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Abstract. We study some aspects of the restricted three-body problem when the mass parameter # is 
sufficiently small. First, we describe the global flow of the two-body rotating problem, # = 0, and we use it 
for the analysis of the collision and parabolic orbits when/~ > 0. Also we show that for any fixed value of 
the Jacobian constant and for any e > 0, there exists a #0 > 0 such that if the mass parameter/~ [0, #0], 
then the set of bounded orbits which are not contained in the closure of the set of symmetric periodic orbits 
has Lebesgue measure less than e. 

1. Introduction 

We cons ider  the c i rcular  p l ana r  res t r ic ted th ree -body  p r o b l e m  (usually, the res t r ic ted 

t h r ee -body  prob lem)  in a ro ta t ing  coord ina te  system q = (q l ,q2)  of  ro t a t i ona l  

f requency equal  to  1. In  this f rame we put  the larger  p r i m a r y  m~ of  mass  1 - / ~  at  the 

or igin and  the smal ler  p r i m a r y  m 2 of mass  p at  the pos i t ion  e 2 = ( - 1 , 0 ) .  

The  H a m i l t o n i a n  which governs  the  m o t i o n  of  the zero mass  par t ic le  m 3 is given by  

H =  IlpllZ/2+q2pl - q l p 2  -]lql] -1 + ~(llqll - ~ -  I tq -e=] t  -1 - P c )  (i.1) 

where  p = (p~, P2) are  the m o m e n t u m  var iables  conjuga te  to the q. I t  is clear  tha t  

C = - 2H is a first in tegral  of the H a m i l t o n i a n  system assoc ia ted  with H. This  in tegra l  

is cal led the Jacob i  integral .  No te  tha t  our  Jacob ian  cons tan t  differs f rom the usual  

in the cons tan t  # ( 1 -  #) (see [12]) .  

The  goal  of  this p a p e r  is to s tudy some aspects  of the res t r ic ted th ree -body  p r o b l e m  

as the mass  p a r a m e t e r  p is sufficiently small.  Firs t ,  in Sect ion 2 we descr ibe  the  g loba l  

flow of  the t w o - b o d y  ro ta t ing  p rob lem,  # = 0, and  use it, in Sect ion 3, for the analysis  

of  the col l is ion and  pa rabo l i c  orb i t s  when/~ is small  enough.  

A so lu t ion  of  the res t r ic ted  th ree -body  p rob l em has  a col l is ion with ml (resp. m2) 

in the ins tant  t o if the d i s tance  between m 3 and m~ (resp. m2) tends  to zero as t --* t o- 

O u r  ma in  results  a b o u t  the col l is ion orb i t s  are  the fol lowing two theorems.  

T H E O R E M  A. For the restricted three-body problem and for each value of  the 

Jacobian constant, the set of  orbits which end or begin at collision with m 1 or m z is 

topologically homeomorphic to a cylinder. 

T H E O R E M  B. For values of  the mass parameter # sufficiently small the following 
statements hold for the restricted three-body problem. 
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(i) For each value o f  the Jacobian constant C > 0, there is a value o f  the mass para- 

meter #o = #o(C) such that, f o r  every #e(0,  #o], at least there are two orbits w h i c h  

leave the collision with the mass 1 - I~, cross one time the surface f" = 0 and go to collision 

with the mass 1 - p, again. 

(ii) For each value o f  the Jacobian constant C < 2, there exists  a value o f  the mass 

parameter #0 = #o(C) such that, for  e v e r y / ~ ( 0 ,  #o], there is one and only one orbit 

such that it leaves the collision with the mass 1 - ~ and it goes to collision with the mass 

# without to cross the surface ~ = O. 

Since the set of  orbits of the restricted three-body problem is invariant  under  the 

symmetry  (ql, q2, Pl ,  P2, t) ~ (ql, - q2, - Pt ,  P2, - t), we have, f rom (ii) of  Theorem 
B and in the same hypotheses, that  there is one and only one orbit  such that  it leaves 

the collision with the mass /z  and it goes to collision with the mass t - ~ wi thout  to 

cross the surface ~ = 0. 
A solution of  the restricted three-body problem is a parabolic  solution as t ~ + a~ 

(resp. t ~ - oo) if the body  m 3 reaches infinity with zero radial velocity as the time 
tends to + oo (resp. - ~ ) .  

r 
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Fig .  l a .  C = 3 . 2 5 ;  r 1 =  0.236 786 5 ... , re = 0.578 375 9 . . .  , r 3 = 1 . 8 2 5 4 6 2 7  . . . .  r / = 0 . 7 4 0 1 3 9 4 . . . ,  r o =  
= 1.314 906 6 . . . ,  h i = - 1.077 193 7 . . . .  h o = 0.103 979 5 . . . ,  (0, r l )  e l l ip t i c  r e t r o g r a d e  o rb i t s ,  (0, r2) e l l i p t i c  

d i r e c t  o rb i t s ,  (rp, r3) e l l i p t i c  d i r e c t  o rb i t s .  
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McGehee  [9] proved a theorem similar to Theorem A for the parabolic  solutions;  

i.e., for the restricted three-body problem and for each value of the Jacobian  constant ,  

the set of  parabolic orbits as t --* + oe or  t ~ - oe is topological ly homeomorph i c  

to a cylinder. 

The following theorem summarizes our  results about  parabol ic  orbits. 

T H E O R E M  C. For values o f  the mass parameter # sufficiently small the following 

statements hold for  the restricted three-body problem. 

(i) For each 8 > 0 and for  all Cq~( - 8, ~), there is a value o f  the mass parameter #o = 

= #o(C) such that, for  every #e(0,  #o], at least there are two parabolic orbits such that 

they leave the infinity, cross only one time the surface ~ = 0 and reach the infinity. 

