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Abstract. We study some aspects of the restricted three-body problem when the mass parameter p is
sufficiently small. First, we describe the global flow of the two-body rotating problem, p = 0, and we use it
for the analysis of the collision and parabolic orbits when u 2 0. Also we show that for any fixed value of
the Jacobian constant and for any ¢ > 0, there exists a g, > 0 such that if the mass parameter rel0, pol,
then the set of bounded orbits which are not contained in the closure of the set of symmetric periodic orbits
has Lebesgue measure less than .

1. Introduction

We consider the circular planar restricted three-body problem (usually, the restricted
three-body problem) in a rotating coordinate system g =(q,,q,) of rotational
frequency equal to 1. In this frame we put the larger primary m, of mass 1 — u at the
origin and the smaller primary m, of mass u at the position e, =(—1,0).
The Hamiltonian which governs the motion of the zero mass particle m, is given by

H=|p|*/2+qp, —qp,— |al " +ulla| " ~llg—e, 7" —p,) (L1

where p = (p,, p,) are the momentum variables conjugate to the g. It is clear that
C = — 2H is afirst integral of the Hamiltonian system associated with H. This integral
is called the Jacobi integral. Note that our Jacobian constant differs from the usual
in the constant u(1 — p) (see [12]).

The goal of this paper is to study some aspects of the restricted three-body problem
as the mass parameter u is sufficiently small. First, in Section 2 we describe the global
flow of the two-body rotating problem, u = 0, and use it, in Section 3, for the analysis
of the collision and parabolic orbits when u is small enough.

A solution of the restricted three-body problem has a collision with m, (resp. m,)
in the instant ¢t if the distance between m, and m, (resp. m,) tends to zero as t — t,.

Our main results about the collision orbits are the following two theorems.

THEOREM A. For the restricted three-body problem and for each value of the
Jacobian constant, the set of orbits which end or begin at collision with m or m, is
topologically homeomorphic to a cylinder.

THEOREM B. For values of the mass parameter u sufficiently small the following
statements hold for the restricted three-body problem.
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(i) For each value of the Jacobian constant C > 0, there is a value of the mass para-
meter i, = t1,(C) such that, for every ue(0, Ho). at least there are two orbits which
leave the collision with the mass 1 — p, cross one time the surface ¥ = 0 and go to collision
with themass 1 — y, again.

(i) For each value of the Jacobian constant C < 2, there exists a value of the mass
parameter p, = u(C) such that, for every pe(0, ,uo], there is one and only one orbit
such that it leaves the collision with the mass 1 — p and it goes to collision with the mass
u without to cross the surface ¥ = 0.

Since the set of orbits of the restricted three-body problem is invariant under the
symmetry (q,,q,, P, P, t) = (4, —4d,, — Py, P, — t), we have, from (ii) of Theorem
B and in the same hypotheses, that there is one and only one orbit such that it leaves
the collision with the mass g and it goes to collision with the mass 1 — u without to
cross the surface 7 = 0.

A solution of the restricted three-body problem is a parabolic solution as t - + o
(resp. t > — o) if the body m, reaches infinity with zero radial velocity as the time
tends to + co (resp. — ).

elliptic
collision

parabol ic
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Fig. la. C=3.25; r,=02367865..., r,= 0.5783759..., r, = 1.8254627..., r,=0.7401394 ..., ry =

=1.3149066..., h,= —1.0771937..., h, = 0.103979 5..., (0, r)) elliptic retrograde orbits, (0, r,) elliptic
direct orbits, rps r,) elliptic direct orbits.
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McGehee [9] proved a theorem similar to Theorem A for the parabolic solutions;
i.e., for the restricted three-body problem and for each value of the Jacobian constant,
the set of parabolic orbits as t — + co or t - — o is topologically homeomorphic
to a cylinder.

The following theorem summarizes our results about parabolic orbits.

THEOREM C. For values of the mass parameter u sufficiently small the following
statements hold for the restricted three-body problem.

(i) For each e > 0 and for all C¢( — ¢, €), there is'a value of the mass parameter [, =
= po(C) such that, for every pe(0, u, |, at least there are two parabolic orbits such that
they leave the infinity, cross only one time the surface ¥ = 0 and reach the infinity.

