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Abstract. We consider the trapezoidal problem of four bodies. This is a special problem where only 
three degrees of freedom are involved. The blow up method of McGehee can be used to deal with the 
quadruple collision. Two degenerate cases are studied in this paper: the rectangular and the collinear 
problems. They have only two degrees of freedom and the analysis of total collapse can be done in a way 
similar to the one used for the collinear and isosceles problems of three bodies. We fully analyze the flow 
on the total collision manifold, reducing the problem of finding heteroclinic connections to the study 
of a single ordinary differential equation. For the collinear case, from which arises a one parameter  family 
of equations, the analysis for extreme values of the parameter  is done and numerical computat ions  fill 
up the gap for the intermediate values. Dynamical  consequences for possible motions near total collision 
as well as for regularization are obtained. 

1. Introduction 

The trapezoidal  problem of four bodies consists in the description of  the mot ion  of  

four particles of mases m 1 , m 2 = ml,  m 3, m 4 = m 3 with initial coordinates  (a, b), 
( - a ,  b), (c, d) and ( -  c, d), respectively and velocities such that  the symmetry  of  
coordinates  is kept  for all time. We can suppose that  the center of  masses remains at 

the origin, i.e., mlb + m3d = 0. New variables x = 2a, y = 2c, z = b - d can be intro- 

duced (see Figure 1). The mot ions  near quadruple  collision for that  problem have 

been partially described in [5].  In order  to give a complete picture of  the flow on the 

total collision manifold we restrict ourselves to two degenerate cases: the rectangular  

and the collinear. In the first the four masses are equal and a = c, b = d. In the second 

one has b = d = 0 but  we still have one parameter :  the mass ratio ~ = m2/m I . Then 

the total collision manifold is two dimensional  (see [6] and [1])  and the invariant  
manifolds associated to the critical points are one dimensional.  The study can be 

done on the same lines as the one found in [6] and [7] for the collinear three-body 
problem, or  in [1], [8] and [2] for the isosceles problem. However,  the analysis of  

the behavior  of  the invariant  manifolds is done using a single ordinary differential 

equation. A similar method  was formulated in [4] and [3].  

2. The Rectangular Case 

First we set the masses equal to one for the bodies. We write down the Lagrangian  

2 2 2 L = I  -2 ~ ( x  + ~2)  + _ + _ q 
X y (X2 q_ fl2)1/2 
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and the corresponding Hamiltonian 

2 2 2 
H = 7  X y (X 2 + y2)1/2 

where the coordinates are described in Figure 2. 
The resulting Hamilton equations are 

2 2x 
2 = P x '  P x  - -  X2  ~ 3 '  

2 2y 
]: = Pr' Dr = y2 ~3' 

where ~ = (x 2 + y2)1/2. 

Let us introduce the change of variables (see [6] ) : 

X = x ~ - l ,  y = y ~ - l ,  P x  = Px ~1/2, Pr = PY~ 1/2' ' d (3/2 d 
dz dt 

Then we have X 2 --~ y 2  _ 1 and ( = ( -  t(xpx + YPr) Introducing V = XP x + YPr 
we get the blown up equations : 

2 t - -  1 X'= P x -  XV, Px X2 2X +~VPx, 

2 
Y ' = P r -  YV, P ' r=-  y--2-2Y+�89 
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On ~ = 0 (total collision manifold C) the equations are still regular and we shall 
use the description of the flow on C to get information about  passage near total 
collision. As we know the change of variables is a diffeomorphism for ~ > 0. The 
change has blown up the point x = y  = 0 to the manifold C. This has no physical 
meaning neither the fact that the new time z on C is obtained by an infinite slowing 

down of the physical time. However, the regularity of the equations on C gives infor- 
mation for small positive values of ~ and this has a clear physical importance. 

On C the equation of the energy is ~(p2 + p2) _ U = 0, where U = (2/X) + (2/Y) + 
+ 2 and we get V' = U - (V2/2). 

