

The space of negative scalar curvature metrics

Joachim Lohkamp

Mathematisches Institut, Beringstrasse 4, W-5300 Bonn, Federal Republic of Germany

oblatum 13-V-1992

1 Introduction

The topology of the space of positive scalar curvature metrics $S^+(M)$ on a closed manifold M has been studied by Hitchin, Gromov, Lawson and Carr (cf. [LM, IV, §9]) and it turned out that the topology of $S^+(M)$ is quite complicated; there are manifolds M such that the *i*th homotopy group $\pi_i(S^+(M))$ is non-trivial for some (probably arbitrarily great) $i \ge 0$ and even the "moduli space" $S^+(M)/Diff(M)$ can have infinitely many path components.

In this paper we will have a look at the natural counterpart: the topology of the space of negative scalar curvature metrics $S^-(M^n)$ on a closed manifold M^n of dimension $n \geq 3$.

We will prove that $S⁻(M)$ (which always is non-empty by [A] resp. [KW]) is always *connected* and *aspherical:*

Theorem 1 $\pi_i(S^-(M))=0$, $i=0,1,2,...$

By Theorem 1 using a general result of infinite dimensional topology due to Palais and Whitehead (cf. [P, Theorem 15 and corollary]) we get a complete insight into the topology of $S⁻(M)$:

Theorem 2 $S^{-}(M)$ is contractible.

From this we get the same information for the space of metrics with constant negative scalar curvature = -1 denoted by $S_{-1}(M)$.

Corollary. $S_{-1}(M)$ *is contractible.*

Note that on the other hand $S^{-}(M)$ and $S_{-1}(M)$ are never convex (cf. [L1]).

2 Continuous extension

We are only concerned with closed C^{∞} -manifolds and C^{∞} -Riemannian metrics defined on them. Once given a manifold M we fix some reference metric q_M on M and consider the space of all C^{∞} -metrics $\mathcal{M}(M)$ on M equipped with the usual C^{∞} -topology which is the Fréchet topology defined by all the C^k -norms $||\cdot||_k$ on M. $\|\cdot\|_{k}$ is defined with respect to g_M , but the topology does not depend on q_M .

Now let $f: S^i \to S^-(M)$ be a continuous map, we are looking for an extension of f on $B^{i+1} = \overline{B_6(0)} \subset \mathbb{R}^{i+1}$. $S^i = \partial B_6(0)$, i.e. a continuous map $F: B^{i+1} \to$ $S^{-}(M)$ with $F_{(S)} \equiv f$.

We start our construction of F by some trivial extension F_1 of f defined as follows: Let q_0 be any fixed metric on M and $(x, t) \in S^i \times [0, 6]/S^i \times \{0\} \equiv B^{i+1}$ (polar coordinates) then we define

$$
F_1(x, t) := \begin{cases} (1 - t) \cdot g_0 + t \cdot f(x) & \text{on } S^i \times [0, 1]/S^i \times \{0\} \\ f(x) & \text{on } S^i \times [1, 6]/S^i \times \{0\}. \end{cases}
$$

Obviously F_1 is a continuous map with image lying in $\mathcal{M}(M)$. Our goal will be to find deformations of F_1 inside of $S^i \times [0, 5]/S^i \times \{0\}$ such that the image of the deformed map lies in $S⁻(M)$.

3 Main deformation

Let N_i^n , $i = 1, 2$ be closed manifolds of dimension $n \geq 3$, $p_i \in N_i$ fixed base points, q_i and $\overline{q_i}$ metrics on N_i , q_i with injectivity radius inj $(N_i, q_i) > 5$. Now we define for $\lambda_i \geq 1$ new metrics on $N_i \setminus \{p_i\}$ by

$$
g(\lambda_i, g_i, \overline{g_i}) = h(d_{\lambda_i^2, g_i}(p_i, \mathrm{id}_{N_i})) \cdot G_{\lambda_i} + (1 - h(d_{\lambda_i^2, g_i}(p_i, \mathrm{id}_{N_i})) \cdot \lambda_i^2 \cdot \overline{g_i}
$$

