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Let V be a free module over Z/4 of rank 2 n and let ( , )  be a non-singular 
skew form on V. Let F" denote the reduction of V modulo 2 and let Q be 
a hyperbolic (i.e. Arf  invariant zero) quadratic form on P with ( , )  as associated 
bilinear form. We let A(V) denote the set of oriented Lagrangians (i.e. free 
totally-isotropic submodules of rank n) in V and Ao(V)cA(V) the subset of 
those L in A(V) whose reductions modulo 2 are totally isotropic for Q. We 
call such an L an oriented isotropic Lagrangian. We will study a certain function 
m on Ao(V)x Ao(V) with values in the group of fourth roots of unity. The 
function m is skew-symmetric (m(M, L)= re(L, M)-t) and is a 1-cocycle. By this 
we mean that for all triples L, M, N in Ao(V) we have 

re(L, M) m(M, N)=m(L, N). 

We will give an explicit formula for m and use the resulting formula to give 
a remarkably simple formula for 2, the square of the multiplier of the symplectic 
theta function. Our construction of rn and 2 is elementary and is independent 
of the theory of theta functions and the considerations of Sect. 1. We verify 
directly that our formula for 2 defines a character. We then use the considerations 
of Sect. 1 to relate the character we have obtained to the square of the theta 
multiplier. It is interesting to note that our function m on Ao(V)xAo(V) is 
the modular analogue of the Maslov index m of [4], p. 126. In fact P. Perrin, 
[7] p. 112, has introduced an analogous function m defined on pairs of Lagran- 
gians over the 2-adic field. Our theory is the corresponding 2-adic integral theory 
(in the description above one can replace Z/4 by the 2-adic integers Z2 and 
obtain identical results). The integral theory is more delicate since it is necessary 
to define m on pairs whose intersection is not free. The solution of this problem 
is one of the main technical achievements of this paper (see w 2). We note also 
that the function of freely intersecting (but not necessarily isotropic) Lagrangian 
pairs over Z2 induced by Perrin's function m is not a cocycle. For  example 
assume that L,M and N are mutually transverse. Then Perrin finds that the 
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quantity z(L, M, N)=m(L, M) m(M, N) m(N, L) is the square of the Weil index 
of the quadratic form B on L given by B(f)=(~,  p(f)) where /~eHom(L, N) 
satisfies M = graph #. However if L, M and N are isotropic then B is even and 
nondegenerate and consequently the square of its Weil index is 1 whence z = 1. 
We now describe Weil's theory of theta functions and then give our formula 
for 2. 

Let F the theta group (the congruence subgroup of Sp2,(Z) whose reduction 
modulo 2 preserves a certain Q as above). Then the non-trivial 2-fold central 
extension Mp2,(R) of Sp2,(R) induces a non-trivial 2-fold extension r of F. 
In his formidable paper [14], Weil showed that the structure of the transforma- 
tion law of the theta function is best understood in terms of a unitary representa- 
tion o9 of Mp2,(R) on L2(R ") now called the oscillator or Weil representation. 
The space of smooth vectors for o9 is the Schwartz space re(R"). The Gaussian 
~boeoW(R" ) defined by: 

(~0 (X 1 . . . . .  X n )  = e - ~t(x2 + "'" + x2)  

is an eigenvector for oglMU(u), the maximal compact subgroup of Mp2.(R) 
which covers the maximal compact subgroup U (n) of Sp2.(R). The theta distribu- 
tion O =  ~ 6(x-~) is an eigenvector for o91/~ acting by duality on 5e'(R"), 

~ez-  

the space of tempered distributions. 
We can accordingly define characters ct and x by: 

og(k) ~bo =~(k)- 1 ~bo for keMU(n) 

o9(y)O=x(y)- lO for 7e/~. 

The function O(g)=O(o9(g)(90) on Mp2.(R ) then satisfies the transformation 
law: 

0(7 g k) = ~c (y) ~ (k)-'  0(g). 

Mp2.(R ) operates on ~.,  the Siegel space of genus n, via the quotient map 
to Sp2.(R) followed by the well-known action of Sp2.(R) on ~..  It follows 
from the Iwasawa decomposition that there is a unique smooth function j on 
Mp2.(R) x ~ .  which is holomorphic in z such that: 

(i) J(gl g2, z)=J(gl, g2 z) j(g2, z) 
(ii) j(k, i 1.)= ~(k). 

(iii) j(g, z)2=det(cz +d)if g lies over(  a ~)eSp2.(R). 
g 

Let g, eMp2.(R) be an element transforming i l . e ~ .  to ze~. .  We define O(z) 
on .~. by: 

O(z) =j(g,, i 1,) O(g,). 
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Then 0(z) satisfies the transformation law: 

0(Tz)= x(7)j(7, ~) 0(~) for 7e r .  

One of the main points of Weil [14] is that 0(z) is the symplectic theta function: 

0(z)= ~ e i " '~ .  

The character ~c of r is called the theta multiplier. 
To describe the transformation law in more classical terms we observe that 

wemay~176176176 
is in F and f(~/, z) is a holomorphic determination of (det(c ~ + d)) 1/2. We define 
the group law so that the function j((q, f(q, z)), z)=f(r/ ,  z) is a cocycle on F1, 
see Lion-Vergne [7], p. 80. A holomorphic determination of (det(cz + d)) a/2 for 

in rise to a set t eore ic section 

the transformation law above by s we obtain: 

0 (r/z) = �9 (q) (det (c z + d)) 1/2 0 (z) 

where r/= !/a h\_,] is in F and ~ = ~: o s is a function f rom/"  to the group of eighth 
\ c a] 

roots of unity. From this point of view the algebraic structure of the transforma- 
tion law is no longer apparent. 

The starting point of our work was a letter from Roger Howe to the second 
author describing a remarkable property of the central extension /2 2 ~ P " 4  F. 
We will use the notation #, henceforth to denote the subgroup of the circle 
S 1 consisting of the n-th roots of unity. Howe showed that the above extension 
was obtained by taking the square root of a character. More precisely there 
exists a pull-back diagram: 

id 
]'/2 ' 1"/2 

P >S 1 

I square 

F ,S 1 

Central extensions of this type are particularly easy to understand - they are 
the analogues of abelian coverings in the theory of covering spaces. 

