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Abstract. In the weak-field and slow-motion approximation of the General Relativity theory the relativistic 
theory of construction ofnonrotating harmonic coordinate reference sysems is developed. The general case of 
an isolated astronomical N-body system is considered. The bodies are assumed to consist of a perfect fluid 
and to possess any number of the internal mass and current multipole moments characterizing the internal 
structure and own gravitational field of the bodies. The description of the coordinate reference systems and 
gravitational field is realized by the specific forms of the metric tensor. A metric is determined by the method 
of the Post-Newtonian Approximations (PNA) from the inhomogeneous Einstein equations under the 
harmonic coordinate condition. We have obtained two different specific forms of a metric, which are related 
to the inertial and quasiinertial coordinate reference systems. 

The metric in inertial coordinates is a near-zone solution of the Einstein equations for an N-body system. 
The metric in quasi-inertial coordinates is a solution of Einstein equations in the body's neighborhood, which 
is a world tube surrounding the body under consideration and extending up to another nearest body. The 
coordinate transformation between the inertial and quasiinertial reference systems is derived by a matching 
of both solutions in the body's neighborhood. A new method is proposed for construction of the body's 
proper reference system. This coordinate system has an origin which moves along a nongeodesic (in the 
general case) worldline of the body's center of inertia. The proper reference system is used for derivation of the 
Newtonian equations of translational and rotational motion of the body. The equations give us exhaustive 
information about the nonlinear Newtonian interaction between gravitational fields of the bodies in terms of 
internal mass multipole moments. Finally, the coordinate transformation between the inertial and proper 
reference systems is discussed in the first PNA. 

0. Notation 

In this paper  the notat ions are as in (Misner et al., 1973; Thorne and Hartle, 1985; 

Blanchet and Damour ,  1986). In particular,  greek letters c~, fl,,/,.., run from 0 to 3 and 
small italic letters a, b, c , . . .  run from 1 to 3; the italic capitals A, B, C number  the bodies 

and run from 1 to N; a comma  denotes a usual derivative and semicolon denotes 

a covariant  derivative; repeated indices imply an Einstein summation;  round brackets 
surrounding indices denote symmetr izat ion and square brackets denote anti-sym- 

metrization,  for example, T , j ) -  �89 + Tji ) and TEo 1 = � 8 9  Tj~). We designate: 
G - universal gravitat ional  constant; c -  velocity of light; e~jk- the fully ant isymmetr ic  

Levi-Civita symbol (e12 3 -- 1) (~ij- the Euclidean metric = diag(1, 1, 1); r/~a = r/~a - the 
flat metric = d i a g ( - 1 ,  1, 1, 1); g~r - a metric of curved space-time; 9 = det(g~a). The 

spatial indices are raised and lowered by means of the metric 6ij. In order to deal 
conveniently with sequences of many spatial indices we shall use an abbreviated 

notat ion for "multi-indices", where an upper-case letter denotes a multi-index, while 

the corresponding lower-case letter denotes its number  of indices, for example, 

L . =  il i 2 . . . i l ;  P ' =  il i2. . . ip; QL - -  Q i l i 2 . . . i  l .  When needed we also use L -  1: il i 2 . . .  

- has l indices. We also denote ~L = ~L = il_ 1, so that  the tensor TaL_ 1 -- Tail ~2...i~-l 
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~, ~2... ~i, and c3L/~x L = c3Z/~x ~, c3x~ ... ~x~,. A multi-summation is always understood 

= = �9 The symmetric and for repeated multi-indicies: S P T P Sp Tp S~li~...i, ' T~1~2...,,. 
trace-free (STF) part of Tp is denoted by T<p> = T<~ 1 i2...i,,>, for instance, T<~j> = T(ij) - 
�89 Tk,. The explicit expression of the STF part of Tp is given in (Thorne, 1980; 
Blanchet and Damour, 1986). For any positive integer I we shall denote II = l(l - 1)... 
2.1; III = l ( l -  2). . . . . (2 or 1). A dot over any function means a differentiation with 
respect to time. 

1. Introduction and Overview 

The consistent and well-founded theory of the astronomical reference frames (RF) has 
a great principal and practical significance for modern celestial mechanics and 
astrometry (Mueller, 1981; Kovalevsky 
1982; Seidelman, 1985; Guinot, 1986; 
astronomical RF includes (Kovalevsky 

and Mueller, 1981; Podobed and Nesterov, 
Soffel et al., 1986a). Construction of the 
and Mueller, 1981; Kovalevsky, 1985): (1) 

a choice of the coordinate reference system (RS); (2) a choice of the basic astronomical 
objects (repers), for which values of coordinates and a time change of the coordinates 
are considered as being known; (3) an establishment of the relations between RF's 
consructed on the base of other RS's and (or) astronomical repers. 

In celestial mechanics and astrometry the galactic, solar barycentric, planetocentric, 
topocentric and satellite RS's are used most often. The origins of these RS's are placed 
in the center of inertia of the correspoding astronomical system (Galaxy, Solar system 
etc.). The coordinates of repers are fixed by the initial conditions in the epoch in any, but 
only one, aforementioned RS. A time change of the coordinates of repers is predicted 
(Podobed and Nesterov, 1982) either by kinematical methods for objects outside the 
Solar system (proper motions and radial velocities of the quasars, galaxies and stars) or 
with the help of the dynamical theories of motion for objects inside the Solar system. 
The coordinates of repers can easily be recalculated from one RS to the another, if the 
coordinate transformation between the RS's is known. 

We also distinguish (Kovalevsky and Mueller, 1981; Kovalevsky, 1985) between the 
celestial and terrestrial RS's. There is no principal theoretical distinction betwen them! 
All differences are in their mathematical definition and practical realization. The 
celestial RS's are used for a description of the motion of celestial bodies and reduction 
of the astrometric observations. The terrestrial RS's are used mainly for the study of the 
internal structure and own gravitational field of the Earth, as well as tectonic 
deformations of the Earth's crust and description of the locus on the Earth's surface of 
astrometric and gravimetric stations. In the paper we shall discuss only celestial 
reference systems. 

The classical theory of the astronomical RF's is based on the newtonian theory of 
gravitation (NGT). In the NGT the notions of space and time are not connected. Time, 
according to the mathematical point of view, is a universal absolute parameter 
streamlining a sequence of the events, which take place in the 3-dimensional Euclidean 
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absolute space. The description of physical laws in the absolute space is admitted in any 

RS. However, in the NGT there exist privileged cartesian RS's. The whole absolute 

space may be covered by means of only one cartesian RS. 
But it is more important to note that the absolute time and Cartesian coordinates 

have a real physical meaning in Newtonian physics and can be directly measured by 
astronomical observations. That is why the cartesian RS's are widely used in 

non-relativisic astronomy. A solution of the NGT equations in the Cartesian RS's 
allows us to remove from the theoretical predictions all unmeasurable and spurious 

terms caused only by a bad choice of the coordinate system. 
The cartesian RS's may admit an arbitrary rotation and translation in the absolute 

space. A coordinate transformation between them is: 

y i  = ~z~ik(t)Xk - XiB(t)  ( 1 )  

where ~,(t)  is the orthogonal rotation matrix and x~ ( t )  is the vector of translation, 

both depending on the absolute time t. 
It is possible to select from all Cartesian RS's the subset of the inertial RS's which 

have no rotation and move with constant velocity in the absolute space. The coordinate 

transformation connecting two inertial RS's is the Galilean one: 

yi = ~@i k x k _ v i  t _ b i (2) 

Here N~,, Vi, b i are a constant rotation, velocity and translation, respectively. The 

Galilean transformation is a particular case of the more common formula (1). 
Working in the framework of NGT, one often also uses quasiinertial RS's (Mueller, 

1981), which move with arbitrary velocities and accelerations in the absolute space, but 
their coordinate axes have no rotation. The transformation between inertial RS (t,x i) 

and quasiinertial one (t, y~) follows from (1) under condition that the Y'~, is a constant 

matrix. One has: 

y '=  x - x (t) (3) 

The Newtonian potential t)(t, y) = G~ p(t, y ' ) l y  - y'ld 3 y' (p is a rest mass density) in 
the quasiinertial RS is linked with the potential U(t ,x )  = G~p( t , x ) l x  - x ' ]-  1 d 3 x'  in the 

inertial RS by the transformation (Misner et al., 1973): 

O(t, y) = u ( t ,  x )  - x 
d2x~ 

dt 2 
c ( t )  (4) 

where C(t) is an arbitary function of time. Note that both potentials satisfy the same 
Poisson equation of NGT. For an isolated astronomical N-body system the potential 
U(t ,x )  tends to zero when distance from the system increases, but U ( t ,  y) becomes 
infinitely large. One can say that it is these properties of the potentials which define the 

type of the RS. 
A theory of the astronomical RF's is inseparable from the problem of determination 

of the motion of celestial bodies (Earth, planets, satellites etc.). This problem is 

decomposed in two subproblems - the internal and external ones (Fock, 1955). The 
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external problem consists in the determination of the translational motion of the body's 
center of inertia. In the NGT this problem is usually solved in the inertial RS. The 
purpose of the internal problem is to determine the motion of the body's matter and the 
laws of time change of the body's multipole moments in the proper (Duboshin, 1975) 
reference system (PRS). The PRS has an origin which coincides with the body's center 
of inertia for any moment of time. The coordinate transformation between the inertial 
RS and PRS is described by the formula (3), where x~(t) now denotes a vector 
connecting the origin of inertial RS and the body's center of inertia. The explicit 
dependence of x~ on time is found by solving the equations of motion (eq.m.) of the 
bodies in the external problem. It is very important to note that an influence of the 
external bodies is manifested in the eq.m of the internal problem only in the form of the 
tidal terms, which are expressed as second space derivatives of the Newtonian potential 
UE(t,x ) created only by the external bodies. 