(i) For each &> 0 sufficiently small and for all Ce(— 8Y/% + ¢, 842 —¢), there is a
value of the mass parameter p, = ji,(C) such that, for every ue(0, Lo ]» we have one and
only one parabolic orbit such that it leaves the infinity and goes to collision withm, = u
without to cross the surface ¥ = Q.
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Fig. 1b. C=3213, y =275P3(3 = 52), p =2"2P y =2753(3 4 512) p =27 23(512 _ 1) r =217,

h,=2713(1 — 5Y2), h =223 (0, r,) elliptic retrograde orbits, (0, r,) elliptic direct orbits, (r,. 1) elliptic
direct orbits.
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By using the symmetry (q,,4,,p,,P,,)~4,, — 4, — P,,P,, —t), we have, from
(ii) of Theorem C and in the same hypotheses, that there is one and only one parabolic
orbit such that it leaves the collision with m, =y and goes to infinity without to
cross the surface ¥ = 0.

The proofs of Theorems A, B, and C are given in Section 3.

In the restricted three-body problem a periodic orbit symmetric with respect to the
q,-axis crosses the g,-axis twice and only twice at right angles. The crossings at right
angles may be divided into four classes, lower and higher passages at opposition and
at conjunction, respectively (see Section 4 for definitions). Then there are ten possible
combinations of pairs of the four classes of right-angle crossings. We prove the follow-
ing result about the ‘density’ of the symmetric periodic orbits.

THEOREM D. For any fixed value of the Jacobian constant and for any & > 0, there
exists a ji, > O such that if the mass parameter p€|0, p, |, then the set of bounded orbits
which are not contained in the closure of one of the ten classes of symmetric periodic
orbits has Lebesgue measure less than e.

elliptic

collision

parabolic
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Fig. le. C=31,r,=02445555..., r,=07022517..., r, =14556927..., r,=08288294..., r,=
=1.1933108..., h;= —0.8630418..., hy=—0.1260092..., (0,r,) elliptic retrograde orbits, (0,r,)
elliptic direct orbits, (r, 7 p) elliptic direct orbits, (r,, r,) elliptic direct orbits.
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The topology with respect to which we take the closure is the usual topology in a
surface of section induced by the topology of (R* — {0, e,}) x R* when we have fixed
a value of the Jacobian constant.

Theorem D improves a theorem about the density of the periodic orbits in the set
of bounded orbits for the restricted three-body problem given in [5].

The proof of Theorem D is given in Section 4.

2. The Global Flow of the Two-body Rotating Problem

When the mass parameter y is zero the restricted three-body problem is called the
two-body rotating problem. This problem is defined by the Hamiltonian

H=|p|*/2+q,p, —a,p, — |a| ",

where | | is the Euclidean norm in R2. The two-body rotating problem as
Hamiltonian system is integrable, because other integrals are the sidereal energy

h=pll*/2—q] ",

elliptic
collision

parabolic .

Fig. 1d. C=3,r, =025, r,=r,=r,=ry=1, hy=h,= —0.5, (0,r,) elliptic retrograde orbits, (0, 1)
elliptic direct orbits, (1, r,) elliptic direct orbits.
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and the sidereal angular momentum

M=gq.p,—4q,p;-
Of course, since H=h — M = — C/2, only two of these three integrals have linearly
independent gradients.

Let I.. be the set of points of the phase space with Jacobian constant equals C. In a
similar way we define the set I,, and denote by 1, . the set I, "1 ..

Now we study the sets I, .. In what follows we fix the value of the Jacobian constant
C. We introduce polar coordinates (r, ), i.e. g, +ig, = rexp (i9). It is known (see
[6]) that if M # 0, then every solution of the two-body rotating problem satisfies

r=M*1+(1+2nM?)"? cos (0 — )],
(2.1)
F=02r ' — M?*» ™% 4+ 2p)'2?,
where 6 is an adequate constant. When M =0 we have a collision orbit which
satisfies

F2=2r"1 4+ 2h. 2.2)

elliptic
collision

parabolic

Fig. fe. C=1,r =04320408...,(0,r,) elliptic retrograde orbits, (0, r,) elliptic direct orbits.



ON THE RESTRICTED THREE-BODY PROBLEM WHEN THE MASS PARAMETER IS SMALL 89
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Fig. If. C=0,r, =277 (0, r,) elliptic retrograde orbits.

For a fixed value of 8 we plot on the half-plane {r, 7) the sidereal energy curves h
equals constant. In Figures la — g we have drawn these curves for seven values of the
Jacobian constant C according as the value of C satisfies C > 32'3, C =327,
3<C<32M3 C=3,0<C<3,C=0and C <0. Equations (2.1) and (2.2) are useful
in the plot of Figure 1. Since the sidereal energy curves are symmetric with respect
the r-axis on the half-plane (r, 7), we only have drawn on the quadrant 7 > 0. The
full picture of the sets I, is obtained by rotating the cross-section about the F-axis.
Then we only obtain five different qualitative pictures of the flow on I according as
the value of C satisfies C >3,C=3,0<C <3,C =0 and C <0. We describe these
five possibilities.

