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1 Introduction 

The group of holomorphic  automorphisms of IF ", denoted Aut IF", consists of those 
holomorphic  mappings q~ : Ir" --. Ir" that have a holomorphic  inverse 7 j : r --* 112". 
The group operat ion is composition. It is well known that with the topology of  
locally uniform convergence Aut ~"  becomes a topological group (compare Prop-  
osition 6.4) Aut IE 1 of course consists of linear mappings az + b (a, b ~ ~ ,  a 4= 0), 
but when n > 2 Aut 112" is infinite dimensional, for it contains mappings of form 

(1.1) (zl  . . . . .  z , )  ~ (Zl, . �9 �9 , z , _ , , . f ( z l  . . . . .  z ,  1) + z,), 

or more generally, 

(1.2) (zi . . . . .  Zn)- '*(Z1 . . . . .  Z n - l , f ( z 1  . . . . .  z , - 1 ) + h ( z l  . . . . .  z ,  t )z , ) ,  

w i t h f  h holomorphic  functions on ~E"-1, h nowhere 0. Following [10] automor-  
phisms of form (1.1) will be called shears, and those of form (1.2) will be called 
overshears. Slightly more generally, the term (over)shears will also be used for 
mappings of form (1.1) resp. (1.2) with the coordinates z~ . . . . .  z,, permuted. 

The first result on the structure of these au tomorphism groups is due to Jung 
[8]. He considers algebraic (i.e. polynomial) automorphisms of ~2. By the funda- 
mental theorem of algebra such an automorphisms must have constant  Jacobi 
determinant. By Jung's theorem the group of algebraic automorphisms of l ~  2 with 
Jacobi determinant  1 is generated by polynomial  shears. Here and in what follows, 
"generating" will be meant  in the algebraic sense, even though the groups involved 
may carry a topology. 

The corresponding algebraic problem in Ir ' ,  n > 3 is open. The only general 
result is due to Safarevi6, who defines a "Zariski topology" on the group of 
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algebraic automorphisms of 112", with Jacobi determinant 1, and proves that 
polynomial shears generate a "Zariski dense" subgroup, see [11]. 

In [1] the first named author studied the subgroup AUtl ~"  c Aut C" consist- 
ing of automorphisms with Jacobi determinant 1 ("volume-preserving automor-  
phisms"). He proved that for n > 2 shears generate a dense subgroup of Auh C", 
but this subgroup, at least for n = 2, is not the entire group AUtl C". Indeed, the 
mapping 

(1.3) (zl, z2) --* (zl e . . . .  , zze -z'z2) 

is in Aut~ C 2 but is not a (finite) composition of shears. 
The principal aim of this paper is to clarify, for arbitrary n > 2, the relation 

between the group generated by (over) shears and Auh C" (resp. Aut C"). Here are 
the main results, which are valid for any n > 2. 

Theorem 1.1 
shears. 

Theorem 1.2 
overshears. 

Theorem 1.3 The subgroup of  Aut 112" generated by overshears is dense. 

In connection with this last theorem we shall also prove a Runge type approx- 
imation theorem for biholomorphic mappings defined on subdomains of C", see 
Sect. 4. Actually, holomorphicity does not seem to play any role in Theorem 1.3; 
corresponding theorems hold for the diffeomorphism group of lR", or even more 
general manifolds (see Sect. 5). 

As explained above, Theorem 1.1 for n = 2 is already contained in [1]. The 
passage from n = 2 to n > 2 is not obvious. We were able to extend the Nevanlinna 
theoretic ideas involved in [ I ]  to prove Theorem 1.2 for n = 2 (see Sect. 8), but the 
proof of the general case uses completely different ideas and is not constructive at 
all. That is, we can not construct the automorphisms whose existence is claimed in 
Theorems 1.1 and 1.2. This raises some obvious questions, which will be discussed 
in Sect. 9. 

There is an element o f  Autx C" which is not a finite composition o f  

There is an element o f  Aut II~" which is not a finite composition o f  

2 Approximating biholomorphisms by compositions of (over)shears 

Let G(IIT") (resp. G1 (112")) denote the subgroup of Aut C" (resp. Autl C") consisting 
of finite compositions of overshears (resp. shears). We want to prove a theorem 
generalizing Theorem 1.3 in which a biholomorphic mapping (b from some domain 
D c 112" into C" is to be approximated by elements in G(II2"). It is natural and 
almost necessary to assume that D is such that any holomorphic function on D can 
be locally uniformly approximated by entire functions. In this case we shall say that 
D has the Runge property (rather than saying that D is a Runge domain, which is 
often reserved for domains of holomorphy). It is easy to prove that if 4~(D) has the 
Runge property and if cb can be approximated by entire holomorphic maps then 
D must also have the Runge property. Using the mentioned fact that Aut II~" is 
a topological group it is easy to prove the converse implication, namely that if 
D has the Runge property, and q~ can be approximated by elements of Aut ~;" then 
the image 45(D) must have the Runge property too. 
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It turns out that the Runge property for D and q~(D) is not quite sufficient for 
approximation (see Sect. 5) but a stronger property of D is 

Theorem 2.1 Let D c ~"  be a starshaped domain, ~:  D - ~  C" a biholomorphic 
mapping whose image r has the Runge property. Then �9 can be approximated by 
elements of  G(C") locally uniformly on D. I f  the Jacobi determinant o[ 6P is identically 
l, eb can be even be approximated by elements of  Gl(C"). 

Remark. It is known (a simple proof is in [9]) that any star-shaped domain has the 
Runge property. 

Theorem 2.1 clearly implies Theorem 1.3. 
Let us denote, for a domain R c ~"  that has the Runge property, by B(R) the 

space of biholomorphic mappings of R into C", endowed with the topology of 
locally uniform convergence on R. Put furthermore 

G(R) = {q~la:'~ s G(r 

We shall endow G(R) ~ B(R) with the subspace topology. The key to the proof of 
Theorem 2.1 is the definition (and later, identification) of the tangent space g(R) of 
G(R) at id e G(R), along the same lines as in [1]. 

Definition 2.2 A holomorphic mapping F: R ~ ff~" is said to be a tangent vector to 
G(R) at id ~ G(R) if there is a family S~ ~ G(R) (~ ~ C) such that 

(2.1) S~(z) = z + ~:F(z) + oz(e). 

Here oz(e) means a term with the property oz (e)/e ~ 0 (~ ~ 0) locally uniformly in 
z ~ R. The set of tangent vectors at id is denoted 9(R). 

