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Abstract. The canonical transformation which Scheifele (1970) proposes to make a coordinate of the true 
anomaly is the product of a Whittaker transformation by an extension to space-time of the one-parameter 
family of canonical transformations that Hill (1913) defined for the same purpose. 

While exploring ways of shortening the literal developments involved by 
Delaunay's method in lunar and planetary theories, Hill (1913) offered a new 
canonical transformation (R, 6),N,r,  O, v ) ~ ( F ,  G , H , f , g , h )  depending on a 
parameter.  In the Hill maps, the true anomaly f plays the role held by the mean 
anomaly l in Delaunay's transformation. 

In dealing with the perturbations caused by the planet's oblateness on the motion 
of a close satellite, Mr. Scheifele (1970, 1972, 1973, 1974) has developed a canonical 
transformation (R, O, N, T, r, 0, v, t) ~ (F, G, H, U, f, g, h, u) which he calls a TR-  
mapping. 

It is shown here that the TR-mapping is an extension of Hill's transformation from 
the 6-dimensional phase space (R, 69, N, r, 0, v) to an 8-dimensional manifold 
(R, O,N,  T, r, O, v, t). 

1. Hill's One-Parameter Family 

According to Andoyer  (1913), one may present Hill's transformation in the 
following manner. It is defined by the implicit equations 

R OS 0 oS N = oS 
Or O0 ' Ov 

~S OS OS 
h oi-I 

derived from the generator 

(1) 

S = S ( F ,  G, H, r, O, u; U ) = H u + G O +  J Q1/2 dr. (2) 

P 
The integrand is given by the relation 

( O  - F )  2 
Q - - Q ( F ,  G, r; U ) = - 2 U + 2  Ix 2 (3) 

f r 

and the lower limit P- - -P  (F, G;  U) is a root of the equation 

O(F, G, P;  U) = 0.  (4) 

The quantity U is a parameter  of the transformation or what Hill calls an 'absolute 
constant. '  
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In view of (2), the transformation Equations (1) are 

R =Q 1/2, O = G ,  N = H ,  
(5) 

r 

f ( G - F )  dw 
f wZQ1/2 , g = O - f ,  h = v .  

,1 
P 

The simplest way of performing the quadrature in (54) is by factoring the integrand 
Q. To this effect, introduce the auxiliary functions 

a - a ( U )  = / z / 2  U ,  (61) 

p --p(F, G) = (G -F)2/i.t, (62) 

-q =-.r/(F, G;  U) - -  p 4 ~ ,  (63) 

e=--e(F, G; U) = ~/1-r /2 . (64) 

In these notations, the integrand may be written as the product 

A 1 ) ( 1  

the roots being 

A=--A(F,G; U)=a( I+e) ,  P=-P(F,G; U ) = a ( 1 - e ) .  (8) 

Then, in the quadrature (54), substitute for r an angle $ = ~b(F, G, r; U) such that 

p -- r(1 + e cos 6 ) -  (9) 

It is readily seen that 

A e 
- - - 1  = (1 +cos 4,), 
r 1 - e  

P e 
1 - -  = (1 - cos ~ ) ,  (10) 

r l + e  

O = ~ e  2 sin 2 &, 
P 

dr 1 
2 -  e sin $ d~b. 

r p 

Hence (54) in closed form becomes the equation 

f = r  (11) 

Notice that, on account of (10) and (11), Equation (51) may be written as the relation 

R = J / X e  s i n / ,  (12) , p  
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Applications of Hill's transformation to dynamic systems involve the differential 
quantity r 2 dr. We show now how, on account of the transformation alone irrespec- 
tive of the dynamic system to which the transformation is applied, it can be expressed 
in a form well suited to the perturbation theories of celestial mechanics. 

Introduce an angle 0-= 0(F, G, r; U) such that 

r = a ( 1 - e  cos 0) -  (13) 

On account of (9), this definition implies that 

r cos f =  a(cos 0 - e ) .  (14) 

There follows that 

r(1 + cos f) = a(1 - e ) ( 1  +cos 0 ) ,  

r(1 - cos f) -- a (1 + e)(1 - cos 0 ) .  

and finally that 

t a n f = x  1/1~ e 0 
V 1_-77 tan 2" (15) 

Observe also that substituting r as a function of 0 in the integrand Q defined by (7) 
yields that 

I~a 2 . 2  
O =-5-e  sm 0 

r 

Hence, on account of (51), 

R = - ~ a e  sin 0 (16) 
r 

which implies through (12) that 

r sin f =  a t /s in  0 .  (17) 

Taking the logarithmic derivative of (15) produces the Pfaffian 

df  de dO 
- -  , 

s in f  r/2+sin 0 

Then, on account of (17), it is found that 

r 2 d f = a 2 ~ 7 [ d ( O - e s i n O ) + ( l + p ) s i n O d e ] .  (18) 

In the manner of illustration, Hill's transformation is applied to Keplerian systems 

ff~, = l ( R 2  + _ ~  ) /z. r (19) 
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It converts the Hamiltonian into the function 

The parameter  U is chosen to be minus the energy. Then a new independent  variable 
s is chosen so that 

2 r ds = ( G - � 8 9  dt .  (21) 

Therefore  the phase flow determined by (20) on the manifold ~ -  U = 0 in the chart 
(F, (5, H, f, g, h, t) is in 1 - 1 correspondence with the phase flow determined by 
~r=F on the manifold Yg=0 in the chart (F,G,H,f ,g,h,s) .  In view of the 
differential equation 

d f _ a K  
--1, 

ds aF 

the new independent  variable s turns out to be the true anomaly itself (provided s is 
counted from a passage at perigee). Since F = 0, the functions a, p and e defined by 
(61), (62) and (64) are respectively the semi-major,  the semi-latus rectum and the 
eccentricity of a Keplerian ellipse. Moreover,  because de = 0 in this system, the 
Pfaffian (21) becomes 

es n / 

which is the differential form of Kepler 's  equation in a Keplerian system. 

