D) - Td(C~)Td-~(C) = O. 

__~ 81.---) .  

II 
0 ~ S'--* 

(ii) Let 

0 0 

S = S 

A ~ B ~ O  

C - - o D ~ O  

0 0 

be a commutative diagram with exact lines L t , L z ,  L3 and exact columns 
C1, C2, C3, with arbitrary metrics on S, S', A, B, C, D. Then, in A(X), 

T d ( C 2 ) T d - I ( C ) -  Td(C3)Td- I (D)  

+ T d ( L 3 ) T d ( A ) T d - I ( C ) T d - I ( D ) T d - I ( S  ') - T d ( L z ) T d - X ( D ) T d - I ( S  ') = O. 
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(iii) Let (D) 

0 0 0 

0 ~ $1 --* E1 --+ Q1 --* 0 

0 ~ 82 ~ E 2 ~ Q2 --* 0 

0 --* $3 ~ E3 --* Q3 --* 0 

0 0 0 

be a commuta t ive  d iagram with exact lines L1, Lz,L3 and exact columns 
C1, C2, C3, with arbi t rary  metrics on all the bundles. Then, in A(X),  

Td(L~ ) Td -~(0~ )Td - I ( Q  3 ) Td (/~3) -- Td(L2) Td - I(Q 2 ) 

+ Td(L3)Td-l(ij1)Td-l(Q3)Td(ff, x) + (Td(L1)* Td(L3))Td-~(Q1)Td-~(Q3) 

= T d ( C I ) -  Td(Cz)Td-I(Q~)Td-I(Q3)-  Td-~(C3)Td(E~)Td(E3) 

+ (Td(C2) * Td - ~ (C3)), 

where the , -p roduc t  is the one defined in 2.3.1. 

Proof. To prove the first identity in (i), after mult ipl icat ion by Td(C)Td(D), we 
compute  

Td(Ls) Td(A) - Td(Lz) Td(C) + Td(C2)Td(C) - Td(Ca) Td(D) 

= Td(L3)(Td(~q)Td(8)- ddCTd(Cx))- Td(Lz)Td(C)+ Td(C2)Td(8) 

+ Td(Cx)(-  Td(Q)Td(C) + ddCTd(L3)) 

= [Td(L3)Td(S) - Td(Lz) + Td(Cz) - Td(Cx)Td(Q)]Td(C). 

But, f rom [GS3, Pro-posi t ion 1.3.2], we get 

Td(L3) Td(#) = Ta(L~ | L1) 

and 

T~,(Cl)Ta(OA = Ta(C3 | c l ) .  
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From [GS3, Proposition 1.3.4] we conclude that 

Td(L3)Td(S)-  Td(L2)+ Td(C2)-  Td(CI)Td(Q_)= O, 

which proves (i). 

The proof of (i') is similar; one approach is to substract from (i). 
The proof of(ii) is similar to (i) (first multiply by Td(S').fd(C) Td(D)). It follows 

also from (i) by looking at the dual diagram, since Td(d'*)= Td(eg)*, where 
~* = ( -  1)Pa when c~ c AP'P(X) (this follows from the axiomatic characterization of 
Td(g)). 

To prove (iii) one may also reduce this equation to Proposition 1.3.4. in [GS3] 
or use the following argument (which also works for (i), (i') and (ii)). Let q be the 
difference of the left-hand side and the right-hand side of this equation. Notice that 
q is functorial in the diagram (D), and vanishes when both the lines and columns 
are (metrically) split. Furthermore dd"(vl) = 0. As in the proof of the Proposition 
1.3.4 in [GS3] we may define a diagram (/)) of bundles on X x IP ~ with exact lines 
and columns, whose restriction to 0 (resp. Go)) coincides with (D) (resp. has split 
lines). Let O be the corresponding form, and p : X x IP 1 ~ X the projection. We get 

0 = p,(dd c (0)(log Izl  2 ) )  = p,(OddC(logpz[ 2) )  = 01Xx 0 - -  01Xx -.~ . 

So, to prove the vanishing of q we may assume that the lines in (D) are split. By 
repeating the argument, we may also assume that the columns are split, q.e.d. 

2.6.2 Let f :  X -~ Y be a morphism of arithmetic varieties. We assume that f is 
a local complete intersection morphism (1.c.i. morphism) which is smooth on the 
generic fiber YQ. Choose a Hermitian metric on the e,~complex relative tangent space 
Tfe. We shall attach to these data a Todd class Td(f). 

Since X is quasi-projective we may imbed X in a projective space IP u and let 
i :X ~ YxlP N = P be the product of this imbedding with the map f We get 
a factorization f = gi, where g : P --, Y is the first projection: 

X i ) p  

I N Z ~  

Y .  

Since f i s  1.c.i. and g is smooth, the immersion i is regular. Denote by N = Nx/e the 
normal bundle of X in P and Tg the relative tangent-bundle of g. Choose 
Hermitian metrics on N and Tg. Recall from [GS3] and,2.4.2 that we can attach to 
these Hermitian bundles (operational) Todd classes Td(N) acting on C"H (X)Q 

and Td(Tg) acting on CH.(P)Q. 
On X ( ~ )  there is an exact sequence of vector bundles 

g : 0 ~  T f r  i*T,qr ~ Nr ~O . 

We denote by T d ( g ) s A ' ( X )  the Bott-Chern secondary characteristic class at- 
tached to this sequence [BC, GS3]. In particular 

ddCTd(#) = Td(Tfr Q ]Vr - Td(i* T9r ) . 
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Let 

(6) T d ( f  /g) = Td( g) Td( IVr - 1 E A "( XN.) , 

so that 

m m 

dd~Td(f /g)  = T d ( T f r  T d ( i * T g r  

A 
For  any ~ ~ CH.(X)  we define 

- -  A ~ A 

(7) " ~ ( f ) c ~ c t = ' ~ ( i * T g ) m ( T d - l ( N ) ~ c t ) +  T d ( f / g ) c ~ C H . ( X ) ~ .  

A A 
When~ Y = Spec(A) is the ground ring, we also write Td(X)  instead of Td(f ) ,  

and Td(X/P)  instead of Td(f /g) .  
If we assume that X and Y are regular and the ground ring is not  necessarily 

good, we can also define 

A A - -  A ~ A 

Td( f )  = Td(i*Tg)Td - I ( N )  + T d ( f  /g)~CH'(X)r . 

A 
Proposition 1 (i) The class Td ( f )  depends only on the choice of metrics on T fr and 
not on the choice of i, g, nor on the metrics on N and Tg. 

(ii) Let f :  X -~ Y and g: Y-~ Z be two maps between regular arithmetic varieties. 
Assume that l and  g are smooth over F and choose a metric on T fr Tgr and T(g f ) r  

A 
Then the following identity holds in CH'(X)  

A A A 

T d(g f )  = T d ( f ) f * (  Td(g)) - a( Td(E')) , 

where ~' is the exact sequence 

0 ~ T fr  --* T ( g f ) r  -*f* Tgr ~ O. 

Proof. To prove (i), given two factorizations f =  gli l  = g2i2 as above, we may 
consider the fiber product  P1 x r P 2  and the diagonal imbedding, so we are led to 
consider a diagram 

X 
J f 

r i l  

p ,  P 
~ P ~ Y 

where p, g and h = g o p are smooth.  We want to show that, for arbitrary choices of 
metrics, 

ITd(i* Tg)c~(Td - l ( ] ~ X / p ) r  ) + T d ( f  /g)c~c~ 

= ~ ( j * ~ )  ~ (T~ -~(Nx/e,) c~ a) + T d ( f / h ) n  ct. 

(The proof  in the regular case is similar). 
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On X(~F) we have a commutative diagram with exact rows and columns 

0 --,j*rpr -* 

0 - - , j * T p r  

0 0 

id 

T.& - -  T &  

j*  The ~ i* Tgr ~ 0 

N x  r C) ~ Nxtr --~ 0 

+ + 

0 0 

505 

Let L1, L2, L3 (resp. C1, C2, C3) be the three lines (resp. columns) in this diagram. 
By definition 

T d ( f  /h )  = T d ( C 2 ) / T , t ( S . ; , ~ , )  , 

Td(g/h)  = Td(C3)/Td(l~dx,p).  

and 

So we compute 

T ' d ( i * T g ) m ( T d  - l ( ] V x / p ) n c  0 + T d ( . f / g ) m ~  -- T d ( j * T h )  

~(IT'd - l (]Vx,p,)~ ~ ) - T d ( f  / h ) ~  c~ 

= [Td( j*  Tp) Td(i*T9)_ Td( j*Th)]  Td - l ( ]Vx/p)Td-  ' ( j * T p )  c~ c~ + [Td(Nx/e,)  

- Td( j*Tp)  Td(Xx/e)]  Td(j* Th) Td - l(Nx/e, ) Td-  J (Nx/p) Td - t ( j .  Tp) c~ c~ 

+ T d ( f / 9 )  c~ c~ - T d ( f / h )  ~ 

= a(x) ~ 

with 

x = T d ( L 3 ) T d ( j * T h ) T d - l ( N x / p , ) T d - l ( . N x / p ) T d - I ( j * T p )  

- T d ( L 2 ) T d - I ( N x / p ) T d - I ( j * T p )  

+ T d ( C 3 ) T d - I ( N x / p , ) -  T d ( C 2 ) T d - l ( l ~ x / p ) .  

By Lemma 14(ii) applied to the diagram above, we know that x = 0. This proves (i). 
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To prove (ii), since f and g are 1.c.i., by a standard argument there exists 
a commutative diagram 

X i , M '  : ,  M 

j.N~ .~P ,~q 
y k~ M" 

. ~  Jr 

Z .  
in which p, q and r are smooth, i,j, and k are regular immersions, and the square is 
cartesian. Let us write T v, Tq, T~, T~q, N~, N j, Nk, and N~ for the relative tangent 
bundles and the normal bundles respectively of the maps p, q, r, rq, i,j, k, and ji. 
Note that Nj ~-p*Nk, while Tp~-j*Tq. We choose arbitrary metrics on these 
bundles, except for requiring that the two isomorphisms we just mentioned are 
isometries. On X ( ~ )  we get the following commutative diagram with exact lines 
L1, L2, L 3 and exact columns C~, C2, C3 (we omit to write the subscripts C): 

0 0 0 

0 ---* Tf ~ i*Tp --+ Ni --* 0 

0 -~ Tof --* i*j*Trq -~ Nji -~ 0 

o ~ f * T g  ~ f * k * ~  ~ f * N ~  ~ 0 

0 0 O .  

By definition of Td we have 

and 

A A _ A 

Td( f )  = Td(i*Tp)Td -~(Si)  + Td(L~)Td- I (Ni ) ,  

f*  Td(g) = Td(f*k*T~)Td -~(f*IVk) + T d ( L 3 ) T d - l ( f * N k ) ,  

A A - -  A 

r d ( g f )  = Td(i* j* Trq)rd - I(-Ni,) + rd(LElrd- ' ( i~ j i )  . 

Using the first two formulas we find 

T d ( f ) f * T d ( g ) -  Td(C1)= Td( i*T~, )Td- l (N, )Td( f*k*T~)Td-1( f*Nk)  

+ Td(L~)Td-l (S~)Td( f*k*T~)Td-~( f*Iqk)  

4- Td(L3) Td- l ( f*  lVk) Td(i* Tp)Td- X( ]~i) 

+ (Td(LI),  Td(Ls))Td-I(1V,)Td-I(f*_Nk) - Td(C,) .  
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Using the exact sequences C2 and C3 we may  rewrite as follows the formula for 
T d ( g f ) :  

T d ( g f )  = Td( i*Tp)Td  - l ( l q i ) T d ( f * k * T ~ ) T d  -'(.['*]Vk) + (Td(C2)*  T d - ' ( C 3 ) )  

-- T d ( C 2 ) T d - I ( N , ) T d - ' ( f * I Y k ) -  Td ' (C3)Td( i* 'Fr , )Td( f*k*Tr)  

+ T d ( L z ) T d - I ( t V j l ) .  

Compar ing  the right hand sides in these two formulas follows from Lemma  14 (iii) 
applied to the d iagram above, q.e.d. 

2.6.3 Concerning the classes T d ( f / g )  we shall need the following results. We 
assume that  the ground ring is r and first consider the case where Y is a point. 
Then we have the following 

L e m m a  15 (i) I f  we choose two different metrics h' and h" on the tangent bundle 
to P, then 

T d ( X / P ,  h') - r d ( X / P ,  h") = Td(Tp, h', h " ) T d - ~ ( N x / p ) .  

(ii) U h '  and h" are two different metrics on the normal bundle Nx/e ,  then 

T d ( X / P ,  h') - T d ( X / P ,  h") = - k * ( T d - ' ( N ,  h', h" ) rd (T , ) ) .  

Proof  (i) follows from L e m m a  14 (i) with S = 0 , /~  = (Tp, h'), D = (Tp, h"), ,4 = 
C =  i*Tp and ( ~ =  Nx/p,  when (ii) is the special case M = P of the next 
lemma, q.e.d. 

N o w  consider two closed immersions  j : X  ~ M and k : X  ~ P of smooth  
complex manifolds, and q : P ~ M a smooth  m a p  such that  qk = j. 