Howe pointed out that the existence of the previous diagram followed from 
the construction of the "lattice model" for co. The details of his argument are 
worked out in Millson [8], p. 18. We prove in Sect. 1 of this paper that the 
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abelianization of F is Z/4, consequently we obtain a refinement of the previous 
diagram as follows 

id 
#2 ~P2 

p 

F ~,tt 4 

We remark that 2 is the multiplier for the automorphic form 02;  namely: 

0 (7 z)z = 2 (Y) det (c z + d) 0 (z) 2 for ?~F with y=(~ bd). 

We now describe our formula for 2. In w we construct a sign function 
a on Ao(V). By this we mean a function: 

such that 

(i) 
(ii) 

a: Ao(V) x Ao(V)-~ ~2 

a ( - L ,  M)= a(L, - M ) =  --G(L, M) 

a(yL, yM)=a(L,  M) for y~F. 

Here - L  is the oriented isotropic Lagrangian which is the same subspace of 
V as L but has the opposite orientation and we have replaced F by its image 
in SpE,(Z/4). 

Now define a function: 

r: Ao(V) ~ Z 
by 

r(L, M) = n -  dim (Lc~ M). 

Here the superscript bar denotes reduction modulo 2. Finally we define: 

by 
m: Ao(V) x Ao(V) ~ #4 

m(L, M) = i -r(L'M) a(L, M). 

We obtain: 

Theorem. m is a 1-cocycle. 

Corollary. For L f ixed the function 2(7)--m(L, y L) is a character on F. 
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We check that 2 is the square of the theta multiplier by using results of Sect. 1. 
We then calculate 2 to obtain an explicit formula which we now describe. Recall 
the definition of the Dirichlet character e: Z ~ Pz given for rn~Z by: 

i if miseven 
e(rn)= if r n -  1 mod4  

- if m = - 1 m o d  4.  

Now let y = [  a / h\v]. Our formula for 2(7)consists of a finite set of algebraic 
\ C a] 

formulas parametrized by the rank of 6, the reduction of c modulo 2. We will 
use r to denote this rank. 

Suppose rows Jl ,  J2 . . . . .  Jr of ~ are linearly independent with j~ <Jz < . . .  <Jr. 
Let i~, i z, . . . ,  i , -r  be the complement of J~,J2 . . . .  ,Jr in 1, 2 . . . . .  n. Let A be 
the square matrix obtained from c by replacing rows ix, i2, ..., i , - r  in c with 
the corresponding rows from a. The determinant of A is odd by Lemma 4.1. 
Our main formula is then 

Here we use the symbol ]A] to denote the determinant of the matrix A. 
We illustrate our formula by describing it in the genus 1, genus 2 and genus 3 

cases. 

G e n u s  1 

1. 6 = 0  

2 . 6 = i  
2(7)=e(a) 

;-(7) = i -  ~ ~(c)  

G e n u s  2 

~= ( a t 1  a~2 b t t  b 1 2 \  

a21 a22 bE1 b22~ 

ct~ c~2 d~a d t z ]  

C21 C22 d21 d22 /  

I. rank 6 = 0  
2(7) = e(all  a 2 z -  azl a12) 

2. rank 6= 1 

(i) If 6z 1 = 0 and g2 z = 0 then: 

2(7 ) = i -  1 /~(C 11 a22 --C12 a21) 
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(ii) If611 = 0  and 612=0 then 

2(y)= i-  1 e(all c22--c2x ax2) 

(iii) If611 =621 and 612~-'=-622 then 

. rank 6 = 2. 
2(7)= i -  1 /3(r a22 --r a21) 

2(~) ~.-~- --g(Cll r c21 c12). 

Genus 3 

7 =  t 
a l l  a12 a13 bl l  b12 

a21 a22 a23 b21 b22 

a3~ a32 a33 b31 b32 

cl l  c12 Cla dll  d12 

c21 r c23 d21 d22 

c31 c32 c33 dax d32 

. rank 6 =  0 

al 1 a12 a13 

2(7)=e~la21 a22 a23 ] 
\1a31 a32 a33 / 

2. r ank  6 =  1 

(i) If  the first r ow of 6 is non-zero:  

/1r r r ~ 
2 ( Y ) = i - l e  ~1 a21 a22 023 ] 

\ /a3~ a32 a33 / 

(ii) If  the second row of  6 is non-zero :  

f a l l  al2 a13[~ 

\1a23 a32 a331/ 

(iii) If the third row of 6 is non-zero: 

\1c31 c32 c33 

3. rank 6 = 2 

b23 

b33 

dl3 

d23 

d33 
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(i) If the first two rows of ~ are independent: 

I Cl 1 C12 C13 

IC21r  " 
la31 a32 a33 / 

(it) If the first and third rows of ~ are independent: 

I ell C12 r 

~'(7)=--/3 t a21 a22 a23i]. 
\1C31 C32 C331/ 

(iii) If the second and third rows of ~ are independent: 

4. rank ~= 3 

= t/ 
all a12 a13 ) 
c21 c22 c23 
c31 c32 c33 

\ /c31 c32 c33 ! 

Our formula may also be of interest in the moduli theory of Riemann surfaces 
with spin structure. Indeed let j/Co be the subgroup of the mapping class group 
of a topological surface S of genus n which preserves the spin structure on 
S corresponding to Q. Then ~/n ~ maps onto F through the action of j / o  on 
Hi(S). It is known that this map induces an isomorphism of abelianizations. 
Our formula determines explicitly all characters of j /o.  

This paper is dedicated to Armand Borel. Part of this paper and part of 
a possible sequel were presented by the second author at a conference at the 
Institute for Advanced Study in honor of his sixtieth birthday five years ago. 
The second author is pleased to acknowledge the great influence the ideas of 
Armand Borel have had on his work. 