2. The TR-Transformation 

We extend Hill 's canonical transformation to an 8-dimensional phase space. The 
extension (R, O, N, T, r, O, v, t)o (F, G, H, U,f, g, h, u) is defined by the implicit 
equations 

OS OS N =  OS T aS 
g =-~r' 0 =-~,  Or' = at '  

aS aS h aS aS 
f = - ~ '  g aO' al l '  u aU 

(22) 

derived from the generator  

r 

S - S ( F ,  G,H, U, r, 0, v, t ) =  Ut+Hu+GO+ I O 1/2 dr (23) 

P 

with the integrand O and the lower limit P the same as for Hill 's transformation.  
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There follows that 
r 

I dr T = U,  u = t -  01/2 .  (24) 

P 

To perform the quadrature in (24), substitute for r an angle g, = O(F, G, r; U) such 
that 

r = a(1 - e  cos ~0). (25) 

Accordingly one obtains that 

A - r =  ae(l  +cos 0) ,  

r -  P = ae(1 - c o s  0 ) ,  

Ixa e 2 O = ~ sin 2 0 ,  
r 

dr = ae sin 0 dth. 

So that (24) in closed form becomes the equation 

t - u = ~ / ~ ( O - e s i n O ) .  (26) 

It means that u may be interpreted as an instant of passage at perigee. 
The extension of Hill's transformation defined by the implicit equations (22) is the 

TR-transformation presented by Scheifele. 
Indeed Scheifele starts from a set of elements (R, B, A, T, r,/3, h, t) related to 

spherical coordinates. But, as was done by Hill, one would perform a Whittaker 
transformation (B, A,/3, A) --> (O, N, 0, u) to pass from the set (R, B, A, T, r,/3, h, t) to 
the set (R, O, N, T, r, 0, v, t). Such a transformation (Whittaker 1904, Hill 1913) is 
defined by the implicit equations 

/3 

OW 
B =  = 0 ,  

o/3 
OS I 6) d/3 
O0 4 0 2 -  (Na/cos 2/3) 

0 

3 

0 W OS I N d/3 A = - - = N ,  p = - - = A -  
OZ OA 

o 

derived from the generator 

3 

S - S ( O ,  N,/3, h) =NA + f 402 - (N2 /cos2 /3 )  d/3. 

0 

c0s2/3 ~/O 2 - (N2/cos 2/3) 
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On introducing an angle I =I(0,  N)  such that 

c o s I = ~ ,  s i n I =  

one readily obtains that 

sin/3 = sin I sin O, 

tan (A - v) = tan I tan 0. 

In the coordinate set (R, O, N, T, r, 0, v, t), Scheifele considers a Hamiltonian 

1 2 
~ ' = r Z [ ~ ( R Z + - ~ )  - -~+ T] 

to obtain a complete integral of its Hamilton-Jacobi equation, which he then uses as 
the generator of a canonical transformation (R, O, N, T, r, 0, v, t) -~ 
(F', G',  H ' ,  U', f ' ,  g', h', u'). The particular generator retained by Scheifele is the 
function 

r 

U ' , r , O , v , t ) = U ' t + G ' O + H ' v +  f 0 'a/2 dr (27) S=-S(F',  G ' ,H ' ,  

P 

with the integrand such that 

Q ' =  - 2 U , + 2  ~ 
r 

G'2 _ 2F' 
2 

r 
(28) 

But, in the transformation generated by S, 

4, G' 
= , O=g' qS; 

f '  ~/G '2 - 2F '  ~/G '2 - 2F '  

hence the new coordinate f '  is not the true anomaly, not even a (dimensionless) angle. 
Scheifele remedies this deficiency by performing a second canonical transformation 
(F', G', H',  U' , f ' ,  g'. h', u')-*(F, G,H,  U,f, g, h, u). It may be defined by the 
explicit equations 

u = u ' ,  U = U  ' , 

f = fN/G'2 _ 2F' .  F = G' - ~/G ,2 _ 2F ' ,  

g = g ' + f ' ( G ' - ~ / G  '2 - 2F ' ) ,  G = G ' ,  

h = h ' ,  H = H ' .  

But replacing the moments (F', G', H ' ,  U') in (27) by their expressions in terms of 
(F, G, H, U) proves that the complete integral (27) is identical to the generator (22), 
or that the Tr-transformation is nothing but an extension of Hill's transformation to 
the extended phase space (R, O, N, T, r, O, u, t). 



A NOTE CONCERNING THE TR-TRANSFORMATION 305 

References  

Andoyer, H.: 1913, Bull. Astron. 30, 425. 
Hill, G. W.: 1913, Astron. Z 27, 171. 
Scheifele, G.: 1970, C. R. Ac. Sci. Paris 271, 729. 
Scheifele, G. and Stiefel, E.: 1970, Report to ESRO-ESOC contract 219/70/AR, ETH, Ziirich, 

Switzerland. 
Scheifele, G.: 1973, Report to ESRO-ESOC contract 490/72/AR, Analytical and Computational 

Mathematics, Zfirich. 
Scheifele, G. and Graf. O: 1974, A I A A  Mechanics and Control of Flight Conference, August 5-9, AIAA 

Paper No. 74-838. 
Whittaker, E. T.: 1904, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, Cambridge 

University Press, see footnote on p. 343 of fourth edition. 