L e m m a  16 The following identity holds in ,4(X): 

T d ( X / P )  - T d ( X / M )  = rd  - '(0 ~ k* Tq ~ ~Vx/e ~ NX/M --* O)k* Td(Te) 

+ T d ( O ~ k * r . - - * k * T p ~ j * T M ~ O ) T d - ' ( N x ~ m ) T d - ' ( k * T q ) .  
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Proof On X we have a commuta t ive  d iagram with exact lines and columns: 

0 0 

Tx = T~ 

0 ~ k*Tq ~ k * T p  ~ j * T ~  ~ 0 

II .L .L 

0 ~ k*Tq --~ Nx/e ~ Nx/M --~ 0 

$ ; 

0 0 

By applying formula  (5) to Td-I(L3)  and then L e m m a  14 ii) the p roof  is 
complete,  q.e.d. 

2.7 Segre classes 

Let X be an ari thmetic variety and E = (E, h) a Hermit ian  bundle of rank r on X. 
Denote  by P = IP(E) the projective space of E in the sense of Grothendieck,  
representing rank one quotients of E, and f :  P ~ X the projection. On P we have 
the canonical  exact sequence 

~~ ~ S ~ f * E  ~ ((~(1) -~ O, 

where C(I) is the tautological  line bundle. We equip J'*E with the metric f *  h, and 
S (resp. r with the induced (resp. quotient) metric. For  every integer k > 0 
define 

g'k(ff,)=f,(ea(6)(1)) k+r- ) e C H g ( X ) .  

Following I-E] we define an element Rk in Ak- I ' k - I (X) ,  k > 0, as follows. Let g v 
be the dual of g and egv(1 )=  g "  | (~(1). For  the obvious choice of metrics, let 
er(g ~ (1)) e ,~r- 1.r- l ( p )  be the r-th Bo t t -Chern  class of this exact sequence. Then 
Rk is th k-th coefficient of the formal  power series 

( )( (8) 2 Rk tk = ~ f*(c,(C(!(l))k-le,(g~(1))) tk 2 cj(E)(-- t) j , 
k > O  k > O  j > 0  

where we have used the module  structure of A ' ( X )  on closed forms in A'(X).  
The ari thmetic Segre class ~k(E)~ C"H k(X), k > 0, is defined by ~o(/~) = I and 

(9) gk(E) = ~'k(E) + a(Rk) when k > 0 .  

L e m m a  17 The following identity of formal power series relates Segre classes and 
Chern classes: 

~ ( E ) ( -  t~ = ~(E)t ~ 
j ~ O  k_O 
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Proof F r o m  the exact sequence 

v (1) '0  ~ ~,, -~.f*(E ~ )(1) ~ S ~ (1) ~ 0 ,  

the additivity of Chern classes, and their behaviour  under  tensoring by a line 
bundle (see [GS3]) ,  we get 

a(~r(g~ (1))) = Or((f~p O S~ (1)) - ~ r ( f * ( / ~ ) ( 1 ) )  

= - e~(f*(/~ v)(1)) = - ~ f*(Oj(E~ ) ) C l ( ~ ( ) ( 1 ) )  r - j  . 
j_>o 

Fur the rmore  ej(E ~) = ( -  1)Jej(E) (loc. cit.). If we apply a to (8) we get, by the 
projection formula,  

a ( R k ) t k = -  ~ f*(6~(U(1))k-l,f*(c3 (ff~))~'(C(li)'-j)Ik t 
k > O  k > O  

j>_o 

�9 F, o j ( s  ~ ( -  rl j 
j ~ o  

: -- Z ~j(E)(--t)J( ~ f.(~((~(1))k-J+r-~)t k-j) 
j > O  k > O  

�9 F~ ~ j ( s  t)J 
j > o  

since f .(~l((9(1))") = 0 unless n > r - 1. Using ~o(E) = l, the definition of ~'k(/~) 
and the equalities we just proved,  we conclude that  

a(Rk)t k= -- ~" g'k(s ~ Cj(/~)(-- t)  j 
k > O  k=>O j > O  

and the l emma follows f rom (9). q.e.d. 

It follows from this l emma that  Segre classes provide an alternative way to 
define Chern classes, hence all characteristic classes of Hermi t ian  vector bundles, 
rather  than the splitting principle used in [GS3]  (compare  [E] and [F3]). 

3 A characteristic class for Hermitian coherent sheaves 

3.1 The Chern character with supports 

Let P be an integral ari thmetic variety (over a good ari thmetic ring), and i: X --, P 
a closed ari thmetic proper  subvariety,  with a choice of metric on the normal  bundle 
to X(C) in P(C). Suppose that  we are given a bounded  complex E. of locally free 
sheaves on P, acyclic off X, which over  the generic fibre Pv is a resolution of 
a Hermi t ian  bundle J~ on XF. Then we can define a Chern character with supports, 
chX(E.)~ CH.(X)Q as follows. 

Let n: W ~  P • p1 be the G r a s s m a n n  graph construct ion associated to the 
complex E.. As in Sect. 1.1, we consider the cycle Z = [ W~]  - [ f i ]  and write ]Z[ 
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for its support. Let/~. be the extension of E to W, and E. z its restriction to I ZI. Since 
E. z is a resolution over IZ]v of the direct image of Y ,  we may equip the bundles 
E z with Hermitian inner products satisfying condition (A) (see 2.4.)4,,Definition 4), 
and consider, as in loc. cit., the Bott-Chern singular current ch(E. z )  of this 
complex. Let us write 7r z" I ZI --* X for the projection in nduced by the map n '  W ~ P. 
Observe that, because of Eq. (4), the current ddC(rcZ,(ch(E.Z))) is smooth on X, and 

hence, by [G,GS2, Theorem 1.2.2(i)], that a(nZ,(ch(E.Z))) makes sense as an 
element in CH.(X) .  Furthermore, the cycle Z may be viewed as giving a class in 
C H d i m ( Z ) ( I Z l )  = CHdlm~z)(lZl). 

Definition 6 The Chern character of E. with supports in X is: 

e'h Xp( E.) = 7rZ (c'h ( ff~. z) n Z ) +  a (n ,  ~'h( E.Z)) . 

We shall write sometimes c"hX(E.) rather t han"~  X(E.). This class depends on 
the choice of metrics on ~- and on the normal bundle to X(C) in P(C), but it is 
independent of the choice of metrics on E. z. This follows from the case 
E". = E'. = E. of the following lemma. 

Lemma 18 I f  k : E'. --* E". is a quasi-isomorphism which, over F, induces a morphism of  
resolutions of  ~,~, then 

chX(E'.) = chX(E".) . 

Proof  Replacing the quasi-isomorphism by its mapping cone, if necessary, we may 
suppose that k is injective in each degree. By Lemma 5 we know that 
W(E'.)  = W(E".) and that the map k induces a map kZ:E ' .Z-*  E'.  z which is 
a monomorphism with cokernel a split acyclic complex of locally free coherent 
sheaves. Let us now choose arbitrary metrics on the complexes E'. z, E'. z, which 
satisfy condition (A), and let us also make a choice of metrics on the quotient 
complex compatible with the splittings. By Theorem 4 

(c~ (s z) - cG(s z) +G(~-~/E'.~)) n z 

a[~m (--1)m+'~(0 (E":) 'z "z '~ ] = ~ ( E m / E m ) - * O )  ~ ( E , . ) --* 

However by [BGS3, Theorem 2.9], the right hand side of this equation is equal to 

a[ch(E' ,  z ) -  ch(E' ,  z) - ch(E  Z/E z)] . 

Since E".Z/E'. z is split acyclic both"~(E" .Z/E ' ,  z) and c'h(E'.Z/E', z) vanish. So we 
conclude that 

(c"~(E". z) -- cl-'h( E'.z)) n Z = a[ c-'h ( E'. z) - c"h( E ' . z )  ] . [] 

Corollary 3 Let g be an Hermitian coherent sheaf on X and suppose that P is regular. 
For any resolution E. o f  ~ by a complex of  locally free coherent sheaves on P, the 
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" ~ "  X A 
class ch (E.)e  C H ( X )  is independent of  the choice of  resolution. We shall denote it ~x(~r 
Proof. Given any two resolutions E'. and E". of J~, there exists a third resolution E. 
which maps quasi-isomorphically to each of the first two resolutions. By the 
previous lemma, it then follows that the class"~ x(E) in C"H.(X)is independent of 
the choice of  resolution. 

Lemma 19 

(i) co(c~' X(E.)) = ch(~)Td-1(N). 
(ii) I f  we are given two metrics h' and h" on the normal bundle of X(C) in P(C), 

then the difference of  the associated Chern characters with supports is given 
by the formula 

A A 

chX(E.), x ,,, - ch (E.) = a (ch (o~)Td -~ (N ,  h', h ' ) ) .  

(iii) / f  we are given a short exact sequence , J  of  complexes o f  locally free  
coherent sheaves: 

O ~  E.'--* E . ~  E . ' ~ O  

which on the generic fibre is a resolution of  the exact sequence o f  Hermitian 
coherent sheaves: 

O ~ , ~ ' - - ,  ~ ~ Y " ~ O  , 

then 

cl"~X(E'.) - c~, X(E.) + c ' hX (E"  ) = a ( ~ ( ~ 4 ) T d - ~ ( l V x / e ) )  

Proof. Recall f rom (4) that  

dd~ ch( E. z) = i . (  ch( J~) T d -  l ( Nx/e)  ) - ch( ff~z) . 

Since n ,  i ,  is the identity, we get par t  (i) of the lemma. To  prove  part  (ii), consider 
the embedding i x le  1 : X x P 1 ~ p x P 1, and give the normal  bundle to this em- 
bedding a metric which restricts to h' at 0 and to h" at ~ .  Given part  (i) of the 
lemma, the proof  now proceeds by the same method  as [GS3] ,  section 1.2. The 
proof  of par t  (iii) is similar, except that  in the family of embeddings  i x lp, we 
consider a Hermi t ian  coherent  sheaf ~ which is flat over P ' ,  and which restricts to 
o ~ at 0 and to ~ '  @ Y "  at oo. This sheaf ~" may  be constructed as in [GS3, 1.2.3], 
and we give it an Hermit ian metric for which the restriction i somorphisms at 0 and 
at oo are isometries. [] 

Given the definition o f / ( ; ( X ) ,  one immediately obtains: 

Corollary 4 Assume P is regular. Then the map 

(~r ~)~'~x(~r + a(~) 

defines a homomorphism of  abelian groups 

~ ; ( x )  ~ C~'H.(X)Q 
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Lemma 20 We have the following module property of the Chern character with 
supports. I f  G is a locally free coherent sheaf with Hermitian metric on P, then: 

ch X( E. | i 'G)  = ch e( E.).~c~ ( G) . 

Proof Note that W ( E . |  G)= W(E.), and that on this scheme we have 

E.|  ~- ft,. | G. On restricting to IZl, we find that 

(E  | G) z = E. z | rcz*i*G . 

Now observe that 

ch( E. z | rtz* i* G) = ch ( E.Z)rcz* i* ch( G) , 

[BGS3, 1.3.3] and the result follows from the projection formula for currents. [] 

Lemma 21 Let X --* P be a closed embedding of arithmetic varieties, and suppose that 
g : P ~ Y is a proper map of arithmetic varieties, such that the induced maps from 
P(C) and X(C) to Y(C) are both smooth, l f  ff~. is a complex of Hermitian locally free 
coherent sheaves on P, acyclic off X,  which on the generic fibre PQ is a resolution, 
satisfying condition (A), of a Hermitian coherent sheaf J~on XQ, then, writing f jor 
the restriction of g to X,  we have the following equality in CH.( Y)Q; 

A A 

f ,  (ch Xe(E.).ic~ ) = g,(ch(E.) c~ ct) + a(g,  ch (E.)o)(~)), 

where ~ = ' ~  (x), for x S/s or P is regular and ~c~'H'(P).  

Proof First we fix the metric on the normal bundle of X x P1 in the Grassman- 
graph construction W = W(E),  as in [BGS3, Sect. 4(d)], via the isomorphism 

N X x P ' / W  ~-- p* Nx/v(-- oo) , 

where p is the projection from Yx P 1 to Y. 
On C-valued points, the map 7~ = 9 o n from W to Y x P t induces a proper map 

of complex manifolds. As in loc. cit., choose a metric on/~. such that its restriction 
to 0 coincides with the one on E., its restriction to /~ is split acyclic, and its 
restriction to I z l  satisfies condition (A). 

Consider the class fc,("~(ff~.).qCt)+a(~,c"h(ff~.)q*~o(ct))in C'AH.(YxP1)Q, 
where q : W - ~ P  is the projection. The restriction of this class to {oc} is the 
left-hand side of the equation in the lemma, while the restriction to {0} is the 
right-hand side. By Theorem 4.4.6 of [GS2] (which remains valid when X has 
singularities away from the generic fibre Xv), the difference of these two is 

~c,(co(c"~(E-.) + a(c'h(ff~.)))q*co(c~))dd~( - loglzl 2) 
p~ 

where z is the parameter on P 1. However, by (4), co(~(/~.) + a(c'h(/~.)))is equal to 
j , ( c h ( ~ ) T d - l ( N x •  where j : X x P I ~  W is the inclusion. Applying the 
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projection formula for integration over the fiber, it remains to observe as in [BGS3, 
loc. cit.], that 

ch(p*Nr/e(- o o ) ) l o g [ z [  2 = 0 . [ ]  
p~ 

Lemma 22 (i) Suppose that i : X  ~ P is a closed regular embedding and ~ is an 
Hermitian vector bundle on X; then for any resolution E. ~ i , ~  by locally .free 
sheaves on P, 

c"~ x(E)  = c'h (~r ~ (T~-  ~ (Ux/~) n I -X]) .  

