

The space of negative scalar curvature metrics

Joachim Lohkamp

Mathematisches Institut, Beringstrasse 4, W-5300 Bonn, Federal Republic of Germany

oblatum 13-V-1992

1 Introduction

The topology of the space of positive scalar curvature metrics $S^+(M)$ on a closed manifold M has been studied by Hitchin, Gromov, Lawson and Carr (cf. [LM, IV, §9]) and it turned out that the topology of $S^+(M)$ is quite complicated; there are manifolds M such that the *i*th homotopy group $\pi_i(S^+(M))$ is non-trivial for some (probably arbitrarily great) $i \ge 0$ and even the "moduli space" $S^+(M)/\text{Diff}(M)$ can have infinitely many path components.

In this paper we will have a look at the natural counterpart: the topology of the space of negative scalar curvature metrics $S^{-}(M^{n})$ on a closed manifold M^{n} of dimension $n \ge 3$.

We will prove that $S^{-}(M)$ (which always is non-empty by [A] resp. [KW]) is always connected and aspherical:

Theorem 1 $\pi_i(S^-(M)) = 0, \quad i = 0, 1, 2, \dots$

By Theorem 1 using a general result of infinite dimensional topology due to Palais and Whitehead (cf. [P, Theorem 15 and corollary]) we get a complete insight into the topology of $S^{-}(M)$:

Theorem 2 $S^{-}(M)$ is contractible.

From this we get the same information for the space of metrics with constant negative scalar curvature = -1 denoted by $S_{-1}(M)$.

Corollary. $S_{-1}(M)$ is contractible.

Note that on the other hand $S^{-}(M)$ and $S_{-1}(M)$ are never convex (cf. [L1]).

2 Continuous extension

We are only concerned with closed C^{∞} -manifolds and C^{∞} -Riemannian metrics defined on them. Once given a manifold M we fix some reference metric g_M on M and consider the space of all C^{∞} -metrics $\mathcal{M}(M)$ on M equipped with the usual

 C^{∞} -topology which is the Fréchet topology defined by all the C^{k} -norms $\|\cdot\|_{k}$ on M. $\|\cdot\|_{k}$ is defined with respect to g_{M} , but the topology does not depend on g_{M} .

Now let $f: S^i \to S^-(M)$ be a continuous map, we are looking for an extension of f on $B^{i+1} \equiv \overline{B_6(0)} \subset \mathbb{R}^{i+1}$. $S^i \equiv \partial B_6(0)$, i.e. a continuous map $F: B^{i+1} \to S^-(M)$ with $F_{1S^i} \equiv f$.

We start our construction of F by some trivial extension F_1 of f defined as follows: Let g_0 be any fixed metric on M and $(x, t) \in S^i \times [0, 6]/S^i \times \{0\} \equiv B^{i+1}$ (polar coordinates) then we define

$$F_1(x,t) := \begin{cases} (1-t) \cdot g_0 + t \cdot f(x) & \text{on } S^i \times [0,1]/S^i \times \{0\} \\ f(x) & \text{on } S^i \times [1,6]/S^i \times \{0\}. \end{cases}$$

Obviously F_1 is a continuous map with image lying in $\mathcal{M}(M)$. Our goal will be to find deformations of F_1 inside of $S^i \times [0, 5]/S^i \times \{0\}$ such that the image of the deformed map lies in $S^-(M)$.

3 Main deformation

Let N_i^n , i = 1, 2 be closed manifolds of dimension $n \ge 3$, $p_i \in N_i$ fixed base points, g_i and $\overline{g_i}$ metrics on N_i , g_i with injectivity radius $inj(N_i, g_i) > 5$. Now we define for $\lambda_i \ge 1$ new metrics on $N_i \setminus \{p_i\}$ by

$$g(\lambda_i, g_i, \overline{g_i}) = h(d_{\lambda_i^2, g_i}(p_i, \operatorname{id}_{N_i})) \cdot G_{\lambda_i} + (1 - h(d_{\lambda_i^2, g_i}(p_i, \operatorname{id}_{N_i})) \cdot \lambda_i^2 \cdot \overline{g_i}$$