(ii) For each 8 > 0 sufficiently small and for  all C s (  - 81/2 + e, 8 t/2 - 8), there is a 

value o f  the mass parameter #o = #o(C) such that, for  every #e(0,  #o],  we have one and 
only one parabolic orbit such that it leaves the infinity and goes to collision with m 2 = # 

without to cross the surface f = O. 
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Fig. lb .  C = 3 2 1 / 3 ,  rl=2-5/3(3-5a/2), r 2 = 2  -2/3, r3=2-5/3(3+51/2), ri=2-2/3(5t/2-1), r o = 2 1 / 3 ,  

h~ = 2 1/3(1 -51/2), h o = 2 z/3, (0, rl) elliptic retrograde orbits, (0, r2) elliptic direct orbits, (rp, r3) elliptic 
direct orbits. 
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By using the symmetry (ql,q2,pl,P2,t)-*(ql,- q2,--PI,P2,- t), we have, from 
(ii) of Theorem C and in the same hypotheses, that there is one and only one parabolic 
orbit such that it leaves the collision with m E =,tt and goes to infinity without to 
cross the surface k = 0. 

The proofs of Theorems A, B, and C are given in Section 3. 
In the restricted three-body problem a periodic orbit symmetric with respect to the 

ql-axis crosses the ql-axis twice and only twice at right angles. The crossings at right 
angles may be divided into four classes, lower and higher passages at opposition and 
at conjunction, respectively (see Section 4 for definitions). Then there are ten possible 
combinations of pairs of the four classes of right-angle crossings. We prove the follow- 
ing result about the 'density' of the symmetric periodic orbits. 

THEOREM D. For any fixed value of the Jacobian constant and for any e > 0, there 
exists a #o > 0 such that if the mass parameter t ~  [0, Po], then the set of bounded orbits 
which are not contained in the closure of one of the ten classes of symmetric periodic 
orbits has Lebesgue measure less than e. 

- i . ]  e l l i p t i c  
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Fig .  1c. C = 3 . 1 ,  r 1 = 0 . 2 4 4 5 5 5 5 . . .  , r 2 = 0 . 7 0 2 2 5 1 7 . . . ,  r 3 = 1 . 4 5 5 6 9 2 7 . . .  , r i = 0 . 8 2 8 8 2 9 4 . . . ~  r o =  

= 1.193 310 8 . . . .  h i = - 0.863 041 8 . . . .  h o = - 0 .126 009 2 . . . .  (0, r l )  e l l i p t i c  r e t r o g r a d e  o rb i t s ,  (0, r2) 
e l l i p t i c  d i r e c t  o rb i t s ,  (ro, rp) e l l i p t i c  d i r e c t  o rb i t s ,  (ro, r3) e l l i p t i c  d i r e c t  o rb i t s .  
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The t o p o l o g y  with respect  to which  we take  the c losure  is the usual  t o p o l o g y  in a 

surface of  sect ion induced  by  the t o p o l o g y  of  (R z - {0, e2} ) x R 2 when we have fixed 

a value  of  the Jacob ian  constant .  

T h e o r e m  D improves  a t heo rem a b o u t  the dens i ty  of the per iod ic  orbi ts  in the set 

of b o u n d e d  orbi ts  for the res t r ic ted t h r ee -body  p r o b l e m  given in [5].  

The  p r o o f  of T h e o r e m  D is given in Sect ion 4. 

2. The Global Flow of the Two-body Rotating Problem 

When  the mass  p a r a m e t e r / ~  is zero the res t r ic ted t h r ee -body  p r o b l e m  is cal led the 

t w o - b o d y  ro ta t ing  prob lem.  This  p r o b l e m  is defined by the H a m i l t o n i a n  

H = IlPtl=/2 + q z P l -  q l P 2 -  t l q l l - 1  

wher~ tl II is the Euc l idean  n o r m  in R 2. The  t w o - b o d y  ro ta t ing  p r o b l e m  as 

H a m i l t o n i a n  system is in tegrable ,  because  o ther  integrals  are  the sidereal  energy 

h=llpll2/2-llql[ -1, 

-1.9 e l l ip t ic  
collision 

I. 
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Fig. ld. 
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C = 3, r I = 0.25, r 2 = r 3 = r i = r 0 = 1, h i = h 0 = - 0.5, (0, rl) elliptic retrograde orbits, (0, 1) 
elliptic direct orbits, (1, rp) elliptic direct orbits. 



88 JAUME LL1BRE 

and the sidereal angular  m o m e n t u m  

M = q l p 2  - q e P l .  

Of course, since H = h - M = - C/2, only two of these three integrals have linearly 
independent  gradients. 

Let I c be the set of  points of the phase space with Jacobian constant  equals C. In  a 

similar way we define the set I h, and denote by Ihc the set I h c5 1 c . 

N o w  we study the sets Ihc. In what  follows we fix the value of the Jacobian constant  

C. We int roduce polar  coordinates  (r, 0), i.e. qt + iq2 = r exp (i0). I t  is k n o w n  (see 

[6])  that  if M 5~ 0, then every solution of  the two-body  rotat ing problem satisfies 

r = M2[1 + (1 + 2hM2) 1/2 cos (0 - 0 ' ) ] -  1, 

= ( 2 r -1  _ M2r -2 + 2h) l/z, (2.1) 

where O' is an adequate  constant.  When  M = 0 we have a collision orbit  which 
satisfies 

f2 = 2 r -  1 + 2h. (2.2) 

e l l i p t i c  

co l l i s i on  
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C = 1, r~ = 0 . 4 3 2  0 4 0  8 . . . .  (0, rl) elliptic retrograde orbits, (0, r2) elliptic direct orbits. 
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Fig. lf. C = 0, r 1 = 2- 2/3, (0, rl) elliptic retrograde orbits. 

For  a fixed value of  0 we plot  on the half-plane (r, 1:) the sidereal energy curves h 
equals constant.  In Figures la  - g we have drawn these curves for seven values of the 
Jacobian constant  C according as the value of C satisfies C > 321/3, C = 321/3, 

3 < C < 321/3, C = 3, 0 < C < 3, C = 0 and C < 0. Equat ions  (2.1) and (2.2) are useful 

in the plot of  Figure 1. Since the sidereal energy curves are symmetric with respect 

the r-axis on the half-plane (r, 1:), we only have drawn on the quadran t  i > 0. The 

full picture of the sets lnc is obtained by rotat ing the cross-section about  the ~:-axis. 