(ii) Suppose that X and P are both regular. Then for any Hermitian coherent sheaf 
~ o n X  

c~X(~)  c " h ( , r  

Proof (i) Since the inclusion i : X --, P is a regular embedding, the cycle Z at infinity 
is irreducible and equal to P (N  | 1), with N = Nx/p (Theorem 1 (ii)). Let H be the 
tautological codimension one sub-bundle of N @ 1 on P (N  | 1). Then the Koszul 
complex K.(H) is a resolution of s,(_gx, where s is the zero section, and hence 
K.(H) | ~ * ( ~ )  is a resolution of s,v~. Furthermore, we know from Theorem l 
(and Theorem 4.8 of [-BGS3]) that there is a quasi-isomorphism: 

O:E. z ~- K.(H) @ r t*(Y) 

in which ~b is an epimorphism with split acyclic kernel. If  we give K.(H) the metric 
obtained by viewing H as a sub-bundle of N �9 1, then K.(H) | r t * ( ~ )  automati- 
cally satisfies condition (A) as a resolution of s , o  ~ (see [BGS3] loc. cit.). Hence, 
as in Lemma 18, 

~ A A 

a(ch(E, z) - ch(K.(H) | 7t*(~)))  = (ch(K. (H)  | ~z*(~)) -- ch(E.Z)) n [Z] .  

The result now follows from Theorem 4.13 of [BGS3]. Part  (ii) follows immediately 
from part (i). [] 

Lemma 23 Let E. be a complex of locally fi'ee coherent sheaves on the arithmetic 
variety P, and let X c P be the support of the homology of E.. Suppose that Xv,  
viewed as a reduced subscheme of Pr, is smooth over F, and that, on Pv, E. is 
a resolution of an Hermitian vector bundle on Xv.  Let i:D ~ P be an arithmetic 
subvariety which is a principal (i.e. effective Cartier) divisor and meets X transversally 
over F. Let us write { D~ } for the irreducible components of D, n~ for the multiplicity 
of D~ in the Weil divisor ED] = ~ n~[ D~] associated to D, and tl~: X n D, ~ X n D 
for the inclusion. Then: 

i f f ~  Xe(E.) = 2 n~q~* "~  x~  O,(E Io~)6 C"H.(X n D) ,  
el 

where ix" X n D ~ X is the inclusion. 
This is also true when, more generally, D is a divisor on P, which is contained in 

a Zariski open subset U c P, and is principal as a divisor on U. 

Proof Let us fix some notation. Write Ge for the product of Grassmannian bundles 
I-ImG(nm, Cm(E.)) over P x p1 as in 1.1.1, GD for the restriction of this to D x p1 
(which may be identified with the corresponding product of Grassmannians for the 
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restriction of E. to D). Let i~ : Go ~ Gp be the inclusion of the divisor Go into Ge. 
Let Gpoo be the fiber of Ge over P x {oQ}, which is a divisor in Gp, and let 
i~ :Gv~--* Gp~ be the inclusion of the corresponding divisor in Go. Write 
j : G~, ~ --* Gp for the inclusion, and for each ~, Joo for the corresponding inclusion 
over D, x P 1. Observe that Gp ~ ~ Go = Go 00. 

Now Go~ is a principal divisor in the pull-back G ~ of Go over D x (A 1 - {0}) 
(we give G ~ a similar meaning); let us write t = 0 for the equation of this divisor. 
Following 2>22.6, we have a pull back map j * : Z k ( G D ) ~  Zk- I (Go  ~) on cycles as 
well as on CH., together with similar pull back maps j* ,  i* ,  and i* Gt)' 

Let W c  Gp be the Grassmannian graph of E. and Z = j * ( [ W ] )  - [/~] on 
Gp ~. Since on the complement of the divisor Gp ~o the variety Wis the image of the 
section of Gp over P x A ~ corresponding to the graphs of the differentials in E., we 
have an equality of cycles 

i*(1- w ] )  = Y. n~[ woJ 

on the open set G~ - Gpo~. The cycle j~, [  WD,] = Zoo + [/5~] is used to compute 
the Chern character with supports of E.ID,. Since j * i * ( [  W]) depends only on the 
restriction of [ W] to Ge - Gp o~, 

j * i * ( [  W]) = Z n~,(ZD, + [ / ) , ] )  �9 

However, we know, following [Fu2, Corollary 2.4.2], that the maps j* i* and i ' j *  
agree up to rational equivalence. Thus there is a Ka-chain ~b on Go~ such that 

div(qb) = j * i * [  W] - i*j*[  W] . 

We claim that this K~-chain can be chosen so that its support does not intersect the 
generic fibre. For the varieties Go, W, and Gp ~ all meet transversally over F, hence 
the cycle j* i*[  W] - i ' j * [  W] is supported over the special fibres. Examining the 
proof of Theorem 2.4 in [Fu2], we see that the K 1-chain 4) is constructed by 
blowing up the components of the intersection which have excess intersection, 
which in this case are all supported over special fibres. Another argument, using 
K-theory and the Gersten complex ([Q1], [G1])  may be given as follows. Let 
f be an equation for D; then the symbol { f , t }  defines an element of 
K z ( W c ~ ( G p -  (GhD I w Gp~o))), and hence in Kz of the function field of W. The 
differential of this element in the Gersten complex is a K~ chain 0 supported on 
d iv( f )  u div(t); see [GS2, 4.2.5 and 3.3.5], and [Q1, Sect. 7]. Since the differential 
in the Gersten complex is compatible with products [G1, Sect. 8], one knows that, 
on the components of d iv ( f )  where t does not vanish, ~ is equal to 0t = d iv( f )  �9 
{t}, while, on the components where t vanishes but f does not, ~ is equal to 

= J o t s [  W], while - Ol = - div(t)* {f}. Now observe that div(0t) "* "* 
div(0y ) = i~oj* [ W]. Since the composition of two differentials in the Gersten 
complex is zero, div(0 ) = 0, and hence 

j * i * [ W ]  - i*j*[ W] = div(qS), 

i.e. 

no,(ZD, + [/5,])  -- i*(Z + [/~]) = div(~b), 

where q~= O -  0, + 0 f  is a Ka-chain supported on div(f)c~div(t)c~ W. 
Since D and X are smooth and meet transversally over F, it follows from the 
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identification of the generic fibre of the Grassmannian-graph construction with 
deformation to the normal cone (see Theorem 1 ii)), that over F the two cycles 
ZI)~ + [/?v] and i*(Ze + [age]) coincide, and hence that the cycle 4~ constructed 
above is supported over the special fibers. Furthermore, since away from X, W and 
WD, are isomorphic to P x P 1 and D, x P ~ respectively, we know that the support 
of q5 lies over X n I O I- 

Now choose metrics on/~. as in the proof of Lemma 21, and consider the class: 

[ c h ( E  ) n Z ]  + a[~Z,'c'h(EZ)]).  i* chX(E.) = i*(rcz, ~ z 

Since X(C) and D(C) are smooth and intersect transversely in P(C), 

i*(a[rcZ, ch(E.Z)]) = a[zcZ, och(E.ZO] . 

Therefore we must show that 
~ Z i* Tc,(ch (E. z) n Z )  = ~ n~tl,(rc zo" (ch(E. ~ n ZD~)) 

in C/"H.(X n ]D I) where q ~:X n D~ ~ X n ]D] is the inclusion. Since q~o ~z,~ factors 
through the inclusion of Zo, into ]Z[ n IDI:= (rcz)-l(IDI) followed by the pro- 
jection from IZ ln lD]  to X nID],  we know, using Theorem 4 Property 6 
for this inclusion, that the right-hand side of this formula is equal to 
~I,ZI~IDI( '~(EZllzI~IDI)n(~n~ZD,)  ). By the statement at the end of 2.2.6. and 
Theorem 4 Property 2 applied to i, we know that the left-hand side of the equation 
is equal to rtl,ZlnlDl(c"h(E.ZllZlnlDI)n i ' Z ) .  As we saw above 

i * Z  = ~ n, Zo, - div(qS) + r 

in CH.I'(IZInIDI), where r = ~ n , [ / ) , ] - i * [ f i ] .  Since the support of z is 
contained in P n  [Z[, E.Z[l:l is (metrically) split, and hence c'~(E.Zll~l)nr2= 0 in 
C'H.(Izl). Because the support of the K~-chain q5 does not meet Xv,  div(~b) = 
(div(qS), 0), and therefore 

ch( E.z till) n div (qS) = 0 

in C H  (I ~b I). Hence 

and we are done�9 
This completes the proof of the main assertion of the lemma. Since the 

construction of the Chern character with supports is compatible with pull-back by 
fiat maps, we get the second assertion. [] 

3.2 The construction o f  T 

3.2.1 We wish to define an analog in our situation of the Riemann-Roch trans- 
formation used by Baum et al. in proving the singular Riemann-Roch Theorem, 
[BFM]. This will be a map 

r. K o ( X )  -* C H ( X ) Q  , 
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depending only on the choice of an Hermitian metric on the tangent bundle to 
X(C). So let X be an arithmetic variety, ~ an Hermitian coherent sheaf on X, and 
i : X ~ P a closed immersion of X into a regular irreducible arithmetic variety P. 
Let us fix a metric on the normal bundle of X(C) c P(C). From Corollary 3, we get 
from these data a class cfh x ( ~ ) e  C"~.(X)o" Let us now, in addition, fix metrics on 
the tangent bundles of X(C) and P(C). Recall from 2.6.2 that there is a secondary 
characteristic class T d ( X / P ) ~  A(XR), such that we have an equation of forms on 
x(c): 

dd c T d ( X / P )  = Td( Tx(c)) - i* Td( Tp(c)) Td - 1 ( S x ( c ) / n ( c ) )  . 

Recall also that we defined in 2.6.2 the arithmetic Todd class Td(P)  in the 
arithmetic Chow group of P. 

Definition 7 We set 

zp(o~) = ' ~ p ( ~ - ) . i T d ( P )  + a(ch(o~)Td(X/P) )  . 

The following lemma follows directly from the equations above and Lemma 
19.1. 

Lemma 24 With the notation above, cO( Z p( ~ ) ) = ch ( 9 ) Td ( iPx (c) ) �9 

Ultimately, we wish to show that, given ~ ,  this class only depends on the choice 
of metric on the tangent bundle to X. Hence we must show independence of all 
other choices made. First we have: 

Lemma 25 The class z e ( ~ )  does not depend on the choice of metrics o n  Tp(c) and 
N x (c)/P(C). 

Proof If we have two different metrics h' and h" on Tn(c), then, from Lemma 15(i), 
we get 

z e ( ~ ,  h') - z e ( ~ ,  h") = c"'hX(~).i"~(P, h') - " ~ x ( f f ) . , T d ( P ,  h") 

+ a(ch(o~)Td(X/n ,  h') - c h ( ~ ) T d ( X / n ,  h")) 

A 

= chX(o~).i(a(Td(Te,h ', h")) 

+ a (ch (J~) [Td(X /n ,  h') - Td (X /P ,  h")]) 

= a ( c h ( g ) [ T d ( T e ,  h', h" )Td- l ( lVx /e )  + Td(X/P,  h') 

- Td(X/P,  h")]) = 0 .  

Now if we put two metrics on the normal bundle we get 

z~,(~, h') - zp(ff', h") = [ chX(o~, h') - chXe(o ~ ,  h")] . iTd(P)  

+ a(ch(o~)(Td(X/P,  h') - Td (X /P ,  h")) ) ,  

which is zero by Lemma 19(2) and Lemma 15(ii). [] 
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Having eliminated the dependence on metrics, it only remains to show: 

Theorem 5 The class rp(-~)  is independent of  the choice of  the embedding of  X into 
a regular integral variety P. 

We shall proceed in several steps. 

L e m m a  26 Let j:  X ~ M and k: X ~ P be two embeddings of  X into regular integral 
varieties, and suppose that there is a smooth map q : P ~ M,  such that qk = j. Then 

Proof. We are in the situation of Sect. 1.2.2, and we shall use the notat ions given 
there. In particular,  there is a complex (~. = Tot(G..) over W x  M P. Its restriction G. z 
to IZ] xMP is quasi - isomorphic  to v*(V.) | q* (E. z) by L e m m a  10. 

Choose Hermi t ian  metrics on the normal  bundles Nxi('). M(C) and NxIc)/p(ct and 
on the relative tangent bundle Tp(c)/M(C). The normal  bundle of X(C) in 
X(C) x / P ( C )  coincides with k*Ti,(c),M(c), and ]Z](C) = P(Nx(c)MIC) | I), there- 
fore the normal  bundle of X(C) in ]ZI (C)xMP(C)  is isomorphic to Nx(c  :'M c) | 
k*Tp(c)/M(c). We endow it with the or thogonal  direct sum of the two 

chosen metrics. Let us write T d - I ( X ,  P, M)  for the Bot t -Chern  secondary class 
associated to the characteristic class T d -  ~ and the exact sequence of bundles on 
x(c): 

0 ~ k* Tp(C)/M(C ) --* Nx(c)/p(c ) --~ NX(C)/M(C ) --* 0 .  

L e m m a  27 I f  Y c ]Z] xMP is the support o f  the homology of  G. z, and h" Y ~ X is the 
projection map, then, for the choices we made of  metrics on normal bundles, we hat~e 

A - -  A ~ 

c h g ( ~ )  = ~ n,h~,( ch ~, .... p(G~lz,,)) -- a(Td ' ( X ,  P . M ) c h ( . ~ ) )  

Here the Zp are the irreducible components of  FZ], and Z = ~ n / j Z e ,  Y/J= 
Zlt XMP c Y, and h~: Y~ ~ X is the induced projection. 