Case C >3

The set I.= Ukl . has two components. First component, Ié, correspond with
values of the sidereal energy he[h,,h,| and the second one, I%2, with values
he[h,, + ), where h,= —(2r) "' and r,, for i = 1, 2, 3, are the three positive roots of
the polynomial

41‘3 _ C2r2 +2Cr — 1’ (2.3)
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Fig. lg. C=—1r,=11(r,71,) elliptic retrograde orbits.

2 3 4

(see [3] p. 706). Also, we can say that first component correspond with values of
re[0,r,] and the second one with values re[r,, + o), where a and b are the two
positive roots of the polynomial r* — Cr + 2.

The description of the sets I, in I} is given in Table I. This table follows essentially
from Figure 1. Ever, we have that h,= — C/2 and ro= —h; ' if h. <0, and that
r,=C 2/8.

A direct orbit is an orbit such that its projection on the g-plane turns around the
origin counterclockwise. If the particle is moving in the opposite direction, we
speak of a retrograde orbit (for more details, see [3], p. 706). It is known that the
bounded orbits of the two-body rotating problem come from the elliptic orbits of
the two-body problem. For this reason, we called elliptic orbits to the bounded orbits
of the two-body rotating problem.

Now, we give a qualitative picture of the flow into I}. First we consider a con-
figuration, as in Figure 2, formed by two solid cones. This configuration is the union
of a family of cylinders, one for each value of he(hy,h,). For h="h or h=h,, we
have a circle or a segment, respectively. In this configuration we identify (i.e. we
consider as the same) two points on the boundary having the same projection on the
plane P with one exception. The exception occurs for the cylinder h = hc. For this
cylinder we do not identify the points on its boundary. From Table I, the result is
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TABLE I
The component I} when C >3

Sidereal energy Topology of I, I, is formed by

h=h, st one circular retrograde orbit

h, <h<h, st x St a set of S! elliptic retrograde orbits

h=h, S'x R a set of S* elliptic collision retrograde orbits
he<h<h, St x §t a set of S* elliptic direct orbits

h=h, st one circular direct orbit

1}. Furthermore, it is not difficult to see that I . is topologically an open solid torus
and that the flow on I, is that of Figure 2. The Levi-Civita regularization of the binary
collisions (see [ 11]) means that we may identify the boundary points of the cylinder
h = h.. Then I, is topologically a 3-sphere.

We remark that the direct (resp. retrograde) circular orbit is encircled by a family
of tori formed by elliptic direct (resp. retrograde) orbits. These two families are
separated by the cylinder of the elliptic collision orbits. If the rotation number of an
elliptic orbit of a torus I, . is rational (resp. irrational), then all the orbits of this torus
are periodic (resp. quasiperiodic) orbits, for more details see [2]. If an orbit is quasi-
periodic then it is dense on its torus.

In a similar way, Table II gives us the sets 1, . of IZ. We recall that an orbit is called
parabolic (resp. hyperbolic) if it reaches the infinity with zero (resp. positive) radial
velocity as the time tends to + o or — .

We consider a configuration, as in Figure 3, formed by the union of a family of
cylinders, one for each value of he(h,, + ). For h = h, we have a segment. In this
configuration we identify two points on the boundary having the same projection on

Fig. 2. The component .
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TABLE II
The component IZ when C >3

Sidereal energy Topology of I, I, . is formed by

h=h, st one circular direct orbit
hy<h<0 St x st a set of S* elliptic direct orbits
h=0 S'x R a set of S* parabolic orbits
h>0 S! xR a set of S! hyperbolic orbits

Fig. 3. The component IZ.

the plane P if they are in the cylinders he [h ;. 0). Now, the result is 12, an open solid
torus, and the flow on IZ is that of Figure 3. This qualitative picture of the flow on
I} was already given in [8], by using another coordinate system.

CaseC =3

This case is obtained from the above if we identify the two circular direct orbit.
Therefore I, has only one component.