Results concerning the theta multiplier along more classical lines have been 
obtained by Stark [11], Styer [13] and Friedberg [3]. See also Igusa [5]. The 
reader may also find the book of Lion-Vergne [7] to be a valuable reference 
for background material on the Weil representation. We should point out that 
our result in Theorem 1-1 (i) concerning the abelianization of F is known to 
researchers in algebraic K-theory although in some references it is incorrectly 
stated to be Z/2. At the Borel conference Hyman Bass informed us that in 
[1], he and W. Pardon had proved a more general theorem but that they had 
not realized the connection with the theta function. We would like to thank 
Joseph Oesterl6 for carefully reading a preliminary version of our paper. His 
criticisms have been incorporated into this paper. Finally we would like to 
thank Richard Elman and Robert Steinberg for helpful conversations. 
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1. The abelianization of the theta group 

In this section V is a symplectic space over R of dimension 2 n. We choose 
a symplectic basis {Ca . . . . .  en,fl . . . . .  f,} for V and identify V with R z". Using 
this basis we obtain a symplectic space over Z with coordinates 
(Xl . . . . .  x, ,  y l ,  ..., y.). Reducing modulo 2 we obtain a symplectic space over 
Z/2. We again let (xl,  ..., x. ,  y~ . . . . .  y,) denote the coordinates. We define 

Q: (Z/2)2" ~ z /2 by Q(x~ .. . .  , x,, y~, ..., y.)= ~ xiyi. Then F, the theta group, 
i = l  

is the subgroup of Sp2,(Z) which maps to the isometry group O(Q) of Q upon 
reduction modulo 2. 

In the following theorem we assume 2 n > 6. 

Theorem 1.1. (i) f is generated by the conjugacy class of an anisotropic transvec- 
tion teF (see below) and 

F 
= Z/4. 

[r, r]  

(ii) The value of 2, the square of the theta multiplier, on t is given by 

2 (t) = i. 

We now begin our proof  of the theorem. 

Definition. Let vEV, then we define t~Sp2 , (R)  called transvection by v, by 
the formula: 

t v ( x )=x+(v , x )v  for xeV. 

If veL then tv~Sp2n(Z ). If Q(v--)# 0 then t ~ F .  In this case we call tv an anisotropic 
transvection. If Q f f ) = 0  we call tv an isotropic transvection. We note the formu- 
las: 

(i) tT(x)=x+n(v, x ) v  for n~Z and w V  
(ii) gtvg -1 =tgv for gsSp2,(R). 

Let F (2 )c  Sp2,(Z) be the subgroup defined by: 

r(2) = {yESp,(Z): y = 11, mod 2}. 

We will assume the classical result, to be found in Mumford [9], Proposition A 3, 
that F(2) is generated by the squares of primitive transvections. In this section 
only we let Ldenote  the integral lattice Z z" c V(later it will denote a Lagrangian). 

It is convenient to introduce some more definitions. Let P be a symplectic 
vector space of dimension 2 over Z/2 equipped with a quadratic form Q. Then 
we will say P is a hyperbolic plane if Q has 3 zeros (so Q(x, y) is equivalent 
to xy) and an elliptic plane if it has one zero (so Q(x, y) is equivalent to x z +xy  
+ yZ.) We will see below that if n > 2 any anisotropic vector can be embedded 
in an elliptic plane. 
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Lemma 1.1. I f  n ~ 2 then every element in F(2) is expressible as a product of 
anisotropic transvections and their inverses. 

Proof Let v be a primitive vector with ~ isotropic. We claim there exists a 
vector w with # anisotropic and (v, w ) = 0 .  We first observe that there exists 
a primitive vector u with (12, u ) =  1 and Q(t~)= 1. Indeed choose a primitive 
vector u with ( v , u ) = l  then either Q(ti+~7)=l or Q(~i)=l so either u+v or 
u works. Let P be the Z-span of {u, v}. Then L = P + P• and P• is a non-zero 
symplectic space over Z by hypothesis. Then any primitive vector w with Q (#) = 1 
satisfies the claim. 

We next observe that v + w  and v - w  are both anisotropic vectors. The 
lemma now follows from the relation that if (v, w ) = 0  then 

tE= t~ 2 tv+ wtv_ w 

which expresses the square of the (arbitrarily chosen) isotropic transvection in 
terms of anisotropic transvections. Since we know every element of F(2) is a 
word in the squares of primitive transvections the lemma is proved. [] 

We need another classical result to be found in Dieudonn6 [2], Proposi- 
tion 14, that O(Q) is generated by the transvections to if n>2 .  We also need 
the following lemma. 

Lemma 1.2. O (Q) acts transitively on the unit sphere of Q. 

Proof In case dim V= 2 the lemma is true by inspection. Otherwise let t~, 
be given Q(~)=Q(O)= 1. Embed ~ in an elliptic plane P1. If v~P1 we are done 
so suppose ~ P ~ .  If V has dimension 4 then PiL=p2 is another elliptic plane 
since the Arf invariant of Q is zero. If dim V > 4 then we can embed ~ into 
an elliptic plane P2 c P1 x. But now we extend t~ ~ ~ to an isometry interchanging 
P1 and P2 and leaving (Pl + P2) • fixed. []  

Corollary. O(Q) is generated by a single conjugacy class. 

Lemma 1.3. F is generated by primitive anisotropic transvections. 

Proof Let 76F. Then ~60(Q) and we may write ~=t~lto2...to m. Let q 
=7o(tv, tv2...t~m) -1. Then ~/eF(2) and by Lemma 1.1 we have q=tw~ tw~...t~ k 
with all w~ anisotropic. [ ]  

Lemma 1.4. All primitive anisotropic transvections are conjugate in F. 

Proof Let t,, t ~ F  be given. We may choose 7 e F  such that ~7~=~ since O(Q) 
acts transitively on the unit sphere. Hence replacing v by 7v we may assume 
v and w are congruent modulo 2. But it is an immediate consequence of strong 
approximation that there exists q~F(2) such that ~/v=w whenever 
v - w  mod2. []  

We now know that F is generated by a single conjugacy class and hence 
that F/[F, F] is cyclic. To complete (i) of the theorem we must determine the 
order of t~ in F/[F, F]. Now given v primitive with Qf f )=  1 embed v in a plane 
P such that P is elliptic. This may be done as follows. Choose u with 
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(u, v) = 1. If Q(fi)= 1 we are done. Otherwise split off the Z-module R spanned 
by {u, v} and replace u by u+w with w~R 1 such that Q ( ~ ) = I .  Then P={u 
+w, v} is an elliptic plane. Now F contains the theta group A for P (the set 
of elements in the integral symplectic group of P which upon reduction modulo 2 
preserve Q). But A -  SL2(Z), since Q (x, y )=  x2+ x y + y2 every symplectic trans- 
formation of P preserves Q. But by a classical result: 

A 
[A, A] ~ Z/12. 

Since tveA ~ F  we have t 12 in F/[F, F]. We now embed tv into the theta group 
of a genus 2 quadratic space to obtain a new relation. 