Remark  2.3 We emphasize that we are not requiring that the family S~ should 
smoothly, or even continuously, depend on e. Thus we are defining tangent vectors 
using nondifferentiable curves! In the last analysis it is this liberal definition that 
will permit us to identify the tangent space g(R). 

In what follows, we shall always assume that the domain R has the Runge 
property. 

Theorem 2.4 9(R) consists o f  all holomorphic mappings F : R ~ C n. 

Actually, we shall need a result stronger than Theorem 2.4: a parametrized 
version of this theorem. 

Theorem 2.5 Let Y2 be a compact metric space and ~ c t~ ~ x (2 an open set such that 
for every o~ e t2 

is a domain that has the Runge property. I f  F : ~ ~ C" is continuous and for every 
e ~  Y2 the mapping F,o(z)= F(z, eJ) defines a holomorphic map Fo,: Ro, ~ C" then 
Fo~ ~ fl(R,o) holds "uniformly". That is, there is a family of  continuous mappings 
S~ : ~ ~ C" (e ~ ff~) such that for e~ ~ [2 the mapping S~, ~ defined by S~, o~(z) = S~(z, o~) 
is in G(Ro~), and 

(2.2) S~(z, ~o) = z + eF(z, ~o) + o~, o~(e) . 

Here o~,~(e)/e ~ 0 as e ~ O, locally uniformly in (z, o3)~ ~ .  

Theorems 2.4 and 2.5 will be proved in Sect. 3, and Theorem 2.1 in Sect. 4. 
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3 The tangent space 9(R) 

When R = C", .q(C") becomes the "Lie algebra" of the group G((E"). Obviously,  the 
restriction of any F e g(C") to a general R is in .q(R). We shall first describe .q(C"). 

Proposition 3.1 The general linear group GL(n,  C) is contained in G(C"). 

Proof  Any lower tr iangular  matr ix  in GL(n,  C) is a composi t ion  of (linear) 
overshears.  The same is true for upper  t r iangular  matrices. Since any matr ix  in 
GL(n,  ~ )  is a p roduc t  of lower and upper  tr iangular  matrices, the proposi t ion 
follows. 

Proposition 3.2 .q(C n) is a vector space; i f  F, G e ~q(C"), and c c C then F + G, 
cF ~ 9((U"). 

Proof  If St(z) = z + eF(z) + oz(e) and T~(z) = z + eG(z) + ode) then 

St o T~(z) = z + e (F (z )  + G(z)) + o~(e), 

S~.(z) = z + ecF(z) + ode) .  

Proposition 3.3 I f  a mapping F:ffJ"-~ff~" is in g(C") and L 6  GL(n,  C) then 
L - l o F o  L e g ( ~ " ) .  

Proof  Let St e G(C") be as in (2.1). Then,  by Propos i t ion  3.1, L -  1 c, St r, L e G(ff~"); 
and 

L -  l o S~o L(z)  = z + eL l ~ F~ L(z) + o~(z) . 

Proposition 3.4 / f f  9 : ~ " -  1 _~ C are holomorphic then the mapping 

(3.1) F(z l  . . . . .  z,) = (0 . . . . .  O, f ( z l  . . . . .  z , - l ) + g ( z l  . . . .  z ~ - l ) z , )  

is in 9(~"). 

Proof  Observe that  the mapp ing  

S~(z) = (z 1 . . . . .  z , - 1 ,  e f ( zx  . . . . .  z,,_a) + e ~~ . . . . . . . . . .  )z,) 

is in G(~").  With this S~ and F above  (2.1) is satisfied. 

Proposition 3.5 I f  P = (Pfl:C"--* ffJ~ is a polynomial map and d i v P  = 
Z(3P j/t~Zj = 0 then P e g(~"). 

Proof  See L e m m a  5.7 of [1] or L e m m a  2 in [11]. Indeed, there it is proved that  
P is in the "Lie algebra" .ql(~") of G~(~"). 

To  remove the condit ion div P = 0 from Propos i t ion  3.5 we shall need some 
simple algebraic facts. 

Proposition 3.6 Suppose p(x) is a polynomial o f  one variable with complex coeffic- 
ients, o f  degree d > O. Then the polynomials p(x), p(x - 1) . . . . .  p(x - d) span the 
space o f  polynomials o f  degree at most d. 

Proof  By induction on d. Assume the claim is true for polynomials  of degree d - 1, 
and let p(x) be as in the proposi t ion.  Put  q(x) = p(x) - p(x - 1); this is of degree 
d - 1, so q(x), q(x  - 1) . . . . .  q(x - d + 1) span the space of polynomials  of degree 
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=< d -  1. Hence p(x), q(x),  q ( x -  1) . . . . .  q ( x -  d + 1) span all polynomials  of 
degree __< d, whence the claim follows. 

Proposition 3.7 Le t  p" I~" ~ C be a polynomial  o f  n variables. Then there are a f in i te  
number o f  polynomials  Pl ,  P2 . . . .  o f  one rariable, and linear fornls  / 1 , / 2  . . . .  o f  
n variables such that 

p(z) = p , ( / l ( z ) )  + p2(/21z)) + . . .  

Proof. Given nonnegat ive integers v < ~, by Proposi t ion  3.6 there are complex 
li numbers  co . . . . .  c,  such that  x ~ = Y',o ci(x  - J ) " .  Writing x / y  for x we get 

tl 

~"y"-"= Y~ cjlx - h ) " ,  
0 

whence the proposi t ion follows for polynomials  of two variables. For  general n the 
proposi t ion follows by an inductive argument.  

Proposition 3.8 I f  p is a polynomial  o f  one variable and / is a linear.[rom on ~ "  then 
there is a polynomial  mapping P : (12" ~ (F" such that P e .q(r and div P = p,, :. 

Proof. By the GL(n,  I~) invariance of .q(C") (see Proposi t ion 3.3) we can assume 
/(z) = Zl. By Proposi t ion  3.4 the mapping  P ( z ) =  (0 . . . . .  O, p(z~)z,,) is in .q(ll2"), 
and div P(z) = p(z l ) .  

Proposition 3.9 An}, polynomial  mapping P" C" --, I17" is in .q(~'). 