TABLE III
The set I, when 0 < C <3

Sidereal energy Topology of I . I, is formed by

h=h, st one circular retrograde orbit

h, <h<h, N a set of S! elliptic retrograde orbits
h=h, $'x R a set of S* elliptic collisions orbits
h.<h<0 St x st a set of S? elliptic direct orbits
h=0 S!'x R a set of §! parabolic orbits

>0 S xR a set of S hyperbolic orbits
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Fig. 4. Theset I as C<3.

p

Case0<C<3

For values of the Jacobian constant C < 3 the polynomial (2.3) has only one positive
root r,. Then the set I.=|J,I, has only one component, where he [h,, + ).
Table III gives us the sets I, of I.. Now, we consider a configuration as in Figure 4,
formed by the union of a family of cylinders one for each value of he(h, , + o0) witha
circle for h = h, . In this configuration we identify two points on the boundary having
the same projection on the plane P if they are in the cylinders he(h,, k) v (b, 0).
The result is I ., an open solid torus minus its axis, and the flow on I is given in Figure
4. Again, the Levi—Civita’s regularization of the binary collision means that we may
identify the boundary points of the cylinder h = h,.. Then I . is topologically an open
solid torus.
The cases C = 0 and C < 0 are studied in Tables IV and V.

TABLE IV
The set I, when C =0

Sidereal energy Topology of I, 1, is formed by

h=h, st one circular retrograde orbit
hy<h<h, St x §! a set of S! elliptic retrograde orbits
h=h.=0 2 copies of $* x R a set of §* U S! parabolic collision orbits
E>0 S' xR a set of S* hyperbolic orbits

TABLE V

The set I, when C <0

Sidereal encrgy Topology of I, I is formed by

h=h, st one circular retrograde orbit

h,<h<0 st x st a set of S! elliptic retrograde orbits

h=0 S!'x R a set of S! parabolic orbits

O<h<h, S xR a set of S! hyperbolic orbits

h=h 2 copies of §* x R aset of ' U S! hyperbolic collision orbits
h>h S*x R a set of S* hyperbolic orbits
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3. Collision Orbits and Parabolic Orbits

Let W¢ (resp. W) be the set of orbits which end (resp. begin) at collision with one of
the primaries for the restricted three-body problem. Note that for the two-body
rotating problem there exists only one primary. Furthermore, as we have seen in
Section 2, if C > 0 then W; coincides with W and it is topologically a cylinder, i.e.
the cylinder of elliptic collision orbits. If C <0 then W; does not coincide with W,
and both are topologically a cylinder. Furthermore, W? and W are formed by para-
bolic (resp. hyperbolic) collision orbits when C = 0 (resp. C < 0).

We shall show for the two-body rotating problem and for the restricted three-
body problem, that W; and W are respectively the stable and unstable invariant
manifold associated to a convenient invariant set. By using this important fact we
shall prove, for the restricted three-body problem, that W¢ and W* are topologically
a cylinder.

We need a complete picture of the local behavior of the solutions near a collision.
The binary collision of the third body with the primary of mass 1 — u can be regular-
ized by using the variables of McGehee. We ‘blow up’ the collision point, the origin,
and replace it with an invariant boundary called the collision manifold. The dynamical
system extends smoothly (after a scaling of time) over this collision manifold, and so
we get a new flow on an augmented phase space. It turns out that this new flow on and
near the collision manifold is extremely simple. It is this fact that enables us to readily
understand the behavior of the solutions near a binary collision.

For the restricted three-body problem the usual variables of McGehee (see [4])
do not work since its Hamiltonian cannot be written in the form H(g, p) = || p|%/2 +
+ V(g)(furthermore, it is necessary that V(q) isa homogeneousfunction). Nevertheless,
the ideas of McGehee work and, now, we use them.

We introduce the usual canonical transformation to polar coordinates

q;=0Q,c080Q,,
q,=Q,sinQ,.
p,=P,cosQ,—P,0;'sinQ,,
p,=P,sinQ,+P,0 " cosQ,.
The Hamiltonian (1.1) becomes
H=(P?+P2Q;%)/2—P,—Q; ' +p[0;' —(Q*+1+2Q,cosQ,)" "2 —
—P,sinQ, —P,0;'cos Q,],
and the equations of motion are
Q, =P, —usinQ,,
0,=P,07>—1-uQ;" cosQ,,
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P,= P07~ 072+ 1077 —(Q, +c0s Q,)(QF + 1 +20, cos Q)72 —
— P,0; % cos Q,] (3.1)
P, =pufQ, sinQ,(Q? +1+2Q,cos Q) **+ P, cos Q, — P,0;'sinQ,].

