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1 Introduction 

The theory of Fourier integral operators associated to a canonical graph [3] 
constitutes one of the most elegant and powerful tools of partial differential 
equations. However many issues in both analysis and geometry lead to Fourier 
integral operators whose Lagrangians are not local graphs. Already problems of 
diffraction had led to operators with canonical folding relations [4, 5, 10], while 
problems of integral geometry [1,2] and differentiation theory [9, 7] lead to 
operators with even more severe singularities. 

Although it seems unlikely that as succinct a calculus as that of the classical 
theory can be laid down for singular Fourier integral operators, a more limited 
theory that can predict say, the nature of TT* and produce L 2 bounds could 
already prove to be quite useful. As a first step we need to understand simple 
models, such as the Airy operator provided for operators with folding canonical 
relations. In this paper we discuss a basic class of such models, namely oscillatory 
integral operators with homogeneous polynomial phase functions of arbitrary 
degree in one dimension. A number of features point to these operators as possibly 
central to a calculus of singular Fourier integral operators: first, they are natural 
generalizations of the Airy operator, whose phase is a homogeneous polynomial of 
degree 3; second, they can essentially be identified with Radon transforms along 
families of curves with non-vanishing "torsion" in manifolds of dimension equal to 
the degree of homogeneity; third, in the classical theory of Fourier integral 
operators, the condition that the Lagrangian A c T* (X )x  T*(Y) projects 
smoothly onto one of the factors is symmetric in X and Y. For singular Lagran- 
glans, the stratification structure of the projections on the two factors may differ, 
and it is valuable to understand how this affects the L 2 bounds. Such issues have 
been investigated in [1, 7]. The class of operators we study here are the simplest 
incorporating this asymmetric behavior; finally, it is also a class which despite its 
high order of degeneracy nevertheless leads to surprisingly simple answers. 
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More  precisely, let S(x, y) be a homogeneous  polynomial  in (x, y ) � 9  x R of 
degree n 

S(x, y) = ~,, ~i_ l x" - iy  i 
1 N i < n - i  

and define the opera to r  T by 

(Td?)(x) = ~ ei~S~'r)Z(y)c~(y)dy , (9 �9 C~(R)  

where Z is a fixed C ~ cut-off function on R with compac t  support .  The no rm of the 
opera to r  Tis  unaffected by the addit ion to S(x, y) of terms propor t iona l  to either x ~ 
or y~, which is why we omit  them. Assume that  the coefficient ct~_ 2 of xy ~ - ~ is not  0. 

Main Theorem. The operator T extends to a bounded operator on L2(R) with 
operator norm 

II TIt < CI21-1/" 

when 

(a) n is even and [a~n/2)-1[ + �9 �9 �9 + l ao[ =~ 0; 
(b) n is odd and [a(n-l~/2-11 + �9 �9 �9 + [ao[ # 0 .  

Note. There  is an equivalent  way of stating the est imate of the Main Theorem by 
considering a var iant  T '  of the operdtor  T which is defined without  the cut-off 

and the pa rame te r  2 

(r'qS)(x) = S eiStx'Y~c~(y)dy, if9 �9 C ~ ( R ) .  

Then the opera to r  T '  is extendable to a bounded  opera to r  on L2(R) to itself if and 
only if the est imate [I T[] __< C[2[-1/~ holds. The equivalence is an easy consequence 
of a rescaling argument .  

Switching the roles of x and  y would lead to a similar s ta tement  for ~o 4: 0, and 
condit ions on [ ~ - 2 ]  + . . .  + [~p[ 4: 0, with p = ( n / 2 ) - 1  for n even and 
p -- (n - 3)/2 for n odd. 

It may  be instructive to discuss the cases of  lowest n in some detail. For  n -- 2 
the only possibility is S(x, y) = ~oxy. The opera to r  T is just  the Four ier  t ransform 
up to a scaling, and we immediately  obta in  11 T 11 = [~o1-1/2121-1/2, in agreement  
with the Main  Theorem.  The  case n = 3 is more  typical of the problems at hand. 
The phase functions satisfying the hypotheses  of the Main  Theorem must  be of the 
form 

v 
S ( x , y ) = ~ o x y  2 + c q x 2 y = \ \ 3 ~ t ,  ] x +!k -~o)  y )  - 3 - ~ 1 x  - - ~ o  

y3 .  

After a rescaling T reduces to convolut ion with e i~x3, which is essentially the Airy 
operator .  The  Main  Theorem follows f rom the easy uniform bound 0(121-1/3) for 
the corresponding multiplier. The only phases which do not  satisfy the hypotheses  
of  the Main  Theorem when n = 3 are S(x, y) = ~zoxy 2 or S(x, y) = ~lx2y. In this 
case the kernel K,~(x, y) of TT*  is immediately  seen to be given by 2-1/2(x - y ) -  1/2, 
so that  the sharp bound  for II TII is then the weaker  bound  0(121-1/4). The case 
n = 4 is the first unknown case, and requires a lready some of the techniques 
developed for the p roo f  of the Main Theorem.  
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Now the simplest degenerate Fourier integral operators F e l u ( X ,  Y; A)  are 
associated to a Lagrangian A c T * ( X )  x T * ( Y )  which is not a local graph, but 
a fold in the following sense. Let the projections from A on T * ( X )  and T*(Y) be 
denoted respectively by nR and nL: 

A 

/ \  
T * ( Y )  T * ( X )  . 

Let I c A be the variety along which the kernels of dx  L and dxR are not trivial. 
Then A is a left fold if the determinant of d/z L vanishes of first order along I ,  and the 
kernel of dx  L is one-dimensional and transversal to 22. It is a right fold if the same 
condition holds for ~tR instead of hE. We note that although 7~ L and ~R are regular if 
and only if one of them is, the Lagrangian A can be a left fold without being a right 
fold. The phase functions homogeneous of order 3 can be viewed as models for 
Lagrangians with folds, with the left (respectively, right) fold condition corre- 
sponding to the non-vanishing of the coefficient c% (respectively ctl). In fact, it is 
known that Lagrangians which are folds on both sides can be conjugated to 
S(x, y) = (x - y)3 [4, 5, 10], while Lagrangians with a fold on one side and com- 
plete degeneracy on the other essentially correspond to S(x, y ) =  x y  2 [1] .  The 
bounds 121-1/3 and 121- ~/* reflect these two different geometric behaviors. 

The phases introduced in the Main Theorem are models of Lagrangians with 
cusps. This means that the kernel of say 7rE, may be tangent to S along some 
subvariety IL ~, and also tangent to 22L ~ along another subvariety 222 etc. The 
Lagrangian is said to have left torsion if I ~ -  2 is empty [7]. This corresponds to the 
condition ct,_ 2 :~= 0. Arguing as for xy  2 we readily see that the best bound for II T 11 
when S(x, y) = x y  "-1 is o(I,~l-1/c2t"-a'). The issue is whether this bound can be 
improved by some information on the right projections 7zR, restricted to the various 
singular varieties IL. The Main Theorem asserts that this is the case for the model 
operators. The bounds II Tit < CI2l -~/" given there are sharp, as can be readily 
seen in the case of S(x, y) -- (x - y)" which is a convolution operator. Furthermore, 
it is especially encouraging that the conditions insuring a better bound are given by 
the non-vanishing of individual coefficients, rather than say the signature of 
a quadratic form, so that an eventual generalization in terms of stratifications for 
the projection/l~ R is possible. 

Our method of proof is based on a close study of the singularities of the kernel 
K~(x, y)  of TT*.  The kernel can be written as an oscillatory integral in z with phase 
S(x, z) - S(y,  z). The main contributions come from critical points. However here 
the dependence on the parameters x, y is crucial, and the usual bounds provided by 
the standard van der Corput lemma can blow up as the critical points come close 
together. This happens near special values of (x, y) where the polynomial 
S',(x, z) - S;(y, z) has multiple roots. Thus the first ingredient of our proof is 
a sharp form of the method of stationary phase. This refinement which keeps track 
of the distances between critical points may be of independent interest and is 
presented in Sect. 2. Next we show that the critical points which are algebraic 
functions in the projective variables (y/x)  and (x/y) cannot come too close together 
in the average, except under very special circumstances ruled out by the form of the 
particular polynomial equation at hand. Our approach here is direct, and it may be 
hoped that an algebraic geometric proof may eventually be found which may pave 
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the way to higher dimensions. The singularities of K~(x, y) near x = y, x = 0, or 
y = 0, require a separate treatment. This is done in Sect. 4. Section 3 is devoted to 
a L z boundedness theorem for operators whose kernels satisfy the bounds derived 
in Sect. 2 and 4. Finally we conclude with a brief discussion of open questions in 
Sect. 5. 