Proof. Let T be the support  on W X M P  of the homology  of (~.. There is a natural  
projection from T to X x P 1, which is an i somorphism over X x A 1 and such that  
the inverse image of X x {oo} is g. Given any t e P  1, we write Tt for the inverse 
image in T of X x { t }. Notice that  the generic fibre of T is isomorphic  to the one of 
X x P 1. Let J0 : P ~ W XM P and j~  : W~ x M P ~ W XM P be the inclusions corres- 
ponding to {0} and {or} in p1. 

The normal  bundle of  X(C)  x p I ( C )  in W(C) is isomorphic  to 
h*(Nx(c) /MiC)(-1)) ,  where h : X x p I ~ X  is the projection; see [BGS3, Sect. 
4(d)]. We metrize it by the chosen metric on h*(Nx(cl/M(C~) tensored with the 
s tandard metric  on the tautological  line bundle over  P 1 (C). By L e m m a  23 we know 
that  

and that 

j * ( G ~  ( d  A ~.. _ x . e  .)) = chX(G.) = chX(,N) , 

j *  ( c"h (v• G) ) = ~, nt~hP.( c p'~ r'z.• G z Iz~) ) 
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(notice that T r ~ ( W ~ x M P ) =  Y, and Yr~(_~IxMP)= (25). By the method of 
[BGS3, Sect. 4], we see that 

A - -  A fl 
chX(~)  - ~ nt~h~,( ch~,',x~e(G.Zl,)) 

is equal to the integral over P ~ of ch(,~) Td - ~ - (Nr(c~/wit/) log I z l 2, and this implies 
that 

ze • = - a( Td - t(X, P, M ) c h ( ~ ) )  
II 

(see also below the proof of Lemma 28). 

Now let us prove Lemma 26. Noting that, for each irreducible component Z~ of 
Z, Zp xMP = Z~ xx (X  xMP), we have a Cartesian diagram: 

ZflxMP qP ~ ZII 

X x M P  P , X 

On G. z, P[, and E. z we choose metrics satisfying condition (A) with respect to our 
choices of metrics on o~ and, before Lemma 27 on the normal bundles involved. 
For  all fl the inverse image by vp of g(X(C)) is transverse in the complex points of 
Z~xMP to the inverse image by q of the zero section j z ' x ( c ) - - * P ( N c G  1). 
Therefore, as in [BGS3, Sect. 2.b], the complex vJ IZ. | q~E - z  is a resolution of 
( jz  x 9),  ~ satisfying condition (A) for the one component Z~(IE) (with multiplicity 
one) of Z(G) which is non-empty. 

Since both of the complexes G.Zlz,ic)x~e and v~ V| z are resolutions of 
the Hermitian vector bundle ~-(C), if Z~(C) 4= ~;~, we have that 

h~."~ Y, z / "  z,x,~p(G. Iz~xMP) = h~. ch ~ • 14 | q~E.ZG) . 

I f  Zp(C)= ~ ,  the same formula remains true as an identity in 
CH.(bp(Zp)) = CH.(bp(Z~)), simply because the complexes are quasi-isomorphic. 

The projection map ~ = p o v = b o q~ from IZl XMP to x is smooth on complex 
points, and maps Y(C) isomorphically onto X(C) via h. Hence, applying Lemma 21 
for each B to the maps ~ : Z p x M P ~ X  and h~: Y~-- Yr~(Z~xMP)-*X ,  and 
noting that Zp(F) is empty for all but one B, we find that: 

2 n~h~*( r V. @ q~/~.zlz,) ) 
fl 

= ~ np~rP,('~(v~ 14 | q~dg.Zlz,) r~ [Zp xMP]) + a(~ .C~(v .  r | q.ff,.z))). 

Let us now compute the first term in the above expression, treating each term in the 
summation~ndividually; nothing that n P =  bp o qp, we start with the direct image 
by qp. In CH.(ZI~ ), we have, by Theorem 4, Properties 4 and 6, that: 

q~,("~(v~ V. | q? E.Zlz~) n [ Z~ • 

= qfl,(cl"h(q?E.Zlz,) c~ ( c'h(v'~ ld) ~ [Z~ xMP])) 

= c~" (E. z ]ze) c~ q~, ( '~  (v~ V.) c~ [Zt~ xM n])  . 
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Now v~'( V.)is a resolution of s,(6z~),  where s:Z~-- ,  Zt~ XM P is the section of the 
smooth map qp'Z~ xmP ~ Z~ induced by _the section g" X ~ X XMP; over the 
manifold of complex points Z~ XM P(C), v~(V.) satisfies condition (A), since it is the 
pull-back by a submersion between complex manifolds of a complex which satisfies 
condition (A). Applying Lemma 21 (with c~ = 1) to the diagram 

5 

Z~ ) Zt~ x M P 

,~ qB 

Z p ,  

we find that 

q~.( c'~(v~ ~)c~ [Zt3 xMP])  + a(qz,~*c'-h(~)) = c'hZ~• [Zt~] , 

which by Lemma 22(i) is equal to 

T~d - '  (l~zdz~ •  c~ [Z~] = T~ -1 (b '~Nx/x  • 1 c~ [Zt~ ] . 

Now recalling that 

c ~'~ ~t(~)= E n~b~* clh (EZlzr,) + a(b, ch(/~.z)), 

together with Lemma 27 and all the equalities we proved after it, we find that: 

c'h X( ~) = ( clh X ( ~) - a(b,~'h( E.z))) T~- I ( Nx/x •162 

-- a(b.(ch( f f~.Z)q~.ch(v* P.))) + a ( ~ . c h ( v  V. | q~,.E. )) 
% 

-- a ( T d -  ~(X, P, M ) c h ( ~ ) )  

A - -  A ~ - -  A 

= c h X ( ~ ) T d  -~ (Nx/x•  - a(b ,  ch(E.Z)Td-~(/Vxlcl/x~cl• 

- a (b , ( ch ( s  * V.))) + a(rr, ch(v* V. | q, f f , .z))  

-- a( T d -  ' (X ,  P, M )ch( ~ )  ) . 

We may simplify this expression using the following identity, which is a conse- 
quence of Theorem 2.7 of [BGS3] together with the projection formula for direct 
image of currents: 

rc,(ch(v V. | q ,  ff,.z)) = b , ch (LZ)p ,  ch(V.) + Td (Nx~c)/x~c)x~P(c))b, 

to obtain 

A X - -  " ~ x ( ~ )  = ch M ( ~ )  T ~ -  ' (IVX/X• -- a( Td-  a(X,P,  M ) c h ( ~ ) )  . 
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From this equality and the definition of z, we deduce that 

A A 
ze(.~) = chX(.~).k Td(P) + a(ch(.~) Td(X/P))  

= ( ' ~ X M ( ~ )  C'~ ~ - 1  ( J ~ X / X  • 

- -  a(ch(~)  T d - l ( X ,  P, M)k*Td( Tp(c) ) + ch (~ )  Td(X/P))  . 

But the normal bundle of X in X xMP coincides with k* Tp/M = k* Tq. Therefore, 
by applying Proposition 1 ii) to the map q and the defining map of Y, and Theorem 
3, Property 3, for j = qk we get, from the equation above, 

rp(o~-) =~'h x(ff).jT-"d(M) + a ( c h ( ~ ) x ) ,  

where 

X = -- Td(O -'~ k* Tp(C)/M(C) --~ k* Tp(c) -->j* TM(C) --~ 0) 

�9 T d  - 1 ( k  * Tp(C)/M(C)) r d  - 1 (]~X(C~/M(C)) 

+ T d ( X / P ) -  T d - I (X ,P ,M)c~k*Td(Tp l c t ) .  

From Lemma 16 we know that x = Td(X/M),  and therefore 

~p(~)  = rM(,~-) �9 [] 

From Lemma 26 we may now prove Theorem 5. First we see that re( ,~)  is 
independent of the embedding k" X --, P for P smooth (and integral). Indeed, given 
k : X ~ P and j" X ~ M two embeddings of X into smooth varieties, we consider 
the product embedding i: X ~ P • M and apply the lemma to the two projections 
from the product. 

In general, given a closed embedding j :  X ~ M with M regular and integral, we 
can choose a closed embedding f : M  ~ P  with P smooth and integral. Let 
N = NM/p be the normal bundle of M in P and s: M ~ P ( N  �9 1) the zero section. 
Note that P ( N  • 1) is regular, and that the projection q : P ( N  G 1) ~ M is smooth. 
Hence by Lemma 26 r , u ( ~ )  = ZI,(N| l )(g) ,  where we embed X into P (N  | 1) via 
s oj. Hence to end the proof of Theorem 5, it suffices to prove: 

Lemma 28 With the notation above, 

~ ' P ( ~ )  = ~'P(N O 1 ) ( ~ )  �9 

Proof Choose metrics on the normal bundles of X(C) in P(C) and M(C), and on N. 
The normal bundle of X(C) in P ( N  �9 1)(C) is the direct sum of j* (Nr  with 
Nx(C)/M(C); we endow it with the orthogonal sum of their metrics. Given the 
formula for Zp in terms of the Chern character with supports it then suffices to 
compare C'~pX(~) with c"h x P(N@I)(~)- By Lernma 23 the Chern character with 
supports is compatible with restriction to principal divisors, so, by an argument 
similar to [GS2, 4.4.6] (see also [BGS3 4.12]), we know that the difference of these 
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two classes is the integral over  p1 of ch(~)Td-~(]Vix• 2, where 
W is the deformat ion to the normal  cone for the inclusion of M into P, and 
X x p l  __, Wis  the natural  inclusion. The bundle Nix• is an extension of 
N{M• by NxIo/MIo which coincides with Nx((2),p((2 ) o v e r  X ( C ) x  0, and 
with the normal  bundle of X(C) in P ( N  | 1)(C) over  X(C) x {co,}. Therefore, by 
[GS3, 1.2.3], we get 

A 

= - a(ch( ,~)Td-  l(O --* Nx<)/M(O --* Nxto/e(c) ~ ] * ( N c )  --* 0)) . 

Similarly, since ]~P(NG 1)t(2) is the or thogonal  direct sum of iPMtC) with ~?c, we 
get, on M, 

f*(T--'d (P))  = s*('T'd ( P ( N  (9 1)) - a( T-d(0 --* TMIc) - i f * ( T p I c ) )  ~ Nc  --* 0)) .  

F rom these two equalities and Definition 7 we get, with i = foj ,  

A A 

ve( ,~)  = ch x ( y ) q T d ( P )  + a(ch( f f ' )Td(X/P))  = VeIN | 1)('~) "4- a ( ch ( , r  

where 

y = Td(X /P)  - Td- 1 (0 --* Nxto/M(C) --* Nx tc ) /p (c )  ---~j* Nc ~ O)k* Td(Tptc)) 

- T d ( X / P ( N  0 1)) 

-- j*(  Td(O --* I'M(C) "~f*  (TP(O) ~ Nc  ~ 0)) Td - 1 (Nx(c)/P!m | l)~C)) - 

The fact that  y = 0 follows from the remark that T d ( X / P ( N  • 1)) = T d ( X / M )  
and from L e m m a  14 (i'). [] 

3.2.2 Having  shown in Theorem 5 that  r ( ~ )  is independent  of choices, we may  
now give a few propert ies of this class. 

Theorem 6 (i) There exists a canonical isomorphism of Q-vector .spaces 

~ : I~'o( X)Q --, C'B.( X)Q 

mappin9 the class of ( ~ ,  tl) to r(~@) + a(tl). 
(ii) For any xEI( 'o(X)  and y e K o ( X ) ,  one has 

~(x ~ y) = v(x) N ~ ( y )  . 

(iii) When X is regular, for any x e I ( o ( X )  ^' = K o ( X ) ,  

~(n  = r  
A A 

in CH'(X)Q = CH.(X)Q. 
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Proof The fact that z is well defined o n / ( ; ( X )  follows from Corollary 4. To show 
(i), consider the diagram 

K'~(X)Q ~ @ ~ 0 ~ P ' ~ ( X ) ~  g 'o lX)Q -~ K'otX)Q ~ 0 

O p ~ o C U . , . + , I X ) Q  ~ O.~o.~""(X)  --, C'~.(X)Q -~ C U ( X ) Q  ~ O .  

The algebraic maps z on K'I (X)Q and K ;(X)Q c a n  be defined using the C hern 
character with supports from K-theory to the graded quotients of its 7-filtration 
[S1, Theorem 4, 7.1, and Theorem 8], mimicking [G1, Theorem 4.1]; they are 
isomorphisms. The rows in the above diagram are exact (for the top row, proceed 
as in [GS3, Theorem 6.2(i)]; notice that any coherent sheaf on X has finite 
resolution by coherent sheaves which are locally free on Xe). Furthermore, the 
diagram commutes: this follows from the definitions and, for the left hand square, 
where it can be checked on the generic fibre, from rGS3, 7.2.1]. By the five Lemma 
we conclude that 

~. Ko (X)Q  -~ CH.(X)Q 
is an isomorphism. 

The module propery (iii) follows from Lemma 20, Property 1 in Theorem 4 and 
Property 2 in Theorem 3. 