The radial coordinate Q, = r is the distance between the larger primary 1 — u at
the origin and the third body m,, while the angular coordinate Q, = 6 is the angle
between the g, -axis and the radius vector. Then y =7 and x = r0 are the components
of the velocity in polar coordinates. In coordinates (r, y, 0, x), the equations of motion
(3.1) becomes

F=y,
y=xr"t42x+r—r 2+ pfcosf+r -
—(r + cos 0)(r* + 1 + 2r cos 6)*'*], (32
0=r"'x,
x= —xyr ' =2y +usin 0] (r> + 1 + 2r cos )32 — 1]
and the energy relation gives

H=(x2+y>—r)2—r ' —p[p2+rcosO+(r?+14+2rcos )" Y2 —r7 1],
(3.3)
The system (3.2) is no longer Hamiltonian, but (3.3) defines a codimension one
invariant set which we continue to call the energy level. Introduce

u=r2x,
v=ri2y,

The system (3.2) becomes
Fer i,

D=r 32022+ ut — )+ 2u+r? + pr'?[cos O +r > —

~(r + cos 6)(r? + 1 + 2r cos )™ ¥/7], (3.4)
6 =r32y,
U= —r"up/2 —~ 20+ pr'/?sin O[ (r* + 1 + 2rcos 6) "> — 1].

This system still has singularities at r = 0, but now they can be removed by a change
of time scale. Introduce a new time variable 1 via

dr

dr

Then (3.4) becomes

r=rv,

rz,
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V=024 0t — 14+ pu+2ur?+ 3+ _
+ pr?[ cos 6 — (r + cos 6)(r* + 1 + 2r cos 0) 2], (3.5)

0=u,

W= —u/2—2r*p+ pr*sin [ (r* + 1+ 2rcos )32 - 1],

where the prime indicates differentiation with respect to t. The energy relation goes
over to
W +v3)/2—1+pu=rH+r 2+
+pr[p/2+rcos@+(r*+1+2rcos@)~12],  (3.6)
When r =0, the energy relation shows that the collision manifold is a two
dimensional torus in r = 0 defined by
@ +v)/2=1-p,

0 arbitrary. (3.7)
The vectorfield on the collision manifold is then given by

v =u?/2,

0 =u, (3.8)

u = —uv/2,

where we have used the energy relation to simplify v".

From (3.5), (3.6) and (3.8), the collision manifold and the flow on and near this
manifold are qualitatively the same that in the Kepler problem, see [4] p. 224. The
collision manifold for the Kepler problem has been studied by Devaney [4] and the
flow on and near it is sketched in Figure 5. That is, there are two circles of equilibrium
points on the torus, its points are u =0, v = + [2(1 — p)]"/? and 6 is arbitrary. All

Pttt

Fig. 5. The flow on and near the collision manifold.
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other solutions curves on the torus move from the lower circle to the upper one. We see
that the set of orbits which end, W?, (resp. begin, W) at collision forms a cylinder in a
neighbourhood of the collision. Then we have proved Theorem A.

In fact we have studied the collision orbits with the primary m; = 1 — p. But, since
1e(0, 1) the same result follows for the collision orbits with the primary m, = .

Now, we study the collision orbits for the two-body rotating problem. Thus,
Equations (3.5) become

F=rv.

7

V=022 +u?— 14 2ur¥? 453,
14

il

u.
u'= —up/2 — 2vr32.

when we take p =0, and the energy relation (3.6) goes over to (u? +r2)/2 — 1 =
rH +r%)2. .

For the two-body rotaiiing problem, the collision orbits are characterized by the
fact that its sidereal angular momentum M is zero. This implies that the energy relation
is reduced to

/2 —1=rH. (3.9)
on the collision orbits. Note that for these orbits
u= —r3?2,

where the minus sign is due to the fact that all the collision orbits are retrograde
orbits.

In cylindrical coordinates (r, 6, v). the cylinder of collision orbits for the two-body
rotating problem is plotted in Figure 6 for negative values of H. This picture follows
from (3.9) and (3.10). Of course, W coincides with W?.

For the restricted three-body problem we have studied in [7] the first cut, 7" and
%, of W¥ and W with the plane v = 0, respectively. First we fix the energy H <O0.
Then we know that if u =0, in the space (r, 8, v), y* = y* is a circle of radius — H ™.
If 1 1s small enough and positive then y* and y* are real analytic simple curves, y* # y*
and y* and y* intersect at the points 8 = 0 and # = 7, nontangentially. Then we have
put the Bernoulli shift as a subsystem of the Poincaré map defined by the surface of
section v = 0, and we have given a geometrical interpretation of the orbits associated
with the shift (see [7] for details).

The well-known symmetry S of the restricted three-body problem (see Section 1)
in coordinates (r, v, 6, u, T) becomes

S:(r e, 0 u,t)~>(r, —v. —0,u, —1).

Since S(y*) = y*, it follows immediately. in the above hypotheses, that y* and +* inter-
sect at the points § =0 and 6 = n.
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172

Fig. 6. The flow on the cylinder of collision orbits as H <0 and u =0.

