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Abstract. We consider the trapezoidal problem of four bodies. This is a special problem where only
three degrees of freedom are involved. The blow up method of McGehee can be used to deal with the
quadruple collision. Two degenerate cases are studied in this paper: the rectangular and the collinear
problems. They have only two degrees of freedom and the analysis of total collapse can be done in a way
similar to the one used for the collinear and isosceles problems of three bodies. We fully analyze the flow
on the total collision manifold, reducing the problem of finding heteroclinic connections to the study
of a single ordinary differential equation. For the collinear case, from which arises a one parameter family
of equations, the analysis for extreme values of the parameter is done and numerical computations fill
up the gap for the intermediate values. Dynamical consequences for possible motions near total collision
as well as for regularization are obtained.

1. Introduction

The trapezoidal problem of four bodies consists in the description of the motion of
four particles of mases m,,m,=m ,m;,m, =m, with initial coordinates (g, b),
(—a,b),(c,d) and ( — ¢, d), respectively and velocities such that the symmetry of
coordinates is kept for all time. We can suppose that the center of masses remains at
the origin, i.e,, m b+ m,d = 0. New variables x = 2a, y = 2¢, z = b — d can be intro-
duced (see Figure 1). The motions near quadruple collision for that problem have
been partially described in [5]. In order to give a complete picture of the flow on the
total collision manifold we restrict ourselves to two degenerate cases: the rectangular
and the collinear. In the first the four masses are equal and @ = ¢, b = d. In the second
one has b = d = 0 but we still have one parameter: the mass ratio « = m,/m, . Then
the total collision manifold is two dimensional (see [6] and [1]) and the invariant
manifolds associated to the critical points are one dimensional. The study can be
done on the same lines as the one found in [6] and [7] for the collinear three-body
problem, or in [1], [8] and [2] for the isosceles problem. However, the analysis of
the behavior of the invariant manifolds is done using a single ordinary differential
equation. A similar method was formulated in [4] and [3].

2. The Rectangular Case
First we set the masses equal to one for the bodies. We write down the Lagrangian
2 2 2
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and the corresponding Hamiltonian

2 2 2
H=1p24+p) - _Z_ - -
20 Py) x 3 (4 yH2
where the coordinates are described in Figure 2.
The resulting Hamilton equations are

. . 2 2x
X =Dy> px=—;—z§,
. : 2 Yy
Y=Pp Py="T3"73
y y yz C3

where { = (x? + y?)1/2,
Let us introduce the change of variables (see [6]):

- , d d
X=xt"t, Y=y, Py=plY% P,=p/l'"? =E=C3/25'

Then we have X?>+Y?=1 and {=¢ 'l(xpx + ypy). Introducing V' = XP, + YP,
we get the blown up equations :

2
X’=PX—XV, P/X= __Xv_2_2X+%VPX’

2
Y'=P =YV, Py== =2V +1VP,.
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On { = 0 (total collision manifold C) the equations are still regular and we shall
use the description of the flow on C to get information about passage near total
collision. As we know the change of variables is a diffcomorphism for { > 0. The
change has blown up the point x = y =0 to the manifold C. This has no physical
meaning neither the fact that the new time t on C is obtained by an infinite slowing
down of the physical time. However, the regularity of the equations on C gives infor-
mation for small positive values of { and this has a clear physical importance.

On C the equation of the energy is 2(P; + P;) — U = 0, where U = (2/X) + (2/Y) +
+2and we get V' =U — (V2/2).

The equilibrium points are U,=U,_, =U(1//2,1/1/2)=2+4,/2 and
V.= +(8/2+4).

We now introduce a new change of coordinates: X = cos 6, Y = sin 6 and therefore
P, —XV
X =~sin0¢, ¢=—-—-F2———.

sin 0

But P>=P3+P2=2U and ArgP=1y allow us to writt P cos(y—0)=V.
Therefore

Py,=Pcosy=Vcosf—./(P*—V?sin0.