The equilibrium points are U c = U m i . = U ( 1 / x / ~ , l / x / ~ ) = Z + 4 x / ~  and 
V = _+ x / ( 8 x / ~  + 4). 

We now introduce a new change of coordinates: X = cos 0, Y = sin 0 and therefore 

X ' = - s i n 0 . 0 ' ,  0 ' -  P x - X V  
sin 0 

2 _ _  But P z = P 2 + p r - 2 U  and A r g P =  7 allow us to write P c o s ( y - 0 ) = V .  
Therefore 

P x  = P c o s  T = V c o s  0 _ / ( p 2  _ V 2) s i n  0.  

After substitution we get 

V z 2 2 
0 ' = +  , V' = U(O) - 2 ' U(O) = cos O + ~  + 2  

which we integrate from 0 = re/4, V = - x / ( 8 x / 2 +  4) to obtain the unstable manifold 
Wj of the lower equilibrium point A (see Figure 3). Now we have several possibilities 
for studying the equations of the manifold. We can obtain dO/dV (see Section 3) or 

Fig. 3. 

~/2 q 



52 CARLES SIM6 AND ERNESTO LACOMBA 

we can use the arc parameter a along W~ as independent variable. The new equations 
become 

dV 
- (1 + 2 / V ' )  - ~ / 2  

da 

dO 
- -  = + (1  + V ' / 2 ) -  ~/2, 
do 

avoiding all the singularities. The change of sign in dO~do is produced when 0 = 0 
or zc/2. 

3. Numerical Computations and Analytical Estimations for the Rectangular Case 

The last equations have been integrated starting at A up to V = 0 (point B). The values 
obtained are O(B) = 0.5877, a(B) = 4.459. Using the symmetry with respect to 0 = To/4 
and V = 0 it is clear that, to have a connection between lower, A, and upper, D, equili- 
brium points requires O(B) to be a multiple of 7c/4. The value 0.5877 is quite different 
from 0 and re/4. However, for people who dislike results obtained through numerical 

integration, we offer a proof of the fact that W~ ~ W A that involves only inequalities 
and a few evaluations of trigonometric and hyperbolic functions. 

Dividing 0' by V' we get 

dO = ~ =  s e c 0 + c o s e c 0 + l  

We intend to show that starting at B 1 and going backwards we reach the curve 

V = x / ~ U ( O ) )  to the right of point A and starting at B z we reach 0 = re/4 above point 
A (see Figure 4). 

I~ ~ 3g ~ 4~ ~ 60 ~ 7r5 ~176 ~  

, ! ,, . 

' i ! 

Fig. 4. 
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To prove the first assertion we show that  this is t rue for a vectorfield F such that  

d~v ~<F 

and for the second, that  it is true for a G such that  

d~  ~>G. 

Let k~=mlno~to,,o,+l ] ( s e c 0 + c o s e c 0 ) .  In this range of 0 we take F =  

= 1/x/k i + 1 - (V2/4). If we set dO/dV = F one has A0 = I~: +1 dV/x/k ~ + 1 - (V2/4) 

where V~, V~+ 1 are the values at extreme points. Lett ing V = 2x//~ + 1 sin ct we obtain 
A0 = 2Ae. Now we split the range of 0 in the following set of intervals (in degrees) 
[0~ 5~ [5~ 15~ [15~ 30~ [30~ 60~ [60~176 [75~ 85~ [85~176 [95~ ~ 
[105 ~ 120~ [120 ~ 135~ For  angles greater than 90 ~ we take the symmetrical  with 
respect to 90 ~ The par t i t ion points  separating intervals are 0 o = 0 ~ 01 = 5 ~ . . . .  09 = 
= 120 ~ 01o = 135 ~ At each one of such points we shall compute  V~. No te  that  for 
each V~ we have two values of  ~, % i -  1, %i, depending on the value of ki used, the one 
related to the left or the right interval. Using symmetry  and convexity k o = sec 5 ~ + 