The eq.m of the external and internal problems cannot be solved separately in the 
general case (Duboshin, 1975). A translational motion of bodies perturbs their rotation 
and vice versa. The only exception is the motion of the spherically-symmetric bodies 
(Duboshin, 1975). 

At present there is great confidence that a relativistic theory of astronomical RF's 
must be founded on General Relativity (GR). GR has passed many a serious test both in 
the weak gravitational field inside the Solar system (Will, 1981, 1986) and in the strong 
field inside the double pulsar PSR 1913+ 16 (Damour, 1987; Taylor, 1987). 

In GR the space and time are united together and form the 4-dimensional 
Riemannian manifold- space-time. It is permissible to introduce any coordinate RS in 
space-time. The properties of the RS are described by the metric tensor gap, which, in 
contrast to NGT, carry information about the gravitational field of the bodies as well. 
The metric tensor is determined from the Einstein equations. As a rule, before solving 
these equations, four resrictions (coordinate or gauge conditions) are imposed on the 
components of the g~. They extract some subset from an infinite set of space-time 
coordinates. Inside this subset the coordinates are linked by smooth differentiable 
transformations which do not change the coordinate conditions being chosen. 

In the GR there exist no absolute time and Euclidean space. Besides, one cannot in 
the general case introduce some privileged RS in space-time. Contrary to NGT the 
co-ordinates in the curved space-time have no physical meaning and cannot be 
measured directly by the astronomical observations. 

Nevertheless, there are special cases, when one can speak in some sense about 
privileged coordinates in GR. One of them is a case of the space-time having a weak 
gravitational field and slow motion of matter. Such space-time may be covered by the 
coordinates, which differ only a little from the absolute time and Cartesian space 
coordinates of NGT. We shall call these space-time coordinates quasicartesian 
reference systems. Quasicartesian RS's are most convenient for a development of the 
relativistic theory of the astronomical RF's inside the Solar system, as well as in the case 
of any isolated astronomical system, which consist of N well-separated and extended 
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bodies possessing a weak gravitational field and moving with slow orbital and 
rotational velocities. In this paper we shall analyze only such astronomical systems. 

One can select from a set of the quasicartesian RS's the subset of the 'inertial' RS's, 
which have no rotation and move with a constant velocity one relative to another. The 
metric tensor in the inertial RS's tends to the flat metric r/"~ the further one gets from the 
N-body system. The way of constructing the inertial RS's is well known in the GR 
(Fock, 1955; Brumberg, 1972; Misner et al., 1973; Ehlers, 1980; Will, 1981; Damour, 
1987). A more complicated task is to construct, in curved space-time, the analog of the 
PRS of the NGT. 

One way aimed at solving this problem is to use the Newtonian transformations: 

u = t ( 5 )  

w i =  x i -  x~(t) (6) 

where the inertial RS and PRS are designated as (t, x i) and (u, w i) respectively; x~ are the 
coordinates of the center of inertia of body B and are determined by solving the 
relativistic external problem. 

The construction of PRS with the help of transfomations (5) and (6) looks simple and 
attractive. Therefore, it is widely accepted for interpretation of data of the radio- 
interferometric observations (Hellings, 1986; Cannon et al., 1986), for description of the 
motion of the Moon and Earth's satellites (Brumberg, 1958; Brumberg, 1972; 
Brumberg and Ivanova, 1982; Lestrade and Chapront-Touze, 1982; Newhall et al., 
1983; Martin et al., 1985; Brumberg, 1986; Akim et al., 1986). However, the PRS (u, w i) 
cannot be recognized as satisfactory for two reasons. 

In the first place, the transformations (5) and (6) are not the relativistic ones. They 
ignore completely the Lorentzian and gravitational (Einsteinian) contractions, the 
relativistic geodetic precession and effects of the curvature of space-time. All these 
kinematical and dynamical effects go to the expressions for the metric tensor and eq.m. 
of the internal problem, where they are shown as terms depending on: (1) the 'absolute' 
velocity of the body's center of inertia with respect to the inertial RS (t, x~), and (2) the 
absolute value and the first space derivatives of the Newtonian potential UE(t, x) of 
external bodies. Thus, the relativistic eq.m. of internal problem differ essentially from 
the Newtonian ones, which do not depend on the 'absolute' velocity and contain only 
second space derivatives of UE(t, x), i.e. tidal terms. One must be very cautious when 
Using the PRS (u, w g) since one can confuse the true physical effects with the coordinate 
ones. For example, the term with the amplitude of about one meter in the relativistic 
theory of motion of the Moon (Brumberg, 1958; Misner et al., 1973; Baierlein, 1967) 
built on the basis of the PRS (u, w i) has no real physical meaning. The appearance of this 
term is caused only by a bad choice of the coordinates and, therefore, the one-meter 
term can not really be observed (Soffel et al., 1986b). The situation with the 
transformation (5) and (6) in GR is completely analogous with that in Special 
Relativity, when for description of physical laws the Galilean transformation is used 
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instead of the Lorentzian one. Such an operation is, of course, admissible, but 
completely inexpedient (Kadomtzev et al., 1972), since it obscures the true nature of 
things and delivers extremely complicate calculations. 

In the second place, the utilization of PRS (u, w i) confuses and makes difficult the 
consideration of the important question concerning the notion of rigidity in GR. This 
notion is frequently used for derivation of the relativistic eq.m. of extended bodies. In 
many investigations (see, for example, Fock, 1955; Brumberg, 1972; Ehlers and 
Rudolph, 1977; Hogan and McCrea, 1974; McCrea and O'Brien, 1978; Spyrou, 1977, 
1978; Kopejkin, 1985; Grishchuk and Kopejkin, 1986; Fukushima, 1986) a rigidity was 
understood in the coordinate sense as conditions of the constancy in some concrete RS 
either of the body's matter or body's multipole moments. Such a definition of rigidity is 
quite admissible and convenient since it allows us. to simplify considerably the 
complicated and tedious calculations for obtaining the eq.m. of the bodies. However, 
the coordinate rigidity is not a covariant notion. Therefore, if one chooses RS in an 
inappropriate manner, one should introduce inside the bodies an additional internal 
stress and velocity field of matter, which have to compensate the fictitious deformations 
and motions of body's matter caused only by the bad choice of RS (Hogan and McCrea, 
1974; McCrea and O'Brien, 1978; Kopejkin, 1985; Grishchuk and Kopejkin, 1986). The 
construction of the 'good' RS in which the fictitious additional stresses and velocities 
are absent, may greatly simplify a solution of the relativistic internal problem and make 
this solution reflect the nature of physical laws. 

The PRS (u, w i) constructed with the help of the transformations (5) and (6) is 'bad'. 
The fictitious stresses and velocities are present in this PRS. They compensate the 
Lorentzian and Einsteinian contractions, the geodetic precession and effects of the 
curvature of space-time. If one ignored these fictitious stresses and velocities, one would 
make mistakes in the calculations of the relativistic eq.m. of bodies in terms of order 
c-2(LB/R)2 and higher, where L~ is a body's radius and R is the minimal distance 
between the bodies. Note once again that the present-day relativistic theories of the 
interferometric observations and motion of the Moon and satellites are constructed in 
the 'bad' geocentric PRS (u, w i) of the Earth. The fictitious deformations and shear 
velocities for the Earth's crust reach about 6 cm and 50 cm/year, respectively, in this 
PRS and influence the interpretation of observational data. One can use, of course, the 
'bad' PRS (u, w i) and include all spurious terms in the mathematical data processing. 
But as a consequence comparison with real observations cannot be done at the level of 
the coordinate description of the theory and must be done using appropriate 
invariantly defined obsevables (Martin et al., 1985; Brumberg, 1986; Hellings, 1986; 
Soffel et al., 1986). Such a method is cumbrous. A more suitable method in all respects is 
to develop a new theory of observations and motion of celestial bodies based on using 
of the physically adequate 'good' PRS. We shall denote the 'good' PRS by (z, ~i). 