 $h \in C^{\infty}(\mathbb{R}, [0, 1])$ with $h \equiv 1$ on $\mathbb{R}^{\leq 3}$, $h \equiv 0$ on $\mathbb{R}^{\geq 4}$ and $G_{\lambda_i} := f_{\lambda_i}^*(g_{\mathbb{R}} + g_{S^{n-1}})$ where $f_{\lambda_i}: B_5(p_i) \setminus \{p_i\} \to]0, 5[\times S^{n-1}]$ is a diffeomorphism defined as follows: Fix a linear isometry $I_i: (T_{p_i}N_i, g_i) \to (\mathbb{R}^n, g_{eukl_i})$ and consider the usual polar coordinates on $\mathbb{R}^n \setminus \{0\}: P: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}^{>0} \times S^{n-1}, P(z) = (||z||, z/||z||)$ and define $f_{\lambda_i}(z) := P(\lambda_i \cdot (I_i \circ (\exp_{p_i}^{\lambda_i})^{-1}(z)))$ where $\exp_{p_i}^{\lambda_i}$ denotes the exponential map in p_i for the metric $\lambda_i^2 \cdot g_i$.

By definition $\partial(N_1 \setminus B_1(p_1))$ and $\partial(N_2 \setminus B_1(p_2))$ equipped with these metrics are isometric and can be identified by the orientation preserving isometry $i(\lambda_1, \lambda_2) := f_{\lambda_2}^{-1} \circ f_{\lambda_1}$ yielding $N_1 \#_i N_2$ together with a smooth metric denoted by

$$g(\lambda_1, g_1, \overline{g_2}) \#_i g(\lambda_2, g_2, \overline{g_2}).$$

Now we specialize to $N_1 = M$, $g_1 = g_M$ (a fixed reference and base metric, with $inj(M, g_M) > 5$), $\overline{g_1} = g$ (varying metrics), $\lambda_1 = \lambda$, $p_1 = p$ and $N_2 = S^n$, $g_2 = g^*$ (a fixed metric with $inj(S^n, g^*) > 5$), $g_2 = g_n$ (a fixed negative scalar curvature metric on S^n , $\lambda_2 = \mu$, $p_2 = q$.

From the construction above it is clear that there is a family of diffeomorphisms $F(\lambda, \mu): M \to M \# S^n$ with $F(\lambda, \mu) \equiv id$ on $M \setminus B_5(p)$ which can be chosen such that the metrics $G(g, \lambda, \mu) := F(\lambda, \mu)^*(g(\lambda, g_M, g) \#_{i(\lambda, \mu)}g(\mu, g^*, g_n))$ depend *continuously* on λ and μ .

Now we are ready to define for $\lambda_0 \ge 1$, $\mu_1 \ge \mu_0 \ge 1$, $(x, t) \in B^{i+1}$

$$\begin{split} F_2(\lambda_0, \mu_0, \mu_1, x, t) &:= \\ \begin{cases} f(x) & \text{on } S^i \times [4, 6]/S^i \times \{0\} \\ ((4-t) \cdot \lambda_0^2 + (1-(4-t))) \cdot f(x) & \text{on } S^i \times [3, 4]/S^i \times \{0\} \\ (3-t) \cdot G(f(x), \lambda_0, \mu_0) + (1-(3-t)) \cdot \lambda_0^2 \cdot f(x) & \text{on } S^i \times [2, 3]/S^i \times \{0\} \\ G(f(x), \lambda_0, (2-t) \cdot \mu_1 + (1-(2-t)) \cdot \mu_0) & \text{on } S^i \times [1, 2]/S^i \times \{0\} \\ G(F_1(x, t), \lambda_0, \mu_1) & \text{on } S^i \times [0, 1]/S^i \times \{0\}. \end{split}$$

We claim

Proposition 1. There are λ_0, μ_0, μ_1 such that $(F_2(x, t)) := F_2(\lambda_0, \mu_0, \mu_1, x, t)$ is a continuous extension of f with

- (i) $F_2(x, t) \equiv f(x) \text{ on } S^i \times [4, 6]/S^i \times \{0\}$
- (ii) $\mathscr{S}(M, F_2(x, t)) < 0$ on B^{i+1} (where $\mathscr{S}(U, g) := \int_U S_g d\operatorname{Vol}_g$).