Proof of Theorem B.

(i) follows immediately from the fact that the two curves y* and y® intersect at the
points 0 = 0 and § = n. We recall that H = —C/2. Then C > 0 implies H < 0.

(i) f C <2 then — H™ ! > 1. For values of u sufficiently small the curves y* and
y® are near the circle of radius r = — H™ ' if 0 < C. Since the primary m, = y is on the
circle of radius one in the g-plane, (ii) follows for values of C such that 0 < C < 2.
If C <0 then WY goes to infinity without crossing the surface 7 =0 when p=0.
Then for u sufficiently small the projection of W* on the position plane crosses the
circle r = 1 and (ii) follows.

Let W, (resp. W) be the set of parabolic orbits for t > + oo (resp. — ). For the
two-body rotating problem we have seen in Section 2 that if C # 0 then W}, coincides
with W} and it is topologically a cylinder. If C =0 then W, does not coincide with
Wy, and both are topologically a cylinder, the cylinders of parabolic collisions.

For the restricted three-body problem, McGehee in [9] proved that W, and W' are
the stable and unstable invariant manifolds of a periodic orbit at the infinity, res-
pectively. Also, he showed that W; and W) are topologically a cylinder. In [8] we
have studied the first cut y* and y* of W, and W with the surface 7 =0, respectively.
If p is sufficiently small and C sufficiently large then y* and y* intersect only in two
points, nontangentially (see Theorem 5.1 of [8] ).
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Now, the proof of Theorem C follows in a similar way to the proof of Theorem B
by using Section 2 and the symmetry of the problem. Note that for values of
C e (— 8'72,81/2) the parabolic cylinder of the two-body rotating problem cuts the
surface 7 = 0 in a circle of radius r < 1.

4. Symmetric Periodic Orbits

From now on we consider the restricted three-body problem in a rotating coordinate
system ¢ = (g, , q,) of rotational frequency equal to 1. In this frame we put the larger
primary m, =1 — pu at the position e, = (g, 0) and the smaller primary m, =y at
the position e, =(u — 1,0). The Hamiltonian which governs the motion of the
zero mass particle m, is given by

H=|p|*+4q,p,—aq,p,— (1 —=p]g—e, | ' —plg—e,|™",

where p = (p,, p,) are the momentum variables conjugate to the ¢, and || | is the
Euclidean norm of R2.

We have introduced polar coordinates through g, +ig, = r exp (i0). A periodic
orbit which is symmetric with respect to the g, -axis crosses the ¢, -axis twice and only
twice at right angles. The crossing at right angles may be divided into four classes.
The first class, C,, corresponds with the states of motion x>y, y =0, # =0 and
¥ > 0. We call these states of motion lower passage at opposition. The second class,
C,, corresponds with crossing at right angles for x > i, y =0, # = 0 and 7 <0, this
state of motion may be called higher passage at opposition. The third C, and fourth
C, classes, x <y, y=0,7=0,7> 0 and 7 < 0, respectively, may be called lower and
higher passage at conjunction. There are ten possible combinations C,; of pairs of
the four classes of right-angle crossings, where C,;=C,nC; with i,j€{1,2,3, 4}

The main result of this section is the following theorem.

THEOREM D. For any fixed value of the Jacobian constant and for any &> 0,
there exists a pt, > O such that if the mass parameter pe[0, u, |, then the set of bounded
orbits which are not contained in the closure of the class C,; of symmetric periodic
orbits has Lebesgue measure less than ¢.

From now on we fix the value C of the Jacobian constant. From Figures 2, 3 and 4 it is
clear, for the two-body rotating problem, that the Poincaré map associated with the
the surface of section given by the plane P, are twist mappings. But for the study of
symmetric periodic orbits we consider the Poincaré map associated to the surface
of section X defined by 7 =0, # > 0. From Figure 1 or from [5], we obtain Table VI.
This table gives us the different component rings of the surface of section X for each
value of the Jacobian constant. Actually £ has only one connected component if
C < 3 and two connected components if C > 3. From Section 2 we recall thatr,,r,, 7,
are the radii of the circular orbits, 7, = C?/8 is the radius of the circle of the parabolic
cylinder when it cuts the surface 7 = 0, and r =r, is the boundary circle of IZ when
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TABLE VI
r, 74
Orbits C inner radius outer radius
Retrograde (- 0, 0) C?/8 parabolic r, circular
0 0 parabolic collision r, circular
(0, ) 0 elliptic collision r, circular
Direct 0,3) 0 elliptic collision C*/8 parabolic
3 0 elliptic collision r, =r, = 1 circular
r,=r, =1 circular C?/8 parabolic
(3, 3213 0 elliptic collision r, circular
r, elliptic C?/8 parabolic
r,, elliptic r, circular
[32173, o) 0 elliptic collision r, circular
C?/8 parabolic r circular

C > 3. All these curves in the (C, r)-plane are plotted qualitatively in Figure 7.
Let R be one of the rings of Table VI, ie.

