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Abstract. We complete Mc Gehee's picture of introducing a boundary (total collision) manifold to each 
energy surface. This is done by constructing the missing components of its boundary as other submanifolds, 
representing now the asymptotic behavior at infinity. 

It is necessary to treat each case h = 0, h > 0 or h < 0 separately. In the first case, we repeat the known 
result that the behavior at total escape is the same as in total collision. In particular, we explain why the 
situation is radically different in the h > 0 case compared with the zero energy case. In the case h < 0 we 
have many infinity manifold components, and the general situation is not quite well understood. 

Finally, our results for h >~ 0 are shown to be valid for general homogeneous potentials. 

1. Introduction 

The McGehee change of variables in Celestial Mechanics glues a boundary  to each 

energy surface, as is well known. The goal of this paper is to co~astruct the missing 
boundary components  of the energy surfaces by adding other submanifolds represent- 
ing the asymptotic behavior in escape motions. The novel idea is to blow up the 
infinity. 

We will re-derive known results about escape orbits. In some examples we also 
illustrate the existence of some collision-escape orbits in the zero energy case. 

Recall that in Celestial Mechanics one deals with a system of ordinary differential 

equations as 

q=pA-' (1) 
li = grad U(q) 

where pc  ~ k  q~ ~k _ A and U is an analytic function h o m o g e n e o u s  of  degree - 1 on  
[~k except for the subset A c ~ k  where  it is singular. The A is an order k constant  
matrix, called the mass  matrix. This  is a Hami l ton ian  system, w h o s e  Hami l ton ian  
funct ion is the total  energy H(q, p) = ~P~t-'- t_tp - U(q). As is k n o w n ,  to any fixed energy 
surface E h = ( H  = h} ,  McGehee ' s  b low up of  the origin [5]  glues a c o d i m e n s i o n  one-  
boundary  submanifold, the total collision manifold Moreover~ the flow extends to a 
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fictitious flow on the boundary, which gives important  information about  motions 
close to total collision. 

In order to add the boundary components  of E h corresponding to the asymptotic  

behavior of escape to infinity, we have to consider three different cases for the energy 
values h ~ N. 

2. Zero Energy Surfaces 

The idea is to generalize McGehee 's  change of variables by now blowing up the 
infinity in configuration space in the same way as he did with the origin. For  that, 
we rather take as scaling variable p = I -  1/2, where I = qAq ~ is the moment  of inertia. 

We then make for h = 0 the change of variables Q = pq, P = p -  1/2p. Then the system 
of differential Equations (1) becomes 

~ = _ p5/2 v 

Q = _ p3/2vQ + p3/ZpA-  1 (2) 

p = ~pa/2vp + pal2 grad U(Q) 

with the notation v = P .Q ,  the normalization condition Q A Q t =  1, and the new 
energy relation 

P A - 1 p t =  2U(Q) + 2h/p.  (3) 

Notice that (3) is singular when p = 0, so that the transformation mentioned works 
only in our case h = 0. On the other hand, (2) is regular but annihilates at p = 0. 
We therefore, make a time-scaling dz = p3/2dt, which eliminates the unpleasant 
factor p3/2. We then get the following system, where '  denotes derivatives with respect 
to the new time z 

p '  = - -  pv 

Q' -- - vQ + P A -  1 (4) 

P '  = ~vP + grad U(Q), 

with the constraint Q A Q  t = 1. 

We now notice that (4) almost equals Mc Gehee's system of differential equations 
[5]. We only have to substitute p by r = p -  1 in the scaling, and as a result the first 
equation in (4) will change sign. 

For  zero energy and n bodies, several authors have found the same asymptotic 
behavior at parabolic (total) escape as at total collision. Below we obtain a very 
simple proof  and a topological interpretation of this statement. 

We see that the set 

N o = { ( p , Q , P ) : p = O ,  Q A Q t = I ,  P A - 1 p t : 2 U ( Q ) }  

is invariant under the flow (4). We will call this the infinity manifold, and it indeed 
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appears as a boundary submanifold glued to the zero energy surface 

E o = { ( p , Q , P ) : p > O ,  Q A Q ~ = I ,  p A - 1 p t = 2 U ( Q ) } .  