The 'good' PRS must be linked with the inertial RS ( t ,x  i) by the relativistic 
coordinate transformations, which should introduce no spurious terms in the metric 
and eq.m. of the relativistic internal problem. The general theoretical consideration 
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(Misner et al., 1973) shows that the transformation from the 'good' PRS to the inertial 
RS must have, in the vicinity of worldline of the origin of the 'good' PRS, the structure 
of a Taylor expansion in powers of ~z: 

x ' =  x~(r) + e~(T)~ i + 2XF~(r)~i~ j + O(~ 3) 

= c r ;  x ~ - c t )  (7) 

Here the function x~(z) represents the worldline's description of the origin PRS (z, ~i)  in 
the RS ( t ,x  i) and the e~[(z), F~j{z) are coefficients of expansion. The relativistic 
transformation (7) replaces the Newtonian ones (5) and (6). 

In the 'good' PRS the following rather remarkable properties should be satisfied: 

(1) 

(2) 

(3) 

the metric tensor 9,~ and the eq.m. of the relativistic internal problem must not 
depend on 'absolute' velocity of motion of the origin of'good' PRS relative to the 
inertial RS, but may admit the dependence only on the relative velocities of the 
bodies; 
the own gravitational field of the body for which the 'good' PRS is constructed 
must be described outside the body by the set of the mass and current internal 
multipole moments; including monopole, dipole etc.; 
the gravitational field of external bodies must be presented only in the form of tidal 
terms being described by the electric-type and magnetic-type external multipole 
moments. 

These properties express the guess that the 'good' PRS must resemble a RS, which 
falls freely in the background gravitational field created only by the external bodies. 
However, one should not think that the 'good' PRS can be realized as a locally inertial 
RS for a massless test body (Misner et al., 1973; Manasse and Misner, 1963; Ni and 
Zimmerman, 1978) as the second property of the 'good' PRS prohibits this. The 
existence of a 'good' PRS has been more or less explicitly assumed by many authors 
(see, for example, Misner et al., 1973; Will, 1981; Caporali, 1981; Mashhoon, 1985). But 
these authors have not proposed any exact mathematical procedure for its construc- 
tion. 

Note that there exist many possible ways of constructing a 'good' PRS. One of them 
was pointed out by Bertotti (1954) and has been recently developed by Ashby and 
Bertotti (1984, 1986) and Bertotti (1986). An equivalent method has been proposed and 
developed to the extent of practical applications by Fukushima et al. (1986). In these 
works the 'good' PRS is constructed within the first PNA of GR for the specific form of 
the EIH metric (Einstein, Infeld and Hoffman, 1938). The EIH metric was obtained 
(according our terminology) in the inertial RS's. It describes the gravitational field only 
outside the bodies, which may be regarded as massive point particles (black holes) or 
spherically-symmetric and nonrotating extended bodies (Fock, 1955). 

In the Bertotti-Fukushima method the construction of a 'good' PRS is begun by 
building up the background external metric for the body under consideration. 
The external metric is obtained from the complete EIH metric by dropping all the 
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divergent or undefined terms on the body's center of inertia worldline. Then a local 
Fermi frame (Fermi, 1922; Manasse and Misner, 1963; Misner, et al., 1973) is defined in 
the body's vicinity using the background metric with respect to which the body moves 
along a geodesic. After that, the coordinate transformation between the Fermi frame 
and background metric is obtained. The transformation is applied to the complete EIH 
metric and, thus, the 'good' PRS is obtained. The body's gravitational field in this PRS 
is spherically-symmetric (Schwarzschild) and the gravitational field of the distant 
bodies appears only through the curvature tensor of the background metric, i.e. 
through the tidal effects. 

The Bertotti-Fukushima method is conceptually simple. It confirms our expectation 
that the 'good' PRS exists and gives an insight into the structure of the transformations 
(7). However, the method of construction of the Fermi normal coordinates for massive 
bodies has some disagreable drawbacks. Namely: 

(I) 
(2) 

(3) 

(4) 

the background external metric is not a solution of the Einstein equations; 
there are ambiguities in the procedure of constructing the external metric. They are 
caused by the terms which describe the effects of back-action of the gravitational 
field of the body under consideration on the external gravitational field of other 
bodies (Thorne and Hartle, 1985); 

the method under review cannot be used for derivation of the eq.m. of bodies, i.e. 
their worldlines. A choice of the body's center of inertia worldline as a geodesic is 
justified only a posteriori and with the help of a quite different technique (EIH, 
1938; Papapetrou, 1951; Fock, 1955; Shirokov and Brodovski, 1956; Infeld and 
Plebanski, 1960; Brumberg, 1972; Damour, 1983; Thorne and Hartle, 1985; 
Kopejkin, 1987); 

the method has been elaborated only for the special case of spherically-symmetric 
and nonrotating bodies. It is completely unclear how one can construct the Fermi 
normal coordinates in real astronomical situations which are, of course, more 
complicated. Recall that the Earth has oblateness and rotation, which can not be 
ignored. 

Another method of construction of the 'good' PRS has recently been proposed by 
Thorne and Hartle (1985) (see also Fujimoto and Grafarend (1986)) and developed to 
some extent by Suen (1986) and Zhang (1986). The method consists in the determina- 
tion of the metric tensor from the Einstein equations under conditions that one satisfies 
the properties mentioned above for the 'good' PRS. Thus, the metric in the 
Thorne-Hartle method is derived at once in the 'good' PRS. The solutions of the 
Einstein equations is searched for in a vacuum region of space-time under de Donder 
(harmonic) gauge conditions in the body's neighborhood, where the gravitational field 
is weak. The metric tensor is represented in the form of an expansion in powers of the 
small parameters MB/~ , ~/R etc., where M B is the body's mass, ~ is a distance from the 
body and R is an inhomogeneity scale (distance between the bodies). The coefficients of 
the expansion are the internal and external multipole moments of the gravitational 
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fields created by the body under consideration, and external ones, respectively. The 
multipole moments contain a description of the gravitational field as well as complete 
information about the RS being chosen. 

The Thorne-Hartle method is mathematically elegant and appropriate for the 
derivation of the laws of motion both of compact astrophysical sources (black holes 
and neutron stars) and extended bodies with a weak gravitational field. However, it is 
not complete and cannot immediately be used in the ephemeris astronomy for the 
following reasons: 

(1) Thorne and Hartle have constructed only the 'instanteneous' PRS which coincides 
with the body's center of inertia at some fixed moment of time. As time goes on the 
origin of the 'instanteneous' PRS propagates along a geodesic, but the body's 
center of inertia worldline does not do so in the general case. The deviation from 
the geodesic is caused by the interaction of the body's internal multipole moments 
to the external multipole moments of the gravitational field of other bodies. The 
'instanteneous' PRS is not appropriate for ephemeris astronomy since this science 
prefers to operate with the RS's whose origins coincide with the body's (or 
N-bodys') center of inertia for all times. 

(2) The Thorne-Hartle solutions of the Einstein equations are formal, since the 
matching with solutions of the inhomogeneous equations for extended sources has 
not been performed. Thus, the internal multipole moments are not presented as 
integrals over volumes of the sources and therefore have no clear physical meaning. 

(3) Thorne and Hartle have not derived a relativistic coordinate transformation 
between the 'good' PRS and the inertial RS, which plays a very important role in 
the relativistic theory of astronomical RF's (Japanese Ephemeris, 1985; 
Fukushima et al., 1986; Brumberg and Kopejkin, 1988). 

The beautiful method of construction of the 'good' PRS was proposed by D'Eath 
(1975a,b) (see also works of Kates (1980a,b) and Damour (1983)). These remarkable 
papers are devoted to the derivation of the eq.m. of compact astrophysical objects - the 
neutron stars and black holes. However, the authors applied specific mathematical 
methods which are very interesting, but cannot be used directly for development of the 
relativistic theory of RF's in the space-time with a weak gravitational field. 

Let us also mention the works in which construction of the 'good' PRS has been 
accomplished either with the help of the infinitesimal (Murray, 1983; Martin et al., 1985; 
Hellings, 1986; Vincent, 1986) or linear (Pavlov, 1984) transformations. The methods 
used in these works cannot be considered to be satisfactory since they are based to 
a considerable extent on heuristic principles, but not on the exact theory. 