To prove (iii), we apply Definition 7 to the case of the identity map X ~ X and 
Lemma 22(ii). [] 

4 Riemann-Roch 

4.1 The statement 

4.1.1 Let X be a smooth projective complex variety of complex dimension d and hx 
an Hermitian metric on the holomorphic tangent bundle TX over X, satisfying the 
Kfihler condition d~oo = 0, where ~Oo is the normalized Kfihler form attached to hx. 
In any local holomorphic coordinate chart (z,) on X we have 

(10) COo = ~ ~ hx , dz, d~tj. 
,,t~ Oz~ Oz~ 

Let/~ be an Hermitian vector bundle on X, q > 0 an integer, and 

A~ = A~ | C ~  
c~.(x) 

the vector space of forms of type (0, q) on X with values in E. Since 

A ~ = C~(X, A q ( T X * ) ) ,  

where TX * is the dual of the complex conjugate of the complex vector bundle TX, 
it inherits from hx a pointwise scalar product with values in C~ By tensoring 
with the metric on E, we get a pointwise scalar product on A~ E). The L z 
scalar product of two sections s and t in A ~ E) is defined by the formula 

(s,  t)L~ ----- j" ( s ( x ) ,  t(x)) egA 
x d!  
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where d is the complex dimension of X and (s(x),  t(x)) is the pointwise scalar 
product. The Cauchy Riemann operator 

if: A~ x ,  E) --+ A ~ ' ( X, E) 

has a (formal) adjoint ~-*: 

~S, ~- (Jt)L2 = (C's, t)L2 

when s~A~ E) and t~A~ E). 
Consider the Laplace operator Aq = ?Tj* + ~?*(? on A~ E). The cohomo- 

logy Hq(x, E) may be computed using the Dolbeault resolution on X, and, by 
Hodge theory, it is isomorphic to the subspace Ker(Aq) of harmonic forms in 
A~ E). We may therefore endow it with the L 2 scalar product. Let hL2 denote 
the induced scalar product on the complex line 

2(E) = ( ~  det Hq(X, E) (- 1)q 
q>O 

(If V is a complex vector space, det(V) is its maximal exterior power, and if L is 
a complex line, L-1 is its dual.) 

The zeta function of Aq 

(q(S) = Tr(A~S[Ker(Aq) • 

is convergent when R e ( s ) >  d. It can be analytically continued to the whole 
complex plane and is regular at the origin. Following Ray and Singer [RS] we 
define the analytic torsion 

T(X,E)  = ~, ( -  1)q+'q('q(0), 
q_->0 

where ~'q(0) is the derivative of (q(S) at the origin. On )~(E), Quillen considered the 
metric 

hQ = hL2exp ( T( X, E)) . 

Notice that these definitions are those in [GS4] and [BL], whose results will be 
used below. 

4.1.2 Let f : X  ~ Y be a projective morphism of arithmetic varieties over an 
arithmetic ring A. Assume that the restriction of f t o  the generic fibre Xv is smooth. 
On the relative tangent bundle Tfr choose an Hermitian metric hf whose restric- 
tion to every fibre Xy = f - l ( y ) ,  y e  Y(II2), is K/ihler. 

Let ~ be an Hermitian coherent sheaf on X. Assume that Rf , .N  is a perfect 
complex on Y. According to Grothendieck and Knudsen-Mumford [KM],  one 
may then define a (graded) line bundle 

2 ( i f )  = det R f , ( ~ - )  

on Y, called the determinant of cohomology. For every y ~ Y(C), the fiber 2(o~)y is 
canonically isomorphic to 

@ detHq(Xy(C), ~-r 
q>O 

and can be given the Quillen metric hQ. It was shown in [BGS 1, Corollary 3.9], that 
this metric h o is smooth on the line bundle 2 ( ~ ) r  



524 H. Gillet and Ch. Soul6 

We shall consider two cases where R f ,  J ~ is perfect: 
(i) Y is regular; 

(ii) f is 1.c.i. and f f  = F is locally free. 
In case (i), any coherent sheaf on Y has a finite resolution by locally free coherent 
sheaves, and R q f , ~  is coherent for all q => 0. Therefore (see [KM])  R J , ~  is 
perfect and 

2 ( ~ ) =  @ d e t R q f , ( Y )  ( 11~. 
q=>O 

In Case (ii) we may view F as a perfect complex and we notice that f i s  a perfect 
morphism [GBI, Expos6 3, Exemple 4.1.1 ]). 
We shall omit the sign questions in the definition of 2(~r (see [KM])  since they 
play no role in what follows. 

4.1.3 Let H'(X(C) , IR)  be the (singular) real cohomology of X(r  and 
ch(ffr  ch(Er Td(fr ) the usual Chern character class o f ~ e  (resp. Er resp. the 
Todd class of Tfr in H'(X(II~), IR). We shall also consider the characteristic class 
R(fr  = R(Tfc)~H*(X((I;) , IR) introduced in [GS4]. Namely, the class R is 
contravariant, additive on exact sequences, and, when Lr is a holomorphic line 
bundle with first Chern class c1(Lr H 2 (X ((12), IR), the following identity holds in 
the real cohomology of X(r 

R(Lr = ~ 2~'(-- m) + 1 + 5 + " ' "  + -- ~ ( -  m) 
rn odd m m ! 
m > l  

Here ~(s) is the Riemann zeta function, and ~'(s) its derivative. We shall consider 
the image of R(fr  by the map 

A 

a" H'(X(l~), IR) ~ CH.(X) 

defined as in 2.2.1 (real cohomology maps to ,4"(X(C))). 
Given x e C"H "(X) (resp. x E CH.(X)) we denote by x(Pl~ CI"H P(X) (resp. x(,~ 

A 

CH v (X)) its component of degree p. 
Finally, given any Hermitian metrics on Tx(r and Tr(r we let T 'd(f)e  A'(X~) 

be the Bott-Chern secondary Todd class (2.6.1) of the exact sequence of Hermitian 
vector bundles on X(II;) 

0 ~ Tfr -~ Tx(r ~ f *  Ty(cE) --~ 0 . 

4.1.4 

Theorem 7 Let f :  X ~ Y be a morphism of arithmetic varieties whose restriction to 
XF is smooth. On the relative tangent bundle Tfr choose an Hermitian metric 
whose restriction to any fibre of f is K/ihler. 

(i) Assume that the ground ring is good and that Y is regular. Let Jr be an 
Hermitian coherent sheaf on X. Then, for any choice of Hermitian metrics.on 

following identity holds in CH (Y)~ Tx(r and Tr(r the . . . .  1 

(11) z(2(ff) ,  hQ) m = f ,  ( r ( ~ )  + a(ch(~'c)Td(f))  - a(ch(~'c)Td(fr162 (') . 
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(ii) Assume f is l.c.i, and let ff be an Hermi~tian vector bundle on X. When the 
ground ring is good, given any element ~ ~ CH r ( Y)Q, p > 1, the following identity 
holds in CHp ~(Y)Q: 

(12) 
dl ( 2( F), hQ) c~ ~ = f ,  ((ch (F) Td( f )  - a(ch( Fr Td(.fr162 )) r~.f*(a)),v_ 1). 

Similarly, when X and Y are regular (and the ground ring is arbitrary), the 
identity 

~ -  ff (13) ~1(2(F), hQ) = f , ( c h (  ) T ~ ( f )  a(ch(F~:)Td(fa.)R(f~.))) (~) 

holds in C'H 1 ( y)r 

For the definitions of c'h(F) and T~( f )  see [GS3], 2.4.2 and 2.6.2. 

4.1.5 Notice that when X and Y are regular, the ground ring is good, f is 1.c.i. 
and ~ = F, the three statements in Theorem 7 are equivalent (by 2.2.4. and 
Theorem 6(iii)). 

It is interesting to consider Theorem 7(i) when Y = Spec(7Z), in which case one 
gets an arithmetic analog of the Riemann Roch theorem of Hirzebruch [Hz], 
which is an equality of real numbers rather than integers. So let ~ be an Hermitian 
coherent sheaf on an arithmetic variety X. Denote by ~S the cardinal of a finite set 
S, and by Hq(X, ~-)tors the torsion subgroup of Hq(x, g). Define 

(14) XQ(,~-)= ~ (--1)q(loggH'~(X,~-)tors 
q > 0  

- logvol(Hq(X(C) ~ r  ~ ) )  + �89 

where ~'q(0) is defined as in 4.1.1, H~ ~ r  + is the subspace of Hq(X(C), ~-r 
fixed by F~,  and vol(Hq(X(l~), ~- r  ,~-)) the volume of its quotient by 
the lattice Hq(x ,  ,~) /Hq(X,  o~)tors for the volume form attached to the LZ-metric. 

Then Theorem 7(i) reads 

(15) 7~Q(~) = . / , ( t ( ~ )  -- a(ch(f fr  r d ( f e ) R ( f e ) ) )  ~1~ 

in C 'HI(Spec(Z))=IR (in this identification, the codimension one cycle 
( ~ n v [ p ] , 2 )  on Spec(7l) is mapped to ~,pnvlog(p ) + )./2 for any finite set of 
integers n v and any real number 2). 

Indeed r(2(~-), hQ) ~1) = ZQ(~) since the tangent space to Y is trivial. Further- 
more ZQ(~) coincides with cl (2(if) ,  hQ) by the definition of Quillen's metric and 
the fact that for any Hermitian coherent sheaf 3 on Y = Spec(Z) (i.e. a finitely 
generated Z-module with metric), the class of det(.ff) in C"H l (Spec(Z))=  IR is 
equal to 

log ~: (~,o,~) - log vo l ( (~ r  + / ~ )  

(to prove this one just needs to check the case where ~ is torsion-free and the case 
where f f  is a finite cyclic group). 

4.1.6. In order to make the analogy between Z o ( 3 )  and the Euler characteristic 
of a vector bundle more explicit, one may proceed as follows. Let 
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B q = Bq(~r)  ~ A~ o~ )  be the image of& and ~, (0)  the derivative at zero 
of the zeta function 

(~(s) = Tr(AqS[B q) 

of the restriction of Aq to B q. Since B q is isomorphic to ~*(A O,q+ ~ (X(IE), ~ ) ) ,  one 
has [RS] 

(16) ~ (-l)qq('q(O)= ~ ( -1 )qr  
q__>O q > O  

On the other hand, following [GS5], for any finitely generated lattice M, equipped 
with a norm H" I[ on M (~)~ IR, we define 

h~ M, If" II) : log:~ {m~M, I[mll _-< 1} ,  

and 

h~(M, ][" H) = h~ *, II" I1"), 

where M* = Horn(M, 7/) is equipped with the dual norm [l" II *. Ifn = rk(M) is the 
dimension of M @ z Q ,  it was proved in [GS5, Theorem 2], that 

Ih~ I[. 11) - hi( M, [1" II) - log ~ Mtor~ + logvol(M | N/M)[ 

is bounded above by an explicit constant C(n). It follows from this and (16) that, if 
we define the "arithmetic Betti numbers" of o~ by the formula 

(17) bq(~,~)=h~ ULQ-I-h~(gq-~(X,Y),l[.l[r~)+ �89 

we have 

I XQ(~) - E ( - 1 ) % ( g ) ]  < E c( . . )  
q = 0 >  I q_>O 

where nq = dim~ Hq(X(C), ~ )  is purely topological. 
Furthermore, these numbers bq(~)  behave well under Serre duality. Namely, if 

COx is the relative dualizing sheaf of X over 2~ (recall that X ~ Spec(7/) is l.c.i), 
. . . . .  , d , 

equipped with the metnc coming from the xsomorphlsm COx ~: ~ / ~  ( T X ( C ) ) ,  and 
if we let ~ v = rSx | ~ * ,  then, if o~ is locally free, 

(18) bd+ 1 - q ( ~  v ) = bq(~) .  

To prove (18), we first notice that algebraic relative Serre-Grothendieck duality 
applied to f implies  that 

(19) ~$ Hq(X, Y)tors = ~: H d + 1 -q(.~ v )t . . . .  

and that furthermore the lattice Hq(x, ~) /Hq(X,  Y)tors is dual to H a - q ( J  v)/ 
Hd-q(~,~ v )tots. On the other hand, the analytic Serre duality on X(tE) between the 
Dolbeault resolutions of f i e  and ~-~ (see also [GS4, 1.4]) respects the L 2-metrics 
and induces isomorphisms 

Bq(~r ,,~ (~,(AO,d+ 1 - q ( ~  )) ~ ~ ( A O , d - q ( ~  )) 

compatible with the action of Laplace operators. Therefore 

r  = ~ . . . .  q ( ~  (0) ,  

and (18) follows from this, (15), (17) and (19). 
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Notice that  h~  II" t[) and hi(M, IP" It) are nonnegat ive real numbers.  It 
would be of interest to find lower bounds for ~),(0), q > 0. We conjecture that  such 
lower bounds  exist, which do not depend on the metric on E. 

4.1.7 Let us check, following [GS4, Theorem 2.1.1], an example of Theorem 7. We 
first note that  if X is a Riemann surface and h is a Hermi t ian  metric on the 
ho iomorphic  tangent  bundle Tx of X, then with the definition of 4.1.1 above, the 
Laplacian on functions is given by 

(20) Ao( f )  = - h '~zz 0zc~ 

in any holomorphic  coordinate  chart  with coordinate  z. We now consider the case 
of Y = Spec(TZ), X = IP~, and /~  equal to the trivial Hermi t ian  line bundle dTQ,, on 
IP~ = P r o j ( Z [ X ,  Y]). We fix the Hermit ian  metric on TIPI(IE) by requiring it to 
be invariant  under  the uni tary group U(2), and requiring that  on the affine line 

Z~]~ = Spec(Tl[z])  c IP]~, where z = X/Y, ~z have norm 1 at the origin. Then, by 

(10), the restriction of the Kfihler form to the z-plane is 

i dz ds 
O)o - 2=(1 + [ z I 2 )  2 " 

Notice that  this gives IP 1 (C)  volume one. By (20) the Laplacian on A o, o(i P ~ ( g ) )  is 

~2 
A o =  --(1 + ]z ]2 )  2 -  

az ~ 

on N~(~;) -~ C. The eigenvalues of A are k(k + 1), for k = 0, 1, 2 . . . . .  with multi- 
1 - z ~  z 

plicity 2k + 1. For  instance 1 + z i '  1 + z~ and 1 + z5 are independent  eigenvec- 

tors with eigenvalue 2. F r o m  [V, Proposi t ion 3.1], it follows that  

~o(0)  = 4 ~ ' ( -  1 ) -  1/2.  