Then we only obtain five different qualitative pictures of the flow on I c according as 

the value of  C satisfies C > 3, C = 3, 0 < C < 3, C -- 0 and C < 0. We describe these 

five possibilities. 

CAS~ C > 3 

The set I c = ~hlhc has two components .  First component ,  I~, correspond with 
values of the sidereal energy h~[hl,h2] and the second one, 1~, with values 
he[h3, + oe), where h / =  - (2ri)- ~ and ri, for i = 1, 2, 3, are the three positive roots  of  

the polynomial  

4r 3 - CZr 2 + 2Cr - 1, (2.3) 
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hyperbolic 
c ~ l i s i o n  

p r I 2 3 

F i g .  l g .  C = - 1, r 1 = l ,  (r v, rl) e l l i p t i c  r e t r o g r a d e  o r b i t s .  

(see [3] p. 706). Also, we can say that first component correspond with values of 
re[0, rl] and the second one with values r ~ [ r  o, + ~ ) ,  where a and b are the two 
positive roots of the polynomial r 3 - Cr  + 2.  

The description of the sets Ihc in I~ is given in Table I. This table follows essentially 
from Figure 1. Ever, we have that h c = - C / 2  and r c = - h c i if h c < 0, and that 
r v = C 2 / 8 .  

A direct orbit is an orbit such that its projection on the q-plane turns around the 
origin counterclockwise. If the particle is moving in the opposite direction, we 
speak of a retrograde orbit (for more details, see [-3], p. 706). It is known that the 
bounded orbits of the two-body rotating problem come from the elliptic orbits of 
the two-body problem. For this reason, we called elliptic orbits to the bounded orbits 
of the two-body rotating problem. 

Now, we give a qualitative picture of the flow into I~. First we consider a con- 
figuration, as in Figure 2, formed by two solid cones. This configuration is the union 
of a family of cylinders, one for each value of h E ( h i ,  h2). For h = hi or h = h2, we 
have a circle or a segment, respectively. In this configuration we identify (i.e. we 
consider as the same) two points on the boundary having the same projection on the 
plane P with one exception. The exception occurs for the cylinder h = h c.  For this 
cylinder we do no t  identify the points on its boundary. From Table I, the result is 
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TABLE I 
The component I~ when C > 3 

91 

Sidereal energy Topology of Ihc lhc is formed by 

h = h  1 S 1 

h 1 < h < h  c S x x S 1 

h = h  c S 1 x R 

hc < h < h 2 S 1 • S 1 

h = h 2 S 1 

one circular retrograde orbit 
a set of S 1 elliptic retrograde orbits 
a set of S 1 elliptic collision retrograde orbits 
a set of S ~ elliptic direct orbits 
one circular direct orbit 

I~. Fur thermore ,  it is not  difficult to see that  I~ is topologically an open solid torus 
and that  the flow on I~ is that  of  Figure 2. The Levi -Civ i ta  regularization of  the binary 

collisions (see [11] ) means that  we may  identify the boundary  points of  the cylinder 

h = h c .  Then I~ is topological ly a 3-sphere. 
We remark  that  the direct (resp. retrograde) circular orbit  is encircled by a family 

of tori formed by elliptic direct (resp. retrograde) orbits. These two families are 

separated by the cylinder of the elliptic collision orbits. If  the ro ta t ion number  of  an 
elliptic orbit  of  a torus I h c  is rat ional  (resp. irrational), then all the orbits of  this torus 
are periodic (resp. quasiperiodic) orbits, for more  details see [2].  If  an orbit  is quasi- 

periodic then it is dense on its torus. 

In a similar way, Table I I  gives us the sets I hc  of 12. We recall that  an orbit  is called 

parabolic  (resp. hyperbolic) if it reaches the infinity with zero (resp. positive) radial 
velocity as the time tends to + ~ or  - ~ .  

We consider a configuration, as in Figure 3, formed by the union of  a family of  
cylinders, one for each value of  h ~ ( h  3 , + ~ ) .  For  h = h 3 we have a segment. In this 
configurat ion we identify two points on the boundary  having the same project ion on 

~= h2 

h < h  2 

/ 
=h S 

Fig. 2. The component I~. 
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T A B L E  II 

T h e  c o m p o n e n t  I f  w h e n  C > 3 

Siderea l  ene rgy  T o p o l o g y  of  Ihc Ihc is f o r m e d  b y  

h = h 3 S 1 o n e  c i r cu l a r  d i rec t  o r b i t  

h 3 < h < 0 S 1 x S ~ a set of  S ~ elliptic d i rec t  o rb i t s  

h = 0 S:  x R a set of  S 1 p a r a b o l i c  o rb i t s  

h > 0 S ~ x R a set of  S ~ h y p e r b o l i c  o rb i t s  

~ h 3 

Fig. 3. The  c o m p o n e n t  12 . 

the plane P if they are in the cylinders he [h3,0). Now, the result is I 2, an open solid 
torus, and the flow on 12 is that of Figure 3. This qualitative picture of the flow on 
13 was already given in [8], by using another coordinate system. 

CASE C =-- 3 

This case is obtained from the above if we identify the two circular direct orbit. 
Therefore I c has only one component. 

T A B L E  III 

The  set I c when  0 < C < 3 

Siderea l  ene rgy  T o p o l o g y  of  Ihc Ihc is f o r m e d  b y  

h = h: S t 

h: < h < h c S 1 x S :  

h = h  c S: x R 
h c < h < O  S 1 x S  1 

h = 0  S 1 x R  

h > 0  S 1 x R  

one  c i r cu l a r  r e t r o g r a d e  o r b i t  

a set o f  S 1 el l iptic r e t r o g r a d e  o rb i t s  

a set o f  S 1 el l iptic col l i s ions  o rb i t s  

a set of  S:  ell iptic d i rec t  o rb i t s  

a set of  S ~ p a r a b o l i c  o rb i t s  

a set o f  S:  h y p e r b o l i c  o rb i t s  
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p 2 
Fig. 4. T h e  set I c as C < 3. 