R={(r0)r,<r<r,,0<0<2r7=0,#>0}.

For any point P of R we denote by P’ the point at which the orbit that passes through
P first meets R. The transformation which takes P to P’ defines a Poincaré map
T : R — R. The equations of T are:

r=r,
4.1)
0 =0+f(r),
where f(r) = — 2na*? and from
r=af{l —[1-(1 — Ca)*@a® 1]}, (4.2)

we have a = afr), for more details see [3] p. 709.

The mapping (4.1) is a twist mapping, That is, every circle is invariant by T and
T rotates each circle r = ¢ an angle f(c). Furthermore, |df /dr| > 0 for any r, <r <r,.

Let i be the position of the particle in its ellipse (true anomaly), and ¢ the longitude
of the apsidal line with reference to the rotating g,-axis. Then the angular polar
synodic coordinate 6 equals ¢ + .

A lower crossing at right angles corresponds to ¢ =0, Yy =0 or ¢ =7, Yy =0
according as the crossing is of C, or C, type. A higher crossing at right angles is
represented by ¢ = 7, y = 7 or ¢ = 0,y = r according as the crossing is of C, or C,
type.

The lower crossings at right angles are represented on the ring R by the segments:

7, ={(r0eR:0=0},
y,={(r,0)eR:0=n},
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0 3 321/3 c

Fig. 7. The curves r (C), r,(C), r;(C), rp(C) = C?/8 and r,(C).

according to the crossing being of C, or C, type. In the higher crossings of C, and
C, we have 7 <0, and hence they are not represented in the ring R. However, we
may associate with each such crossing the first state of motion along the orbit which
lies on the ring. These form two continuous arcs:

y,={(r, 0)eR:0 =n(l —a**) where a= a(r) from (4.2)},
7, ={r0)eR:0=—na**  where a=alr) from(4.2)},

according as the crossing is of C, or C, type (see [3], p. 746).

A symmetric periodic orbit is completely characterized by the fact that it has two
and only two states of motion represented by points on the arcs y,,7,,7,,7,. There-
fore, if a point P of one of these arcs is carried into a point P’ of such an arc by the
k-fold iteration of T, then the corresponding orbit is symmetric and periodic. Hence
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the class C;; of symmetric periodic orbits is represented on the ring R by the points of

+w

= k
rij - k_U T (VU),
where y,; =y,nI';, with
+ o

= U T))-

k=—o

We shall use the following lemma, see [2], p. 98, for a proof.

LEMMA 4.1. (Jacobi’s Theorem). Let S = R/Z the circle, and let F be the map
x—x + w (mod. 1), @ € R. Then an orbit of F is dense if and only if w is irrational.

LEMMA 42 Lety:r=r(A),0=0(1) (0 <1 <1)be a continuous arc on R, such that
ymeetsr =r,and r = r in the endpoints A = 0 and A = 1, respectively. Then the set

+ 0

U T,

k=-w

is dense in R.

Since T is a twist mapping, by Lemma 4.1, the proof of Lemma 4.2 follows.

Let Y be a given subset of a topological space X. The closure of Y in X will be
denoted by cl, (Y). If Z is a subset of Y we denote by cly x(Z), the closure in Y of
Z in the relative topology of Y with respect to the topology of X.

By Lemma 4.2 and since T is a twist mapping, we have that the closure of y
clw, & ()18 7;. Then, by continuity:

ij’

T () = el (T*(3;))- (4.3)

THEOREM 4.3 For any fixed value C of the Jacobian constant and for y =0, the

set of bounded orbits is contained in the closure of the class C ij of symmetric periodic

orbits; i.e., clg(T;;) = R, where R is any ring of Table VI for the given value of C.
Proof. From (4.3) it follows that

+ o0

Ti= | dp(T () = cle(Ty).

k=—c
Hence, by Lemma 4.2, we obtain
R=cly(I'}) = clp(;;) = R.

Then Theorem D is proved for u = 0; i.e. for the two-body rotating problem.
For a fixed value of the Jacobian constant C, let Z# be the surface of section for
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the restricted three-body problem with mass parameter u defined by /=0, F>0
for the bounded orbits, and let T, be the Poincaré map defined on X, .