The crucial step in the problem concerning construction of the exact and appropriate 
(for astronomical practice) relativistic theory of RF's has recently been done by 
Brumberg and Kopejkin (1988). The relativistic theory developed by Brumberg and 
Kopejkin (1987) combines the basic ideas of Fock (1955) - the PNA scheme; Thorne 
(1980) and Thorne and Hartle (1985)- multipole formalism, and D'Eath (1975a, b) 
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- asymptotic matching. The theory completely overcomes conceptual and/or technical 
drawbacks of the works mentioned above and has been founded on two conditions: (1) 
all nonrotating coordinate RS's have been constructed in the de Donder (harmonic) 
gauge; (2) the metric tensor in any RS represents the physically adequate solution of the 
Einstein equations either for the external or internal problems of relativistic celestial 
mechanics. In such a way, the solar barycentric RS, the geocentric RS, the topocentric 
RS and the satellite RS have been constructed. The three latter RS's are the 'good' 
PRS's for the corresponding problem. The relativistic coordinate transformation 
between different RS's has been derived by a matching of the components of metric 
tensors in the region of space-time where the RS's overlap. 

In the present paper I am developing the ideas put forward in the works (Kopejkin, 
1987; Brumberg and Kopejkin, 1988). In Section 2 below the basic conceptions and 
formulas are given. Section 3 presents a discussion of the harmonic inertial RS's. 
Section 4 is devoted to a construction of the harmonic quasiinertial RS's. In the Section 
5 the relativistic coordinate transformation between inertial and quasiinertial RS's is 
deduced. Section 6 describes the construction of the 'good' PRS for a massive 
self-gravitating body. In Section 7 the preceding results of Sections 2-6 are used as 
a tool for deducing the coordinate transformation between inertial and 'good' PRS. 

2. Basic Conceptions and Formulas 

We shall investigate a structure of space-time for the case of gravitationally bound and 
isolated astronomical N-body system. Let us assume that the nongravitational forces 
are absent, the bodies are well separated and the body's matter consists of a perfect fluid 

with the energy-momentum tensor T~: 

(8) 

/.t = p(1 + C-21-I)  (9) 

Here p denotes the rest mass density in the comoving RS, p is the isotropic pressure 
connected with p by an equation of state p = p(p), u ~ = dx~/ds is the 4-velocity of a fluid 
element, II is the specific internal energy density satisfying the thermodynamic 

equation" 

u ~ FI,~ + p = 0 
,0r 

(10) 

The N-body system in question is characterized by the following parameters: (1) L B 
- size of the body; (2) R - minimal distance from the body under consideration to the 
nearest companion; (3) M B- the body's mass; (4) M -  total mass of N-body system; (5) v i 
- the body's orbital velocity in the barycentric inertial RS; (6) v i -  internal (rotational Vro t 
plus oscillatory Vosc) velocity of an element of the body's matter in the 'good' PRS. Since 
one considers the gravitationally bound N-body system there exist the relations (linked 
with the virial theorem)V 2 G M / R  and 2 GMB/LB ~ O S C  ~ '~ " 
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We shall restrict our attention only to the N-body systems which have a slow motion 
of matter and weak gravitational field everywhere both outside and inside the bodies. 
Thus, one presumes that the following small parameters exist: (1)e ,-~ v/c ~ 1; (2) 
r I ,~ G M / R c  2 <~ 1; (3) e B --~ v/c ~ 1; (4) qB ~ G M B / L B  c2 ' ~  1. The parameters e and r/are 
equivalent, but e B and r/B are different. There is also a small parameter c~ B, which 
characterizes a dimensionless measure of the deviation of the distribution of the 
body's matter from the spherically-symmetric one (c~ B ~ (quadrupole moment of 
the body)/M~ L 2). 

Each body studied in this paper Will be supposed to be isolated, i.e. its immediate 
vicinity will be supposed to be devoid of matter and nongravitational fields and the 
distance R is large compared to the body's size L B (6 B ~ L s / R  ~ 1.) For an isolated 
body one can split space-time up into three regions as measured in the body's 
'instanteneous' PRS (Misner et al., 1973; Thorne and Hartle, 1985): the internal region, 
which is a world tube surrounding the body and extending out to some radius ?i > L~; 
the buffer region extending from radius fi to some larger radius ro < R; and the 
external region located outside radius fo. In the internal region the body's own 
gravitational field dominates; but in the external one gravitational fields of other bodies 
are more important. The buffer region is placed in the vicinity of the distance 
~* ..~ R ( M ~ / M )  1/3 from the body. The distance ~* is defined from the condition that the 
body's gravitational influence is approximately equal to the gravitational influence of 
the external masses. The buffer region plays the role of an asymptotically flat 
space-time region for the body in question (Misner et al., 1973; Thorne, 1980; Thorne 
and Hartle, 1985). 

We shall characterize gravity by the contravariant metric density x / / - g  gap and 

denote by h ~a the small deviations of x / / - g  g'a from the flat metric r/aa" 

hap = r/ap_ x / /_g  gap (11) 

We assume the h aa to obey the de Donder (harmonic) coordinate conditions, which 
may be written as 

(x/ /-  g g~),p = - haP,r = 0 (12) 

The Einstein equations under conditions (12) are read (Anderson and Decanio, 1975): 

where 

16nG 
q~a hUV,~a = c4 W "v (13) 

W at~ _ OaP + 
C 4 

16nG (ha"'v hpv'" - haa'"~ h"~) (14) 

0at~ _ ( - -  g ) ( T  ~t~ + t ate) (15) 

and t ~a is the Landau and Lifshitz (1967) pseudotensor, which is quadratic in h ~t~ and 
its first partial derivatives. 

The aims of this paper are as follows: (1) construct quasicartesian harmonic inertial 
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RS's, which must cover the space-time manifold as far as possible and move along the 
straight line with a constant velocity relative to the Lorentzian RS's of the 
asymptotically flat space-time for the N-body system; 
quasiinertial harmonic RS's, whose origins may move 
worldlines; (3) construct nonrotating 'good' PRS, whose origin has to move along the 
worldline of the body's center of inertia; (4) derive relativistic coordinate transforma- 
tions between all reference systems. 

(2) construct nonrotating 
along arbitrary timelike 

3. Harmonic Inertial Reference Systems 

The set of the harmonic inertial RS's (t,x ~) is singled out by two boundary conditions 
imposed on the h ~ and 

lim h "~ = 0 
r-.-~ oo 

h ~ at the past null infinity (Fock, 1955; Damour, 1983): ~V 

(16) 

t + r/c = const 

r ~  oo C 

t + r/c = const. 

where r = (xixi) 1/2. These conditions generalize 
Newtonian potential U(t,x ~) in the NGT: 

lim U(t,x i) = 0 
r--* oo 

(17) 

the boundary condition for the 

(18) 

t - const. 

which singles out from the infinite set of cartesian RS's in the absolute space a more 
restricted subset of the inertial RS's. 

The conditions (16) and (17) mean the absence of the flux of gravitational radiation 
falling on the N-body system from the external universe (Damour, 1983, 1987). Each 
astronomical N-body system is termed isolated, if the conditions (16) and (17) may be 
fulfiled in any inertial RS. 

The Einstein equations (13) can be transformed under boundary conditions (16) and 
(17) into integro-differential equations (Anderson and Decanio, 1975; Damour, 1983): 

h,~(t, xi ) = 4Gc 4 j" W~r -ixlX_-x,IX'l/c,x') d3 X' (19) 

R 3  

where R 3 means integration over the whole spacelike hypersurface of constant time t. 
The construction of the global inertial RS's is realized by means of the computation 

ofh "~ from the equations (19) with the help of the successive iterations in which r/and r/B 
are small parameters. Damour (1983) suggested calling such a method for computation 
of h ~ a Post-Minkowskian Approximation scheme (PMA). Before Damour's  sugges- 

tion this method was called a fast-motion approximation scheme. But this name is not 
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correct, since magnitudes of velocities of the bodies can be arbitrary, both large and 

small. 
Recently Blanchet and Damour (1986) have shown by an elegant mathematical 

technique how one can compute h =~ by the PMA in the vacuum region of space-time at 
any level of approximation. Then, in a recent paper, Blanchet and Damour (1987) have 
succeeding in matching of the vacuum solution for h =~ to the interior of the material 
system consisting of the perfect fluid. The metric tensor obtained by Blanchet and 
Damour (1987) is suited for any point of space-time. Thus, Blanchet and Damour (1986, 
1987) have constructed the inertial RS's, which are indeed global, i.e. they cover the 

whole space-time manifold. 
However, for solving a lot of problems of modern celestial mechanics and astrometry 

it is quite sufficient to use an inertial RS which covers only a resticted domain of 
space-time. Usually this domain occupies the material system and is extended as 
measured in the barycentric inertial RS out to a radius set equal to the minimal length 
of gravitational waves radiated by the material system. This region of space-time is 
called a near zone of the source of gravitational radiation. The metric in the near zone 
may be obtained either from the weak field expansion of h =~ by additional slow motion 
expansion in small parameters e and en or with the help of PNA scheme applied for the 
solution of equations (19)(Anderson and Decanio, 1975; Ehlers, 1980; Anderson et al., 