The  LZ-norm of the trivial section of H~ 1, 6)n,,) is ~(e)COo = 1. Hence 

(21) ZQ(6~,) = 1/4 - 2 ~ ' ( -  1). 

N o w  the r ight-hand side of (15) is equal to 

(22) f , (d l ( lp~)2) /12  - ( 2 ~ ' ( -  1) + ~ ( -  1)) = (f,(Ol(lP]~) 2) + 1)/12 - 2 ~ ' ( -  1). 

We know that  there is an i somorphism of invertible sheaves on IP]~: 

q~' TIP~ -~ (.0~,(2). 

Since the Hermi t ian  metrics on these sheaves are U(2) invariant,  and the isomor-  
phism ~b is SLz(7/)-invariant, the norm of ~ is constant,  equal to its value at the 
origin. But at the origin q5 induces an i somorphism of the free rank one Z-modules  
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generated by ~z and by y2, both of which have norm 1, hence 4~ is an isometry. It 

follows that 

~l(n'~) = 201(0(1)). 

As shown in [GS3, 5.4], if f :  IP~ -+ Spec(]E) is the projection, then 

(23) f ,  (P1((9(1)) 2) = 1/26C"H ~(Spec(7/)) ~ IR, 

hence f , (~l(IP~) 2) = 2. From (21), (22), (23) we see that Theorem 7 holds for 
IP~ and the trivial line bundle. 

4.2 The proof  

4.2.1 Being quasi-projective, X is contained in a projective space ]D N, and we let 
i :X  ~ YxlP N = P be the product of this embedding with the map f We get 
a factorization f = g o i, where 9 is the first projection: 

X i p 

f N  ~/ O 

Y .  

The map i is a closed immersion (since f is proper) and g is smooth. 
In case (i), since Y is regular, so is P, and we may choose a resolution 

(24) O -"~ Ek --~ Ek-  1 -+ . . .  ~ Eo -~ i , ~  --* O 

of i ,  f f  by vector bundles on P. In case (ii) such a resolution also exists for i ,  F, since 
i is 1.c.i. and P is quasi-projective (see 1.2.2). 

Let us choose a Kfihler metric on P(C). We may restrict this metric to X(•), 
T f r  and the normal bundle Nr = Nx(r162 Now choose a metric on each bundle 
Es, j > O, in such a way that hypothesis (A) is satisfied (see 2.4.1). It  will be enough 
to prove that the theorem holds with this choice of metric on T f r  since, as shown 
in [GS4, Theorem 1.4(i)], based on [BGS1], this will imply that Theorem 7 is true 
for any choice of metric on T f r  

We shall deduce Theorem 7 in two steps: 
1) we prove that Theorem 7 for g and E j , j  > O, implies Theorem 7 for ~ (or F) 
and f ;  
2) we prove that Theorem 7 holds for g and any Hermitian vector bundle on P. 

4.2.2 Let us prove 1) in case (i). According to [KM]  the resolution (24) induces 
a canonical isomorphism 

j>__o 

The norm of this isomorphism for the Quillen metric was computed by Bismut 
and Lebeau [BL]. Let ch (E . )=  ~ j>=o( -1 )Jch (E j )  be the Chern character of 

E. in the real cohomology of P(II2), ch (E.)~ A (P(C))  the torsion of the resolution 
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E.~ as defined in 2.4.l, Td(0r the Todd form of Tgr in A'(P(C)), 
Td(f/g))r as in 2.6.2. Then, according to [-BL, Theorem 0.1]. 

529 

and 

log II a n ~ = [ f , (ch(~r162  Td(fq.)) + g,(ch(E.) Td(Or 

+ f ,  (ch(~r Td(f/g))] (o) 

Here f ,  (resp. g,)  denotes integration of forms along the fibres of a smooth map, 
and direct image of cohomology classes. 

The line bundle ).(E.)= @s>o 2(Eft ( 1)'j..may be equipped with the tensor 
product of Quillen metrics. We also define ch(E-~) = ~ = o  ( -  1) i c'h(/~fl, 1.(E.) 
= Z ~ = o ( -  1)Sv(Es), etc. Since 

~, (;t(~), hQ) -- ~1 (2(E.), ho) = a(log [[ a [[ ~) 

(see [GS3, 1.2.5 and (4.8.2)]), we get, for the difference of the left hand sides of 
equation (! 1) for g and s 

I"()v(ff), h o )  (1) - -  1.()~(E.), hQ) (1) ---- ((C~"~ ( 2 ( i f ) )  -- c"h~ (2(/~.))) T~  (y))(1) 

= ((~1 ( . i ( -~))  - el (2(/~.))) T~ (Y))(~) 

= a[J,(ch(,~-e)R(Nr Td(f~.)) Td(Ty(r 

+ g,(ch(E) Td(c)r Td(i?r~r 

(25) + f ,  ( ch (~e )Td( f  /o)) Td( Tv(r ~ ' -  

We wish to compare this with the difference of the right-hand sides in (11). Since 
R is additive and Td is multiplicative, we may use the Riemann-Roch theorem for 
i in ordinary cohomology to get 

(26) f,(ch(~.~r162162162 = g,(ch(E.,r162162 

- f ,  (ch(Yr162 Td(X(r 

Now let 

(27) x : = f , ( v ( ~ )  + a(ch(~r - g , (z (E)  + a(ch(E.r 

We need to show that this is equal to 

a((f ,  ( c h ( ~ r  + g, (ch( E.) Td((lr Td( Ty(r 

Since P is regular, by Theorem 6, 

1.(/~.) = ct"~(E.)T~(P), 

while 

-r(~) = ch x(,~),i T~(P ) + a(ch(~t )Td(X/P))  . 
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By Lemma 21, 

f , ( ' ~  ~(.~).,T~"d( P)} = g , ( ~ ( E . ) T ~ ( P ) ) +  a(g , (  c'h(E.) Td( Tp(r . 

Therefore 

(28) 

By definition 

and 

x = a ( f , ( c h ( ~ r  + c h ( Y r  

+ g , (ch(E . )  Td(TPtr - g,(ch(E..r Td(g ) ) .  

ddC( Td(g))  = Td(~r Td( Ty(r - Td( Tpfr , 

ddC( ch( E.)) = i , (ch(  ~ r  Td - 1 ( ] ~ r  _ ch(/~.r 

Therefore, in A ' (Y~) ,  

g , (  ch ( E.) Td( TP(r = g , (  ch ( E.) Td(Or ) Td( TY(r - g , (  ch ( E.)dde( Td(g)) ) 

= g , (ch(E. )Td(Or  Td(Ty(r - 9 , (ddC(ch(E.))Td(g))  

= g , (ch (E . )Td(Or162  + g , ( ch (E . r  

- f , ( c h (  g r  rd  - l( Nr  Td(9))  . 

Combin ing  this with (28) we get 

(29) x = a ( f , ( c h ( ~ e ) T d ( f ) )  + f , ( c h ( ~ c ) T d ( S / P ) )  

- f , ( c h ( ~ r  Td - i( iVr Td(g)) + g,(  ch(E.) Td(g~)9* Td( 7~r(r 

Now consider the following d iagram with exact rows and columns: 

0 0 

TJh: --* i*Tgr  

t 
--* i*Tx(r --* i*Tn(r 

f *  Tr(r ~* f *  Tr(r 

0 O. 

-~ N r  

~ N r  -~ O 
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From (6) and [GS3, Propositions 1.3.2 and 1.3.4], we deduce from this diagram 
that 

Td( f  /g) f* (  Td( Tr(r Td(1Vr - i*( Td( X /P ) ) Td(ATr 

= Td( f )  Td(/Vr - i*(Td(g)) .  

From this and (29) we get 

(30) x = a ( f , ( c h ( ~ r  + g,(ch(E.)Td(Or162 

as was to be shown. The identities (25), (26), (27), and (30) prove 1). In other words, if 

z ( ) ~ ( E 2 )  , hQ) (1) = g,(I"(Ej) + a(ch(Ej.w)Td(g)) - a(ch(Ej, w)Td(gr162 (1, 

holds for all j __> 0, then 

z()o(.~-), ho) (a) = f . ( z ( ~ )  + a(ch(~r  - a ( c h ( ~ ) T d ( f r 1 6 2  ~1~ . 

4.2.3 To prove 1) in case (ii) we can proceed as above, using [BE] and [BGS3]. The 
argument is somewhat simpler since we deal with Todd classes of the relative 
tangent spaces and we do not need the discussion about r in Sect. 3. 

More precisely, to prove (12) (the proof of(13) is similar: delete ~ in the formulas 
below and reply.ace cap products by cup products), from [GS3, 1.2.5 and (4.8.2)], 
given any a ~ CH(  Y)Q, we have 

(31) (~1 (2(F)) - ~1 ()~(E.))) c~ a = a ( ( -  log II a II 6)o(~)) 

and, from [BL, Theorem 0.1], 

(32) - log Ilall~ = [ f , ( eh(Fr162162  + g,(ch(E.)Td(Or 

- f , (ch(Fr  T d ( f  /g))] ~o~ . 

On the other hand, the following equation holds in CH(Y)Q: 

f,(c'h(F) T~( f )  c~f*(a)) = 9,(e"h (E-.)T~(g) c~ g*(a)) + ag,(~'h(E.) Td(Or 

+ af , (ch(Fr  

Indeed, by definition of T~ ( f )  (see 2.6.2) and since f*  = i 'g*,  the following holds 

T~ ( f )  c~f*(~) - a(Td(f/g)f*(o~(a)))  = T~ -~(S)  c~ i*(T~ (9) c~ g*(cQ). 

Let 7 =T~(g)c~g*(a)~C"H'(P).  From this, (31) and (32) it follows that (12)is 
equivalent to the identity 

(33) g,(c"~ (/~.) c~ 7) + ag,(~(E.)a~(?)) =f , (T~-~(l~)cJh(F)c~i*(7)) .  
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This equality (33) plays in the 1.c.i. case the role of Lemma 21 in Case (i). When f i s  
smooth and Yis regular, (33) is Theorem 4.13 in [BGS3] (with different notations). 

The proof of [BGS3] extends as follows to any l.c.i, map f The immersion 
i: X --, P being regular, the Grassmannian graph W = W(E.) is isomorphic to the 
deformation to the normal cone (see 1.1.2), and IZI = IPx(N | 1). Let /7. be the 
extension of E. to W as in [BGS3, Lemma 4.3] or 1.1.2 above, and E. z its restriction 
to ]ZI. Choose a metric on/~. whose restriction to P(C) is split acyclic, and which 
satisfies condition (A) as in [-BGS3, 4.12] (or Lemma 21 above). Define 

fl = ~ ch(~.)loglzl z 
W(C)/P(~) 

in/T'(P~).  By the same proof as in Lemma 4.12 in [BGS3], we have 

(34) g , ( '~ (E . )  n 7) = f ,  Tr,(c"~(E.z) n ~z*i*(7)) + ag,(flco(7)) 

where n : IPx(N @ 1) -+ X is the (smooth) projection. 
The right-hand side of (34) can be computed using Theorems 3.22 and 4.11 of 

[BGS3] as in the proof of Theorem 4.13 in [BGS3], i.e. by comparing E. z with the 
Koszul complex K , ( H) |  n*F considered in Theorem 1 ii) above. Formula (4.36) 
in [BGS3] has to replaced by the identity 

A A A - -  

To.( ch (K.(H) | 7z*/?) n ~z* i*(7)) = ~z.( ch (K . (H) )n  7c* i*(7)) c~ ch (F) ,  

which follows from Theorem 4(5). As in the proof of Theorem 4 we may choose 
a map h:X-- .  M, where M is regular, and a vector bundle N' on M such that 
h*(N') = N. Since proving (33) for one metric on N implies the result for all 
metrics, we may assume that there exists a metric on N'  such that N = h*(N'). On 
IPM(N'O 1) we consider the canonical hyperplane bundle H ' c  n ' * ( N ' ) |  1, 
where 7f : IPM(N' �9 1) --* M is the projection, and the Koszul complex K.(H') with 
the metric induced by/V'. Then, using the projection formula in Lemma 12, we get 

re,(ch(K.(H)) c~ re* i* (7)) = i*(7)"h ~ , ( c h ( K . ( H ' ) ) ) .  

Applying (4.37) and (4.38) in [BGS3] on M concludes the proof. 

4.2.4 Now we prove 2) in 4.2.1, i.e. Theorem 7 for the projective~,space over Y. Given 
any Hermitian vector bundle/T on P = Yx IP N and any c~e CHp( Y)Q, we let 

6(E) n ~ = ~1(2(E), hQ) n a -- g,("~ (/~) T~ (9) n g*(~))(p_ 1). 

As in [GS4], Theorem 1.4 (i)], we see that 5 ( E ) n  ~ depends only on the class of 
EQ in the Grothendieck group Ko(PQ) of the generic fiber of P, since it is invariant 
under change of metric on E and additive on exact sequences (by the results in 
[BGSI]),  and it vanishes on a virtual bundle with support in the special fibers (by 
the algebraic Riemann-Roch theorem [Sl, Theorem 7]). Furthermore, if F is any 
bundle on Y, we have, by [GS4, Theorem 1.4 (iii)], 

(5( E | g*( F) ) n ~ = rk( V)cS( E) n c~ . 