P r o o f  Using Proposi t ion 3.7 write div P(z) = Z p j ( / j ( z ) )  with : i  linear forms on (12" 
and pj polynomials  of one variable. By Proposi t ion 3.8 there are Pj  ~ .q(l~") such 
that div Pj = pj ~ : j .  Then Q = P - Z P  i is a polynomial  mapping  and div Q = 0. 
Hence, by Proposi t ion 3.5 Q E g(~").  Thus P = Q + Z P j  ~ 9(117% 

P r o o f  o f  Theorem 2.4 Let F : R  ~ ~ "  be holomorphic .  There is a sequence of 
polynomial  mappings  P j" ~ "  --* 112" that  converges to F locally uniformly on R. By 
Proposi t ion 3.9 for every j there is a family S~,] ~ G(~2") such that  

[3.2) S,:,j(z) = z + ePj(z) + o:,j(e),  

where for any fixed j we have o~.j(e)/e-- ,  0 as c--, 0, locally uniformly in z e C ", 
hence locally uniformly in z e R. A simple diagonal  process (cf. Lemma  5.9 in [1])  
now shows that  there exists a sequence j(~) -~ 9o (very slowly) as c ~ 0 such that  

S~,h l (z  ) = z + ~F(z) + o:(e) , 

with o:(e)/~, --, 0 (e ~ 0) locally uniformly in z ~ R. Thus F e g(R). 
To  prove Theorem 2.5 we shall need a parametr ized version of Proposi t ion 3.9. 

Let f2 be a compac t  metric space, P~o :C"- - ,  C" (eJ ~ f2) a family of polynomial  
mappings  of bounded  degree such that  (z, co) --+ P,,(z) = P(z,  ~o) is cont inuous on 
C " x ~ .  

Proposition 3.10 There is a fami ly  S~, ~,~ ~ G(C"),  e ~ C, co ~ f2, ,such that  f o r  any  e the 
mapping (z, co) --* S~.,~(z) is continuous and 

S~,o,(z) = z + eP~.o(z) + o . . . .  (e) , 

with o:, ,,(e)/e ~ 0 as e --* 0, locally uniformly in (z, co) ~ ~ "  x (2. 
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Proof. This follows by examining the proofs that  led to Proposi t ion  3.9. For  the 
case when f2 = [0, 1] c 1R and P~ are divergence free, see also L e m m a  5.7 of [13. 

P r o o f  o f  Theorem 2.5 Let us exhaust  .r by a sequence of compac t  sets ~ j .  Thus 
,~/{"j C int J ~ j  + 1, ~)  ? ")~j = ~ "  

Fixj .  For  any co �9 f2 there are open sets D c C' ,  f2' c ~,  D bounded, such that 

x 7  = {(z, x j , 0  = co} 

is covered by D x f2', and D x f2' c ~ .  By the compactness  of ~(j  then s f  ~ c D x f2' 
if 0 is sufficiently near  to co. Shrinking f2', we can in fact assume this holds when 
0 �9 f2'. Since f2 is compac t  we get finitely many  open sets D~ c 112" and f2" c f2, D~ 
bounded,  such that  

v v 

and if co e f2~ then 

(3.3) cC? c D~ x f L .  

By further subdividing the sets f2~ we can assume that  for co, 0 �9 f2~ 

(3.4) max  lEo(z) - Fo(z)l < 1 / j .  

Construct  a nonnegat ive par t i t ion of unity qS~ subordinate  to f2~, and f rom 
every f2~ pick a point  co~. By the Runge proper ty  there are polynomial  mappings  
Q~ : r  ~ II;" such that  

(3.5) max  IQ~(z) - Fo~+(z)l < 1 / j .  

Put Pj, ~,(z) = ~ Q,(z)q5,(co). This is a polynomial  mapping  in z and cont inuous in 
(z, co). Also sup,o deg P j, o, < oo. If (z, co) �9 s f j  

IPj. o,(z) - F,o(z)l = ~ Q~(z)ga~(co) - ~ F,~(z)4)~(co) 

< ~ I Q , ( z ) - F , o ( z ) l r  
v:ogE~Q~ 

< ~ (IQ,(z) - Fo,,(z)l + IFo~(z ) -  Fo,(z)l)C,(z) 
v :eJJ E Q+, 

< 2 / j ,  

since (z, co) �9 ~ j  (i.e. (z, co) �9 J( ' ] ' )  and co e f2~ by (3.3) imply z �9 D~, so that  the last 
inequality follows f rom (3.4), (3.5). 

Thus  P i(z, co) = P j, o,(z) ---, F (z, co) ( j ~ oo ) locally uniformly on ~ .  Using Prop-  
osition 3.10, choose families S~.j, ~, �9 G(IE +) such that  for fixed ~,j the m a p  &,j, ,o(z) is 
cont inuous in (z, co) �9 112" x f2, and 

S~,.i,o,(z) = z + ePi,~o(e) + o=,i,o~(e) , 

with o=,j, ~,(e)/e --* 0 (e --* 0) for every fixed j, locally uniformly in (z, co) �9 (g" x f2. At 
this point  the theorem follows as Theorem 2.4 followed from (3.2). We shall omit  
the details, but refer the reader to [1, Sect. 5], where an analogous  s ta tement  is 
proved (with f2 = [0, 1] c IR). 
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4 Proof  of  Theorem 2.1 

We shall need a simple result about  the convergence of a general one-step method 
in the theory of ordinary differential equations. Let ~ be an arbitrary open subset 
of•"  x [0, 1]. For  t e [0, 1] put ~ t  = {z e IFn:(z, t) e ~}.  Suppose D = J~o is open. 

Lemma 4.1 Let F : ~ --* C" and Z : D x [0, l]--* 112" be continuously differentiable 
mappings. Assume that Z(( ,  t) e ~ t f o r  ( e D, t e [0, 1], and 

oz(~, t) 
- F ( Z ( ~ ,  t ) ,  t); Z(~, 0) = ~. 

0t 

Let, furthermore V : ~ • C ~ (U" satisfy V(z, t, e)/e --* 0 as ~ ~ 0, locally un(formly in 
(z, t) e J)~. With ~ a (small) positive number, and ~ e D, define a sequence Wk = Wk(~, e) 
by 

(4.1) Wj+l = wj + eF(wj, je)  + V(wj, je ,  e); Wo = ~ . 

Then for any given ~, e D ,  ire > 0 is sufficiently small, Wk is defined for k < l/e, and 
Wg(~, t/k) --+ Z((,  t) as k ooQ.  In fact, this convergence is locally uniform in ((,, t) e 
D x [ 0 ,  1]. 

Proof  This lemma is just a slight extension of Corollary 4.2 of [1] (where 
= q:" x [0, 1], D = C" was assumed). The same proof  as there will also prove our  

lemma. 

Proof  of  Theorem 2.1 We can assume that D is starshaped with respect to 0, and 
(b(0) = 0, 4)'(0) = id. Put 4~(D) = R, and define q)t(~) = cb(t()/t (0 < t < 1), 

1 1 
q)o(~) = ~. Then q~t : -  D ~ - R are biholomorpic for 0 < t _< 1 while q~o:r n --* C ' .  

t t 
Put  ~ = {(z, t ) :0_< t _< 1 and t z e R } .  Define a smooth mapping F : ; ~ C "  by 

de ,  
F(z,  t) = ~ -  (q~t- l(z)).  