1982; Futamase and Schutz, 1983; Damour, 1987). 
Blanchet and Damour (1987) criticize the concept of the near zone as they have found 

that it is impossible to express the near zone metric as a functional of the instantaneous 
state of the material source. There are the terms which depend on the full past history of 
the material system. These terms arise at the fourth post-Newtonian level (4PNA) and 
are caused by the gravitational waves emitted by the system in the past and 
subsequently scattered off the curvature of space-time back onto the system. 
Fortunately, in most practical tasks of relativistic celestial mechanics and astrometry it 
is required to know the metric only at the first post-Newtonian level (1PNA). In the 

a simple form and can be presented as (Fock, 1955; metric tensor has 
1972; Will, 1981): 

goo(t ,x)  = - 1  + c -2  goo(t ,x)  + c - 4  goo(t ,x)  + O(c - 5 )  (20) 
(2) (4) 

1PNA the 
Brumberg, 

goi( t ,x)  = c -3  goi( t ,x)  + O(c -s)  
(3) 

gi j ( t ,x)  = 6i~ + C - 2  go{t,x) + O(c -4) 
(2) 

where 

goo( t ,x )  = 2U( t , x ) ;  

(2) 

g i j ( t , x )  = 26,j U( t , x )  (21) 
(2) 

g o/(t, x) = - 4 U '( t, x) (22) 

(3) 
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goo(t,x) = 2(I)(t,x)- 2 U 2 ( t , x ) -  Z,u(t,x) 
(4) 

U(t,x) = GI I(P*); Ui(t, x) = GI l(p*vi)  

Z(t,x) = - G I l ( p * )  

�9 ( t ,x)  = GI_~(azp*v 2 - p * U  + p*I-I + 3p) 

I , (F)(t ,x)  = ~ F(t ,x ' )  x - x'l"d 3 X r 

3 
R3 

P* = P x / -  au~ v = cd/u ~ 

(23) 

(24) 

(25) 

(26) 

(27) 

In these formulas the invariant density p* is that of the perfect fluid in the coordinate 
element of volume dVin arbitrary RS. It satisfies the ordinary Newtonian-looking 
equation of continuity, which can be written down in the covariant form as: 

l ( p w / - g u ) , , - = O  (28) = 0( 

,/_g 
The invariant density is a good mathematical tool which drastically simplifies 
calculations of the eq.m. of bodies (Fock, 1955; Brumberg, 1972; Will, 1981; Kopejkin, 
1985). As an example, let us point out two useful formulas: 

f d c~s P*(S'z) f (s 'z)d3 z = p*(s,z) -~ssf(S,z)da z (29) 

d c3 dzi c ~ 
= t- 

ds c~s ds c~z i 

~_q~,(p* d V) = u~(p * d V),~ = O, (30) 

which are true in any coordinate system (s, zi). 

In the 1PNA the total mass M and coordinates of the center of inertia of an N-body 
system X i are defined in any inertial RS by the formulas (Fock, 1955): 

R3 

d a x(p* + c -2(2ip* v 2 + p* H - l p ,  U)) (31) 

MXi( t )  = I d3xp*x i (1  + c-2(�89 + 1-I - �89 (32) 

R3 

Fock (1955) proved that in the 1PNA the mass M is conserved and the centre of inertia 
X i moves in space with a constant velocity along straight line. Thus, Xi(t) = Pi t  + K i, 

where the constants p i =  d X i / d t  and K i are the N-body system's momentum and 
center of inertia integrals, respectively. 

One can show (Will, 1981) that form of the metric tensor (20) is invariant under 
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constant rotation of space coordinates and post-Newtonian Poincar6 transformation: 

t ' =  t + c-2(L2vZt-  vkx  k) -+- (33) 

+ _ � 8 9  + O(c -6) 

x 'i = (6  ig + c -  2!vi2 v k ) ( x  k -- V k t -  b k) + 0 ( c - 4 )  

Here ( t , x  ~) is one inertial RS and ( t ' , x  'i) is another that, V i and b ~ are the constant 
velocity and displacement respectively. 

The form-invariance of the metric (20) under post Newtonian Poincar6 transforma- 
tion (33) justifies the word 'inertial' for harmonic RS's constructed under boundary 
conditions (16) and (17). One can choose from the set of inertial RS's the barycentric 
inertial RS. In this RS the functions X ~ must be equal to zero for any moment of time. 
This condition can be satisfied by the applying to the metric (20) transformation (33), 
where parameters V i and b ~ are to be selected so that P~ and K i equal zero (for details 
see Brumberg (1972) and Will (1981)). Barycentric RS is convenient for the solution of 
the relativistic external problem. The solar system barycentric RS is used for 
construction of planet ephemerides (Lestrade and Chapront-Touz6, 1982; Newhall et 

al., 1983; Akim et al., 1986). The coordinate time of the solar barycentric (harmonic) RS 
must be considered as a TDB time scale, which is 
astronomical practice. 

Nevertheless (see introduction), the barycentric RS 

extensively used in modern 

is unsuitable for solving the 
relativistic internal problem. A fully consistent relativistic description of this problem is 
possible only in the 'good' PRS in which the external gravitational effects are greatly 
reduced, leaving only small tidal ones. The construction of the 'good' PRS must be 
commenced with an intermediate step - the constuction of the set of the quasiinertial 
RS's. 

4. Harmonic Quasiinertial Reference Systems 

The harmonic quasiinertial RS's (~,~i) are defined in the neighborhood of the 
self-gravitating body. They are constructed so that solution of reduced Einstein 
equations (13) is to have in the internal and buffer regions the following structure 
(Thorne and Hartle, 1985): h "~ = h~ ~ + h~ + h~ p. Here h~ ~ describes the gravitational 
field of the body and may be represented outside the body by two infinite families of 
internal mass AqrB, 3 ~ , 3 ~ , . . .  and current S"~, S~,.. .  of the body's multipole moments. 
The h~ describes the homogeneous field of force of inertia and tidal gravitational field 
of the external bodies. Th h~ is characterized by two families of external electric-type 
moments Qala2...a, and magnetic-type moments Ca,a2...a ~. All internal and external 
multipole moments are symmetric and trace-free (STF) tensors under linear coordinate 
transformations. In our approach the electric-type moments will begin with dipole 
order Qi, but the magnetic-type moments will do so only at quadrupole order Cij. This 
means that one will consider only nonrotation (no angular velocity term Ci), but 
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admitting an arbitrary acceleration (term Qi) quasiinertial RS. It is understood that 
rotation and acceleration of the quasiinertial RS takes place with respect to the 
asymptotically inertial RS in the buffer region of the body (Thorne and Hartle, 1985). 
The h~ a describes the gravitational field, which represents the interaction between the 
fields h~ a and h~ and appears because of the nonlinearity of the Einstein equations. 

We shall show that the described form of h'a(r, ~) actually exists. It can be exracted 
from the Einstein equations (13) with the help of a well-prescribed and unambiguous 
procedure. This procedure is, in fact, a combination of the PNA scheme and the 
multipole formalism of Thorne (1980) and Thorne and Hartle (1985), used in the 
internal and buffer regions of the body (Kopejkin, 1987; Brumberg and Kopejkin, 
1988). 

In the internal and buffer regions the energy-momentum tensor of matter is that of 
the body under consideration only. One presents h "p as a series in powers of G and 1/c 
and substitutes the expansion in the Einstein equations (13). Then, as the first step of 
iteration in the linearized order of G the inhomogeneous Poisson equation for h "a is 
obtained. In the right-hand- side of this equation a linearized energy-momentum tensor 
of matter of the body under consideration is included. In the quasiinertial RS's the 
solution of such an equation is sought as a sum of the two terms. One term represents 
the linearized solution for h~f, which is the particular solution of the inhomogeneous 
Poisson equations that are well-behaved at ~ ,oo. Another term describes the 
linearized solution for h~. This is sought as the general solution of the homogeneous 
Laplace equation that is well-behaved at ~ = 0. This solution contains 10 independent 
families of multipole moments (Thorne and Hartle, 1985; Suen, 1986; Zhang, 1986). By 
imposing de Donder (harmonic) gauge conditions one gets rid of 4 families of moments. 
Then by performing gauge tansformations with some specific form of generators (Suen, 
1986; Zhang, 1986) that are solutions of the Laplace equation one can get rid of 4 more 
families of moments. Finally only two independent families of moments survive: 
electric-type m o m e n t s  Qala2...aa (l >~ 1) and magnetic-type m o m e n t s  Cala2...a 1 (l >~ 2). 
In the linearized order of G a solution for h~ a is identically equal to zero. 