Lemma 1.5. In any genus 2 quadratic space an anisotropic transvection satisfies: 

4 - -  tv = 1 modulo commutators.  

Proof A genus 2 quadratic space is either the direct sum of two elliptic planes 
(Arf invariant zero) or the direct sum of an elliptic plane and a hyperbolic 
plane (Arf invariant 1). In either case we may assume the plane spanned by 
{el, f l} is an elliptic plane. Thus tea is an anisotropic transvection. Now define 
matrices following Steinberg [12] with r, s, t~C: 

l 
1 0 0  

0 1 t 
x~176 0 0 1 

\ 0  0 0  t ~ 
0 1 0 

x~,,_o,~(s)= 0 1 

1 0 - s  1 (i t 0010 
x2o,,(r) = 0 1 " 

0 0 1  

Here o91, o92 are the standard coordinate functionals on the Cartan subalgebra 
of sp2 (C). 

We then have the Steinberg relation which the reader may verify by direct 
calculation: 

[xo,, -,o2 (s), x~,, + ~2 (t)] = x2,o, (2 (s t)). (**) 

The relevance of (**) to the lemma is that 

the, = x2,o, (n). 

Applying (**) with s = 2  and t = 2  we find that te s, is a commutator  of two 
elements of F(2). Since we already know t~ 2 = 1 mod [F, F]  we obtain the lemma. 

We have now obtained the following lemma. 

Lemma 1.6. If n > 3 then F/[F, F] is a quotient of Z/4. 

In order to prove Theorem 1.1 it will suffice to exhibit a character of order 4. 
In fact the remaining sections of this paper are devoted to constructing such 
a character explicitly. In order to complete the proof  at this stage we observe 
that the existence of  such a character follows from Theorem 2.2.37 of Lion- 
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Vergne [7] (our K(7) is denoted e(7) there and our 2(7) is denoted k(7) there). 
Also the value of 2 on an anisotropic transvection can be checked from the 
formulas in [7]. [] 

2. Construction of the sign function on Ao(V) 

We now assume V is a symplectic space over Z/4; that is a free Z/4 module 
equipped with a non-singular skew-symmetric bilinear form to be denoted <, > 
taking values in Z/4. The symplectic group Sp(V) of V is the group of 
automorphisms of V preserving ( ,  >. If rank V= 2 n a Lagrangian (submodule) 
is a free summand L of V of rank n on which the form <, > is identically zero. 
Any two bases of L are related by a unique matrix in GL,(Z/4) with determinant 
+_ 1. Two such bases are said to be in the same orientation if the determinant 
is + 1. An oriented Lagrangian is a Lagrangian with a preferred orientation 
class of bases. If L is an oriented Lagrangian we write - L  for the opposite 
oriented Lagrangian. There are just two orientation classes on any Lagrangian. 
The group Sp(V) acts transitively on the set of oriented Lagrangians A(V). 

We will assume that [" is equipped with a quadratic form Q of Arf invariant 
zero such that ( , )  is the bilinear form associated to Q. We call such a triple 
V,, ( , ) ,  Q a quadratic space. Henceforth F c S p ( V )  will denote the subgroup 
of elements whose reductions modulo 2 are isometrics of Q. Then F is the image 
of the theta group under reduction modulo 4. 

Definition. Suppose V = 1"1 + V2 is a direct sum of symplectic spaces and L1, M1 
and L2, M 2 are Lagrangian pairs in V1 and V2 respectively. Then the direct 
sum of the two Lagrangian pairs is the pair L~ +L2, M l + M  2 in V. We will 
sometimes use the notation (L~, MI)+(L2, M2) for this sum. If V=V~+V2 is 
a direct sum of quadratic spaces then we have an analogous notion of the 
direct sum of isotropic Lagrangian pairs. 

We also make the following definitions. A pair of oriented Lagrangians 
L, M is called a congruent pair if L=M mod2  and a transverse pair if L ~  
M =  {0}. In this later case it is easily seen that V = L + M  and L and M are 
dually paired. 

We first construct the sign function a(L, M) for a transverse pair L, M. 
We define o-(L, M) to be 1 if the orientation of L followed by that of M is 
the natural (symplectic) orientation of V; that is, the orientation of a symplectic 
basis {el . . . . .  e,, f l ,  . . . , f ,} such that (ei, e r > = ( f / , f i } = 0  and (ei,fi>=6ir. We 
define a(L, M ) =  - 1 otherwise. We observe that if we are given oriented bases 
{/i} for La nd  {mi} for M we have: 

a(L, M) = det(<li, mr)). 

The function t~ on transverse pairs has the following elementary properties. 

Lemma 2.1. 

(i) tr(L, M ) = ( - 1 ) " • ( M ,  L) 
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(ii) I f  L, M is the direct sum of the transverse pairs L1, M1 and L2, M 2 
then: 

a(L, M)= a(Lx, M O a(L2, M2). 

(iii) I f  L, M, N EAo(V) are mutually transverse then n is necessarily even and 
if n = 2 k then 

a(L, M) a(M, N ) = ( -  1)* a(L, N). 

Proof. We prove the last part of (iii) and leave the rest of the lemma to the 
reader. We first observe that a(M, N) is the determinant of the natural isomorph- 
ism M ~  N* induced by ( , ) .  Let a be the composition M ~ N* ~L- -*  M*. 
It is apparent (noting that n is even) that 

det a=a(M,  N) a(L, N) a(L, M) 

=a(M, N) a(N, L) a(L, M). 

We now recall a standard formula for a. Let ,~ and P2 be the projections 
associated to the direct sum decomposition V = L + N .  Let B be the bilinear 
form on M defined by B(m, m')= (Plm, P2m'). Then B is symmetric, [7], p. 40, 
and if b: M ~ M* corresponds to B then a = b ,  [7], p. 67. We claim B is an 
even form; that is, B(m, m)==-O mod2  all m~M. Indeed we have Q(rfi)-Q(Plrh ) 
-Q(P2rfi)=(Plr~, P2r~)=B(th, th) and since L, M, N~Ao(V ) the claim follows. 
Since B is even and non-degenerate we have dim M = 2 k and det B = det b = 
( - 1 )  k by the following elementary result on symmetric bilinear forms over Z/  
4. []  

Lemma 2.2. Let B be a non-degenerate even symmetric bilinear form on a free 
Z/4 module of dimension n. Then n= 2k with k~Z and det B = ( -  1) k. 