2 A sharp version of the method of stationary phase 

The key analytic tool of our arguments is the following sharp version of the method 
of stationary phase, which keeps careful track o f t h e  distances separating the 
critical points. 

We consider the oscillatory integral 

b 

Ka = ~ ei~'e(z)Z(z)dz , (1) 
a 

where Z is a C ~ function, and P(z) is a monic real polynomial of degree d. The end 
points a, b can be infinite, in which case Z is required to have compact support. The 
critical points of the phase are the real roots of the polynomial P'(z). We begin with 
the case when P'(z) has no complex roots, which incorporates already the main 
ideas. Let ak, k = 1 . . . . .  d - 1 be the roots of P'(z), indexed in increasing order. 
We define a cluster L to be a set o f  consecutive points ak'S, and the size IL] of the 
cluster to be the number of points ak'S in it. Multiple roots are counted with their 
multiplicities. 

Theorem 1 The following bound holds for K z 

LK~I < Cd max min 121 1~ tak -- ai[ (2) 
l < - k < - d - 1  L ~ k  \ j ~ L  

where the constant Cd depends only on the degree d of  P'(z), and the sup norms of  
Z and Z'. 

Proof  of  Theorem ! We begin by an elementary estimate 

eiae(z)z(z)dz <= Ca 21 minlP ' (z  (3) 
[a, b] 

with actually Cd = (2d + 1)(suPr,,b~(IZ[, l t[) .  This follows from an integration by 
parts 

b b 

S eiZe~z)Z(z)dz = - ~ ei~e~z)( i2)- 1 (P'(z)-  1)'Z(z)dz 
a a 

b 

-- ~ eiaetz)(iAP'(z)) - lZ(z)'dz + (i2P'(z))-  lei~e~}Z(z ) lb. (4) 
a 

The second and third terms of(4) are bounded by the right hand side of(3) with 3 as 
the constant. As for the first term we can estimate it by 

12l - l suplzJ  I (P ' (z) - l ) ' ldz  < ]21-1 sup}zI (5) 
[a, b] a [a, b] az 



Oscillatory integrals with polynomial phases 43 

where [a, b] = ~ [al, bl] is a decomposit ion into intervals where ( (P ' (z ) ) -  ~ )' does 
not change sign. Obviously the number  of these intervals is less than d - 1. The 
integral on each interval [al, a, + 1 ] equals } P'(al + 1 ) -  1 _ P'(al) -  1 [ and is bounded 
by 2(mint~,ba fP ' ( z ) l ) -  1. This establishes (3). 

Returning to the proof  of (2), we assume for convenience of notat ion that  the 
ak'S are distinct. The argument  adapts easily to the case of  multiple roots. We divide 
the real line into intervals Ik, k = 1 . . . . .  d - 1 as follows 

I~ = [a, b] c~ ( -  m,  (al + a2)/2-] 

It = [a, b] c~ [ (a t -  1 + at)~2, (ak + at+ i )/2], 

Id-  1 = [a, b]  c~ [ (an-  z + a a -  1 ) / 2 ,  + ~ )  . 

2 < _ k < _ d - 2  

(6) 

It is convenient to introduce also the intervals lk + = l k C ~ { Z > a a }  and 
1s  = It c~ {z < at}. The desired estimate (2) is a consequence of the following 
localized version at each critical point  ak 

ei'~mz)Z(z)dz ( j ~ L  ) - I / ( ,L ,+I)  < Cdmin I,~1 lag -- ajl (7) 
lk L~k 

We prove this by induction on the size IL[ of the clusters L. For  L = I there is 
only one cluster L = {ak } which contains ak, and (7) becomes 

I eia~'(~)Z(z)dz < Cd 12[ IF] lag - a j ] )  . (8) 
11,: j *k  

To see this let 6 ~ (21-[j,k l a g -  aj[) -1/2. Evidently the integral over the interval 
17 = [ak -- 3, ak + ~] satisfies the desired inequality. O n  the other hand, on each 
interval Ik -+ \ Ik  ~ (which may  be empty) we have 

IP'(z)l > Ca6 1-I [ak -- aj[ . (9) 
j , k  

In fact we may write P'(z)  as 

d-1 

P'(z) = 1-1 ( ~ -  aj). 
j=t  

For  z~I~- \12 say, we must  have [z - ak[ > g) and Iz -- ajl > [ak -- aj[ for those ai's 
on the left of ak. For  aj on the right of ak, we observe that 

Iz - a i l  = l a t  - a i l  - I z  - a k l  > l a t  - a j l  - ~ l a t  - a~l  = ~ l a k  - a~l 

giving (9). The argument  is similar for z in l k  \17 ,  SO that  (9) holds, and hence (8) in 
view of (3), 

We assume now that (7) holds for clusters of  size n - 1. Let L = {aM . . . . .  au) 
(N = M + n -- 1) be any cluster of size n containing at, and consider two possibili- 
ties: 
�9 L neither begins nor ends at ak. Then {aM+ ~ . . . .  , au} is a cluster of size n -- 1 

which still contains at, and the induction hypothesis gives 

e'~e(z)Z(z)dz ( ) - 1 / .  l __< C,~  121 I-I l a , ,  - a /  ( 1 0 )  
lk j * M + I  ..... N 
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If 

121 1-I lag - ajl ~ r21 1~ lag - ajl (1l) 
j*M+ I . . . . .  N j~M .... ,N 

we are done. Otherwise we obtain a bound for [aM - akl 

( )-- l/(n+ 1) 
laM -- akl < [2[ 1-[ lag - a t] (12) 

jC-L 

Since the interval Ik- is contained in [aM, akJ, and the integral on Ik- is 
dominated by the length I/g-] of 17, the desired estimate on Ik- follows. 
Similarly the estimate on Ik + is obtained by induction from the n - 1 cluster 
{ a M , . . . ,  aN- l }. 

�9 Say now that L begins at ak, SO it is of the form L = { a k  . . . . .  aN}, 
(N = k + n - 1 ) .  By comparing with the estimate for the n - 1  cluster 
{ a k , . . .  , aN-1}, we may assume as previously that 

( ) -  1/(n+ 1) 
laN -- akl < [21 I-[ lak -- ajl (13) 

jCL 

Since Ik + is contained in lag, aN], we need only estimate the integral over l k .  Let 
6 be the right hand side of(13). The integral over Ik ~ = [ak -- 6, ak + 6] evidently 
satisfies the desired estimate. For  z in I k  \ I~ ,  I Z -- aj I is greater than 6 for j ~ L, 
s o  that 

mini i \p ,  lP'(z)l > 6" 1~ lag -- a j l .  (14) 
jCL 

The estimate (6) for the integral over Ik- is a consequence of (3) and (14). The 
argument for clusters L which end at a, is the same, and the induction proof  is 
complete. Q E D  

We note that the second derivative of the phase P(z) at each critical point ak is 
given by P"(a,)  = V[ _ .  (ak -- at), so that the standard method of stationary phase 
produces a contril~u~Jion of (1211-I.,k [ak -- ajl)-1/2 from the neighborhood of the 
crmcal point ak. This would comclde wxth the case of size 1 clusters m Theorem 1. 
The problem with the standard method, however, is that it provides an asymptotic 
expansion in 2 alone, and the error terms depend on the derivatives of the phase 
and could blow up. The proof of Theorem 1 actually gives a more general theorem: 

Theorem 2 Let  P(z) be any C 2 function which satisfies the following conditions on the 
intersection o f  [a, b] and the support of  z ~ C~ (R): 

(a) P'(z) > A l i d  -}  Iz -- a,I, where d is some integer, and A is a constant; i ~ /~ -- l.I.J=l .t 
(b) ((P'(z))-x) ' changes sign a finite number N of  times. 

Then the oscillatory integral (1) can be estimated by 

r ( j ~  L ) -  1/"LJ + 1' 1 IKxI < CN, d,z max max [21A [ak-- ajl (15) 
l<k<d-1  I L~k 

with Cr~.d,x depending only on N, d, and the C~ norm of  z. 