CASE 0 < C < 3 

For values of the Jacobian constant C < 3 the polynomial (2.3) has only one positive 

root r 1. Then the set I c = Uhlhc  has only one component,  where h e [ h  1, + oo). 

Table I I I  gives us the sets Ihc of I c. Now, we consider a configuration as in Figure 4, 
formed by the union of a family of cylinders one for each value of h e (h I , + oo) with a 

circle for h = h I . In this configuration we identify two points on the boundary having 

the same projection on the plane P if they are in the cylinders h e ( h  1 , h c) w (h c, 0). 

The result is I c, an open solid torus minus its axis, and the flow on I c is given in Figure 
4. Again, the Levi-Civita 's  regularization of the binary collision means that we may 

identify the boundary points of the cylinder h = h c. Then I c is topologically an open 

solid torus. 
The cases C = 0 and C < 0 are studied in Tables IV and V. 

T A B L E  IV 

T h e  set I c w h e n  C = 0 

Sidereal  ene rgy  T o p o l o g y  of  Ihc lhc is f o r m e d  by  

h = h~ S 1 one  c i r cu la r  r e t r o g r a d e  o r b i t  

h I < h < h c S 1 x S 1 a set o f S  ~ ell iptic r e t r o g r a d e  o rb i t s  

h = h c = 0 2 copies  o f  S 1 x R a set of  S i w S i p a r a b o l i c  col l i s ion o rb i t s  

h >  0 S ~ x R a set of  S 1 h y p e r b o l i c  o rb i t s  

T A B L E  V 

The  set I c when  C < 0 

Siderea l  ene rgy  T o p o l o g y  of  Ihc [hC is f o r m e d  b y  

h = h  I S 1 

h i < h < 0  S 1 x S  l 

h = 0  S 1 x R  

O < h < h  c S i x R  

h = h c 2 cop ies  o f  S ~ x R 
h > h  c S i x R 

one  c i r cu la r  r e t r o g r a d e  o r b i t  

a set of  S 1 ell iptic r e t r o g r a d e  o rb i t s  

a set of  S 1 p a r a b o l i c  o rb i t s  

a set of  S 1 h y p e r b o l i c  o rb i t s  

a set o f  S 1 w S L h y p e r b o l i c  co l l i s ion  o rb i t s  
a set of  S 1 h y p e r b o l i c  o rb i t s  
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3. Collision Orbits a n d  P a r a b o l i c  O r b i t s  

Let W~ (resp. W u) be the set of orbits which end (resp. begin) at collision with one of 
the primaries for the restricted three-body problem. Note that for the two-body 
rotating problem there exists only one primary. Furthermore, as we have seen in 
Section 2, if C > 0 then W s coincides with Wc u and it is topologically a cylinder, i.e. 
the cylinder of elliptic collision orbits. If C ~< 0 then W s does not coincide with W~ u, 
and both are topologically a cylinder. Furthermore, W~ and W~ are formed by para- 
bolic (resp. hyperbolic) collision orbits when C = 0 (resp. C < 0). 

We shall show for the two-body rotating problem and for the restricted three- 
body problem, that W~ s and W~ u are respectively the stable and unstable invariant 

manifold associated to a convenient invariant set. By using this important fact we 
shall prove, for the restricted three-body problem, that W~ and W~ are topologically 
a cylinder. 

We need a complete picture of the local behavior of the solutions near a collision. 
The binary collision of the third body with the primary of mass 1 - # can be regular- 
ized by using the variables of McGehee. We 'blow up' the collision point, the origin, 
and replace it with an invariant boundary called the collision manifold. The dynamical 
system extends smoothly (after a scaling of time) over this collision manifold, and so 
we get a new flow on an augmented phase space. It turns out that this new flow on and 
near the collision manifold is extremely simple. It is this fact that enables us to readily 
understand the behavior of the solutions near a binary collision. 

For the restricted three-body problem the usual variables of McGehee (see [4]) 
do not work since its Hamiltonian cannot be written in the form H(q, p) = IIp 112/2 + 
+ V(q) (furthermore, it is necessary that V(q) is a homogeneous function). Nevertheless, 
the ideas of McGehee work and, now, we use them. 

We introduce the usual canonical transformation to polar coordinates 

qa = QI cos Q2, 

q2 = Q1 sin Q2, 

Pl = P1 COS Q2 - P2Q11 sin Q2, 

P2 = PI sin Q2 + P2Q-11 cos Qz" 

The Hamiltonian (1.1) becomes 

H = (p2 + p z Q ; 2 ) / 2 _  P 2 -  Q1-1 + # [ Q 1 1  - ( Q 2  + 1 +2 Q lCO S Q 2 ) - l / 2 -  

- PI sin Q2 - P2QI 1 cos Q2], 

and the equations of motion are 

QI = P1 - # sin Q2, 

Q2 = P2Q-12 - 1 - #Q;1 cos Q2, 
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p~ = p2Q-3 2 1 - Q ? 2  + # [ Q - ~ z  _ ( Q ,  + cos Q2)(Q 2 + 1 + 2Q1 cos Q2 )-3/2 

- P 2 Q ;  2 cos Q2] (3.1) 

P2 = #[Q1 sin Q z ( Q  2 + 1 + 2Qt cos Q2) -3/2 + PI  cos Q2 - P 2 Q 1  ~ sin Q2]" 

The radial coordina te  Q~ = r is the distance between the larger pr imary  1 - # at 

the origin and the third b o d y  m 3, while the angular  coordinate  Q2 = 0 is the angle 

between the ql -axis and the radius vector. Then y = ~: and x = rt) are the componen ts  
of  the velocity in polar  coordinates.  In coordinates  (r, y, 0, x), the equations of  mot ion  

(3.1) becomes 
~ = y ,  

~ = x 2 r  - t  + 2 x + r - r  - 2  + # [cos  0 + r  -2 - 

- (r + cos 0)(r 2 + 1 + 2r cos 0)-  3/2], (3.2) 

O = r - l x ,  

x - -  - x y r  - 1  - 2 y + p s i n  O[(r 2 + I + 2 r c o s O )  - 3 / 2 -  1] 

and the energy relation gives 

H = (x 2 + y2 _ r2 ) /2  _ r -  i _ # [ # / 2  + r cos 0 + (r 2 + 1 + 2r cos 0)- t/2 _ r -  t ] ,  

(3.3) 
The system (3.2) is no longer Hamil tonian,  but (3.3) defines a codimension one 

invariant set which we cont inue to call the energy level. In t roduce  

U = r l / 2 X ,  

V = r l / 2 y .  