 $h \in C^{\infty}(\mathbb{R}, [0, 1])$ with $h \equiv 1$ on $\mathbb{R}^{\geq 3}$, $h \equiv 0$ on $\mathbb{R}^{\leq 4}$ and $G_{\lambda_i} := f_{\lambda_i}^*(g_{\mathbb{R}} + g_{S^{n-1}})$ where $f_{\lambda}: B_5(p_i)\setminus \{p_i\} \to [0, 5[\times S^{n-1} \text{ is a diffeomorphism defined as follows: Fix }$ a linear isometry $I_i: (T_p, N_i, g_i) \to (\mathbb{R}^n, g_{\text{enkt}})$ and consider the usual polar coordinates on $\mathbb{R}^n \setminus \{0\}$: $P: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}^{20} \times S^{n-1}$, $P(z) = (\|z\|, z/\|z\|)$ and define $f_{\lambda}(z) := P(\lambda_i \cdot (I_i \circ (\exp_{p_i} A_i)^{-1}(z)))$ where $\exp_{p_i}^{\lambda_i}$ denotes the exponential map in p_i for the metric $\lambda_i^2 \cdot g_i$.

By definition $\partial (N_1 \backslash B_1(p_1))$ and $\partial (N_2 \backslash B_1(p_2))$ equipped with these metrics are isometric and can be identified by the orientation preserving isometry $i(\lambda_1, \lambda_2) := f_{\lambda_2}^{-1} \circ f_{\lambda_1}$ yielding $N_1 \# iN_2$ together with a smooth metric denoted by

$$
g(\lambda_1, g_1, \overline{g_2}) \#_i g(\lambda_2, g_2, \overline{g_2}).
$$

Now we specialize to $N_1 = M$, $q_1 = g_M$ (a fixed reference and base metric, with inj $(M, g_M) > 5$, $\overline{g_1} = g$ (varying metrics), $\lambda_1 = \lambda$, $p_1 = p$ and $N_2 = S^n$, $g_2 = g^*$ (a fixed metric with inj $(S^n, g^*) > 5$), $g_2 = g_n$ (a fixed negative scalar curvature metric on S^n , $\lambda_2 = \mu$, $p_2 = q$.

From the construction above it is clear that there is a family of diffeomorphisms $F(\lambda, \mu): M \to M \# S^n$ with $F(\lambda, \mu) \equiv \text{id}$ on $M \setminus B_5(p)$ which can be chosen such that the metrics $G(q, \lambda, \mu) := F(\lambda, \mu)^*(g(\lambda, g_M, g) \#_{i(\lambda, \mu)} g(\mu, g^*, g_n))$ depend *continuously* on λ and μ .

Now we are ready to define for $\lambda_0 \geq 1, \mu_1 \geq \mu_0 \geq 1, (x, t) \in B^{i+1}$

$$
F_2(\lambda_0, \mu_0, \mu_1, x, t) := \n\begin{cases}\nf(x) & \text{on } S^i \times [4, 6]/S^i \times \{0\} \\
((4 - t) \cdot \lambda_0^2 + (1 - (4 - t))) \cdot f(x) & \text{on } S^i \times [3, 4]/S^i \times \{0\} \\
(3 - t) \cdot G(f(x), \lambda_0, \mu_0) + (1 - (3 - t)) \cdot \lambda_0^2 \cdot f(x) & \text{on } S^i \times [2, 3]/S^i \times \{0\} \\
G(f(x), \lambda_0, (2 - t) \cdot \mu_1 + (1 - (2 - t)) \cdot \mu_0) & \text{on } S^i \times [1, 2]/S^i \times \{0\} \\
G(F_1(x, t), \lambda_0, \mu_1) & \text{on } S^i \times [0, 1]/S^i \times \{0\}.\n\end{cases}
$$

We claim

Proposition 1. *There are* λ_0, μ_0, μ_1 *such that* $(F_2(x, t) :=)F_2(\lambda_0, \mu_0, \mu_1, x, t)$ *is a continuous extension off with*

- (i) $F_2(x, t) \equiv f(x)$ on $S^i \times [4, 6]/S^i \times \{0\}$
- (ii) $\mathscr{S}(M, F_2(x, t)) < 0$ on B^{i+1} (where $\mathscr{S}(U, g) := \int_U S_g dVol_g$).