It follows that the mapping Z : D x [0, 1] ~ ~"  defined by Z((,  t) = q),(() solves the 
initial value problem 

~z(~,  t) 
(4.2) #t - F(Z(~,  t), t); Z((,  0) = ( .  

By virtue of Theorem 2.5 there is a family of continuous mappings S~ : ~ ~ ~"  
(e e (;) such that  for (e, t) e ~ x [0, 1] S~,t(z) = S~(z, t) is a composit ion of over- 
shears, and 

(4.3) S~(z, t) = z + eF(z, t) + V(z, t, e) ,  

With V(z, t, ~)/e --, 0 as e --* 0 locally uniformly in (z, t) e ~ .  Define a sequence 
Wk = Wk(~, e) (( e D, e > 0) as in (4.1). By (4.3) wj+~(~, e ) =  S~.~(wj((, ~)), so that 
( ~ w,((, I /k)  = Tk(() is a composi t ion of overshears (and so is, in fact, defined for 
every ( e flY). By Lemma 4.1 Tk(() --' Z((, 1) = (b(() locally uniformly in ( e D, as 
was to be proved. 

If the Jacobi determinant  of 4~ is identically 1, a simple variation of the above 
proof  will yield a composi t ion of shears Tk ~ (b. 
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Remark 4.2 In formulating Theorem 2.1 we did not aim at covering the most 
general situation where approximation by compositions of (over)shears is possible. 
J.P. Rosay pointed out to us that for certain applications a generalization of 
Theorem 2.1 might be desirable. The above proof almost verbatim also gives the 
following generalization: Let D c 15 c (U n be open sets such that tz ~ D whenever 
0 < t _< 1 and z ~ D. Suppose 4' : /)  ~ 1/2" is a biholomorphic mapping with image 
R = 4)(/5) having the Runge property. Then 4) can be approximated by elements of 
G((U") locally uniJormly on D. If det 4~' -- 1, then 4) can even be approximated by 
elements of G~(C"). 

5 Remarks on Theorems 1.3 and 2.1 

The proof  of these theorems did not very much use holomorphicity. Smooth shears 
and overshears can be defined on IR" by formulae (1.1), (1.2), where now zl . . . . .  z~ 
are real coordinates and/; h are just smooth (infinitely differentiable) functions. (Of 
course, permutation of coordinates is again permitted.) If DiffIR n denotes the 
group of smooth diffeomorphisms of IR" endowed with the topology of locally 
uniform convergence of all derivatives, and Diffl IR n denotes the subgroup of 
orientation and volume preserving diffeomorphisms, a small variation of our 
arguments in Sects. 3 and 4 yields the following 

Theorem 5.1 Finite compositions of shears are dense in Diffl IR n. Finite compositions 
of overshears are dense in Diff IR". 

In fact, this theorem can even be extended to arbitrary (paracompact) smooth 
manifolds M. Cover M with countably many coordinate charts and call a self- 
diffeomorphism of M an overshear if it is the identity outside a compact set 
contained in some coordinate neighborhood, and in this neighborhood it has form 
(1.2) with z~ . . . . .  z, local coordinates and/ ,  h - 1 smooth, compactly supported. 
Then we have 

Theorem 5.2 In the arcwise connected component of the identity of Dif fM finite 
compositions of overshears are dense. 

An analogous theorem can be formulated for volume preserving self-diffeomor- 
phisms of M, if M is endowed with smooth volume form. 

Returning our attention to the holomorphic category we shall now comment 
on the necessity of the condition in Theorem 2.1. We shall present two examples 
that show that for approximability by (over) shears it is not enough to assume that 
both D and q)(D) have the Runge property. 

Example 5.3 Let 

D = {(zl, z2) 6 [ ~ 2 : l z 1 z 2  - -  11 < 1/2} , 

and (b(zl, z2 )=  (Zl, z2/zl). Then D is a Runge domain (that is, in addition to 
having the Runge property, it is also a domain of holomorphy), see e.g. [7], and so 
is its image (b(D)= {(wl, WZ):IW2W2 - -  II < 1/2}. q> is biholomorphic on D but 
cannot be approximated by a composition of overshears. 

Indeed, for any 7 ~ G ( C  ") its Jacobi determinant det 7" : ~2" --* r  {0} is 
homotopic to a constant map. On the other hand d e t ~ ' ( z ) =  l/z1, which, 
restricted to the curve K =  {(~, 1 / ~ ) : ~ S  ~ c ~} c D is not homotopic to a 
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constant  map  K ~ (F\{0}. Hence 4~ cannot  be uniformly approx imated  on K by 
overshear  composi t ions  7 ~ e G(C"). 

This example  was built on the fact that  the fundamental  group of GL(n,  It) is 
not trivial. To  exhibit nonapprox imab le  volume preserriny biholomorphisms  we 
shall have to consider higher h o m o t o p y  groups since SL(n, 112) is simply connected. 

Example 5.4 By Bott periodicity the third h o m o t o p y  group of the unitary group, 
lr3(U(m)) ~ 7 / i fm is sufficiently large, and the inclusion U(m) c U(m + 1)induces 
an i somorphism ~r3(U(m) ) --,  7 r 3 ( U ( m  -}- 1)), see [3]. Since U(m) and SU(m) x S 1 are 
homeomorph ic ,  and ~3 ($1) = 0, the projection U (m) ~ SU (m) induces an isomor-  

phism ~ 3 ( U ( m ) ) ~  ~z3(SU(m)). Fur thermore ,  by G r a m - S c h m i d t  or thogonal-  
ization, SU(m) is a deformat ion  retract of SL(m, C), so that finally we obtain 
7c3(SL(m, C)) ~ 7/, and the inclusions SL(m, C) c SL(m + 1, C) ~ . . . induce 
i somorphisms ~3(SL(m, C)) ~ ~3(SL(m + 1,112)) ~ . . . , provided m is sufficiently 
large. In fact, an  inspection of the proof  of Bott 's  periodicity and simple d iagram 
chasing of exact sequences of h o m o t o p y  groups associated with fibrations (cf. [5])  
show that  the above holds as soon as m > 2. 

Choose an m as above and a real analytic mapp ing  f :  S 3 --* SL(m, C) that  is not 
homotop ic  to a constant  map.  We shall think of S 3 as a subset of C4: 

S 3 = { z = ( z J ) e l l ; 4 : I m z l  . . . . .  I m z 4 = 0 ,  z~ z +  . . .  + z 4  2 =  1}. 