Proof. See [6], Theorem 33 a. [ ]  

We conclude our study of transverse pairs an explicit formula. Given a 
pair L, M~Ao(V ) we may choose a symplectic basis {el . . . .  , e , , f l ,  . . . , f ,} for 
V with Q ( ~ i ) = Q ( f ) = 0  for all i such that L=E,  the span of {el, ..., e,}. We 

then represent M by a 2 n  by n matrix S = ( ~ ) ( w h e r e a a n d c a r e n b y  may 

n blocks) whose columns are the coordinates of a properly oriented basis for 
M relative the given symplectic basis. We will say that S is a representing 
matrix for M. We observe that changing the basis of M corresponds to perform- 
ing a column operation on the matrix S and changing the basis of V corresponds 
to performing a row operation on S. Finally L, M is a transverse pair if and 
only if c is invertible in which case a(L, M ) =  det c. 

We now treat the case of a congruent pair L, M. We choose a Lagrangian 
D which is transverse to L. Then L and D are dually paired hence dually paired 
modulo 2, hence M and D are dually paired modulo 2 and hence M and D 
are dually paired. In particular M and D are also transverse. Hence we may 
attempt to define a(L, M) by: 

a(L, M)= a(L, D) a(M, O). 
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For  the moment we will use the notation ao(L, M) for the right-hand side. 
In order to prove ao(L, M) is independent of D we need to investigate Ao(M), 
the set of oriented Lagrangians transverse to D. Let Po denote the subgroup 
of Sp(V) consisting of those elements which stabilize D and No denote the sub- 
group of those g such that g l D = 1. 

Lemma 2.3. Po acts transitively on Ao(V). 

Proof Suppose L, MeAo(V). Let P1 and P2 be the projections onto L and 
D respectively associated to the direct sum decomposition V = L + D. Then P1 t M 
is an isomorphism with inverse qo: L ~ M .  Put #=P2oq. Then /~: L ~ D  and 
M is the image of the graph of # under the natural isomorphism LO)D ~ V. 
We define T: V ~ V  by TIL=IL+ # and T I D = I  o. Then T(L)=M and 
TEND. [] 

Remarks. In case L, M, DeAo(V ) it is easily verified that TeE. Now let 
/~eHom(L, M) with L, M Lagrangian. Then D=grap h / z  is Lagrangian if and 
only if the bilinear form B on L given by B( f l ,  f 2 ) = ( ( 1 ,  #((2)) is symmetric. 
In this case we will say # is symmetric. If L and M are also isotropic then 
D = graph It is isotropic if and only if B is even. In this case will say/~ is even. 
Finally we observe that if meM and m = (  mod D then m=qo((). 

We can now give another description of ao(L,M). The map qo is an 
isomorphism from the oriented Lagrangian L to the oriented Lagrangian M. 
We define e(qo) = + 1 if qo is orientation preserving and - 1 otherwise. 

Lemma 2.4. If  L, M are both transverse to D then 

a(L, D) a(M, D)= e(qo). 

Proof We put el = a(L, D) and e2 = a(M, D). Then calculating with volume forms 
we obtain co L ̂  co o =~1 vol and coMA coo =Ca vol. We apply T to  the first equation 
to obtain 

(TCOL) ̂  COo = TCOL /x Tcoo= T(COL /x O)D) =/~ 1 vol. 

But TCO L = e(qD) COM whence 

(T~L) A COo = e(qD) coMA cod = e(qo) e2 vol. []  

Now let D' be another Lagrangian which is transverse to L (hence also 
transverse to M). We may repeat the construction of Lemma 2.3 using the split- 
ting L + D' to represent M as the graph of an element ~ e Horn (L, D') and obtain 
qo,: L-~ V with qo,=I+z whence qo,(L)=M. In order to prove ~(qo)=e(qo,) 
we need to investigate the decompositions of V associated to L, D, D' in more 
detail. 

Since D, D'eAL(V) we may write D' as the graph of an element veHom(D,  L) 
and D as the graph of an element q e Horn (D', L). Let P~ and P~ be the projections 
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associated to the direct sum decomposition V= L + D'. Then it is easily verified 
that 

v=  - t / oP t .  

Lemma 2.5. 

Proof. By definition we have 

qo = q o" ~ (1 -- v o I~). 

qo(~) = E + #(E). 

But # (f)~ D whence/~ (E) = P~ (~(~)) + r/(P~ (# (d))) and we obtain (since r/o P~ = - v) 

qo(E) = t ~ -  v (/~ (t~)) + P~ (/2 (t~)). 

But the right-hand side of this equation is an element of M congruent to the 
element f - v  (/~(t~)) of L modulo D' and is therefore equal to qo, (~-v(/~(f))). [] 

We can now prove that an(L, M) is well-defined (i.e., is independent of D) 
for a congruent pair L, M. 

Lemma 2.6. Let L, M, D, D' ~Ao(V) with L =  ffl and D and D' both transverse 
to L. Then 

e(qo)=e(qn,). 

Proof. It suffices to prove that 1 -v /z  preserves the orientation of L. We choose 
bases for L and D dually paired under ( ,  > and bases for L and D' dually 
paired under ( , ) .  We then express #~Hom(L,  D) and v~Hom(D, L) as matrices 
(#ij) and (vii) respectively. Since r , = / ~  we have fiij=O all i,j and since L, D 
and D' are isotropic ~i~=0 all i. We obtain 

det(1 -v /~)=  1 - t r v # =  1. 

The last inequality holds as a consequence of the identity 

trv12=~,vijltij=~_~vii[aii-]-2 ~ Yij#ij. [] 
i,j i i<j 

Corollary. I f  L and M are congruent isotropic Lagrangians choose an isotropic 
Lagrangian D transverse to L and define 

a(L, M ) = a ( L ,  D) a(M, O). 

Then a(L, M) is independent of the choice of  D. 

We list some properties of a(L, M) on the subspace of Ao(M) 2 consisting 
of congruent pairs. 

Lemma 2.7. (i) tr(L, M ) =  a(M, L). 
(ii) I f  L, M is the direct sum of  the congruent pairs L1, MI  and L 2, M2 

then 

a(L, M)=tr(L~, M1) a(L2, M2). 
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(iii) If  M1, M2, M3 are all congruent modulo 2 then 

a(M1, M2) a(M2, M3)=tr(M1, M3). 