In fact, analytically (and topologically, of course) it is the same as the total collision 
manifold C, except for the different meaning of the radial variable. Indeed, 

C = { ( r , Q , P ) : r = O ,  Q A Q t = I ,  P A - ~ P ~ = 2 U ( Q ) ) .  (5) 

T H E O R E M  1. I f  h = O, the flow on N O is exactly the same as in the total collision 
manifold C. In particular its equilibrium points, definin 9 asymptotic behavior at par- 
abolic escape, are given by central configurations of the system. 

Proof. From the remark above about  the flow (4), the equilibrium points on N o are 
- the same as those on C, since we get 

p = 0 ,  P A - I = v Q ,  v P = - 2 g r a d U ( Q ) .  

We know they are associated to central configurations, and the homographic  
solutions will simply connect equilibrium points on C, with the corresponding ones on 

N o , as we will clarify in the examples below. 
The flow on N o is actually the same as the flow on C, since p = 0 in (4) leaves out 

exactly the same equations as r = 0 in McGehee's  case. Q.E.D. 

COROLLARY.  The flow on N o is gradient - as it is with respect to v. 

Moreover,  since the energy relation becomes independent of p once we set h = 0 
in (3), we see that (4) can first be solved in the Q, P variables, and then for p. This 
means that the flow is projectable on C or N o . Once we know the flow on either one 
of those boundary components,  the flow on E o is obtained by lifting the solution up 

in the radial direction. It is like a mirror image in terms ofln p. 
By rephrasing the result for C, we conclude that in any n-body problem, escape 

to infinity takes place asymptotically by an approach to central configurations, or 
by keeping close to lower order collisions (escape by the arms in the collinear or 

isosceles 3-body problems). 
Example 1. Consider the planar isosceles 3-body problem for the h = 0 case, 

where double collisions are regularized. Recall that one is given two particles of 

masses equal to 1, and a third one of mass a. Initial conditions are given so that, at any 
time, the configuration is an isosceles triangle, as shown in Figure 1. 

When double collisions are regularized, the topology of C and the nature of its 
flow are well known (see [6]). The topology and flow of N o, with regularization of 

double collisions, will be likewise, by Theorem 1. We then arrive at Figure 2, where 

the energy surface E o is contained in the space between N O and C, and the homo- 
graphic solutions are shown as connections between the two components  N o and 

C of the boundary. 
Topologically, this is the space between two concentric spheres minus four rays 
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x -1 

Fig. 1. 

No 

Fig. 2. 

Fig. 3. Topological description of E 0 and its boundary  surfaces No, C. 
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Fig. 4. Euler and Lagrange central configurations of the isosceles problem. 

Fig .  5. 
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(due to the arms), as shown in Figure 3. This topology has already been described in 
[2], except that the boundary N O had not be taken into account. Somehow this way of 
looking at the topology cried out that something was missing. 

In the configuration space of Jacobi coordinates in Figure 1, we see that central 
configurations correspond to the lines 0 = 0, 0 = _+ I I /3  in Figure 4. 

We conclude that asymptotically the total escape to infinity is indeed by the above 
central configurations, or by 0 = _+/I/2 (escape by the arms), and consider this a 

particular case of our general remark above. 
Finally, knowledge about  this projectable flow permits us to show the existence 

of some remarkable motions. By way of illustration, we will describe a motion starting 
as an ejection from a triple collision of an equilateral triangle type, and ending up 
in a total escape of a collinear type. This motion was shown to exist in [3] by a 
different method. 

Recall that for the flow on C (or on No), Lagrange equilibrium points L are saddles. 
In the ejection (upper) part  of C the Euler equilibrium point is a sink, with an orbit 7 
coming from the saddle, as Figure 5 shows in the spiraling case c~ < 55/4. 