Proof. The continuity of $F_2(x, t)$ and (i) follow directly from the construction above. It remains to show (ii) for appropriate λ_0, μ_0, μ_1 , which is trivial on $S^i \times [3, 6]/S^i \times \{0\}$.

The following estimates are easily checked noting $\mathscr{S}(U, \lambda^2 \cdot g) = \lambda^{n-2} \cdot \mathscr{S}(U, g), \lambda > 0$ $(B_r(p)$ with respect to $\lambda^2 \cdot g_M$):

- (1) there is a $\mu_0 \ge 1$, independent of $\lambda \ge 1$, $x \in S^i$, such that $\mathscr{S}(B_4(p), G(f(x), \lambda, \mu)) < 0$ for $\mu \ge \mu_0$
- (2) given k > 0 there is a $\lambda(k) \ge 1$ such that for $x \in S^i$: $\mathscr{S}(M \setminus B_5(p), \lambda^2(k) \cdot f(x)) < -k$
- (3) there is c > 0, independent of $\lambda \ge 1$ and $(x, t) \in S^i \times [2, 3]$, such that $\mathscr{S}(B_5(p), (3-t) \cdot G(f(x), \lambda, \mu_0) + (1-(3-t)) \cdot \lambda^2 f(x)) < c$
- (4) given K > 0 there is a $\mu(K) \ge \mu_0$ independent of $\lambda \ge 1$ such that $\mathscr{S}(B_5(p), G(F_1(x, t), \lambda, \mu(K)) < -K$ for each $(x, t) \in B^{i+1}$.

Now we verify (ii) on $S^i \times [0, 3] / S^i \times \{0\}$ for μ_0 as in (1), $\lambda_0 := \lambda(2c), \mu_1 := \mu(|m| + 1)$, where $m := \max_{B^{i+1}} \mathcal{G}(M \setminus B_5(p), \lambda_0^2 \cdot F_1(x, t))$: on

$$S^{i} \times [2,3]/S^{i} \times \{0\}: \mathscr{S}(M, (3-t) \cdot G(f(x), \lambda_{0}, \mu_{0}) + (1-(3-t)) \cdot \lambda_{0}^{2}f(x))$$

$$= \mathscr{S}(B_5(p), \ldots) + \mathscr{S}(M \setminus B_5(p), \ldots) < -c < 0, \text{ by (2) and (3)}$$

on

$$S^{i} \times [1, 2] / S^{i} \times \{0\}$$
: $\mathscr{S}(M, G(f(x), \lambda_{0}, (2-t)\mu_{1} + (1-(2-t))\cdot\mu_{0})) < 0$

by (1) and $f(x) \in S^{-}(M)$, on

$$S^{i} \times [0, 1] / S^{i} \times \{0\}: \mathscr{S}(M, G(F_{1}(x, t), \lambda_{0}, \mu_{1}))$$

$$\leq m + \mathscr{S}(B_{5}(p), G(F_{1}(x, t), \lambda_{0}, \mu_{1})) < -1 \text{ by (4).} \qquad \Box$$

4 Eigenvectors of the Conformal Laplacian

The scalar curvature S_g transforms under conformal deformations $g_1 = u^{4/n-2} \cdot g$, dim $M = n \ge 3$, according to (cf. [K, (3.2)]:

$$L_g u \equiv -\gamma \cdot \Delta_g u + S_g \cdot u = S_{g_1} \cdot u^{\alpha}, \quad \gamma = 4 \frac{n-1}{n-2}, \quad \alpha = \frac{n+2}{n-2}.$$

We are interested in the linear operator L_g which is sometimes called "conformal Laplacian".