Let R be the ring {(r,0)e X a<r< b} with r,<a <b <r,, where r, and r, are
the inner and outer radius, respectively, of the rings of Table VI. For the fixed value
of C, if u is sufficiently small we can take the different rings R so that the surface of
section £ not contained in the rings R has measure of Lebesgue arbitrarily small.

The Poincare map T, on R takes Equations (4.1) into

r=r+pug, (0, 1),
0 =0+f(r)+ ug,(r, 0, p)(mod. 2m),
where g, and g, are real, analytic and 2z-periodic in 6. Since the polar synodic co-
ordinates r, 0 are the position coordinates of a canonical transformation of the
restricted three-body problem, we have that T, is an area-preserving mapping.
For a function g € C'(R) we consider the norm

am+n

g
o"ro™0
We take s = 5. If u is small enough by the Kolmogorov—-Arnold-Moser—Riissman
Theorem (see [10], p. 52) there exists a d depending on &, s, f(r) and y such that if
T, satisfies u(|g, |, +|g,|,) < v4, where |df /dr| 2v >0 in R. Then T, has an invariant
curve of the form r =c¢ + u(&), 6 = & + v(§), in R, where u and v are continuously
differentiable of period 27 and satisfy |u|, +[v|, <&, and c is a constant in (g, b).
Furthermore, the induced mapping on this curve is given by & — ¢ 4+ w, where w is
incommensurable with 27, and satisfies infinitely many conditions |w/(2r) — j/k| =
>yk™", with some positive y, t for all integers k > 0,j. Furthermore, we have the
following theorem.

lgl,= sup

m+n<s

THEOREM 4.4 (Arnold, for a proof see [1]). The set of all invariant curves of T,
leaves out only a set of measure of Lebesque arbitrarily small in R, if 0 (and so p) is
sufficiently small.

Without loss of generality we can assume that the Poincaré map T, is such that
a6'jor > 0.

LEMMA 4.5 (see Lemma 1 of [5] p. 340). Let (r, 0) be any point of an invariant curve
I of T, and let T;(r,0) = (r,(r.0),0,(r,0)). Let K >0 be the minimum value of the
continuous map (00, /0r) on T. Then we have 06, /0r 2 K, for each positive integer
n>1.

Again, the lower crossings at right angles are represented on the ring R by the
segments:

7, =7, =1{@r0eR:0=0},
3= ={(r,0)eR:0=m},
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according as the crossing is of C, or C, type. The arcs y, =7v,(u) and y, =y, (1)
change only slightly from y, and y,, respectively, if 4 is small. Hence the class C;;
of symmetric periodic orbits is represented in the ring R by the points of

+ o
F,‘j = F”(.u) = k_Q T:(Vij(ll)),
where y, (1) = y () " T (1), with

O,=Cw= {J Tfymw).

LEMMA 4.6. Let T be an invariant curve of T,. Then for any ¢ >0 there exists a
symmetric periodic point p in T';; such that d(p,T') <e.

Proof. Let R, be the outside component of the curve I into the ring R. Let
A={xeR,:d(x,T)<e}. Setq,=y,nT,q,=y,nTand yj=y,n 4.

One of the endpoints of the arc y; is g,, let g; be the other. If ¢ is sufficiently small,
then the line through the point g; with slope K (defined in Lemma 4.5) intersects
the curve I in a point g7, see Figure 8.

Tine of
slope K

Fig. 8. The region A near the segment y;.
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From Moser’s Theorem we have that the orbit of g, {qj, T.4; T} g } is dense
in I'. Then there is a positive integer n = n(q;) such that the point T}q; is between the
points g and ¢; when we go from g to g; counterclockwise. By Lemma 4.5, T}y,
cuts the arc y;. Then there are points p in I';; such that d(p, T') <e.

THEOREM 4.7. The closure of the symmetric periodic orbits T';; of T, is a set which
contains the invariant curves of T,,.

Proof. Suppose that there is an invariant curve I' and a neighborhood U of a
point of I" such that U does not contain any symmetric periodic point of I';,. By
Moser’s Theorem, the set | )2, T U contains the compact I'. Then, there is a set

¥, T/®U which contains also to I'. Since T, is a diffeomorphism, there exists

¢ and an annulus 4 = {xeR:d(x,I') <e¢} contained in | Ji_, T,U, without sym-
metric periodic points of I'; . This is a contradiction with Lemma 4.6, and the theorem
follows.

Theorem D follows from Theorems 4.4 and 4.7.
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