Oscillatory integrals with polynomial phases 45 

With Theorem 2 we can easily obtain the most  general version of  Theorem 1, 
allowing as well complex roots. Complex roots are impor tant  in practice because 
their imaginary parts may be small, and we need to keep track of their sizes. Let 
then ~k = ak + ibk, k = 1 . . . . .  d - t be the roots of P'(z). Instead of  counting the 
roots inside clusters L as in Theorem 1, it is more convenient to count  the number  
of roots in L c = L\(k. There is now no preferred ordering, and we can drop at this 
point the requirement that clusters consist only of consecutive roots. For  each k we 
set 

Kz(k, m) - rain 2 l-I [ak -- (ji (16) 
LC, lLcl=m- 2 j ~ L  

when ~k is real, and 

K~(k, m) =- min min 121 I~ [ak -- (j[ , 
~.Lc, lLc l=m-3  jq~L 

( min 12l Ibkl l--[ lag - (jl , 
L c,  [LC[ = m - 2 j ~  L 

( min 1411bkl 2 I-I lak -- (il (17) 
LC, lZ~ I = m -  1 jCZ 

for (k = ak + ibk complex. 

Theorem 3 For any real monic polynomial P(z) of deyree d, we have the foIIowin9 
estimate for the oscillatin9 integral (1) 

I K x t <  Camax(minKa(k,m))k \ ,, (18) 

Proof of Theorem 3 We introduce intervals Ik, I~ as in (6) with the ak'S the ordered 
real parts of  the complex roots ~k. It suffices to show that the integral for Kx 
restricted to each interval Ik can be bounded  for each n by each of the three terms 
on the right hand side of (16) (17). We may express P'(z) as 

d - 1  

e ' ( z )  = I-I (z - ~ j ) .  
j = l  

If  (k = ak is real, the estimate is a consequence of Theorem 2 and the fact that  

for zeIk. If  ~k = ak + ibk is complex, we note that  Iz -- (kl 2 = Iz -- akl 2 + b~, and  
hence is greater than m a x ( I z -  akl 2, [ z -  ak[ Ib~[, [bk[2). The desired estimates are 
consequences of Theorem 2 and the following lower bounds for P'(z) on Ik: 

IP'(z)l > ( l z -ak l  I-I l z - R e ( j l )  (lbkl l-I lak-(~l)  
j~L c jCL 

] " ( z , l > ( j ~ c l z - R e ( j l ) ( l b k l 2 1 -  I lak--~j]). (20, 
jCL 

This establishes Theorem 3. Q E D  
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3 L p bounds for some singular integral operators 

In this section we provide L 2 bounds  for a class of operators which will be shown to 
contain TT* when the conditions of the Main Theorem are satisfied. A simple 
version sufficient for our purposes is 

Theorem 4 Let S be an operator from C~(R) to L~oc(R) with kernel K(x, y). Then 
S extends to a bounded operator on L2(R), with norm 

II Sll = O( l~1-2 /")  

under the following conditions 

(a) For some v >= O, and some function L(x, y) homogeneous of deffree - 1 - vn in 
(x,y) 

[K(x, Y)l < min((2Jx - yl) -1/~"-1), I2[-~-Z/"L(x, y)) (21) 

(b) L(x, y) is continuous on the circle x 2 + y2 = 1, except possibly at a finite number 
of points Oi, near'which it is of size 

O(IArctan(y/x) - 0i[-1 +~,) (22) 

for some positive ~; 
(c) I f  the singularity Oi corresponds to a point on either the x or y axis, then 

61 > 1/2 . (23) 

Proof We can decompose S into two operators whose kernels are supported 
respectively in [ x - y [  < [2[ -1/" and I x - y l  > [2[ -1/" �9 The first opera tor  is 
bounded  on L2(R) with norm O([21-z/,) since 

S ( [ 2 l i x - y [ )  -a/("-l)dx+ S ([2 l ix -Y[) - l / (" - l )dy<O([  2[-2/") 
Ix-yl < Izl - 1/, [x-yl < p.I - 1/, 

As for the second operator,  the restriction ix - Yi > 12J-1/, implies that  its kernel 
can be estimated by 

]t?.[-v- 2/n L(x, y) <: [2[-2/nm(x, y) 

with M(x, y) = (rxl + [y[)V"L(x, Y). Theorem 4 is now a consequence of the follow- 
ing lemma: 

Lemma 1 Let M (x, y) be a positive homogeneous function of degree - 1, continuous 
on the circle x 2 + y2 = 1, except possibly at a finite number of points where its 
singularities are bounded by the right hand side of(22) (23). Then the operator U with 
kernel M(x, y) is bounded on L2(R). 

Proof The estimates (22)(23) imply that M(x, y) can be bounded by a finite 
number  of terms of the form 

N 

Z I x -  aiyJ-l+a'([x[ + ]yi)-a,, {x[-l+a '([xl  + [y[)-o', [y[ - l+a"( jx l  + ]yj)-a-  
i = 1  
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for 61 > 0, 6', 6" > 1/2, and some constants ai + 0. For e > 0 small enough in the 
first case and (1 - 6 ' ) / 2  < e < 6'/2 or ( 1 -  6")/2 < ~6"/2 in the other cases, we 
obtain 

+ ~  

M(x,y)IYI-2~dy < Clx1-2~ 

+oo 

M(x,y)lxl-2~dx < ely[  -2~ (24) 

Combining (24) with Holder's inequality gives 

' Uf (x)I2 < ( ~ M (x, y) IYI2~'f (y)I2 dy) ( ~( M (x, y)IyI- 2~ dy) 

< Clx1-2~ (~ M(x, y),yl2~lf(y)12 dy) (25) 

and 

~ lUf(x)l 2 dx ~ c ~ (~ Ixl-=~M(x, y)ldx)lyl=~lf(y)12dy 

< CS If(y)lZdy. QED (26) 

4 Estimates for the kernel of TT* 

We return to the study of the operator T. It is convenient to set c~,_ 2 = 1 and to 
introduce a cut-off function g which is C~176 with compact support. The transpose 
of T is given by 

(T*O) (z) = S e-i~sty, z)Z(z) ~ (y)dy (27) 

and the kernel K~(x, y) of TT* is given by 

Kz(x, y) = [. e ixtst:''~)-s(r'~))X(z)2 dz 

= ~ el;q~-r~e~x'Y'=~Z(z)2dz (28) 

where P(x, y, z) is the homogeneous polynomial in all three variables of degree 
n - 1, monic in z, given by 

P(x, y, z) = (x - y)-l(S(x, z) - S(y, z)) . (29) 

Let (k(x, y) = ak(X, y) + ibk(X, y), k = 1 . . . . .  n - 2 be the (possibly complex) roots 
of dP(x, y, z)/dz =- P;(x, y, z) as a polynomial in z. They can be chosen to be 
homogeneous of degree 1 and continuous on small cones in (x, y) space. More 
precisely there can be difficulties only when Arctan(y/x) is close to a finite number 
of special values 0o, where the polynomial P'z(x, y, z) has multiple roots. Near such 
multiple roots, we can represent the (j(x, y)'s by Puiseux series in the projective 
variables y/x or x/y I-8]. In particular they are continuous up to the multiple roots, 
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and analytic away from them. In view of Theorem 3, K~(x, y) is bounded by 
expressions of the form (16), with 2 replaced here by 2(x - y). Choosing m in (16) to 
be m = n - 1, we obtain immediately the first bound required for the application of 
Theorem 4: 

IKz(x, Y)I < C(121 tx - yl) -1/~"-1) . (30) 

To  obtain the second bound in Theorem 4, we note that the right hand side 
of (16) are functions homogeneous  in (x, y) of degree - (n/m) + 1. For  m < n/2, 
the quant i ty  v -  ( l / m ) -  (2/n) is non-negative, and the degree of homogenei ty  
1 - (n/m) can be reexpressed as - 1 - nv. It remains to check only the integrability 
on the (x, y) unit sphere in order for Theorem 4 to imply the bound 0(121-2/") 
for the norm of TT*  on L2(R). The regions close to the points x = y, x = 0, 
y = 0, and away from them have to be investigated separately. 

Integrability o f  K~(x, y)  away f rom x = y, x = O, and y = 0 

In this region the issue of integrability on the unit sphere is resolved through the 
following lemmas: 

L e m m a  2 (a) Let  n be even. I f  the expression 

I(~(k, n/2) (31) 

of(16) (17) has a non-integrable singularity at some point (Xo, Yo) on the unit sphere 
different from x = y for  some k, 1 < k < n - 2, then the polynomial P'~(x, y, z) must 
have two zeroes which are identical as functions o f  (x, y). 