Recall from [K, 3.A], that the first eigenvalue $\lambda_1(g)$ of L_g , which fulfills

$$\lambda_1(g) = \inf_{u \in C^{\times}(M), u \neq 0} \int_M (\gamma \cdot \| \nabla u \|^2 + S_g \cdot u^2) dV_g \bigg/ \int_M u^2 \cdot dV_g \equiv \inf J_g(u),$$

has a one dimensional eigenspace generated by a (unique) eigenvector $v(g) \in C^{\infty}(M)$ with v(g) > 0, max v(g) = 1.

For completness we will show the following hardly surprising fact, which is hard to quote explicitly from literature:

Proposition 2 If $g_n \to g$ with respect to the C^{∞} -topology, then $\lambda_1(g_n) \to \lambda_1(g)$ and $v(g_n) \to v(g)$ also with respect to the C^{∞} -topology.

Proof. From the definition of $J_g(u)$, we get for $\varepsilon > 0$ some n_0 , such that: $(1-\varepsilon)|J_{g_n}(u)| \leq |J_g(u)| \leq (1+\varepsilon)|J_{gn}(u)|$ for $n \geq n_0$ and each $u \in C^{\infty}(M) \setminus \{0\}$. This implies $\lambda_1(g_n) \to \lambda_1(g)$. Furthermore $0 < v(g_n) \leq 1$, $g_n \to g$ in the C^{∞} -topology and $L_{g_n}v(g_n) = \lambda(g_n) \cdot v(g_n)$ imply by standard elliptic theory $||v(g_n)||_{C^*_{v_n}} < c_k, c_k$ independent of *n*. From $\lambda_1(g_n) \to \lambda_1(g)$ and the Arzela–Ascoli-Theorem we obtain converging subsequences (by iteration) in $||\cdot||_k$ and we take the diagonal sequence of these subsequences. This converges in C^{∞} to $\tilde{v} \in C^{\infty}(M)$, with $L_g \tilde{v} = \lambda_1(g) \cdot \tilde{v}, \tilde{v} \geq 0$, max $\tilde{v} = 1$ (from [K, 3.A], we conclude again $\tilde{v} > 0$). But this \tilde{v} has to be the unique eigenvector v(g), which implies that a fortiori $v(g_n)$ converges.

5 Final deformation

Now we are ready to complete the proof of our theorem. Since $\mathscr{S}(M, F_2(x, t)) < 0$, $(x, t) \in B^{i+1}$, we conclude from $\lambda_1(g) = \inf J_g(u)$: $\lambda_1(F_2(x, t)) < 0$ on B^{i+1} . We define

$$F(x,t) = \begin{cases} f(x) & \text{on } S^i \times [5,6]/S^i \times \{0\} \\ ((5-t) \cdot v(f(x) + (1-(5-t)))^{\frac{4}{n-2}} \cdot f(x) & \text{on } S^i \times [4,5]/S^i \times \{0\} \\ v(F_2(x,t))^{\frac{4}{n-2}} \cdot F_2(x,t) & \text{on } S^i \times [0,4]/S^i \times \{0\} \end{cases}$$

and we claim

Proposition 3. *F* is a continuous extension of $f: S^i \to S^-(M)$ with $F(B^{i+1}) \subset S^-(M)$.

Proof. Propositions 1 and 2 imply the continuity. Now we verify $F(x, t) \in S^{-}(M)$: On $S^{i} \times [5, 6]/S^{i} \times \{0\}$ there is nothing to prove, on $S^{i} \times [4, 5]/S^{i} \times \{0\}$ we calculate:

$$S_{F(x,t)} \cdot ((5-t) \cdot v(f(x)) + (1-(5-t)))^{\alpha} = L_{f(x)}((5-t) \cdot v(f(x)) + (1-(5-t)))$$

= (5-t) \cdot \lambda_1(f(x)) \cdot v(f(x)) + S_{f(x)} \cdot (1-(5-t)) < 0

on $S^i \times [0, 4] / S^i \times \{0\}$ we obtain:

$$S_{F(x,t)} \cdot v(F_2(x,t))^{\alpha} = L_{F_2(x,t)}v(F_2(x,t)) = \lambda_1(F_2(x,t)) \cdot v(F_2(x,t)) < 0.$$

Since $(\ldots)^{\alpha} > 0$, we conclude $S_{F(x,t)} < 0$.