The two ejecting orbits from the saddle are contained in the 2-dimensional invariant 
submanifold at L for the flow on E o w C. Therefore any orbit ~ on the above-mentioned 
invariant submanifold which projects into and is different from 7, will end 

up asymptotically in the corresponding Euler point of N O which projects over E. 
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Fig. 6. 

It 

Eo 

An orbit off C in the unstable manifold of the Lagrange point asymptotically approaches the 
Euler point in N o . 

Fig. 7. 

No 

The reason is that the homographic solution ejecting from E connects to the cor- 
responding hyperbolic equilibrium point on N O , as shown in Figure 6. This last point 
turns out to be a sink, as we easily see. 

Example 2. Consider the rectilinear 3-body problem [5]. Here we can show the 
existence of motions asymptotically starting and ending on a parabolic escape of the 
Euler type for some values of the mass parameters. The topology is similar to that of 
the isosceles problem (see Figure 7). The difference is that there is only one central 

configuration (of the Euler type). The equilibrium points on C (and on N o) are saddles, 
and there are two homographic  solutions. 

We have to restrict ourselves to mass values such that there is a saddle-saddle 
connection between the two equilibrium points. F rom the projectability of the flow on 
E o u C w N o it is clear that the 2-dimensional unstable manifold W of E - coincides 
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Fig. 8. 

\ 
Orbit 7 asymptotically coming and going to parabolic escape, while passing close to triple 

collision. 

with the stable manifold of E + (Figure 8). This implies the existence of  an orbi t  Y 

with the desired properties. 
We can also find 7, so that  it passes as close as we like from triple collision (i.e., 

f rom the equilibrium points  on C), if we choose it on W close enough to the homo-  

graphic solutions. 

3. Positive Energy Surfaces 

For  h > 0, we take again as scaling variable p = I -  1/2 and the change of  posit ions 

Q = pq, but  we leave the m o m e n t a  unchanged,  i.e., P = p. The system (1) now be- 

comes 

[J = - -  p2  v 

Q = + p( - vQ + P A -  1) (6) 

i i = p2 grad U(Q). 

with the usual normal iza t ion condi t ion Q A Q  t = 1 and nota t ion v = P ' Q .  The new 

energy relation then becomes 

PA-1p t~_  2pU(Q) + 2h (7) 

In this case there is no  singularity at all when p = 0. We can still divide out  the 

factor p in (6), by the time scaling 

dz = p dt, 
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getting the following system 

p' = - pv 

Q' = - vQ + P A - 1  (8) 

P '  = p grad U(Q). 

Not ice  that  (8) differs f rom (4) in the last equat ion  only, which in addi t ion has now 
a factor  p. 

If  we set p -- 0 in the energy Equa t ion  (7), we get 

P A -  ~pt = 2h. (9) 

This means  that  in total  escape the square A -  1 n o r m  of P tends to a constant  value, 

the hyperbolic speed at infinity. As before, the infinity manifold  is defined by 

Nh={(p,Q,P):p=O, Q A Q ~ = I ,  p A - 1 P ~ = 2 h } .  

Again, N h and the total  collision manifold  C defined in (5) appea r  as bounda ry  com-  
ponents  of the energy surface E h. In the present  coordinate  system, this is defined as 

E h = { ( p , Q , P ) : p > O ,  Q A Q ' = I ,  PA-1P'=2pU(Q)+2h}. (10) 

The  equi l ibr ium points  of(8) on N h are more  numerous  than those on C : 

T H E O R E M  2. I f  h > O, the equilibrium points of the flow on  N h form a lower di- 
mensional submanifold. The escape motions have a fixed hyperbolic speed at infinity. 

Proof. For  the critical points, we are now only left with the equat ions  p = 0, and 

P A -  1 = vQ. (11) 

Since any asympto t ic  app roach  to N h takes place at equi l ibr ium points,  we see 

that, in principle, any limiting posit ion at total  escape is now permit ted,  but  only with a 

fixed hyperbolic velocity at infinity given by (11). We saw above  that  its square  n o r m  
is always 2h. F r o m  (9) and (11) we see that  at equi l ibr ium points  the hyperbol ic  speed 

is exactly Ivl = x / ~  Q.E.D. 