+ cosec 5~ = k6, kl = 2 x / ~ = k s = k v , k 2  = 2 + 2 / x / / 3=k4=ks , k3=2~v f2=k9  . 
We set up the recurrence %i+ 1 = ct2~ + (0~+ 1 - 0i)/2, x/(ki + 1) sin %i+ 1 = 

= x / ( k i + l  + l ) s i n % i + 2 ,  i = 0 - 8 ,  starting with % = 0 .  A few computa t ions  of 
t r igonometr ic  functions give the values % = rc/72, % = 0.153 246 335, % = 
= 0.313 807 297, cq = 0.589 183 175, % = 0.693 534 686, %1 = 0.653 534 211, cqa= 
=0 .501227454 ,  % 5 = 0 . 9 0 0 1 8 1 0 9 4 ,  % 7 = 1 . 3 3 5 0 1 0 6 8 9  and then we obtain 
sin %8 > 1 showing that  under  F we reach the value V = V c to the right of point  A. 

Now we proceed to study the solutions of dO/dV = G starting at V = 0, 0 = re/4. 
Consider  the interval [a, b ] c  [0, 7r/4]. Suppose that  V(a) < V(b). Then we take as 
1/G the function 

~4/0 V(a)2 + sec (a) + 1 - T 

where d=b/s inb.  We have A V =  5bal/G(O)dO. Let ~o(rn, O ) = ~ + ( 1 / x ~ )  
argtanhx/(mO/(1 + mO)) if m > 0 a n d x ~ +  mO 2 + (1/x/--S~) arc tgx/(  - toO~(1 + mO)) 
if m < 0. Define g = sec(a) + 1 - (V(a)2/4). Then AV = xfd(~o(g/d, b) - (P(9/d, a)). 
When 0 goes from re/4 to zt/2 and again to zt/4 and V decreases, the variat ion AV is 
equal to the variat ion obta ined going from re/4 to 0 and again to re/4. Using twice 
the part i t ion [7r/6, rc/4], [re/12, ~/6], [rc/36, rc/12], [0, rc/36] (the same part i t ion used 
for F) we get 

AN-- ~ ( q ) ( ~ i i ,  O i + l ) - ( P \ d i  Oi)),  
i = l  
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Case I 
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where in 9i the value V is taken as ~-11 . The values of 0 i are n/4, re~6, n/12, etc. The 
evaluation of the required inverse trigonometric and hyperbolic functions gives 

AV = 3.856090 805 < x/(4 + 8V/2) = IV], proving that under G we reach 0 = n/4 
at a point above A, as desired. In conclusion we proved the following result. 

T H E O R E M  2.1. The right side of the invariant unstable manifold of the lower equili- 
brium point A reaches the value V = O for Oe(O, re~4). 

The conclusions regarding the remaining side of W] can be obtained by symmetry. 
After a sequence of binary collisions (couples of simultaneous double collisions, 
of course) of types 1 and 2 (see Figure 5), slightly below or above the quadruple 

collision point A, the bodies escape as shown in Figure 5. A similar behavior is 
obtained for left hand side collisions. 

4. The Collinear Case 

Let rn 1 = m a = 1, m 3 = m 4 = ~ be the masses of the four bodies and x, - x, y/x/~, 

- y/x/~ the coordinates (see Figure 6). We again write down the Lagrangian 

1 ct 5/2 2~ 3/2 2~ 3/2 
L = x 2 + y Z + ~ x + ~ - y  + + 

y -  

and the corresponding Hamiltonian, setting, Px = 2~, py = 2~, 

p2 _2 i ~5/2 2~3/2 2~t3/2 __ p2 p2 

yU-x  --v(x'y) 
Introducing ~ = (2X 2 Jr- 2y2)  1/2 and the same change of coordinates as in Section 2 
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we get again 

1 2ct 2~ 1 
X '  Px X V ,  P x  2 2 

, ~5/2 2ctl/2 2~1/2 1 
y ,  = P r _ Y V ,  Py - I- ~ VPy, 

1 2 where V = X P  x + Y P r  as before. We get again V' = U - ~ V on ~ = 0. 