(b) Let  n be odd. The same conclusion as in (a) holds if for some k the expression 

[Kz(k, (n - 1)/2)Kz(k, (n + 1)/2)] 1/2 (32) 

has a non-integrable singularity near some point Oo on the sphere x z + y2 = 1. 

n - 1 - i z i "  , Lemma 3 Let  S(x, z) = ~ i= 1 ~i- 1 x" Then Pz(x, y, z) given by (29) cannot have 
two identical roots in (x, y) unless I~1[ + [~ol = O, in which case it admits the obvious 
double root z - O. 

Proo f  o f  L e m m a  3. If P '  admits two identical roots we may write locally 

Sz(x, z) - S'~(y, z) = (x - y)(z - ~(x, y))2 ~(x,  y, z) 

where ~(x,  y, z) is differentiable in (x, y) except at a finite number  of lines. Differen- 
tiating with respect to x, and setting z = ~(x, y), we see that  ~(x, y) is actually a zero 
of S'~'z(x, z), and is hence independent  of y. Differentiating with respect to y shows 
that  it is also independent  of x, and thus 0, since it is homogeneous  of degree 1. 
Evidently 0 is an identical double root  for S'(x,  z ) -  S ' (y ,  z) if and only if 
10~ll --. I~ol = 0. Q E D  

Proo f  o f  L e m m a  2 We begin with (a), so that n is even. Assume first that the zeroes 
~(x,  y) = at(x, y)  are all real, and that  Kx(k, n/2) is not  integrable near some 0o 
different from 7r/4 for some k. (The assumption 0o 4: re/4, which on the unit sphere 
x 2 + yZ = 1, is equivalent to the fact that we are away from x = y, is used as 
follows. In the expression (16) 2 is actually replaced by ) . ( x -  y); therefore 
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the hypothesis  Oo # g/4 guarantees that  in a ne ighborhood of that  point  
[2(x - y)] ,-~ 121.) Since the at(x, y) are Puiseux series near  0o, their distances have 
the following behavior  near Oo 

]aj(x, y) - ak(X , y)[ ~ ]Arctan(y/x)  - Ool m,, j :4= k (33) 

for some non-negat ive rat ional  number  rnj. Wi thout  loss of generality we may  
assume that  k = 1, and that  the mj's are ar ranged in decreasing order  

m 2 => m 3 >-- . . . => m , - 2  ~ 0 . (34) 

Since Ka(1, n/2) has a divergent singularity, it follows that  for any subset L of 
(n/2) - 1 roots  aj(x,  y)  containing al(x ,  y), we have 

]a l ( x , y )  - a j (x ,y )[  > c]Arc tan(y /x )  - 001-1 (35) 

Choosing L to consist of the ( n / 2 ) - 1  nearest  roots  to a l ( x , y ) ,  i.e., 
al(x ,  y ) , . . . ,  a(,/2)-1, we can express (35) as 

mn/2 + m(n/2)+l "4- . . .  "4- rnn-2 2> n/2 . (36) 

To  show that  two zeroes coincide identically, we shall show that  the discriminant  
A of the polynomial  P'z(x, y, z) 

A = I-I la,(x, y) -- at(x, y)l 2 (37) 
l < i < j < n - 2  

vanishes identically. N o w  the discriminant  A is a polynomial  in the coefficients of 
the corresponding polynomial  P'~(x, y, z) and hence a polynomial  in x and y. 
Fur the rmore  it is homogeneous  of degree 

degree A = (n - 2)(n - 3) (38) 

in the roots  and thus homogeneous  of the same degree in x and y. O u r  task reduces 
to that  of showing that  A vanishes of  some order > (n - 2)(n - 3) near  0o. In view 
of the fact that  

lai(x, y) - aj(x, Y)I < lal(x ,  y)  - ai(x, Y)I + la~(x, y) - aj(x, Y)I 

< 2[Arc tan (y / x )  - Oo [min( . . . .  j )  

we can estimate A by 

I A I < I Arc tan (y / x )  - Oo 12m~ (39) 
j = l  

and the order  of vanishing of A is bounded  below by 

n - 2  

order A > 2 ~ (j - 1)m~. (40) 
j = l  

We claim that  the min imum of the right hand side of  (40), subject to the 
condit ions (34) and (36) is 

min 2 ( j - 1 ) m j  = n ( n - 3 )  (41) 
j = l  
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attained when ms . . . . .  rn,_ 2 = n/(n - 2). In fact the right hand side of (40) is 
linear in the m;s  with positive coefficients. Its min imum is attained then in the 
subregion of (34) and (36) with ms . . . . .  m(./2)-1 = m,/2. Thus we need only 
minimize the function 

F - ~  - 1  m . / 2 + 2  ~ ( j - 1 ) m ~  (42) 
j = (n/2) + 1 

subject to the conditions 

m n / 2  .~ m ( n / 2 ) + l  qt_ . . . @ r a n _ 2  ~ K ~  

toni2 >= m(n/2)+ l > �9 �9 �9 > m,_ 2 = > 0 (43) 

for fixed K > 1. N o w  the first condit ion in (43) defines a hyperplane in 
(m,/z, � 9  m.-2)  space, and the second condit ion in (43) defines a simplex within 
this hyperplane. Since F is linear, the min imum is at one of  the vertices v of this 
simplex. The vertices are obtained by setting all the inequality signs in the second 
condit ion in (43) to equality signs, except for one. In this way we obtain 

�9 v = { m . / 2  . . . .  = r a n _  2 = ~:n / (n  - 2)} 
F(v) = xn(n - 3) (44) 

= ml = x (n /2 ) ( l - - (N /Z )  + 1) -1 , ml+l = . . .  = m, -2  = 0}, �9 u ~- {lq'ln/2 ~ . . .  

(n/2)_< l < n - 2 

n l ( l -  1) n 
= - ~ G ( l ) .  (45) 

/,/ 
F(v) K 2 / _ 2 + 1  

n 
The min imum of the function G(I) over the half line 1 - ~ + 1 > 0 is attained 

at /rain 

2 1 + 1 2 < n 2 .  (46) 

Since l is an integer, the min imum of G(1) over integer values greater than 
(n/2) - 1 is at tained at rather l = n - 3 and l = n - 2 where it takes the same 
value 

G(1),=,_2 o~,=,-3 = 2(n - 3). (47) 

Altogether this leads to the value xn(n - 3) for F. Letting K decrease to 1 estab- 
lishes our  claim (41). 

We drop now the assumption that the roots  ~j(x, y) are real. In particular the 
root  ~k(x, y ) = - a k  + ibk at which Kz(k ,  n/2) fails to be integrable may have an 
imaginary par t  which is non-zero away from 0o. Since P' ( x ,  y, z) has real coeffic- 
ients, ~k = a - ibk is a root  as well. Set 

I ak (x, y) - ~ (x, Y) I ~ I a r c t a n  (y/x) - Oo [ mj 

[bdx,  y)[ ~ I Arc tan (y / x )  - 0olU. (48) 
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Again it is convenient to choose the indexing of the roots  so that  k = I, and the 
remaining roots  are respectively (1, and (~, 3 =< j < n - 2 with 

m3 > > > > > m._ 2 > 0 (49) �9 �9 �9 ~ m n / 2  ~ r e [ n / 2 ) +  1 = - �9 �9 = ~ �9 

Returning to the discriminant  A we estimate this time by 

( ) I A l < b ~  H ( l a l - ~ J l  2 + b ~ )  2 ~I  I ~ - ~ j L  e �9 (50) 
j = 3  3 < i < j < n - 2  

We consider several cases separately. 

�9 # > rn,/2. In this case we can bound  bl,  and all ] a l -  (kt with j < n/2 by 
lal - (./zl. It follows that  the order  of vanishing of A at 0o is at least 

n - 2  ~1 f ? ~  1 
order  A >= 2 ~ ( j - -  ] ) m j + ~ k ~ -  j m , / 2  . (51) 

j = (n/2)  + 1 

Since Kz(1, n/2) is not integrable none of the three defining terms on the right 
hand side of  (16), (17) is. We take the first term, together  with the choice 
L c = {~3 . . . . .  ~./2-1 }. Its non-integrabil i ty on the (x, y) sphere means  that  

It/ 

m , / 2 + m , / 2 + l  + . . . + m , - 2  > ~ .  (52) 

Thus we are led to the same linear opt imizat ion problem as in (42) with the 
condit ion (43). As a consequence order  A > n(n - 3). 