Proof. The continuity of $F_2(x, t)$ and (i) follow directly from the construction above. It remains to show (ii) for appropiate λ_0, μ_0, μ_1 , which is trivial on $S^i \times [3,6]/S^i \times \{0\}.$

The following estimates are easily checked noting $\mathscr{S}(U, \lambda^2 \cdot g) = \lambda^{n-2} \cdot \mathscr{S}(U, g)$, $\lambda > 0$ ($B_r(p)$ with respect to $\lambda^2 \cdot g_M$):

- (1) there is a $\mu_0 \ge 1$, independent of $\lambda \ge 1$, $x \in S^i$, such that $\mathscr{S}(B_4(p), G(f(x), \lambda, \mu)) < 0$ for $\mu \geq \mu_0$
- (2) given $k > 0$ there is a $\lambda(k) \ge 1$ such that for $x \in S^i$: $\mathscr{S}(M \setminus B_5(p), \lambda^2(k) \cdot f(x)) < -k$
- (3) there is $c>0$, independent of $\lambda \geq 1$ and $(x, t) \in S^i \times [2, 3]$, such that $\mathscr{S}(B_5(p), (3-t)\cdot G(\hat{f}(x), \lambda, \mu_0) + (1 - (3-t))\cdot \lambda^2 \hat{f}(x)) < c$
- (4) given $K>0$ there is a $\mu(K)\geq\mu_0$ independent of $\lambda\geq 1$ such that $\mathscr{S}(B_5(p), G(F_1(x, t), \lambda, \mu(K)) < -K$ for each $(x, t) \in B^{i+1}$.

Now we verify (ii) on $S^i \times [0, 3]/S^i \times \{0\}$ for μ_0 as in (1), $\lambda_0 := \lambda(2c), \mu_1 :=$ $\mu(|m| + 1)$, where $m := \max_{B^{t+1}} \mathcal{S}(M \setminus B_5(p), \lambda_0^2 \cdot F_1(x, t))$: on

$$
S^i \times [2,3]/S^i \times \{0\} \colon \mathscr{S}(M,(3-t) \cdot G(f(x),\lambda_0,\mu_0) + (1-(3-t)) \cdot \lambda_0^2 f(x))
$$

$$
= \mathscr{S}(B_5(p), \ldots) + \mathscr{S}(M \setminus B_5(p), \ldots) < -c < 0, \text{ by (2) and (3)}
$$

on

$$
S^{i} \times [1, 2]/S^{i} \times \{0\} : \mathcal{S}(M, G(f(x), \lambda_0, (2-t)\mu_1 + (1 - (2-t)) \cdot \mu_0)) < 0
$$

by (1) and $f(x) \in S^{-1}(M)$, on

$$
S^{i} \times [0, 1]/S^{i} \times \{0\}: \mathscr{S}(M, G(F_1(x, t), \lambda_0, \mu_1))
$$

\n
$$
\leq m + \mathscr{S}(B_5(p), G(F_1(x, t), \lambda_0, \mu_1)) < -1
$$
 by (4).

4 Eigenvectors of the Conformal Laplaeian

The scalar curvature S_a transforms under conformal deformations $g_1 = u^{4/n-2} \cdot g$, dim $M = n \geq 3$, according to (cf. [K, (3.2)]:

$$
L_g u \equiv -\gamma \cdot \Delta_g u + S_g \cdot u = S_{g_1} \cdot u^{\alpha}, \quad \gamma = 4 \frac{n-1}{n-2}, \quad \alpha = \frac{n+2}{n-2}.
$$

We are interested in the linear operator L_q which is sometimes called "conformal" Laplacian".