In t roduc ing  X = (1/x/~) cos 0, Y = ( l /x /2 )  sin 0, the equat ion  0 ' =  _ x / ~  is 
obtained.  

The  equi l ibr ium points  are ob ta ined  in the following way:  let z = y / x / ~ .  F r o m  
.~/x = 5/z and letting z = #x we get 

/ . / 3 ( / 2 2  - -  1) 2 -- 8/22(/22 + 1) 

17/24 -- 2/22 + 1 

When  ~ ranges f rom 0 to ~ ,  the pa rame te r  # ranges between #o and ~ ,  where/20 
is the zero of#(/22 - 1) 2 -- 8(/22 + 1) (approximately/20 = 2.396 812 289). The  m i n i m u m  

value of 0 is given by 0 o = a rc tgx /~  and the critical one by 0 c = arctg ( / z ~ ) .  
In order  to s tudy the connect ion of the invar iant  manifolds  s tar t ing at points  

( 0 ,  + 2 ~ ) ) ,  we in t roduce a new change of coordinates  (only useful for this 
purpose) .  Let 

n/2  - 0 o n /2  + 0 o 
a -  2 , b =  2 and  0 = b + a s i n y .  

Then  we get 

and 

d v  
dy - - -  c ~  y 

f . - - 0 ~ 5 / 2  _~_ (2~)3/2 C~ Oo 1/2) COS 2 ~ -~- 
V' COS 2 

~x/2 sin 0 sin (0 + 0o) 

1/x/~ cos 2 y (2003/2 COS 00 COS 2 
+ § 

sin (a(1 - sin ~)) sin (a(1 + sin y)) 

The  t e rm 

COS 2 

s i n ( a ( 1 - s i n T ) )  
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(and the one with the + sign in a similar way) has an avoidable singularity. 
If  7 = re/2 + e, for instance, we merely write 

cos 2 ? 4 cos 2 e/2 

sin (a(1 - sin 7)) sin (2a0) ' 

(where ~ = sin 2 e/2) and compute (sin(2aO))/O as 2 a -  ~a3O 2 + ~ a 5 0 4 _  3~guw8 _7.,.6 + 

+ .... The computat ion must be started with 7=Tc=arcsin((Oc-b)/a)e 

~(-re~2, n/2), V =-x/~U(Oc)) .  In dV/d? the + sign is used for the unstable 
manifold (right branch) and the - sign (with ? decreasing) for the left branch. 

5. Numerical Computations for the Coilinear Case 

Using the equation numerically regularized as described in Section 4 we have com- 
puted the point ?+(7-), where the right (left) branch of the unstable manifold of 
the lower equilibrium point reaches the value V = 0. 

The independent parameter  has been the parameter  #. Table I shows some results. 

Figure 7 offers a rough representation of ? ~ as a function of ~, including the region of 
small values of ~. The computat ions have been done using a R K  routine of fourth 
order with a step equal to 0.02. Some errors can be introduced for this value of the 
step for large values of ~. 

In order to study possible motions on the total collision manifold as a function of 

we need the connections between the equilibrium points. For  7+ = ( 2 k -  1)7~/2, 
k s ~  or - ? _  = (2k + 1)~z/2, one of the branches of W~ coincides with one of the 
branches of W~. For  7 + - 7 _  =2krc, k~N,  both branches meet on account of 

3tr 

5rf/2 

217 

3rf/2 

~7 

rf/2 

.~ q 4.5 2 

Fig. 7. 
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T A B L E  I !  