After substitution we get

2

Vv
0= +./2V" , V’=U(9)—7, U®) =

2
+—+2
cosf sinf

which we integrate from 0 = n/4, V = — ./ (8\/5 + 4) to obtain the unstable manifold
W of the lower equilibrium point A4 (see Figure 3). Now we have several possibilities
for studying the equations of the manifold. We can obtain d6/dV (see Section 3) or

Fig. 3.
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we can use the arc parameter o along W as independent variable. The new equations
become

dv do
——=(14+2/V) V2, —=+ 1+ V)7,
do do

avoiding all the singularities. The change of sign in df/de is produced when 8 =0
or /2.

3. Numerical Computations and Analytical Estimations for the Rectangular Case

The last equations have been integrated starting at A up to ¥V = 0 (point B). The values
obtained are 8(B) = 0.5877, o(B) = 4.459. Using the symmetry with respect to 6 = n/4
and V = 0t is clear that, to have a connection between lower, 4, and upper, D, equili-
brium points requires 6(B) to be a multiple of «/4. The value 0.5877 is quite different
from 0 and n/4. However, for people who dislike results obtained through numerical
integration, we offer a proof of the fact that W7, # W that involves only inequalities
and a few evaluations of trigonometric and hyperbolic functions.
Dividing 6’ by V' we get

V2 —-1/2
’ 2/V’ <sec€+cosec€+1—T> )

We intend to show that starting at B, and going backwards we reach the curve

V=\/(3 U(0)) to the right of point A and starting at B, we reach = n/4 above point
A (see Figure 4).

4
5° 75 30 457 _60° 75°85°90° 6

Fig. 4.
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To prove the first assertion we show that this is true for a vectorfield F such that

dé

—|<F
dv

and for the second, that it is true for a G such that

[de S
dV = .

Let k,=miny, , , (secf+cosect). In this range of 6 we take F=

=1/{/k;+ 1= (V?*/4). If we set d0/dV = F one has AB = [+ dV/\/k, + 1 — (V?/4)
where V,, V, | are the values at extreme points. Letting V = 2,/k, + 1 sin « we obtain
A8 =2Aa. Now we split the range of 8 in the following set of intervals (in degrees)
[0°,5°], [5°, 15°], [15°, 30°], [30°, 60°], [60°, 75°], [75°, 85°], [85°,95°], [95°, 105°]
[105°,120°], [120°,135°]. For angles greater than 90° we take the symmetrical with
respect to 90°. The partition points separating intervals are 6, =0°, 6, =5°, ..., 0, =
=120°, 8,, = 135°. At each one of such points we shall compute V.. Note that for
each V; we have two values of «, «,,_, , &,;, depending on the value of k; used, the one
related to the left or the right interval. Using symmetry and convexity k, = sec 5° +
+cosec S =kg, k, =26 =ky =k, k,=2+2//3=k, =kg k,=2./2=k,.

We set up the recurrence o, ,=a,, +(0,, , —0)/2, \/(ki +sina,;, =
=k, T Usina,, ., i=0-8, starting with a;=0. A few computations of
trigonometric functions give the values o, =n/72, a0, =0.153246335, 0, =
=0.313807 297, a, =0.589 183175, o, = 0.693 534 686, a,, =0.653 534211, o, ,=
=0.501227454, o,,=00900181094, o, ,=1335010689 and then we obtain
sin &, ; > 1 showing that under F we reach the value ¥ = V_ to the right of point 4.

Now we proceed to study the solutions of df/dV = G starting at V=0, 0 = n/4.
Consider the interval [a,b] = [0, 7/4]. Suppose that V(a) < V(b). Then we take as
1/G the function

\/g +sec(a)+1— Viay

4

where d = b/sinb. We have AV = [*1/G(0)df. Let ¢(m,0)=./0 + mb* + (1/\/;)
argtanh | /(m6/(1 + mb)) if m > 0 and \/0 + mb* + (1/\/ —m) arctg\/( —mb/(1 + mo))
if m<0. Define g=sec(a)+1—(V(a)*/4). Then AV = \/c_i(qo(g/d, b) — ¢(g/d, a)).
When 8 goes from 7/4 to n/2 and again to n/4 and V decreases, the variation AV is
equal to the variation obtained going from 7/4 to 0 and again to n/4. Using twice
the partition [n/6, n/4], [n/12, 7/6], [n/36, 7/12], [0, n/36] (the same partition used
for F) we get