�9 m,/2 < # < m~,/2)+1. We bound all lal - ~kl w i t h j  < n/2 by Ibll. This gives as 
a lower bound for the order  of  vanishing of A 

o r d e r A > 2  ~ ( j - 1 ) m  i + ~  - 1  # .  (53) 
j = (n/2) + 1 

The non-integrabil i ty of  the second term in the defining equat ion (17) for 
Kz(1, n/2) with L c = {(3 . . . . .  ~,/2 } gives 

n 
# + m t . / z ) + a  + m ( . / 2 ) + 2  + �9 �9 �9 + r a n - 2  ~ ~ �9 (54) 

The problem of minimizing the right hand side of  (53) subject to the restrictions 
(54) and p > rn~,/2~+ 1 > �9 . .  > rn,_2 > 0 is again the same problem as before, 
with rn,/2 replaced by ~. We again conclude that  the lower bound in n(n - 3). 

�9 m(n]2)+ 1 > ].1 ~ m(n/2)+ 2. We bound all the terms la~ - ~ l  with j < (n/2) + 1 by 
Ib~ 1. The  order  of vanishing of ~J is 

o r d e r A > 2  Y" ( j - 1 ) m j + ~  + 1  # .  (55) 
j = (n/2) + 2 

To obta in  a constraint  when minimizing the right hand side of (55) we take 
the third term in the definition (17) for Kx(1,  n/2). The choice U =  
{ ( 3 ,  �9 " " ,  ( ( n / 2 ) +  1 } gives 

n 
21 z + mc./2) + z + �9 �9 �9 + m . _  2 = ~c ~ ( 5 6 )  
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with K > 1. Together  with the restriction 

]A 7> m(n/2)+ 2 ~ . . . ran_ 2 ~ 0 (57) 

we obtain  again a simplex within an ( n / 2 ) -  2 dimensional  hyperplane.  The 
vertices different from (# = m(n/2 ) + 2 . . . . .  ran-2 = •n(n --  2) -1 ) are given by 

n ( n  ) - 1  n 
p . . . . .  m t = ~  / - - ~ + 1  , mt+l  . . . . .  m , - 2 = O ,  / > ~ + 1  

and the corresponding value for the right hand  side of(55) is the same as in (45) 

t- +l 

so the min imum value over  1 integer is still ~ c n ( n -  3), and thus n ( n -  3) as 
x tends to 1. 

� 9  > # > rap+l, p > (n/2) + 2. The separa t ion of this case f rom the previous one 
is more  for nota t ional  convenience than anything else. We bound  all the 
lal - ~j[ w i t h j  < (n/2) + 2 by [al - ~(,/2)+z[. This gives as lower bound  for the 
order  of vanishing of A 

orderA > 2  ~ ( j - 3 ) m j + 2  ~ ( j - 1 ) m j + ~  - 1  m(,/2~+2 
j=(n/2)+ 3 j = p +  1 

+ (4p - 6 )# .  (58) 

The right hand side is to be minimized subject to the same constraint  (56), 
together  with 

re(n~2) + 2 ~ > m p  ~> 11 => mp+ 1 => => ran-2 = > 0 (59) 

The vertices of  the corresponding simplex are the c o m m o n  vertex (p  = 
re(n~2)+ 2 . . . . .  ran_ 2 = xn(n  - 2 ) - 1 ;  the vertices v+ = {rntn/2)+ 2 . . . . .  
# = ml = ~c(n/2)(l -- (n/2) + 1) -1, mt+l . . . . .  m , - 2  = 0}, l > p, where the 
value of the right hand side of(58)is  x ( n / 2 ) l ( l  - 1 ) ( / -  (n/2) + 1) -1 > ~n(n - 3); 
and finally the vertices v_ = {mtn/2)+ 2 . . . . .  m r =  ~ : ( n / 2 ) ( l - ( n / 2 ) - 1 )  -1,  
mz+l . . . . .  # . . . .  = m , - 2  = 0}, (n/2) + 2 < l < p, where the value of (58) is 
now ~r - 3 ) ( / -  2)(I - (n/2) - 1)- 1. Shifting variables l ~ l + 2, we recog- 
nize the same function (45) as before, with min imum over integer values equal to 
n(n - 3). 

The  p roof  that  A has a zero of order  strictly greater  than its degree 
(n - 2)(n - 3) and hence must  vanish identically is complete  for the case of even n. 
This establishes (a) of L e m m a  2. 

Next  we turn to (b), so n is odd. We have already discussed in detail the case 
n = 3 in the Introduct ion.  Thus  we may  assume that  n ~ 5. The  a rgument  here is 
exactly the same one as for the case of even n. The  only difference is a harmless shift 
of order  (i/2n) in the lower bounds  obtained before for the order  of vanishing of the 
discriminant  A, due to the fact that  we cannot  remove  a cluster of n/2 critical points  
in the me thod  of s ta t ionary phase, but instead have to take the geometr ic  mean of 
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the bounds  obtained by removing clusters of (n - 1)/2 and (n + 1)/2 critical points. 
We shall consequently be brief. Again we begin by the case when all roots (j = aj 
are real. If [Kz(k, (n - 1)/2)K~(k, (n + 1)/2] I/2 is non-integrable for some k, we may 
assume k = 1 and order the aj in order of increasing hal - ajl, 2 < j < n - 2. In the 
definition of K~(1, (n - 1)/2) and K~(1, (n + 1)/2), we remove respectively the clus- 
ters L c = { a  2 . . . . .  a(n-1)/2-1 } and U = { a  2 . . . . .  atn_l)/2 }. The non-integrability 
implies 

[al -- aj[ l-I lal -- aj] > clArctan(y/x) - 0o1-1 
j->( 1)/2 j > ( n + l ) / 2  

(60) 

or, equivalently, with mj defined as in (33) 

n + l  
2n m ( n - 1 ) / 2  "q'- m ( n + l ) / 2  + �9 �9 �9 -t" m n -  2 = K - -  

n 2 - -  1 
(61) 

2n 

for ~: > 1. The order of vanishing of  the discriminant A is still bounded  from below 
by (40). Bounding all mj fo r j  < m(,_ 1)/2 by m~,_ 1)/2, we reduce the problem to that 
of minimizing 

F ~ ==- 2 ~ (j -- 1)mj + me.-1)[2 (62) 
j = ( n +  1)/2 

subjected to the constraints (61) and 

m ( n _ l ) / 2  >= r e (n+  1)/2 > = . . .  --> m n -  2 --> 0 . (63) 

Again it suffices to evaluate the values of F ~ at the vertices of the simplex 
(61)-(63). At the vertex 

m~-1)/2 . . . . .  m. -2  = ~(n + 1)(n - 1) -1 

we obtain the value 

n + l  
F ~ = ~c (n -- 2)(n -- 3).  (64) 

n - - 1  

The value at the other vertices 

n 2 - 1 

n - 1  
m/+l . . . . .  ran-2 = O, - - < - l < - n - - 2  

2 

is 

n 2 - -  1 
F~ = X 

\ 
1 (1 -  1) ~ n 2 -  1 
n - -  i -  1 ) = - ~ c ~  Goad(1)" 

l--i+ 
(65) 
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The m i n i m u m  of G ~ as  a funct ion of I is at  train 

- -  - - < / m i ~ =  - -  1 - -  + - -  1 - -  - - 2 - -  
n 

1 
< n - - 2 - - -  / , / '  

(66) 

This t ime the min imum value over integers can be a t ta ined  at  ei ther l = n - 2, 
l - n - 3, or  l = n - 4. The value at  I -- n - 2 is given by (64). At the other  vertices 
it is given by  

G o d d [ l = n _ 3  2n(n  - 3)(n - 4) 2n(n  - 5)(n - 4) (67) 
= n z - 4 n +  1 ' G~ n z - 6 n +  1 

Each of these values is strictly greater  than  2n(n  - 4)(n - 1)-1. Subst i tu t ing  in 
(65) and let t ing K tend to 1 gives the following strict lower bounds  for F ~ at these 
vertices 

f ~ > (n + 1)(n -- 4) > (n -- 2)(n -- 3) . (68) 

Al together  we always have the order  of  vanishing of A strictly greater  than  
(n --  2)(n - 3), which is the desired conclusion.  