k a k T y p e  k a k Type 

1 0 .092 97 - y_ = 3rc/2 16 10.323 0 y+ = 13~r/2 

2 0.361 53 y .  = 3rc/2 17 12.868 8 - 3,_ = 13rc/2 

3 0.907 88 3'+ - 7 -  = 4re 18 13.088 0 7+ - 3,_ = 14n 

4 1.345 2 ?'+ = 5zr/2 19 13.303 5 ~'+ = 15n /2  

5 2.218 1 - 7 -  = 5zt/2 20  16.107 2 - 7 -  = 15n /2  

6 2.636 2 3,+ - y_  = 6~  21 16.310 5 7+ - 3,- = 16n 

7 2.998 6 7+ = 71r/2 22 16.511 5 Y+ = 17zr/2 

8 4.498 4 - ~_ = 7 n / 2  23 19.557 2 - 3,_ = 17rc/2 

9 4.821 0 Y+ - 7 -  = 87r 24 19.748 4 3,+ - 7 -  = 18~ 

I0  5.122 9 7+ = 9~ /2  25 19.937 9 3,+ = 19n/2  

11 7.051 5 - y_  = 9 n / 2  26 23.215 - Y- = 19~z/2 

12 7.323 7 3,+ - 3,_ = 10G 27 23.397 3,+ - y_  = 20~z 

13 7.585 9 y+ = l l z r / 2  28 23.578 3,+ = 2 D r / 2  

14 9.846 9 - 3,_ = 1 lzr/2 29  27 .080  - 3,_ = 217r/2 

15 10.087 8 7+ - 7 -  = 12re 30 27.254 Y+ - 7 -  = 22~z 

31 27.427 y + = 2 3 n / 2  

symmetry .  Table II offers s o m e  values of  a for which  such connect ions  are established. 

6. Analytical  Study of  the Limiting Cases 

W e  study the behavior  of  y +,  y_ and, incidentally,  ~,, V~ for a $ 0, e T oe.  
For  0c = 0 we  have 0 o = 0 = 0, V = - 21/4, a = b = rr/4, Yc = - re/2. The differential 

equat ion is d V/d O= �89  and scaling V = 2 1 / 4 ~ ,  we get ~ 2 +  

+ (d ~'/d0) 2- 4 = sec 0 with V = - 1 for 0 = 0. 

LEMMA. The solution of ~2 ~_ 4(d iT /d0)2  = s e e 0  such that I 7 ( 0 ) = -  1 reaches 
= 0 f o r  0 = r:/2. 

Proof. It is enough to check that the so lut ion is given by I7(0) = - w / ~  0. 

C O R O L L A R Y .  For a = 0 we have y+ = zr/2, - y _  = 3rr/2. 

N o w  we study what  happens with �9 > 0 sufficiently small.  First of  all we have, approxi-  

mately,  0 o = x / ~ ,  0 = # o x / ~ .  Therefore 

and 

~ 2 2  / | I t 2  "~ 3 / 2 2 3 / 2  X - - ,-o - - -  ~ + O ( : d )  u (0  c) = + ~ - - - -  + - -  + ~x/~2 /%+1 #o-1) 

v = - - + + + 2) 
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In order to check the behavior observed in Section 5 we have to prove two things: 
+ > 1t/2, - y_ < 3r~/2. 

We start at P(V---0,  0 = rr/2) and follow the differential equation 

dVdo - ~fU~O)_ V 24 

backwards. 
Writing down V = - 2 1 / 4 ~  + w, w(r~/2) = 0 and retaining first order terms 

we get 

dw w cos 0 20~ 3/2 COS 1/2 Off 1 1 "~ 

d-O = 2 5/4 sin 0 ~ sin 0 ~ sin (0 + 0o) ~ sin (0 - 0o) )" 

The solution of the homogeneous  equation is w = c(sin 0)- 1/2s/' and the method  of 
variation of the constants gives us 

dc 2Ct 3/2 COS I/2 0 / /  1 1 

d--0 = (sin 0 )" -1 /25 . ) \ s in (8-  + / 0 o )  + sin(8 - 0o))" 