We conclude our study of congruent pairs by the following explicit formula. 

Suppose L=E and M is represented by the matrix S = ( ~ ) a s  above. Then L, 

M is a congruent pair if and only if c = 0 m o d 2  in which case a(L, M ) = d e t a  
(this latter statement is easily proved by choosing D = F =  span {fi, ... ,f,}). 

We now prove that the general Lagrangian pair may be decomposed into 
the direct sum of a congruent pair and a transverse pair. 

Definition. A symplectic splitting V= V1 + 1/2 is adapted to the pair L, M if: 
(i) L= L~  VI + Ln  V2 and M = M n VI + M n 1/2 

(ii) L n  V1 and M n V 1 are congruent modulo 2 
(iii) L n  V2 and M n 1/2 are transverse. 

Lemma 2.8. I f  L, M is a Lagrangian pair there exists a splitting of V adapted 
to L, M. 

Proof. Consider L n  M which we denote C (this is an abuse of notation as 
there is no C as yet). We choose an oriented isotropic subspace /) such that 
C and /) are dually paired. Then F" 1 =C+D is symplectic. We put F" 2 = F'(. 
We define E to be the annihilator o f / )  in L and F to be the annihilator of 
/) in M. We have an exact sequence E ~ L ~ D *  which is split by C whence 
L=  C + E. Similarly ~r = C + F. By a dimension count (C + D) • = E + F. 

We now lift the above decomposition to 14. Choose free isotropic submodules 
C~ and D which lift C and /) respectively such that C1 e L .  Then C~ and D 
are dually paired whence VI=C~ +D is symplectic. Thus if V2 = V( we have 
V= V~ + 1/2. We show that this splitting is adapted to the pair L, M. 

Let E be the annihilator of D in L whence E c V2. We observe that L= C~ + E 
because the surjection ~b: L ~ D *  has kernel E and is split by C~. Let F be 
the annihilator of D in M. Then the reductions of E and F modulo 2 are E 
and F whence E and F are dually paired and 1/2 = E + F. Let C2 be the annihilator 
of E in M. Then C2 = C1 and (using M ~ E* as above) we have M = C2 + F. [] 

Remark. If L is isotropic (for Q) then any subspace is also isotropic (for Q). 
Hence if L and M are isotropic Lagrangians then L n  1/1, M n 1/1 and L ~  V2, 
M ~ 1/2 are also isotropic Lagrangians. 

We can now give a (provisional) definition of the sign invariant a(L, M) 
for a general pair L, M of isotropic Lagrangians in V. We choose an adapted 
splitting of V and orientations of L n  V1 and M n 1/"1. We give L n  V2 and M n V2 
the respective quotient orientations. We then define 

a(L, M ) = a ( L n  V1, M n  V1) a ( L n  1/2, M n  V2). 

We must prove that our definition of a(L, M) is independent of choices. 
We first observe that as long as we require that l/2 n L be given the quotient 
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orientation then changing the orientation of V1 n L does not change a(L, M). 
Of course the analogous statement holds for V1 n M. It remains to check that 
a(L, M) does not depend on the choice of adapted splitting. 

Lemma 2.9. a(L, M) as defined above is independent of the adapted splitting of V. 

Proof We begin by observing that an adapted splitting of V is equivalent to 
a pair E, F of (dually-paired) free isotropic subspaces of L and M respectively 
such that 

C + E = L  and C+F=M. 

Given such a pair we define C~=LnFI=Ln(E+F)  • and C2=MchE • 
= M n ( E+  F) • and we obtain a decomposition of L, M into the direct sum 
of the congruent pair CI, C2 and the transverse pair E, F by the arguments 
of Lemma 2.8. Thus it is an equivalent problem to show that cr is independent 
of the choices of E and F. This we now do. 

Changing E does not influence the possible choices left for F since these 
are determined by the condition C + F = M and C is not effected by changing 
E. Thus to see that ~r(E', F')=o-(E, F) it suffices to check that a(E, F)=o-(E', F) 
i.e. that changing only E or F leaves ~r unchanged. The argument for changing 
F is symmetrical to that for changing E, so we do only the latter. 

Let E' be a new choice of E. Since F is not changed C~ is not changed 
and E' is a new complement to C~ in L. Let {c,: l<i<r} and {e~: l < j < n - r }  
be oriented bases for C1 and E respectively. Then we may choose a basis {e~: 1 

r 

<j< n - r }  orE' of the form e~=ej+ ~ Aijci. We now show a(E', F) is indepen- 
i = 1  

dent of the matrix (Agj). We remark that the matrix (Aij) is not arbitrary since 
we must have - '  Ca = C where C2 = M n ( E ' )  • We do not need to compute this 
condition explicitly. 

We now find a corresponding D'c(E'+F) • which is transverse to C~. Let 
{d~: l<i<r} be a basis for D which is dual to {ci}. Then the transformation 
T: V ~  V which is the identity on C1 and F and satisfies 

n - - r  

T(ej)=ej+ ~ Aij ci, T(dj)=dj- ~ Ajifi 
i = 1  i = 1  

is an orthogonal transformation. We put D '=  T(D). Since D c ( E  + F) • we find 
on applying T that D' c (E' + F) • Second if we put d) = T(dj) then we find that 
the bases {ci} and {d)} are dual. We consider Ch- -M c~(E') • We observe that 
D' is transverse to C1 and since - '  C2=C1 it follows that D' is transverse to 
C~. Hence we may use D' to transfer the orientation of C1 to C~. We let qo,: 
C~ ---, C~ be the isomorphism introduced in Lemma 2.3. Thus if ceC~ then qD,(c) 
is the unique element of C~ satisfying: 

qo" (c) = c mod D'. 
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We observe that qO,(C)--C mod 2. Hence if c~,' = qD,(CR) there exists Dkl such that: 

D, d,-ZY  
/=1 /=l  '=1 i=l  

Now let {c~} be the basis of C2 obtained by transferring {Ck} to C2 via 
the isomorphism qD- Then c~ is determined by the congruence: 

c~ - ck mod D. 