The system (3.2) becomes 

/~ ~--- r -  l / 2 v ,  

'{_) = r - 3 / 2 ( V 2 / 2  + U 2 - -  1) + 2u + r 3/2 + # r l / 2 [ c o s  0 + r - 2  - -  

- (r + cos O)(r 2 + 1 + 2r cos 0)- 3/2], (3.4) 

0 ~ r -  3 / 2 U ,  

fi = - r - 3 / 2 u v / 2  - 2v  + # r  1/2 sin 0[(r  2 + 1 + 2 r c o s  0) -3/2 - 1]. 

This system still has singularities at r = 0, but  now they can be removed by a change 

of  time scale. In t roduce  a new time variable z via 

dt 
- -  ~ r 3/2. 
d z  

Then (3.4) becomes 

r'  = rv  , 
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v' = v 2 / 2  + u 2 - 1 + p + 2 u r  3/2 + r 3 + 

+ # r2 [cos  0 - (r + cos 0)(r 2 + 1 + 2r cos 0)-3/2] ,  (3.5) 

0 ~ ~ U ~  

u ' =  - u v / 2 -  2r3/2v  + # r  2 sin 0[( r  2 + 1 + 2 rcos  0) - 3 / 2 -  1],  

where the prime indicates differentiation with respect to z. The energy relation goes 
over to 

(u 2 + r e ) ~ 2 -  1 + # = r H  + r3 /2  + 

+ # r [ # / 2  + r cos 0 + (r 2 + 1 + 2r cos 0)-  1/2], (3.6) 

When r---0, the energy relation shows that  the collision manifold is a two 
dimensional  torus in r = 0 defined by 

(I/2 71- V2)/2 = 1 -- #,  

0 arbitrary. (3.7) 

The vectorfield on the collision manifold is then given by 

v ' =  u 2 / 2 ,  

0 ' =  u, (3.8) 

u' = - u v / 2 ,  

where we have used the energy relation to simplify v'. 

F r o m  (3.5), (3.6) and (3.8), the collision manifold and the flow on and near this 
manifold are qualitatively the same that in the Kepler  problem, see [-4] p. 224. The 
collision manifold for the Kepler problem has been studied by Devaney [4] and the 

flow on and near it is sketched in Figure 5. That  is, there are two circles of  equilibrium 

points on the torus, its points are u = 0, v = _+ [2(1 - #)i 

0 ----~ 

1/2 and 0 is arbitrary. All 

Fig. 5. The flow on and near the collision manifold. 
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other  solutions curves on the torus  move  f rom the lower circle to the upper  one. We see 
that  the set of  orbits  which end, W s (resp. begin, W~) at collision forms a cylinder in a 

c '  

ne ighbourhood  of the collision. Then  we have proved Theo rem A. 
In fact we have studied the collision orbits  with the p r imary  m~ = 1 - /~ .  But, since 

~e(0,  1) the same result follows for the collision orbits  with the p r imary  m 2 = ~ .  

Now, we study the collision orbits  for the two-body  rota t ing problem.  Thus,  

Equat ions  (3.5) become 

r '  ~ -  r g ,  

d = v 2 / 2  + u 2 - 1 + 2 u r  3/2 + 1 "3, 

O I l - U ,  

U' = - -  U 9 / 2  - -  29r 3!2. 

when we take /~ = 0, and the energy relation (3.6) goes over  to (u2+  r 2 ) / 2 -  1 = 

r H  + r 3 / 2 .  
/ ,  

For  the two-body  rota t ing problem,  the collision orbits  are character ized by the 
fact that  its sidereal angular  m o m e n t u m  M is zero. This implies that  the energy relation 
is reduced to 

92/2  - -  1 = r H ,  (3.9) 

on the collision orbits. Note  that  for these orbits 

U ~ - -  F 3 / 2  , 

where the minus sign is due to the fact that  all the collision orbits  are re t rograde  
orbits. 

In cylindrical coordinates  (r ,  O, v) ,  the cylinder of collision orbits  for the two-body  
rotat ing p rob lem is plot ted in Figure 6 for negative values of H. This picture follows 
f rom (3.9) and (3.10). Of  course, W u coincides with W s. r r 

For  the restricted three-body p rob lem we have studied in [7] the first cut, 7" and 
7 s, of  W~ and W] with the plane 9 = 0, respectively. First we fix the energy H < 0. 
Then we know that  if/~ = 0, in the space (r, 0, 9), 7" = 7 s is a circle of  radius - H -  1 
If/~ is small enough and positive then 7" and ? s are real analytic simple curves, 7" :~ )'~ 
and ?" and 7 s intersect at the points  0 = 0 and 0 = ~z, nontangential ly.  Then we have 
put the Bernoulli  shift as a subsystem of the Poincar6 m a p  defined by the surface of 

section v = 0, and we have given a geometr ical  in terpreta t ion of the orbits  associated 
with the shift (see [7] for details). 

The  wel l -known symmet ry  S of the restricted three-body p rob lem (see Section 1) 
in coordinates  (r, 9, 0, u, z) becomes  

S :  (r ,  9, O, u,  r ) - - + ( r ,  - v,  - O, u ,  - r). 

Since S(7") = ?L it follows immediately ,  in the above hypotheses,  that  7" and 7~ inter- 
sect at the points  0 = 0 and 0 = ~z. 
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(-H -I ,0) 

(r,O) 

Fig. 6. The flow on the cylinder of collision orbits as H < 0 and # = 0. 