Recall from [K, 3.A], that the first eigenvalue $\lambda_1(g)$ of L_a , which fulfills

$$
\lambda_1(g) = \inf_{u \in C^{\times}(M), u \neq 0} \int_{M} (\gamma \cdot || \nabla u ||^2 + S_g \cdot u^2) dV_g \bigg/ \int_{M} u^2 \cdot dV_g \equiv \inf J_g(u),
$$

has a one dimensional eigenspace generated by a (unique) eigenvector $v(g) \in$ $C^{\infty}(M)$ with $v(q) > 0$, max $v(q) = 1$.

For completness we will show the following hardly surprising fact, which is hard to quote explicitly from literature:

Proposition 2 *If* $g_n \to g$ with respect to the C^{∞}-topology, then $\lambda_1(g_n) \to \lambda_1(g)$ and $v(q_n) \rightarrow v(q)$ also with respect to the C^{∞} -topology.

Proof. From the definition of $J_q(u)$, we get for $\varepsilon > 0$ some n_0 , such that: $(1 - \varepsilon)|J_{q}(u)| \leq |J_q(u)| \leq (1 + \varepsilon)|J_{qn}(u)|$ for $n \geq n_0$ and each $u \in C^{\infty}(M) \setminus \{0\}$. This implies $\lambda_1(q_n) \to \lambda_1(q)$. Furthermore $0 < v(q_n) \leq 1$, $q_n \to q$ in the C^{∞} -topology and $L_{q_n} v(g_n) = \lambda(g_n) \cdot v(g_n)$ imply by standard elliptic theory $||v(g_n)||_{C^k} < c_k$, c_k independent of n. From $\lambda_1(g_n) \to \lambda_1(g)$ and the Arzela–Ascoli-Theorem we obtain converging subsequences (by iteration) in $\|\cdot\|_k$ and we take the diagonal sequence of these subsequences. This converges in C^{∞} to $\tilde{v} \in C^{\infty}(M)$, with $L_q \tilde{\tilde{v}} = \lambda_1(q) \cdot \tilde{v}$, $\tilde{v} \ge 0$, max $\tilde{v} = 1$ (from [K, 3.A], we conclude again $\tilde{v} > 0$). But this \tilde{v} has to be the unique eigenvector $v(g)$, which implies that a fortiori $v(g_n)$ converges.

5 Final deformation

Now we are ready to complete the proof of our theorem. Since $\mathcal{S}(M, F_2(x, t)) < 0$, $(x, t) \in B^{i+1}$, we conclude from $\lambda_1(g) = \inf J_g(u)$: $\lambda_1(F_2(x, t)) < 0$ on B^{i+1} . We define

$$
F(x,t) = \begin{cases} f(x) & \text{on } S^i \times [5, 6]/S^i \times \{0\} \\ ((5-t) \cdot v(f(x) + (1-(5-t)))^{\frac{4}{n-2}} \cdot f(x) & \text{on } S^i \times [4, 5]/S^i \times \{0\} \\ v(F_2(x,t))^{\frac{4}{n-2}} \cdot F_2(x,t) & \text{on } S^i \times [0, 4]/S^i \times \{0\} \end{cases}
$$

and we claim

Proposition 3. F is a continuous extension of $f: S^i \to S^-(M)$ with $F(B^{i+1}) \subset S^-(M)$.