6 Constant scalar curvature

Finally we will show that $S_{-1}(M)$ is contractible (which implies $\pi_i(S_{-1}(M)) = 0, i = 0, 1, ...$), this can be deduced from:

Proposition 4. There is a continuous map $p: S^{-}(M) \to S_{-1}(M)$ with $p_{|S_{-1}(M)} \equiv id$.

Proof. Let $g \in S^{-}(M)$ and u a positive solution of the Yamabe equation $-\gamma \cdot \Delta_g u + S_g \cdot u = -u^{\alpha}$.

We assert

- (i) *u* is unique
- (ii) $p(g) := u^{4/n-2} \cdot g$ fulfills the claims.

(i): Let v be a second positive solution, $u^{4/n-2} \cdot g$ and $v^{4/n-2} \cdot g$ have scalar curvature $\equiv -1$. write $v \equiv w \cdot u$ for some w > 0, $w \in C^{\infty}(M)$. Then w fulfills the Yamabe equation for $g_1 = u^{4/n-2} \cdot g$:

$$-\gamma \cdot \Delta_a, w - w = -w^{\alpha},$$

now assume $w \neq 1$: since $\alpha > 1$ we get $\Delta_{g_1} w > 0$ or the maximum of w or $\Delta_{g_1} w < 0$ in the minimum of w, which yields a contradiction.

(ii): From (i) $p_{|S_{-1}(M)} \equiv id$, so it remains to show $g_n \to g$ in C^{∞} implies $u_n \to u$ in C^{∞} (u_n , u denote the solutions of the Yamabe equation of g_n , g): $-K_1 < S_{g_n} < -K_2$ for some $K_1 > K_2 > 0$ independent of n yields

$$0 < K_2^{1-\alpha} < (\min|S_{g_n}|)^{1-\alpha} < u_n < (\max|S_{g_n}|)^{1-\alpha} < K_1^{1-\alpha}.$$

Now using both bounds one can proceed as in Proposition 2 to get C^k estimates independent of *n*. Again uniqueness of *u* as shown in (i) implies convergence of u_n .

Now let $H: S^{-}(M) \times [0, 1] \to S^{-}(M)$ be a contraction to a $g_0 \in S_{-1}(M)$, i.e. $H(\cdot, 0) \equiv \text{id}, H(\cdot, 1) \equiv g_0$. Consider $p \circ H_{|S_{-1}(M)} \times [0, 1] \to S_{-1}(M)$. $p \circ H$ is continuous by Proposition 4 and $p \circ H(\cdot, 0)_{|S_{-1}(M)} \equiv \text{id}, p \circ H(\cdot, 1) \equiv g_0 \in S_{-1}(M)$, i.e. $S_{-1}(M)$ is contractible.

Acknowledgement. The author likes to thank the Sonderforschungsbereich SFB 256, Universität Bonn and Prof. W. Ballmann for their support.

References

[A]	Aubin, T.: Métriques riemanniennes et courbure. J. Differ. Geom. 4, 383-424 (1970)
[K]	Kazdan, J.: Some applications of partial differential equations to problems in
	geometry. Surveys in Geometry, Tokio 1983
[KW]	Kazdan, J., Warner, F.: Scalar curvature and conformal deformations of Rieman-
	nian structures. J. Differ. Geom. 10, 113-134 (1975)
[LM)	Lawson, B., Michelsohn, ML.: Spin geometry. Princeton: Princeton University
	Press 1989
[L1]	Lohkamp, J.: Ricci curvature modulo homotopy. (to appear)
โ้น2าี้	Lohkamp, J.: Curvature <i>h</i> -principles. (to appear)
[P]	Palais, R.: Homotopy theory of infinite dimensional manifolds. Topology 5, 1-16
	(1966)

Note added in proof. The space of negative Ricci curvature metrics $\operatorname{Ric}^{-}(M)$ is also nonempty and contractible. Furthermore $\operatorname{Ric}^{-}(M)$ is dense in $\mathcal{M}(M)$ w.r.t. C^{0} -topology. This is proved in a more geometric but more intricated and conceptually different way. For details we refer to [L2].