First extend f constant  a long radii to a ne ighborhood in 1R 4 of the unit sphere. 
Then take F" V +  SL(m, IE) to be the unique holomorphic  extension of f to 
a ne ighborhood V o f S  3 c I/2 ~. We may  assume that  V i s a  Runge domain;  indeed it 
can be of form 

{z:leiZ, I < 1 + a, le-i~J[ < 1 + a ,  1 - ~ z ~ .  < a }  

with a small positive a, in which case it is polynomial ly  convex, hence Runge (see 
[7]). 

Define now a b iholomorphic  au tomorph i sm q~ of Vxll7 m by q) ( z ,w)= 
(z, F(z)w) (z ~ V, w ~ ll;m). The Jacobi  determinant  of q~ is 1. But the Jacobi matrix 
~b' restricted to M = S 3 x {0} = Vx  ~;m is 

qb'lM = id G f ~  :t3(SL(4 + m, II;)) , 

and so cannot  be deformed to a constant  map. This then implies, as in Example  5.3, 
that  4~ cannot  be approx imated  by composi t ions  of (over)shears. 

6 Miscellanea 

Now we shall turn our at tent ion to Theorems 1.1 and 1.2. They will be proved by 
a "count ing argument" .  Throughou t  this section, we shall assume that  n > 1. 
Already the results in Sect. 3 indicate that, say, Aut C" is a lmost  as big as the space 
of all ho lomorphic  mappings  ~2" --, ~2". We shall make  this more  precise below. On 
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the other hand, finite overshear compositions are essentially as many as there are 
finite sequences of functions of n - 1 variables. The space of such finite sequences is 
somehow smaller than the space of mappings C" --* C ". The aim of the present 
section is to prepare an actual proof of the above vague ideas; it will then 
immediately follow that Aut C" is not generated by overshears. 

First we shall need a simple result from Baire's category theory. 

Proposition 6.1 Let  f :  V1 -~ V2 be an open continuous mapping between topological 
spaces. I f  M ~ V 1 is non-meagre (that is, o f  second category), then f ( M )  is also 
n o n - m e a g r e .  

Proof  Assume that f ( M )  c ~ Ni where Ni are closed. Then 
M c f - l ( f ( M ) ) = f - l ( ~ N i ) =  U f - l ( N i ) ,  and all sets f - l ( N i )  are closed by 
continuity o f f  Since M is non-meagre, some set f - l ( N i ) ,  s a y f - l ( N 1 ) ,  contains 
a non-empty open set O. Since f is open f (O)  is also open and 
f (O)  ~ f ( f -  1(NI) ) c N1. Therefore, f ( m )  is non-meagre. 

We shall also need two results about coefficientwise approximation of arbitrary 
polynomial mappings by automorphisms. 

Proposition 6.2 Let  P : C" ~ ~"  be a homogeneous polynomial map of  degree m > 1 
with div P =- O. Then there is an S ~ G~(C") such that 

S(z) = z + P(z) + O(Izlm+~)(z ~ O ) ,  

and S can be chosen to depend continuously on the coefficients o f  P. 

Proof  This is Lemma 7.3 in [1] except for the last assertion, which follows 
immediately from the proof. 

Let A ~ Aut ~"  denote the subgroup ofautomorphisms that fix the origin, and 
let A1 = A c~ Autl C". The following tells us that this group A1 is big. 

Proposition 6.3 Let  P: C" --* ~U" be a polynomial mapping of  degree at most m > 1 
such that 

(i) P(0) = 0 and 
(ii) det P'(z) = 1 + O(]z[ m) (z ~ 0). 

Then there is an automorphism Q ~ A1 such that P(z) - Q(z) = O([z] re+l) as z ~ O. 
Also, Q can be chosen to depend continuously on the coefficients o f  P. 

Proof  By induction on m. Assume the claim is true for m - 1 > 1 and write P as 
above in the form P = p + n where deg p < m - 1 and n is homogeneous of degree 
m. By the induction hypothesis there is a q ~ Aa satisfying p(z) - q(z) = O([z]"). Put 

P(q-~(z ) )  = z + P*(z) + O([z["+l ) ,  

where P* is homogeneous of degree m. Since 

1 = d e t O ( p o q - ~ ) / ~ z  + O([z[ m) = 1 + divP*(z) + O([zlm), 

d ivP*  = 0 and so by Proposition 6.2 there is S~G1(r such that S ( z ) =  
z + P*(z) + O(]z["+l). Of course, S~  A~. Therefore Q = S o q  will do. All opera- 
tions performed are continuous and therefore Q depends continuously on P. 
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As a last ingredient  we shall  need a complete  metr ic  on the topologica l  space A. 
F o r  4~, 7 j ~ A, and  r = 1, 2 . . . .  put  

dr(eb, 71) = max t m a x  I~b(z) - ~(z)l,  max I~b-l(z) - ~ - l ( z ) [ ~  , 
ltzl-5 r lzl-5 r ) 

d(~b, 7') = ~ min {t, d~(q~,  ,i}2 
r = l  

As is well known,  d, and d are metrics, and convergence in the metr ic  d is equivalent  
to convergence in each metr ic  d,. 

Proposi t ion 6.4 The metric d on A induces the topology of  locally uniform conver- 
gence. Futhermore, d is a complete metric. 

Proof  (i) Convergence  in d clearly implies locally uniform convergence.  The 
converse is p roved  in I-2, Theorem 4]. 

(ii) If  q~ is a Cauchy  sequence in (A, d) then both  local ly uniform limits 
l im cb~ = cb and lim 4~;- 1 = ~ exist, with 45, ~ ho lomorph ic  mappings  CU" ~ (1~". 
Since ~b o ku = ~ o 4~ = id, and q~(0) = 7/(0) = 0, 4~ ~ A and 4~ --. q~ in d. 

7 Proof of Theorems 1.1 and 1.2 

We shall prove the following s t ronger  result: 

Theorem 7.1 There is a volume preserving automorphism in A 1 that is not a composi- 
tion of  overshears in A. 

This will imply bo th  Theorems  1.1 and 1.2. Indeed,  if an a u t o m o r p h i s m  ~b ~ A1 
fixing 0 is a compos i t ion  of overshears  then it is also a compos i t ion  of overshears  
fixing 0. The reason for this is that  conjugat ing  an overshear  S by a t rans la t ion  Twe  
get another  overshear  S* : To S = S* o T. Therefore in a given overshear  composi -  
t ion $ 1 ~ 1 7 6  we can in t roduce  t rans la t ions  T~, T 2 , . . .  to replace general  
overshears  by ones that  fix 0: 

S1 o S 2 o  . . . = $1 o T 1 1  e T1  o S 2 o  . . .  = ( S  1 e T l l ) o ( S ~  o T 1 ) o  . . . 