Proof of Theorem B. 
(i) follows immedia te ly  f rom the fact that  the two curves 7" and 7 s intersect at the 

points  0 = 0 and  0 = r~. We recall that  H = - C/2. Then C > 0 implies H < 0. 
(ii) If  C < 2 then - H -  1 > 1. Fo r  values of  # sufficiently small the curves 7" and 

7s are near  the circle of  radius r = - H -  1 if 0 < C. Since the p r imary  m 2 = p is on the 
circle of radius  one in the q-plane, (ii) follows for values of C such that  0 < C < 2. 
If  C ~< 0 then W" goes to infinity wi thout  crossing the surface i = 0 when # = 0. 
Then  for # sufficiently small the project ion of W" on the posi t ion plane crosses the 

circle r = 1 and (ii) follows. 

Let W~ (resp. W~) be the set of  parabol ic  orbi ts  for t ~ + oo (resp. - oo). Fo r  the 
two-body  ro ta t ing  p rob l em we have seen in Section 2 tha t  if C 5a 0 then W~ coincides 
with W~ and it is topological ly  a cylinder. If  C = 0 then W~ does not  coincide with 
W~, and bo th  are topological ly  a cylinder, the cylinders of parabol ic  collisions. 

Fo r  the restricted three-body problem,  M c G e h e e  in [9] p roved  that  W~ and Wp" are 
the stable and unstable invar iant  manifolds  of  a periodic orbi t  at the infinity, res- 
pectively. Also, he showed that  W~ and W~ are topological ly  a cylinder. In [8] we 
have studied the first cut ?s and ?" of  W~ and W~ with the surface ~ = 0, respectively. 
I f  # is sufficiently small  and C sufficiently large then 7 s and ~" intersect only in two 
points,  nontangent ia l ly  (see T h e o r e m  5.1 of  [-8]). 
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Now, the proof  of Theorem C follows in a similar way to the proof  of Theorem B 
by using Section 2 and the symmetry of the problem. Note that for values of 
C ~ ( - 8 l/z, 81/2) the parabolic cylinder of the two-body rotating problem cuts the 
surface i = 0 in a circle of radius r < 1. 

4. Symmetric Periodic Orbits 

From now on we consider the restricted three-body problem in a rotating coordinate 
system q = (ql, q2) of rotational frequency equal to 1. In this frame we put the larger 
pr imary m 1 = 1 - # at the position e~ = (#, 0) and the smaller pr imary m 2 = # at 
the position e 2 = ( # - 1 , 0 ) .  The Hamiltonian which governs the motion of the 

zero mass particle m 3 is given by 

H =  ]]p]l 2 + q 2 P l - q l P 2 - ( 1 - # ) l l q - e l l ]  -x  - # l ] q -  e2 ]1-1, 

where p = (Pl, P2) are the momentum variables conjugate to the q, and II ]l is the 
Euclidean norm of R E . 

We have introduced polar coordinates through q~ + iq2 = r exp (iO). A periodic 
orbit which is symmetric with respect to the q~-axis crosses the q~-axis twice and only 

twice at right angles. The crossing at right angles may be divided into four classes. 

The first class, C~, corresponds with the states of motion x > #, y = 0, ~ = 0 and 
k" > 0. We call these states of motion lower passage at opposition. The second class, 
C2, corresponds with crossing at right angles for x > #, y = 0, k = 0 and/~" < 0, this 
state of motion may be called higher passage at opposition. The third C 3 and fourth 
C 4 classes, x < #, y = 0, ~ = 0,/~" > 0 and ~" < 0, respectively, may be called lower and 
higher passage at conjunction. There are ten possible combinations Cii of pairs of 
the four classes of right-angle crossings, where Cij = Cic~C ~ with ~,j~ {1, 2, 3, 4}. 

The main result of this section is the following theorem. 

T H E O R E M  D. For any f i x e d  value o f  the Jacobian constant and fo r  any e > O, 

there exists  a #o > 0 such that i f  the mass parameter #~ [0, #0 ], then the set o f  bounded 

orbits which are not contained in the closure o f  the class Cij o f  symmetric periodic 

orbits has Lebesgue measure less than e. 

From now on we fix the value C of the Jacobian constant. F rom Figures 2, 3 and 4 it is 

clear, for the two-body rotating problem, that the Poincar6 map associated with the 

the surface of section given by the plane P, are twist mappings. But for the study of 
symmetric periodic orbits we consider the Poincar~ map  associated to the surface 
of section Z defined by i = 0, k > 0. From Figure 1 or from [5], we obtain Table VI. 
This table gives us the different component  rings of the surface of section Z for each 
value of the Jacobian constant. Actually Z has only one connected component  if 

C ~< 3 and two connected components  if C > 3. From Section 2 we recall that r 1 , r z , r 3 

are the radii of the circular orbits, rp = C2/8 is the radius of the circle of the parabolic 

cylinder when it cuts the surface i = 0, and r = r 0 is the boundary circle of Ic a when 
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T A B L E  VI 

ro 
Orb i t s  C inner  radius  outer  radius  

Re t rog rade  ( -  o% 0) C2/8 parabo l i c  r 1 c i rcular  

0 0 pa rabo l i c  col l is ion r l  c i rcular  
(0, oo) 0 el l ipt ic col l is ion r~ c i rcular  

Direct  (0, 3) 0 el l ipt ic  col l is ion C2/8 parabo l i c  

3 0 el l ipt ic  col l is ion r 2 = r 3 = 1 c i rcular  

r 2 = r 3 = 1 c i rcular  C2/8 parabo l i c  
(3, 32 ~/3) 0 el l ipt ic  col l is ion r 2 c i rcular  

r 0 el l ipt ic  C2/8 parabo l i c  

r 0 el l ipt ic  r 3 c i rcular  
[32 l/z, co) 0 el l ipt ic  col l is ion r 2 c i rcular  

C2/8 parabo l i c  r 3 c i rcular  -- 

C > 3. All these curves in the (C, r)-plane are plot ted qualitatively in Figure 7. 
Let R be one of  the rings of  Table VI, i.e. 