Therefore w(0c)= - ~ o  x/~) -~/2s/4Ac, where Ac = f~/2 dc/d& The value Ac can be Jee 
estimated in the following way S;/2 = S~o + S~/2, where z is a small but finite quanti ty 
and so 

f = 0(~3/~). 
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It remains to compute the main contribution Soo' We bind COS 1/2 0 by 1, put  

1 1 2 sin 0 
< 

s i n ( 0 + 0  o) s i n ( 0 - 0  o) s in(0+0 o ) s i n ( 0 - 0  o) 

and approximate the sines by the angles. We then get 

z z 

/['4e3/a01/25/'<4~3/2 ]d~ ;0_2+1/25/4.. "- ac---j b:--~ 
/% - 1 

Oc Oc 
_~ 4c~3/2 #2 1) (#~ + a/2'/' 

(1 - 1/2s/4)(#oZ - 

Then 

As 

w ( O o )  ~ -  - 
4~P o 

(1 - 1/25/4)(/z 2 - i)" 

4.o 
(i - 1/25/')(#2 - i) < 21/" + --#o+i + 

the point Q (Figure 8) is above the equilibrium point (0c, V), showing that 7+ > n/2. 
Now let us look for point R (see Figure 8). The first order terms for 7c give us 

n ff-~-n-- 1) Yc ---- -- ~ + c~i/4" 

On the other hand the main term in dV/d~ is -x / (n /4V/2) ,  near the left hand side 
collision. Therefore the value of A V from the point (0 ,  V)  to R is 2v/(n/4k/~ ) x 
x (n/2 + y~) = x/(8(#o - 1) /~2)e 1/4, showing that  - 7_ < 3n/2. We now have 

proved the following result. 

P R O P O S I T I O N  6.1 For c~ small enough y+ > n/2, - y _  < 3n/2. 

For large c~ we have 

n 1 n 1 
0c- 2 

Introducing 17 = V/o~ 5/4 and retaining the dominan t  term in the differential equation 
we get 

v ~ - - ~ ,  d~ a X/ f2 
d v - x / ~  1 - ~ [ c ~  
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where a = 1/(2x/c0. Then 

d12 a T 2, 

,//- %2-,5 
where T is the 7 interval and 2/zt is the average value of ]cos 7]. We immediately get 
T = 2-1/4 ~2 ~1/2. We then state the result, which shows good agreement with the 
results in Table I. 

P R O P O S I T I O N  6.2. For c~ sufficiently large 7+ -~ n2  2-  1/4 0~1/2 and 7+ + Y- ~ n. 

COROLLARY 6.3. There are infinite values for which the left-hand branch of W~ 
coincides with the left-hand branch of W~ and for which the right-hand one coincides with 
the right-hand one and for which W~ - W~. In the last case the left-hand branch of 
W~ coincides with the right-hand one of W o and vice versa. 

The first-mentioned values for which these coincidences are obtained were given in 
Table II. 

Fig. 9. 
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7. Some Dynamical Consequences 

Let % be the unique value ~ > 0 such that -7_(%) = 3rt/2, % such that ~+(%) = 
= 3zr/2, a3 such that 7§ - 7-(%) = 4rr, etc. Figure 9 shows a qualitative picture 
of the invariant manifolds of the lower equilibrium point for an initial range of values 
of ~ containing those values (0 < % < ~2 < %)" 

The consequences with respect to orbits passing near quadruple collision are now 
easily obtained in the same way as they where obtained for the rectangular case (see 
orbits type 1, 2 in Figure 3). We recall that other necessary conditions for regulariz- 
ation can be obtained (for the good values of a, i.e., such that W] = W~) in the way 
introduced in [7]. Sufficient conditions will be given in a forthcoming paper [9]. 

The way of escaping after approaching a quadruple collision and the number of 
collisions taking place between central bodies or simultaneous double collisions 
between external bodies can be predicted from Figure 9. 

Picture similar to Figure 9 can be given for the full range of values of ~. (Note that, 
according to Table II, there is % similar to %, % similar to % and ~k similar to 0~k_ 3 

for all k >/6). 
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