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1 Introduction

The topology of the space of positive scalar curvature metrics S * (M) on a closed
manifold M has been studied by Hitchin, Gromov, Lawson and Carr (cf. [LM, TV,
§91) and it turned out that the topology of S *(M) is quite complicated; there are
manifolds M such that the ith homotopy group n;(S * (M)) is non-trivial for some
(probably arbitrarily great) i = 0 and even the “moduli space” S * (M)/Diff (M) can
have infinitely many path components.

In this paper we will have a look at the natural counterpart: the topology of the
space of negative scalar curvature metrics S~ (M") on a closed manifold M" of
dimension n 2 3.

We will prove that S~ (M) (which always is non-empty by [A] resp. [KW]) is
always connected and aspherical:

Theorem 1 7,(S"(M))=0, i=0,1,2,....

By Theorem 1 using a general result of infinite dimensional topology due to Palais
and Whitehead (cf. [P, Theorem 15 and corollary]) we get a complete insight into
the topology of S (M ):

Theorem 2 S~ (M) is contractible.

From this we get the same information for the space of metrics with constant
negative scalar curvature = — 1 denoted by S_;(M).

Corollary. S_,(M) is contractible.

Note that on the other hand S (M) and S_, (M) are never convex (cf. [L.1]).

2 Continuous extension

We are only concerned with closed C*-manifolds and C*-Riemannian metrics
defined on them. Once given a manifold M we fix some reference metric g, on
M and consider the space of all C*-metrics .# (M) on M equipped with the usual
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C=-topology which is the Fréchet topology defined by all the C*-norms | - ||,
on M. -|l, is defined with respect to g, but the topology does not depend

on gy.
Now let /3 §¢ — § (M) be a continuous map, we are looking for an extension
of fon B'*! = B4(0) « R*!. S*= 3Bg(0), ie. a continuous map F:B'*' —
S7(M) with Fs. = f.
We start our construction of F by some trivial extension F; of f defined as
follows: Let g, be any fixed metric on M and (x, 1) e S x [0, 6]/S'x {0} = B'*!
(polar coordinates) then we define

Folx 1) (1—1t)go+t-f(x) onS'x[0,1]/S"x{0}

S AP on S'x[1,6]/8 % {0}.
Obviously F, is a continuous map with image lying in .4 (M ). Our goal will be to
find deformations of F, inside of S*x [0, 5]/S*x {0} such that the image of the
deformed map lies in S ~(M).

3 Main deformation

Let N%,i= 1, 2 be closed manifolds of dimension n = 3, p; € N, fixed base points,
g; and g; metrics on N;, g; with injectivity radius inj(N;, g;) > 5. Now we define for
4; = 1 new metrics on N;\{p;} by

g4, g0, 9:) = hv(dx[?.g(({’i, idy )} Gy, + (1~ k(dlf.g‘(pf’ idN‘))'/{iZ “gi

he C*(R,[0,1]) with h=10on R2* h=00on R=* and G, := f%(gr + gsr-1)
where f;,: Bs(p;)\{p:} — 10, 5[ x §" ! is a diffeomorphism defined as follows: Fix
a linear isometry I;: (T, N;, g;) = (IR", gey.) and consider the usual polar coordin-
ates on R"™\{0}: P:R™"\{0} > R™°xS"" ' P(z)=(|lz|,z/|z|) and define
fi2):= P(4;*(I;o(expy)~ (z))) where exp}: denotes the exponential map in p; for
the metric 42 - g;.

By definition d(N;\B;(p,)) and &(N,\B(p,)) equipped with these metrics
are isometric and can be identified by the orientation preserving isometry
i(Ay, A7) i= fi,'ef;, yielding N # N, together with a smooth metric denoted
by

9(117 g1, E) #ig()'z» gz, %)

Now we specialize to N; = M, g, = gx (a fixed reference and base metric, with
inj(M, gyp) > 5), g, = g (varying metrics), 4, = A, p, =p and N, = S", g, =g*
(a fixed metric with inj(S", g*) > 5), g, = ¢, (a fixed negative scalar curvature
metric on 8™, 4, = i, p; = q.