Proof. Propositions 1 and 2 imply the continuity. Now we verify $F(x, t) \in S⁻(M)$: On $S^{i} \times [5, 6]/S^{i} \times \{0\}$ there is nothing to prove, on $S^{i} \times [4, 5]/S^{i} \times \{0\}$ we calculate:

$$
S_{F(x,t)} \cdot ((5-t) \cdot v(f(x)) + (1-(5-t)))^{\alpha} = L_{f(x)}((5-t) \cdot v(f(x)) + (1-(5-t)))
$$

= (5-t) \cdot \lambda_1(f(x)) \cdot v(f(x)) + S_{f(x)} \cdot (1-(5-t)) < 0

on $S^i \times [0, 4]/S^i \times \{0\}$ we obtain:

$$
S_{F(x,t)} \cdot v(F_2(x,t))^{\alpha} = L_{F_2(x,t)} v(F_2(x,t)) = \lambda_1(F_2(x,t)) \cdot v(F_2(x,t)) < 0.
$$

Since $(\ldots)^{\alpha} > 0$, we conclude $S_{F(x,t)} < 0$.

6 Constant scalar curvature

Finally we will show that $S_{-1}(M)$ is contractible $\pi_i(S_{-1}(M)) = 0$, $i = 0, 1, \ldots$, this can be deduced from: (which implies **Proposition 4.** *There is a continuous map p*: $S^-(M) \rightarrow S_{-1}(M)$ with $p_{|S_{-1}(M)} \equiv id$.

Proof. Let $q \in S^{-1}(M)$ and u a positive solution of the Yamabe equation $-y \cdot A_a u + S_a u = - u^{\alpha}$.

We assert

- (i) u is unique
- (ii) $p(g) := u^{4/n-2} \cdot g$ fulfills the claims.

(i): Let v be a second positive solution, $u^{4/n-2} \cdot g$ and $v^{4/n-2} \cdot g$ have scalar curvature $\equiv -1$. write $v = w \cdot u$ for some $w > 0$, $w \in C^{\infty}(M)$. Then w fulfills the Yamabe equation for $q_1 = u^{4/n-2} \cdot q$:

$$
-\gamma \cdot \varDelta_{a_1} w - w = -w^{\alpha},
$$

now assume $w \neq 1$: since $\alpha > 1$ we get $\Delta_{q_1} w > 0$ or the maximum of w or $\Delta_{q_1} w < 0$ in the minimum of w, which yields a contradiction.

(ii): From (i) $p_{|S_{-1}(M)} \equiv id$, so it remains to show $g_n \to g$ in C^{∞} implies $u_n \to u$ in $C^{\infty}(u_n, u)$ denote the solutions of the Yamabe equation of g_n , g): $-K_1 < S_{a_n} < -K_2$ for some $K_1 > K_2 > 0$ independent of *n* yields

$$
0 < K^{\frac{1}{2}-\alpha} < (\min |S_{g_n}|)^{1-\alpha} < u_n < (\max |S_{g_n}|)^{1-\alpha} < K^{\frac{1}{2}-\alpha}.
$$

Now using *both* bounds one can proceed as in Proposition 2 to get C^k estimates independent of n . Again uniqueness of u as shown in (i) implies convergence of u_n . П

Now let $H: S^-(M) \times [0, 1] \rightarrow S^-(M)$ be a contraction to a $g_0 \in S_{-1}(M)$, i.e. $H(\cdot, 0) \equiv id$, $H(\cdot, 1) \equiv g_0$. Consider $p \circ H_{|S_{-1}(M)} \times [0, 1] \rightarrow S_{-1}(M)$. $p \circ H$ is continuous by Proposition 4 and $p \circ H(\cdot, 0)|_{S_{-1}(M)} \equiv id$, $p \circ H(\cdot, 1) \equiv g_0 \in S_{-1}(M)$, i.e. $S_{-1}(M)$ is contractible.

Acknowledgement. The author likes to thank the Sonderforschungsbereich SFB 256, Universität Bonn and Prof. W. Ballmann for their support.

References

Note added in proof. The space of negative Ricci curvature metrics $Ric^{-1}(M)$ is also nonempty and contractible. Furthermore Ric⁻(M) is dense in $\mathcal{M}(M)$ w.r.t. C^o-topology. This is proved in a more geometric but more intricated and conceptually different way. For details we refer to [L2].