The linearized solution of the Einstein equations (13) is substituted in the right-hand 
side of these equations and second iteration is done. One obtains: 

0oo(r, = 
2 (  ~ ( 2 / - 1 ) ! !  ) 

- 1  + j  Q,. + 
/=1 

2 (  1 ~2 
+ 

20B(r,{) ~ (2/--1)!! 
l= 1 l! Qr ~<r > -- 

G ~ (21- 1)!! 
/=1 1! Or 

(p* >) + 
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1 s (21-  1)!! 
- ' l-~ /=1 l[ 

1 
21 + 3 ~ > 

oo o0 (21-  1)!! ( 2 p -  1)!, 
E ~ l! p! " QL Qe~<r> ~<P> 

/=1  p = l  
+ 0(c-5); (34) 

Ooi(Z,~) = 4U~(z,~) 4 ~ l(2l - 1)!! 
-- C3 C-3 -0+ 1~ F~ipqCpL-I ~<qL-I> + 

/=2  

4 ~ ( 2 / -  1)!! 21 + 1 ( 

/=1 
(35) 

l \ 
- 1  ~ < L - 1 > ~ 2  / 

2 / + 1  / 
+ O(c- s); 

Oij( T'' ~) "-" (~ij 1 + (UB(T, ~) -4- ~ QL 
/=1  

~<L>)) + O(c -4) (36) 

l~m(f)[z,  ~] = - ~'1 "d3 (37) 

V B 

Un(z, ~) = GI(B_)~ (p*);)~n(z, ~) = -- GI]m(p *) (38) 

0/8(r, r = GI(B_) l (p* vi); v i = d~ i/dr (39) 

~n(z, ~) = GI~)~ (2~p * v 2 - p* 0 n + p* H + 3p) (40) 

Here the functions UB(z, ~), L?~(z, ~), ([)n(z, ~) and 2n(z, ~) characterize own gravitational 
field of body under consideration. These functions can be expanded outside the body in 
infinite series in small parameters Ln/?, where ? = (~i~i) 1/2 

- + 6 J~c3r ; c3r = ~--z; (41) 

O~(z ,~) -  p + G ~ ( - 1 ) '  (l + 1)! epq - 1  - -  

/=1  

/'/BL- 1 C~L _ 1 ; 
, = 2  

,=, ? [~ c? L f ; (43) 

i"~1,2...a,= p,~al~2. . .  ~,,d3~; (44) 

lib 

where functions 

lib 

(45) 
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~aB'a2""a'= fp,r 
lib 

" ' { ~ . . .  {"'> d{ (46) 

are the mass internal multipole moments and functions 

SaBla2...a' = f d3~P*gPq<al~a2 
Vn 

�9 . .  ~a,> ~pvq (47) 

are the current internal multipole moments. Note that the quadrupole 3~, octupole 
3}/k etc. moments have an order l f laL~% (l ~ 2). The function/3~ = ~v,,p,v i d3~ is the 
definition of body's linear momentum in the Newtonian approximation. It can be 
obtained, from the dipole moment/ '~  by differentiating it with respect to time z, i.e. 
P~('c) = I"~(z). 

Functions Qala~...a, (l >~ 2) and C,~,~...,, (l >~ 2) are external multipole moments and 
characterize a tidal gravitational field of distant bodies. These functions and 
acceleration Q~ reside at the origin of the quasiinertial RS and depend only on time z. 

The M B is the body's mass. It is constant because of the fullfilment of equation of 
continuity (28). Coordinates of the body's center of inertia ~ are defined according to 
the identical relation: ) ~ a ~  =/'~. One deduces as well from the exact equation 
T~; cr = 0 the Euler (Newtonian) hydrodynamical equations for a perfect fluid: 

dv ~ t30 a c3p ~ ( 2 / -  1)!! p* d--~ = p* - -  ~- p*/-" (l - 1)! QiL -1~ < L-1 > + O(C- 2) 
i i Z = l  

d c~ 
d--7 = c3--~ + v k ~ ( 48) 

Equations of motion of the body's center of inertia are obtained in any quasiinertial RS 
by means of the differentiating of/3~ once with respect to time r and using equations (48) 
in the integrand. One has: 

dP~/dz  = _~IBQ' + ~ ( 2 / -  1)!! 
l=2 ( l -  1)! 

+ (49) 

This formula is identical to the equations of motion of the body's center of inertia in the 
quasiinertial RS of NGT. Thus one can conclude that the harmonic quasiinertial RS's 
generalize the notion of the quasiinertial RS's of NGT. 

We shall not investigate here the residual coordinate freedom between the 
quasiinertial RS's in full detail. Note only that in the Newtonian limit space 
transformation between two quasiinertial RS's (z', ~,i) and (z, ~i) admits constant 
rotation and translation depending on time 3: 

= r, + O(c-2)  

~,~= ~ ,  ~ k _  b'(r,) + O(c-2) (so) 

Transformation (50) does not change the form of the eq.m. (49). 



C E L E S T I A L  C O O R D I N A T E  R E F E R E N C E  S Y S T E M S  I N  C U R V E D  S P A C E - T I M E  105 

We have constructed the sets of inertial (t, x i) and quasiinertial (z, ~i) RS's. These RS's 
are overlaped in internal and buffer regions of the body. Thus, the coordinate 
transformation between them should exist. It may be found with the help of the 
asymptotic matching (AM) of components of metric tensors of two RS's in internal and 
buffer regions. Aside from this the AM allows us to establish the explicit form of the 
functions Qala2...at and Cala2...a ' (l >i 2) and deduce the eq.m. of the origin of quasiinertial 
RS relative to the inertial RS. Acceleration Qi cannot be derived by the AM and 
therefore remains arbitrary. This arbitrariness will be used later for appropriate choice 
of worldline of the origin of quasiinertial RS for construction of 'good' PRS. 

5. Coordinate Transformation Between Inertial and Quasiinertial Reference Systems 

Coordinate transformation is sought in the form: 

- 2 / ' Z , , 2 ~ -  _ _  1 ,8 t /B  r 2t~Bt/B "~ _~. 75 = t + C ~,2t~B~ + A 1)kBX k) + C - 4 1 3 " ' 4 ~ -  - -  ~ "  2 ,  k ,~,.k 

O0 

+ B + ~ BL(X-  x) L + O(c-5) 
/ = 1  

- 2 ( l , , i , , k  Fik + c + + + 

+ c-2DOP(xJ- x~)(x p -  x~) + O(c -4) 

(51) 

(52) 

Functions x~, v~ = dxiB/dt, A, B, Fig, Dig, D ijp and B "'"~"' in the formulas (51) and (52) 

depend only on time t and have the following properties: 

F i k =  F [ik]" D i k =  D (ik)" D ijp = D i(jp)" B"'"~~' = B (ax"~'"') (53) 

We have not written out the term of order O(c-27~2/R2) in the formula (51) and the term 
of order O(c-2t~3/R3) in the formula (52) since (as will be made clear later) these terms 
are identically equal to zero. Note also that the point x i= x~ in the inertial RS (t, x i) is 
the image of the origin of the quasiinertial RS (z, ~i), i.e. point ~i= 0. 

The asymptotic matching of metric tensors (20) and (34)-(36) is realized in the 
internal and buffer regions of the body according to the formula: 

OU 
g,a (t, x) = Ou,(z, c xa (54) 

In fact, formula (54) is equation, in which the left-hand side is known, but the right-hand 
side is not. This equation may be solved by a step-by-step method, in which the small 
parameters are the same as in Section 1. Thus, one can determine all unknown 
functions in the fight-hand side of (54): (1) from matching 9oo(t,x i) with O,t3(z, ~i) one 
finds A(t), B(t), Qa,a2...,, (l >i 2) as well as ordinary differential equations of second order 
(equations of motion) for function x~(t); (2) from matching 9oi(t, x i) with 0,p(~, ~i) one 
finds Ba,a2...a, (l >t 1), Fik(t) and Ca~a~...a, (I >>- 2); (3) from matching go(t, x i) with O,~(z, ~i) 
one finds Dik(t) and DiJp(t). 
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4.1. M A T C H I N G  goo(t,x i) WITH O~fl(z, ~i) 
For goo(t,x i) formula (54) gives: 

g~176 = g~176 ~)\c~t] 
2 c~z c~ i 1 c~ i c~ j 

+-O~ ~)-c~t c~t ~- --C 20~ {)--c~t c~t (55) 

Substituting expressions (20), (34)-(36)in formula (55) and using formulas (51), (52) for 
calculation of derivatives & / &  and c~i/c~t one obtains: 

- 1 +  
2U(t ,x )  

2 
C 

m 

2 (  ~ ( 2 l -  1)!! 
- 1 + ~ UB(Z, ~) + Q,~' + -li QL~L 

e = 2  

(v~a~)t- ,7t + a~x k) + O(c -4) (56) 

where a~ = dv~/dt. 
Potential U(t, x ~) satisfies the linear Poisson equation and therefore may be presented 

in the form: 

U(t, x i) = Ua(t, x i) + UE(t , x i) (57) 

where UB(t,x ~) is the Newtonian potential of the body under consideration in the 
inertial RS: 

Ua(t, xi)= G Ip*(t,x')lx- x'1-1 d 3 x  ' 