We turn  to the general  case where the roo ts  ( j  = aj + ibj are a l lowed to be 
complex,  and  a d o p t  the same no ta t ion  and order ing as in (48). The dist inct  cases to 
be considered are now: 

�9 p > m~,-1~/2. As in the case o f n  even, this case is identical  to the case of  all roots  
being real  t reated previously.  

�9 m~,-1)/2 > # > rn~,+l)/2 We b o u n d  the order  of  vanishing of A by 

n - - 2  

order  A > 2 ~ ( j  - 1)mj + �88 2 - 4n + 3 ) # .  (69) 
j=(n+ l)/2 

The cons t ra in t  is ob ta ined  by choosing the same cluster L c = {(3 . . . . .  (~,-1)/2 } 
for bo th  Kx(1, (n - 1)/2) and  Ka(1, (n + 1)/2), but  use the first expression on the 
r ight  hand  side of (17) for Kx(1, (n + 1)/2) and  the second expression for 
Ka(1, (n - 1)/2). The non- in tegrabi l i ty  of  the result ing expression becomes 

n + l  n 2 - 1  
2n P + m~,+ l)/z + m(n+ 3)/2 -k- . . . q'- m , -  z = tr 2n (70) 

for some x > 1. In  pract ice we may  set x = l. We minimize the right hand  side of 
(69) subject  to (70) and the order ing  

At  the vertex 

> r a n -  2 > 0  /~ > m~.+ 1)/2 => m ~ n + 5 ) / 2  ~ - �9 �9 = = (71) 

( p  = m~,+x)/2 . . . . .  m , - 2  = (n + 1)(n - 1) -1)  (72) 

the value is given by (64). At  the vertex (#  = n - 1, m~,+1)/2 . . . . .  mn_ 2 = 0 ) ,  

the value is 

F oda = �88 --  I) 2 (n -- 3) (73) 
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and at the vertices (p = ruth+l)~ 2 . . . . .  mt = ( n  2 - -  1)(2n)-1(I - (n/2) + 1 + 
1/(2n))-1) the value of F ~ is given by the same expression as in (65). Since the 
value (n - 1)2(n - 3)/4 is strictly greater than (n - 2)(n - 3) for n > 5, this 
establishes the identical vanishing of  A in this case. 
mt,+l)/Z > p > m(n+3)/2. Here we bound  the order of vanishing of A by 

n - - 2  

order A > 2 ~ (j - 1)mj + �88 2 -- 1)p.  (74) 
j = (n + 3 ) / 2  

The non-integrability condit ion we are going to use is the one resulting from 
using the third expression in (17) for both Kx(1, (n - 1)/2) and Kz(1, (n + 1)/2), 
with the respective choices {(3 . . . . .  (~,+1)/2 and {(3 . . . .  , (~,+3~/2} for U.  In 
terms of/~ and the mj's it can be written as 

n + l  n 2 - 1  
2# + - ~ n  m t n +  3)/2 q-  m t n +  5)/2 + " " " -q- m n -  2 = /r 2 ~  (75) 

for some ~: which we may again take to be 1. We need only consider vertices 
different from (72). At the vertex (p = (n z - 1)/(4n), re(n+3)~ 2 . . . . .  r a n _  2 = O) 

the value of(74) is (n 2 - 1)2/(16n) which is strictly greater than (n - 2)(n - 3) for 
n > 5. At the remaining vertices v = (p = m~,+3~/z . . . . .  m~ = (n z - 1)" 
(2n)-1(1 _ (n/2) + 1 + 1/(2n))-1), the value of the right hand  side of  (74) is given 
by (65) as before, and hence is strictly greater than (n - 2)(n - 3). 

�9 rap> # > rap+l, p > (n + 3)/2. We bound the order of  vanishing of the dis- 
criminant from below by 

n - 2  p 

orderA > 2  ~ ( j -  1 ) m j + 2  ~ ( j - a ) m j  
j = p + l  j = ( n +  5)/2 

We use the same constraint  as in (75) together with 

m~.+3)/2 > �9 �9 => m p >  p => m.+l  => . . . .  => m. -2  => 0 (77) 

Apar t  from the usual vertex (72), we have the vertices (m~.+3~/2 . . . . .  ~ = 
m t =  (n 2 - 1)(2n)-1(l  - (n/2) + 1 + (1/(2n)) -1)  where the value of  the right 
hand side of (76) is given by (65), and the vertices (m~.§ . . . . .  mt = 
( / , / 2  _ _  1) (2n) -a ( l_  (n/2) - 1 + (l/(2n)) -1, ml+l . . . . .  p ----- mn_ 2 = 0), where 
the value is now (n 2 - 1)(2n)-1 [(1 - 2)(1 - 3)(l - (n/2) - 1 + (1/(2n))]-1. Shift- 
ing I to l + 2 in this last expression, we obtain in all cases a lower bound  of the 
form (65), which has been shown to be strictly greater than (n - 2)(n - 3). 

The proof  of the vanishing of A in the case of odd n, and hence of  Lemma 2 is 
complete. Q E D  

Behav iour  o f  Ka (x ,  y )  near x = 0 or y = 0 

We investigate now the order of singularity of K~(x ,  y )  for x or y near 0. Evidently 
K~(x ,  y) can only be singular say near y = 0, if at y = 0 some root  in z of  the 
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equat ion  S'~(x, z) - S'z(y, z) = 0 has multiplicity k > 2. Say ((x, 0) = ax for some a. 
Thus  we have 

S'~(x, z) - S~(0, z) = 7t(z, x)(z - ax) k 

with 7J(z, x) a homogeneous  polynomial  of degree n - 1 - k with 7~(ax, x) 4= O. If  
a = 0, it follows that  

S ( x ' z ) = z R + I [  1 ~ 1 ~(Z, X) -- z-(k+1) 5 sk + I (I)'(S, x ) d s  "}- C x  n -.[- S (O,  z)  
o 

- zk+lCb(z, x) + Cx" + S(O, z).  (78) 

Since the expression ~(z, x) vanishes for x = 0, the only terms in (78) of  the form 
x" or z" are the last two terms, which must  then vanish since we chose S(x, y) to be 
wi thout  such terms in the Main  Theorem.  Next  the hypotheses  of  the Main  
Theorem imply that  k must  be < n/2 for n even and < (n - 1)/2 for n odd. This 
means  that  the multiplicities of  the roots (j(x, 0) are bounded  respectively by these 
bounds,  and can all be removed  in the same cluster when we est imate Kz(x, y) 
using Theorem 3. In part icular  Ka(x, y) has no singularity on the unit sphere near  
y = 0. Thus we may  assume that  a 4= 0, and by a simple scaling, that  a = 1. It is 
convenient  to write S'~(x, z) - S'=(O, z) as 

S ' ( x ,  z)  - S'(0, z) = x z 7"(z ,  x ) ( z  - x )  k 

for some integer l g 0  and homogeneous  polynomial  7J(z,x) of  degree 
n - 1 - k - I satisfying 

7~(z, z) 4= 0, ~(z,  0) # 0 .  (79) 

Integrat ing between z and x gives now 

2 
S ( x ,  z )  = x ~ [. ~ ( s ,  x ) ( s  - t ) k d s  + C x "  + D z "  . 

x 

The equat ion  for critical points  becomes 

0 = S~(x ,  z )  - S ~ ( y ,  z )  

= x " t ' ( z ,  x ) ( z  - x )  k - y ~ ( z ,  y)(z - y)~. (80) 

I t  is convenient  to use projective coordinates  rather  than  coordinates  on the sphere, 
so we assume that  x = 1 and investigate the behaviour  of the solutions (~(1, y) of  

k 1. For  each (80) as y tends to 0. Let  ej, j = 1 . . . . .  k be the k th roots  of unity, ej = 
fixed ej we show that  there is a solution to (80) of  the form 

(j = 1 + ejy'/k( 7j(l' 0)']l/k[1 + Ej(y)]  (81) 
\ ~ ( 1 ,  1) /  

where Ej(y) is a power  series in yl/k without  constant  term. Dropp ing  the indexj  for 
convenience and substi tuting (81) in (80) gives 

( 1 +  e't/kfTt(l'Y \ ~ ( 1 ,  0)'~l/k(ll)] + E), 1)~u(1, 0)(1 + E) k 
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-- hr' (1, 1) ~ ( 1  + ey'VkfTJ(l'~,l~)O)'~l/k(1 + E) ,y )  