~ tl-r 

But c~' + 2 ~ Dlk Anf~ satisfies the same congruence and we obtain: 
1 = 1  i=1 

r n - r  

c~=c~'+2 Z ED,kA,if~. 
l = l  i=1 

Hence {c~,,fj: i N k < r ,  l < j < n - r }  and {c~,',f/ INk<r, l < j < n - r }  are in the 
same orientation class of bases of M. Thus C2 and C~ induce the same orienta- 
tion on F. If {fl,  . . . , f , - r}  is a basis which is in this orientation class then 
noting (e~,f j )= (ei,fj) since C1 = F • we have: 

a(E, F) = det ((e'i, f j))  = a(E', F) 

and we have established that a(L, M) is independent of the choice of E and 
F and consequently of the choice of splitting. [] 

3. Construction of  a 1-cocyele on A o (V) 

Definition. A 1-cocycle on Ao(V ) is a function: m: Ao(V)xAo(V)~I~4 such 
that: 

(i) re(L, M) m(M, N)=m(L, N) 
We say m is invariant if 7 ~ F implies 

(ii) m(y M, 7 N)=m(M, N). 
Given any function m: Ao(V) xAo(V)~p4 for 7EF which satisfies (ii) we 

choose L~ Ao (V) and define: 

2(7) = re(L, 7L). 

Lemma 3,1.2 is a character if and only if m is a 1-cocycle. 

Proof We leave the proof to the reader (recall F acts transitively on Ao(V)). 
We now construct an invariant 1-cocycle m on Ao(V ) using the sign function 

a of Sect. 2. Recall that if L, M~Ao(V) with d i m L = d i m M = n  we have defined 
r(L, M) by: 

r(L, M) -- n -  dim (/,c~ M) 

and m (L, M) by 
m(L, M ) = i  -r(L'M) a(L, M). 
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We also define z(L, M, N) by 

z(L, M, N)=m(L, M) m(M, N) m(N, L). 

Theorem 3.1. m is a 1-cocycle and the associated character 2 is the square of 
the theta multiplier. 

In order to prove the theorem we need to define the stabilization of a quadra- 
tic space E Let P be a quadratic space of dimension 2 with a symplectic basis 
{e,f} such that ~ and f are isotropic for the corresponding quadratic form 
on /~ We define V,, the stabilization of V, to be the quadratic space which is 
the orthogonal sum of V and P. We observe that both i - r (L 'M)  and a(L, M) 
are multiplicative for direct sums of pairs. Also r = �89 dim V2 where V= VI + Vz 
is adapted to L, M. As a consequence of the results in w 2 we have the following 
lemma. 

Lemma 3.2. (i) m((L1, ml)+ (L2, M2) ) = m(L1, M1) m(L2, m2) 
(ii) m(L, M)=(--1)  r~L'M) re(M, L)=m(M, L)-1. 

Theorem 3.1 will follow from the next four lemmas. 

Lemma 3.3. The 2-cocycle z (L, M, N) is invariant under permutation of its argu- 
ments L, M, N~Ao(V ). 

Proof. ~ is obviously invariant under cyclic permutations, hence it suffices to 
prove z(L, M, N)= z(M, L, N). Using Lemma 3.2(ii) we find 

(L, M, N) _~_ ( - -  I )r(L,M) + r(M,N) + r(N,L). 

(M, L, N) 

Thus it suffices to prove 

r(L, M) + r(M, N) + r(N, L ) - 0  mod 2. 

This latter formula concerns only L, M and 57. It follows easily from the splitting 
4 

V'= (~V~ adapted to the triple L, M, N of [10], Lemma 2.8. by this we mean 
i=0  

L n  V o = M n V o = 57 n Vo and L n  V4, M n V4, N n V4 are mutually transverse and 
for i = 1, 2, 3 exactly two of L n  V~, M n V~ and N n V~ coincide and the remaining 
one is transverse to the other two. The above congruence then follows from 
the easy fact that dim V4=0 mod 4 since it contains three mutually transverse 
isotropic Lagrangians, Lemma 2.1 (iii). [] 

Lemma 3.4. Let V be a quadratic space and L, MeAo(V) with r(L, M) even. 
Then there exists N~Ao(V ) with N transverse to both L and M. 

Proof We have (L, M)=(LI ,  MI)+(L2, M2). Choose NleAo(V) which is trans- 
verse to L1. Since E l=h31  it follows that N1 is also transverse to M1. The 
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Lagrangians  L 2 and M 2 are transverse. Let #6Hom(L2,  M2) be symmetric, even 
and invertible. Such a # exists because dim L 2-- 0 mod 2. Let N2 be the graph 
of lx, and N = Nl + N2. [] 

Lemma 3.5. Assume Lc~/~t n N =  {0}. Then there exists a splitting of V adapted 
to L, M which is compatible with N. 

Proof N maps onto (Lc~ M)* so we can choose D c N such t h a t / )  and C = L n  M 
are dually paired. We l i f t / )  to D c N and proceed as in Lemma 2.8 to construct 
a splitting V= V 1 + V2 adapted to L, M. Let G be the annihilator of C1 in N 
whence G c(C1 + D) •  V2. We have a short exact sequence G ~ N ~ C* which 
is split by D whence N -- D + G and consequently N = N n 1/1 + N n V2. []  

Lemma 3.6. Suppose L, M, N~Ao(V) with at least one of the three possible pairs 
(L, M), (L, N) and (M, N) transverse. Then 

re(L, M) m(M, N)=m(L, N). 

Proof Since r(L, M, N) is invariant under $3 we may assume that N is transverse 
to L whence L n N =  {0} and L n M n b T = { 0 } .  Let V= 1/1 + 1/2 be a splitting 
adapted to (L, M) and compatible with N. We obtain a decomposition 

(L, M, N)=(L~, M1, Nt) +(L2, M2, N2). 

By the multiplicativity property of m for sums it suffices to prove the above 
formula for each of the summands where it follows after a further splitting 
of V 2 adapted to (M 2, N2) and compatible with L 2 from the results in w []  

We can now conclude the proof of Theorem 3.1. Let L, M, N~Ao(V) be 
given. Let V= 1/1 + V2 be a splitting adapted to L, M. If dim Vz-  0 mod 4 we 
may choose M' transverse to both L and M. If dim V 2 = 2  m o d 4  we replace 
V by its stabilization F" and we replace L, M, N by L=L+(e) ,  M = M + ( f )  
and b ~ =N+( e )  respectively. Then it is easily seen, that r(L, M, N ) = r ( L ,  M, N) 
and ~'= V1 +(V2 + P) is adapted to the pair L, 1~. Thus to prove z(L, M, N ) =  1 
it suffices to consider the case in which dim Vz - 0 mod 4. We may then choose 
M'eAo(V) which is transverse to both L and M. Then applying Lemma 3.6 
three times we have 

re(L, M) re(M, N)=m(L, M) re(M, M') m(M', N) 

= m (L, M') m (M', N) 

= m(L, N). 