From the construction above it is clear that there is a family of diffeomorphisms
F(A, 1): M — M#S" with F(J, u) = id on M\ Bs(p) which can be chosen such that
the metrics G(g, 4, 1) 1= F(4, W*(g(4, gum- @) # i1 m 9 (1, g%, 9,)) depend continu-
ously on 4 and pu.

Now we are ready to define for Ag = 1,y = po = 1,(x, t) e B*™*?
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FZ(;VOJ ,u0> .ul, X, [)::

f{x) on S'x[4,6]/S x {0}

(4= 1) 22+ (1— (@ —0)f(x) on §'x [3,4]/8" x {0}

(3~ ) G(f(x), ko, o) + (1 = (3 = 1)) 4§ f(x) on S'x[2,3]/S"x {0}

G(f(x), 40,2 = 8) rpty + (1 —(2 = 1)) po) on §'x[1,2]/8'x {0}

G(F(x, 1), Ao, 11y) on $'x [0, 17/8" x {0}.
We claim

Proposition 1. There are Ay, pg, fi1 such that (Fy(x, t):=)F;(Ag, o, Hys X, 1) is
a continuous extension of f with

(i) Fa(x,t)=f(x)on S'x[4,6]/5 x {0}

(il) (M, Fy(x,1)) <0 on B'*! (where #(U, g):= {, S,dVol,).
Proof. The continuity of F,(x, t) and (i) follow directly from the construction
above. It remains to show (ii) for appropiate Ao, io, ity, which is trivial on
S'x[3,6]/S"x {0}.

The following estimates are easily checked noting ¥ (U, A2-g) = A"~ 2- 2 (U, g),
2 > 0 (B,(p) with respect to 1% gy):

(1) there is a po = 1, independent of A = 1, x € §', such that

FL(Ba(p), G(f(x), 4, w)) <0 for u = o _
(2) given k > O there is a A(k) = | such that for x € §"

S (M\Bs(p), 22(k) f(x)) < —k _
(3) there is ¢ > 0, independent of 4= 1 and (x,t)e S'x[2, 3], such that

F(Bs(p), 3 — 1) G(f(x), 4 o) + (1 =(3 = 1)) A2 fix)) <c
(4) given K >0 there is a u(K) 2= po independent of 2=1 such that
F(Bs(p), G(F(x, 1), 4, u(K)) < — K for each (x,t)e B'*".

Now we verify (ii) on S'x[0,3]/S*x {0} for uo as in (1), Ag : = AQ2c), yy :=
u(|m| + 1), where m: = maxg . F(M\ Bs(p), 13- F(x, t)): on

Six[2,3]/8"x {0}: (M, (3 — 1)" G(f(X), 4o, to) + (1 = (3 = 1)) 15[ (x))
= L Bs(p), ... )+ L (M\Bs(p),...)< —c<0, by(2)and (3)
on
§'x[1,2]/8"x {0}: (M, G(f(x), o, (2 — )ps + (1 — (2 — 1)) 1)) < O
by (1) and f{x) e S (M), on
S'x[0,1]/8'x {0}: (M, G(F(x, t), Ao, 1))
<m+ L(Bs(p), G(Fi(x, 1), A, #1)) < — 1 by (4). U

4 Eigenvectors of the Conformal Laplacian

The scalar curvature S, transforms under conformal deformations g, = u*"~2-

dim M = n = 3, according to (cf. [K, (3.2)]:

g7

n—1 n+2
, o= .
n—2 n—2
We are interested in the linear operator L, which is sometimes called “conformal
Laplacian™.

Liu= —y-du+S,~u=S, u* y=4



406 J. Lohkamp
Recall from {K, 3.A], that the first eigenvalue 4,(g) of L,, which fulfills

. / .
Ai(g) = inf (MR Vu||2+Sg'u2)dVg/juz-dVgEmeg(u),
ueC (M), u#z O M I M
has a one dimensional eigenspace generated by a (unique) eigenvector v(g)e
C*(M) with v(g) > 0, max v(g) = 1.
For completness we will show the following hardly surprising fact, which is
hard to quote explicitly from literature:

Propeosition 2 If g, — g with respect to the C*-topology, then Ai(g,) — A1(g) and
v(g,) — vlg) also with respect to the C*-topology.