8
- g; g;
AV = dilolZ0. )-o(%ia))
i§1\/_l<(p<di l+1> q0<di l>>
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where in g, the value V is taken as Z;;} The values of 0, are n/4, /6, n/12, etc. The
evaluation of the required inverse trigonometric and hyperbolic functions gives
AV =3.856 090 805 < /(4 + 8\/5) =|V,|, proving that under G we reach 6 = /4
at a point above 4, as desired. In conclusion we proved the following result.

THEOREM 2.1. The right side of the invariant unstable manifold of the lower equili-
brium point A reaches the value V =0 for 0e(0, /4).

The conclusions regarding the remaining side of W can be obtained by symmetry.
After a sequence of binary collisions (couples of simultaneous double collisions,
of course) of types 1 and 2 (see Figure 5), slightly below or above the quadruple
collision point A, the bodies escape as shown in Figure 5. A similar behavior is
obtained for left hand side collisions.

4. The Collinear Case
Let m; =m, =1,m, =m, = « be the masses of the four bodies and x, — x, y/\/&,
- y/\/& the coordinates (see Figure 6). We again write down the Lagrangian

1 (15/2 2(‘13/2 2(13/2
L=x*+p"+ —+—

S Ty RNy

and the corresponding Hamiltonian, setting, p, = 2x,p, =2y,

PO N S S S SN O

44 2x 2y y-x/o yyx/u 4 4

Introducing { = (2x? + 2y%)"/2 and the same change of coordinates as in Section 2

= Ulx, y).



ANALYSIS OF SOME DEGENERATE QUADRUPLE COLLISIONS 55

we get again

’ pX ’ 1 2“ 2“ 1
X = 5 - XV, Py T Y 5+ ¥ 5T 2 VP,
_+x> __x)
p Ja
Py a2 29112 29112 L
Y=7—YV, PY=—2Y2— v 27y 5 +3VPy,
T-x) (Fex)
o o
where V = XP, + YP, as before. We get again V'=U —1¥V?on {=0.

Introducing X =(1/\/§) cos 6, Y=(1/\/§) sin 0, the equation ¢ = 4+ ./2V’ is
obtained.

The equilibrium points are obtained in the following way: let z = y/\/&. From
X/x = Z/z and letting z = ux we get
P~ 12 — 8u*(u® + 1)
17p* —2u% + 1 ’

When o ranges from 0 to oo, the parameter u ranges between p, and co, where g,
isthe zero of u(u* — 1)*> = 8(u* + 1)(approximately p, = 2.396 812 289). The minimum
value of 6 is given by 0, = arctg\/_ and the critical one by 6, = arctg (;Lf ).

In order to study the connection of the invariant manifolds starting at points

(8,, £4/2U(8,)), we introduce a new change of coordinates (only useful for this
purpose). Let

n/2 -0, b_n/2+90

a= B = and 0=b+asiny.
Then we get

dv a

d_y = \—/_—— V'’ cos?
and

V' cos?y = " + (2?)3/2 cosby _V* > cos?y +

<\/§sin0 sin(@+6,) 2
1 /ﬁ cos’y  (2m)*'2cos B, cos®y
sin (a(1 — sin y)) sin (a(1 + sin y))
The term

cos?y
sin (a(1 — sin y))
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(and the one with the + sign in a similar way) has an avoidable singularity.
If y = m/2 + ¢, for instance, we merely write

cos?y 4cos?¢g/2
sin (a(1 — sin y)) ~ sin Qay)’
Y
(where ¥ =sin” ¢/2) and compute (sin(2ay))/¥ as 2a —2a*y? + La’y* —55:a7y® +
+.... The computation must be started with y=1y_ = arcsin((6, — b)/a)e

e(—mn/2,m/2),V = —\/(_2U(06)). In dV/dy the + sign is used for the unstable
manifold (right branch) and the — sign (with y decreasing) for the left branch.