As a module over Ko(Y),  Ko(P) is generated by the positive powers (gp(n) of the 
canonical line bundle. Therefore it is enough to show that 6(Ce(n)) = O. 

But (gp(n) is pulled back from IP s by the second projection, 2(Ce(n)) is constant 
on Y and, if p:Y~Spec(7Z) is the projection map, we get, using Lemma 12, 
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6(6~,(n))c~ ~ = 6((~, '(n). ,~.  So we may assume that Y = Spec(~) and P = IP N, in 
which case 6(e~,~(n)) lies in CH (Spec(~)) = IR. 

To prove that 6(6n,,'(n)) = 0 we proceed by induction on n and N. When n = 0 
and N > 1 the fact that R iemann-Roch  holds for the trivial line bundle on IP N is 
Theorem 2.1.1 in [GS41 (in fact the power series defining R was computed in order  
that this fact be true). When n > 0 consider the standard inclusion i: IP N -~ IP N+ ~. 
There are s tandard exact sequences on IP u+l 

(35) 0 ~ ( ~  ..... (n) ~ 6'i,~'*~(n + 1) ~ i.(~,~(n) ~ 0 .  

By induction on N, we may assume that 6(C~'w.(n)) = 0 for all n siN (the case N = 0 
is trivially true). Using the fact 1) proved in 4.2.2 above (i.e. the compatibility of the 
statement with immersions), we deduce from (35) that 6((~'~,~.,(n)) = 0 for all n > 0. 
This ends the proof  of Theorem 7. 

4.2.5 When f is smooth,  X and Y are regular, and Y = F, Theorem 7 was 
conjectured in [GS4, Conjecture 1.31. Special cases were announced in [$3] and 
[G3].  The statement (i) was announced in [GS6, Theorem 21, but the statement in 
loc. cit. is not  correct in general since we wrote ~ ( 2 ( F ) ,  ho) instead of 

~'( ,~,( ,~),  h o )  ~1) = ax(),(F), h o )  - -  a~(X)/2 

for the left-hand side of equation (11), and we forgot the term a ( c h ( ~ r  ~1~ 
on the r ight-hand side. 

Theorem 7 extends the arithmetic Riemann-Roch  theorem in relative dimen- 
sion one due to Faltings [F1]  and Deligne [D1. Deligne considered a smooth map 
f : X  ~ Y of relative dimension one. He obtained a canonical isomorphism of 
Hermitian line bundles between (a power of) det R f , ( E )  with its Quillen metric and 
an Hermthan hne bundle on Y whose class m Plc ( Y)Q = CH ( Y)~ coincides with 

(1) (a multiple of) f , ( c h ( E ) T ~ ( f ) )  (at least when the set of complex lmbeddlngs of 
A contains a real imbedding, see [GS3],  4.10). Deligne's isomorphism is true up to 
some universal constant. Therefore Theorem 7 computes this constant: it comes 
from the class R ( f )  and involves ~ ' ( -  1). For  a precise statement, see [$2] and 
[GS4],  1.5.. Notice that Deligne's theorem is stronger than Theorem 7, since our  
result computes only an isomorphism class of Hermitian line bundles on Y. The 
algebraic isomorphism in Deligne's result was extended to arbitrary degree and 
arbitrary relative dimension by Franke [Frl .  It would be interesting to get an 
arithmetic analog of Franke 's  version of the Riemann Roch-Gro thendieck  
theorem. 

Faltings gives in [F31 a new proof  of Theorem 7, when .['is smooth,  X and Y are 
prEoj.ective and regular and ,~" = F is locally free. His proof  is valid in all degrees in 
CH (Y), and not only for the determinant  of cohomology.  Its analytical part  does 
not  use the work of Bismut and Lebeau [BL].  

5 Small sections of ample bundles 

5.1 The main result 

5.1.1 In this paragraph we shall apply (a weak version of) the arithmetic R iemann-  
Roch-Gro thendieck  Theorem 7 to produce small sections of symmetric powers of 
ample vector bundles on arithmetic varieties. 
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We first state our main result. Let X be a projective flat variety of relative 
dimension d over 7/with smooth generic fibre X Q , E  = (E, h) an Hermitian vector 
bundle on X, and ~ = (,~-, h') a Hermitian coherent sheaf on X. We make the 
following assumptions on/~: 

A1) E is ample on X, in the sense of [H1, par. 2]; 
A2) the metric h on Er is positive in the sense of Griffiths, i.e., any nonzero smooth 
section e (resp. u) of Er (resp. Txlr one has 

h(RE(u, O)(e), e) > O, 

where R E is the curvature form of Er (with values in the endomorphisms of Er 
Denote by S"E the n-th symmetric power of E, i.e. the degree n part of the 

quotient of the tensor algebra of E by the ideal generated by the elements 
x | y - y | x [EGA2, p.14]. We equip S"Er  with the quotient metric Snh induced 
from h | by the map Er ~  ~ S"Er  and ff~: | S"Er  with h' | S"h. We look for 
small sections of o~ | S"E on X when n is big. 

Choose a K/ihler metric on X(IE) (invariant under complex conjugation) and 
denote by )~L2(S"E | ~ )  the real number 

ZL2(~ | S"E)  = -- IogvolL2(H~ ~ r  | S"Er  + / H ~  S"E | ~ ) )  , 

the volume being taken for the L2-metric. 
Let r (resp. r ') be the rank of Er (resp. f i e ) .  For any k_> 0 denote by 

~'k(E) ~ ~ k ( x )  (resp. sa(E) ~ C H k ( X ) )  the arithemetic Segre c lassof /7  (resp. the 
algebraic Segre class of E), as in 2.7. We introduce a real number 

~d+ , ( E) = P,(g'd+ 1 (ff.))/(d + r) ! E IR = CI"H 1 (Spec(7/)) 

and a rational number 

ad(E) = p , (sd(E)) / (d  + r - 1)! EQ = CH~ 

(where p : X --* Spec(77) is the map defining X). In particular, when E is a line bundle 
L, we have 

ad+t(s  = P , (dx (s  + 1)!. 

We shall use the following notations. Given a map n --* qS(n) from positive integers 
to positive real numbers, we write o((o(n)) (resp. O((a(n))) for any real valued 
function of n such that l i m , ~ l o ( c ~ ( n ) ) l / f ) ( n ) = O  (resp. IO((a(n))l /4(n)  is 
bounded above by some constant independent of n). Our main result is the 
following: 

Theorem 8 
As n 9oes to infinity, 

ZLE(~ | S"E)  = r' ffd+1 (ff.)n d+" + (r ' /4)(d - r + 1)ad( E)nd+'-  ~ log(n) 

+ An d+*-I + o(n ~+~-1) 

where A is given by formula (47) below. 

5.1.2 Let P = IP(E) be the projective space of E, f : P  ~ X the projection, and C(1) 
the standard line bundle on P. According to [EGA2, 3.3] and [H2, Proposition 
7.11], the cup-product 

f ,  (C (1)) | - -* f , e (n )  
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induces a canonical isomorphism 

(36) ~:S"E ~ f , C ( n ) .  

Furthermore  Rqf,((5(n)) = 0 ifq > 0 and n > 0. To prove Theorem 8 we shall first 
use the restriction of c~ to the generic fibre XQ to get the following lemma. Let 

ch : Ko(XQ)~ ~ CH'(XQ)Q 

be the Chern character isomorphism for the Grothendieck group of X~ and 
[ Y ~  | S"EQ] ~ Ko(X~)Q the class of the restriction of ~ | S"E to XQ 

Lemma 29 There exist elements ai~ Ko( Xo)Q independent of n such that 

d + r - I  

[gQ| ~ a~n ~ 
i = 0  

and 

ch(ad+r-1) = r' sd(E)/(d + r - 1)! . 

Proof From (36) we deduce that 

~ | S"EQ = ( j i g  | (e(n)))Q = ] , ( f * ( ~ V ) ( n ) ~ ) .  

Therefore, the Riemann Roch-Gro thendieck  theorem for f [BGI]  gives 

c h ( ~  | S"EQ ) = ch( f ,  ( f * . ~  (n)Q)) = f , ( c h ( f *  Y (n)Q) T d ( f  )) 

d + r -  1 

=J,(exp(ncl((O(l)) )Td(f ) )eh(~Q) = ~ b,n i 
i = O  

since CHk(P) = 0 when k > d + r - 1. Fur thermore  

b~+r-~ = r'f,(ca(C(1))~+r-1)/(d + r - 1)! = r'sd(E)/(d + r - 1)! 

by definition of Segre classes. Since ch is an isomorphism [BGI ]  the lemma follows. 

5.1.3 Since E is ample on X by A1), we can take n big enough so that 

H ~ ( X , , ~ |  w h e n q > 0 .  

F rom (36) we get an isomorphism 

H~ ~ | ShE) H ~  f* ~ . , , ,  ( . ) ( n ) )  

From the metric on Er we deduce a metric on C(1) (a quotient of f*(Er  hence on 
(5'(n). We endow f *  ( f f ) (n )  with the tensor product  of this metric with f *  (h). Let us 
choose an arbitrary Kfihler metric ke on P. 

Now we apply the arithmetic R iemann-Roch  Theorem 7 (formulated as in 
4.1.5) to f*(~.~)(n) on P. Since H ~  is the only nonvanishing co- 
homology group we have 

(37) ZQ(f*(~) (n) )  = -- log VOlL2(H~162176 

- (1/2) T(P(C) , f* (J~e) (n) ) ,  
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and 

z o ( f * ( j ) ( n ) )  = g , ( ~ ( f * ( ~ ) ( n ) ) )  (1~ - a ( g , ( c h ( f * ( ~ r  (') , 

with g = p of: p ~ Spec(7/). Since 

v(f*(f f ) (n))  = z ( f * ( ~ ) ) ' ~ ( C ( n ) )  = z ( f * ( ~ ) ) e x p ( n ~ , ( ( 5 ( 1 ) ) )  , 

we may write z o ( f * ( ~ ) ( n ) )  as a polynomial in n: 

zo ( f* (~) (n ) )  = g , ( z ( f * ( g ) ) d l ( C ( 1 ) ) d + " ) ( l ' n d + ~ / ( d  + r)! 

+ g . ( ~ ( f * ( ~ ) ) ~ l ( C ( 1 ) ) d + ' - l ) ( ' ) n d + r - ~ / ( d  + r - 1)! 

- a ( g . ( c h ( f * ( o ~ r  (1~ 

x n d+~-~/(d + r -  1)! + ~ c~kn ~ . 
k ~ d + r - 2  

(38) 

We compute 

(39) a , ( v ( f * ( ~ ) ) d 1 ( C ( 1 ) ) a + r ) ( l ~ / ( d  + r)! = r' g , (d l (C(1) )d+ ' ) / (d  + r)!  

= r ' # d + l ( E ) ,  

(40) g , ( 7 : ( f * ( ~ ) ) d l ( ( f ~ ( 1 ) ) a + r -  1) (1) = g , ( r ( f * ( ~ ) ,  kp)(')~l(C(1))d+'- 1). 

(where we write r(f*(o~), kp) instead of ~ ( f* (~) )  to indicate the dependence on 
the metric on P), and 

( 4 1 )  a ( g . ( c h ( f * ( ~ ) ) C l ( C ( 1 ) ) d + r - ~  R ( g ) T d ( g ) )  (~ = 0 

since R ( 9 )  has positive degree. 
Bismut and Vasserot [BV] computed the asymptotics of analytic torsion under 

twisting by a positive line bundle. The hypothesis A2) on the curvature form of 
/~r iSoequivalent to the fact that the curvature form R of (9(1)r on P((F) is positive. 
Let R be the endomorphism of the tangent space of P(~;) attached to R by the 
formula 

R ( u , v ) = ( u , R ( v ) )  

where u and v are two tangent vectors and ( ,  > our chosen metric on P ((I;). Define 
a functional in the metric h on Er and the metric ke on P(~) by the formula 

PIe) ~ exp ~nnR . 

Then, by [BV, Theorem 8], as n goes to infinity, 

T ( P ( C ) , f * ( ~ r  = ~-p(c)f logdet ~ -  exp ~ R  + o(n a+'-~) 

= ( r ' / 2 ) a e ( E ) ( d  + r - 1)n a+*-I log(n) 

r '  
(42) + ~ B V ( h ,  kp)n a+*-t  + o(n  ~+~-~) . 
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It follows from (37), (38), (39), (40), (41) and (42), that the number 
Z L 2 ( f * ( ~ r  ke) = -- log V O l L 2 ( H ~ 1 6 2  + / H ~  
satisfies 

Z L 2 ( f * ( ~ : ) ( n ) ,  kp) = r'~d+ l (E)n  a+r + (r'/4)crd(E)(d + r - 1)n a + ' - I  log(n) 

+ (r ' /4)BV(h,  ke)n d+r- l 

+ g , ( z ( f * ( ~ ) ,  ke)tl)dl((_f(l))a+r-1)na+r-l/(d + r - 1)! 

(43) + o(nd+r- I )  . 

TO relate this number to ZL~(S"E | i f )  we introduce the following metric on 
TP(C). The Hermitian holomorphic connection on Er gives a splitting 

T P ( ~ )  = T f r  O f *  T X ( C ) .  

Denote by hp the metic whose associated (l, 1)-form is the direct sum of the 

restriction of Cx(C(1)) to T f r  with the inverse image by f*  of the Kfihler form on 
X(C) (the metric he needs not be Kiihler). The volume form on T P ( ~ )  attached to 
hp is the product of the Fubini-Study volume form of T f r  with the volume form on 

f *  TX(~) .  Therefore, if we endow J , (C(n))r  with the L 2 metric along the fibers off ,  
we get 

(44) Z L : ( f * ( ~ r  he) = ZL~(~- ~ |162  . 