R =  {(r,O):ri <r  <ro,O~O<~2g, i~=O,i;>O}. 

For  any point  P of  R we denote by P '  the point  at which the orbit  that  passes th rough  

P first meets R. The t ransformat ion which takes P to P '  defines a Poincar+ map  

T : R --* R. The equat ions of T are: 

r t = r~ 

(4.].) 
O' = 0 + f ( r ) ,  

where f ( r )  = - 2~a 3/2 and from 

r = a { 1 - [1 - (1 - Ca) 2 (4a 3)-1 ] 1/2 }, (4.2) 

we have a = a(r), for more  details see [3] p. 709. 

The mapping  (4.1) is a twist mapping,  That  is, every circle is invariant by T and 

r rotates each circle r = c an anglef(c).  Fur thermore ,  [df/dr[ > 0 for any r i < r < r 0 . 
Let O be the posit ion of  the particle in its ellipse (true anomaly),  and q5 the longitude 

of the apsidal line with reference to the rota t ing ql-axis. Then the angular polar  
synodic coordinate  0 equals ~b + 0. 

A lower crossing at right angles corresponds to q~ = 0, 0 = 0 or ~b = ~, O = 0 

according as the crossing is of  C 1 or C 3 type. A higher crossing at right angles is 

represented by q~ = re, ~b = rc or q5 = 0, O = rc according as the crossing is of C 2 or C a 
type. 

The lower crossings at right angles are represented on the ring R by the segments:  

71 = {(r,O)e R :O=O}, 

~3 = {(r ,O)eR:O=rc},  



ON TIlE RESTRICTED THREE-BODY PROBLEM WHEN THE MASS PARAMETER IS SMALL 101 

1 

rp 

r 2 

I 

3 321/3 

Fig. 7. The curves rl(C), r2(C), r3(C), rv(C ) = C2/8 and ro(C ). 

according to the crossing being of  C 1 o r  C 3 type. In the higher crossings of  C 2 and 

C 4 we have f < 0, and hence they are not  represented in the ring R. However,  we 

may  associate with each such crossing the first state of  mot ion  along the orbit  which 

lies on the ring. These form two cont inuous  arcs: 

72 = {(r, 0) E R :0 = r~(1 - a 3/2) where a = a(r) f rom (4.2)}, 

?4 = {(r, 0) c R : 0 = - it a 3/2 where a = a(r) f rom (4.2) }, 

according as the crossing is of C 2 or C 4 type (see [3], p. 746). 

A symmetr ic  periodic orbi t  is completely characterized by the fact that  it has two 

and only two states of mot ion  represented by points on the arcs 71, ?2, ?3,74" There-  
fore, if a point  P of  one of  these arcs is carried into a point  P '  of such an arc by the 

k-fold iteration of  T, then the corresponding orbit  is symmetr ic  and periodic. Hence 
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the class C u of symmetric periodic orbits is represented on the ring R by the points of 

ru= U T~(h;), 
k = - c o  

where 7u = ~ c~ Fi, with 
+ c o  

r~ = U rk%). 
k=--oD 

We shall use the following lemma, see [2], p. 98, for a proof. 

LEMMA 4.1. (Jacobi's Theorem). Let  S 1 =  R / Z  the circle, and let F be the map 

x ~ x + co (mod. 1), co ~ R. Then an orbit o f F  is dense i f  and only if  co is irrational. 

LEMMA 4.2 Let  ~ : r = r(2), 0 = 0 (2) (0 ~< 2 ~< 1) be a continuous arc on R, such that 

7 meets r = ri and r = r o in the endpoints 2 = 0 and 2 = 1, respectively. Then the set 

+oo  

U Tk(?), 
k = - c o  

is dense in R. 

Since T is a twist mapping, by Lemma 4.1, the proof of Lemma 4.2 follows. 
Let Y be a given subset of a topological space X. The closure of Y in X will be 

denoted by clx(Y ). If Z is a subset of Y we denote by clr,x(Z), the closure in Y of 
Z in the relative topology of Y with respect to the topology of X. 

By Lemma 4.2 and since T is a twist mapping, we have that the closure of 7u' 
c l ,  R (TU), is 71" Then, by continuity: 

Tk(vi) = ClR(Tk(vu) ). (4.3) 

THEOREM 4.3 For any f i xed  value C o f  the Jacobian constant and for  # = 0, the 

set o f  bounded orbits is contained in the closure o f  the class C u o f  symmetric periodic 

orbits; i.e., clg(Fu) = R, where R is any ring o f  Table V l  for  the given value o f  C. 
Proof. From (4.3) it follows that 

-Fco 

r i  = U ClR(Tk(7u))C ClR(Fu). 
k =  - c o  

Hence, by Lemma 4.2, we obtain 

R = clR(Fi) ~ ClR(Fu) ~ R. 

Then Theorem D is proved for # = O; i.e. for the two-body rotating problem. 
For a fixed value of the Jacobian constant C, let E be the surface of section for ff 
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the restricted three-body problem with mass parameter  # defined by ~: = 0, k" > 0 
for the bounded orbits, and let T be the Poincar6 map defined on Z .  

Let R be the ring { (r, 0) e Z u : a < r < b} with r i < a < b < 1" 0, where r i and r o are 
the inner and outer radius, respectively, of the rings of Table VI. For the fixed value 
of C, if # is sufficiently small we can take the different rings R so that the surface of 

section E not contained in the rings R has measure of Lebesgue arbitrarily small. 
The Poincar~ map  T on R takes Equations (4.1) into 

r' = r + #gl (r, O, #), 

O' = 0 + f (r)  + #g2(r, O, #)(mod. 2~z), 

where 91 and g2 are real, analytic and 2rt-periodic in 0. Since the polar synodic co- 
ordinates r, 0 are the position coordinates of a canonical transformation of the 
restricted three-body problem, we have that T u is an area-preserving mapping. 