= ($1 ~ T i -1 )~176  T~-I)o ~oS3  o . . . = . . .  

Choos ing  the t rans la t ions  T1, T2 . . . .  so that  $1 = $1 o T l l ,  $2 = S* o T21 . . . .  fix 
the origin, we ob ta in  overshears  Sj ~ A such that  

$1 ~ . . . . .  $1 ~ . . . . .  T 

with some t rans la t ion  T. Since bo th  $1 ~ $2 ~ . �9 �9 and $1 ~ S:  o . . .  fix 0, so must  T, 
whence T = id. 

Wi th  a posi t ive integer m, consider  the following sets: 

/7 = {F" •" --* (I7" ho lomorphic ,  F(0)  = 0}, 
O = {f :  r 1 _~ IU holomorphic} ,  
Oo = { f ~  O :f(0) = 0}. 
/7"  = {P : (lS" ~ II~" polynomials ,  deg P < m, P(0) = 0}, 
f2 m = { P ~ / T m : d e t P ' ( z ) =  1 + O(Izt")  as z ~ 0 } ,  
O"  = {p : IU"- ~ ~ (I; polynomial ,  deg p < m}, 
O ~  ~--- { p  E {~rn p ( 0 )  = 0 } .  
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In what  follows we shall  s tudy the d imensions  of these spaces and their  inter-  
relations.  

H m c H, 0 "  ~ O, and 0~'  c 0 o  are  vector  spaces of d imens ions  

dim 0 "  = dim 0~'  = - 1, 
n - I  ' n - 1  

(7.1) d i m / / "  = n - n. 
n 

Proposi t ion 7.2. f2 m is a s u b m a n i f o l d  o f  I I  m, 

(7.2) dim O m > n - n - . 
n n 

P r o o f  Q'~ is clearly a subvar ie ty  of H m. The equat ions  that  define (2,, co r respond  to 

the coefficients c~ in det  P ' ( z )  = ~,,cv with I vl < m - 1. There  are of 
n 

them. Hence the es t imate  (7.2). To see that  f2 '~ is in fact smooth ,  observe that  Q'~ is 
a g roup  with ope ra t ion  compos i t ion  modu lo  terms of degree > m + 1. (The 
existence of inverse follows, e.g. from Propos i t ion  6.3). Thus ~'~ is homogeneous ;  
since it has smoo th  points,  it must  be global ly  smooth.  

R e m a r k .  Actually,  equal i ty  must  hold  in (7.2) since div : H m ~ Polm_ i (~")  is on to  
and its kernel  is the tangent  space at the identi ty to f2 m. However ,  we will not  need 
this. 

Coro l la ry  7.3 F o r  f i x e d  k and  su f f i c i en t l y  large m 

(7.3) dim f2 m > dim(O"(] x 0 " - 1 ) k .  

P r o o f  Indeed,  by (7.2) and  (7.1) the lef t-hand side of (7.3) is a po lynomia l  in m of  
degree n while the r ight -hand side is of degree n - 1. 

P r o o f  o f  T h e o r e m  7.1 Any overshear  S on C" is de te rmined  by two ho lomorph ic  
functions on C" -1  and an integer d, 1 < d _< n, co r respond ing  to the direct ion of  
the overshear:  S does not  change the zj coord ina tes  ( j  + d). In  this s i tuat ion we 
shall say that  S is a d-overshear.  Call  a compos i t ion  S~ o $2 ~ �9 �9 �9 of overshears  
preferred if $1 is a 1-overshear,  $2 is a 2-overshear  . . . . .  S,+1 is a 1-overshear,  
etc . . . .  , and  every Sj e A. Since id ~ A is a d-overshear  for any  d, it follows that  any  
compos i t ion  of ( overshears  ~ A is equal  to a preferred compos i t ion  (of length 
k < (n). Let Ck denote  the set of  those a u t o m o r p h i s m s  ~ A that  can be represented 
as a preferred overshear  compos i t ion  of length k. We shall  define mapp ings  
~ k : ( O o X O ) k - - * A  as follows. Given any pair  ~ b ~ O 0 , ~ , ~ O ,  and an integer 
d, 1 < d _< n, we denote  by S = Sd, ~. q, : 112" -o 112" the d-overshear  

S ( z l  . . . . .  z , )  : (Z l  . . . . .  z ~ _ ~ ,  4~(Zl . . . . .  z ~ _ ~ ,  z~+ ~ , . . .  ) 

+ zaeO(Zl . . . . .  za- ~, :a + ~ . . . .  ), . . . , z , ) .  

If  (q51, ~ l  . . . . .  43k, Ip~) e (0o  x O) k then define 

~ ' ~ k ( ~ b l ,  ~/]], ,  - �9 �9 , q~k, ~-]k) = S l , q ~ , , ~ ] / 1  o 8 2 , ~ 2 , 1 ] / 2  �9 . . . .  Sdk,~Ok,~lk e A �9 

(Here 1 < dj < n is congruent  to j m o d  n.) Evidently,  Ck is the image of 7Jk. 
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L e m m a  7.4 A I c~ Ck is meagre in A a for  any k = 1, 2 . . . .  

Accepting this l emma the theorem would follow. Indeed, A~, as a closed 
subspace of the complete metric space A, itself is complete,  so that by Baire's 
Theorem A1 r w Ck. Thus what  we have to do is to prove Lemma  7.4. 

Given an integer m, we shall also define a t runcat ion map  Trm : H ~ H m that  
associates with an F e / 7  its Taylor  polynomial  (about  0) of degree m, and the 
analogous m a p  tr,, :O --, Om. 

Proposition 7.5 The following dia,qram commutes: 

~k 
(0o x O) k ~ A ~ A 1 

g 
( O ~ ' x O m - 1 )  k , //m ~ f2" , 

where g is (the restriction oJ)Tr~ o ~Uk. 

The proof  is obvious. 

Proo f  o f  Lemma 7.4 Assume A1 (~ Ck is non-meagre  in A~ for some fixed k and 
choose m so that  (7.3) holds. Put  ~ - I ( A  ~) = V and V~ = (tr,, x tr,,,_ l)k(V). F rom 
Proposi t ion 7.5 we obtain the commuta t ive  d iagram 

(Pk 

V ) / t  1 

(7.4) ,~ I Tr,, 
g 

V,, , o m .  