VB 

and Uv,(t,x i) is the Newtonian potential in the inertial 
bodies: 

One 

v~(t,x')= ~ v~(t,x'); 
A -C B 

U A(t, x' ) = GI(a)~(p *) 

(58) 

RS created by the external 

has also (Will, 1981; Kopejkin, 1987), with an accuracy up to 

powers 

(59) 

(61) 

Let us now substitute formulas (57)-(61) in formula (56), reduce the similar terms and 
equate the terms having the similar powers (x i - x~) in the right-hand side and left-hand 
side of the residual equation. One obtains: 

;t(t) = aaxak , _ (v~a~)t -- UE(XB) (62) 

�9 ~U~(x~) Q, ~) 
a'B = c3x~ - + O(c-  (63) 

v~(t, x ) =  V~(x~)+ - x ~ ) +  ~ tx - x~) '~ 
l = 2  

P o t e n t i a l  

neighborhood of the point x~t): 

udt, x') = Od~,  ~') + O(c- ~) 

UE(t,x ~) must be expanded in Taylor series in 

order O(c-  2): 

(60) 

of (x i -  xiB) in the 
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1 O U (xB) -2) 
QalaE...az-- --}-- O(c (64) 

(21 - 1)!! Oxa~ . . . c3x~l 

where 1 ~ 2. 
Formula (62) represents in the O(c -2 )  approximation a part of the infinitesimal 

coordinate transformation between coordinate time scales t and z. Using the identities: 

d 
k k ( V ~ X ~ ) -  V g (65) a B X B  - -  

d r  

d (a~v~)t = (�89 ~-~VB2 (66) 
dt 

in the formulas (51) and (62) it is not difficult to obtain the integral 
between the aforementioned time scales: 

transformation 

t 

t + c -2 (_1 2 _ (67) = 7Vn U E(XB) ) d t -  vk(x k -  X k) + O(C -4) 

to 

Formula (67) is in very close analogy to the Thomas (1975) equation (13) and the Moyer 
(1981) equation (21), which describe transformation from the proper time of the Earth 
to coordinate time of the solar system barycentric RS. Derivation of equation (67) 
presented here is, in my opinion, more simple, straightforward and clarifies interpreta- 
tion of the time scale t and r. Moreover we have proved that the time transfomation (51) 
actually does not contain terms of order O(c-2?~2/R2). 

Formula (63) represents the Newtonian eq.m. of the origin of quasiinertial RS with 
respect to inertial RS. By making specific choice of Qi and solving equations (63) one 
can calculate the explicit dependence of x~ on time t. 

Formula (64) gives in the Newtonian approximation the explicit expression for 
external multipole moment s  Qalaz...a, (l >>. 2). The fact that these quantities are STF 
tensors follows from the formula (64) and the homogeneous Laplace equation A UE = 0, 
which is true in the internal and buffer regions of the body B. 

For obtaining function B(t), equations of motion and expressions for external 
multipole moments Qala2...az in the 1 PNA it is necessary to match goo(t, x ~) with metric 
9,a(r, ~) in the O(c -4) approximation (some details and formulas will be presented in 
Section 7). 

4.2 MATCHING gij(t,X i) WITH 0~#(Z, ~i) 

For gij(t,x i) formula (54) gives: 

( 2U(t ,x))  ( 2Us(z, ~) 2Qi~i 2 ~ ( 2 / -  1)!! ~L 
6ij 1 + c~ = 6 o 1 + C 2 + racE "~ ~ "~. QL -+- 

/=2 

2 2 
+ c2D ij + C 2,(D ijp -at- D J i P ) ( x  p - -  x~) + 0(c-4))  (68) 
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Using formulas (57)-(61), (63), (64) and equating the terms having the similar powers of 
(x i -  x~) in the formula (68) it is not difficult to find: 

Dig = 6iJUE(XB) (69) 

DiJp= ~(6iJa$ + 6ipa~_ 6JPaiB) (70) 

The function D i~ defines magnitude of the gravitational (Einsteinian) contraction of the 
body's shape. This contraction is isotropic in any harmonic RS (Kopejkin, 1987; 
Brumberg and Kopejkin, 1988; Damour, 1987). 

4.3 M A T C H I N G  goi(t,x i) WITH 0~//(z, ~i) 
Matching goi(t,x i) with 0~(z, ~) is performed by analogy 
Formula (54) is used again with the go~ in the left-hand 
potential U~(t, x ~) is presented in the form: 

with that for goo and gij. 
side of the equation. The 

Ui(t, x i) --- U~(t, x i) + U E(t, X i) (71) 

U~t,x i) = G f p*(t,x')v'(t,x')lx - x'1-1 d3x ' 

VB 

(72) 

U~(t,x') = ~ U~4(t,x'); U~(t,x')= GI~)~(p*v ') (73) 
A~B 

Transformation between the local velocities of the fluid's element in the quasiinertial 
and inertial RS's is established with the help of the formulas (51) and (52). One has in the 
Newtonian approximation: 

v'(t. x') = ~(t) + v %  r + O(c-~) (74) 

The substitution of the formula (74) in the expressions (71)-(73) gives: 

u'(t. x') = v'.(t)O.(~. ~) + 0 ~ .  ~) + u~(t. x') + O(c-~) (75) 

The potential U~(t, x i) is expanded in the Taylor series in the neighborhood of the point 
x~ in powers of (x i -  x~). Reducing the similar terms and equating symmetric and 
antisymmetric coefficients attached to the similar powers of (x i -  x~) in the left-hand 
side and right-hand side, respectively, in the formula (54). With goi in the left-hand side 

one obtains: 

B'= 4U~(xB)- 3v~Ug(xB); 

Bi"= 2U~,P)(XB)- 2v~Q, ) -  v~a~ ) + �89 

BiV. = Z3U~,V")(XB)- 2vgQp,) + �89 """) + ~6""Oq); 

of it 

(76) 

(77) 

(78) 

Biala2. ..al 4( 
(l + 1)! 

u~'ala2""al)(XB) - - ( 2 / -  1)[[vgQalaz...a,) + 

l (21- 3)It (~(ialoa2...al)); (l >I 3) 
+ 2 l+  1 

(79) 
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/+u= _4U~,J](xn) + 3v~U,~](xn)+ v~QJ]; 

eikPckq _ ZU~,p]q(xn) 2v~Q p]q + 3i/) [ip]q 
3 ~ 

(8O) 

(81) 

F, ikal c k a 2  .. .a I 2 

( 2 / -  1)!! 
g ~ , a l  ]a2""al(XB) __ 2V~oal ]a2""a! __ 

2 l 
-- ~ 2  Q a 2 " " a j - l a j + l ' " a l [ i ~ a l l a j  

l(21 1) i= 
(l t> 3) (82) 

The matching goi(t, x'i) and go{t, x ~) with O,~(z, ~i) proves that the space transforma- 
tion (52) actually doesn't contain the terms of order 0(c-2~3/R3). Therefore, the 
formula (52) turns out to be convenient for practical applications in the ephemeris 
astronomy as well as in the theoretical investigations. In this aspect our space 
transformation (52) favourably differs from the space transformations found by Ashby 
and Bertotti (1986) and Fukushima et al. (1986) which contain infinite number of terms 
in the 0(c-2) approximation. 

The formulas (81) and (82) give explicit expressions for external magnetic-type 
multipole moments C,,,2..., ,. It is not hard to see that these moments depend only on 
the relative motion of the body under consideration and external bodies. The fact that 
magnetic-type moments are STF tensors may be proved by the contraction over any 
two indices (apart from i) in the left-hand side and right-hand side of the formulas 
(81)-(82), the use of the harmonic coordinate conditions (12) and homogeneous 
Laplace equation A W~ = 0, which is true in the internal and buffer regions of the body. 

Formula (80) describes relativistic precession of the space axes of the quasiinertial RS 
(r, ~i) with respect to the space axes of the inertial RS (t, xg). It is interesting to note that 
this precession in the presence of massive self-gravitating body has exactly the same 
form as relativistic precession of the spin of accelerated rotating test body (gyroscope) 
(Misner et al., 1973). 

6. Harmonic Proper Reference System for a Massive Body 

Let us call the quasiinertial RS the proper reference system (PRS), if it has the metric 
tensor in the form (34)-(36) and the origin, which moves along the worldline of the 
center of inertia of the body. Thus, coordinates of the body's center of inertia ~ and all 
its time derivatives are equal zero identically in the PRS for any moment of time. Hence, 
the left-hand side of the eq.m. (49) has to be equal zero identically as well and one can 
conclude that the acceleration Qi (which has so far been retained unspecified) has to be 
defined according to the formula: 

( 2 / -  1)!! 
Qi = --  ]~/IB 1 /_.. Q i L - 1  3 L  - 1  -Jr- O ( c -  2) (83) 

/=3 ( / -  1)[ 

Here one has dropped the term 3QuI~ since the body's dipole moment I~ is equal zero 
identically according to the definition of PRS. 
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PRS is convenient for solving the internal problem both of classical and relativistic 
celestial mechanics. It is also acceptable for description of the observer's location on the 
Earth's surface, construction of the geocentric ephemerides of the Moon and artificial 
satellites of the Earth, interpretation of the VLBI observations etc. As an example of 
work with the PRS and its usefulness I give the derivation of the Newtonian equations 
of translational and rotational motion of the body. 