5. Numerical Computations for the Collinear Case

Using the equation numerically regularized as described in Section 4 we have com-
puted the point y, (y_), where the right (left) branch of the unstable manifold of
the lower equilibrium point reaches the value V' = 0.

The independent parameter has been the parameter u. Table I shows some results.
Figure 7 offers a rough representation of y, as a function of «, including the region of
small values of a. The computations have been done using a RK routine of fourth
order with a step equal to 0.02. Some errors can be introduced for this value of the
step for large values of «.

In order to study possible motions on the total collision manifold as a function of «
we need the connections between the equilibrium points. For y, = (2k — I)n/2,
keN or —y_ =(2k + 1)n/2, one of the branches of W coincides with one of the
branches of Wj. For y, —y_ =2kn, keN, both branches meet on account of

&
-x
3T
Y32
.05 4 o
sT/2 h ]
20
372
-0k
/8
m2
A L L 1 d
5 1 15 2

Fig. 7.
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TABLE II
k o, Type k a Type
1 0.092 97 —y_ =3n/2 16 10.3230 y, =13r/2
2 0.361 53 y, =3n/2 17 12.868 8 —y_=137/2
3 0.907 88 Y, —y_=4=n 18 13.088 0 Y. —v_.=14zn
4 1.3452 y, =5n/2 19 13.303 5 v, =157/2
5 22181 —y_=5n/2 20 16.1072 —y_=157/2
6 2.6362 Yy, —y_=6n 21 16.310 5 Y, —7y_=16m
7 2998 6 y, =1Tn/2 22 16.511 5 v, =17m/2
8 4498 4 —y_=Tn/2 23 19.5572 —y_=17n/2
9 48210 p,—y.=8n 24 19.748 4 y,—y_=18=n
10 5.1229 y, =97/2 25 19.9379 v, =197/2
11 70515 —y_=97/2 26 23.215 —y_=197/2
12 73237 y,—y_=10x 27 23.397 y,—7v_=20m
13 7.5859 y, =11xn/2 28 23.578 7, =21x/2
14 9.8469 —y_=11x/2 29 27.080 —y_ =21n/2
15 10.087 8 y,—y-=12=n 30 27.254 P, —7.=22n
31 27.427 v, =23n/2

symmetry. Table IT offers some values of o for which such connections are established.

6. Analytical Study of the Limiting Cases

We study the behavior of y_ ,y_ and, incidentally, y_, V, for ad0,al .
Fora=O0wehave6,=0,=0,V,= —2'% a=b=mn/4,y,= — n/2. The differential

equation is dV/df =1, /(\/5 secl — V?), and scaling V =2Y4V, we get V?+
+(dV/d6)*-4 = sec @ with 7V = — 1 for 6 = 0.

LEMMA. The solution of V?+ 4dV/d0)* =secO such that V(0)= — 1 reaches
V=0 for 6 = n/2.
Proof. It is enough to check that the solution is given by V() = — /cos 6.

COROLLARY. For a=0we havey, = /2, —y_ = 3n/2.
Now we study what happens with « > 0 sufficiently small. First of all we have, approxi-
mately, 0, =/, 0, = uo\/&. Therefore

1 (1;@ 232

U,)=—7=+a + +
\/5 \/52 .u0+1 [10—1

)a + 0(2?)

and

2
VC=—<ﬁ—</§<EQ+ 2 2 >cx+0(a2)

4 g1 pg—1
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Fig. 8.

In order to check the behavior observed in Section 5 we have to prove two things:
Y, > w2, —y_<3n/2.
We start at P(V =0, 6 = n/2) and follow the differential equation

ﬂ uo) v?
o\ 2 4
backwards.