(1 rk/TS(l' O)\l/k - e Y J  ~ , I D )  (I + E ) - Y )  k=O"  J 

\ 

If  we set u = yX/k this becomes an analytic equation. At u = 0, E = 0 is the solution. 
Also the derivative with respect to E at u = 0 and E = 0 is non-vanishing. The 
implicit function theorem establishes our  claim. Returning to the critical points 
(i(x, y), it follows that 

l(i(x, y) - ~j(x, y)[ ~ [yl vk . (82) 

We assume first that  n is even. Evidently we may assume that the multiplicity 
k is > n/2, so that l < (n/2) - 2. N o w  removing a cluster of  (n/2) - 1 roots when 
applying Theorem 3 to estimate Ka(x, y) produces the following bound  for y near 0 

IK~fx,  y)l < I ~ [ - z / " l y l - ' ( I x l  + lyr) -1+" 

= -  k -  + 1 (83) 
n 2 " 

It is now routine to maximize the exponent a over the range I < (n/2) - 2. We find 
(1/2) - (4/n) which is strictly less than 1/2 for n > 3. The case n odd can be treated 
in a similar way, this time by taking the geometric average of extimates obtained by 
removing clusters of (n - 1)/2 and (n + 1)/2 roots, and evaluating the resulting 
maximum degree of  singularity. This degree of singularity is strictly less than 1/2 
for n _>_ 5. Thus we have shown that under the hypotheses of the Main Theorem 
Kz(x, y) satisfies the third condit ion of Theorem 4. 

Integrability of  K~(x, y) near x = y 

We shall require the following lemmas: 

Lemma 4 Let ~j(x,y), 1 < j < n - 2 ,  be the roots of the polynomial in z, 
S'(x, z) - S'(y, z), chosen to be continuous near x = y. Then (j(x, x), 1 < j < n - 2 
are the roots of the polynomial S'--(x, z). 

Proof o f  Lemma 4 We can write 

n - 2  

S;(x,  z) - S ' ( y ,  z) = (x - y) l-[ (z - ~j(x, y) )  
j = l  

Since a~/3x is at worst of order Jx - y [ -  1+~ for some positive 6, we may  differen- 
tiate (78) and take the limit as y tends to x. The result is 

n - 2  

S L ( x ,  z) = I ]  (z - ~j(x, x))  
j = l  

which establishes the lemma. Q E D  

Fix a zero ffj(x, x) of Sj,':(x, z) and let k be its multiplicity. By homogenei ty  
ffj(x, x) can be written as ax for some a, and we have 

S t t  I ~ - -  x~tx, z) (z ax)kc~(X, Z) (84) 
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for some homogeneous  polynomial  th(x, z) of degree n - 2 - k with (o(x, ax)  #- O. 
The cases a = 0 and a # 0 behave differently, so we consider them separately, 
beginning with a 4 0. Without  loss of  generality we may  then set a = 1. 

First we note that S'~(x, z) can be obtained by integrating (84) with respect to x 
x 

S ' ( x ,  z) = ~ (z - t)k(a(t, z )d t  + S'~(z, z) 
z 

(Z - -  x)k + I~I(X, Z) "~ S z ( z  , z) . ( 8 5 )  

Here we have chosen z as the limit of integration. Other  choices lead to additional 
terms in (85) which depend on z only, and thus are irrelevant since they cancel when 
we consider the difference S'~(x, z) - S ' ( y ,  z). A key property of  ~,(x, z) is 

(k + 1)r x) = -~b(x, x) # 0 .  (86) 

Our  next task is to determine which exponents can occur in the Puiseux series 
for the solutions ~ j ( x , y ) ,  j = 1 . . . . .  k, which tend to the c o m m o n  value 
ffi(x, x) = x as y tends to x. Set 

~i(x,  y )  - y + c i (x  - y);~' + . . .  (87) 

with cj # 0. Our  first claim is that  the exponents 2 i cannot  be > 1. The explicit form 
of the equat ion for z = ~i(x, y) is 

(Z - -  x)k+ l~ll(X, Z) --  (Z - -  y)k+ l O ( y  ' z) = O . (88) 

For  2 i > 1 the leading expression in the first term in (88) is (y  - x) k + 1 0 ( y ,  y), while 
the second term is of order strictly greater than k + 1, which is not possible. Next 
we claim that  the exponents 2j cannot  be < 1 either. In fact the eq. (88) can be 
rewritten as 

[(z - x) k+ l - (z - y)t+ l]~k(x ,  z) + (z - y)k+ l(~O(X, Z) -- O(y, Z)) = 0 .  (89) 

When 2 i < 1, we have z - x ~ c i(x - y)a', and hence the term between brackets in 
(89) is of order  

k 
(z -- x)  k+l --  (z -- y)k+l  = (y  _ X) ~ (Z -- X)i(Z -- y ) k - i  

i = 0  

(k + 1)[ci(x - y)Zs]k(y _ X ) .  

The remaining term in (89) is evidently of  order 2i(k + 1) + 1, contradicting our  
assumption that c i not  vanish. Altogether we can conclude that the exponents 2 i, 
j = 1 . . . . .  k are all equal to 1. Set then 2 i = 1 in (87). The coefficients c i can now be 
determined by substituting in (88). We obtain 

( c i  - 1) k + l  = c~ + 1  

and hence the c/s  are given by 

c i = ( 1 - e i )  -a, j = l  . . . .  k 

where (~i) k+x = 1 are the k roots of unity which are different from 1. As in the 
previous section we can easily show that each 5 i leads to a solution of the eq. (88). 
Thus we have proved the first par t  of the following key lemma: 

Lemma 5 L e t  the equa t ion  

(x  -- y ) -  1 (S'~(x, z) - Sz (y ,  z)) = 0 
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admit k roots (j(x, y) which converge to the same root ( l(x,  x) . . . . .  (k(X, X) as 
y tends to x. I f  this common value is different from O, then we have 

[ ( j ( x , y ) -  (k(X, y)] ~ hX - -y] ,  f o r j  + k (90) 

I f  the common root (j(x, x) is O, then the equation admits exactly k roots (j(x, y) which 
vanish identically as functions of(x, y). 

The second s ta tement  in L e m m a  5 is easy to check, since S~z(x, z) and hence 
S'(x, z), and hence the equat ion in L e m m a  5 contain the factor z k. Q E D  

We return now to the kernel Kz(x, y), localized to a conic ne ighborhood of the 
diagonal  x = y. 

L e m m a  6 Assume the hypotheses of the Main Theorem. Then 
(a) In a small enough neighborhood of the diagonal, the kernel K~(x, y) satisfies 

either the hypotheses of Theorem 4, or else the bounds 

]K~(x,y)] < Cmin((]2]  ]x _y])- l / i , -1) ,  ]21-~.-2/,]x _ y ] - l - ~ , )  (91) 

for some strictly positive number v; 
(b) Any operator whose kernel satisfies the bounds (91) is bounded from LP(R) to 

LP(R), 1 <= p < 0% with operator norm O(12]-2/"). 

Proof of  Lemma 6. Say n is even, the odd case being similar. Assume that  there is 
a root  for Sj~(x, z) of multiplicity k. If k < (n/2) - 1, we may  remove clusters of 
(n/2) - 1 roots  in (16), and the remaining laj - akl are all bounded  away from 0 on 
the unit (x, y) sphere. Consequent ly  we obtain a singularity of order  I x -  yl-Z/. 
only, which is integrable. Otherwise assume k > (n/2). We note that  due to the 
hypotheses  of the Main  Theorem,  this multiple root  cannot  be 0. Thus  we may  
apply L e m m a  5 to deduce the bound (90) for the distances separat ing the roots. 
Now if we removed in (16) clusters of (n/2) - 1 roots, we would obtain the bound  
]2l-2/,]x _ y]-i  for Kz(x, y), which is just on the edge of integrability. As long as 
(n/2) - 2 is at least 1, the desired bound  follows rather  from the removal  of say, 
( n / 2 ) - 2  roots, in which case the exponent  v of  (91) is given by v = 
4(n(n - 2))-1 > 0. Thus we have established (91) when n > 5. The case n = 4 is 
dealt with by an explicit calculation. The only S~(x, z) which admits  non vanishing 
double roots in this case is given up to a multiplicative constant  by (z - ex) z for 
some e 4= 0. Integrat ing gives the following explicit formula  

[ S ' ~ ( x , z ) - S ' ~ ( y , z ) ] = l x - y ]  z - ~ ( x + y )  "~- T~ (X -- y)2 

O~ 2 

> - - I x -  y]3 (92) 
= 12 

Applying (3) to the integral (28) gives in this case 

IKa(x, Y)I --< C(IRI Ix - yl3) -1 

which is of the form (91) with v = 1/2. Par t  (a) is proved. As for part  (b) it is an easy 
consequence of the two bounds  in (91) 

S IKa(x,y)ldx + ~ [Kz(x,y)[dy < C[A1-2/" 
[ x - y l  > [-~l- 1/. I x - y l  > [~,l- 1/. 