As is well known the Newtonian external potential Ue(t, x i) may be expanded in the 

U E ( t " x i ) : L  k -~A + ~ ( -  G 3 A ~ L  

series: 

(84) 

where R A = (RAi  Rjt)  1/2, R,~ = x i - x~, and 3LA are the internal mass multipole moments 
of the external bodies, defined in their PRS's. Using the formula: 

1 )  = ( _  1)~(2/- 1)!!R~S,Rj2. . .R~>/R2,+ ~ (85) 
~L RA 

and substituting formulas (64), (83) and (84) in the (63) one obtains 
equations of translational motion of the body's center of inertia: 

the Newtonian 

aa.4= E 
A A 

G M A M  B . oo 

A#B RA2 N .+EE A#B l = 2  

G B3] v<,L>) + 
+(-1)t o--7- ~ I , A B  

*'LAB 

(21 +t, 1)!!( G]~'IA ~Lo ,+2  M<iL> 
,, 2"AB 2r- 

�9 *,LAB 

+ E ~ ~ ( -  1)k (2; + 2k + 1)!! ~r<,~,> (86) 
A # B I= 2 k = 2 -k~ ~ ~ - +  aB z " aB 

where RAB (RiABRABi)I/2; R~AB = x~ x~; i __ -- " - -  " N A B  Ri4B/RAB.  Note that the equations 
(86) have been obtained by the nonstandart way. 

One begins with to the derivation of the equation of motion of the body's dipole 
current multipole moment S~ (spin). Let us differentiate with respect to time z both sides 
of the definition of S~ (47). Then, one can prove that the torque of the body's internal 
forces is equal zero identically, but the torque of the external gravitational forces 
produces tidal precession of the body's spin: 

dS~ ~ ( 2 1 -  1)vv 
= "" ' + O(c  2) dr ~= 2 (I 1)[ gpqQqL- 1 3 ~  L - 1  - - (87) 

Using formulas (64), (84) and (85) in the fight-hand side of the formula (87) one obtains 
the Newtonian equations of rotational motion of the body B in the explicit form: 

d,~ m ~ i Z (2t 1),! 
dz A#B /=2 (1-- 1)! C, pq 

G~/I aog~ L- 1 N <~L -1 > 
AB + R I +  1 AB 
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oo oo (_ l )k  (2l + 2k + 1)!! , G3~JJf3 L-~ 
+ Z E E k! ( l -  1)! epq Rk+,+~ 

A r  l = 2  k = 2  AB 

N'a~ L-l> (88) 

A *  

The tidal precession describes the law of a time change of the body's spin S~ with 
respect to the space axes of PRS. Recall that the space axes of PRS themselves rotate 
with respect to the space axes of inertial RS (t, x i) with angular velocity of the relativistic 
precession (80). Note that the fight-hand side of the formula (80) consists of the three 
terms. The first term is the Lense Thirring or gravitomagnetic precession, the second 
one is the de Sitter or geodetic precesgion and the third term is the Thomas precession. 
The gravitomagnetic and geodetic precessions are well known (Papapetrou, 1951; 
Barker and O'Connel, 1975; Misner et at., 1973; Thorne and Hartle, 1985). The Thomas 
precession is caused by the deviation of the worldline of the body's center of intertia 
from the geodesic one. This deviation is characterized by the acceleration Qi, which is 
defined according to the formula (83). As far as I know the Thomas precession of the 
body's spin S"~ was overlooked in the previous derivations of the relativistic precession 

for spin of the massive self-gravitating bodies. 
One notes also that the coordinate time z of the PRS for the Earth may be adopted as 

definition of the TDT time scale. Such a definition is exact and unambiguous. 
Transformation between TDT and TDB is given according to the formula (67) (see also 
formula (4.1) from Brumberg and Kopejkin (1988)), where x~ and v~ are understood 
now as coordinates and velocity of the Earth's center of intertia in the harmonic solar 
barycentric RS. The explicit dependence on time t, of coordinates x~ are evaluated in 
the Newtonian approximation from the eq.m. (86). A link between TDB, TDT and 
proper time of the atomic clocks placed on the Earth's surface or artificial satellite is 
realized with the help of the additional transformations derived in (Brumberg and 

Kopejkin, 1988). 

7. Coordinate Transformation Between Inertial and Proper Reference Systems 

Coordinate transformation is naturally the same as that between inertial and 
quasiinertial RS's except that functions x~t) are now meant to be coordinates of the 
body's center of inertia. In addition to the results presented in Sections 4 and 5 we give 

here the functions B(t) and a~t) in the 1 PNA. 
The matching procedure in the 1 PNA is tedious and complicated. For example, it is 

necessary to take into account that all integrals involved in the metric in the inertial RS 
are taken over hypersurface t = const, but integrals involved in the metric in the 
quasiinertial RS are taken over hypersufface z = const, which does not coincide with 
that for t - c o n s t .  Thus, when matching is done one has to transfer by Lie 
transportation all quantities defined on the hypersurface z - const, to the hypersurface 
t = const. Moreover, one must extensively use to a full degree the mathematical 
formalism developed by Thorne (1980) and Blanchet and Damour  (1986) for 
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operations with the STF tensors. We have done all the necessary calculations. The 
exhaustive final results of AM in the 1 PNA will be published elsewhere. 

Here we give coordinate transformaton between inertial and proper RS's only under 
assumption that the rotational motion and nonsphericity of the bodies give a negligible 
correction to the relativistic terms in the equations of translational motion of the 
bodies. The functions involved in the transformation are defined as follows 

(Grh A 
A = a~XkB -(akBvkB)t - A~B ~ RAB 

oo (21-- 1)!! 
F- G ~ ( -1 ) '  

/ = 2  1! 
ol + 1N<A~ (89) 
"~AB 

j B 1 2  k k (akvk)(v~x~)_ k k 2 A ~ B G l ~ A ( 3 2  = 2a(anvs)vat- RAB 2vn + ~vn(aBXB) + 

+ 2v 2 4(vkAv~) ~,.~, ,.2 - -  - -  ~ 1~1AB l) A )  

1 Grh c 

c~ ecB 

E R C  A ~ ~ ; ( 9 0 )  
C#A RCA J /  

a ZB = A~# B ~ R 2A n N 'A B + G 2 ) (2/+ 1)!! rh A 
li 3~  + ( -  1) '3~ N<A'~>RI+2 

AB 

§ ? ~ ~ ( - 1 )  k (2/+ 2k + 1)!! JAKJ L 

"'VtaB l 2 k 2 r~;b! ,.1! D l + k + 2  = = Jt~AB 
AB 2r- 

A~n Gdna Ni ( -- 2(NABVkA) 2 + ~2~B An V 2 + 2V 2 -- 4(vkAv k) a k 

- 4 ~ Grfic 
C~B RCB 

+E 
A ~ B  

--2ANkn(4V k -- 3vk)(v~4 -- V~) + 
AB 

7 
2 Z 

2 A # B  C#A  

G2r~ArnC NicA ., 
RABR2A 

Dii = 6o ~ GrhA. 
9 

A # B  NAB 

1 Grh a 
D `j" = + a ' " N J A . -  R2B A-;b 

p i p  = G ~  A . . 3 Grh a . 
- 2 ~ (V'ANPA. -- vPAN'AB) + y' (V'BNPA. -- v[N~AB); 

-k A . R2B 27B dT~ 
Gift A 

B i= ~ (4v~4- 3v~); 
A-;-B 

(91) 

(92) 

(93) 

(94) 

(95) 
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1 
BiP= A~B \"AB (v~N~B + v~4N~4B) ~2 

+ ~iPNkAB(Vk- vkB))) 

Gffl a 
R21~ (v~N~B + v~N~B + 

(96) 

It should be noted that the body's m a s s e s  ?~l A in the formulas (89)-(96) are defined as: 

ff/A = p * ( T ,  ~) 1 -'t- C2 

VA 

(97) 

Thus, the masses contain not only the rest mass (45), but corrections for internal energy 
of the body's matter and energy of own gravitational field of the body. Formula (91) 
represents the well known eq.m. of the body's center of inertia in 1 PNA, where 
Newtonian corrections for nonsphericity of the bodies are taken into account. We have 
not given formulas for Bala2 . . .a  I (l >~ 3) since their knowledge is not necessary for the data 

analysis of modern observations. 
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