To compute the norm of the isomorphism 

~ : S " E  ~ f , ( C ( n ) )  

we may assume that X(~)  is a point. One gets that 

[ [ 0 ~ ( X ) I I 2  - -  n ! ( r -  1)! XH 2 ; 

(n + r -- 1)! 

Indeed, w h e n X ( I E ) i s a p o i n t ,  i f x  = e l |  |  |  
with e~ an orthonormal basis of Er by definition of the quotient metric, we get 

i tXl[2_Oq ! . . . O~r! 
n! 

On the other hand, if # is the invariant volume form of total volume one on 
�9 r-  ~(~E), we get 

i Z l l ~ , ~  . . .  iz~l ~ , .  
t l , ( x ) l l  2 = 

]~ ( r  2 + . - ~ - [ Z r l 2 )  h I ' /  

( 0~1!  . . . O ~ r ! ) ( Y  - -  1)! 

( n  + r - 1)!  

It follows that ~ multiplies the norms by n!(r - 1)!/(n + r - 1)!. 
Notice that H~ ~ | SnEer) has rank 

z(XOE), ~ r  | S"Er  = r' aa(E)n a+~-I + O ( n  a + r -  2) . 
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Therefore, by (44) and the Stirling formula, we get 

ZL~(o~ | S ' E )  - )~L~(/*(o~)(n),  he) 
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= ( 1 / 2 ) z ( X ( ~ ) ,  Y r  | S ~ ) l o g ( n ! ( r  - 1)!/(n + r - 1)!) 

= - ( r ' /2 ) ( r  - 1)aa(E)n a+'-  1 log n + ( r ' /2) log ((r - 1)!)aa(E)n a +r- 1 

(45) + o ( n e + ' - l ) .  

According to I-BV, Theorem 10], 

(46) Z L 2 ( f * ( ~ c ) ( n ) ,  he) - ) /L2(f*(Y~)(n),  ke) = ( r ' / 2 ) ( B V ( h ,  he) 

- B V ( h ,  ke))n  a + ' - I  + o(n a + ' - l )  . 

Fur thermore  we compute 

g , ( z ( f * ( ~ ) ,  h.)(1)~1 ((_O(1))d+r- 1 ) - g , ( r ( f * ( ~ ) ,  kp)(1)(~l((~(1))d+r- 1 ) 

= g , ( c h ( f * ( 9 r  Td(he ,  k p ) ( 0 ) C l  ((J(l)) a +r- 1 

= ( r ' / 4 ) ( B V ( h ,  he) - B V ( h ,  ke)) (d  + r - 1)! 

Combining this fact with (43), (45) and (46), Theorem 8 follows with 

(47) A = g , ( z ( f * ( ~ ) ,  he ) (1 ) ( l (C(1 ) )a+ ' - l ) / ( d  + r - 1)! 

r r 
+ ~ B V ( h ,  he) + ( r ' / 2 ) l og ( ( r  - 1)!)aa(E) .  q.e.d. 

Remark.  Notice that, in the proof  of Theorem 8, the exact form of the arithmetic 
R iemann-Roch-Gro thend ieck  Theorem 7 is not  used. One needs only to know the 
curvature of the determinant  line bundle [BGS1]  in addit ion to the algebraic 
R iemann-Roch-Gro thend ieck  theorem, since this implies that the defect 
6 ( S ' E |  ~ ) ,  defined as in 4.2.4, depends only on the class [ Y ~ |  S ' E ~ ] e  
Ko(XQ)Q,  to which Lemma 29 applies (see [GS6]).  

5.2 Smal l  sections 

5.2.1 We keep the notat ions of Sect. 5.1. Fix a positive real number  e > 0. Denote  
by N~ the number  of sections s ~ H ~  ~ | S ' E )  = A such that, for every point  
x e X(C), 

II s(x)II < exp(n(de+ I (E)  - e ) /aa (E) ) ,  

and by N*  the number  of elements 2 ~ H o m ( A ,  77) such that 

supt2(s)] < exp(n(e - ~a+l(E)) /aa(E))  , 

where the sup is taken over all sections s such that It s(x)ll  < 1 for all x in X(~).  
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Theorem 9 As n goes to infinity 

log(N~.) - log(N*)  = r'en d+r + O(n n§ 1 log(n)) . 

5.2.2 To prove Theorem 9 we apply a variant of Minkowski 's  theorem proved in 
I-GS5] to the lattice A equipped with the norm 

Isl -- sup ( l l s (x ) l [ ) exp ( -  n(~d+l(E) -- a)/aa(E))) . 
x ~ x(~?) 

From [GS5, Theorem l] we have 

(48) ]log(N~) - log(N*)  + logvoll . l(A | IR/A)I  < 61og(•) -- l o g v o l ( B ) ,  

where Z is the rank of A, B the unit ball in ]Rx and the covolume vOlll, ii(A | ]R/A)  is 
taken for the norm l" ]. F rom Lemma 29 we get (when n is big enough) 

(49) Z = z(X(•), Y r  | S "Er  = r 'ad(E)n  d+r- '  + O(n d+r- 2) . 

Therefore, by Stirling's formula, 

(50) - logvol (B)  = O(zlog(~))  = O ( n d + r - ' l o g ( n ) )  

and, if volsuv is the volume for the sup norm on A, we have 

(51) - logvolr.l(A | ]R/A)  + logvolsup(A | IR/A ) = L(n(  dd+ 1( IE) -- e)/ad( E) ) 

= r'(6, -- ~d+l (E) )n  d+r 

+ O ( n ~ + ' - l ) .  

From Lemma 30 below we may compare the sup norm and the L z norm on A. 
First, the L 2 norm on A is less than or equal to the sup norm. On the other hand the 

n ! ( r -  1)! 
sup norm on A, using the isomorphism ~ of (36), is bounded above by 

(n + r - 1)! 
times the sup norm of P (~ )  o f f * ( ~ r  By Lemma 30 below this is bounded 
above by a constant  multiple of n e+' -  ~ times the L 2 n o r m  on P(C) of f * ( , ~ r  
(using hp). But, by definition of the metric on f ,  (6 '(n))r and Fubini 's theorem, this 
L 2 n o r m  is also the L 2 n o r m  on A, It follows that 

(52) [log vols,v(A | ]R/A)  - log volL~(A | ]R/A)I 

= Z O(logn) = O(n d+~-I log (n ) ) .  

Finally, from Theorem 8, we have 

(53) - 1ogvo1L:(A | IR /A)  = r '$d+ l (E)n  d+~ + O ( n d + ~ - l l o g ( n ) ) .  

Combining (51), (52) and (53) we get 

(54) - log voll.l(A | ]R/A)  = r'en e+~ + O(n ~+~-1 l og (n ) ) .  

From (48), (49), (50) and (54) we deduce Theorem 9. q.e.d. 

5.2.3 To compare  the sup norm and the L 2 norm on A we use the following result, 
that  was explained to us by Gromov.  Let M be a compact  Riemannian complex 
manifold, V an Hermitian complex vector bundle and L an Hermitian line bundle 
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on M. Let d = d ime  M. Denote  by [I" !]sup and [I. IlL2 the sup norm and the L z norm 
of sections of bundles on M. 

L e m m a  30 There is a positive constant C > 0 (independent on n) such that, for any 
section s of V | L | n on M, 

]lsll~up =< C n ~ ll s ll L 2 �9 

Proof. We first prove  a local statement.  Let B be the open hall B = { z s Cd/I z l < 3}. 
Assume we are given two smooth  strictly positive real functions g and p on B, and 
a positive definite k by k Hermi t ian  matr ix  valued function h = (hu) on B. Then 
there exists a constant  C(p, h, g ) >  0 such that, for any k-tuple (.fl . . . . .  J~) of 
ho lomorph ic  functions on B, any integer n __> 0, and any w e B  with Iw] < 1, 

( ~ hij(z) f (z)~(z)  ) p(z)" g(z)dxl dyl . . . dyd 
[z-wl<= 1 i,j 

> C(p, h, g) ( ~. . hlj(w) f(w) fi(w ) ) p(w)nn -2d . 
t,J 

To prove this, let 9o = InfIzI =< 2 g(z), and let M(h) (resp. re(h)) be the sup remum 
(resp. the infimum) of the largest (resp. smallest) eigenvalue of (hu(z)), Izl _-< 2. 
Fur thermore ,  let dp be the differential of p, 

c ' = (  Sup I ldp(z ) lF) / (  Inf  p ( z ) ) ,  
Izl=<2 Iz l<2 

and c = Sup(c ' ,  1). By the mean  value theorem, we have 

p(z) ~ p(w)(1 - clz - wl) 

when I z [ <  2 and I wl < 2. 
With these definitions we obtain, where dx = dx~dyx . . .  dyd, 

I =  ~ ( ~ hij(z)f(z)~(z) )p(z)"9(z)dx 
[ z - w [  <= 1 i , j  

k 

> m(h)go ~ ~ If(z)12p(z)"dx 
I z -w l=<  1 i = l  

I z - w l < l  i=1 

Since t h e f t s  are holomorphic ,  for any positive real number  r, the average value of 
I f ( z ) l  z on the sphere Iz - wl = r is bounded  below by If(w)l  2. Therefore, i fS  2"-1 
is the unit sphere, we get 

) I>m(h)90  I f (w)l  2 p(w)"vol(S 2d-1) ~ (1--cr)"r2d-ldr 
i = 1  r = O  

> M~-~Oo . .hu(w)f(w)~(w) p(w)"vol(S2d-1)c-Edn -2d, 

which proves  our  assertion. 
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To deduce the lemma from this fact, choose a finite open cover ~ c M, ~ e A, 
b iho lomorphic  i somorphisms q~ :B ---, f2~, and trivializations of q)*L and ~0*E on 
B. We assume that  

M = ~J ~0~({w~B such that Iw[ < 1}). 
~ E A  

Write (h~) and p" for the functions on B induced by the metrics on E and L, and 
our  choice of trivializations. The  measure dp on M defines a positive function O ~ on 

B by the formula  q)*(d#) = 9~(z)dx. Let C = inf x/C(p ~, h ~, ,q% Given any holo- 
0t~ :A 

morphic  section s of V | L | on M, let Xo be the point at which the norm of s is 
maximum,  Choose ~ e A  and weB, [wl < 1, such that  q),(w) = Xo. Then, from our  
choice of trivializations, we get a k-tuple of ho lomorphic  functions (.1'~, . . . ,J~,) on 
B such that  rp*(s) = (f~ . . . . . .  ~). Therefore, by the result above  

Ilsl[22 = ~ Ils(x)]12dkt(x) 
M 

>= ~ N~o*sllZ,q =dx 
[ z - w [ = < t  

t ,J  

= C 2 n - 2a II S (Xo) l [  2 = C Z n  - 2d II S II 2 q.e.d. SUp " 

5.3 Variants 

5.3. I There  are other  variants  of  Theorem 9. For  instance, if one is only interested 
in bounding N~ from below, one may replace the hypothesis AI)  of ampleness of 
E by the vanishing of the even cohomology  groups H2k(X, ~ | S"E), k > O, 
n >2> 0. According to (14) this will be enough to get an est imate from below for 
z Q ( f * ( ~ ) ( n ) )  since, by A2), the cohomology  groups Hk(X(C), ,~r | S"Er will 
vanish for k > 0 and n >> 0. 

This is an a rgument  which has been used by Vojta in [Vo].  Fur thermore ,  in loc. 
cit., the hypothesis  A2) is also replaced by a weaker  assumption.  

One could also replace S"E by S"'EI | . . .  | S"~Ek, or replace Spec(7/) by 
a more  general base scheme Y. 

5.3.2 One may  wonder  if ~ could be any algebraic coherent  sheaf on X, not 
necessarily locally free on XQ. This raises the question of defining Hermit ian 
metrics on arbi t rary  coherent  sheaves, and we do not know whether  this can be 
done in general. 

However,  given a Hermit ian  coherent  sheaf o~ on X (in the sense of Definition 
5 in Par. 2.5.) and a subsheaf  d c ~ ,  one may ask whether there are nontrivial  
sections s in H~ J | S"E) which are bounded in H~ ~ | S"E). Using the 
exact sequence 

0 ~ H~ o.r | S"E) --. H~ f f  @ S"E) , H~ (~/ .~)  | S"E) 

one may  apply  our  lower est imate on N~ and the Dirichlet box principle to produce 
such a section s. Indeed, if N~ is bigger than the cardinality of z(B~), where B~ is the 
set of sections of ~,~ | S"E satisfying the first inequality in 5.2.1., we may  find two 
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sections sl, s2 in B~, sl =t: s2, having the same image by ~r. The difference s = s~ - s2 
is then a bounded section of , / |  S"E. For further discussion see [L]. 

For arithmetic surfaces Zhang, using Theorem 9, gets in [Z] an arithmetic 
analog of the Nakai Moishezon criterion for ampleness. 

5.3.3 When X is a projective space and E = C(1), Theorem 9 amounts to producing 
small homogeneous polynomials with integral coefficients and, when the support of 
, r  flat and finite over 7l, 5.3.2. amounts to asking that some partial derivatives 
of these polynomials vanish at some points. This has been solved classically in the 
theory of diophantine approximation (Siegel's lemma). For more general X's, 
Faltings [F2] and Bombieri [Bo] have shown how to replace the use of the 
arithmetic Riemann-Roch theorem in the work of Vojta [Vo] by a more direct 
approach, inspired by Siegel's lemma. 

Acknowledgement. We thank J.-B. Bost for helpful comments. 
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