For  a function g �9 C 1 (R) we consider the norm 

~1?1 q- ?lg 

Igls = , s u p  s 

We take s = 5. If # is small enough by the Ko l m ogorov -Arno ld -Mose r -R i i s sman  
Theorem (see [10], p. 52) there exists a 6 depending on s, s,f(r) and # such that if 
T u satisfies #(Igi ]s + ]gz ]) < v6, where I df/drl >/v > 0 in R. Then T has an invariant 
curve of the form r = c + u(0, 0 = ~ + v(0, in R, where u and v are continuously 
differentiable of period 2rr and satisfy ]u[1 + [v[1 < s, and c is a constant in (a, b). 
Furthermore,  the induced mapping on this curve is given by ~ --* ~ + co, where co is 
incommensurable with 2re, and satisfies infinitely many conditions [co/(2rc)-j/k[ >~ 
~> yk -~, with some positive y, ~ for all integers k > 0,j. Furthermore,  we have the 

following theorem. 

T H E O R E M  4.4 (Arnold, for a proof  see [1]). The set of  all invariant curves of T 
leaves out only a set of  measure of Lebesgue arbitrarily small in R, if  6 (and so #) is 

sufficiently small. 

Without loss of generality we can assume that the Poincar~ map T is such that 
~O'/~r > O. 

L E M M A  4.5 (see Lemma 1 of [5] p. 340). Let (r, O) be any point of  an invariant curve 
F of T u and let T~(r, O) = (r(r ,  0), O(r, 0)). Let K > 0 be the minimum value of the 
continuous map (~01/3r) on F. Then we have 30 /Or >~ K, for each positive integer 
n > l .  

Again, the lower crossings at right angles are represented on the ring R by the 

segments: 

71 = ]21(#) = {(r ,  O)eR:O = 0 } ,  

]23 ~- 7 3 ( # )  ~- {(Y'  0 ) @  R :0 = zt}, 
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according as the crossing is of C 1 o r  C 3 type. The arcs 72 = 7 2 ( ]  A) and 74 = 74(P) 
change only slightly from ~2 and 74, respectively, if p is small. Hence the class C u 
of symmetric periodic orbits is represented in the ring R by the points of 

+oo 

k = - - o D  

where 7~j(#) = 7~(P) c~ F~(p), with 

+oo 

U �9 

k =  --co 

LEMMA 4.6. Let  F be an invariant curve o f  T . Then for  any e > 0 there exists a 

symmetric periodic point p in Fij such that d(p, F) < e. 
Proof. Let R o be the outside component of the curve F into the ring R. Let 

A = { x E R  o : d(x, F) < e}. Set qi = 7~ c~ F, qj = 7i c~ F and 7'~ = 7~ c~ A. 
One of the endpoints of the arc 7'~ is qi, let q'i be the other. If e is sufficiently small, 

then the line through the point q'i with slope K (defined in Lemma 4.5) intersects 
the curve F in a point q;', see Figure 8. 

qi 

n i T qj 

q'~ 

l i ne  of 

slope K 

/ A 

Fig. 8. The region A near the segment 7'r 
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From Moser's Theorem we have that the orbit of q j, {q j, Tuqj, T2, q j , . . .  } is dense 
in F. Then there is a positive integer n = n(qj) such that the point T~qj is between the 

n points q;' and qi when we go from q;' to ql counterclockwise. By Lemma 4.5, T,;~j 
cuts the arc 7'~- Then there are points p in Fij such that d(p, F) < e. 

T H E O R E M  4.7. The closure of the symmetric periodic orbits Fij of T is a set which 
contains the invariant curves of  T . 

Proof. Suppose that there is an invariant curve F and a neighborhood U of a 
point of F such that U does not contain any symmetric periodic point of Fij. By 
Moser's Theorem, the set Un~__o T"uU contains the compact F. Then, there is a set 

k Ui=l  T~ (~)U which contains also to F. Since T is a diffeomorphism, there exists 

e and an annulus A = {xER:  d(x, F) < e} contained in ~)~=1T~(i)U, without sym- 
metric periodic points of F~j. This is a contradiction with Lemma 4.6, and the theorem 
follows. 

Theorem D follows from Theorems 4.4 and 4.7. 

References 

[1] V.I.  Arnold, ' P r o o f o f a T h e o r e m  ofA.  N. Kolmogorov on the Invariance of Quasi-periodic Motions 
Under Small Perturbations of the Hamiltonian' ,  Russian Math. Surveys lg(1963),  9-36. 

[2] V. I. Arnold and A. Avez, Problemes ergodiques de la Mkcanique Classique, Gauthier-Villars, Paris, 
1967. 

[3] G. D. Birkhoff, Collected Mathematical Papers, Vol. 1, Proc. Amer. Academy of Arts and Sciences, 
1923. 

[4] R. L. Devaney, 'Singularities in Classical Mechanical Systems', in A. Katok (ed.), Ergodic Theory 
and Dynamical Systems I, Proceedings Special Year, Maryland 1979-80, Birkh/iuser, Basel, 1981, 
pp. 211-333. 

[5] G. Gomez and J. Llibre, 'A Note on a Conjecture of PoincarC, Celes. Mech. 24 (1981), 335-343. 
[6] H. Golstein, Classical Mechanics, Addison-Wesley, London, 1971. 
[7] J. Llibre and C. Pinol, Collision Orbits in the Planar Circular Restricted Three-body Problem, to 

appear. 
[8] J. Llibre and C. Sim6, 'Oscillatory Solutions in the Planar Restricted Three-body Problem',  Math. 

Ann. 248 (1980), 153-184. 
[9] R. McGehee, 'A Stable Manifold Theorem for Degenerate Fixed Points with Applications to Celestial 

Mechanics',  J. Differential Equations 14 (1973), 70-88. 
[10] J. Moser, Stable and Random Motions in Dynamical Systems, Princeton Univ. Press, 1973. 
[11] E. L. Stiefel and G. Scheifele, Linear and Regular Celestial Mechanics, Springer-Verlag, Berlin, 1971. 
[12] V. Szebehely, Theory of  Orbits, Academic Press, New York, 1967. 