L e m m a  6 is completely proved. Q E D  
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The following lemma which is the main goal of this section is now immediate: 

Lemma 7 Under the hypotheses of  the Main Theorem, the kernel Ka(x, y) restricted 
to a small conic neighborhood of  the diagonal x = y gives rise to a bounded operator 
on LZ(R), with norm O([Al-2/"). 

Proof  o f  the Main Theorem 

The two previous sections show that we need study Kz(x,  y) only away from the 
diagonal and from x = 0 and y = 0. If Ieo[+  [eli :# 0, then Lemmas 2 and 3 show 
that the hypotheses of Theorem 4 are satisfied for the kernel Ka(x, y) of TT*, and 
the Main Theorem is proved in this case. Assume now that eo -- ~1 = 0, so that 
among the roots ~j(x, y) there are two roots which are identically 0. We again 
consider the bounds provided by Theorem 3. First we consider a root say (1 (x, y) 
which tends to a non-zero multiple root. Ordering the roots by the decreasing 
order of vanishing of [e, - ~[, we have evidently ( , - 3  - ~,-2 - 0. Suppose that 
the bounds provided by Theorem 3 are non-integrable functions on the (x, y) circle. 
Then the proof of Lemma 2 shows that with the same notation as (33)(40) 

n - 2  n - 4  

( n - - 2 ) ( n - - 3 ) < 2  ~ ( j - - 1 ) m j = 2  Z ( J -  1)mj. 
j = l  j = l  

This last expression is a lower bound for the order of vanishing of 

I A * I -  1-I 1~,- ~Jl 2 
l < i < j < n - 4  

which can be viewed as the discriminant of the polynomial 

z - 2 ( x  _ y ) - i  (S'~(x, z) - S'~(y, z ) ) .  (93) 

As such it has degree (n - 4)(n - 5), and hence must vanish identically. This means 
that the polynomial itself must have two identical roots, which in turn must be 
identically 0, in view of Lemma 3. In particular ~z = ~3 = 0. Obviously we can 
repeat the argument after factoring out z 4 to deduce that the next c~ coefficients 
must vanish as well, until the hypotheses of the Main Theorem are violated. It 
remains to consider roots which tend to 0 as a multiple root. These fall into two 
types, the identically vanishing roots, and the roots which tend to 0 but are not 
identically 0. For the remainder of this proof we shall denote the former by 
~~ y) = 0, 1 < j < p for some p, and the latter by (*(x, y), 1 < j < n - 2 - p. It 
follows that the (* are the roots of the following polynomial 

z -P(x  - y ) - l ( S ' ( x ,  z) - S;(y, z)) (94) 

with non-identically zero constant coefficient. Furthermore they can only arise in 
a neighborhood of x + y = 0 and when the non-zero coefficient of (94) is of the 
form (x k - yk)(x -- y)-~ for some even k. Set 

I~*(x, y)[ "~ [x + y["3. 

The product  of the roots ~*(x,y)  must be proportional to ](x k - y ~ ) "  
(x - y)-  ~ ] ~ Ix + y]. It follows that 

n - 2 - - p  

Z m* = 1. (95) 
j = l  
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Consider  now the case of n even, and the bounds provided by Theorem 3 near 
the identically zero root.  The hypotheses of the Main Theorem for n even imply 
that  there are at most  p < (n/2) - 1 of  them. We can apply  L e m m a  2 to remove the 
whole (n/2) - 1 cluster of zero roots. The contr ibut ions of the possibly remaining 
roots ~* to Ka(k,  n/2) are bounded by 

Ix + yl -<e/"lEm; < Ix + yl -el" 

in view of (95). Thus we obtain an integrable kernel and Theorem 4 applies. Next  
consider the bounds near  a non-identically vanishing root,  say ~*(x,y). If the 
bounds  provided by Theorem 3 are not integrable, then the p roof  of L e m m a  2 
shows that  the discriminant A must  vanish of order  strictly greater than 
(n - 2)(n - 3). Actually we have shown more,  since the p roof  does not rely on any 
cancellation between the remaining roots, i.e., ( o _  (o is merely bounded  by 
]~~ - (~t + ]~o _ ~*l <-_ c I x  + yl m*~. We may  write 

A = 1-[ [(* - (*l 2 H V[ ](* - (o[z 1-[ 1~-o _ ;Ol2 " (96) 
1<i<j<=n-2-p  l < i < n - 2 - p  l < j < p  l < i < j < p  

The first factor in (96) is the discriminant A * of the polynomial  (94), the second 
reduces to  Ul<_i<n_Z_p l~]  zp, while the order of vanishing of the third term is 
counted as 2ml p(p  - 1) in the p roof  of L e m m a  2. This together with (95) and the 
fact that  ml < 1 imply that  

o rderA* > ( n - -  2 ) ( n -  3 ) -  ( 2 p ) -  2p(p  - 1) = (n - 1 ) ( n -  3 ) -  2p 2 

> ( n - -  2 - p)(n - 3 - p) (97) 

for p < (n/2) -- 1 and n > 4. This means  that  A* vanishes identically. L e m m a  3 
applied to the polynomial  (94) implies that  its first two coefficients must  vanish, and 
in part icular  that  the original po lynomia l  admits more  than p identically zero 
roots, contradict ing our  assumption.  Finally the case of  n odd is treated in the same 
way. The  difference is that  we can allow now only ((n - 1)/2) - 1 identically zero 
roots, so we can remove  them all in a cluster of size ((n - 1)/2) - 1. Note  that  the 
bound  Kx(k ,  (n + 1)/2) is of no help if there are at least (n - 1)/2 roots, since the 
factor Ka(k,  (n - 1)/2) in (16) is a l ready infinite. The proof  of the Main Theorem is 
complete.  Q E D  

5 Some open questions 

We would like to ment ion  a few questions which are the most  direct outgrowths  
of the present  work. 
�9 The purpose  of the Main  Theorem was to establish the sharp bound  II TI] < 

CI2]-1 / .  in the model  case of a Lagrang ian  having cusps (or " tors ion")  on both 
sides. We expect to be able to relax the hypotheses. Fo r  example  when n is even, 
and the phase function is a homogeneous  polynomial  of  degree n of  the form 

S(x ,  y) = x"/Zy "/2 + 0(x("/2)+1), or S(x ,  y) = xn/2y n/2 + O ( y  (n/2}+1) (98) 

the usual van der Corpu t  L e m m a  gives at once the following bound for the 
kernel Kx(x ,  y)  of T T *  

[Kz(x ,  y)[ _< C([2[ [x - y l ) -a / " ( l x l  + [y[) - i  +(2/.) (99) 
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It follows that the bound  11 Tit ~ C[2~1 -~/" still holds in this case. A plausible 
conjecture is that  this bound  holds if and only if there is at least one non-zero 
coefficient cq with 1 < i < n/2, and at least one non-zero coefficient c~j with 
n/2 < j < n - 1. We note that when n is even, this condit ion allows ~i and ~j to 
be both  equal to n/2, which is the case we just discussed. Our  present approach  
relies only on the size of IK~(x, Y)I. What  is needed is some exploitation of its 
phase. An indirect such method is provided by dyadic partitions away from the 
zeroes of the Hessian, which can be used for folds in degree 3 [7]. 

�9 A generalization to non-polynomial  smooth  phase functions would be valuable; 
�9 The present operators are intimately related to Radon  transforms along curves 

with one-sided torsion in dimension n. It would be interesting to obtain L 2 as 
well as L p - L q bounds  for these; 

�9 One of  the most  challenging extensions is to oscillatory integral operators  with 
polynomial  phases in higher dimensions. Perhaps a generalization of  the refined 
method of stat ionary phase of  Section 2 is a good starting point. 
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