Since Ck = 7~k((O0 x O)k), our  indirect assumpt ion  implies ~P~(V) is non- 
meagre  in A~. By Proposi t ion 6.3, Trm has a cont inuous right inverse and therefore 
Trm is an open mapping.  Whence we obtain that  Tr , . (~k(V))  is non-meagre  in I2 ~ 
by Proposi t ion  6.1. By the commuta t iv i ty  of (7.4) it follows that  g(Vm) is non- 
meagre  in f2". However,  g :(O~' x 0 m- 1)k ~ s is a differentiable mapping.  Because 
of(7.3), the image o fg  is meagre.  This contradict ion proves L e m m a  7.4, and with it, 
Theorem 7.1. 

8 The c a s e n = 2  

In this section we shall give an alternative proof  of Theorem 7.1 in the case n = 2. 
This p roof  has the merit  of actually exhibiting au tomorph i sms  in Autt  11~2 x\ G(1172). 

Theorem 8.1 For any 0 : ~ ~ C holomorhic and nonconstant the rolume preserving 
automorphism o f  fig 2 given by 

(8.1) (Z1, Z2 ) ..._9. (Z I e+~ . . . .  ), z z e  ~l . . . .  )) 

is not a f inite composition o f  overshears. 

As said in the introduction,  in [1] it is proved that  when 4)(z) - z the mapp ing  
(8.1) is not in G~((l~2). The same proof  works for general 4), but to show that  (8.1) is 
not in G(q7 2) the ideas of [1] have to be extended, as we shall presently explain. 
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For  brevity, put  E = e ~( . . . .  ). Also, if u and v are holomorphic  functions on 112 z. 
let [u, v] denote the II~-linear subspace they span in the space of holomorphic  
functions on •2. 

Proposition 8.2 I f  the map (8.1) is in G(C 2) then there are an integer k > 1, 
a sequence Uo, ul . . . . .  Uk o f  holomorphic func t ions  on 1122, and two sequences 
f l  . . . . .  f k - 1  and gl  . . . . .  gk-1  o f  holomorphic func t ions  on i12 such that 

(i) [Uo, U,] = [z l , z2 ]  and [Uk-1, Uk] = [ z l E ,  z2E-1] ;  
(ii) for  every i = 1 . . . .  , k the map 

z --, ( u i - l ( z ) ,  ui(z))  

defines an automorphism o f  1122; 
(iii) f o r  every i = 1 . . . . .  k - 1 we have ui+1 = e~ +f/(ui); 
(iv) f o r  every i = 1 . . . . .  k - 1 the funct ion  gl is nonconstant  or fi  is non-affine. 

Proof. As in Sect. 3.1 of [1] with the modification that in Definition 3.1.1 (rosaries) 
one skips the condit ion that the au tomorphism (u, v) has Jacobi determinant  1, 
and uses the fact that if (Zx, z2)--* (z l ,  u ( z l ,  z2)) is bijective then u(z l ,  z 2 ) =  
e~ + f ( zO .  

The proof  of Theorem 8.1 will depend on the fact that (i) forces uk- ~ and uk to 
have the same order  of growth while (iii) requires ui+ 1 to grow substantially faster 
than u~. This will give a contradict ion showing that (8.1) is not in G(~2). To  
measure the order  of growth of a holomorphic  function u : ~ 2  __~ {1~ we use its 
Nevanlinna characteristic 

(8.2) m ( u , r ) =  ~ log+lu(rz) ld~(z) ,  
]zl=l 

where r is a positive number,  log + x = logx  i fx  > 1 and log + x = 0 i fx  < 1, and da 
is the area measure on the unit sphere in ~;2 (normalized so that the total area is 1). 
We shall need the following general properties of m(-, r). 

Proposition 8.3 For  u, v : C 2 -~ C holomorphic we have 

(8.3) m(u + v, r) < re(u, r) + m(v, r) + log 2; 

(8.4) m(uv, r) < m(u, r) + m(v, r); 

(8.5) m ( ! , r )  < m(u,r)  + O(1); 

(8.6) m(p(u),  r) = deg(p)m(u ,  r) + O(1) as r --.oo i f  p is a polynomial;  

(8.7) m(f (u ) ,  r) /m(u,  r) ~ oo i f  f is transcendental  and u nonconstant;  

(8.8) m(~?u/Ozj, r) < 2m(u, r) + O(log r) except  f o r  a set o f  r's o f  f in i te  measure; 

(8.9) m(u, r) = O(log r) (r ~ o o  ) i f  and only i f  u is a polynomial .  

I f  u is a polynomial  o f  degree d, re(u, r) ,,~ d logr.  

Proof. (8.3) and (8.4) are trivial; (8.5) follows from Jensen's formula (or the first 
main theorem of Nevanl inna theory). Actually the definition (8.2) makes sense 
when u is a meromorphic  function on II; 2, and (8.3), (8.4) are true for meromorphic  
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u, v. (Here, a meromorph ic  function is the quotient  of two entire functions.) For  
(8.5) we need u ho lomorphic  but 1/u can have singularities. 

(8.6) can be proved by considering separately the contr ibut ions in re(u, r) and 
m(p(u),r) of the sets where lul > C and where lul < C for a big constant  C. 

(8.7) is a theorem of Clunie when u is a t ranscendental  ho lomorphic  function 
on C, see [4] or [6]. The same proof  works for t ranscendental  functions of several 
variables, and even for polynomials.  (Alternatively, the case of a polynomial  u will 
also follow from (8.9)). 

(8.8) follows from the " l emma of the logari thmic derivative" (see [13, (8.4) and 
(8.9)]). Finally, (8.9) is a theorem of Stoll, see [12]. 

We shall also need some estimates related to our m a p  (zxE, z2E-1). 

Proposition 8.4 We have 

(8.10) m(ziE, r) = m(z2E -1, r) + O(log r) as r ~ .  

Proof By (8.4) (valid for meromorph ic  functions) and (8.5) 

m(z2E -1, r) < m(zlz2, r) + m((ZlE) -1, r) 

< O(log r) + O(1) + m(zlE, r), 

which gives one half of the est imate (8.10). The other half is proved similarly. 

Proposition 8.5 I f  p and q are nonzero polynomials of one variable then 

m(p(zlE) + q(zzE-1),  r) = (deg p + deg q)m(zlE, r) + O(log r) 

as r--* ~ .  