This result is radically different f rom the si tuation on the total  collision manifold,  and 
on N o (Section 2). However ,  it reflects the fact that  h takes now the place of U in 
energy Equa t ion  (7). 

P R O P O S I T I O N .  I fh  > O, the fiow on  N h is still gradient-like with respect to v. 
Proof. Indeed,  when p = 0, we get v' = 2h - v 2 = Q ' A Q  't/> 0. Whenever  v' = 0, 

we get Q'  = 0 and are in an equi l ibr ium point.  Q.E.D. 

Therefore,  I v] ~< ~ on N h. This is not  in contradic t ion with the case h = 0, since 
the scaling in the m o m e n t a  is different here. 
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4. Negative Energy Surfaces 

For h < 0 there are zero velocity surfaces in configuration space, and escape can 
only occur in certain directions. In general, we will have several components of infinity 
manifolds, according to the problem. Clearly, escape can take place only when the 
potential energy has grown to produce a big enough kinetic energy. 

In fact, the only way of escape to infinity of configuration space is by being close 
to lower order collisions, because of the structure of zero velocity surfaces. Hence, 
once we omit the origin (total collapse), we count the number of infinity manifold 
components of the energy surface E h, h < 0 by the number of topological components 
of the lower order collisions set. 

For example, in the isosceles or rectilinear 3-body problem (whose topology of 
configuration space is the same), we have exactly two infinity manifold components. 
In the general 3-body problem (spatial or planar) we have 3 components, correspond- 
ing to binary collision of the possible pairs of particles. It is clearly impossible to 
pass from one to the other without a total collapse. 

The general situation is still far from being well understood, and it seems that the 
technique we give below works only for pieces of the infinity manifolds which cor- 
respond to codimension 1 subsets of the configuration space. We will illustrate this 
with the isosceles 3-body. 

ISOSCELES PROBLEM 

Consider Example 1 of Section 2, but now with h < 0. Referring to the masses and 
Jacobi coordinates of Figure 1, the energy equation can be written as follows, with 
A = diag (2, 2ct/(2 + ~)). 

p A -  lpt = x - 1  + 4o~/x/~z + yZ + 2h. (t2) 

The allowed region of motion in configuration space looks like Figure 9 below. 
It is bounded on the right by the zero velocity curve, obtained by letting the right- 
hand side of (12) be equal to zero. 

y 

-2hx=i 

Fig. 9. 
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The zero velocity curve is asymptotic to the line 2hx = - 1. This gives an asymptotic 
bound on the possible values of x when lyl is big enough. We now have two possibil- 
ities: y > 0 or y < 0, representing each of the infinity manifold components. Assume, 
without loss of generality, that y > 0. 

It is then natural to make the change of variables y = p -  1 > 0. (12) can now be 
written as follows 

pA- lp~ = x -  ~ + 2h + pR(px, 1), (13) 

where R(x, y) = 4e(x 2 + y2)- 1/2. The following flow is then obtained with no time 
change needed 

# = _ p2(2 + ~)p2/(2~) 

= p~/2 (14) 

20 = grad (l/x) + p2 grad R(px, 1). 

Notice that there are no equilibrium points, since g r a d ( I / x ) = ( - i / x 2 , 0 )  is 

bounded away from zero for bounded x. This is the result of the total energy being 
negative, and can be explained as follows: since y --+ ~ corresponds to separation of the 
binary pair from the third particle with some limiting velocities, the clusters separation 
energy is non-negative. This implies that the inner energy of the binary is necessarily 
negative (see [4] for definitions of clusters of particles and partition energies). In fact, 
we show below that in the limit p = 0 we get bounded Kepler motions. 

When p = 0, system (14) becomes particularly simple: 

# = 0 ,  2 ~ = p l ,  2 / ~ l = - x  -2, # 2 = 0 .  

Elimination of pl and integration of the last equation gives 

Y = - (2x)-z, P2 = const. 