Writing down V = — 24, /cos 8 + w, w(r/2) = 0 and retaining first order terms
we get

dw _w cosO+2a3/2 cos”29< 1 N 1
40 2% sin0 sin®  \sin(@+0,)  sin@—0,) )

The solution of the homogeneous equation is w = c(sin 6) ™!/ 2** and the method of
variation of the constants gives us

de 2032 cos'’2 0 ( 1 N 1 >
do  (sin )2 \sin(@ +6,) sin(@—6,)/

Therefore w(B,) = — (1o /@)~ Y>"“Ac, where Ac = [7? dc/df. The value Ac can be
estimated in the following way {72 = j‘gc + {2, where z is a small but finite quantity
and so

w2

f = O(a®/?).

L4
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It remains to compute the main contribution {; . We bind cos'/? § by 1, put

1 N 1 < 2sin 0
sin (0 +0,) sin(@—0,) sin(0+0,)sin(0—06,)

and approximate the sines by the angles. We then get

z z
432 01/25/4 #2
ACE J—2——<4a3/2—5—0— 0_2+1/25/42
6% — o Uy —
28 0c
402 il

~ —1+1/25/4
= T2 = 1)(uo\/;) :

Then

dap,
(1 —1/25%) (g - 1)

w()~ —

As

4#0 1/4 (:ua(z) 4 2 )
(1—1/25*)(p2 - 1) 4 po+1 p,—1
the point Q (Figure 8) is above the equilibrium point (6, V), showing that y, > /2.
Now let us look for point R (see Figure 8). The first order terms for y, give us

8(ro — 1)a1/4.

te= 2 i1

On the other hand the main term in dV/dy is —\/ (n/4\/§), near the left hand side
collision. Therefore the value of AV from the point (6, V,) to R is 2\/(7z/4/\/5.) X
X (1/2 +7,) = /B(uy — 1)/</2)x'/*, showing that —y_<3m/2. We now have
proved the following result.

PROPOSITION 6.1 For o small enough y, > n/2, —y_ < 37/2.

For large o we have

L L
T2 Jd T2 Jad/17a

Introducing V= V/a>/* and retaining the dominant term in the differential equation

we get
dv. a [, V?
ch—ow/Zot, Ey—=ﬁ 1—ﬁ|cosy|,

0



ANALYSIS OF SOME DEGENERATE QUADRUPLE CGLLISIONS 61

where a = 1/(2,/). Then

0

dv___ a2
J1I-V2 2

_§

where T is the y interval and 2/ is the average value of ]cos 7]. We immediately get
T =2"1%g7% 42 We then state the result, which shows good agreement with the
results in Table I.

PROPOSITION 6.2. For a sufficiently largey, ~n*2 " a2 andy, +y_-m=.

COROLLARY 6.3. There are infinite values for which the left-hand branch of W7
coincides with the left-hand branch of W} and for which the right-hand one coincides with
the right-hand one and for which W% = W, In the last case the left-hand branch of
W?, coincides with the right-hand one of W, and vice versa.

The first-mentioned values for which these coincidences are obtained were given in
Table I1.

0L AL Oy & o < 0y

Fig. 9.
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7. Some Dynamical Consequences

Let a, be the unique value o > 0 such that —y_(«,) = 3n/2, «, such that y (a,)=
= 3n/2, a, such that y (a,) — y_(a;) = 4=, etc. Figure 9 shows a qualitative picture
of the invariant manifolds of the lower equilibrium point for an initial range of values
of « containing those values (0 <a;, <a, <a,).

The consequences with respect to orbits passing near quadruple collision are now
easily obtained in the same way as they where obtained for the rectangular case (see
orbits type 1, 2 in Figure 3). We recall that other necessary conditions for regulariz-
ation can be obtained (for the good values of a, i.e., such that W} = W;) in the way
introduced in [7]. Sufficient conditions will be given in a forthcoming paper [9].

The way of escaping after approaching a quadruple collision and the number of
collisions taking place between central bodies or simultaneous double collisions
between external bodies can be predicted from Figure 9.

Picture similar to Figure 9 can be given for the full range of values of a. (Note that,
according to Table II, there is «, similar to «,, o similar to «, and «, similar to &, _,
for all k = 6).
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