Proof Put  Vr = { z E : ~ 2 : [ z [  ~-- r, lEI > 1}. On V r we have 

(8.11) p(zlE) + q(z2E -1) = p(zlE) + O(r degq) �9 

Since for complex numbers  a, b 

log +[al - log +[bl - log2 < log +[a + b{ < log +lal + log +tb[ + l o g 2 ,  

(8.11) implies 

S l~ + [p(zlE) + q(zzE-1)lda(z)  = S log + [p(zlE)]da(z) + O(log r) 
Vr Vr 

= ~ log +lp(zIE)lda(z)  + O ( l o g r ) .  
I~l=r 

This latter is deg(p)m(zlE, r) + O(log r) by (8.6). Similarly we obtain  

log + [p(ZlE) + q(zzE-1)Ida(z) = deg(q)m(z2E-1) + O(log r ) ,  
{Izl = 1}\v, 

whence (8.10) implies the claim. 
N o w  define a partial  ordering -< on holomorphic  functions on C 2 by put t ing 

u ~ v if there is an r / >  1 and a set S c IR of finite measure  such that  

(8.12) re(v, r) > qm(u, r) when r > 0, r r S 
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Proposition 8.6 Let  Uo, . . . , Uk be as in Proposition 8.2. l f  ul-~ <~ ui then ui ~ ui+l 
Moreover, unless gl is constant and fz is a potynomial, fi~r any r 1 there is an S : IR o f  
finite measure such that (8.12) holds with u = ul and v = ui+l. 

Proof  The map  

T: (Zl, z2) ~ (e~ + f/(,z2), Z2) 

is an overshear  with Jacobi  determinant  e g'(:2). Fur the rmore  To(ui-1 ,  ui)= 
(ui+l, uD, whence the chain rule gives 

eO,(.,)=((?u,c?ui+l Ouicgu_L+_l~/(Oui-l ~u, ~Ui-IG~UI~ 

Apply Proposi t ion 8.3 to get 

i + 1  

m(e ~ r) < 8 ~ m(uj, r) + O(log r) 
j = i - 1  

for r > 0 in the complement  of  a set So : 1R of finite measure.  Rearranging gives 

m(ui+i ,r)  > l m(eg'r 1 m(u i - l , r )  ~ /  l o g r  "~ 

m(ul, r) = 8  m(ui, r) m(ui, r) ~  ) "  

Hence ifg~ is nonconstant ,  by virtue of (8.7), the assumpt ion  that  u~_ 1 ~ u~, and (8.9) 
we get the result. On the other  hand, if g~ is a constant  then 

m(ui+l,r)  m(fi(ui) + cu i - : , r )  

m(ui, r) m(ui, r) 

> m(fi(u3, r) m(u i - : , r )  llog c] + l og2  

- -  m(ul, r) m(ul, r) m(ui, r) ' 

so that  the claim now follows from (8.6) or (8.7), and u~_ : < ui. 

Proo f  o f  Theorem 8.1 Assume, to get a contradiction,  that  the m a p  (8.1) is in G((I? 2). 
Then there are sequences Uo . . . . .  Uk, f l ,  �9 �9 , f k -  1, gl,  �9 �9 �9 gk 1 as in Proposi t ion  
8.2. By (i) of this proposi t ion  both Uo, u, are linear, hence by (iii), (iv) u2 is not 
a po lynomia l  of degree 1. Stolt's theorem (8.9) implies then that  ul < Uz. By virtue 
of Proposi t ion 8.6, u2 < U3 < �9 * �9 < U k -  1 "~ Uk follows. 

Since both Uk - 1 and Uk are of form az ~ E + bz2 E - : with a, b constants,  Proposi-  
t ion 8.5 and 8.9 give that  l i m , ~  m(uk, r)/m(uk- 1, r) = 1/2, 1, or  2. But uk- : < uk so 
only the value 2 is possible, and this can happen  only if Uk I(Z)= CZlE or 
Uk-I(Z) = cz2E-  ~ with some constant  c. Assume the first. In view of Proposi t ion  
8.6 ga-~ must  be constant  andj~_  1 must  be a polynomial .  Sincefk-1 is non-affine, 
degfk_ : > 2. Thus  we have with some constants  a, b, c, d (d =~ 0). 

az lE  + bz2 E -1  = Uk = duk-2 q-fk-l(Uk-1) 

= dUk_ 2 + f k - I ( C Z l E ) ,  

which can also be written as 

b 
p(z lE)  + -,z2 E-1  = Uk-2, 

a 
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with p a polynomial  of degree at least 2. Using Proposi t ion 8.5 we find 

lim m ( u k _ 2 ,  r ) / m ( u k _  l ,  r) > deg p > 2 , 

which contradicts uk- 2 < u~ _ 1- 

9 Remarks  on Theorems 1.1 and 1.2 

The proof  of these theorems given in Sect. 7 does not p r o d u c e  examples of 
automorphisms that are not composit ions of (over) shears. Indeed, for n > 2 no 
such examples are known. It is worth mentioning that a "stabilization" of (8.1), i.e. 
the au tomorph ism q~ of 112 3 given by 

(~b(Z1 ' Z2  ' 2 3  ) = (zle4~t . . . .  ) 2 2 e - ~  . . . .  ), 23 ) 

is known to be a composit ion of  shears. 
Indeed, consider the shears 

S l  ( Z l ,  z 2 ,  z 3 )  = (z  1 - ez3z2, 22, z 3 )  , 

S 2 ( z l ,  z 2 ,  z 3 )  = ( z t ,  z2  -1- c-Z37.1, .7.3) , 

S ( z ~ ,  z2 ,  z3) = (z~,  z2 ,  z3 + ~ ( z i z 2 ) ) ,  

and the mapping L s SL(3, I17) given by 

L ( Z l ,  Z2, 2"3) = (22 ,  - -  2"1, Z3)  �9 

According to Theorem A of [1], L is a composi t ion of shears, hence so is 
T = $1 ~' $2 ~ $1 ~ L. We compute  

r ( z i ,  z2 ,  23) = (eZ3Zl, e :3z 2, z3),  

whence T - 1S - ~ T S  = q). 
In spite of its nonconstructive nature, our first proof  of, say, Theorem 1.1 has 

certain merits, even in the case n = 2. Indeed, the same approach would also prove 
that shears and mappings of form (8.1) together do not generate the whole group 
Aut~ 117 2 either. This could even be pushed further to formulate the following 
principle: A set of  generators for Autl  ff~" (or Aut C") cannot  be given by countably 
many expressions involving arbitrary holomorphic  functions of n - 1 variables. It 
is possible to convert  this principle into a theorem, once a precise meaning is given 
to "expressions" above, but we shall leave this to the interested reader. 
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