The motion has been uncoupled as a Kepler motion in the x-direction, and a trivial 
motion in the vertical direction. Once the binary collisions are regularized by the 
Levi-Civita or Sundman method, we see that the Kepler motion gives periodic 

orbits (negative energy), parametrized by P2. Rewriting the energy Equation (13) as 

22/2 - -  (4x)- 1 = h/2 - (2 + ~)p2(8~)- 1, 

we see that the equivalent energy is 

/7(p2) = h - (2 + ~)p22/(4~) < 0. (15) 

In particular, the parabolic periodic orbit at infinity is easily obtained if we let 
P2 = 0. This is a Kepler orbit with energy/~ = h, according to (15). 

The corresponding component submanifold at infinity before regularization of 
binary collisions is 

N + =  {(x,p,P~,Pz) 'P p~=2:~, pA-~p t= l / x  + 2h}. 
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~ p2< o 

Fig. 10. Flow on one of the infinity components of the isosceles problem for h < 0. 

) 
Topological description of E h and its boundary components C, N~-, N~- for h < 0. Four line 

segments connecting the outer sphere to the interior ones, are deleted. 

Similarly, we can define N h for the case y < 0. These sets are topological ly 
S 1-bundles over {x ~ R : 0  < - 2 h x  ~< 1}, which turns out  to be an open 2-disk. After 

regularization, we get a sphere S 2, where the N o r t h  and South  poles are deleted. We 

show this in Figure 10, where the parallels are Kepler  orbits and the Nor the rn  Hemi-  

sphere corresponds to P2 > 0, and, in particular, the N o r t h  Pole corresponds  to 

P2 ~ oo. Symmetrical ly P2 < 0 for the Southern Hemisphere.  The two poles are 
related to hyperbolic  escape with unbounded  velocity. 

As to the flow neighboring the bounda ry  N h on E h, we see f rom (14) that  when 

p :p 0 we get/~2 < 0. This means that  the flow spirals downward  (Figure 10). Also, 

P2 ~< 0 implies ~ 1> 0, so that  any asymptot ic  approach  of  the flow is forbidden in the 

Southern  Hemisphere.  If  an orbi t  approaches  the Nor the rn  Hemisphere  it must  

always remain in the region P2 > 0. By time reversal, we see that  P2 increases, and 
asymptot ic  approach  for t ---, - oo occurs in the Southern Hemisphere. 
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Finally, in Figure 11 we show topologically E h u N h u N h w C. This figure has 
already been described in [2], except that Nh§ N~- were missing. The homographic 
orbits are also shown. 

The same method works in the rectilinear three-body problem considered in 
Example 2 of Section 2. The topology turns out to be exactly the same as in Figure 11, 
except that, of course, there is only one homographic  orbit. 

5. General Homogeneous Potentials 

In this section we extend our results for energy h ~> 0 to more general homogeneous 
potentials U. We consider again a system (1), where U(q) is now homogeneous of 

degree - d (see [1]). 
If  h = 0, we let again p = I -  1/2, Q = pq, but P = p-d/2p and dz = pl +d/2 dt. Now 

the new system of differential equations is almost like (4), except for the last equation, 
which now generalizes to 

P' = (d /2)vP + grad U(Q). 

The energy relation (when we let h = 0) and hence N o, are the same as before. The 
equilibrium points on N O are central configurations of our more general potential. 

For h > 0 ,  we take the same scaling p = I-1/2,  Q = pq, p = p, dz = p d t  as in 
Section 3. Again this almost gives system (8), except that the last equation now reads 

P'  = pn grad U(Q). 

The energy relation (7) now becomes 

P A -  ~pt = 2p~U(Q) + 2h. 

The manifold N h and its flow are the same as in the Celestial Mechanics case. In 
particular, its equilibrium points are still defined by (11). 

Note added in proof: The manifold E n is topologically a 3-hole solid torus in 
Figure 3. It is just a 2-hole solid torus in Figure 11. In both cases, the 4 deleted rays 
correspond to collapsed binaries (with infinite speed). 
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