This concludes the proof of Theorem 3.1 since it is easily checked the re(L, tL)= i 
where t is an anisotropic transvection. 

4. Calculation of 2(~,) 

We choose L=E and calculate a(E, 7E) for 7~/2. We assume 7 is given by: 
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lax 
Hence M =  E'=7E is spanned by the columns of t h e 2 n  by n matrix S={-~}. 
We assume rank ~= r and that c + 0. If c = 0 then clearly 2(7)= e(det a). \c /  

We will perform column operations on S corresponding to an orientation 
preserving change of basis of M and row operations corresponding to a change 
of symplectic basis for V such that the span of the first n-vectors in the new 
basis {e'l . . . . .  e'., f~, ...,f. '} is still E and the reductions modulo 2 of the new 
basis vectors are isotropic for Q. Since neither of these operations change L, 
M they do not change a(L, M). 

In terms of matrices we left multiply S by re(c0 or n(fl) where 

m(ct)=('CtO1 ~ ) a n d  n(fl)=(lo lfl). 

Here cteGL,(Z/4)  and fl is a symmetric matrix with entries in Z/4 and even 
diagonal entries. 

Recall now that the rank of g is r and assume that rows Jl,Jz, ...,Jr of 
are linearly independent. Let il, i2 . . . . .  i , - r  be the complement ofjl , jz  .. . . .  Jr 

in 1, 2 . . . . .  n arranged in increasing order. Let n be the permutation of 1, 2 . . . .  , n 
given by: 

~ =  2 . . . r  r + l  " 

Let ~1 be the permutation matrix in GL,(Z/4)  corresponding to n and let 

r We have 2(,')=a(n) 2(~). Writing ,'=(a' bd) c' we find that the first 

r rows of c' are linearly independent and the last n - r  rows of c' are linear 
combinations of the first r rows. 

We assume the first n columns of ~' are given by S'=(ail. We decompose 
S' according to: \ c /  /a',) 

S , = [  a'2 

\ c l  

where a'~ consists of the first r rows of a', a~ the last n - r  rows of a', c'~ the 

first r rows of c' and c~ the last n - r  rows of c'. Then A '=[a2]  is an n by 
\c'd 

n matrix. Note that the rows of A' coincide (up to a permutation) with the 
rows of the matrix A of the introduction. 

In the proof  of the next lemma we omit the bars - all the matrices involved 
will be reduced rood 2. 

m 

Lemma 4.1. A' is invertible. 
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Proof. We first observe that we may subtract linear combinations of the rows 
of c'1 from the rows of c~ without changing A'. This is because the inverse 
transpose of such an operation operating on a' adds the corresponding linear 
combinations of rows of a~ to a'~. Thus we may assume c~ = O. Also the rank 
of A' is invariant under column operations of S'. By column operations we 
can transform Cl to (I~10) since cl is of rank r. We obtain: 

S ' =  /~1 [12 . 

Since the columns of S' span a Lagrangian we have t( el ~2~( I ~) \[11 [12] \0 is symmetric; 

that is { t~l ~) is symmetric and consequently ~2 ~0. Now 
\ t~ 2 

(i ~ l: ' n = r a n k S ' = r a n k  1 f12 =rank  

0 

But(fl/ '  fl02) was obtained from A' via column operations and has the same 

rank asA'. [] 

We now return to our standard notation in which a superscript bar denotes 
reduction modulo 2. 

Corollary. det A is odd. 
We lift the row operations performed in the proof of the preceding lemma 
to the corresponding row operations over Z/4. Since these lifted operations 
consist of adding a row or its negative to another we obtain a unimodular 
matrix ~2 such that 7"=m(~z)7' has its last n-r  rows even and such that 2(7") 

/ /a ' l ' \  
/ a ~ ]  

=2(7')=tr(r02(7). We let S"= ~c'[] be the corresponding decomposition of 

\ c ~ /  
the first n columns of 7". We regard S" as the representing matrix of E' relative 
a new symplectic basis (corresponding to re(c0). 

We now claim that in order to obtain the formula (,) of the introduction 

for 2(7) it is sufficient to prove the following formula. Let A"=[a?l where the 
notation is that of the paragraph above. Then: \c'~] 

(**) 2(y") = i - r ( _  1),t,-,) e(det A"). 
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In order to prove the claim one has only to check that the determinant of 
the matrix A in the introduction is related to det A" by the formula 

det A = a(n)(- -  1) r~"- r) det A". 

This is an exercise in determinants which we leave to the reader. We now state 
the above formula as a lemma and prove it. 

Lemma 4.2. 2(7") = i - r ( -  1) r~"-`) e(det A"). 

Proof. Of course the lemma is equivalent to the statement that a(E, E') is given 
by the product of the last three terms on the right-hand side of (**). 

It is elementary that there exist row and column operations as above trans- 
forming S" into the matrix (with ql, 32 invertible and q2 =0  mod 2) 

(oil ,,, / a' "\ O0 2 
S =~c,,)  = 

t l 2 /  

We may now easily compute a(E, E'). We let {et, ..., e , , f l  . . . . .  f.} now denote 
the new symplectic basis - relative to which E' is represented by S" .  

We observe that the pair E, E' is the direct sum of pairs El, E'~ and E 2, 
E~ obtained as follows. Let l / l=span(e~ . . . .  ,e,,f~ . . . . .  fr) and V2 
=span(e,+~ . . . . .  e,,fr+ ~ . . . . .  f,). Then V= VI + V2, an orthogonal direct sum. 
Clearly the pair E, E' is sum of its intersections E~, E'~ and E a, E~ with 1/1 
and V2 respectively. Hence: 

~(E, E')= ~(E,, E;) ~(E2, El). 

But El, E'I is a transverse pair so a(E1, E' l)=det ql. Also E2, E~ is a congruent 
pair so a(E2, E~)=detfl2. The lemma is proved by the elementary observation 
that: 

de t (  0th fl0z)=(-1)r~"-~)dett/xdetfl2 �9 [] 
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