Proof. From the definition of Jy(u), we get for ¢ >0 some ny, such that:
(1 =)l J, W) S [J4u)] < (1 + &)|Jg,(w)] for n z ny and each u e C*(M)\{0}. This
implies 4,(g,) — A1(g). Furthermore 0 < v(g,) < 1, g, — g in the C®-topology and
Ly, v(g,) = A(gn)*v(g,) imply by standard elliptic theory || v(ga) || c:_ < ¢, ¢ indepen-
dent of n. From 4,(g,) — A:(g) and the Arzela—Ascoli-Theorem we obtain converg-
ing subsequences (by iteration) in | * ||, and we take the diagonal sequence of these
subsequences. This converges in C* to 6 € C*(M), with L,0 = A,(g)* 0, =2 0, max
v =1 (from [K, 3.A], we conclude again ¢ > Q). But this ¢ has to be the unique
eigenvector v(g), which implies that a fortiori v(g,) converges. O

5 Final deformation

Now we are ready to complete the proof of our theorem. Since (M, F,(x, 1)) <0,
(x,t) e B!, we conclude from 4,(g) = inf J,(u): 4 (F(x,t)) < 0 on B'"'. We define

£ . on S x[5,6]/S" x {0}
Fx,t)={((5 = o(f(x) + (1 = (5 = ))y=2f(x) on Six[4,5]/S' x {0}
v(Fy(x, t))n=2 Fy(x, 1) on S'x[0,4]/S*x {0}

and we claim
Proposition 3. F is a continuous extension of f:S* — S (M) with F(B'*!) < S~ (M).

Proof. Propositions 1 and 2 imply the continuity. Now we verify F(x,t)e S~ (M):
On S*x [5,6]/S*x {0} there is nothing to prove, on S'x [4,5]/S’ x {0} we calcu-
late:

Seo (B =) o(f(x)+ A —~GB =) =Lr((5 — 1) o(fx) + (1 = (5 - 1))
=5 =0 A(f)) o(f(X)) + Spm (1 — (-8} <0
on S x[0,4]/S" x {0} we obtain:
Sk V(F206,1)* = Ly, p0(F2(x, 1)) = 4, (Fa(x, 1)) v(F2(x. 1)) < 0.

Since ( ... )* > 0, we conclude Sg, ) < 0. O

6 Constant scalar curvature

Finally we will show that S_,;(M) is contractible (which implies
m(S-,M))=0,i=0,1,...), this can be deduced from:
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Proposition 4. There is a continuous map p:S~ (M) = S_{(M) with pjs_,an = id.

Proof. Let ge S~ (M) and u a positive solution of the Yamabe equation
—yrdgu+ S;cu= —ut

We assert

(1) u is unique

(i) p(g):= u*" 2. g fulfills the claims.

(i Let v be a second positive solution, u*"~2+g and v*"~%+g have scalar

curvature = — 1. write v = w-u for some w > 0, we C*(M). Then w fuifills the
Yamabe equation for g, = u*" 2.4

— vy dgw—w= —w
now assume w # I:since o > 1 we get 4, w > 0 or the maximum of w or 4, w <0
in the minimum of w, which yields a contradiction.
(i) From (i) p;s_,an =1d, so it remains to show g, — g in C™ implies
u, - u in C* (u,, u denote the solutions of the Yamabe equation of g,, g):
— K, <8, < — K, for some K, > K, > 0 independent of n yields

0 < K} * < (min]S,, ) * <u, <(max|S, ) "< K{™*

Now using both bounds one can proceed as in Proposition 2 to get C*-
estimates independent of n. Again uniqueness of u as shown in (i) implies conver-
gence of u,.

Now let H:S™(M)x[0,1] — S7(M) be a contraction to a go € S_(M), i.e.
H(,0)=id, H(*, 1) = go. Consider po Hs_, < [0, 1] = S_,(M). po H is con-
tinuous by Proposition 4 and po H(*, O)s_, sy =1d, pe H(*, 1) = go € S (M), i.e.
S_ (M) is contractible.
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Note added in proof. The space of negative Ricci curvature metrics Ric™(M) is also non-
empty and contractible. Furthermore Ric™ (M) is dense in . (M) w.r.t. C°-topology. This is
proved in a more geometric but more intricated and conceptually different way. For details we
refer to [L2].



